US20200390904A1 - Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents - Google Patents
Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents Download PDFInfo
- Publication number
- US20200390904A1 US20200390904A1 US16/916,838 US202016916838A US2020390904A1 US 20200390904 A1 US20200390904 A1 US 20200390904A1 US 202016916838 A US202016916838 A US 202016916838A US 2020390904 A1 US2020390904 A1 US 2020390904A1
- Authority
- US
- United States
- Prior art keywords
- cancer
- nucleolin
- gnp
- nanoparticles
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 109
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 46
- 239000002872 contrast media Substances 0.000 title description 16
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 103
- 201000011510 cancer Diseases 0.000 claims abstract description 72
- 238000003384 imaging method Methods 0.000 claims abstract description 35
- 239000000203 mixture Substances 0.000 claims abstract description 31
- 238000001959 radiotherapy Methods 0.000 claims abstract description 28
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 27
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 13
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 108
- 229910052737 gold Inorganic materials 0.000 claims description 108
- 239000010931 gold Substances 0.000 claims description 108
- 108010044762 nucleolin Proteins 0.000 claims description 43
- 102100021010 Nucleolin Human genes 0.000 claims description 39
- 206010006187 Breast cancer Diseases 0.000 claims description 31
- 208000026310 Breast neoplasm Diseases 0.000 claims description 31
- 238000011282 treatment Methods 0.000 claims description 28
- 208000020816 lung neoplasm Diseases 0.000 claims description 27
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 25
- 108091034117 Oligonucleotide Proteins 0.000 claims description 25
- 201000005202 lung cancer Diseases 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 25
- 230000003211 malignant effect Effects 0.000 claims description 19
- 230000008685 targeting Effects 0.000 claims description 9
- 239000012216 imaging agent Substances 0.000 claims description 8
- 238000001727 in vivo Methods 0.000 claims description 8
- 108090000623 proteins and genes Proteins 0.000 claims description 8
- 102000004169 proteins and genes Human genes 0.000 claims description 8
- -1 anthracycline Chemical compound 0.000 claims description 7
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- GURKHSYORGJETM-WAQYZQTGSA-N irinotecan hydrochloride (anhydrous) Chemical compound Cl.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 GURKHSYORGJETM-WAQYZQTGSA-N 0.000 claims description 5
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 claims description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- IWEQQRMGNVVKQW-OQKDUQJOSA-N Toremifene citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 IWEQQRMGNVVKQW-OQKDUQJOSA-N 0.000 claims description 4
- RJOJUSXNYCILHH-UHFFFAOYSA-N gadolinium(3+) Chemical compound [Gd+3] RJOJUSXNYCILHH-UHFFFAOYSA-N 0.000 claims description 4
- 230000003902 lesion Effects 0.000 claims description 4
- RGLRXNKKBLIBQS-XNHQSDQCSA-N leuprolide acetate Chemical compound CC(O)=O.CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 RGLRXNKKBLIBQS-XNHQSDQCSA-N 0.000 claims description 4
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 claims description 4
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 claims description 3
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 3
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 claims description 3
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 claims description 3
- 239000002136 L01XE07 - Lapatinib Substances 0.000 claims description 3
- 239000002146 L01XE16 - Crizotinib Substances 0.000 claims description 3
- 206010060862 Prostate cancer Diseases 0.000 claims description 3
- NAVMQTYZDKMPEU-UHFFFAOYSA-N Targretin Chemical compound CC1=CC(C(CCC2(C)C)(C)C)=C2C=C1C(=C)C1=CC=C(C(O)=O)C=C1 NAVMQTYZDKMPEU-UHFFFAOYSA-N 0.000 claims description 3
- CBPNZQVSJQDFBE-FUXHJELOSA-N Temsirolimus Chemical compound C1C[C@@H](OC(=O)C(C)(CO)CO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 CBPNZQVSJQDFBE-FUXHJELOSA-N 0.000 claims description 3
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 claims description 3
- KTEIFNKAUNYNJU-GFCCVEGCSA-N crizotinib Chemical compound O([C@H](C)C=1C(=C(F)C=CC=1Cl)Cl)C(C(=NC=1)N)=CC=1C(=C1)C=NN1C1CCNCC1 KTEIFNKAUNYNJU-GFCCVEGCSA-N 0.000 claims description 3
- 229940029575 guanosine Drugs 0.000 claims description 3
- YLMAHDNUQAMNNX-UHFFFAOYSA-N imatinib methanesulfonate Chemical compound CS(O)(=O)=O.C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 YLMAHDNUQAMNNX-UHFFFAOYSA-N 0.000 claims description 3
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 claims description 3
- 210000004072 lung Anatomy 0.000 claims description 3
- 229960001972 panitumumab Drugs 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 claims description 3
- WAEXFXRVDQXREF-UHFFFAOYSA-N vorinostat Chemical compound ONC(=O)CCCCCCC(=O)NC1=CC=CC=C1 WAEXFXRVDQXREF-UHFFFAOYSA-N 0.000 claims description 3
- ZBVJFYPGLGEMIN-OYLNGHKZSA-N (2s)-n-[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2r)-1-[[(2s)-1-[[(2s)-1-[(2s)-2-[(2-amino-2-oxoethyl)carbamoyl]pyrrolidin-1-yl]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1h-indol-3-yl)-1-oxopropan-2-yl]amino]-3-( Chemical compound C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1.C([C@@H](C(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 ZBVJFYPGLGEMIN-OYLNGHKZSA-N 0.000 claims description 2
- NAALWFYYHHJEFQ-ZASNTINBSA-N (2s,5r,6r)-6-[[(2r)-2-[[6-[4-[bis(2-hydroxyethyl)sulfamoyl]phenyl]-2-oxo-1h-pyridine-3-carbonyl]amino]-2-(4-hydroxyphenyl)acetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC(O)=CC=1)C(=O)C(C(N1)=O)=CC=C1C1=CC=C(S(=O)(=O)N(CCO)CCO)C=C1 NAALWFYYHHJEFQ-ZASNTINBSA-N 0.000 claims description 2
- HJTAZXHBEBIQQX-UHFFFAOYSA-N 1,5-bis(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1CCl HJTAZXHBEBIQQX-UHFFFAOYSA-N 0.000 claims description 2
- WFAYDIIPXDKFOD-UHFFFAOYSA-N 2-[4,7-bis(carboxymethyl)-10-(2-sulfanylethyl)-1,4,7,10-tetrazacyclododec-1-yl]acetic acid Chemical compound OC(=O)CN1CCN(CCS)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WFAYDIIPXDKFOD-UHFFFAOYSA-N 0.000 claims description 2
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 claims description 2
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 2
- 206010009944 Colon cancer Diseases 0.000 claims description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 claims description 2
- 208000032612 Glial tumor Diseases 0.000 claims description 2
- 206010018338 Glioma Diseases 0.000 claims description 2
- 206010020843 Hyperthermia Diseases 0.000 claims description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims description 2
- 239000002118 L01XE12 - Vandetanib Substances 0.000 claims description 2
- 108010000817 Leuprolide Proteins 0.000 claims description 2
- 206010025323 Lymphomas Diseases 0.000 claims description 2
- 229930192392 Mitomycin Natural products 0.000 claims description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 claims description 2
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 claims description 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 claims description 2
- 206010033128 Ovarian cancer Diseases 0.000 claims description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 2
- 229930012538 Paclitaxel Natural products 0.000 claims description 2
- 208000007452 Plasmacytoma Diseases 0.000 claims description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 2
- 206010039491 Sarcoma Diseases 0.000 claims description 2
- 108010050144 Triptorelin Pamoate Proteins 0.000 claims description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 claims description 2
- 229960002932 anastrozole Drugs 0.000 claims description 2
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 claims description 2
- 229940045799 anthracyclines and related substance Drugs 0.000 claims description 2
- 229960002594 arsenic trioxide Drugs 0.000 claims description 2
- 229960000397 bevacizumab Drugs 0.000 claims description 2
- 229960002938 bexarotene Drugs 0.000 claims description 2
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 claims description 2
- 229940127093 camptothecin Drugs 0.000 claims description 2
- 229960004562 carboplatin Drugs 0.000 claims description 2
- 201000010881 cervical cancer Diseases 0.000 claims description 2
- 229960005395 cetuximab Drugs 0.000 claims description 2
- 229960004316 cisplatin Drugs 0.000 claims description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 claims description 2
- 208000029742 colonic neoplasm Diseases 0.000 claims description 2
- 229960005061 crizotinib Drugs 0.000 claims description 2
- 229960004397 cyclophosphamide Drugs 0.000 claims description 2
- 229960003109 daunorubicin hydrochloride Drugs 0.000 claims description 2
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 claims description 2
- 229960003668 docetaxel Drugs 0.000 claims description 2
- 229960004679 doxorubicin Drugs 0.000 claims description 2
- 201000004101 esophageal cancer Diseases 0.000 claims description 2
- 229960005167 everolimus Drugs 0.000 claims description 2
- 229960000255 exemestane Drugs 0.000 claims description 2
- 229940043168 fareston Drugs 0.000 claims description 2
- 229960002949 fluorouracil Drugs 0.000 claims description 2
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 claims description 2
- 229960002074 flutamide Drugs 0.000 claims description 2
- 229960005277 gemcitabine Drugs 0.000 claims description 2
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 claims description 2
- 238000001415 gene therapy Methods 0.000 claims description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 2
- 230000036031 hyperthermia Effects 0.000 claims description 2
- 229960003685 imatinib mesylate Drugs 0.000 claims description 2
- 239000007943 implant Substances 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229960004768 irinotecan Drugs 0.000 claims description 2
- 229960000779 irinotecan hydrochloride Drugs 0.000 claims description 2
- 229960004891 lapatinib Drugs 0.000 claims description 2
- 229960003881 letrozole Drugs 0.000 claims description 2
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 claims description 2
- 208000032839 leukemia Diseases 0.000 claims description 2
- 229960004338 leuprorelin Drugs 0.000 claims description 2
- 201000007270 liver cancer Diseases 0.000 claims description 2
- 208000014018 liver neoplasm Diseases 0.000 claims description 2
- 201000001441 melanoma Diseases 0.000 claims description 2
- 229960000485 methotrexate Drugs 0.000 claims description 2
- 229960004857 mitomycin Drugs 0.000 claims description 2
- 229960001756 oxaliplatin Drugs 0.000 claims description 2
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 claims description 2
- 229950007318 ozogamicin Drugs 0.000 claims description 2
- 229960001592 paclitaxel Drugs 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 238000002428 photodynamic therapy Methods 0.000 claims description 2
- HNMATTJJEPZZMM-BPKVFSPJSA-N s-[(2r,3s,4s,6s)-6-[[(2r,3s,4s,5r,6r)-5-[(2s,4s,5s)-5-[acetyl(ethyl)amino]-4-methoxyoxan-2-yl]oxy-6-[[(2s,5z,9r,13e)-13-[2-[[4-[(2e)-2-[1-[4-(4-amino-4-oxobutoxy)phenyl]ethylidene]hydrazinyl]-2-methyl-4-oxobutan-2-yl]disulfanyl]ethylidene]-9-hydroxy-12-(m Chemical compound C1[C@H](OC)[C@@H](N(CC)C(C)=O)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@@](C/3=C/CSSC(C)(C)CC(=O)N\N=C(/C)C=3C=CC(OCCCC(N)=O)=CC=3)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HNMATTJJEPZZMM-BPKVFSPJSA-N 0.000 claims description 2
- FQZYTYWMLGAPFJ-OQKDUQJOSA-N tamoxifen citrate Chemical compound [H+].[H+].[H+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 FQZYTYWMLGAPFJ-OQKDUQJOSA-N 0.000 claims description 2
- 229960003454 tamoxifen citrate Drugs 0.000 claims description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 2
- 229960000235 temsirolimus Drugs 0.000 claims description 2
- QFJCIRLUMZQUOT-UHFFFAOYSA-N temsirolimus Natural products C1CC(O)C(OC)CC1CC(C)C1OC(=O)C2CCCCN2C(=O)C(=O)C(O)(O2)C(C)CCC2CC(OC)C(C)=CC=CC=CC(C)CC(C)C(=O)C(OC)C(O)C(C)=CC(C)C(=O)C1 QFJCIRLUMZQUOT-UHFFFAOYSA-N 0.000 claims description 2
- 208000008732 thymoma Diseases 0.000 claims description 2
- 229960002190 topotecan hydrochloride Drugs 0.000 claims description 2
- 229960004167 toremifene citrate Drugs 0.000 claims description 2
- 229960000575 trastuzumab Drugs 0.000 claims description 2
- 229960000294 triptorelin pamoate Drugs 0.000 claims description 2
- UHTHHESEBZOYNR-UHFFFAOYSA-N vandetanib Chemical compound COC1=CC(C(/N=CN2)=N/C=3C(=CC(Br)=CC=3)F)=C2C=C1OCC1CCN(C)CC1 UHTHHESEBZOYNR-UHFFFAOYSA-N 0.000 claims description 2
- 229960000241 vandetanib Drugs 0.000 claims description 2
- GPXBXXGIAQBQNI-UHFFFAOYSA-N vemurafenib Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(=CN=C3NC=2)C=2C=CC(Cl)=CC=2)=C1F GPXBXXGIAQBQNI-UHFFFAOYSA-N 0.000 claims description 2
- 229960003862 vemurafenib Drugs 0.000 claims description 2
- 229940061389 viadur Drugs 0.000 claims description 2
- 229960003048 vinblastine Drugs 0.000 claims description 2
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 claims description 2
- 229960002066 vinorelbine Drugs 0.000 claims description 2
- 229960000237 vorinostat Drugs 0.000 claims description 2
- 208000003837 Second Primary Neoplasms Diseases 0.000 claims 1
- 190000008236 carboplatin Chemical compound 0.000 claims 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 claims 1
- 239000002616 MRI contrast agent Substances 0.000 abstract description 14
- 239000003937 drug carrier Substances 0.000 abstract description 8
- 230000002708 enhancing effect Effects 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 125
- 108091023037 Aptamer Proteins 0.000 description 30
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 30
- 238000002591 computed tomography Methods 0.000 description 21
- 230000005855 radiation Effects 0.000 description 21
- 241000699666 Mus <mouse, genus> Species 0.000 description 16
- 238000002595 magnetic resonance imaging Methods 0.000 description 15
- 230000008859 change Effects 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 230000004083 survival effect Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 9
- OCDAWJYGVOLXGZ-VPVMAENOSA-K gadobenate dimeglumine Chemical compound [Gd+3].CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC(O)=O)C(C([O-])=O)COCC1=CC=CC=C1 OCDAWJYGVOLXGZ-VPVMAENOSA-K 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- HHLZCENAOIROSL-UHFFFAOYSA-N 2-[4,7-bis(carboxymethyl)-1,4,7,10-tetrazacyclododec-1-yl]acetic acid Chemical compound OC(=O)CN1CCNCCN(CC(O)=O)CCN(CC(O)=O)CC1 HHLZCENAOIROSL-UHFFFAOYSA-N 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 230000001028 anti-proliverative effect Effects 0.000 description 8
- 238000009825 accumulation Methods 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- 238000012216 screening Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 150000003573 thiols Chemical class 0.000 description 6
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 210000004940 nucleus Anatomy 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 150000000921 Gadolinium Chemical class 0.000 description 4
- 206010027476 Metastases Diseases 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 238000000942 confocal micrograph Methods 0.000 description 4
- 238000004624 confocal microscopy Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- XQZXYNRDCRIARQ-LURJTMIESA-N iopamidol Chemical compound C[C@H](O)C(=O)NC1=C(I)C(C(=O)NC(CO)CO)=C(I)C(C(=O)NC(CO)CO)=C1I XQZXYNRDCRIARQ-LURJTMIESA-N 0.000 description 4
- 229960004647 iopamidol Drugs 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 210000001165 lymph node Anatomy 0.000 description 4
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000028617 response to DNA damage stimulus Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 206010073306 Exposure to radiation Diseases 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 210000000069 breast epithelial cell Anatomy 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000004087 circulation Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229940096814 gadobenate dimeglumine Drugs 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 2
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 108091008102 DNA aptamers Proteins 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 102000003505 Myosin Human genes 0.000 description 2
- 108060008487 Myosin Proteins 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 2
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000009643 clonogenic assay Methods 0.000 description 2
- 231100000096 clonogenic assay Toxicity 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000013170 computed tomography imaging Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 238000002059 diagnostic imaging Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 210000005265 lung cell Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001394 metastastic effect Effects 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 238000010603 microCT Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 210000005170 neoplastic cell Anatomy 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 238000011580 nude mouse model Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000002601 radiography Methods 0.000 description 2
- 230000000637 radiosensitizating effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 208000022679 triple-negative breast carcinoma Diseases 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- VLEIUWBSEKKKFX-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O VLEIUWBSEKKKFX-UHFFFAOYSA-N 0.000 description 1
- XLMXUUQMSMKFMH-UZRURVBFSA-N 2-hydroxyethyl (z,12r)-12-hydroxyoctadec-9-enoate Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC(=O)OCCO XLMXUUQMSMKFMH-UZRURVBFSA-N 0.000 description 1
- 102100033409 40S ribosomal protein S3 Human genes 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 239000012118 Alexa Fluor 750 Substances 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 239000001842 Brominated vegetable oil Substances 0.000 description 1
- ZIMXXRMMIIYSAD-UHFFFAOYSA-N C.CCCCSSCCCO.COCCOCCOCCOCCOCCOCCOP(C)(=O)OC.COCCOCCOCCOP(C)(=O)OC Chemical compound C.CCCCSSCCCO.COCCOCCOCCOCCOCCOCCOP(C)(=O)OC.COCCOCCOCCOP(C)(=O)OC ZIMXXRMMIIYSAD-UHFFFAOYSA-N 0.000 description 1
- 0 CC1(C)c(cccc2)c2*(CCC*)=C1C=CC=CC=C1N(CCCOP(*)O*)c2ccccc2C1(C)C Chemical compound CC1(C)c(cccc2)c2*(CCC*)=C1C=CC=CC=C1N(CCCOP(*)O*)c2ccccc2C1(C)C 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- GUGHGUXZJWAIAS-QQYBVWGSSA-N Daunorubicin hydrochloride Chemical compound Cl.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 GUGHGUXZJWAIAS-QQYBVWGSSA-N 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000479842 Pella Species 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108091081045 Preribosomal RNA Proteins 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 108020001027 Ribosomal DNA Proteins 0.000 description 1
- 108010000605 Ribosomal Proteins Proteins 0.000 description 1
- 102000002278 Ribosomal Proteins Human genes 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 241000269368 Xenopus laevis Species 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- WQDANLDBUFODKQ-CENPISBJSA-N [3H]OCCCCC[N+]1=C(/C=C/C=C/C=C2/N(CCCOP(O/C=N/CC)N(C(C)C)C(C)C)C3=CC=CC=C3C2(C)C)C(C)(C)C2=CC=CC=C21.[Cl-] Chemical compound [3H]OCCCCC[N+]1=C(/C=C/C=C/C=C2/N(CCCOP(O/C=N/CC)N(C(C)C)C(C)C)C3=CC=CC=C3C2(C)C)C(C)(C)C2=CC=CC=C21.[Cl-] WQDANLDBUFODKQ-CENPISBJSA-N 0.000 description 1
- WZECUPJJEIXUKY-UHFFFAOYSA-N [O-2].[O-2].[O-2].[U+6] Chemical compound [O-2].[O-2].[O-2].[U+6] WZECUPJJEIXUKY-UHFFFAOYSA-N 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229940042992 afinitor Drugs 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 210000001552 airway epithelial cell Anatomy 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229940087620 aromasin Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- DVQHYTBCTGYNNN-UHFFFAOYSA-N azane;cyclobutane-1,1-dicarboxylic acid;platinum Chemical compound N.N.[Pt].OC(=O)C1(C(O)=O)CCC1 DVQHYTBCTGYNNN-UHFFFAOYSA-N 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000002725 brachytherapy Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229940088954 camptosar Drugs 0.000 description 1
- 230000005880 cancer cell killing Effects 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- YAYRGNWWLMLWJE-UHFFFAOYSA-L carboplatin Chemical compound O=C1O[Pt](N)(N)OC(=O)C11CCC1 YAYRGNWWLMLWJE-UHFFFAOYSA-L 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 230000005025 clonogenic survival Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000002337 electrophoretic mobility shift assay Methods 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 229940082789 erbitux Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- MXZROTBGJUUXID-UHFFFAOYSA-K gadobenic acid Chemical compound [H+].[H+].[Gd+3].[O-]C(=O)CN(CC([O-])=O)CCN(CC(=O)[O-])CCN(CC([O-])=O)C(C([O-])=O)COCC1=CC=CC=C1 MXZROTBGJUUXID-UHFFFAOYSA-K 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229940020967 gemzar Drugs 0.000 description 1
- 238000009650 gentamicin protection assay Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940080856 gleevec Drugs 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 229940088013 hycamtin Drugs 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229940084651 iressa Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 230000034701 macropinocytosis Effects 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 229940086322 navelbine Drugs 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 108091008104 nucleic acid aptamers Proteins 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical group 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- HBEQXAKJSGXAIQ-UHFFFAOYSA-N oxopalladium Chemical compound [Pd]=O HBEQXAKJSGXAIQ-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910003445 palladium oxide Inorganic materials 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229940063179 platinol Drugs 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 201000001514 prostate carcinoma Diseases 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 239000002534 radiation-sensitizing agent Substances 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 108010033804 ribosomal protein S3 Proteins 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000005586 smoking cessation Effects 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229940099419 targretin Drugs 0.000 description 1
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 description 1
- 102000055501 telomere Human genes 0.000 description 1
- 108091035539 telomere Proteins 0.000 description 1
- 210000003411 telomere Anatomy 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 229910003452 thorium oxide Inorganic materials 0.000 description 1
- 229940100411 torisel Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 229940086984 trisenox Drugs 0.000 description 1
- 229940094060 tykerb Drugs 0.000 description 1
- 231100000402 unacceptable toxicity Toxicity 0.000 description 1
- 229910000439 uranium oxide Inorganic materials 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- GBABOYUKABKIAF-IELIFDKJSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-IELIFDKJSA-N 0.000 description 1
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 229940049068 xalkori Drugs 0.000 description 1
- 229940061261 zolinza Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6923—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/28—Compounds containing heavy metals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0038—Radiosensitizing, i.e. administration of pharmaceutical agents that enhance the effect of radiotherapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/549—Sugars, nucleosides, nucleotides or nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/0019—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
- A61K49/0021—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
- A61K49/0032—Methine dyes, e.g. cyanine dyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0063—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
- A61K49/0065—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the luminescent/fluorescent agent having itself a special physical form, e.g. gold nanoparticle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/04—X-ray contrast preparations
- A61K49/0409—Physical forms of mixtures of two different X-ray contrast-enhancing agents, containing at least one X-ray contrast-enhancing agent which is not a halogenated organic compound
- A61K49/0414—Particles, beads, capsules or spheres
- A61K49/0423—Nanoparticles, nanobeads, nanospheres, nanocapsules, i.e. having a size or diameter smaller than 1 micrometer
- A61K49/0428—Surface-modified nanoparticles, e.g. immuno-nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1827—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
- A61K49/1875—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle coated or functionalised with an antibody
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1878—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles the nanoparticle having a magnetically inert core and a (super)(para)magnetic coating
- A61K49/1881—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles the nanoparticle having a magnetically inert core and a (super)(para)magnetic coating wherein the coating consists of chelates, i.e. chelating group complexing a (super)(para)magnetic ion, bound to the surface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
Definitions
- Nucleolin [8] is an abundant, non-ribosomal protein of the nucleolus, the site of ribosomal gene transcription and packaging of pre-ribosomal RNA.
- This 710 amino acid phosphoprotein has a multi-domain structure consisting of a histone-like N-terminus, a central domain containing four RNA recognition motifs and a glycine/arginine-rich C-terminus, and has an apparent molecular weight of 110 kD. While nucleolin is found in every nucleated cell, the expression of nucleolin on the cell surface has been correlated with the presence and aggressiveness of neoplastic cells [3].
- Nucleic acid aptamers are short synthetic oligonucleotides that fold into unique three-dimensional structures that can be recognized by specific target proteins. Thus, their targeting mechanism is similar to monoclonal antibodies, but they may have substantial advantages over these, including more rapid clearance in vivo, better tumor penetration, non-immunogenicity, and easier synthesis and storage.
- GROs Guanosine-rich oligonucleotides designed for triple helix formation are known for binding to nucleolin. This ability to bind nucleolin has been suggested to cause their unexpected ability to effect antiproliferation of cultured prostate carcinoma cells [6]. The antiproliferative effects are not consistent with a triplex-mediated or an antisense mechanism, and it is apparent that GROs inhibit proliferation by an alternative mode of action. It has been surmised that GROs, which display the propensity to form higher order structures containing G-quartets, work by an aptamer mechanism that entails binding to nucleolin due to a shape-specific recognition of the GRO structure; the binding to cell surface nucleolin then induces apoptosis.
- GROs The antiproliferative effects of GROs have been demonstrated in cell lines derived from prostate (DU145), breast (MDA-MB-231, MCF-7), or cervical (HeLa) carcinomas and correlates with the ability of GROs to bind cell surface nucleolin [6].
- AS1411 a GRO nucleolin-binding DNA aptamer that has antiproliferative activity against cancer cells with little effect on non-malignant cells, was previously developed.
- AS1411 uptake appears to occur by macropinocytosis in cancer cells, but by a nonmacropinocytic pathway in nonmalignant cells, resulting in the selective killing of cancer cells, without affecting the viability of nonmalignant cells [9].
- AS1411 was the first anticancer aptamer tested in humans and results from clinical trials of AS1411 (including Phase II studies in patients with renal cell carcinoma or acute myeloid leukemia) indicate promising clinical activity with no evidence of serious side effects. Despite a few dramatic and durable clinical responses, the overall rate of response to AS1411 was low, possibly due to the low potency of AS1411.
- Anti-nucleolin agents conjugated to particles such as aptamers conjugated to gold nanoparticles, have an antiproliferative effect on cancer and tumors. See International Application, International Publication Number WO 2012/167173, entitled “ANTI-NUCLEOLIN AGENT-CONJUGATED NANOPARTICLES”, filed 1 Jun. 2012, to Bates et al. Aptamer conjugated gold nanoparticles, in particular, have a similar or greater antiproliferative effect than the aptamer (anti-nucleolin oligonucleotide) alone, demonstrating similar effects at only 1/10 to 1/100 the dosage. Furthermore, these same agents, preferably having a fluorescent dye conjugated to the particle or attached to the anti-nucleolin agent, may also be used as imaging agents, both in vivo and ex vivo.
- RT Radiation therapy
- TNBC triple negative subtype of breast cancer
- RT also plays an extremely important role in the management of non-small cell lung cancer (NSCLC) and most patients with NSCLC will receive RT at some point during their course of treatment.
- NSCLC non-small cell lung cancer
- RT has proven clinical benefits, it is often inadequate at controlling primary NSCLC tumor growth and preventing recurrence.
- Increasing the dose of radiation to the tumor is expected to improve effectiveness, but dose escalation is not currently achievable in most cases due to the damage it would cause to surrounding healthy tissues.
- GNP Gold nanoparticles
- Z atomic number
- the GNP generally do not internalize efficiently in cancer cells or accumulate in tumors at sufficiently high concentrations for effective radiosensitization, which has limited their clinical utility [26].
- CT scans Each year in this country, more than 71 million CT scans and 33 million MRI scans are performed. The purpose for many of these scans is to detect (or rule out) primary or metastatic malignant tumors.
- medical imaging plays a major role in screening, diagnosis, staging, monitoring therapeutic response, and treatment planning (e.g. for radiation therapy or surgery) for almost all cancer types.
- an intravenous (i.v.) contrast agent is administered prior to CT or MRI scans to improve visualization of tissues and organs.
- the short half-life of contrast agents in circulation often requires repeated or continuous administration throughout the imaging process.
- contrast agents interact with the imaging modality; for example, iodine in CT contrast absorbs and scatters X-rays, whereas the gadolinium ions in MRI contrast are paramagnetic and alter the properties of nearby water molecules. Consequently, contrast agents can enhance differences in signals between adjacent tissues due to their altered deposition or interactions, which may depend on tissue type, architecture, or blood flow.
- CT and MRI contrast agents are safe in most patients and effectively enhance anatomical imaging, but they are not disease-specific and largely fail to distinguish malignant from benign masses.
- Diagnostic imaging is particularly important for lung cancer, which is the leading cause of cancer deaths in the United States and worldwide.
- lung cancer With an aging population of smokers, former smokers and the smaller population of never-smokers who are susceptible to lung adenocarcinomas due to EGFR mutations, lung cancer is expected to remain a major public health problem for many years to come even if smoking cessation efforts are successful.
- a major factor contributing to the high mortality of lung cancer is the failure to detect lung cancers at an early stage before they invade surrounding tissue or spread to other organs (only 15% of lung cancers are detected while still localized).
- Imaging-based lung cancer screening techniques Another limitation of imaging-based lung cancer screening techniques is their inability to differentiate between benign and malignant masses. Imaging-based tests identify lung cancer based on the size of nodules present in the lungs, with lesions smaller than 4 mm considered benign. Diagnosis based on nodule size fails to identify small malignant lesions as cancerous and precludes early-stage detection of lung cancer. In addition, larger benign growths are wrongly identified as cancerous and require more invasive secondary tests to positively diagnose the presence or absence of lung cancer.
- the present invention is a composition comprising an anti-nucleolin agent and optionally gadolinium conjugated to nanoparticles.
- the present invention is a pharmaceutical composition for treating cancer, comprising an anti-nucleolin agent and optionally gadolinium conjugated to nanoparticles and a pharmaceutically acceptable carrier.
- the present invention is a pharmaceutical composition for enhancing the effectiveness of radiation therapy and/or enhancing contrast in X-ray imaging techniques, comprising an anti-nucleolin agent conjugated to nanoparticles and a pharmaceutically acceptable carrier.
- the present invention is a pharmaceutical composition for MRI imaging or enhancing the contrast of an MRI image, comprising an anti-nucleolin agent conjugated to nanoparticles and a pharmaceutically acceptable carrier.
- the present invention is a method of treating cancer, comprising administering an effective amount of a pharmaceutical composition to a patient in need thereof, followed by radiation therapy.
- the present invention is a use of a pharmaceutical composition for the preparation of a medicament for the treatment of cancer.
- the present invention is an agent for MRI imaging and/or enhancing contrast in X-ray imaging techniques comprising a composition which optionally comprises gadolinium, and a pharmaceutically acceptable carrier.
- the present invention is a method of imaging cancer by MRI and/or X-ray imaging techniques in vivo, comprising administering an imaging agent which optionally comprises gadolinium, to a subject; and forming an image of the imaging agent present in the subject by MRI and/or an X-ray imaging technique.
- conjugated means “chemically bonded to”.
- anti-nucleolin oligonucleotides refers to an oligonucleotide that binds to nucleolin.
- equivalent aptamer concentration refers to the concentration of anti-nucleolin oligonucleotide present in the conjugate.
- Tumors and cancers include solid, dysproliferative tissue changes and diffuse tumors.
- Examples of tumors and cancers include melanoma, lymphoma, plasmocytoma, sarcoma, glioma, thymoma, leukemia, breast cancer, prostate cancer, colon cancer, liver cancer, esophageal cancer, brain cancer, lung cancer, ovary cancer, endometrial cancer, bladder cancer, kidney cancer, cervical cancer, hepatoma, and other neoplasms.
- Stedman see, for example Stedman [1].
- Treating a tumor or “treating a cancer” means to significantly inhibit growth and/or metastasis of the tumor or cancer, and/or killing cancer cells. Growth inhibition can be indicated by reduced tumor volume or reduced occurrences of metastasis. Tumor growth can be determined, for example, by examining the tumor volume via routine procedures (such as obtaining two-dimensional measurements with a dial caliper). Metastasis can be determined by inspecting for tumor cells in secondary sites or examining the metastatic potential of biopsied tumor cells in vitro.
- a “chemotherapeutic agent” is a chemical compound that can be used effectively to treat cancer in humans.
- a “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents which are compatible with pharmaceutical administration.
- Preferred examples of such carriers or diluents include water, saline, Ringer's solutions and dextrose solution. Supplementary active compounds can also be incorporated into the compositions.
- “Medicament,” “therapeutic composition” and “pharmaceutical composition” are used interchangeably to indicate a compound, matter, mixture or preparation that exerts a therapeutic effect in a subject.
- Antibody is used in the broadest sense and refers to monoclonal antibodies, polyclonal antibodies, multispecific antibodies, antibody fragments and chemically modified antibodies, where the chemical modification does not substantially interfere with the selectivity and specificity of the antibody or antibody fragment.
- an “anti-nucleolin agent” includes any molecule or compound that interacts with nucleolin. Such agents include for example anti-nucleolin antibodies, aptamers such GROs and nucleolin targeting proteins.
- X-ray based imaging techniques include all imaging techniques which use X-rays to form an image, directly or indirectly, including for example CT scans (also called X-ray computed tomography or computerized axial tomography scan (CAT scan)).
- CT scans also called X-ray computed tomography or computerized axial tomography scan (CAT scan)
- FIGS. 1A and 1B are images of two MDA231 xenograft mice injected retro-orbitally with about 200 ng/100 uL of AS1411-Cy5-GNP or CRO-Cy5-GNP. Image was acquired using a PHOTON IMAGERTM after 2 hrs (A) and 6 hrs (B) post injection.
- FIGS. 2A, 2B, 2C and 2D are optical micrographs of MCF7 cells treated by silver enhancement staining for gold nanoparticles, illustrating comparative accumulation of gold nanoparticles after administration of the indicated composition, or without administration.
- FIG. 3A is a sketch of different linkers used to conjugate AS1411/CRO to gold nanoparticles
- FIG. 3B is a sketch of attaching and detaching aptamers to gold nanoparticles.
- FIGS. 4A and 4B show the biodistribution of AS1411-GNP-Cy5: the mice were treated, euthanized and organs were photographed (A) and examined for fluorescence (B).
- FIG. 5 illustrates the results of uptake studies in MCF-7 cells.
- MCF-7 Breast Cancer Cells
- GNP gold nanoparticles
- Ca5 linked fluorophore
- FIG. 6 illustrates the results of uptake studies in MCF-10A cells.
- MCF-10A Non-malignant Breast Epithelial Cells (MCF-10A) were treated with gold nanoparticles (GNP) conjugated with gadolinium-AS1411 or gadolinium-CRO and a linked fluorophore (Cy5) for 4 hrs.
- GNP gold nanoparticles
- Cy5 linked fluorophore
- FIG. 7A illustrates confocal microscopy images of Breast Cancer Cells (MDA-MB-231) treated with gold nanoparticles (GNP) conjugated to gadolinium-AS1411 (GNP-Gd-AS1411) or AS1411 (GNP-AS1411) for 4 hrs, and treated with 100 cGy X-ray.
- DNA damage response marker phospho-yH2AX (red) foci was detected in the damage nuclei (blue) of MDA-MB-231 cells.
- FIG. 7B is a graph illustrating the average foci per nuclei for Breast Cancer Cells (MDA-MB-231) treated with gold nanoparticles (GNP) conjugated to gadolinium-AS1411 (GNP-Gd-AS1411) or AS1411 (GNP-AS1411) for 4 hrs, and treated with 100 cGy X-ray, with bars indicating the standard deviation (SD).
- MDA-MB-231 Breast Cancer Cells
- GNP-Gd-AS14111 gadolinium-AS1411
- AS1411 GNP-AS1411
- FIG. 8 illustrates Breast Cancer Cells (MDA-MB-231) plated in 35 mm dishes and treated with gold nanoparticle conjugated to gadolinium and AS1411 (0.03 mg/ml gold concentration). After 4 hrs dishes were radiated using X-Rad160/225 radiator at 100 cGy. Dishes were further incubated for 10 days. After incubation the colonies fix with 4% paraformaldehyde in phosphate buffer saline (PBS) and stained with 0.4% crystal violet.
- PBS phosphate buffer saline
- FIG. 9A illustrates the results of relaxivity analysis at 9.4 T for Gold nanoparticles coated with AS1411 and Gd(III)-DO3A-SH.
- FIG. 9B illustrates the results of relaxivity analysis at 9.4 T for Gold nanoparticles coated with CRO (control) and Gd(III)-DO3A-SH.
- FIG. 9C illustrates the results of relaxivity analysis at 9.4 T for gold nanoparticles coated with Gd(III)-DO3A-SH.
- FIG. 9D illustrates the results of relaxivity analysis at 9.4 T for MULTIHANCE® (gadobenate dimeglumine).
- FIG. 9E illustrates a Gold Nanoparticle coated with 24 Gd(III)-DO3A-SH and 13 AS1411/CRO.
- FIG. 10A illustrates X-ray attenuation intensities in Hounsfield Unit (HU) as a function of GNP concentrations for GNS/Gd(III)-DOTA-SH/AS1411 construct (green), GNP/AS1411 (red), and Iopamidol (blue).
- FIG. 10B illustrates a table of X-ray attenuation intensities in Hounsfield Unit (HU) for various constructs.
- FIG. 11A illustrates lung cancer cells treated with gold nanoparticles and gold nanoparticle-aptamer conjugates without exposure to X-ray radiation.
- FIG. 11B illustrates treated lung cancer cells with exposure to X-ray radiation.
- FIG. 11C is a graph illustrating the percent change in absorbance of the cells with and without exposure to X-ray radiation.
- FIG. 12 illustrates confocal microscopy images of breast cancer cells treated with gold nanoparticles conjugated to AS1411 (GNP-AS1411).
- FIG. 13A illustrates the breast cancer cell survival fraction after treatment with 1.38 ⁇ g/mL gold nanoparticles and gold nanoparticle-aptamer conjugates.
- FIG. 13B illustrates the cancer cell survival fraction after treatment with 2.76 ⁇ g/mL gold nanoparticles and gold nanoparticle-aptamer conjugates.
- FIG. 13C illustrates the cancer cell survival fraction after treatment with 5.5 ⁇ g/mL gold nanoparticles and gold nanoparticle-aptamer conjugates.
- FIG. 14A illustrates breast cancer cells treated with gold nanoparticles and gold nanoparticle-aptamer conjugates.
- FIG. 14B is a graph illustrating the survival fraction of the cells.
- FIG. 15A illustrates uptake of fluorescent-labeled gold nanoparticle-gadolinium-oligomer conjugates in non-malignant breast cells.
- FIG. 15B illustrates uptake and selective retention of fluorescent-labeled gold nanoparticle-gadolinium-oligomer conjugates in malignant breast cancer cells.
- FIG. 16A illustrates uptake of fluorescent-labeled gold nanoparticle-gadolinium-oligomer conjugates in non-malignant lung cells.
- FIG. 16B illustrates uptake and selective retention of fluorescent-labeled gold nanoparticle-gadolinium-oligomer conjugates in malignant lung cancer cells.
- FIG. 17A illustrates the change in relaxivity of gold nanoparticle-oligomer-gadolinium conjugates in water.
- FIG. 17B illustrates the change in relaxivity of gold nanoparticle-oligomer-gadolinium conjugates in cells after 48 hours of treatment.
- FIG. 17C illustrates the change in relaxivity of gold nanoparticle-oligomer-gadolinium conjugates in cells after 96 hours of treatment.
- FIG. 18 illustrates the percent contrast enhancement for gold nanoparticle-oligomer conjugates and a commercially-available MRI contrast agent.
- the present invention includes anti-nucleolin agents conjugated to particles comprising metals, such as aptamers conjugated to gold nanoparticles, that are effective radio-sensitizers for treating cancer.
- the nanoparticles are selectively taken-up by cancer cells and enhance the effects of RT on those cells. This enhances the effectiveness of RT, and/or allows a low effective dose of radiation to be used during RT.
- the nanoparticles may optionally also contain gadolinium, for example 10-(2-sulfanylethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (H3-DO3A-SH) coordinated to a trivalent gadolinium ion (Gd-DO3A-SH), which is then bound to the gold nanoparticles through the sulfur atom in a manner similar to thiolated-AS1411, resulting in a mono-layer coating that is a mixture of AS1411 and Gd-DO3A-SH on the gold nanoparticles.
- gadolinium for example 10-(2-sulfanylethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (H3-DO3A-SH) coordinated to a trivalent gadolinium ion (Gd-DO3A-SH), which is then bound to the gold nanoparticles through the sulfur atom in a manner
- the Gd ions of Gd-DO3A-SH enhance the relaxivity (speed up the relaxation rate) of nearby water molecules during an MRI scan and contribute to an increase in contrast when present in the sample being scanned.
- both the gold nanoparticles and the Gd ions enhance the absorption and scattering of X-rays, and increase the contrast when present in the sample being scanned or imaged using X-ray based imaging techniques, such as CT scanning.
- the combination of anti-nucleolin agents (cancer targeting) and gadolinium (MRI contrast enhancement) combine to result in a cancer-targeting MRI-contrast agent.
- anti-nucleolin agents cancer targeting
- gold nanoparticle X-ray contrast enhancement
- optionally gadolinium MRI contrast enhancement and X-ray contrast enhancement
- cancer-targeted contrast agent There are several unmet needs that can be addressed by these cancer-targeted contrast agent, namely: (1) better specificity to differentiate between cancerous and non-cancerous lesions and reduce false positives that can lead to over-treatment, (2) improved sensitivity so that they could be used as screening tools for early detection, and (3) reduced toxicity to allow use in patients with compromised renal function for whom existing contrast agents are contraindicated. These advantages are especially useful in lung cancer screening, particularly early detection of lung cancer.
- anti-nucleolin agent-conjugated nanoparticles have a longer half-life in circulation than currently available contrast agents.
- the longer half-life in circulation eliminates the need for continuous intravenous administration during imaging, which greatly improves patient comfort.
- Anti-nucleolin agent-conjugated nanoparticle contrast agents may be administered multiple days before an imaging scan is performed.
- Anti-nucleolin agents include (i) aptamers, such as GROs; (ii) anti-nucleolin antibodies; and (iii) nucleolin targeting proteins.
- aptamers include guanosine-rich oligonucleotides (GROs). Examples of suitable oligonucleotides and assays are also given in Miller et al. [7]. Characteristics of GROs include:
- GROs form G-quartet structures, as indicated by a reversible thermal denaturation/renaturation profile at 295 nm [6].
- Preferred GROs also compete with a telomere oligonucleotide for binding to a target cellular protein in an electrophoretic mobility shift assay [6].
- incorporating the GRO nucleotides into larger nucleic acid sequences may be advantageous; for example, to facilitate binding of a GRO nucleic acid to a substrate without denaturing the nucleolin-binding site. Examples of oligonucleotides are shown in Table 1; preferred oligonucleotides include SEQ IDs NOs: 1-7; 9-16; 19-30 and 31 from Table 1.
- any antibody that binds nucleolin may also be used.
- monoclonal antibodies are preferred as they bind single, specific and defined epitopes.
- polyclonal antibodies capable of interacting with more than one epitope on nucleolin may be used.
- Many anti-nucleolin antibodies are commercially available, and are otherwise easily made. See, for example, US Patent Application Publication No. US 2013/0115674 to Sutkowski et al. Table 2 lists a few commercially available anti-nucleolin antibodies.
- Nucleolin targeting proteins are proteins, other than antibodies, that specifically and selectively bind nucleolin. Examples include ribosomal protein S3, tumor-homing F3 peptides [26, 27] and myosin H9 (a non-muscle myosin that binds cell surface nucleolin of endothelial cells in angiogenic vessels during tumorigenesis).
- Anti-nucleolin agents may be conjugated to particles made of a variety of materials solid materials, including (1) metals and high molecular weigh elements; and (2) metal oxides.
- Metals and elements preferably non-magnetic metals and elements, include gold, silver, palladium, iridium, platinum and alloys thereof.
- Oxides include zirconium dioxide, palladium oxide, barium sulfate, thorium oxide, uranium oxide and complex oxides thereof, such as barium titanate.
- the particles are non-toxic.
- the particles are preferably nanoparticles having an average particle diameter of 1-100 nm, more preferably 1-50 nm, including 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 and 95 nm.
- Oligonucleotides and proteins have been attached to solid materials, such metals and elements, oxides, semiconductors and polymers, by a variety of techniques. These same techniques may be used to attach anti-nucleolin agents to particles. Further attachment of gadolinium complexes to the anti-nucleolin agent conjugated nanoparticles (conjugates), allows the conjugates to be used as MRI contrast agents, both in vivo and ex vivo.
- Anti-nucleolin agent-conjugated nanoparticles may be used to formulate a pharmaceutical composition for radio-sensitizers for treating cancer and tumors by RT, and targeting cancer cells expressing cell surface nucleolin, by forming mixtures of the anti-nucleolin agent conjugated nanoparticles and a pharmaceutically acceptable carrier, such as a pharmaceutical composition.
- Methods of treating cancer in a subject include administering a therapeutically effective amount of an anti-nucleolin agent conjugated nanoparticles followed by RT.
- the small size of nanoparticles allows nanoparticle conjugates to cross the blood-brain barrier, which enables imaging and treatment of brain tumors.
- compositions are aptamers conjugated to gold nanoparticles, and optionally further conjugated to gadolinium complexes.
- Gold nanoparticles exhibit low toxicity, versatile surface chemistry, light absorbing/scattering properties, and tunable size. Aptamers effectively cap gold particles and prevent aggregation, are safe, stable, easy to synthesize, and non-immunogenic. Aptamer conjugated GNPs offer improved efficacy of RT in vivo.
- Aptamer conjugated GNP are highly selective for cancer cells over normal cells, and when attached to cyanine dyes are excellent imaging agents, for example Cy2, Cy3, Cy5, Cy®5.5, Cy7, Alexa Fluor® 680, Alexa Fluor 750, IRDye® 680, and IRDye® 800CW (LI-COR Biosciences, Lincoln, Nebr.); and when attached to gadolinium complexes also act as MRI contrast agents specific for cancer cells.
- Aptamer conjugated GNP, and optionally attached to gadolinium complexes may be used as an imaging agent, MRI contrast agents, and may be administered as compositions which further contain a pharmaceutically acceptable carrier.
- the imaging agent may be administered to a subject in a method of imaging cancer in vivo, to form an image of the imaging agent present in the subject, by MRI.
- the number of anti-nucleolin agents per nanoparticle may vary when the weight of the nanoparticle varies, even when the equivalent anti-nucleolin agent concentration (or equivalent aptamer concentration) is otherwise the same.
- the number of anti-nucleolin agent molecules per nanoparticle may vary from 2 to 10,000, or 10 to 1000, including 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800 and 900.
- a pharmaceutical composition is formulated to be compatible with its intended route of administration, including intravenous, intradermal, subcutaneous, oral, inhalation, transdermal, transmucosal, and rectal administration.
- Solutions and suspensions used for parenteral, intradermal or subcutaneous application can include a sterile diluent, such as water for injection, saline solution, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose.
- the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
- compositions suitable for injection include sterile aqueous solutions or dispersions for the extemporaneous preparation of sterile injectable solutions or dispersion.
- suitable carriers include physiological saline, bacteriostatic water, CREMOPHOR EL® (BASF; Parsippany, N.J.) or phosphate buffered saline (PBS).
- the composition must be sterile and should be fluid so as to be administered using a syringe.
- Such compositions should be stable during manufacture and storage and are preferably preserved against contamination from microorganisms such as bacteria and fungi.
- the carrier can be a dispersion medium containing, for example, water, polyol (such as glycerol, propylene glycol, and liquid polyethylene glycol), and other compatible, suitable mixtures.
- polyol such as glycerol, propylene glycol, and liquid polyethylene glycol
- Various antibacterial and anti-fungal agents for example, parabens, chlorobutanol, phenol, ascorbic acid, and thimerosal, can contain microorganism contamination.
- Isotonic agents such as sugars, polyalcohols, such as mannitol, sorbitol, and sodium chloride can be included in the composition.
- Compositions that can delay absorption include agents such as aluminum monostearate and gelatin.
- Sterile injectable solutions can be prepared by incorporating the active agents, and other therapeutic components, in the required amount in an appropriate solvent with one or a combination of ingredients as required, followed by sterilization.
- Methods of preparation of sterile solids for the preparation of sterile injectable solutions include vacuum drying and freeze-drying to yield a solid.
- Radiation treatment may be by any form of radiation, such as X-rays (for example megavolt energy X-rays), Brachy therapy, proton radiation, and neutron radiation. Also possible is to use doses and/or energy of RT that would normally be considered subclinical; because the anti-nucleolin agent-conjugated nanoparticles enhance the effectiveness of RT, the dosages are effective to kill or reduce the growth of cancer cells and tumors.
- X-rays for example megavolt energy X-rays
- Brachy therapy for example megavolt energy X-rays
- proton radiation proton radiation
- neutron radiation neutron radiation
- doses and/or energy of RT that would normally be considered subclinical; because the anti-nucleolin agent-conjugated nanoparticles enhance the effectiveness of RT, the dosages are effective to kill or reduce the growth of cancer cells and tumors.
- Anti-nucleolin agent-conjugated nanoparticles which contain gadolinium are effective MRI contrast agents, and may also be used to image cancer cells, including individual cancer cells.
- the anti-nucleolin agent-conjugated nanoparticles which contain gadolinium may be administered to a patient to determine if cancer cells are present in lymph nodes, thus avoiding the removal of lymph node for the sole purpose of determining if they contain cancer cells. Another use can be to avoid the need for a biopsy.
- the anti-nucleolin agent-conjugated nanoparticles which contain gadolinium may be administered to a patient to determine if cancer is preseht in a lump, has metastasized to other location in the body, or to determine if all cancer from a tumor has been removed during surgery.
- Anti-nucleolin agent-conjugated nanoparticles which optionally contain gadolinium are effective X-ray contrast agents, and may also be used to image cancer cells, including individual cancer cells.
- the anti-nucleolin agent-conjugated nanoparticles which optionally contain gadolinium may be administered to a patient to determine if cancer cells are present in lymph nodes, thus avoiding the removal of lymph node for the sole purpose of determining if they contain cancer cells. Another use can be to avoid the need for a biopsy.
- the anti-nucleolin agent-conjugated nanoparticles which optionally contain gadolinium may be administered to a patient to determine if cancer is present in a lump, has metastasized to other location in the body, or to determine if all cancer from a tumor has been removed during surgery.
- the pharmaceutical composition described herein may further comprise other therapeutically active compounds, and/or may be used in conjunction with physical techniques as noted herein which are suitable for the treatment of cancers and tumors.
- therapeutically active compounds include vinorelbine (Navelbine®), mitomycin, camptothecin, cyclophosphamide (Cytoxin®), methotrexate, tamoxifen citrate, 5-fluorouracil, irinotecan, doxorubicin, flutamide, paclitaxel (Taxol®), docetaxel, vinblastine, imatinib mesylate (Gleevec®), anthracycline, letrozole, arsenic trioxide (Trisenox®), anastrozole, triptorelin pamoate, ozogamicin, irinotecan hydrochloride (Camptosar®), BCG live (Pacis®), leuprolide acetate implant (Viadur), be
- an appropriate dosage level of the therapeutic agent will generally be about 0.01 to 500 mg per kg patient body weight per day which can be administered in single or multiple doses.
- the dosage level will be about 0.1 to about 250 mg/kg per day; more preferably about 0.5 to about 100 mg/kg per day.
- a suitable dosage level may be about 0.01 to 250 mg/kg per day, about 0.05 to 100 mg/kg per day, or about 0.1 to 50 mg/kg per day. Within this range the dosage may be 0.05 to 0.5, 0.5 to 5 or 5 to 50 mg/kg per day.
- the compounds may be administered on a regimen of 1 to 4 times per day, preferably once per day prior to RT. Administration by continuous infusion is also possible. All amounts and concentrations of anti-nucleolin oligonucleotide conjugated gold nanoparticles are based on the amount or concentration of anti-nucleolin oligonucleotide only.
- compositions may be pre-packaged in ready-to-administer form, in amounts that correspond with a single dosage, appropriate for a single administration referred to as unit dosage form.
- Unit dosage forms can be enclosed in ampoules, disposable syringes or vials made of glass or plastic.
- the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the patient undergoing therapy.
- AS1411-linked gold nanoparticles for treating cancer and for cancer imaging were synthesized.
- Studies to assess the anticancer activity of AS1411 linked to 5 nm gold nanoparticles indicate that the conjugates have greatly enhanced antiproliferative effects on breast cancer cells compared to AS1411 (SEQ ID NO. 10) alone.
- Microscopic examination revealed increased uptake in breast cancer cells for GNP-AS1411 compared to GNP alone or GNP conjugated to a control oligonucleotide.
- GNP-AS1411 induced breast cancer cell vacuolization and death, similar to that seen at higher concentrations of AS1411.
- the GI50 values for AS1411 conjugated GNP against breast cancer cells are in the 50-250 nM range, compared to 1-10 uM range for unconjugated AS1411 (equivalent aptamer concentration). Studies indicate that these AS1411-GNPs have selective accumulation in tumor tissue following systemic administration in mice. Moreover, AS1411-GNPs retained the cancer-selectivity of AS1411 and had no effect on non-malignant cells.
- the aptamers AS1411 and CRO (the control oligonucleotide) with 5′ prime thiol modification and or 3′ fluorophore Cy5 were purchased from Integrated DNA Technologies (IDT).
- aptamers were reduced by tri(2-carboxyethyl) phosphine TECP (50 mM) which is active in slightly acidic pH 6.5 of Tris-EDTA (10 mM) solution for 4-8 hours at room temperature.
- the solution of aptamers and TECP was purified using NAP-columns sephadex G-25.
- Accurate Spherical Gold nanoparticles 5 nm was purchased from NANOPARTZ and/or TED PELLA INC. The gold nanoparticles were filtered using 0.5 micron syringe filter.
- Gold nanoparticles and aptamers were mixed in the molar ratio of 1:40 in 25 ml RNAse and DNAse free water at room temperature overnight. Excess reagents were then removed by centrifugation at 15000 rpm for 20 min, followed by 3 ⁇ wash with RNAse and DNAse free water and centrifugation to remove any unbound aptamers. To quantify the amount of aptamers conjugated on the nanoparticles surface, the aptamer conjugated GNP was incubated in 0.1M DTT at room temperature followed by the separation from the GNP by centrifugation.
- the supernatant was diluted and measured either spectrophotometically (A260 nm), then calculating the concentration from the aptamers standard dilution curve or by NanoDrop 2000 UV-VIS spectrophotometer. Similarly, the concentration of gold nanoparticles was calculated using spectrophotometric optical density (OD) at 511 nm and plotting the standard dilution curve to extrapolate the concentration of gold nanoparticles and the standard data provided by vendors.
- OD spectrophotometric optical density
- FIGS. 1A and 1B are images of two MDA231 xenograft mice (nude mice injected with MDA231 cancer cells), 2 hours (A) and 6 hours (B) after injection retro-orbitally with AS1411 conjugated with a fluorophor (cyanine dye Cy5) and gold nanoparticles (AS1411-Cy5-GNP), or with a control oligonucleotide conjugated with the fluorophor (cyanine dye Cy5) and gold nanoparticles (CRO-Cy5-GNP).
- the images were acquired using a PHOTON IMAGERTM at 680 nm. The images show that the tumors accumulate AS1411-Cy5-GNP, while CRO-Cy5-GNP is not accumulated.
- FIGS. 2A-D are optical micrographs of MCF7 cells treated by silver enhancement staining for gold nanoparticles, illustrating comparative accumulation of gold nanoparticles after administration of the indicated composition, or without administration. As shown, no significant accumulation occurs after administration of unconjugated gold nanoparticles ( FIG. 2B ), and only slight accumulation occurs after administration of control oligonucleotide-conjugated gold particles ( FIG. 2C ). Administration of AS1411-conjugated gold nanoparticles, however, results in significant accumulation of gold nanoparticles, as indicated by the arrows ( FIG. 2D ). Non-treated cells are also shown ( FIG. 2A ).
- intraperitoneal intravenous
- tail vein retro-orbital injection
- injection intraperitoneal injection
- retro-orbital injections were used because it delivered the drug directly into the blood, resulting in more rapid systemic distribution and avoiding residual signal in the peritoneum that was observed when delivering through the intraperitoneal route.
- GNPs and linkers were performed as follows: colloid spherical gold nanoparticles of different size (5, 10, 15 nm) were purchased from Ted Pella Inc. (Redding, Calif.) and Nanopartz (Loveland, Colo.). Size analyses of these gold nanoparticles were confirmed using PARTICLES SIZE ANALYZER 90 PLUS (Brookhaven Instrument), and the sizes of gold nanoparticles were within the ranges as described by the manufacturers. Fluorophore (Cy5)-linked oligonucleotides (AS1411 and CRO), with or without carbon spacers and thiol groups, were purchased from Integrated DNA Technologies (San Diego, Calif.).
- Cy5, or cyanine-5 phosphoramidite (1-[3-(4-monomethoxytrityloxy)propyl]-1′-[3-[(2-cyanoethyl)-(N,N-diisopropyl)phosphoramidityl]propyl]-3,3,3′,3′-tetramethylindodicarbocyanine chloride) has the structure shown in Formula I:
- linkers C3-thiol (1-O-dimethoxytrityl-propyl-disulfide,1′-succinyl-lcaa), MC6-D/iSP-9 (9-O-dimethoxytrityl-triethylene glycol,1[(2-cyanoethyl)-(N,N-diisopropyl)]), and MC6-D/iSP-18(18-O-dimethoxytrityl hexaethylene glycol,1[(2-cyanoethyl)-(N,N-diisopropyl)]), have the structures shown in Formulas II, III and IV, respectively:
- FIG. 3A is a cartoon representation of the various agents tested.
- FIG. 3B is an illustration of the reaction to form conjugates, and to separate the parts of the conjugates.
- GNP-AS1411-Cy5 (1 mg/kg) concentration in the tumor is many times more than that using AS1411-Cy5 without GNP (10 mg/kg), or GNP—CRO-Cy5. It was noted that all mice exhibited strong signals on their extremities (legs and paws) and tails; these were artifacts from the urine and feces of the mice in cage where they were housed (possibly due to a fluorescent substance in the animal feed). Washing the mice and housing them in new clean new cages before imaging can prevent this problem.
- MCF-7 Breast Cancer Cells (MCF-7) were treated with gold nanoparticles (GNP) conjugated with gadolinium-AS1411 or gadolinium-CRO and a linked fluorophore (Cy5) for 4 hrs.
- GNP gold nanoparticles
- Ca5 linked fluorophore
- Confocal microscopy showing the uptake of the corresponding Oligo-Gd-GNP-Cy5 conjugate using Cy5 laser excitation (650 nm) and emission (670 nm) in MCF-7 cells. The results are shown in FIG. 5 .
- Non-malignant Breast Epithelial Cells were treated with gold nanoparticles (GNP) conjugated with gadolinium-AS1411 or gadolinium-CRO and a linked fluorophore (Cy5) for 4 hrs.
- GNP gold nanoparticles
- Cy5 Cy5 laser excitation
- emission 670 nm
- FIG. 7 Confocal Microscopy images are shown in FIG. 7 .
- MDA-MB-231 Breast Cancer Cells (MDA-MB-231) were treated with gold nanoparticles (GNP) conjugated to gadolinium-AS1411 (GNP-Gd-AS1411) or AS1411 (GNP-AS1411) for 4 hrs, and treated with 100 cGy X-ray.
- GNP gold nanoparticles
- GNP-Gd-AS14111 gadolinium-AS1411
- AS1411 GNP-AS1411
- MDA-MB-231 were treated with 1.38 ⁇ g/mL gold nanoparticles (GNP) conjugated to AS1411 (GNP-AS1411) for 4 hrs, and treated with 100 cGy X-ray.
- DNA damage response marker phospho-yH2AX (Bethyl Laboratory) (red) foci was detected in the damage nuclei (blue) of MDA-MB-231 cells.
- a UV treated+ve control is also shown.
- MDA-MB-231 Breast Cancer Cells (MDA-MB-231) were plated in 35 mm dishes and treated with gold nanoparticle conjugated to gadolinium and AS1411 (0.03 mg/ml gold concentration). After 4 hrs dishes were radiated using X-Rad160/225 radiator at 100 cGy. Dishes were further incubated for 10 days. After incubation the colonies fix with 4% paraformaldehyde in phosphate buffer saline (PBS) and stained with 0.4% crystal violet. The results are shown in FIG. 8 .
- PBS phosphate buffer saline
- FIG. 9 shows the results of the relaxivity analysis at 9.4 T for: ( 9 A) Gold nanoparticles coated with AS1411 and Gd(III)-DO3A-SH ( 9 B) Gold nanoparticles coated with CRO (control) and Gd(III)-DO3A-SH ( 9 C) Gold nanoparticles coated with Gd(III)-DO3A-SH and ( 9 D) MULTIHANCE® (gadobenate dimeglumine).
- FIG. 9E illustrates a Gold Nanoparticle coated with 24 Gd(III)-DO3A-SH and 13 AS1411/CRO.
- GNP Gold nanoparticles
- CT computed tomography
- MRI magnetic resonance imaging
- AS1411 therapeutic/cancer-targeting DNA aptamer
- GNP coated with Gd(III)-DO3A-SH and AS1411 or CRO had hydrodynamic diameters of 13.45 ⁇ 2.11 and 19.01 ⁇ 2.51 nm, respectively, and zeta potentials of ⁇ 13.83 ⁇ 0.74 and ⁇ 52.62 ⁇ 1.01 mV. Both solutions were stable for more than 6 months in physiological buffer solutions.
- EDAX analysis of GNP—Gd(III)-DO3A-AS1411 and GNP Gd(III)-DO3A-CRO yielded 28 ⁇ 5 and 23 ⁇ 4 Gd centers per GNP, respectively, compared to 15 ⁇ 1 Gd centers per GNP for GNP—Gd(III)-DO3A solutions.
- AS1411 was detected on the gold nanoparticle surface using Quant-iTTM OliGreen® ssDNA reagent via fluorescence imaging studies on purified samples of GNP Gd(III)-DO3A-AS1411, GNP—Gd(III)-DO3A and GNP-AS1411.
- the GNP-Gd(III)-DO3A-AS1411/CRO probes have been assessed for their efficacy as CT and/or MRI contrast agents.
- solutions of GNP-Gd(III)-DO3A-SH-AS1411 and GNP-Gd(III)-DO3A-SH-CRO generate higher relaxivity than GNP-Gd(III)-DO3A, industry standard MULTIHANCE® (gadobenate dimeglumine) or Gd(III)-DO3A-SH, Table 3.
- the Hounsfield unit is a normalized index of x-ray attenuation ranging from ⁇ 1000 (air) to +1000 (bone) with water being 0 and is used in CT imaging to evaluate contrast.
- the solution of GNS-DO3A-Gd3+ decorated with AS1411 yielded a higher magnitude of X-ray attenuation intensities and Hounsfield units per milligram milliliter (slope) values in comparison to equivalent amounts of the industry standard (Iopamidol) or citrate-capped gold nanoparticles ( FIGS. 10A & 10B ).
- the attenuation intensities increase with gold nanoparticle concentration and therefore the GNP-Gd(III)-DO3A-SH-Oligo probes can be used as an contrast agent for CT imaging modality.
- FIG. 11A shows treated lung cancer cells before exposure to radiation.
- FIG. 11B shows treated lung cancer cells after exposure to radiation.
- FIG. 11C is a graph illustrating the percent change in absorbance (after de-staining with 10% acetic acid) of the cells before and after exposure to radiation. The results indicate that the AS1411 conjugates enhance the effects of radiation on lung cancer cells.
- FIG. 13A shows the cancer cell survival fraction at 1.38 ⁇ g/mL.
- FIG. 13B shows the cancer cell survival fraction at 2.76 ⁇ g/mL.
- FIG. 13C shows the cancer cell survival fraction at 5.5 ⁇ g/mL. The results indicate that GNP-AS1411 conjugates become more effective at killing cancer cells at increasing concentrations.
- GNP gold nanoparticles
- GNP-CRO gold nanoparticle-control oligonucleotide conjugates
- GNP-AS1411 gold-nanoparticle-AS1411 conjugates
- FIG. 14A The results of the radiation treatment are shown in FIG. 14A .
- the Log 10 Survival Fraction of the cells versus the X-ray radiation dose in cGy is shown in FIG. 14B .
- the results indicate that the AS1411 conjugates enhance the effects of radiation on breast cancer cells.
- MCF10A Human immortalized breast epithelial cells
- MDA-MB-231 triple negative breast cancer cells
- the cells were incubated with 50 nM GNP—Gd-CRO-Cy5 (control oligomer) or 50 nM GNP-Gd-AS1411-Cy5 using DO3A (1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane) as the ligand to bind Gd and connect it to the GNP surface through a thiol linker.
- DO3A 1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane
- FIG. 15A shows uptake in non-malignant breast cells.
- FIG. 15B shows uptake and selective retention of GNP-Gd-AS1411-Cy5 in malignant breast cancer cells at the 96 hours timepoint. The fluorescent-labeled GNP conjugates appear red and the nuclear stain appears blue.
- HPLD-1 normal airway epithelial cells
- A549 lung adenocarcinoma cells
- the cells were incubated with 50 nM GNP—Gd-CRO-Cy5 (control oligomer) or 50 nM GNP-Gd-AS1411-Cy5 using DO3A as the ligand to bind Gd and connect it to the GNP surface through a thiol linker.
- FIG. 16A shows uptake in non-malignant lung cells.
- FIG. 16B shows uptake and selective retention of GNP-Gd-AS1411-Cy5 in malignant lung cancer cells at the 96 hours timepoint. The fluorescent-labeled GNP conjugates appear red and the nuclear stain appears blue.
- the 4 hour images indicate that the uptake of aptamer conjugates in healthy and malignant cells is similar.
- the 96 hour images indicate that the AS1411 conjugates are only retained in malignant cells.
- Gold nanoparticle-gadolinium-oligomer conjugates were studied as MRI contrast agents in vitro and in cells using a Bruker BioSpec 94/30 USR 9.4T MRI scanner. The change in reflectivity was measured using water to normalize the signals.
- the gold nanoparticle-oligomer conjugates included gold nanoparticles conjugated to AS1411 (5′-d(GGTGGTGGTGGTTGTGGTGGTGGTGG)-3) (GNP-AS1411), gold nanoparticles conjugated to a control oligomer (5′-d(CCTCCTCCTCCTTCTCCTCCTCCTCC)-3) (GNP-CRO) and gold nanoparticles conjugated to a control oligonucleotide (5′d(TTTT)-3) (GNP-CTR).
- DO3A ligand was used to bind Gd(III) and connected it to the GNP surface through a thiol linker.
- GNP-AS1411, GNP-CRO and GNP-CTR were used as controls to compare the relaxivity of GNP-Gd-AS1411, GNP—Gd—CRO and GNP—Gd-CTR.
- the relaxivity was measured at 75 nM, 300 nM and 1200 nM GNP concentrations.
- Table 4 shows the change in relaxivity after administration of the Gd conjugates:
- Table 6 shows the change in relaxivity after the 96 hour treatment:
- the 48 hour treatment results are shown graphically in FIG. 17B
- the 96 hour treatment results are shown graphically in FIG. 17C .
- GNP-AS1411-Gd demonstrated a significant increase in relaxivity at 1200 nM after 48 hours and 96 hours of treatment.
- the MRI contrast enhancement properties of gold nanoparticle-oligomer conjugates were compared to MULTIHANCE® (Bracco), a commercially-available MRI contrast agent. The percent contrast enhancement was measured in breast cancer cells (MDA-MB-231).
- the gold nanoparticle-oligomer conjugates included gold nanoparticles conjugated to AS1411 (5′-d(GGTGGTGGTGGTTGTGGTGGTGGTGG)-3) (GNP DOTA AS1411), gold nanoparticles conjugated to a control oligomer (5′-d(CCTCCTCCTCCTCCTCCTCC)-3) (GNP DOTA CRO) and gold nanoparticles conjugated to a control oligonucleotide (5′d(TTTT)-3) (GNP DOTA CTR).
- DOTA (1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane) was used as the ligand.
- the MULTIHANCE® cells were treated for 24 hours, 48 hours, 72 hours and 96 hours, while the gold nanoparticle-oligomer conjugate cells were treated for 48 hours and 96 hours.
- the results are shown in FIG. 18 .
- GNP DOTA AS1411 demonstrated a contrast enhancement approximately three times greater than MULTIHANCE®.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Nanotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Inorganic Chemistry (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Ceramic Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
A composition comprises an anti-nucleolin agent conjugated to nanoparticles, and optionally containing gadolinium. Furthermore, a pharmaceutical composition for treating cancer comprises a composition including an anti-nucleolin agent conjugated to nanoparticles, and a pharmaceutically acceptable carrier. The composition enhances the effectiveness of radiation therapy, enhancing contrast in X-ray imaging techniques, and when gadolinium is present, provide cancer selective MRI contrast agents.
Description
- Nucleolin [8] is an abundant, non-ribosomal protein of the nucleolus, the site of ribosomal gene transcription and packaging of pre-ribosomal RNA. This 710 amino acid phosphoprotein has a multi-domain structure consisting of a histone-like N-terminus, a central domain containing four RNA recognition motifs and a glycine/arginine-rich C-terminus, and has an apparent molecular weight of 110 kD. While nucleolin is found in every nucleated cell, the expression of nucleolin on the cell surface has been correlated with the presence and aggressiveness of neoplastic cells [3].
- The correlation of the presence of cell surface nucleolin with neoplastic cells has been used for methods of determining the neoplastic state of cells by detecting the presence of nucleolin on the plasma membranes [3]. This observation has also provided new cancer treatment strategies based on administering compounds that specifically target nucleolin [4].
- Nucleic acid aptamers are short synthetic oligonucleotides that fold into unique three-dimensional structures that can be recognized by specific target proteins. Thus, their targeting mechanism is similar to monoclonal antibodies, but they may have substantial advantages over these, including more rapid clearance in vivo, better tumor penetration, non-immunogenicity, and easier synthesis and storage.
- Guanosine-rich oligonucleotides (GROs) designed for triple helix formation are known for binding to nucleolin. This ability to bind nucleolin has been suggested to cause their unexpected ability to effect antiproliferation of cultured prostate carcinoma cells [6]. The antiproliferative effects are not consistent with a triplex-mediated or an antisense mechanism, and it is apparent that GROs inhibit proliferation by an alternative mode of action. It has been surmised that GROs, which display the propensity to form higher order structures containing G-quartets, work by an aptamer mechanism that entails binding to nucleolin due to a shape-specific recognition of the GRO structure; the binding to cell surface nucleolin then induces apoptosis. The antiproliferative effects of GROs have been demonstrated in cell lines derived from prostate (DU145), breast (MDA-MB-231, MCF-7), or cervical (HeLa) carcinomas and correlates with the ability of GROs to bind cell surface nucleolin [6].
- AS1411, a GRO nucleolin-binding DNA aptamer that has antiproliferative activity against cancer cells with little effect on non-malignant cells, was previously developed. AS1411 uptake appears to occur by macropinocytosis in cancer cells, but by a nonmacropinocytic pathway in nonmalignant cells, resulting in the selective killing of cancer cells, without affecting the viability of nonmalignant cells [9]. AS1411 was the first anticancer aptamer tested in humans and results from clinical trials of AS1411 (including Phase II studies in patients with renal cell carcinoma or acute myeloid leukemia) indicate promising clinical activity with no evidence of serious side effects. Despite a few dramatic and durable clinical responses, the overall rate of response to AS1411 was low, possibly due to the low potency of AS1411.
- Anti-nucleolin agents conjugated to particles, such as aptamers conjugated to gold nanoparticles, have an antiproliferative effect on cancer and tumors. See International Application, International Publication Number WO 2012/167173, entitled “ANTI-NUCLEOLIN AGENT-CONJUGATED NANOPARTICLES”, filed 1 Jun. 2012, to Bates et al. Aptamer conjugated gold nanoparticles, in particular, have a similar or greater antiproliferative effect than the aptamer (anti-nucleolin oligonucleotide) alone, demonstrating similar effects at only 1/10 to 1/100 the dosage. Furthermore, these same agents, preferably having a fluorescent dye conjugated to the particle or attached to the anti-nucleolin agent, may also be used as imaging agents, both in vivo and ex vivo.
- Radiation therapy (RT) has been a mainstay of cancer treatment for decades and advances in technology mean it is now used to treat more patients than ever before. The vast majority of cancer patients will receive RT as part of their treatment, but this therapy is not without limitations or side effects. The ability to deliver sufficient radiation intensity to the tumor without causing unacceptable toxicity in nearby tissues is the overarching problem that constrains the efficacy of RT and leads to local tumor relapse and recurrence.
- As the use of RT has grown, the need for potent and selective radiosensitizing agents has never been greater. Certain types of aggressive cancers are particularly difficult to treat with RT. One such example is the “triple negative” subtype of breast cancer (TNBC), which represents 15-25% of breast cancer occurrences and is characterized as an aggressive disease with early relapse, low post-recurrence survival, and worse overall survival than other forms of breast cancer. Moreover, TNBC has proven more resistant to radiation therapy and larger doses are needed for effective treatment. Patients with recurrent TNBC are notably challenging to treat, as they may already be near their maximum safe lifetime radiation dose and there are few clear guidelines for RT in this setting.
- RT also plays an extremely important role in the management of non-small cell lung cancer (NSCLC) and most patients with NSCLC will receive RT at some point during their course of treatment. Although RT has proven clinical benefits, it is often inadequate at controlling primary NSCLC tumor growth and preventing recurrence. Increasing the dose of radiation to the tumor is expected to improve effectiveness, but dose escalation is not currently achievable in most cases due to the damage it would cause to surrounding healthy tissues.
- For many years, there has been interest in developing radiosensitizers to improve the efficacy of RT, but there are currently no agents that are FDA approved for clinical use specifically for this purpose. Several chemotherapy drugs have radiosensitizing properties and have been tested concurrently with RT, but the problem is that they can also make normal tissues more susceptible to radiation damage. Gold nanoparticles (GNP) are well established as radiosensitizers due to their high atomic number (Z), which means they emit secondary radiation when subjected to ionizing radiation, plus they are biocompatible. However, the GNP generally do not internalize efficiently in cancer cells or accumulate in tumors at sufficiently high concentrations for effective radiosensitization, which has limited their clinical utility [26].
- Each year in this country, more than 71 million CT scans and 33 million MRI scans are performed. The purpose for many of these scans is to detect (or rule out) primary or metastatic malignant tumors. In oncology, medical imaging plays a major role in screening, diagnosis, staging, monitoring therapeutic response, and treatment planning (e.g. for radiation therapy or surgery) for almost all cancer types. In most of those cases, an intravenous (i.v.) contrast agent is administered prior to CT or MRI scans to improve visualization of tissues and organs. The short half-life of contrast agents in circulation often requires repeated or continuous administration throughout the imaging process. The materials in the contrast agents interact with the imaging modality; for example, iodine in CT contrast absorbs and scatters X-rays, whereas the gadolinium ions in MRI contrast are paramagnetic and alter the properties of nearby water molecules. Consequently, contrast agents can enhance differences in signals between adjacent tissues due to their altered deposition or interactions, which may depend on tissue type, architecture, or blood flow. Existing CT and MRI contrast agents are safe in most patients and effectively enhance anatomical imaging, but they are not disease-specific and largely fail to distinguish malignant from benign masses.
- Diagnostic imaging is particularly important for lung cancer, which is the leading cause of cancer deaths in the United States and worldwide. With an aging population of smokers, former smokers and the smaller population of never-smokers who are susceptible to lung adenocarcinomas due to EGFR mutations, lung cancer is expected to remain a major public health problem for many years to come even if smoking cessation efforts are successful. A major factor contributing to the high mortality of lung cancer is the failure to detect lung cancers at an early stage before they invade surrounding tissue or spread to other organs (only 15% of lung cancers are detected while still localized). The clinical relevance of delayed diagnosis in lung cancer is highlighted by the fact that people whose cancer is detected while still localized to the primary site in the lung have a five year survival rate of 53%, compared to a 1% chance of surviving five years for those with distant metastases at the time of diagnosis.
- Current lung cancer screening techniques include low-dose helical computed tomography (CT) and single-view posteroanterior chest radiography. Both of these screening techniques have an extremely high false positive rate (96.4% for low-dose CT and 94.5% for radiography according to a recent national study). These high rates of false positives necessitate additional secondary tests to accurately diagnose the presence or absence of lung cancer, which reduces the cost-effectiveness of these cancer screening techniques. False positive test results also cause a significant amount of unnecessary anxiety and emotional stress for patients who believe they have lung cancer.
- Another limitation of imaging-based lung cancer screening techniques is their inability to differentiate between benign and malignant masses. Imaging-based tests identify lung cancer based on the size of nodules present in the lungs, with lesions smaller than 4 mm considered benign. Diagnosis based on nodule size fails to identify small malignant lesions as cancerous and precludes early-stage detection of lung cancer. In addition, larger benign growths are wrongly identified as cancerous and require more invasive secondary tests to positively diagnose the presence or absence of lung cancer.
- In a first aspect, the present invention is a composition comprising an anti-nucleolin agent and optionally gadolinium conjugated to nanoparticles.
- In a second aspect, the present invention is a pharmaceutical composition for treating cancer, comprising an anti-nucleolin agent and optionally gadolinium conjugated to nanoparticles and a pharmaceutically acceptable carrier.
- In a third aspect, the present invention is a pharmaceutical composition for enhancing the effectiveness of radiation therapy and/or enhancing contrast in X-ray imaging techniques, comprising an anti-nucleolin agent conjugated to nanoparticles and a pharmaceutically acceptable carrier.
- In a fourth aspect, the present invention is a pharmaceutical composition for MRI imaging or enhancing the contrast of an MRI image, comprising an anti-nucleolin agent conjugated to nanoparticles and a pharmaceutically acceptable carrier.
- In a fifth aspect, the present invention is a method of treating cancer, comprising administering an effective amount of a pharmaceutical composition to a patient in need thereof, followed by radiation therapy.
- In a sixth aspect, the present invention is a use of a pharmaceutical composition for the preparation of a medicament for the treatment of cancer.
- In a seventh aspect, the present invention is an agent for MRI imaging and/or enhancing contrast in X-ray imaging techniques comprising a composition which optionally comprises gadolinium, and a pharmaceutically acceptable carrier.
- In an eighth aspect, the present invention is a method of imaging cancer by MRI and/or X-ray imaging techniques in vivo, comprising administering an imaging agent which optionally comprises gadolinium, to a subject; and forming an image of the imaging agent present in the subject by MRI and/or an X-ray imaging technique.
- The term “conjugated” means “chemically bonded to”.
- The term “anti-nucleolin oligonucleotides” refers to an oligonucleotide that binds to nucleolin.
- The term “equivalent aptamer concentration” refers to the concentration of anti-nucleolin oligonucleotide present in the conjugate.
- Tumors and cancers include solid, dysproliferative tissue changes and diffuse tumors. Examples of tumors and cancers include melanoma, lymphoma, plasmocytoma, sarcoma, glioma, thymoma, leukemia, breast cancer, prostate cancer, colon cancer, liver cancer, esophageal cancer, brain cancer, lung cancer, ovary cancer, endometrial cancer, bladder cancer, kidney cancer, cervical cancer, hepatoma, and other neoplasms. For more examples of tumors and cancers, see, for example Stedman [1].
- “Treating a tumor” or “treating a cancer” means to significantly inhibit growth and/or metastasis of the tumor or cancer, and/or killing cancer cells. Growth inhibition can be indicated by reduced tumor volume or reduced occurrences of metastasis. Tumor growth can be determined, for example, by examining the tumor volume via routine procedures (such as obtaining two-dimensional measurements with a dial caliper). Metastasis can be determined by inspecting for tumor cells in secondary sites or examining the metastatic potential of biopsied tumor cells in vitro.
- A “chemotherapeutic agent” is a chemical compound that can be used effectively to treat cancer in humans.
- A “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents which are compatible with pharmaceutical administration. Preferred examples of such carriers or diluents include water, saline, Ringer's solutions and dextrose solution. Supplementary active compounds can also be incorporated into the compositions.
- “Medicament,” “therapeutic composition” and “pharmaceutical composition” are used interchangeably to indicate a compound, matter, mixture or preparation that exerts a therapeutic effect in a subject.
- “Antibody” is used in the broadest sense and refers to monoclonal antibodies, polyclonal antibodies, multispecific antibodies, antibody fragments and chemically modified antibodies, where the chemical modification does not substantially interfere with the selectivity and specificity of the antibody or antibody fragment.
- An “anti-nucleolin agent” includes any molecule or compound that interacts with nucleolin. Such agents include for example anti-nucleolin antibodies, aptamers such GROs and nucleolin targeting proteins.
- “X-ray based imaging techniques” include all imaging techniques which use X-rays to form an image, directly or indirectly, including for example CT scans (also called X-ray computed tomography or computerized axial tomography scan (CAT scan)).
-
FIGS. 1A and 1B are images of two MDA231 xenograft mice injected retro-orbitally with about 200 ng/100 uL of AS1411-Cy5-GNP or CRO-Cy5-GNP. Image was acquired using a PHOTON IMAGER™ after 2 hrs (A) and 6 hrs (B) post injection. -
FIGS. 2A, 2B, 2C and 2D are optical micrographs of MCF7 cells treated by silver enhancement staining for gold nanoparticles, illustrating comparative accumulation of gold nanoparticles after administration of the indicated composition, or without administration. -
FIG. 3A is a sketch of different linkers used to conjugate AS1411/CRO to gold nanoparticles, andFIG. 3B is a sketch of attaching and detaching aptamers to gold nanoparticles. -
FIGS. 4A and 4B show the biodistribution of AS1411-GNP-Cy5: the mice were treated, euthanized and organs were photographed (A) and examined for fluorescence (B). -
FIG. 5 illustrates the results of uptake studies in MCF-7 cells. Breast Cancer Cells (MCF-7) were treated with gold nanoparticles (GNP) conjugated with gadolinium-AS1411 or gadolinium-CRO and a linked fluorophore (Cy5) for 4 hrs. Confocal microscopy showing the uptake of the corresponding Oligo-Gd-GNP-Cy5 conjugate using Cy5 laser excitation (650 nm) and emission (670 nm) in MCF-7 cells. -
FIG. 6 illustrates the results of uptake studies in MCF-10A cells. Non-malignant Breast Epithelial Cells (MCF-10A) were treated with gold nanoparticles (GNP) conjugated with gadolinium-AS1411 or gadolinium-CRO and a linked fluorophore (Cy5) for 4 hrs. Confocal microscopy showing the uptake of the corresponding Oligo-Gd-GNP-Cy5 conjugate using Cy5 laser excitation (650 nm) and emission (670 nm) in MCF-10A cells. -
FIG. 7A illustrates confocal microscopy images of Breast Cancer Cells (MDA-MB-231) treated with gold nanoparticles (GNP) conjugated to gadolinium-AS1411 (GNP-Gd-AS1411) or AS1411 (GNP-AS1411) for 4 hrs, and treated with 100 cGy X-ray. DNA damage response marker phospho-yH2AX (red) foci was detected in the damage nuclei (blue) of MDA-MB-231 cells. -
FIG. 7B is a graph illustrating the average foci per nuclei for Breast Cancer Cells (MDA-MB-231) treated with gold nanoparticles (GNP) conjugated to gadolinium-AS1411 (GNP-Gd-AS1411) or AS1411 (GNP-AS1411) for 4 hrs, and treated with 100 cGy X-ray, with bars indicating the standard deviation (SD). -
FIG. 8 illustrates Breast Cancer Cells (MDA-MB-231) plated in 35 mm dishes and treated with gold nanoparticle conjugated to gadolinium and AS1411 (0.03 mg/ml gold concentration). After 4 hrs dishes were radiated using X-Rad160/225 radiator at 100 cGy. Dishes were further incubated for 10 days. After incubation the colonies fix with 4% paraformaldehyde in phosphate buffer saline (PBS) and stained with 0.4% crystal violet. -
FIG. 9A illustrates the results of relaxivity analysis at 9.4 T for Gold nanoparticles coated with AS1411 and Gd(III)-DO3A-SH.FIG. 9B illustrates the results of relaxivity analysis at 9.4 T for Gold nanoparticles coated with CRO (control) and Gd(III)-DO3A-SH.FIG. 9C illustrates the results of relaxivity analysis at 9.4 T for gold nanoparticles coated with Gd(III)-DO3A-SH.FIG. 9D illustrates the results of relaxivity analysis at 9.4 T for MULTIHANCE® (gadobenate dimeglumine).FIG. 9E illustrates a Gold Nanoparticle coated with 24 Gd(III)-DO3A-SH and 13 AS1411/CRO. -
FIG. 10A illustrates X-ray attenuation intensities in Hounsfield Unit (HU) as a function of GNP concentrations for GNS/Gd(III)-DOTA-SH/AS1411 construct (green), GNP/AS1411 (red), and Iopamidol (blue). -
FIG. 10B illustrates a table of X-ray attenuation intensities in Hounsfield Unit (HU) for various constructs. -
FIG. 11A illustrates lung cancer cells treated with gold nanoparticles and gold nanoparticle-aptamer conjugates without exposure to X-ray radiation. -
FIG. 11B illustrates treated lung cancer cells with exposure to X-ray radiation. -
FIG. 11C is a graph illustrating the percent change in absorbance of the cells with and without exposure to X-ray radiation. -
FIG. 12 illustrates confocal microscopy images of breast cancer cells treated with gold nanoparticles conjugated to AS1411 (GNP-AS1411). -
FIG. 13A illustrates the breast cancer cell survival fraction after treatment with 1.38 μg/mL gold nanoparticles and gold nanoparticle-aptamer conjugates. -
FIG. 13B illustrates the cancer cell survival fraction after treatment with 2.76 μg/mL gold nanoparticles and gold nanoparticle-aptamer conjugates. -
FIG. 13C illustrates the cancer cell survival fraction after treatment with 5.5 μg/mL gold nanoparticles and gold nanoparticle-aptamer conjugates. -
FIG. 14A illustrates breast cancer cells treated with gold nanoparticles and gold nanoparticle-aptamer conjugates. -
FIG. 14B is a graph illustrating the survival fraction of the cells. -
FIG. 15A illustrates uptake of fluorescent-labeled gold nanoparticle-gadolinium-oligomer conjugates in non-malignant breast cells. -
FIG. 15B illustrates uptake and selective retention of fluorescent-labeled gold nanoparticle-gadolinium-oligomer conjugates in malignant breast cancer cells. -
FIG. 16A illustrates uptake of fluorescent-labeled gold nanoparticle-gadolinium-oligomer conjugates in non-malignant lung cells. -
FIG. 16B illustrates uptake and selective retention of fluorescent-labeled gold nanoparticle-gadolinium-oligomer conjugates in malignant lung cancer cells. -
FIG. 17A illustrates the change in relaxivity of gold nanoparticle-oligomer-gadolinium conjugates in water. -
FIG. 17B illustrates the change in relaxivity of gold nanoparticle-oligomer-gadolinium conjugates in cells after 48 hours of treatment. -
FIG. 17C illustrates the change in relaxivity of gold nanoparticle-oligomer-gadolinium conjugates in cells after 96 hours of treatment. -
FIG. 18 illustrates the percent contrast enhancement for gold nanoparticle-oligomer conjugates and a commercially-available MRI contrast agent. - The present invention includes anti-nucleolin agents conjugated to particles comprising metals, such as aptamers conjugated to gold nanoparticles, that are effective radio-sensitizers for treating cancer. The nanoparticles are selectively taken-up by cancer cells and enhance the effects of RT on those cells. This enhances the effectiveness of RT, and/or allows a low effective dose of radiation to be used during RT. Furthermore, the nanoparticles may optionally also contain gadolinium, for example 10-(2-sulfanylethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (H3-DO3A-SH) coordinated to a trivalent gadolinium ion (Gd-DO3A-SH), which is then bound to the gold nanoparticles through the sulfur atom in a manner similar to thiolated-AS1411, resulting in a mono-layer coating that is a mixture of AS1411 and Gd-DO3A-SH on the gold nanoparticles. The Gd ions of Gd-DO3A-SH enhance the relaxivity (speed up the relaxation rate) of nearby water molecules during an MRI scan and contribute to an increase in contrast when present in the sample being scanned. In addition, both the gold nanoparticles and the Gd ions enhance the absorption and scattering of X-rays, and increase the contrast when present in the sample being scanned or imaged using X-ray based imaging techniques, such as CT scanning. The combination of anti-nucleolin agents (cancer targeting) and gadolinium (MRI contrast enhancement) combine to result in a cancer-targeting MRI-contrast agent. Furthermore the combination of anti-nucleolin agents (cancer targeting) and gold nanoparticle (X-ray contrast enhancement) and optionally gadolinium (MRI contrast enhancement and X-ray contrast enhancement) combine to result in a cancer-targeting MRI-contrast and X-ray (CT scan) contrast agent.
- There are several unmet needs that can be addressed by these cancer-targeted contrast agent, namely: (1) better specificity to differentiate between cancerous and non-cancerous lesions and reduce false positives that can lead to over-treatment, (2) improved sensitivity so that they could be used as screening tools for early detection, and (3) reduced toxicity to allow use in patients with compromised renal function for whom existing contrast agents are contraindicated. These advantages are especially useful in lung cancer screening, particularly early detection of lung cancer.
- In addition, anti-nucleolin agent-conjugated nanoparticles have a longer half-life in circulation than currently available contrast agents. The longer half-life in circulation eliminates the need for continuous intravenous administration during imaging, which greatly improves patient comfort. Anti-nucleolin agent-conjugated nanoparticle contrast agents may be administered multiple days before an imaging scan is performed.
- Anti-nucleolin agents include (i) aptamers, such as GROs; (ii) anti-nucleolin antibodies; and (iii) nucleolin targeting proteins. Examples of aptamers include guanosine-rich oligonucleotides (GROs). Examples of suitable oligonucleotides and assays are also given in Miller et al. [7]. Characteristics of GROs include:
- (1) having at least 1 GGT motif,
- (2) preferably having 4-100 nucleotides, although GROs having many more nucleotides are possible,
- (3) optionally having chemical modifications to improve stability.
- Especially useful GROs form G-quartet structures, as indicated by a reversible thermal denaturation/renaturation profile at 295 nm [6]. Preferred GROs also compete with a telomere oligonucleotide for binding to a target cellular protein in an electrophoretic mobility shift assay [6]. In some cases, incorporating the GRO nucleotides into larger nucleic acid sequences may be advantageous; for example, to facilitate binding of a GRO nucleic acid to a substrate without denaturing the nucleolin-binding site. Examples of oligonucleotides are shown in Table 1; preferred oligonucleotides include SEQ IDs NOs: 1-7; 9-16; 19-30 and 31 from Table 1.
-
TABLE 1 Non-antisense GROs that bind nucleolin and non-binding controls1,2,3. SEQ ID GRO Sequence NO: GRO29A1 tttggtggtg gtggttgtgg tggtggtgg 1 GRO29-2 tttggtggtg gtggttttgg tggtggtgg 2 GRO29-3 tttggtggtg gtggtggtgg tggtggtgg 3 GRO29-5 tttggtggtg gtggtttggg tggtggtgg 4 GRO29-13 tggtggtggt ggt 5 GRO14C ggtggttgtg gtgg 6 GRO15A gttgtttggg gtggt 7 GRO15B2 ttgggggggg tgggt 8 GRO25A ggttggggtg ggtggggtgg gtggg 9 GRO26B1 ggtggtggtg gttgtggtgg tggtgg 10 GRO28A tttggtggtg gtggttgtgg tggtggtg 11 GRO28B tttggtggtg gtggtgtggt ggtggtgg 12 GRO29-6 ggtggtggtg gttgtggtgg tggtggttt 13 GRO32A ggtggttgtg gtggttgtgg tggttgtggt gg 14 GRO32B tttggtggtg gtggttgtgg tggtggtggt tt 15 GRO56A ggtggtggtg gttgtggtgg tggtggttgt 16 ggtggtggtg gttgtggtgg tggtgg CRO tttcctcctc ctccttctcc tcctcctcc 18 GRO A ttagggttag ggttagggtt aggg 19 GRO B ggtggtggtg g 20 GRO C ggtggttgtg gtgg 21 GRO D ggttggtgtg gttgg 22 GRO E gggttttggg 23 GRO F ggttttggtt ttggttttgg 24 GRO G1 ggttggtgtg gttgg 25 GRO H1 ggggttttgg gg 26 GRO I1 gggttttggg 27 GRO J1 ggggttttgg ggttttgggg ttttgggg 28 GRO K1 ttggggttgg ggttggggtt gggg 29 GRO L1 gggtgggtgg gtgggt 30 GRO M1 ggttttggtt ttggttttgg ttttgg 31 GRO N2 tttcctcctc ctccttctcc tcctcctcc 32 GRO O2 cctcctcctc cttctcctcc tcctcc 33 GRO P2 tggggt 34 GRO Q2 gcatgct 35 GRO R2 gcggtttgcg g 36 GRO S2 tagg 37 GRO T2 ggggttgggg tgtggggttg ggg 38 1Indicates a good plasma membrane nucleolin-binding GRO. 2Indicates a nucleolin control(non-plasma membrane nucleolin binding). 3GRO sequence without 1 or 2 designations have some anti-proliferative activity. - Any antibody that binds nucleolin may also be used. In certain instances, monoclonal antibodies are preferred as they bind single, specific and defined epitopes. In other instances, however, polyclonal antibodies capable of interacting with more than one epitope on nucleolin may be used. Many anti-nucleolin antibodies are commercially available, and are otherwise easily made. See, for example, US Patent Application Publication No. US 2013/0115674 to Sutkowski et al. Table 2 lists a few commercially available anti-nucleolin antibodies.
-
TABLE 2 commercially available anti-nucleolin antibodies Antigen Antibody Source source p7-1A4 Mouse monoclonal Developmental Studies Xenopus laevis antibody (mAb) Hybridoma Bank oocytes Sc-8031 mouse mAb Santa Cruz Biotech human Sc-9893 goat polyclonal Santa Cruz Biotech human Ab (pAb) Sc-9892 goat pAb Santa Cruz Biotech human Clone 4E2 mouse mAb MBL International human Clone 3G4B2 mouse mAb Upstate Biotechnology dog (MDCK cells) Nucleolin, Human MyBioSource human (mouse mAb) Purified anti-Nucleolin- BioLegend human Phospho, Thr76/Thr84 (mouse mAb) Rabbit Polyclonal Novus Biologicals human Nucleolin Antibody Nucleolin (NCL, C23, US Biological human FLJ45706, FLJ59041, Protein C23) Mab Mo xHu Nucleolin (NCL, Nucl, C23, US Biological human FLJ45706, Protein C23) Pab Rb xHu Mouse Anti-Human Cell Sciences human Nucleolin Phospho- Thr76/Thr84 Clone 10C7 mAb Anti-NCL/Nucleolin (pAb) LifeSpan Biosciences human NCL purified MaxPab mouse Abnova human polyclonal antibody (B02P) NCL purified MaxPab rabbit Abnova human polyclonal antibody (D01P) NCL monoclonal antibody, Abnova human clone 10C7 (mouse mAb) Nucleolin Monoclonal Enzo Life Sciences human Antibody (4E2) (mouse mAb) Nucleolin, Mouse Monoclonal Life Technologies human Antibody Corporation NCL Antibody (Center E443) Abgent human (rabbit pAb) Anti-Nucleolin, clone 3G4B2 EMD Millipore human (mouse mAb) NCL (rabbit pAb) Proteintech Group human Mouse Anti-Nucleolin Active Motif human Monoclonal Antibody, Unconjugated, Clone 3G4B20 Nsr1p - mouse monoclonal EnCor Biotechnology human Nucleolin (mouse mAb) Thermo Scientific human Pierce Products Nucleolin [4E2] antibody GeneTex human (mouse mAb) - Nucleolin targeting proteins are proteins, other than antibodies, that specifically and selectively bind nucleolin. Examples include ribosomal protein S3, tumor-homing F3 peptides [26, 27] and myosin H9 (a non-muscle myosin that binds cell surface nucleolin of endothelial cells in angiogenic vessels during tumorigenesis).
- Anti-nucleolin agents may be conjugated to particles made of a variety of materials solid materials, including (1) metals and high molecular weigh elements; and (2) metal oxides. Metals and elements, preferably non-magnetic metals and elements, include gold, silver, palladium, iridium, platinum and alloys thereof. Oxides include zirconium dioxide, palladium oxide, barium sulfate, thorium oxide, uranium oxide and complex oxides thereof, such as barium titanate. Preferably, the particles are non-toxic. The particles are preferably nanoparticles having an average particle diameter of 1-100 nm, more preferably 1-50 nm, including 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 and 95 nm.
- Oligonucleotides and proteins have been attached to solid materials, such metals and elements, oxides, semiconductors and polymers, by a variety of techniques. These same techniques may be used to attach anti-nucleolin agents to particles. Further attachment of gadolinium complexes to the anti-nucleolin agent conjugated nanoparticles (conjugates), allows the conjugates to be used as MRI contrast agents, both in vivo and ex vivo.
- Anti-nucleolin agent-conjugated nanoparticles may be used to formulate a pharmaceutical composition for radio-sensitizers for treating cancer and tumors by RT, and targeting cancer cells expressing cell surface nucleolin, by forming mixtures of the anti-nucleolin agent conjugated nanoparticles and a pharmaceutically acceptable carrier, such as a pharmaceutical composition. Methods of treating cancer in a subject include administering a therapeutically effective amount of an anti-nucleolin agent conjugated nanoparticles followed by RT. The small size of nanoparticles allows nanoparticle conjugates to cross the blood-brain barrier, which enables imaging and treatment of brain tumors.
- Particularly preferred compositions are aptamers conjugated to gold nanoparticles, and optionally further conjugated to gadolinium complexes. Gold nanoparticles (GNPs) exhibit low toxicity, versatile surface chemistry, light absorbing/scattering properties, and tunable size. Aptamers effectively cap gold particles and prevent aggregation, are safe, stable, easy to synthesize, and non-immunogenic. Aptamer conjugated GNPs offer improved efficacy of RT in vivo. Aptamer conjugated GNP are highly selective for cancer cells over normal cells, and when attached to cyanine dyes are excellent imaging agents, for example Cy2, Cy3, Cy5, Cy®5.5, Cy7, Alexa Fluor® 680, Alexa Fluor 750, IRDye® 680, and IRDye® 800CW (LI-COR Biosciences, Lincoln, Nebr.); and when attached to gadolinium complexes also act as MRI contrast agents specific for cancer cells. Aptamer conjugated GNP, and optionally attached to gadolinium complexes may be used as an imaging agent, MRI contrast agents, and may be administered as compositions which further contain a pharmaceutically acceptable carrier. The imaging agent may be administered to a subject in a method of imaging cancer in vivo, to form an image of the imaging agent present in the subject, by MRI.
- The amounts and ratios of compositions described herein are all by weight, unless otherwise stated. Accordingly, the number of anti-nucleolin agents per nanoparticle may vary when the weight of the nanoparticle varies, even when the equivalent anti-nucleolin agent concentration (or equivalent aptamer concentration) is otherwise the same. For example, the number of anti-nucleolin agent molecules per nanoparticle may vary from 2 to 10,000, or 10 to 1000, including 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800 and 900.
- A pharmaceutical composition is formulated to be compatible with its intended route of administration, including intravenous, intradermal, subcutaneous, oral, inhalation, transdermal, transmucosal, and rectal administration. Solutions and suspensions used for parenteral, intradermal or subcutaneous application can include a sterile diluent, such as water for injection, saline solution, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
- Pharmaceutical compositions suitable for injection include sterile aqueous solutions or dispersions for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, CREMOPHOR EL® (BASF; Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid so as to be administered using a syringe. Such compositions should be stable during manufacture and storage and are preferably preserved against contamination from microorganisms such as bacteria and fungi. The carrier can be a dispersion medium containing, for example, water, polyol (such as glycerol, propylene glycol, and liquid polyethylene glycol), and other compatible, suitable mixtures. Various antibacterial and anti-fungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, and thimerosal, can contain microorganism contamination. Isotonic agents such as sugars, polyalcohols, such as mannitol, sorbitol, and sodium chloride can be included in the composition. Compositions that can delay absorption include agents such as aluminum monostearate and gelatin.
- Sterile injectable solutions can be prepared by incorporating the active agents, and other therapeutic components, in the required amount in an appropriate solvent with one or a combination of ingredients as required, followed by sterilization. Methods of preparation of sterile solids for the preparation of sterile injectable solutions include vacuum drying and freeze-drying to yield a solid.
- Radiation treatment (RT) may be by any form of radiation, such as X-rays (for example megavolt energy X-rays), Brachy therapy, proton radiation, and neutron radiation. Also possible is to use doses and/or energy of RT that would normally be considered subclinical; because the anti-nucleolin agent-conjugated nanoparticles enhance the effectiveness of RT, the dosages are effective to kill or reduce the growth of cancer cells and tumors.
- Anti-nucleolin agent-conjugated nanoparticles which contain gadolinium are effective MRI contrast agents, and may also be used to image cancer cells, including individual cancer cells. For example, the anti-nucleolin agent-conjugated nanoparticles which contain gadolinium may be administered to a patient to determine if cancer cells are present in lymph nodes, thus avoiding the removal of lymph node for the sole purpose of determining if they contain cancer cells. Another use can be to avoid the need for a biopsy. The anti-nucleolin agent-conjugated nanoparticles which contain gadolinium may be administered to a patient to determine if cancer is preseht in a lump, has metastasized to other location in the body, or to determine if all cancer from a tumor has been removed during surgery.
- Anti-nucleolin agent-conjugated nanoparticles which optionally contain gadolinium are effective X-ray contrast agents, and may also be used to image cancer cells, including individual cancer cells. For example, the anti-nucleolin agent-conjugated nanoparticles which optionally contain gadolinium may be administered to a patient to determine if cancer cells are present in lymph nodes, thus avoiding the removal of lymph node for the sole purpose of determining if they contain cancer cells. Another use can be to avoid the need for a biopsy. The anti-nucleolin agent-conjugated nanoparticles which optionally contain gadolinium may be administered to a patient to determine if cancer is present in a lump, has metastasized to other location in the body, or to determine if all cancer from a tumor has been removed during surgery.
- The pharmaceutical composition described herein may further comprise other therapeutically active compounds, and/or may be used in conjunction with physical techniques as noted herein which are suitable for the treatment of cancers and tumors. Examples of commonly used therapeutically active compounds include vinorelbine (Navelbine®), mitomycin, camptothecin, cyclophosphamide (Cytoxin®), methotrexate, tamoxifen citrate, 5-fluorouracil, irinotecan, doxorubicin, flutamide, paclitaxel (Taxol®), docetaxel, vinblastine, imatinib mesylate (Gleevec®), anthracycline, letrozole, arsenic trioxide (Trisenox®), anastrozole, triptorelin pamoate, ozogamicin, irinotecan hydrochloride (Camptosar®), BCG live (Pacis®), leuprolide acetate implant (Viadur), bexarotene (Targretin®), exemestane (Aromasin®), topotecan hydrochloride (Hycamtin®), gemcitabine HCL(Gemzar®), daunorubicin hydrochloride (Daunorubicin HCL®), toremifene citrate (Fareston), carboplatin (Paraplatin®), cisplatin (Platinol® and Platinol-AQ®) oxaliplatin and any other platinum-containing oncology drug, trastuzumab (Herceptin®), lapatinib (Tykerb®), gefitinib (Iressa®), cetuximab (Erbitux®), panitumumab (Vectibix®), temsirolimus (Torisel®), everolimus (Afinitor®), vandetanib (Zactima™), vemurafenib (ZelborafrM), crizotinib (Xalkori®), vorinostat (Zolinza®), bevacizumab (Avastin®), hyperthermia, gene therapy and photodynamic therapy.
- In the treatment of cancer, an appropriate dosage level of the therapeutic agent will generally be about 0.01 to 500 mg per kg patient body weight per day which can be administered in single or multiple doses. Preferably, the dosage level will be about 0.1 to about 250 mg/kg per day; more preferably about 0.5 to about 100 mg/kg per day. A suitable dosage level may be about 0.01 to 250 mg/kg per day, about 0.05 to 100 mg/kg per day, or about 0.1 to 50 mg/kg per day. Within this range the dosage may be 0.05 to 0.5, 0.5 to 5 or 5 to 50 mg/kg per day. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once per day prior to RT. Administration by continuous infusion is also possible. All amounts and concentrations of anti-nucleolin oligonucleotide conjugated gold nanoparticles are based on the amount or concentration of anti-nucleolin oligonucleotide only.
- Pharmaceutical preparation may be pre-packaged in ready-to-administer form, in amounts that correspond with a single dosage, appropriate for a single administration referred to as unit dosage form. Unit dosage forms can be enclosed in ampoules, disposable syringes or vials made of glass or plastic.
- However, the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the patient undergoing therapy.
- AS1411-linked gold nanoparticles for treating cancer and for cancer imaging were synthesized. Studies to assess the anticancer activity of AS1411 linked to 5 nm gold nanoparticles indicate that the conjugates have greatly enhanced antiproliferative effects on breast cancer cells compared to AS1411 (SEQ ID NO. 10) alone. Microscopic examination revealed increased uptake in breast cancer cells for GNP-AS1411 compared to GNP alone or GNP conjugated to a control oligonucleotide. In addition, GNP-AS1411 induced breast cancer cell vacuolization and death, similar to that seen at higher concentrations of AS1411. The GI50 values for AS1411 conjugated GNP against breast cancer cells are in the 50-250 nM range, compared to 1-10 uM range for unconjugated AS1411 (equivalent aptamer concentration). Studies indicate that these AS1411-GNPs have selective accumulation in tumor tissue following systemic administration in mice. Moreover, AS1411-GNPs retained the cancer-selectivity of AS1411 and had no effect on non-malignant cells.
- Preparation of Aptamer Conjugated Gold Nanoparticles (GNP)
- The aptamers AS1411 and CRO (the control oligonucleotide) with 5′ prime thiol modification and or 3′ fluorophore Cy5 were purchased from Integrated DNA Technologies (IDT).
-
AS1411 with thiol link at 5′: 5′-/5ThioMC6-D/TTT TTT GGT GGT GGT GGT TGT GGT GGT GGT GGT TT/-3′. CRO with thiol link at 5′: 5′-/5ThioMC6-D/TTT TTT CCT CCT CCT CCT TCT CCT CCT CCT CCT TT/-3′. AS1411 with thiol link at 5′ and fluorophore Cy5 at 3′: 5′-/5ThioMC6-D/TTT TTT GGT GGT GGT GGT TGT GGT GGT GGT GGT TT/Cy5Sp/-3′. CRO with thiol link at 5′ fluorophore Cy5 at 3′: 5′-/5ThioMC6-D/TTT TTT CCT CCT CCT CCT TCT CCT CCT CCT CCT TT/Cy5Sp/-3′. - The thiol ends of aptamers were reduced by tri(2-carboxyethyl) phosphine TECP (50 mM) which is active in slightly acidic pH 6.5 of Tris-EDTA (10 mM) solution for 4-8 hours at room temperature. The solution of aptamers and TECP was purified using NAP-columns sephadex G-25. Accurate
Spherical Gold nanoparticles 5 nm was purchased from NANOPARTZ and/or TED PELLA INC. The gold nanoparticles were filtered using 0.5 micron syringe filter. Gold nanoparticles and aptamers were mixed in the molar ratio of 1:40 in 25 ml RNAse and DNAse free water at room temperature overnight. Excess reagents were then removed by centrifugation at 15000 rpm for 20 min, followed by 3× wash with RNAse and DNAse free water and centrifugation to remove any unbound aptamers. To quantify the amount of aptamers conjugated on the nanoparticles surface, the aptamer conjugated GNP was incubated in 0.1M DTT at room temperature followed by the separation from the GNP by centrifugation. The supernatant was diluted and measured either spectrophotometically (A260 nm), then calculating the concentration from the aptamers standard dilution curve or by NanoDrop 2000 UV-VIS spectrophotometer. Similarly, the concentration of gold nanoparticles was calculated using spectrophotometric optical density (OD) at 511 nm and plotting the standard dilution curve to extrapolate the concentration of gold nanoparticles and the standard data provided by vendors. -
FIGS. 1A and 1B are images of two MDA231 xenograft mice (nude mice injected with MDA231 cancer cells), 2 hours (A) and 6 hours (B) after injection retro-orbitally with AS1411 conjugated with a fluorophor (cyanine dye Cy5) and gold nanoparticles (AS1411-Cy5-GNP), or with a control oligonucleotide conjugated with the fluorophor (cyanine dye Cy5) and gold nanoparticles (CRO-Cy5-GNP). The images were acquired using a PHOTON IMAGER™ at 680 nm. The images show that the tumors accumulate AS1411-Cy5-GNP, while CRO-Cy5-GNP is not accumulated. -
FIGS. 2A-D are optical micrographs of MCF7 cells treated by silver enhancement staining for gold nanoparticles, illustrating comparative accumulation of gold nanoparticles after administration of the indicated composition, or without administration. As shown, no significant accumulation occurs after administration of unconjugated gold nanoparticles (FIG. 2B ), and only slight accumulation occurs after administration of control oligonucleotide-conjugated gold particles (FIG. 2C ). Administration of AS1411-conjugated gold nanoparticles, however, results in significant accumulation of gold nanoparticles, as indicated by the arrows (FIG. 2D ). Non-treated cells are also shown (FIG. 2A ). - Comparison of Different Routes of Injection for Delivery of AS1411-GNP to Target Tissue
- Three different routes of injection for delivery of GNP-AS1411 to target tissue were tested: intraperitoneal, intravenous, via tail vein, retro-orbital, injection. Based on pilot studies, it was determined that for long term and repeated injections (as in therapeutic dosing), intraperitoneal injection was preferred for its convenience and because the slower biodistribution (compared to intravenous or retro-orbital) was not a concern. For imaging, either tail vein or retro-orbital injections were used because it delivered the drug directly into the blood, resulting in more rapid systemic distribution and avoiding residual signal in the peritoneum that was observed when delivering through the intraperitoneal route.
- Effect of GNP Size and Linkers Length on Cell Proliferation
- Syntheses and analyses of GNPs and linkers were performed as follows: colloid spherical gold nanoparticles of different size (5, 10, 15 nm) were purchased from Ted Pella Inc. (Redding, Calif.) and Nanopartz (Loveland, Colo.). Size analyses of these gold nanoparticles were confirmed using PARTICLES SIZE ANALYZER 90 PLUS (Brookhaven Instrument), and the sizes of gold nanoparticles were within the ranges as described by the manufacturers. Fluorophore (Cy5)-linked oligonucleotides (AS1411 and CRO), with or without carbon spacers and thiol groups, were purchased from Integrated DNA Technologies (San Diego, Calif.). Cy5, or cyanine-5 phosphoramidite (1-[3-(4-monomethoxytrityloxy)propyl]-1′-[3-[(2-cyanoethyl)-(N,N-diisopropyl)phosphoramidityl]propyl]-3,3,3′,3′-tetramethylindodicarbocyanine chloride) has the structure shown in Formula I:
- The linkers, C3-thiol (1-O-dimethoxytrityl-propyl-disulfide,1′-succinyl-lcaa), MC6-D/iSP-9 (9-O-dimethoxytrityl-triethylene glycol,1[(2-cyanoethyl)-(N,N-diisopropyl)]), and MC6-D/iSP-18(18-O-dimethoxytrityl hexaethylene glycol,1[(2-cyanoethyl)-(N,N-diisopropyl)]), have the structures shown in Formulas II, III and IV, respectively:
-
FIG. 3A is a cartoon representation of the various agents tested.FIG. 3B is an illustration of the reaction to form conjugates, and to separate the parts of the conjugates. - In Vivo Biodistribution of AS1411-GNP Conjugated to Fluorophore Cy5
- The use of multimodal imaging approaches utilizing optical and microCT was useful for detection of primary or disseminated breast cancer tumors. In this experiment a Cy5 fluorophore was linked to the 5′-end of AS1411 and conjugated to the GNP (to give GNP-AS1411-Cy5), in order to evaluate its utility as a complex not only for optical imaging but also as a contrast agent for computed tomography (CT). A similar construct with CRO was synthesized as a control. Nude mice with MDA-MB-231 breast cancer xenografts on each flank were administered a single injection of fluorophore-oligonucleotide-GNP. Images were acquired using IVIS Imaging System/MAESTRO Fluorescence Imaging and preliminary data showed that GNP-AS1411-Cy5 (1 mg/kg) concentration in the tumor is many times more than that using AS1411-Cy5 without GNP (10 mg/kg), or GNP—CRO-Cy5. It was noted that all mice exhibited strong signals on their extremities (legs and paws) and tails; these were artifacts from the urine and feces of the mice in cage where they were housed (possibly due to a fluorescent substance in the animal feed). Washing the mice and housing them in new clean new cages before imaging can prevent this problem. Biodistribution analysis also confirmed that, besides liver, kidney and intestine, most of the GNP-AS1411 accumulated in the tumor (
FIG. 4 ). This is a proof of concept that conjugating AS1411 to gold nanoparticles can specifically target the tumors. Mice were treated by intraperitoneal injection with the indicated substances and were imaged after 96 h. Images showed high accumulation of GNP-AS1411-Cy5 (1 mg/kg aptamer concentration) in breast cancer xenograft, as compared to AS1411 (10 mg/Kg) and GNP-CRO alone. - Uptake Studies in MCF-7 Cells
- Breast Cancer Cells (MCF-7) were treated with gold nanoparticles (GNP) conjugated with gadolinium-AS1411 or gadolinium-CRO and a linked fluorophore (Cy5) for 4 hrs. Confocal microscopy showing the uptake of the corresponding Oligo-Gd-GNP-Cy5 conjugate using Cy5 laser excitation (650 nm) and emission (670 nm) in MCF-7 cells. The results are shown in
FIG. 5 . - Uptake Studies in MCF-10A Cells
- Non-malignant Breast Epithelial Cells (MCF-10A) were treated with gold nanoparticles (GNP) conjugated with gadolinium-AS1411 or gadolinium-CRO and a linked fluorophore (Cy5) for 4 hrs. Confocal microscopy showing the uptake of the corresponding Oligo-Gd-GNP-Cy5 conjugate using Cy5 laser excitation (650 nm) and emission (670 nm) in MCF-10A cells. The results are shown in
FIG. 6 . - DNA Damage Response
- Confocal Microscopy images are shown in
FIG. 7 . (A). Breast Cancer Cells (MDA-MB-231) were treated with gold nanoparticles (GNP) conjugated to gadolinium-AS1411 (GNP-Gd-AS1411) or AS1411 (GNP-AS1411) for 4 hrs, and treated with 100 cGy X-ray. DNA damage response marker phospho-yH2AX (red) foci was detected in the damage nuclei (blue) of MDA-MB-231 cells (8). Graph showing the average foci per nuclei, bars indicates standard deviation (SD). - Confocal microscopy images are shown in
FIG. 12 . Breast Cancer Cells - (MDA-MB-231) were treated with 1.38 μg/mL gold nanoparticles (GNP) conjugated to AS1411 (GNP-AS1411) for 4 hrs, and treated with 100 cGy X-ray. DNA damage response marker phospho-yH2AX (Bethyl Laboratory) (red) foci was detected in the damage nuclei (blue) of MDA-MB-231 cells. A UV treated+ve control is also shown.
- Clonogenic Assay of Breast Cancer Cells
- Breast Cancer Cells (MDA-MB-231) were plated in 35 mm dishes and treated with gold nanoparticle conjugated to gadolinium and AS1411 (0.03 mg/ml gold concentration). After 4 hrs dishes were radiated using X-Rad160/225 radiator at 100 cGy. Dishes were further incubated for 10 days. After incubation the colonies fix with 4% paraformaldehyde in phosphate buffer saline (PBS) and stained with 0.4% crystal violet. The results are shown in
FIG. 8 . - Relaxivity Analysis
-
FIG. 9 shows the results of the relaxivity analysis at 9.4 T for: (9A) Gold nanoparticles coated with AS1411 and Gd(III)-DO3A-SH (9B) Gold nanoparticles coated with CRO (control) and Gd(III)-DO3A-SH (9C) Gold nanoparticles coated with Gd(III)-DO3A-SH and (9D) MULTIHANCE® (gadobenate dimeglumine).FIG. 9E illustrates a Gold Nanoparticle coated with 24 Gd(III)-DO3A-SH and 13 AS1411/CRO. - Gadolinium-Functionalized Gold Nanoparticle CT/MRI Contrast Agent with Cancer Targeting Capabilities
- Gold nanoparticles (GNP) provide contrast in computed tomography (CT) images and other X-ray based imaging techniques due to their high atomic mass, and may be modified with bioactive coatings to increase their functionality. We have tailored spherical GNPs (˜4 nm) with a T1 gadolinium-based magnetic resonance imaging (MRI) contrast agent (Gd(III)-DO3A-SH) and therapeutic/cancer-targeting DNA aptamer (AS1411) for cancer imaging and therapy. GNP coated with Gd(III)-DO3A-SH and AS1411 or CRO had hydrodynamic diameters of 13.45±2.11 and 19.01±2.51 nm, respectively, and zeta potentials of −13.83±0.74 and −52.62±1.01 mV. Both solutions were stable for more than 6 months in physiological buffer solutions. EDAX analysis of GNP—Gd(III)-DO3A-AS1411 and GNP Gd(III)-DO3A-CRO yielded 28±5 and 23±4 Gd centers per GNP, respectively, compared to 15±1 Gd centers per GNP for GNP—Gd(III)-DO3A solutions. AS1411 was detected on the gold nanoparticle surface using Quant-iT™ OliGreen® ssDNA reagent via fluorescence imaging studies on purified samples of GNP Gd(III)-DO3A-AS1411, GNP—Gd(III)-DO3A and GNP-AS1411.
- The GNP-Gd(III)-DO3A-AS1411/CRO probes have been assessed for their efficacy as CT and/or MRI contrast agents. At both 9.4 and 3.0 Tesla, solutions of GNP-Gd(III)-DO3A-SH-AS1411 and GNP-Gd(III)-DO3A-SH-CRO generate higher relaxivity than GNP-Gd(III)-DO3A, industry standard MULTIHANCE® (gadobenate dimeglumine) or Gd(III)-DO3A-SH, Table 3. In CT scans, solutions of GNP-Gd(III)-DO3A-AS1411 and GNP-Gd(III)-DO3A-CRO yield significantly higher X-Ray attenuation (Hounsefield unit per milligram milliliter) values in comparison to Iopamidol, GNP-Gd(III)-DO3A and citrate capped gold, Table 3.
-
TABLE 3 Relaxivity and X-ray attenuation data Relaxivity Relaxivity Hounsefield (mM−1s−1) (mM−1s−1) Unit (HU) Samples at 9.4 T at 3.0 T mg−1 ml GNP-(Gd(III) DO3A SH)-AS1411 24.83 27.51 227.46 GNP-(Gd(III) DO3A SH)-CRO 15.67 31.61 250.66 GNP-(Gd(III) DO3A SH) 5.56 — 81.53 Gd(III) DO3A SH 2.29 — MULTIHANCE ® (gadobenate 3.75 — — dimeglumine) GNP AS1411 — — 83.03 GNP CRO — — 113.47 GNP Citrate Capped — — 92.47 Iopamidol — — 71.07 - CT Contrast
- The Hounsfield unit is a normalized index of x-ray attenuation ranging from −1000 (air) to +1000 (bone) with water being 0 and is used in CT imaging to evaluate contrast. We have performed 5 microCT studies using a MicroCAT-II (Siemens, Knoxville, Tenn.) to evaluate various conjugated gold nanospheres. The images acquired at 45 kVp and 80 kVp were observed on the ImageJ software and a mean of five ROI (region of interest) values is obtained for the attenuation values in Hounsfield Unit (HU). The solution of GNS-DO3A-Gd3+ decorated with AS1411 yielded a higher magnitude of X-ray attenuation intensities and Hounsfield units per milligram milliliter (slope) values in comparison to equivalent amounts of the industry standard (Iopamidol) or citrate-capped gold nanoparticles (
FIGS. 10A & 10B ). In general, the attenuation intensities increase with gold nanoparticle concentration and therefore the GNP-Gd(III)-DO3A-SH-Oligo probes can be used as an contrast agent for CT imaging modality. - Clonogenic Assay of Lung Cancer Cells
- Lung cancer cells (A549) were treated with gold nanoparticles (GNP), 100 nM gold nanoparticle-control aptamer conjugates (GNP-CRO) and 100 nM gold-nanoparticle-AS1411 conjugates (GNP-AS1411). After 36 hours, the cells were exposed to 100 cGy X-ray radiation. The cells were further incubated for 7 days and fixed with 4% formalin and stained with 0.4% crystal violet solution. Colonies were de-stained with 10% acetic acid and absorbance was measured at 570 nm.
FIG. 11A shows treated lung cancer cells before exposure to radiation.FIG. 11B shows treated lung cancer cells after exposure to radiation.FIG. 11C is a graph illustrating the percent change in absorbance (after de-staining with 10% acetic acid) of the cells before and after exposure to radiation. The results indicate that the AS1411 conjugates enhance the effects of radiation on lung cancer cells. - Concentration Study in Breast Cancer Cells
- Triple negative breast cancer cells (MDA-MB-231) were treated with varying concentrations of gold nanoparticles (GNP), gold nanoparticle-control oligonucleotide conjugates (GNP-CRO) and gold-nanoparticle-AS1411 conjugates (GNP-AS1411) for 72 hours. X-ray radiation was then applied to the cells. The Log10 Survival Fraction of the cells after treatment and application of varying doses of X-ray radiation (cGy) was plotted.
FIG. 13A shows the cancer cell survival fraction at 1.38 μg/mL.FIG. 13B shows the cancer cell survival fraction at 2.76 μg/mL.FIG. 13C shows the cancer cell survival fraction at 5.5 μg/mL. The results indicate that GNP-AS1411 conjugates become more effective at killing cancer cells at increasing concentrations. - Clonogenic Survival Assay of Breast Cancer Cells
- Breast cancer cells (MDA-MB-231) were treated with gold nanoparticles (GNP), gold nanoparticle-control oligonucleotide conjugates (GNP-CRO) and gold-nanoparticle-AS1411 conjugates (GNP-AS1411) for 72 hours. The cells were washed in PBS and radiated at varying doses of γ-rays using a GammaCell-40 irradiator. The cells were trypsinized, counted and plated in six well plates for an additional 10 days. After incubation, the cells were fixed with methanol and stained with 2% crystal violet. The cells were counted and plotted for survival fraction as a function of radiation dose after exposure to γ-radiation. The results of the radiation treatment are shown in
FIG. 14A . The Log10 Survival Fraction of the cells versus the X-ray radiation dose in cGy is shown inFIG. 14B . The results indicate that the AS1411 conjugates enhance the effects of radiation on breast cancer cells. - Selective Retention of Gold Nanoparticle-Gadolinium-Oligomer Conjugates in Malignant Cells
- Human immortalized breast epithelial cells (MCF10A) (non-malignant) and triple negative breast cancer cells (MDA-MB-231) were incubated with of fluorescent-labeled gold nanoparticle-gadolinium-oligomer conjugates for 4 and 96 hours. The cells were incubated with 50 nM GNP—Gd-CRO-Cy5 (control oligomer) or 50 nM GNP-Gd-AS1411-Cy5 using DO3A (1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane) as the ligand to bind Gd and connect it to the GNP surface through a thiol linker. After incubation, the cells were harvested and washed with PBS (2×), counted using a TC-10 Cell Counter (Bio-Rad), plated in a 4 chamber slide (Bio-Tek) at 1,000 cells/well and incubated for an additional 24 hours. The cells were stained with nuclear stain DAPI after incubation and the complete DMEM media was replaced with DMEM without phenol red. Images were acquired using a NIKON® confocal microscope.
FIG. 15A shows uptake in non-malignant breast cells.FIG. 15B shows uptake and selective retention of GNP-Gd-AS1411-Cy5 in malignant breast cancer cells at the 96 hours timepoint. The fluorescent-labeled GNP conjugates appear red and the nuclear stain appears blue. - Human normal airway epithelial cells (HPLD-1) (non-malignant) and lung adenocarcinoma cells (A549) were incubated with of fluorescent-labeled gold nanoparticle-gadolinium-oligomer conjugates for 4 and 96 hours. The cells were incubated with 50 nM GNP—Gd-CRO-Cy5 (control oligomer) or 50 nM GNP-Gd-AS1411-Cy5 using DO3A as the ligand to bind Gd and connect it to the GNP surface through a thiol linker. After incubation, the cells were harvested and washed with PBS (2×), counted using a TC-10 Cell Counter (Bio-Rad), plated in a 4 chamber slide (Bio-Tek) at 1,000 cells/well and incubated for an additional 24 hours. The cells were stained with nuclear stain DAPI after incubation and the complete DMEM media was replaced with DMEM without phenol red. Images were acquired using a NIKON® confocal microscope.
FIG. 16A shows uptake in non-malignant lung cells.FIG. 16B shows uptake and selective retention of GNP-Gd-AS1411-Cy5 in malignant lung cancer cells at the 96 hours timepoint. The fluorescent-labeled GNP conjugates appear red and the nuclear stain appears blue. - The 4 hour images indicate that the uptake of aptamer conjugates in healthy and malignant cells is similar. The 96 hour images indicate that the AS1411 conjugates are only retained in malignant cells.
- Gold Nanoparticle-Gadolinium-Oligomer Conjugates as MRI Contrast Agents
- Gold nanoparticle-gadolinium-oligomer conjugates were studied as MRI contrast agents in vitro and in cells using a Bruker BioSpec 94/30 USR 9.4T MRI scanner. The change in reflectivity was measured using water to normalize the signals.
- In a first experiment, the correlation between the concentration of the gold nanoparticle-oligomer conjugates and the improvement in the reflectivity due to the gadolinium (III) contrast agent was studied. The gold nanoparticle-oligomer conjugates included gold nanoparticles conjugated to AS1411 (5′-d(GGTGGTGGTGGTTGTGGTGGTGGTGG)-3) (GNP-AS1411), gold nanoparticles conjugated to a control oligomer (5′-d(CCTCCTCCTCCTTCTCCTCCTCCTCC)-3) (GNP-CRO) and gold nanoparticles conjugated to a control oligonucleotide (5′d(TTTT)-3) (GNP-CTR). DO3A ligand was used to bind Gd(III) and connected it to the GNP surface through a thiol linker. GNP-AS1411, GNP-CRO and GNP-CTR were used as controls to compare the relaxivity of GNP-Gd-AS1411, GNP—Gd—CRO and GNP—Gd-CTR. The relaxivity was measured at 75 nM, 300 nM and 1200 nM GNP concentrations. Table 4 shows the change in relaxivity after administration of the Gd conjugates:
-
TABLE 4 Change in relaxivity GNP-Gd-CTR GNP-Gd-CRO GNP-Gd- AS1411 75 nM 17% 15% 19% 300 nM 33% 25% 44% 1200 nM 59% 58% 64% - These results are shown graphically in
FIG. 17A . The results show no significant change in relaxivity between particles for the same concentration. - In a second experiment, the correlation between the concentration of the gold nanoparticle-oligomer conjugates in cells and the improvement in the reflectivity due to the gadolinium (III) contrast agent was studied. 30,000,000 cells were treated with GNP-AS1411, GNP-CRO, GNP-CTR, GNP-Gd-AS1411, GNP—Gd—CRO or GNP—Gd-CTR for 48 hours or 96 hours. The relaxivity was measured at 75 nM, 300 nM and 1200 nM GNP concentrations. Table 5 shows the change in relaxivity after the 48 hour treatment:
-
TABLE 5 Change in relaxivity after 48 hour treatment 48 hour treatment GNP-Gd-CTR GNP-Gd-CRO GNP-Gd- AS1411 75 nM 5.5% 5% 6% 300 nM 5.7% 8% 9% 1200 nM 22% 19% 37% - Table 6 shows the change in relaxivity after the 96 hour treatment:
-
TABLE 6 Change in relaxivity after 96 hour treatment 96 hour treatment GNP-Gd-CTR GNP-Gd-CRO GNP-Gd- AS1411 75 nM 2.2% 3.5% 3.6% 300 nM 4.7% 7.1% 8.1% 1200 nM 15.3% 17.2% 36.8% - The 48 hour treatment results are shown graphically in
FIG. 17B , and the 96 hour treatment results are shown graphically inFIG. 17C . GNP-AS1411-Gd demonstrated a significant increase in relaxivity at 1200 nM after 48 hours and 96 hours of treatment. - Comparison of Gold Nanoparticle-Oligomer Conjugates to Commercially-Available MRI Contrast Agent
- The MRI contrast enhancement properties of gold nanoparticle-oligomer conjugates were compared to MULTIHANCE® (Bracco), a commercially-available MRI contrast agent. The percent contrast enhancement was measured in breast cancer cells (MDA-MB-231). The gold nanoparticle-oligomer conjugates included gold nanoparticles conjugated to AS1411 (5′-d(GGTGGTGGTGGTTGTGGTGGTGGTGG)-3) (GNP DOTA AS1411), gold nanoparticles conjugated to a control oligomer (5′-d(CCTCCTCCTCCTTCTCCTCCTCCTCC)-3) (GNP DOTA CRO) and gold nanoparticles conjugated to a control oligonucleotide (5′d(TTTT)-3) (GNP DOTA CTR). DOTA (1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane) was used as the ligand. The MULTIHANCE® cells were treated for 24 hours, 48 hours, 72 hours and 96 hours, while the gold nanoparticle-oligomer conjugate cells were treated for 48 hours and 96 hours. The results are shown in
FIG. 18 . GNP DOTA AS1411 demonstrated a contrast enhancement approximately three times greater than MULTIHANCE®. -
- [1] Stedman, T. L. 2000. Stedman's medical dictionary. Lippincott Williams & Wilkins, Philadelphia. xxxvi, [127], 2098.
- [2] Miller, D., P. Bates, and J. Trent. 2000. Antiproliferative activity of G-rich oligonucleotides and method of using same to bind to nucleolin, Intl Pub. No. WO 00/61597.
- [3] Bates P J, Miller D M, Trent J O, Xu X, “A New Method for the Diagnosis and Prognosis of Malignant Diseases” International Application, Int'l Pub. No. WO 03/086174 A2 (23 Oct. 2003).
- [4] Bates P J, Miller D M, Trent J O, Xu X, “Method for the Diagnosis and Prognosis of Malignant Diseases” U.S. Patent App. Pub., Pub. No. US 2005/0053607 A1 (10 Mar. 2005).
- [5] Derenzini M, Sirri V, Trere D, Ochs R L, “The Quantity of Nucleolar Proteins Nucleolin and Protein B23 is Related to Cell Doubling Time in Human Cancer Cells” Lab. Invest. 73:497-502 (1995).
- [6] Bates P J, Kahlon J B, Thomas S D, Trent J O, Miller D M, “Antiproliferative Activity of G-rich Oligonucleotides Correlates with Protein Binding” J. Biol. Chem. 274:26369-77 (1999).
- [7] Miller D M, Bates P J, Trent J O, Xu X, “Method for the Diagnosis and Prognosis of Malignant Diseases” U.S. Patent App. Pub., Pub. No. US 2003/0194754 A1 (16 Oct. 2003).
- [8] Bandman O, Yue H, Corley N C, Shah P, “Human Nucleolin-like Protein” U.S. Pat. No. 5,932,475 (3 Aug. 1999).
- [9] Reyes-Reyes E M, Teng Y, Bates P J, “A New Paradigm for Aptamer Therapeutic AS1411 Action: Uptake by Macropinocytosis and Its Stimulation by a Nucleolin-Dependent Mechanism” Cancer Res 70(21): 8617-29 (2010).
- [10] Huang Y, Shi H, Zhou H, Song X, Yuan S, Luo Y, “The Angiogenic Function of Nucleolin is Mediated by Vascular Endothelial Growth Factor and Nonmuscle Myosin” Blood 107(9): 3564-71 (2006).
- [11] Jain, K. K., Advances in the field of nanooncology. BMC medicine, 2010. 8: p. 83.
- [12] Portney, N. G. and M. Ozkan, Nano-oncology: drug delivery, imaging, and sensing. Analytical and bioanalytical chemistry, 2006. 384(3): p. 620-30.
- [13] Bates, P. J., E. W. Choi, and L. V. Nayak, G-rich oligonucleotides for cancer treatment. Methods in molecular biology, 2009. 542: p. 379-92.
- [14] Bates, P. J., et al., Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Experimental and molecular pathology, 2009. 86(3): p. 151-64.
- [15] Soundararajan, S., et al., The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer research, 2008. 68(7): p. 2358-65.
- [16] Javier, D. J., et al., Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjugate chemistry, 2008. 19(6): p. 1309-12.
- [17] Euhus, D. M., et al., Tumor measurement in the nude mouse. Journal of surgical oncology, 1986. 31(4): p. 229-34.
- [18] Tomayko, M. M. and C. P. Reynolds, Determination of subcutaneous tumor size in athymic (nude) mice. Cancer chemotherapy and pharmacology, 1989. 24(3): p. 148-54.
- [19] Girvan, A. C., et al., AGRO100 inhibits activation of nuclear factor-kappaB (NF-kappaB) by forming a complex with NF-kappaB essential modulator (NEMO) and nucleolin. Molecular cancer therapeutics, 2006. 5(7): p. 1790-9.
- [20] Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 1983. 65(1-2): p. 55-63.
- [21] Vermes, I., et al., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of immunological methods, 1995. 184(1): p. 39-51.
- [22] Sprague, J. E., et al., Noninvasive imaging of osteoclasts in parathyroid hormone-induced osteolysis using a 64Culabeled RGD peptide. Journal of nuclear medicine: official publication, Society of Nuclear Medicine, 2007. 48(2): p. 311-8.
- [23] Morgan D. M., Methods Mol. Biol. 1998. 79:179-183.
- [24] Zhang, Y. et al., A surface-charge study on cellular-uptake behavior of F3-peptide-conjugated iron oxide nanoparticles. Small, 2009 5(17): p. 1990-6.
- [25] Orringer, D. A., et al. In vitro characterization of a targeted, dye-loaded nanodevice for intraoperative tumor delineation. Neurosurgery, 2009 64(5): p. 965-72.
- [26] Cooper et al. [2014], Front. Chem. 14, 2, 86.
- [27] Alkilany, A. M. and C. J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? Journal of Nanoparticle Research, 2010. 12(7): p. 2313-2333.
- [28] National Lung Screening Trial Research, T., et al., Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011. 365(5): p. 395-409.
Claims (25)
1. A composition, comprising an anti-nucleolin agent and gadolinium conjugated to nanoparticles.
2. The composition of claim 1 , wherein the nanoparticles comprise at least one member selected from the group consisting of metals, elements and oxides.
3. (canceled)
4. The composition of claim 1 , wherein the anti-nucleolin agent is selected from the group consisting of an anti-nucleolin oligonucleotide, an antibody, a nucleolin targeting protein and a guanosine-rich oligonucleotide (GRO).
5-8. (canceled)
9. The composition of claim 1 further comprising a cyanine dye.
10. The composition of claim 1 , wherein the nanoparticles have an average diameter of 1 to 50 nm.
11. The composition of claim 1 , wherein the nanoparticles have an average diameter of 1 to 20 nm.
12. The composition of claim 1 , wherein the nanoparticles comprise at least one member selected from the group consisting of gold, platinum, iridium and palladium.
13. The composition of claim 1 , wherein the gadolinium is present as a complex of gadolinium (III).
14. The composition of claim 1 , wherein the gadolinium is present as 10-(2-sulfanylethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (H3-DO3A-SH) coordinated to the gadolinium ion (Gd-DO3A-SH).
15-17. (canceled)
18. A method of treating cancer, comprising administering an effective amount of a pharmaceutical composition comprising an anti-nucleolin agent conjugated to nanoparticles, to a patient in need thereof, followed by radiation therapy.
19. The method of treating cancer of claim 18 , wherein the cancer is selected from the group consisting of melanoma, lymphoma, plasmocytoma, sarcoma, glioma, thymoma, leukemia, breast cancer, prostate cancer, colon cancer, liver cancer, esophageal cancer, brain cancer, lung cancer, ovary cancer, cervical cancer and hepatoma.
20. (canceled)
21. The method of treating cancer of claim 18 , further comprising administering a second cancer treatment selected from the group consisting of vinorelbine, mitomycin, camptothecin, cyclophosphamide, methotrexate, tamoxifen citrate, 5-fluorouracil, irinotecan, doxorubicin, flutamide, paclitaxel, docetaxel, vinblastine, imatinib mesylate, anthracycline, letrozole, arsenic trioxide, anastrozole, triptorelin pamoate, ozogamicin, irinotecan hydrochloride, BCG live, leuprolide acetate implant (VIADUR®), bexarotene, exemestane, topotecan hydrochloride, gemcitabine HCL, daunorubicin hydrochloride, toremifene citrate (FARESTON®), carboplatin, cisplatin, oxaliplatin, trastuzumab, lapatinib, getitinib, cetuximab, panitumumab, temsirolimus, everolimus, vandetanib, vemurafenib, crizotinib, vorinostat, bevacizumab, hyperthermia, gene therapy and photodynamic therapy.
22-25. (canceled)
26. A method of imaging cancer by MRI and/or X-ray imaging techniques in vivo, comprising:
administering a composition comprising an anti-nucleolin agent and gadolinium conjugated to nanoparticles to a subject; and
forming an image of the imaging agent present in the subject by MRI and/or an X-ray imaging technique.
27. The method of imaging cancer of claim 26 , wherein the administering occurs more than 24 hours before the forming.
28. The method of imaging cancer of claim 26 , wherein the administering occurs more than 48 hours before the forming.
29. The method of imaging cancer of claim 26 , wherein the cancer is lung cancer.
30. The method of imaging cancer of claim 26 , wherein the method is capable of identifying malignant lesions in the lung that are less than 4 mm.
31. The composition of claim 1 , wherein the anti-nucleolin agent comprises AS1411.
32. The method of treating cancer of claim 18 , wherein the anti-nucleolin agent comprises AS1411.
33. The method of imaging cancer of claim 26 , wherein the anti-nucleolin agent comprises AS1411.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/916,838 US20200390904A1 (en) | 2015-05-05 | 2020-06-30 | Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562157243P | 2015-05-05 | 2015-05-05 | |
| US201562235496P | 2015-09-30 | 2015-09-30 | |
| PCT/US2016/030985 WO2016179394A1 (en) | 2015-05-05 | 2016-05-05 | Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents |
| US201715571763A | 2017-11-03 | 2017-11-03 | |
| US16/916,838 US20200390904A1 (en) | 2015-05-05 | 2020-06-30 | Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2016/030985 Continuation WO2016179394A1 (en) | 2015-05-05 | 2016-05-05 | Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents |
| US15/571,763 Continuation US10857237B2 (en) | 2015-05-05 | 2016-05-05 | Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and MRI and/or X-ray contrast agents |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20200390904A1 true US20200390904A1 (en) | 2020-12-17 |
Family
ID=56008878
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/571,763 Active US10857237B2 (en) | 2015-05-05 | 2016-05-05 | Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and MRI and/or X-ray contrast agents |
| US16/916,838 Abandoned US20200390904A1 (en) | 2015-05-05 | 2020-06-30 | Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/571,763 Active US10857237B2 (en) | 2015-05-05 | 2016-05-05 | Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and MRI and/or X-ray contrast agents |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US10857237B2 (en) |
| EP (1) | EP3291839A1 (en) |
| CA (1) | CA3020885A1 (en) |
| HK (1) | HK1251488A1 (en) |
| WO (1) | WO2016179394A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11344633B2 (en) | 2011-06-02 | 2022-05-31 | University Of Louisville Research Foundation, Inc | Anti-nucleolin agent-conjugated nanoparticles |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016179394A1 (en) | 2015-05-05 | 2016-11-10 | Malik Mohammad Tariq | Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents |
| WO2018134254A1 (en) | 2017-01-17 | 2018-07-26 | Heparegenix Gmbh | Protein kinase inhibitors for promoting liver regeneration or reducing or preventing hepatocyte death |
| CN110313925B (en) * | 2018-03-30 | 2023-07-04 | 萨摩亚商亚茂医疗科技有限公司 | Developing system and developing method applied to brain radiography |
| EP3801217A4 (en) | 2018-05-30 | 2022-07-20 | Zap Surgical Systems, Inc. | Radiosurgical neuromodlation close to critical structures |
| US20230181769A1 (en) * | 2019-09-10 | 2023-06-15 | University Of Louisville Research Foundation, Inc. | Anti-nucleolin agent-peg-conjugated nanoparticles |
| CN110790841A (en) * | 2019-11-11 | 2020-02-14 | 国家纳米科学中心 | Protein nucleic acid compound and preparation method and application thereof |
| US20230049856A1 (en) * | 2019-12-20 | 2023-02-16 | Convergascent Llc | Planning and navigation in superselective drug delivery via the tracheobronchial airway |
| WO2025207879A2 (en) * | 2024-03-27 | 2025-10-02 | The University Of North Carolina At Chapel Hill | General isotopic labeling of bioactive carboxylic acids enabled by organic photoredox catalysis and use thereof |
Family Cites Families (74)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4522811A (en) | 1982-07-08 | 1985-06-11 | Syntex (U.S.A.) Inc. | Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides |
| US4474892A (en) | 1983-02-16 | 1984-10-02 | Board Of Trustees Of The Leland Stanford Junior University | Two-site immunoassays using monoclonal antibodies of different classes or subclasses and test kits for performing same |
| US5169774A (en) | 1984-02-08 | 1992-12-08 | Cetus Oncology Corporation | Monoclonal anti-human breast cancer antibodies |
| US4671256A (en) | 1984-05-25 | 1987-06-09 | Lemelson Jerome H | Medical scanning, monitoring and treatment system and method |
| US5055459A (en) | 1986-06-30 | 1991-10-08 | Board Of Regents, The University Of Texas | Selective elimination of malignant cells from bone marrow by bis (acyloxy) propylphosphoramidates |
| US4987071A (en) | 1986-12-03 | 1991-01-22 | University Patents, Inc. | RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods |
| US5223427A (en) | 1987-03-31 | 1993-06-29 | The Scripps Research Institute | Hybridomas producing monoclonal antibodies reactive with human tissue-factor glycoprotein heavy chain |
| GB8823869D0 (en) | 1988-10-12 | 1988-11-16 | Medical Res Council | Production of antibodies |
| US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
| US5192660A (en) | 1989-04-24 | 1993-03-09 | The United States Of America As Represented By The Department Of Health And Human Services | ELISA methods for the determination of human platelet derived growth factor (PDGF) dimer forms present in human tissues and fluids |
| US6020145A (en) | 1989-06-30 | 2000-02-01 | Bristol-Myers Squibb Company | Methods for determining the presence of carcinoma using the antigen binding region of monoclonal antibody BR96 |
| AU635008B2 (en) | 1989-12-13 | 1993-03-11 | Genelabs Diagnostics Pte Ltd | Analytical apparatus and method for automated blot assay |
| US6657103B1 (en) | 1990-01-12 | 2003-12-02 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
| US5770429A (en) | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| US5736348A (en) | 1990-11-28 | 1998-04-07 | Fundacao Oswaldo Cruz (Fiocruz) | Method for the immunological diagnosis of Chagas' Disease using recombinant antigens |
| JPH05244988A (en) | 1992-03-04 | 1993-09-24 | Green Cross Corp:The | Anti-tissue factor monoclonal antibody, and immunosuppressive agent using the same |
| DK1231268T3 (en) | 1994-01-31 | 2005-11-21 | Univ Boston | Polyclonal antibody libraries |
| JPH07242566A (en) | 1994-03-01 | 1995-09-19 | Kirin Brewery Co Ltd | Immunosuppressant |
| US5691447A (en) | 1995-03-24 | 1997-11-25 | Tanox Biosystems, Inc. | GC1q receptor, HIV-1 gp120 region binding thereto, and related peptides and targeting antibodies |
| US6096532A (en) | 1995-06-07 | 2000-08-01 | Aastrom Biosciences, Inc. | Processor apparatus for use in a system for maintaining and growing biological cells |
| EP0883344B2 (en) | 1995-12-15 | 2010-06-09 | VIRxSYS Corporation | Therapeutic molecules generated by trans-splicing |
| US6582921B2 (en) | 1996-07-29 | 2003-06-24 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses thereof |
| US6048703A (en) | 1996-11-15 | 2000-04-11 | Cephalon, Inc. | Methods for detecting cell apoptosis |
| DE69738539T2 (en) | 1996-12-03 | 2009-03-26 | Amgen Fremont Inc. | Fully human antibodies bind the EGFR |
| WO1998040480A1 (en) | 1997-03-12 | 1998-09-17 | Institut Pasteur | A novel cell surface receptor for hiv retroviruses, therapeutic and diagnostic uses |
| JP2001523977A (en) | 1997-06-05 | 2001-11-27 | ザ ユニバーシティ オブ テキサス システム ボード オブ リージェンツ | Activator of APAF-1, CED-4 human homolog, caspase-3 |
| EP0985039B1 (en) | 1997-06-12 | 2008-02-20 | Novartis International Pharmaceutical Ltd. | Artificial antibody polypeptides |
| US6339075B1 (en) | 1997-06-30 | 2002-01-15 | The University Of British Columbia | Use of dextran and other polysaccharides to improve mucus clearance |
| WO1999006588A1 (en) | 1997-08-04 | 1999-02-11 | The Burnham Institute | A cell-free system of mitochondria-dependent apoptosis, and methods of use thereof |
| US6325785B1 (en) | 1997-08-14 | 2001-12-04 | Sherwood Services Ag | Sputum trap manifold with nested caps |
| US5925334A (en) | 1997-08-27 | 1999-07-20 | Rubin; Bruce K. | Use of surface active agents to promote mucus clearance |
| US5932475A (en) | 1997-12-12 | 1999-08-03 | Incyte Pharmaceuticals, Inc. | Human nucleolin-like protein |
| US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
| WO1999053057A1 (en) | 1998-04-10 | 1999-10-21 | Chugai Research Institute For Molecular Medicine, Inc. | Protein and gene participating in the differentiation of immortalized cells |
| US6306404B1 (en) | 1998-07-14 | 2001-10-23 | American Cyanamid Company | Adjuvant and vaccine compositions containing monophosphoryl lipid A |
| EP1116029B1 (en) | 1998-09-24 | 2007-12-26 | Promega Corporation | Apoptosis marker antibodies and methods of use |
| US7960540B2 (en) * | 1999-04-08 | 2011-06-14 | Advanced Cancer Therapeutics, Llc | Antiproliferative activity of G-rich oligonucleotides and method of using same to bind to nucleolin |
| US7314926B1 (en) | 1999-04-08 | 2008-01-01 | Antisoma Research Limited | Antiproliferative activity of g-rich oligonucleotides and method of using same to bind to nucleolin |
| US8114850B2 (en) * | 1999-04-08 | 2012-02-14 | Advanced Cancer Therapeutics, Llc | Antiproliferative activity of G-rich oligonucleotides and method of using same to bind to nucleolin |
| JP2002542261A (en) | 1999-04-15 | 2002-12-10 | メルク フロスト カナダ アンド カンパニー | Antibody recognizing APP cleaved by caspase and use thereof |
| US6165786A (en) | 1999-11-03 | 2000-12-26 | Isis Pharmaceuticals, Inc. | Antisense modulation of nucleolin expression |
| WO2001035093A1 (en) | 1999-11-08 | 2001-05-17 | Eisai Co. Ltd. | Method of detecting cell death and detection reagent |
| JP2001213804A (en) | 2000-01-31 | 2001-08-07 | Chugai Pharmaceut Co Ltd | Antitissue factor antibody complex |
| AU2001245793A1 (en) | 2000-03-16 | 2001-09-24 | Cold Spring Harbor Laboratory | Methods and compositions for rna interference |
| EP1309726B2 (en) | 2000-03-30 | 2018-10-03 | Whitehead Institute For Biomedical Research | Rna sequence-specific mediators of rna interference |
| AU6669401A (en) | 2000-06-02 | 2001-12-11 | Univ Connecticut Health Ct | Complexes of alpha (2) macroglobulin and antigenic molecules for immunotherapy |
| US20020028488A1 (en) | 2000-06-19 | 2002-03-07 | Sujay Singh | Transgenic avian species for making human and chimeric antibodies |
| DE10037861A1 (en) | 2000-08-01 | 2002-02-14 | Max Delbrueck Centrum | Composition for treating malignant disease, useful especially for cervical carcinoma, contains agent that inhibits activity of nucleolin |
| CA2634294A1 (en) | 2000-08-03 | 2002-02-14 | Therapeutic Human Polyclonals, Inc. | Production of humanized antibodies in transgenic animals |
| RU2322500C2 (en) | 2000-12-01 | 2008-04-20 | Макс-Планк-Гезелльшафт Цур Фердерунг Дер Виссеншафтен Е.Ф. | Small rna molecules mediating rna interference |
| IL149701A0 (en) | 2001-05-23 | 2002-11-10 | Pfizer Prod Inc | Use of anti-ctla-4 antibodies |
| PT1407037E (en) | 2001-07-16 | 2006-05-31 | Arla Foods Amba | PROCESS FOR THE PRODUCTION OF TAGATOSIS |
| AU2002362436A1 (en) | 2001-10-03 | 2003-04-14 | Rigel Pharmaceuticals, Inc. | Modulators of lymphocyte activation and migration |
| WO2003087124A2 (en) | 2002-04-05 | 2003-10-23 | The Burnham Institute | Hmgn2 peptides and related melecules that selectively home to tumor blood vessels and tumor cells |
| US7541150B2 (en) | 2002-04-08 | 2009-06-02 | University Of Louisville Research Foundation, Inc | Method for the diagnosis and prognosis of malignant diseases |
| US7357928B2 (en) | 2002-04-08 | 2008-04-15 | University Of Louisville Research Foundation, Inc. | Method for the diagnosis and prognosis of malignant diseases |
| DE60331310D1 (en) | 2002-06-26 | 2010-04-01 | Univ Louisville Res Found | PROCEDURE FOR APOPTOSE DETECTION |
| TW200504210A (en) | 2003-07-30 | 2005-02-01 | Chin-Tarng Lin | A nucleolin antisense inhibiting growth of cancer cell |
| WO2005037323A2 (en) | 2003-10-10 | 2005-04-28 | University Of Louisville Research Foundation, Inc. | Use of gro to treat or prevent inflammation |
| EP1690550B1 (en) | 2003-10-17 | 2012-08-08 | Chugai Seiyaku Kabushiki Kaisha | Therapeutic agent for mesothelioma |
| WO2005048935A2 (en) | 2003-11-14 | 2005-06-02 | Brigham And Women's Hospital, Inc. | Methods of modulating immunity |
| AR048210A1 (en) | 2003-12-19 | 2006-04-12 | Chugai Pharmaceutical Co Ltd | A PREVENTIVE AGENT FOR VASCULITIS. |
| CN1862258B (en) | 2005-05-12 | 2012-05-30 | 清华大学 | Nucleolin-assisted cancer diagnosis and treatment |
| US8540965B2 (en) | 2005-07-29 | 2013-09-24 | Sloan-Kettering Institute For Cancer Research | Single wall nanotube constructs and uses therefor |
| US20090226914A1 (en) | 2007-12-31 | 2009-09-10 | Bates Paula J | Methods and products to target, capture and characterize stem cells |
| JP2013508399A (en) | 2009-10-21 | 2013-03-07 | ヘルス リサーチ インコーポレイテッド | PAA nanoparticles for enhanced tumor imaging |
| US20110111002A1 (en) | 2009-11-12 | 2011-05-12 | Calin Viorel Pop | Transport and delivery of glutathione into human cells using gold nanoparticles |
| JP6174320B2 (en) * | 2009-11-17 | 2017-08-02 | エムユーエスシー ファウンデーション フォー リサーチ ディベロップメント | Human monoclonal antibody against human nucleolin |
| US8589851B2 (en) | 2009-12-15 | 2013-11-19 | Memoir Systems, Inc. | Intelligent memory system compiler |
| WO2011119058A2 (en) | 2010-03-22 | 2011-09-29 | Universidade De Coimbra | F3-peptide targeted lipid-based nanoparticles useful for the treatment of angiogenesis-dependent diseases |
| US20120107242A1 (en) * | 2010-09-30 | 2012-05-03 | The Board Of Trustees Of The University Of Illinois | Nucleic acid-mediated shape control of nanoparticles for biomedical applications |
| WO2012167173A1 (en) | 2011-06-02 | 2012-12-06 | The University Of Louisville Research Foundation, Inc. | Anti-nucleolin agent-conjugated nanoparticles |
| WO2016179394A1 (en) | 2015-05-05 | 2016-11-10 | Malik Mohammad Tariq | Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents |
| EP3493852A1 (en) | 2016-08-02 | 2019-06-12 | University of Louisville Research Foundation, Inc. | Targeted nanodroplet emulsions for treating cancer |
-
2016
- 2016-05-05 WO PCT/US2016/030985 patent/WO2016179394A1/en not_active Ceased
- 2016-05-05 US US15/571,763 patent/US10857237B2/en active Active
- 2016-05-05 EP EP16723223.0A patent/EP3291839A1/en not_active Withdrawn
- 2016-05-05 CA CA3020885A patent/CA3020885A1/en not_active Abandoned
- 2016-05-05 HK HK18111165.6A patent/HK1251488A1/en unknown
-
2020
- 2020-06-30 US US16/916,838 patent/US20200390904A1/en not_active Abandoned
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11344633B2 (en) | 2011-06-02 | 2022-05-31 | University Of Louisville Research Foundation, Inc | Anti-nucleolin agent-conjugated nanoparticles |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3291839A1 (en) | 2018-03-14 |
| US20180200385A1 (en) | 2018-07-19 |
| WO2016179394A1 (en) | 2016-11-10 |
| US10857237B2 (en) | 2020-12-08 |
| HK1251488A1 (en) | 2019-02-01 |
| CA3020885A1 (en) | 2016-11-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20200390904A1 (en) | Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents | |
| US20220265867A1 (en) | Anti-nucleolin agent-conjugated nanoparticles | |
| Wei et al. | TMTP1-modified indocyanine green-loaded polymeric micelles for targeted imaging of cervical cancer and metastasis sentinel lymph node in vivo | |
| KR102284389B1 (en) | Compositions, methods and kits for diagnosing and treating cd206 expressing cell-related disorders | |
| US12097269B2 (en) | Dual mode gadolinium nanoparticle contrast agents | |
| US20070154965A1 (en) | Chlorotoxin-labeled nanoparticle compositions and methods for targeting primary brain tumors | |
| JP7772847B2 (en) | Stereocomplexes for the delivery of anticancer drugs | |
| US20250127935A1 (en) | Psma ligand targeted compounds and uses thereof | |
| US20190192686A1 (en) | Targeted nanodroplet emulsions for treating cancer | |
| CN115607680B (en) | Preparation and application of gold cluster-nucleic acid aptamer and derivative assembly thereof | |
| US20230181769A1 (en) | Anti-nucleolin agent-peg-conjugated nanoparticles | |
| HK40005220B (en) | Anti-nucleolin agent-conjugated nanoparticles | |
| HK40005220A (en) | Anti-nucleolin agent-conjugated nanoparticles | |
| JPWO2017086090A1 (en) | Peptide having specific accumulation property for pancreatic cancer and use thereof | |
| JP6789573B2 (en) | Peptides with glioma-specific accumulation and their use |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |