[go: up one dir, main page]

US20200314957A1 - Conjoined Class-Based Networking - Google Patents

Conjoined Class-Based Networking Download PDF

Info

Publication number
US20200314957A1
US20200314957A1 US16/841,954 US202016841954A US2020314957A1 US 20200314957 A1 US20200314957 A1 US 20200314957A1 US 202016841954 A US202016841954 A US 202016841954A US 2020314957 A1 US2020314957 A1 US 2020314957A1
Authority
US
United States
Prior art keywords
node
network
wireless
communication device
pathway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/841,954
Inventor
LaMonte Peter KOOP
David S. Robins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/607,040 external-priority patent/US8315237B2/en
Priority claimed from US12/609,009 external-priority patent/US8275404B2/en
Priority claimed from US12/608,837 external-priority patent/US8462662B2/en
Application filed by Google LLC filed Critical Google LLC
Priority to US16/841,954 priority Critical patent/US20200314957A1/en
Assigned to TERAHOP NETWORKS, INC. reassignment TERAHOP NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROBINS, DAVID S., KOOP, LAMONTE PETER
Assigned to KLJ CONSULTING LLC reassignment KLJ CONSULTING LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TERAHOP NETWORKS, INC.
Assigned to GOOGLE INC. reassignment GOOGLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KLJ CONSULTING LLC
Assigned to GOOGLE LLC reassignment GOOGLE LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GOOGLE INC.
Publication of US20200314957A1 publication Critical patent/US20200314957A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13095PIN / Access code, authentication

Definitions

  • CBN class-based network
  • WU wake-up
  • class-based networks that utilize such technologies (such as those of TeraHop Networks, Inc. of Alpharetta, Ga.), and systems employing such technologies including, inter alia: (1) implementations in the first responder context; (2) implementations in container tracking and monitoring context; and (3) implementations in equipment tracking and monitoring, especially rental construction equipment.
  • CBN and WU technologies, and related features, improvements, and enhancements, as disclosed in these incorporated references may be utilized in combination with various embodiments and implementations of the present invention.
  • Some conventional systems for tracking and/or monitoring assets (herein generally referred to as “asset tracking systems”) utilize wireless tags that generally respond to any broadcast that is made.
  • the wireless tags usually are passive, and the responses that the passive wireless tags make are often referred to as “chirps.”
  • a semi-passive wireless tag includes an internal power source for transmitting, and an active wireless tag includes an internal power source for both receiving and transmitting.
  • Semi-passive and active wireless tags generally have greater capabilities than passive wireless tags due to the internal power sources.
  • power consumption is always a concern when a wireless tag includes an internal power source, since the internal power supply limits the useful life of the wireless tag, after which time maintenance is required (e.g., replacement of the internal power source).
  • a wireless tag responds to a broadcast if the broadcast includes a common designation matching a common designation of the wireless tag.
  • a common designation may comprise, for example, an “asset class” associated with the wireless tag.
  • Ad hoc networks further may be created based on such classes, which ad hoc networks are referred to as “class based” networks.
  • Class based networks are beneficial because, in such networks, a communication device, such as a wireless tag, generally only transmits a response to a broadcast if the broadcast includes a class (or common designation) that matches a class (or common designation) of that communication device. Indeed, in a communication device employing a wakeup sequence of one or more of the patent references incorporated herein by reference, such communication device does not even process a broadcast once it is determined that the broadcast fails to include a matching class of the communication device. Consequently, the internal power supply of a semi-passive or active communication device is not drained by needless processing and/or responses to broadcasts.
  • the present invention generally relates to wireless ad-hoc networks.
  • the invention of the present application generally relates to networks, apparatus, methods and systems for determining the presence of a radio frequency communication device within a wireless data communications network, and especially for determining such presence in an ad hoc wireless data communications network in which at least some wireless data communication devices forming nodes of the network are at least periodically mobile.
  • the present invention includes many aspects and features.
  • the present invention is not limited to use only in asset tracking systems, as will become apparent from the following summaries and detailed descriptions of aspects, features, and one or more embodiments of the present invention. Indeed, the present invention is equally useful in remote sensor networks and the like for remote monitoring, whether such monitoring is the monitoring of assets or otherwise.
  • a wireless two-way RF data communication device includes: a memory having stored therein common designations of the wireless two-way RF data communication device; a receiver configured to receive radio frequency transmissions; a transmitter configured to make radio frequency transmissions; and electronic components.
  • the electronic components are arranged and configured such that the wireless two-way RF data communication device receives and processes communications as a function of at least one of the common designations of the wireless two-way RF data communication device being in the communication.
  • the electronic components further are arranged and configured such that each message that is received in a communication associated with a particular common designation of the RF data communication device, and for which the wireless two-way RF data communication device is not the destination recipient but, instead, is an intermediate recipient, is communicated: to another wireless two-way RF data communication device that has the same particular common designation, if such a wireless two-way RF data communication device is available; and if such a wireless two-way RF data communication device is unavailable, to another wireless two-way RF data communication device that has a common designation that is the same as a common designation stored in the memory, if such a wireless two-way RF data communication device is available.
  • the two-way RF data communication device is a wireless transceiver that includes microprocessor capabilities.
  • the two-way RF data communication device is a remote sensor node (RSN).
  • RSN remote sensor node
  • the two-way RF data communication device is a wireless reader tag (WRT).
  • WRT wireless reader tag
  • the two-way RF data communication device serves as a wireless tag (WT).
  • WT wireless tag
  • the common designations stored in the memory are class designations for use in class-based networks.
  • the electronic components are arranged and configured such that the wireless two-way RF data communication device receives and processes only communications that include at least one of the common designations of the wireless two-way RF data communication device.
  • the electronic components are arranged and configured such that the communications provided, if such a wireless two-way RF data communication device is unavailable, to another wireless two-way RF data communication device that has a common designation that is the same as a common designation stored in the memory (if such a wireless two-way RF data communication device is available) are performed only for predetermined common designations and not for all common designations.
  • the electronic components are arranged and configured such that the wireless two-way RF data communication device selectively operates between at least a first state, in which the communications provided if such a wireless two-way RF data communication device is unavailable, to another wireless two-way RF data communication device that has a common designation that is the same as a common designation stored in the memory (if such a wireless two-way RF data communication device is available) are enabled, and in a second state, in which the communications are disabled.
  • a data communications network includes a plurality of wireless two-way radio frequency (RF) data communication devices, each wireless two-way RF data communication device forming a node of the data communications network and each wireless two-way RF data communication device including a memory having stored therein a common designation. Furthermore, at least one of the wireless two-way RF data communication devices further includes a second common designation stored in the memory thereof. The at least one of the wireless two-way RF data communication devices further comprises a receiver configured to receive radio frequency transmissions; a transmitter configured to make radio frequency transmissions, and electronic components.
  • RF radio frequency
  • the electronic components are arranged and configured such that the wireless two-way RF data communication device receives and processes communications as a function of at least one of the common designations of the wireless two-way RF data communication device being in the communication.
  • the electronic components are further arranged and configured such that each message that is received in a communication associated with a particular common designation of the RF data communication device, and for which the wireless two-way RF data communication device is not the destination recipient but, instead, is an intermediate recipient, is communicated: to another wireless two-way RF data communication device that has the same particular common designation, if such a wireless two-way RF data communication device is available; and if such a wireless two-way RF data communication device is unavailable, to another wireless two-way RF data communication device that has a common designation that is the same as a common designation stored in the memory, if such a wireless two-way RF data communication device is available.
  • the first and second common designations stored in the memory of the at least one of the wireless two-way RF data communication devices are class designations for use in class-based networking.
  • the electronic components of the at least one of the wireless two-way RF data communication devices are arranged and configured such that the communications provided, if such a wireless two-way RF data communication device is unavailable, to another wireless two-way RF data communication device that has a common designation that is the same as a common designation stored in the memory (if such a wireless two-way RF data communication device is available) are performed only for predetermined common designations and not for all common designations.
  • the electronic components of the at least one of the wireless two-way RF data communication devices may be arranged and configured such that the wireless two-way RF data communication device selectively operates between at least a first state, in which the aforementioned provided communications are enabled, and in a second state, in which the aforementioned provided communications are disabled.
  • each node of the data communications network comprises a wireless radio-frequency data communication device having a transmitter and a receiver that collectively receive and transmit information wirelessly.
  • each wireless two-way RF data communication device comprises a standards-based data packet radio component that includes both said receiver and said transmitter of the respective wireless two-way RF data communication device.
  • the information is wirelessly communicated in data packets in the data communications network.
  • a plurality of the wireless two-way RF data communication devices are respectively attached to assets for monitoring and tracking of the asset.
  • a plurality of the wireless two-way RF data communication devices are permanently affixed to a structure for monitoring and/or tracking assets that come within a proximity thereto.
  • a plurality of the wireless two-way RF data communication devices each comprises a wireless transceiver that includes microprocessor capabilities.
  • a method of communicating a message from an originating node to a destination node by way of intermediate nodes includes the steps of: maintaining multiple class designations in memory of a particular one of the wireless two-way radio frequency (RF) data communication devices forming a node of the network; and for each message that is received by the particular wireless two-way radio frequency (RF) data communication device in a communication associated with a common designation of the particular wireless two-way radio frequency (RF) data communication device, and for which the particular wireless two-way RF data communication device is an intermediate node with respect to the message, forwarding the message: (a) to another node of the network that has the same particular common designation associated with the message, if such another node is available; and (b) if such another node is unavailable, to
  • the particular wireless two-way radio frequency (RF) data communication device receives and processes communications as a function of at least one of the common designations of the particular wireless two-way RF data communication device being in the communication.
  • RF radio frequency
  • the first and second common designations stored in the memory of the particular wireless two-way RF data communication device are class designations for use in class-based networking, the particular wireless two-way RF data communication device conjoining at least two logically distinct class-based networks.
  • communicating the message to another node that has a common designation that is the same as a common designation stored in the memory of the particular wireless two-way radio frequency (RF) data communication device, but that is not the same as the common designation associated with the communication of the message that is received is performed only for predetermined common designations and not for all common designations.
  • RF radio frequency
  • the method further includes switching between at least two states of operation by the particular wireless two-way RF data communication device, wherein said step (b)(ii) is not performed in the second state.
  • the switching may be in response to a command that is received by the particular wireless two-way RF data communication device in a wireless communication; in response to a sensed condition; may be performed at predetermined times; or any combination of the foregoing
  • Another principal aspect of the invention of the present application comprises a conjoined common designation network and may be a class-based network.
  • Another principal aspect of the invention of the present application comprises a method for conjoined common designation networks, such as class-based networks.
  • Another principal aspect of the invention of the present application comprises a data communication network comprising at least two logically distinct class-based networks conjoined by at least one common node that has membership in each of the respective classes of the two logically distinct class-based networks.
  • FIGS. 1-4 illustrate a first plurality of remote sensor nodes and a gateway
  • FIGS. 5-8 illustrate a second plurality of remote sensor nodes and a gateway.
  • any sequence(s) and/or temporal order of steps of various processes or methods that are described herein are illustrative and not restrictive. Accordingly, it should be understood that, although steps of various processes or methods may be shown and described as being in a sequence or temporal order, the steps of any such processes or methods are not limited to being carried out in any particular sequence or order, absent an indication otherwise. Indeed, the steps in such processes or methods generally may be carried out in various different sequences and orders while still falling within the scope of the present invention. Accordingly, it is intended that the scope of patent protection afforded the present invention is to be defined by the appended claims rather than the description set forth herein.
  • a picnic basket having an apple describes “a picnic basket having at least one apple” as well as “a picnic basket having apples.”
  • a picnic basket having a single apple describes “a picnic basket having only one apple.”
  • FIG. 1 illustrates a data communications network in accordance with one of many different preferred embodiments of the present invention.
  • the network includes a gateway and a plurality of wireless data communication devices comprising remote sensor nodes (sometimes referred to, and hereinafter, “RSN”, “RSN” or simply “node”).
  • RSN remote sensor nodes
  • RSNs 111 , 113 , 115 , 117 are shown in FIGS. 1-4 together with a gateway 119 .
  • each RSN 111 , 113 , 115 , 117 lies within a transmission range (represented by the dashed circles in the figures) of each immediately adjacent RSN;
  • RSN 117 lies within a transmission range of the gateway 119 ;
  • gateway 119 lies within a transmission range of RSN 117 .
  • the RSNs 111 , 113 , 115 , 117 are configured for class-based communications, and the classes of the RSNs 111 , 113 , 115 , 117 are illustrated in these FIGS. 1-4 .
  • RSN 111 is a member of class “A”
  • RSN 113 is a member of class “A” and class “B”
  • RSN 115 is a member of class “A” and “C”
  • RSN 117 is a member of class “A” and class “D”.
  • the gateway 119 preferably is configured to communicate with any members of these classes.
  • the RSNs 111 , 113 , 115 , 117 are configured to form class-based networks based on class memberships.
  • these RSNs form a class “A” communications network by which RSN 111 communicates with the gateway 119 by hopping a message along RSNs 113 , 115 , 117 , as shown in FIGS.
  • each RSN 111 , 113 , 115 , 117 makes a respective class “A” transmission 112 , 114 , 116 , 118 , as represented in FIGS. 1-4 .
  • RSNs 211 , 213 , 215 , 217 are shown in FIGS. 5-8 together with a gateway 219 .
  • Each RSN 211 , 213 , 215 , 217 lies within a transmission range (represented by the dashed circles in the figures) of each immediately adjacent RSN; RSN 217 lies within a transmission range of the gateway 219 ; and gateway 219 lies within a transmission range of RSN 217 .
  • the classes of the RSNs 211 , 213 , 215 , 217 are illustrated in FIGS. 17-20 .
  • the RSNs 211 , 213 , 215 , 217 are configured to form networks comprising separate and distinct class-based networks that are conjoined by RSNs that are members of more than one of the classes.
  • the RSNs that are members of more than one class i.e., RSNs 213 , 215 , 217
  • These RSNs having multiple memberships thereby serve as communications bridges between—and that conjoin—otherwise logically distinct class-based communication networks.
  • Such a network is referred to herein as a “Conjoined Class-Based Network” and such type of networking protocol is referred to herein as “Conjoined Class-Based Networking”.
  • RSN 211 communicates a message by making a class “B” transmission 212 , which is received and processed by RSN 213 , which also is a member of class “B”.
  • RSN 213 is unable to further communicate the message within a class “B” network, as no other intermediate RSN of class “B” is within transmission range for communicating with the gateway 219 .
  • RSN 213 is a member of class “A” and therefore communicates the message by making a class “A” transmission 214 , which is received and processed by RSN 215 , which also is a member of class “A”.
  • RSN 215 is unable to further communicate the message within a class “A” network, as no other intermediate RSN of class “A” is within transmission range for communicating with the gateway 219 . Nevertheless, RSN 215 is a member of class “C” and therefore communicates the message by making a class “C” transmission 216 , which is received and processed by RSN 217 , which also is a member of class “C”. RSN 215 , which is within transmission range with gateway 219 , then communicates the message to gateway 219 by making a class “C” transmission 218 as shown in FIG. 8 .
  • RSN 111 is able to send a message to the gateway 119 (and on to an external network if applicable via the gateway 119 ) when class “B” networking to the gateway 119 is unavailable.
  • the message may be any message, such as a check-in message, a message communicating an alert, or a message responding to an inquiry.
  • the networking may include deterministic or nondeterministic networking, as set forth in incorporated USPA Publ. No. 2007/0002792.
  • each RSN may be configured in a first state in which such conjoined class-based networking is enabled; in a second state in which such conjoined class-based networking is disabled; and may be configurable between the two states based on detection of a condition, based on receipt of a command, based on predetermined times, or any of the foregoing.
  • an RSN may be configured for conjoined class-based networking for certain classes, but not for all classes, whereby excluded class-based networks do not participate in the conjoined class-based networks.
  • class commonality or class continuity is required only for each hop between RSNs, and not for every RSN along the pathway from the originating RSN to the gateway (or similarly to a destination RSN if the message is not intended for communication to or through a gateway).
  • another aspect of the invention includes a method of maintaining, by a first node, information regarding communications links between nodes in the wireless network.
  • the method includes the steps of: (a) for each communications link that is established with another node, recording an identification of the other node; and (b) for each message received by the first node from the other node through the communications link with the other node, recording a network pathway by which the message has been sent in the wireless network, the network pathway identifying the nodes and the communications links there between in the wireless network by which the message has been sent.
  • the method further includes recording, in association with the identification of the other node, data indicative of a link quality between the first node and the other node.
  • the method further includes recording, for each message received by the first node from the other node through the communications link with the other node, data indicative of a link quality between each communications link in the network pathway by which the message has been sent.
  • the method further includes recording, in association with the identification of the other node, data indicative of class designations of the other node.
  • the method further includes recording, for each message received by the first node from the other node through the communications link with the other node, data indicative of class designations of each node in the communications links in the network pathway by which the message has been sent.
  • the method further includes recording, for each message received by the first node from the other node through the communications link with the other node, data generally indicative of the time at which the message has been sent via the network pathway.
  • the method further includes recording, for each message received by the first node from the other node through the communications link with the other node, a network pathway to a destination node by which the message is being sent if such network pathway to the destination node is identified with the message.
  • the method further includes communicating, by the first node, the message to a subsequent node in the wireless network if the message is intended for receipt by a node other than the first node, including the steps of: determining whether one or more network pathways are known by the first node from the first node to the destination node of the message; communicating with just a single node within the communications range of the first node if a single network pathway to the destination node is known by the first node, the single node being the node identified next in the single network pathway after the first node, including sending, to the single node, the message, the single network pathway, and the link quality between the first node and the other node from which the message was received by the first node; and (c) if more than one network pathway to the destination node is known by the first node, then determining a preferred network pathway from the known network pathways in accordance with an algorithm, and communicating with just a single node within the communications range of the first node, the single node being
  • Determining whether one or more network pathways are known by the first node from the first node to the destination node of the message may include searching the maintained information for a network pathway from the first node to the destination node, and the maintained information that is searched may include any network pathway to the destination node that is identified with the message.
  • determining a preferred network pathway from the known network pathways in accordance with an algorithm includes comparing the general times at which messages were sent via the network pathways; comparing the number of hops between nodes in the known network pathways; and/or comparing the overall link quality of the known network pathways.
  • another aspect of the invention includes a method of maintaining information regarding communications links between nodes in the wireless network includes recording, by a server, for each message that is received by the server from the wireless network, a network pathway by which the message has been sent in the wireless network, the network pathway identifying the nodes and the communications links therebetween in the wireless network by which the message has been sent.
  • the method further includes recording, in association with the identification of the nodes and the communications links therebetween in the wireless network by which the message has been sent, data indicative of a link quality for each communications link.
  • the method further includes recording, in association with each network pathway by which the message has been sent, data indicative of overall link quality for the network pathway.
  • the method further includes recording, in association with each network pathway by which the message has been sent, data generally indicative of the time at which the message was sent via the network pathway.
  • the method further includes: (a) determining, based on the maintained information, a network pathway for communicating a message to a destination node of the wireless network, and (b) communicating the message to a gateway node of the wireless network together with the determined network pathway to the destination node.
  • the method further includes distributing, to one or more nodes of the wireless network, information regarding communications links based on the information maintained by said server.
  • the method further includes distributing, to one or more nodes of the wireless network, information regarding network pathways based on the information maintained by said server.
  • a message may be communicated between nodes utilizing transmission control protocol (TCP), and messages may be communicated between nodes of the wireless network via data packets.
  • TCP transmission control protocol
  • wireless networks that utilize such methods and, in particular, such wireless networks that are ad hoc wireless networks.
  • the wireless networks furthermore may comprise class-based wireless network that may be utilized for monitoring and/or tracking assets.
  • a node of the wireless network may be a data communications device and include, for example, a standards based radio such as a Bluetooth radio.
  • the node may further includes a wireless receiver for powering up the standards based radio upon receipt of a broadcast that is intended for the standards based radio.
  • the second wireless receiver further may perform a stepped wake-up sequence of the standards based radio.
  • the standards based radio further may include a sensor interface whereby data is acquired by the data communications device from an associated sensor, and the wireless network may comprise a remote sensor interface (RSI) network.
  • RSSI remote sensor interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A data communication network includes two logically distinct class-based networks conjoined by at least one common node that has membership in each of the respective classes of the two logically distinct class-based networks. Optionally, three or more class-based networks may be conjoined to form a data communications network.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a U.S. continuation patent application of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 16/238,471, filed Jan. 2, 2019, which is a U.S. continuation patent application of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 15/870,265, filed Jan. 12, 2018, which is a U.S. continuation patent application of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 13/620,344, filed Sep. 14, 2012, which is a U.S. continuation patent application of, and claims priority under 35 U.S.C. § 120 to, U.S. nonprovisional patent application Ser. No. 12/767,561, filed Apr. 26, 2010, which nonprovisional patent application published as U.S. patent application publication no. 2010/0265042, which patent application and any patent application publications thereof are incorporated by reference herein, and which '561 application is a continuation patent application of, and claims priority under 35 U.S.C. § 120 to, U.S. nonprovisional patent application Ser. No. 12/701,451, filed Feb. 5, 2010, which nonprovisional patent application and any patent application publications thereof are hereby incorporated herein by reference, and which '451 application is:
      • (a) a U.S. continuation-in-part patent application of, and claims priority under 35 U.S.C. § 120 to each of
        • (i) U.S. nonprovisional patent application Ser. No. 12/608,837 filed on Oct. 29, 2009, pending, which patent application and any patent application publication thereof are incorporated by reference herein,
        • (ii) U.S. nonprovisional patent application Ser. No. 12/609,009 filed on Oct. 29, 2009, pending, which patent application and any patent application publication thereof are incorporated by reference herein, and
        • (iii) U.S. nonprovisional patent application Ser. No. 12/607,040 filed on Oct. 27, 2009; and
      • (b) a U.S. nonprovisional patent application of, and claims priority under 35 U.S.C. § 119(e) to, U.S. provisional patent application Ser. No. 61/150,298, filed Feb. 5, 2009, which provisional patent application is incorporated by reference herein.
  • Additionally, the present application herein incorporates by reference each of: U.S. provisional patent application No. 61/109,494; U.S. provisional patent application No. 61/109,496; U.S. provisional patent application No. 61/109,500; U.S. provisional patent application No. 61/109,502; and U.S. provisional patent application No. 61/109,505; and each of the following U.S. patent application publications and U.S. patents:
  • application No. U.S. Pat. No. Earliest Publication No.
    12/140,253 US 2008-0303897 A1
    11/930,782 US 2008-0212544 A1
    11/930,788 8,284,741 US 2008-0165749 A1
    11/930,797 7,940,736 US 2008-0151850 A1
    11/930,740 7,538,657 US 2008-0150723 A1
    11/930,770 US 2008-0144554 A1
    11/930,785 US 2008-0143484 A1
    11/930,736 7,538,656 US 2008-0143483 A1
    11/930,753 7,535,339 US 2008-0142592 A1
    11/306,765 7,394,361 US 2008-0136624 A1
    11/930,749 7,538,658 US 2008-0130536 A1
    11/930,779 US 2008-0129458 A1
    11/930,793 7,940,717 US 2008-0112378 A1
    11/930,761 8,331,862 US 2008-0112377 A1
    11/930,777 US 2008-0111692 A1
    11/847,309 8,238,826 US 2007-0291724 A1
    11/847,295 8,068,807 US 2007-0291690 A1
    11/832,998 7,378,959 US 2007-0273503 A1
    11/832,991 7,378,958 US 2007-0268134 A1
    11/832,979 7,378,957 US 2007-0268126 A1
    11/610,427 7,733,818 US 2007-0159999 A1
    11/618,931 7,907,941 US 2007-0155327 A1
    11/555,173 7,742,773 US 2007-0099629 A1
    11/555,164 7,742,772 US 2007-0099628 A1
    11/425,047 7,554,442 US 2007-0069885 A1
    11/465,466 7,830,273 US 2007-0043807 A1
    11/465,796 7,705,747 US 2007-0041333 A1
    11/193,300 7,438,334 US 2007-0024066 A1
    11/161,540 7,200,132 US 2007-0004431 A1
    11/424,850 7,783,246 US 2007-0004331 A1
    11/424,849 7,574,168 US 2007-0004330 A1
    11/161,550 7,430,437 US 2007-0002808 A1
    11/428,536 7,940,716 US 2007-0002793 A1
    11/428,535 8,144,671 US 2007-0002792 A1
    11/424,847 7,583,769 US 2007-0001898 A1
    11/423,127 7,563,991 US 2006-0289204 A1
    11/424,845 7,574,300 US 2006-0287822 A1
    11/425,040 7,539,520 US 2006-0287008 A1
    11/422,306 7,542,849 US 2006-0282217 A1
    11/422,304 7,526,381 US 2006-0276963 A1
    11/422,321 7,650,135 US 2006-0276161 A1
    11/422,329 7,529,547 US 2006-0274698 A1
    11/306,764 7,391,321 US 2006-0237490 A1
    11/161,542 7,522,568 US 2006-0023679 A1
    11/161,539 7,209,468 US 2006-0023678 A1
    11/161,545 7,221,668 US 2006-0018274 A1
    10/514,336 7,209,771 US 2005-0215280 A1
    10/987,964 7,155,264 US 2005-0093703 A1
    10/987,884 7,133,704 US 2005-0093702 A1
    10/604,032 6,934,540 US 2004-0082296 A1
    09/681,282 6,745,027 US 2002-0119770 A1
  • Each of the foregoing patent application publications and patents is hereby incorporated herein by reference for purposes of disclosure of class-based network (CBN) technology, wake-up (WU) technology, and class-based networks that utilize such technologies (such as those of TeraHop Networks, Inc. of Alpharetta, Ga.), and systems employing such technologies including, inter alia: (1) implementations in the first responder context; (2) implementations in container tracking and monitoring context; and (3) implementations in equipment tracking and monitoring, especially rental construction equipment. It is intended that the CBN and WU technologies, and related features, improvements, and enhancements, as disclosed in these incorporated references may be utilized in combination with various embodiments and implementations of the present invention.
  • Additionally, patent application Ser. No. 11/460,976, and any publications thereof, including U.S. patent application publication no. US 2008-0315596 published on Dec. 25, 2008, are hereby incorporated herein by reference.
  • COPYRIGHT STATEMENT
  • All of the material in this patent document is subject to copyright protection under the copyright laws of the United States and other countries. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in official governmental records but, otherwise, all other copyright rights whatsoever are reserved.
  • BACKGROUND OF THE INVENTION
  • Some conventional systems for tracking and/or monitoring assets (herein generally referred to as “asset tracking systems”) utilize wireless tags that generally respond to any broadcast that is made. The wireless tags usually are passive, and the responses that the passive wireless tags make are often referred to as “chirps.”
  • More sophisticated conventional asset tracking systems utilize semi-passive wireless tags and/or active wireless tags. A semi-passive wireless tag includes an internal power source for transmitting, and an active wireless tag includes an internal power source for both receiving and transmitting. Semi-passive and active wireless tags generally have greater capabilities than passive wireless tags due to the internal power sources. Of course, power consumption is always a concern when a wireless tag includes an internal power source, since the internal power supply limits the useful life of the wireless tag, after which time maintenance is required (e.g., replacement of the internal power source).
  • In improved asset tracking systems, such as disclosed in U.S. Pat. No. 6,934,540 and other of the above-incorporated patent applications and patents, a wireless tag responds to a broadcast if the broadcast includes a common designation matching a common designation of the wireless tag. Such a common designation may comprise, for example, an “asset class” associated with the wireless tag. Ad hoc networks further may be created based on such classes, which ad hoc networks are referred to as “class based” networks.
  • Class based networks (and common designation networks in general) are beneficial because, in such networks, a communication device, such as a wireless tag, generally only transmits a response to a broadcast if the broadcast includes a class (or common designation) that matches a class (or common designation) of that communication device. Indeed, in a communication device employing a wakeup sequence of one or more of the patent references incorporated herein by reference, such communication device does not even process a broadcast once it is determined that the broadcast fails to include a matching class of the communication device. Consequently, the internal power supply of a semi-passive or active communication device is not drained by needless processing and/or responses to broadcasts.
  • The present invention generally relates to wireless ad-hoc networks. A need exists for improvement in wireless network apparatus, systems, and methods. These, and other needs, are addressed by one or more aspects of the present invention.
  • SUMMARY OF THE INVENTION
  • The invention of the present application generally relates to networks, apparatus, methods and systems for determining the presence of a radio frequency communication device within a wireless data communications network, and especially for determining such presence in an ad hoc wireless data communications network in which at least some wireless data communication devices forming nodes of the network are at least periodically mobile. In this context, the present invention includes many aspects and features. Moreover, while many aspects and features relate to, and are described in, the context of asset tracking systems, the present invention is not limited to use only in asset tracking systems, as will become apparent from the following summaries and detailed descriptions of aspects, features, and one or more embodiments of the present invention. Indeed, the present invention is equally useful in remote sensor networks and the like for remote monitoring, whether such monitoring is the monitoring of assets or otherwise.
  • In a principal aspect of the invention of the present application, a wireless two-way RF data communication device includes: a memory having stored therein common designations of the wireless two-way RF data communication device; a receiver configured to receive radio frequency transmissions; a transmitter configured to make radio frequency transmissions; and electronic components. The electronic components are arranged and configured such that the wireless two-way RF data communication device receives and processes communications as a function of at least one of the common designations of the wireless two-way RF data communication device being in the communication. The electronic components further are arranged and configured such that each message that is received in a communication associated with a particular common designation of the RF data communication device, and for which the wireless two-way RF data communication device is not the destination recipient but, instead, is an intermediate recipient, is communicated: to another wireless two-way RF data communication device that has the same particular common designation, if such a wireless two-way RF data communication device is available; and if such a wireless two-way RF data communication device is unavailable, to another wireless two-way RF data communication device that has a common designation that is the same as a common designation stored in the memory, if such a wireless two-way RF data communication device is available.
  • In a feature, the two-way RF data communication device is a wireless transceiver that includes microprocessor capabilities.
  • In a feature, the two-way RF data communication device is a remote sensor node (RSN).
  • In a feature, the two-way RF data communication device is a wireless reader tag (WRT).
  • In a feature, the two-way RF data communication device serves as a wireless tag (WT).
  • In a feature, the common designations stored in the memory are class designations for use in class-based networks.
  • In a feature, the electronic components are arranged and configured such that the wireless two-way RF data communication device receives and processes only communications that include at least one of the common designations of the wireless two-way RF data communication device.
  • In a feature, the electronic components are arranged and configured such that the communications provided, if such a wireless two-way RF data communication device is unavailable, to another wireless two-way RF data communication device that has a common designation that is the same as a common designation stored in the memory (if such a wireless two-way RF data communication device is available) are performed only for predetermined common designations and not for all common designations.
  • In a feature, the electronic components are arranged and configured such that the wireless two-way RF data communication device selectively operates between at least a first state, in which the communications provided if such a wireless two-way RF data communication device is unavailable, to another wireless two-way RF data communication device that has a common designation that is the same as a common designation stored in the memory (if such a wireless two-way RF data communication device is available) are enabled, and in a second state, in which the communications are disabled.
  • In another principal aspect of the invention of the present application, a data communications network includes a plurality of wireless two-way radio frequency (RF) data communication devices, each wireless two-way RF data communication device forming a node of the data communications network and each wireless two-way RF data communication device including a memory having stored therein a common designation. Furthermore, at least one of the wireless two-way RF data communication devices further includes a second common designation stored in the memory thereof. The at least one of the wireless two-way RF data communication devices further comprises a receiver configured to receive radio frequency transmissions; a transmitter configured to make radio frequency transmissions, and electronic components. The electronic components are arranged and configured such that the wireless two-way RF data communication device receives and processes communications as a function of at least one of the common designations of the wireless two-way RF data communication device being in the communication. The electronic components are further arranged and configured such that each message that is received in a communication associated with a particular common designation of the RF data communication device, and for which the wireless two-way RF data communication device is not the destination recipient but, instead, is an intermediate recipient, is communicated: to another wireless two-way RF data communication device that has the same particular common designation, if such a wireless two-way RF data communication device is available; and if such a wireless two-way RF data communication device is unavailable, to another wireless two-way RF data communication device that has a common designation that is the same as a common designation stored in the memory, if such a wireless two-way RF data communication device is available.
  • In a feature, the first and second common designations stored in the memory of the at least one of the wireless two-way RF data communication devices are class designations for use in class-based networking.
  • In a feature, the electronic components of the at least one of the wireless two-way RF data communication devices are arranged and configured such that the communications provided, if such a wireless two-way RF data communication device is unavailable, to another wireless two-way RF data communication device that has a common designation that is the same as a common designation stored in the memory (if such a wireless two-way RF data communication device is available) are performed only for predetermined common designations and not for all common designations. Moreover, the electronic components of the at least one of the wireless two-way RF data communication devices may be arranged and configured such that the wireless two-way RF data communication device selectively operates between at least a first state, in which the aforementioned provided communications are enabled, and in a second state, in which the aforementioned provided communications are disabled.
  • In a feature, each node of the data communications network comprises a wireless radio-frequency data communication device having a transmitter and a receiver that collectively receive and transmit information wirelessly.
  • In a feature, each wireless two-way RF data communication device comprises a standards-based data packet radio component that includes both said receiver and said transmitter of the respective wireless two-way RF data communication device.
  • In a feature, the information is wirelessly communicated in data packets in the data communications network.
  • In a feature, a plurality of the wireless two-way RF data communication devices are respectively attached to assets for monitoring and tracking of the asset.
  • In a feature, a plurality of the wireless two-way RF data communication devices are permanently affixed to a structure for monitoring and/or tracking assets that come within a proximity thereto.
  • In a feature, a plurality of the wireless two-way RF data communication devices each comprises a wireless transceiver that includes microprocessor capabilities.
  • In another principal aspect of the invention of the present application, and with respect to the context of a data network comprising a plurality of wireless two-way radio frequency (RF) data communication devices, each wireless two-way RF data communication device forming a node of the data communications network, a method of communicating a message from an originating node to a destination node by way of intermediate nodes includes the steps of: maintaining multiple class designations in memory of a particular one of the wireless two-way radio frequency (RF) data communication devices forming a node of the network; and for each message that is received by the particular wireless two-way radio frequency (RF) data communication device in a communication associated with a common designation of the particular wireless two-way radio frequency (RF) data communication device, and for which the particular wireless two-way RF data communication device is an intermediate node with respect to the message, forwarding the message: (a) to another node of the network that has the same particular common designation associated with the message, if such another node is available; and (b) if such another node is unavailable, to another node that has a common designation that is the same as a common designation stored in the memory of the particular wireless two-way radio frequency (RF) data communication device, if such a node is available.
  • In a feature, the particular wireless two-way radio frequency (RF) data communication device receives and processes communications as a function of at least one of the common designations of the particular wireless two-way RF data communication device being in the communication.
  • In a feature, the first and second common designations stored in the memory of the particular wireless two-way RF data communication device are class designations for use in class-based networking, the particular wireless two-way RF data communication device conjoining at least two logically distinct class-based networks.
  • In a feature, communicating the message to another node that has a common designation that is the same as a common designation stored in the memory of the particular wireless two-way radio frequency (RF) data communication device, but that is not the same as the common designation associated with the communication of the message that is received, is performed only for predetermined common designations and not for all common designations.
  • In a feature, the method further includes switching between at least two states of operation by the particular wireless two-way RF data communication device, wherein said step (b)(ii) is not performed in the second state. The switching may be in response to a command that is received by the particular wireless two-way RF data communication device in a wireless communication; in response to a sensed condition; may be performed at predetermined times; or any combination of the foregoing
  • Another principal aspect of the invention of the present application comprises a conjoined common designation network and may be a class-based network.
  • Another principal aspect of the invention of the present application comprises a method for conjoined common designation networks, such as class-based networks.
  • Another principal aspect of the invention of the present application comprises a data communication network comprising at least two logically distinct class-based networks conjoined by at least one common node that has membership in each of the respective classes of the two logically distinct class-based networks.
  • Additional features of the foregoing principle aspects also are set forth elsewhere herein. In addition to the aforementioned aspects and features of the present invention, it should be noted that the present invention further encompasses the various possible combinations and subcombinations of such aspects and features.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • One or more preferred embodiments of the present invention now will be described in detail with reference to the accompanying drawings, wherein the same elements are referred to with the same reference numerals, and wherein,
  • FIGS. 1-4 illustrate a first plurality of remote sensor nodes and a gateway; and
  • FIGS. 5-8 illustrate a second plurality of remote sensor nodes and a gateway.
  • DETAILED DESCRIPTION
  • As a preliminary matter, it will readily be understood by one having ordinary skill in the relevant art (“Ordinary Artisan”) that the present invention has broad utility and application. Furthermore, any embodiment discussed and identified as being “preferred” is considered to be part of a best mode contemplated for carrying out the present invention. Other embodiments also may be discussed for additional illustrative purposes in providing a full and enabling disclosure of the present invention. Moreover, many embodiments, such as adaptations, variations, modifications, and equivalent arrangements, will be implicitly disclosed by the embodiments described herein and fall within the scope of the present invention.
  • Accordingly, while the present invention is described herein in detail in relation to one or more embodiments, it is to be understood that this disclosure is illustrative and exemplary of the present invention, and is made merely for the purposes of providing a full and enabling disclosure of the present invention. The detailed disclosure herein of one or more embodiments is not intended, nor is to be construed, to limit the scope of patent protection afforded the present invention, which scope is to be defined by the claims and the equivalents thereof. It is not intended that the scope of patent protection afforded the present invention be defined by reading into any claim a limitation found herein that does not explicitly appear in the claim itself.
  • Thus, for example, any sequence(s) and/or temporal order of steps of various processes or methods that are described herein are illustrative and not restrictive. Accordingly, it should be understood that, although steps of various processes or methods may be shown and described as being in a sequence or temporal order, the steps of any such processes or methods are not limited to being carried out in any particular sequence or order, absent an indication otherwise. Indeed, the steps in such processes or methods generally may be carried out in various different sequences and orders while still falling within the scope of the present invention. Accordingly, it is intended that the scope of patent protection afforded the present invention is to be defined by the appended claims rather than the description set forth herein.
  • Additionally, it is important to note that each term used herein refers to that which the Ordinary Artisan would understand such term to mean based on the contextual use of such term herein. To the extent that the meaning of a term used herein—as understood by the Ordinary Artisan based on the contextual use of such term—differs in any way from any particular dictionary definition of such term, it is intended that the meaning of the term as understood by the Ordinary Artisan should prevail.
  • Furthermore, it is important to note that, as used herein, “a” and “an” each generally denotes “at least one,” but does not exclude a plurality unless the contextual use dictates otherwise. Thus, reference to “a picnic basket having an apple” describes “a picnic basket having at least one apple” as well as “a picnic basket having apples.” In contrast, reference to “a picnic basket having a single apple” describes “a picnic basket having only one apple.”
  • When used herein to join a list of items, “or” denotes “at least one of the items,” but does not exclude a plurality of items of the list. Thus, reference to “a picnic basket having cheese or crackers” describes “a picnic basket having cheese without crackers”, “a picnic basket having crackers without cheese”, and “a picnic basket having both cheese and crackers.” Finally, when used herein to join a list of items, “and” denotes “all of the items of the list.” Thus, reference to “a picnic basket having cheese and crackers” describes “a picnic basket having cheese, wherein the picnic basket further has crackers,” as well as describes “a picnic basket having crackers, wherein the picnic basket further has cheese.”
  • Referring now to the drawings, one or more preferred embodiments of the present invention are next described. The following description of one or more preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its implementations, or uses.
  • FIG. 1 illustrates a data communications network in accordance with one of many different preferred embodiments of the present invention. The network includes a gateway and a plurality of wireless data communication devices comprising remote sensor nodes (sometimes referred to, and hereinafter, “RSN”, “RSN” or simply “node”).
  • RSNs 111,113,115,117 are shown in FIGS. 1-4 together with a gateway 119. As illustrated, each RSN 111,113,115,117 lies within a transmission range (represented by the dashed circles in the figures) of each immediately adjacent RSN; RSN 117 lies within a transmission range of the gateway 119; and gateway 119 lies within a transmission range of RSN 117. The RSNs 111,113,115,117 are configured for class-based communications, and the classes of the RSNs 111,113,115,117 are illustrated in these FIGS. 1-4. Specifically, RSN 111 is a member of class “A”; RSN 113 is a member of class “A” and class “B”; RSN 115 is a member of class “A” and “C”; RSN 117 is a member of class “A” and class “D”. Additionally, in this example, none of these classes “A”, “B”, “C” or “D” is deemed to be a subset or superset of any of the other classes. The gateway 119 preferably is configured to communicate with any members of these classes.
  • In accordance with a first class-based networking protocol, as more fully described for example in incorporated U.S. Pat. Nos. 6,745,027; 6,934,540; 7,200,132; 7,209,468; and 7,221,668, the RSNs 111,113,115,117 are configured to form class-based networks based on class memberships. As will be appreciated, because all of the RSNs 111,113,115,117 are members of the same class “A”, these RSNs form a class “A” communications network by which RSN 111 communicates with the gateway 119 by hopping a message along RSNs 113,115,117, as shown in FIGS. 1-3, with RSN 117 communicating the message originated by RSN 11 to the gateway 119, as shown in FIG. 4. In this sequence of communications, each RSN 111,113,115,117 makes a respective class “A” transmission 112,114,116,118, as represented in FIGS. 1-4.
  • In contrast to the class-based networking illustrated in FIGS. 1-4, a different networking protocol is now described with reference to FIGS. 5-8. In these figures, RSNs 211,213,215,217 are shown in FIGS. 5-8 together with a gateway 219. Each RSN 211,213,215,217 lies within a transmission range (represented by the dashed circles in the figures) of each immediately adjacent RSN; RSN 217 lies within a transmission range of the gateway 219; and gateway 219 lies within a transmission range of RSN 217. The classes of the RSNs 211,213,215,217 are illustrated in FIGS. 17-20. Specifically, RSN 211 is a member of class “B”; RSN 213 is a member of class “A” and class “B”; RSN 215 is a member of class “A” and “C”; RSN 217 is a member of class “C” and class “D”. Additionally, in this example, none of these classes is deemed to be a subset or super set of any of the other classes, and the gateway 219 preferably is configured to communicate with any members of these classes.
  • In accordance with a the networking protocol illustrated in FIGS. 5-8, the RSNs 211,213,215,217 are configured to form networks comprising separate and distinct class-based networks that are conjoined by RSNs that are members of more than one of the classes. In this respect, the RSNs that are members of more than one class (i.e., RSNs 213,215,217) communicate class-based messages of a particular class via class-based networks of a different class, in which the RSN is a member, when class-based communications within the class of the incoming transmission are unavailable. These RSNs having multiple memberships thereby serve as communications bridges between—and that conjoin—otherwise logically distinct class-based communication networks. Such a network is referred to herein as a “Conjoined Class-Based Network” and such type of networking protocol is referred to herein as “Conjoined Class-Based Networking”.
  • Specifically, RSN 211 communicates a message by making a class “B” transmission 212, which is received and processed by RSN 213, which also is a member of class “B”. RSN 213, however, is unable to further communicate the message within a class “B” network, as no other intermediate RSN of class “B” is within transmission range for communicating with the gateway 219. Nevertheless, RSN 213 is a member of class “A” and therefore communicates the message by making a class “A” transmission 214, which is received and processed by RSN 215, which also is a member of class “A”. RSN 215 is unable to further communicate the message within a class “A” network, as no other intermediate RSN of class “A” is within transmission range for communicating with the gateway 219. Nevertheless, RSN 215 is a member of class “C” and therefore communicates the message by making a class “C” transmission 216, which is received and processed by RSN 217, which also is a member of class “C”. RSN 215, which is within transmission range with gateway 219, then communicates the message to gateway 219 by making a class “C” transmission 218 as shown in FIG. 8.
  • As will be appreciated, by utilizing a network comprised of distinct and separate class-based networks joined by common RSNs having membership in two or more of the classes, RSN 111 is able to send a message to the gateway 119 (and on to an external network if applicable via the gateway 119) when class “B” networking to the gateway 119 is unavailable.
  • The message may be any message, such as a check-in message, a message communicating an alert, or a message responding to an inquiry. Additionally, the networking may include deterministic or nondeterministic networking, as set forth in incorporated USPA Publ. No. 2007/0002792.
  • In variations, each RSN may be configured in a first state in which such conjoined class-based networking is enabled; in a second state in which such conjoined class-based networking is disabled; and may be configurable between the two states based on detection of a condition, based on receipt of a command, based on predetermined times, or any of the foregoing. Moreover, an RSN may be configured for conjoined class-based networking for certain classes, but not for all classes, whereby excluded class-based networks do not participate in the conjoined class-based networks.
  • Also, as will be appreciated, in conjoined class-based networking, class commonality or class continuity is required only for each hop between RSNs, and not for every RSN along the pathway from the originating RSN to the gateway (or similarly to a destination RSN if the message is not intended for communication to or through a gateway).
  • Based on the foregoing description, it will be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those specifically described herein, as well as many variations, modifications, and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing descriptions thereof, without departing from the substance or scope of the present invention.
  • Accordingly, while the present invention has been described herein in detail in relation to one or more preferred embodiments, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for the purpose of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended to be construed to limit the present invention or otherwise exclude any such other embodiments, adaptations, variations, modifications or equivalent arrangements, the present invention being limited only by the claims appended hereto and the equivalents thereof.
  • In such a wireless network, another aspect of the invention includes a method of maintaining, by a first node, information regarding communications links between nodes in the wireless network. The method includes the steps of: (a) for each communications link that is established with another node, recording an identification of the other node; and (b) for each message received by the first node from the other node through the communications link with the other node, recording a network pathway by which the message has been sent in the wireless network, the network pathway identifying the nodes and the communications links there between in the wireless network by which the message has been sent.
  • In a feature of this aspect, the method further includes recording, in association with the identification of the other node, data indicative of a link quality between the first node and the other node.
  • In a feature of this aspect, the method further includes recording, for each message received by the first node from the other node through the communications link with the other node, data indicative of a link quality between each communications link in the network pathway by which the message has been sent.
  • In a feature of this aspect, the method further includes recording, in association with the identification of the other node, data indicative of class designations of the other node.
  • In a feature of this aspect, the method further includes recording, for each message received by the first node from the other node through the communications link with the other node, data indicative of class designations of each node in the communications links in the network pathway by which the message has been sent.
  • In a feature of this aspect, the method further includes recording, for each message received by the first node from the other node through the communications link with the other node, data generally indicative of the time at which the message has been sent via the network pathway.
  • In a feature of this aspect, the method further includes recording, for each message received by the first node from the other node through the communications link with the other node, a network pathway to a destination node by which the message is being sent if such network pathway to the destination node is identified with the message.
  • In a feature of this aspect, the method further includes communicating, by the first node, the message to a subsequent node in the wireless network if the message is intended for receipt by a node other than the first node, including the steps of: determining whether one or more network pathways are known by the first node from the first node to the destination node of the message; communicating with just a single node within the communications range of the first node if a single network pathway to the destination node is known by the first node, the single node being the node identified next in the single network pathway after the first node, including sending, to the single node, the message, the single network pathway, and the link quality between the first node and the other node from which the message was received by the first node; and (c) if more than one network pathway to the destination node is known by the first node, then determining a preferred network pathway from the known network pathways in accordance with an algorithm, and communicating with just a single node within the communications range of the first node, the single node being the node identified next in the preferred network pathway after the first node, including sending, to the single node, the message, the preferred network pathway and the link quality between the first node and the other node from which the message was received by the first node; and (d) if no network pathway to the destination node is known by the first node, then communicating with one or more nodes within the communications range of the first node, including sending, the message and the link quality between the first node and the other node from which the message was received by the first node. Determining whether one or more network pathways are known by the first node from the first node to the destination node of the message may include searching the maintained information for a network pathway from the first node to the destination node, and the maintained information that is searched may include any network pathway to the destination node that is identified with the message.
  • In features of this aspect, determining a preferred network pathway from the known network pathways in accordance with an algorithm includes comparing the general times at which messages were sent via the network pathways; comparing the number of hops between nodes in the known network pathways; and/or comparing the overall link quality of the known network pathways.
  • In such a wireless network, another aspect of the invention includes a method of maintaining information regarding communications links between nodes in the wireless network includes recording, by a server, for each message that is received by the server from the wireless network, a network pathway by which the message has been sent in the wireless network, the network pathway identifying the nodes and the communications links therebetween in the wireless network by which the message has been sent.
  • In a feature of this aspect, the method further includes recording, in association with the identification of the nodes and the communications links therebetween in the wireless network by which the message has been sent, data indicative of a link quality for each communications link.
  • In a feature of this aspect, the method further includes recording, in association with each network pathway by which the message has been sent, data indicative of overall link quality for the network pathway.
  • In a feature of this aspect, the method further includes recording, in association with each network pathway by which the message has been sent, data generally indicative of the time at which the message was sent via the network pathway.
  • In a feature of this aspect, the method further includes: (a) determining, based on the maintained information, a network pathway for communicating a message to a destination node of the wireless network, and (b) communicating the message to a gateway node of the wireless network together with the determined network pathway to the destination node.
  • In a feature of this aspect, the method further includes distributing, to one or more nodes of the wireless network, information regarding communications links based on the information maintained by said server.
  • In a feature of this aspect, the method further includes distributing, to one or more nodes of the wireless network, information regarding network pathways based on the information maintained by said server.
  • In additional feature of the foregoing aspects, a message may be communicated between nodes utilizing transmission control protocol (TCP), and messages may be communicated between nodes of the wireless network via data packets.
  • In addition to the foregoing methods in accordance with aspects the invention, other aspects of the invention relate to wireless networks that utilize such methods and, in particular, such wireless networks that are ad hoc wireless networks. The wireless networks furthermore may comprise class-based wireless network that may be utilized for monitoring and/or tracking assets.
  • In features of these aspects, a node of the wireless network may be a data communications device and include, for example, a standards based radio such as a Bluetooth radio. The node may further includes a wireless receiver for powering up the standards based radio upon receipt of a broadcast that is intended for the standards based radio. The second wireless receiver further may perform a stepped wake-up sequence of the standards based radio. The standards based radio further may include a sensor interface whereby data is acquired by the data communications device from an associated sensor, and the wireless network may comprise a remote sensor interface (RSI) network.

Claims (21)

1-20. (canceled)
21. A method for maintaining information regarding communication links between a plurality of nodes in a wireless network, the method implemented by a first node, the first node including an audio codec and analog circuitry for audio playback via a speaker, the method comprising:
for each communication link that is established with one or more other nodes, recording an identification of the other nodes;
receiving a packet, by the first node from another node via the communication link with the other node, the packet including a network pathway by which the packet was communicated in the wireless network;
communicating another packet to a destination node in the wireless network that is intended for receipt by the destination node, the communicating of the packet by the first node including:
determining whether one or more network pathways from the first node to the destination node are known by the first node;
determining a preferred network pathway from the known network pathways; and
communicating the packet to the destination node via the preferred network pathway in the wireless network.
22. The method of claim 21, wherein if there is no known network pathway from the first node to the destination node, the method further comprising:
communicating with the plurality of nodes to determine a network pathway to the destination node.
23. The method of claim 21, wherein the determining the preferred network pathway from the known network pathways is based at least in part on a number of hops between the nodes in the known network pathways.
24. The method of claim 23, wherein the determining the preferred network pathway based on an overall number of hops of each of the one or more network pathways.
25. The method of claim 24, wherein the determining the preferred network pathway from the known network pathways comprises comparing the overall number of hops of the known network pathways.
26. The method of claim 21, wherein the determining whether the one or more network pathways from the first node to the destination node are known by the first node includes searching the maintained information for a network pathway from the first node to the destination node.
27. The method of claim 26, wherein the maintained information that is searched includes any network pathway to the destination node that is identified in the packet.
28. The method of claim 21, the first node the first node comprising a microphone; and the method further comprising:
detecting a sound with the microphone:
encoding a packet including a pathway and data indicative of the detected sound; and
transmitting the encoded packet.
29. The method of claim 21, the first node comprising a housing and indicator lights visible on the outside of the housing, and the method further comprising:
using one or more of the indicator lights to indicate that power to the first node is on or off.
30. The method of claim 21, the first node comprising a housing and indicator lights visible on the outside of the housing, and the method further comprising:
using one or more of the indicator lights to indicate local area network or wide area network connectivity.
31. A wireless communication device operating as a node for communication in a wireless network comprising a plurality of nodes, the wireless communication device comprising:
a receiver configured to receive radio frequency transmissions;
a transmitter configured to transmit radio frequency transmissions;
a memory configured to maintain information regarding communication links between the plurality of nodes in the wireless network;
an audio codec and analog circuitry for audio playback via a speaker; and
electronic components of the wireless communication device configured to:
for each communication link that is established with one or more other nodes, record an identification of the other nodes;
receive from another node, using the receiver and via the communication link with the other node, a packet including a network pathway by which the packet was communicated in the wireless network;
communicate another packet, using the transmitter, to a destination node in the wireless network, the packet intended for receipt by the destination node, the communication of the packet including to:
determine whether one or more network pathways from the node to the destination node are known by the node;
determine a preferred network pathway from the known network pathways; and
transmit the packet, using the transmitter, to the destination node via the preferred network pathway.
32. The wireless communication device of claim 31, wherein if there is no known network pathway from the node to the destination node, the electronic components are configured to:
communicate with the plurality of nodes to determine a network pathway to the destination node.
33. The wireless communication device of claim 31, wherein the determination of the preferred network pathway from the known network pathways is based at least in part on a number of hops between the nodes in the known network pathways.
34. The wireless communication device of claim 33, wherein the determination of the preferred network pathway based on an overall number of hops of each of the one or more network pathways.
35. The wireless communication device of claim 34, wherein the determination of the preferred network pathway from the known network pathways comprises comparing the overall number of hops of the known network pathways.
36. The wireless communication device of claim 31, wherein the determination of whether the one or more network pathways from the node to the destination node are known by the node, includes a search of the maintained information for a network pathway from the node to the destination node.
37. The wireless communication device of claim 36, wherein the maintained information that is searched includes any network pathway to the destination node that is identified in the packet.
38. The wireless communication device of claim 31, further comprising a microphone; and
the electronic components further configured to:
based on detecting a sound with the microphone:
encode a packet including a pathway and data indicative of the detected sound; and
transmit the encoded packet.
39. The wireless communication device of claim 31, further comprising:
a housing; and
indicator lights visible on the outside of the housing; and
the electronic components further configured to:
indicate, using one or more of the indicator lights, that power to the wireless communication device is on or off.
40. The wireless communication device of claim 31, further comprising:
a housing; and
indicator lights visible on the outside of the housing; and
the electronic components further configured to:
indicate, using one or more of the indicator lights, local area network or wide area network connectivity.
US16/841,954 2009-02-05 2020-04-07 Conjoined Class-Based Networking Abandoned US20200314957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/841,954 US20200314957A1 (en) 2009-02-05 2020-04-07 Conjoined Class-Based Networking

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US15029809P 2009-02-05 2009-02-05
US12/607,040 US8315237B2 (en) 2008-10-29 2009-10-27 Managing and monitoring emergency services sector resources
US12/609,009 US8275404B2 (en) 2008-10-29 2009-10-29 Managing and monitoring emergency services sector resources
US12/608,837 US8462662B2 (en) 2008-05-16 2009-10-29 Updating node presence based on communication pathway
US70145110A 2010-02-05 2010-02-05
US12/767,561 US8705523B2 (en) 2009-02-05 2010-04-26 Conjoined class-based networking
US13/620,344 US9907115B2 (en) 2009-02-05 2012-09-14 Conjoined class-based networking
US15/870,265 US10194486B2 (en) 2009-02-05 2018-01-12 Conjoined class-based networking
US16/238,471 US10652953B2 (en) 2009-02-05 2019-01-02 Conjoined class-based networking
US16/841,954 US20200314957A1 (en) 2009-02-05 2020-04-07 Conjoined Class-Based Networking

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/238,471 Continuation US10652953B2 (en) 2009-02-05 2019-01-02 Conjoined class-based networking

Publications (1)

Publication Number Publication Date
US20200314957A1 true US20200314957A1 (en) 2020-10-01

Family

ID=42980581

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/767,561 Active 2032-06-21 US8705523B2 (en) 2009-02-05 2010-04-26 Conjoined class-based networking
US13/620,344 Active 2031-01-01 US9907115B2 (en) 2009-02-05 2012-09-14 Conjoined class-based networking
US15/870,265 Active US10194486B2 (en) 2009-02-05 2018-01-12 Conjoined class-based networking
US16/238,471 Active US10652953B2 (en) 2009-02-05 2019-01-02 Conjoined class-based networking
US16/841,954 Abandoned US20200314957A1 (en) 2009-02-05 2020-04-07 Conjoined Class-Based Networking

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US12/767,561 Active 2032-06-21 US8705523B2 (en) 2009-02-05 2010-04-26 Conjoined class-based networking
US13/620,344 Active 2031-01-01 US9907115B2 (en) 2009-02-05 2012-09-14 Conjoined class-based networking
US15/870,265 Active US10194486B2 (en) 2009-02-05 2018-01-12 Conjoined class-based networking
US16/238,471 Active US10652953B2 (en) 2009-02-05 2019-01-02 Conjoined class-based networking

Country Status (1)

Country Link
US (5) US8705523B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8705523B2 (en) 2009-02-05 2014-04-22 Google Inc. Conjoined class-based networking
US9112790B2 (en) 2013-06-25 2015-08-18 Google Inc. Fabric network
US9571986B2 (en) 2014-05-07 2017-02-14 Johnson Controls Technology Company Systems and methods for detecting and using equipment location in a building management system
US10982868B2 (en) 2015-05-04 2021-04-20 Johnson Controls Technology Company HVAC equipment having locating systems and methods
US10481574B2 (en) 2016-05-04 2019-11-19 Johnson Controls Technology Company Building alarm management system with mobile device notifications

Family Cites Families (319)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693155A (en) * 1971-03-23 1972-09-19 Nat Telecommunications System Communication system
US3805265A (en) 1971-10-06 1974-04-16 Rcds Enterprises Inc Radiant wave locating system
US4165024A (en) 1977-09-09 1979-08-21 Cato Oil And Grease Co. Bulk shipping container
US4275385A (en) 1979-08-13 1981-06-23 Bell Telephone Laboratories, Incorporated Infrared personnel locator system
US4446454A (en) 1981-01-21 1984-05-01 Pyle Ronald E Home security system
US6919803B2 (en) 2002-06-11 2005-07-19 Intelligent Technologies International Inc. Low power remote asset monitoring
US4613990A (en) 1984-06-25 1986-09-23 At&T Bell Laboratories Radiotelephone transmission power control
CA1246681A (en) 1985-01-30 1988-12-13 Northern Telecom Limited Terminal address assignment in a broadcast transmission system
US4775999A (en) 1986-10-31 1988-10-04 Motorola, Inc. Registration of radiotelephones in networked cellular radiotelephone systems
US4688244A (en) 1986-11-10 1987-08-18 Marwan Hannon Integrated cargo security system
US4750197A (en) 1986-11-10 1988-06-07 Denekamp Mark L Integrated cargo security system
US4794368A (en) 1987-01-21 1988-12-27 Electronic Security Products Of California Programmable automobile alarm system having vocal alarm and reporting features
US4817537A (en) 1987-03-16 1989-04-04 Cripe Alan R Container carrying convertible rail-highway vehicle
US5425051A (en) 1992-11-09 1995-06-13 Norand Corporation Radio frequency communication network having adaptive parameters
US5117501A (en) 1988-08-08 1992-05-26 General Electric Company Dynamic regrouping in a trunked radio communications system
JPH0773385B2 (en) 1989-04-03 1995-08-02 三菱電機株式会社 Mobile phone equipment
GB8910997D0 (en) 1989-05-12 1989-06-28 Tunstall Telecom Ltd Radio transmission system
US5025254A (en) 1989-06-23 1991-06-18 Motorola, Inc. Communication system with improved resource assignment
US5682379A (en) 1993-12-23 1997-10-28 Norand Corporation Wireless personal local area network
US5805807A (en) 1990-05-25 1998-09-08 Norand Corporation Multilevel data communication system including local and host systems
US6006100A (en) 1990-05-25 1999-12-21 Norand Corporation Multi-level, hierarchical radio-frequency communication system
US5640151A (en) 1990-06-15 1997-06-17 Texas Instruments Incorporated Communication system for communicating with tags
DE69116946T2 (en) 1990-06-15 1996-06-20 Savi Techn Inc Radio identification and targeting method and apparatus
US5040238A (en) 1990-06-29 1991-08-13 Motorola, Inc. Trunking system communication resource reuse method
JPH0470584A (en) 1990-07-11 1992-03-05 Mitsubishi Electric Corp satellite navigation equipment
US5206903A (en) 1990-12-26 1993-04-27 At&T Bell Laboratories Automatic call distribution based on matching required skills with agents skills
JPH04369492A (en) 1991-06-18 1992-12-22 Pioneer Electron Corp Gps position measurement device
US5401946A (en) 1991-07-22 1995-03-28 Weinblatt; Lee S. Technique for correlating purchasing behavior of a consumer to advertisements
US5369784A (en) 1991-08-01 1994-11-29 City Communications Limited Radio communications system using multiple simultaneously transmitting transceivers
DE69232639T2 (en) 1991-10-01 2003-02-20 Norand Corp LOCAL RADIO FREQUENCY NETWORK
US5974236A (en) 1992-03-25 1999-10-26 Aes Corporation Dynamically reconfigurable communications network and method
US5558013A (en) 1992-05-07 1996-09-24 Blackstone, Jr.; James O. Device and method for electronically measuring the fullness of a trash receptacle
JP2798557B2 (en) 1992-06-19 1998-09-17 シャープ株式会社 Track display device for navigation system
WO1994006087A1 (en) 1992-09-01 1994-03-17 Nuttall David J H Information model based on a physical system
US5543778A (en) 1993-04-19 1996-08-06 Code-Alarm, Inc. Security system
US7397363B2 (en) 1993-06-08 2008-07-08 Raymond Anthony Joao Control and/or monitoring apparatus and method
US5790946A (en) 1993-07-15 1998-08-04 Rotzoll; Robert R. Wake up device for a communications system
US5442758A (en) 1993-07-19 1995-08-15 Sequent Computer Systems, Inc. Apparatus and method for achieving reduced overhead mutual exclusion and maintaining coherency in a multiprocessor system utilizing execution history and thread monitoring
US5331637A (en) 1993-07-30 1994-07-19 Bell Communications Research, Inc. Multicast routing using core based trees
DE4329697C2 (en) 1993-09-02 1995-10-05 Siemens Ag Remote controllable access control device
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
US5555376A (en) 1993-12-03 1996-09-10 Xerox Corporation Method for granting a user request having locational and contextual attributes consistent with user policies for devices having locational attributes consistent with the user request
CA2135856A1 (en) 1993-12-10 1995-06-11 Steven Peter Allen Low power, addressable data communication device and method
JP2974274B2 (en) 1994-05-12 1999-11-10 エヌ・ティ・ティ移動通信網株式会社 Transmission power control method and transmission power control device
US5461390A (en) 1994-05-27 1995-10-24 At&T Ipm Corp. Locator device useful for house arrest and stalker detection
US5530702A (en) 1994-05-31 1996-06-25 Ludwig Kipp System for storage and communication of information
US5771459A (en) 1994-06-21 1998-06-23 U.S. Philips Corporation Communication system for use with stationary and second entities, via a wireless intermediate network with gateway devices, a gateway device for use with such system, and a mobile entity provided with such gateway device
US5579306A (en) 1994-09-01 1996-11-26 Ericsson Inc. Time and frequency slot allocation system and method
US5550547A (en) 1994-09-12 1996-08-27 International Business Machines Corporation Multiple item radio frequency tag identification protocol
US5565858A (en) 1994-09-14 1996-10-15 Northrop Grumman Corporation Electronic inventory system for stacked containers
US5596625A (en) 1994-09-28 1997-01-21 U S West Technologies, Inc. Method for routing emergency calls during busy interface channel conditions
US5649286A (en) 1994-11-14 1997-07-15 Bellsouth Corporation Method for managing the registration of a wireless unit
US5525992A (en) 1994-11-14 1996-06-11 Texas Instruments Deutschland Gmbh Method and system for conserving power in a recognition system
US5511232A (en) 1994-12-02 1996-04-23 Motorola, Inc. Method for providing autonomous radio talk group configuration
US5610969A (en) 1994-12-23 1997-03-11 Bell Atlantic Mobile Systems, Inc. Personal communication service registration system and method
US5793882A (en) 1995-03-23 1998-08-11 Portable Data Technologies, Inc. System and method for accounting for personnel at a site and system and method for providing personnel with information about an emergency site
US5596652A (en) 1995-03-23 1997-01-21 Portable Data Technologies, Inc. System and method for accounting for personnel at a site and system and method for providing personnel with information about an emergency site
ZA959074B (en) 1995-04-12 1996-05-22 Lo Jack Corp Vehicle tracking transponder system and transponding method
US5577029A (en) 1995-05-04 1996-11-19 Interwave Communications Cellular communication network having intelligent switching nodes
RU95107478A (en) 1995-05-18 1997-02-10 А.И. Грушин Method for removal of most insignificant digits in computations with floating point
US6097707A (en) 1995-05-19 2000-08-01 Hodzic; Migdat I. Adaptive digital wireless communications network apparatus and process
US5691980A (en) 1995-06-07 1997-11-25 General Electric Company Local communication network for power reduction and enhanced reliability in a multiple node tracking system
US5686888A (en) 1995-06-07 1997-11-11 General Electric Company Use of mutter mode in asset tracking for gathering data from cargo sensors
US5950124A (en) 1995-09-06 1999-09-07 Telxon Corporation Cellular communication system with dynamically modified data transmission parameters
US5833910A (en) 1995-10-03 1998-11-10 Mecanismos Auxiliares Industiales S.A. Mold and method for manufacturing conduit grommet elements
US5933354A (en) 1995-10-13 1999-08-03 Matsushita Electric Industrial Co., Ltd. System for controlling physical distribution pallets
US6005884A (en) 1995-11-06 1999-12-21 Ems Technologies, Inc. Distributed architecture for a wireless data communications system
GB2308947A (en) 1996-01-04 1997-07-09 I D Systems Ltd Identification tag with environmental sensing facility
US5850592A (en) 1996-01-11 1998-12-15 Gte Internetworking Incorporated Method for self-organizing mobile wireless station network
US5652751A (en) 1996-03-26 1997-07-29 Hazeltine Corporation Architecture for mobile radio networks with dynamically changing topology using virtual subnets
US7253731B2 (en) 2001-01-23 2007-08-07 Raymond Anthony Joao Apparatus and method for providing shipment information
US5850187A (en) 1996-03-27 1998-12-15 Amtech Corporation Integrated electronic tag reader and wireless communication link
JP2803626B2 (en) 1996-04-05 1998-09-24 日本電気株式会社 Transmission power control method for mobile radio terminals
US5881366A (en) 1996-05-01 1999-03-09 Logitech, Inc. Wireless peripheral interface
US6130602A (en) 1996-05-13 2000-10-10 Micron Technology, Inc. Radio frequency data communications device
US6058374A (en) 1996-06-20 2000-05-02 Northrop Grumman Corporation Inventorying method and system for monitoring items using tags
US6128549A (en) 1996-06-21 2000-10-03 Symbol Technologies, Inc. RF interrogatable processing system
US5892441A (en) 1996-06-26 1999-04-06 Par Government Systems Corporation Sensing with active electronic tags
US5917433A (en) 1996-06-26 1999-06-29 Orbital Sciences Corporation Asset monitoring system and associated method
US5959568A (en) 1996-06-26 1999-09-28 Par Goverment Systems Corporation Measuring distance
US5887176A (en) 1996-06-28 1999-03-23 Randtec, Inc. Method and system for remote monitoring and tracking of inventory
US5873040A (en) 1996-08-13 1999-02-16 International Business Machines Corporation Wireless 911 emergency location
US5907491A (en) 1996-08-23 1999-05-25 Csi Technology, Inc. Wireless machine monitoring and communication system
US6201974B1 (en) 1996-09-06 2001-03-13 Nokia Mobile Phones Limited Mobile station and network having hierarchical index for cell broadcast service
US5892764A (en) 1996-09-16 1999-04-06 Sphere Communications Inc. ATM LAN telephone system
US5812049A (en) 1996-10-25 1998-09-22 Micro Utility Ltd. System and method for monitoring a competitive activity
US5950133A (en) 1996-11-05 1999-09-07 Lockheed Martin Corporation Adaptive communication network
US5890054A (en) 1996-11-14 1999-03-30 Telxon Corporation Emergency mobile routing protocol
US5999091A (en) 1996-11-25 1999-12-07 Highwaymaster Communications, Inc. Trailer communications system
US6700493B1 (en) 1996-12-02 2004-03-02 William A. Robinson Method, apparatus and system for tracking, locating and monitoring an object or individual
GB9625208D0 (en) 1996-12-04 1997-01-22 Olivetti Research Ltd Detection system for determining information about objects
JP3097581B2 (en) 1996-12-27 2000-10-10 日本電気株式会社 Ad-hoc local area network configuration method, communication method and terminal
US5977913A (en) 1997-02-07 1999-11-02 Dominion Wireless Method and apparatus for tracking and locating personnel
US5978738A (en) 1997-02-13 1999-11-02 Anthony Brown Severe weather detector and alarm
CA2207371A1 (en) 1997-06-09 1998-12-09 Andre Gagnon Apparatus for monitoring opening of sealed containers
US5963134A (en) 1997-07-24 1999-10-05 Checkpoint Systems, Inc. Inventory system using articles with RFID tags
US6409082B1 (en) 1997-07-25 2002-06-25 Perseu Administration (Proprietary) Limited Tracking of products
US6072784A (en) 1997-07-25 2000-06-06 At&T Corp. CDMA mobile station wireless transmission power management with adaptive scheduling priorities based on battery power level
KR100284257B1 (en) 1997-08-31 2001-03-02 윤종용 Automatic starting device of electronic toll collection system
US6044069A (en) 1997-10-29 2000-03-28 Conexant Systems, Inc. Power management system for a mobile station
US6091724A (en) 1997-11-20 2000-07-18 International Business Machines Corporation Routing messages within a network using the data content of the message
US6343073B1 (en) * 1997-12-31 2002-01-29 Anip, Inc. Method and system for efficient link utlization
US6593845B1 (en) 1998-01-09 2003-07-15 Intermac Ip Corp. Active RF tag with wake-up circuit to prolong battery life
US20020073646A1 (en) 1998-01-23 2002-06-20 Von Gutfeld Robert J. Apparatus and system for rapidly attaching identifiers to items
US6104512A (en) 1998-01-23 2000-08-15 Motorola, Inc. Method for adjusting the power level of an infrared signal
US5936527A (en) 1998-02-10 1999-08-10 E-Tag Systems, Inc. Method and apparatus for locating and tracking documents and other objects
JPH11243584A (en) 1998-02-26 1999-09-07 Fujitsu Ltd Emergency call control device for mobile communication system
KR100291413B1 (en) 1998-03-02 2001-07-12 김영환 Transmission power control device of mobile communication terminal
US6476708B1 (en) 1998-03-20 2002-11-05 Hid Corporation Detection of an RFID device by an RF reader unit operating in a reduced power state
US6512455B2 (en) 1999-09-27 2003-01-28 Time Domain Corporation System and method for monitoring assets, objects, people and animals utilizing impulse radio
US6282407B1 (en) 1998-04-16 2001-08-28 Motorola, Inc. Active electrostatic transceiver and communicating system
US6473607B1 (en) 1998-06-01 2002-10-29 Broadcom Corporation Communication device with a self-calibrating sleep timer
US6437692B1 (en) 1998-06-22 2002-08-20 Statsignal Systems, Inc. System and method for monitoring and controlling remote devices
NZ510618A (en) 1998-09-03 2003-03-28 Wherenet Corp Network for multi-lateration with circularly polarized antenna
CA2343412A1 (en) 1998-09-11 2000-03-23 William C. Maloney Object control and tracking system with zonal transition detection
WO2000016281A1 (en) 1998-09-11 2000-03-23 Key-Trak, Inc. Mobile object tracking system
US6084512A (en) 1998-10-02 2000-07-04 Lucent Technologies, Inc. Method and apparatus for electronic labeling and localizing
US7088233B2 (en) 1998-10-23 2006-08-08 Royal Thoughts, Llc Personal medical device communication system and method
US6154658A (en) 1998-12-14 2000-11-28 Lockheed Martin Corporation Vehicle information and safety control system
US6285295B1 (en) 1998-12-14 2001-09-04 Martin S. Casden Passive remote programmer for induction type RFID readers
US6246882B1 (en) 1998-12-22 2001-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Wide area item tracking system
JP4086393B2 (en) 1998-12-25 2008-05-14 キヤノン株式会社 COMMUNICATION SYSTEM, COMMUNICATION DEVICE, AND CONTROL METHOD THEREOF
US6525648B1 (en) 1999-01-29 2003-02-25 Intermec Ip Corp Radio frequency identification systems and methods for waking up data storage devices for wireless communication
US7184413B2 (en) 1999-02-10 2007-02-27 Nokia Inc. Adaptive communication protocol for wireless networks
US6700533B1 (en) 1999-05-06 2004-03-02 Rf Technologies, Inc. Asset and personnel tagging system utilizing GPS
WO2000068907A1 (en) 1999-05-06 2000-11-16 Pinpoint Corporation An asset and personnel tagging system utilizing gps
SE514264C2 (en) 1999-05-07 2001-01-29 Ericsson Telefon Ab L M A communication system
EP1192730A4 (en) 1999-05-21 2007-09-05 Ralph J Koerner Identification system for monitoring the presence/absence of members of a defined set
US7027773B1 (en) 1999-05-28 2006-04-11 Afx Technology Group International, Inc. On/off keying node-to-node messaging transceiver network with dynamic routing and configuring
JP2003508939A (en) 1999-05-28 2003-03-04 ベーシック・リソーシィズ・インコーポレイテッド Wireless transceiver network using inter-node data messages
US6761312B2 (en) 1999-07-30 2004-07-13 Salamander Technologies, Inc. System and method for tracking victims of a mass casualty incident
US6677852B1 (en) 1999-09-22 2004-01-13 Intermec Ip Corp. System and method for automatically controlling or configuring a device, such as an RFID reader
US6404082B1 (en) 1999-09-24 2002-06-11 Siemens Westinghouse Power Corporation Exciter having thermally isolated diode wheel and method of removing diode wheel for same
US6735630B1 (en) 1999-10-06 2004-05-11 Sensoria Corporation Method for collecting data using compact internetworked wireless integrated network sensors (WINS)
US6256303B1 (en) 1999-10-15 2001-07-03 Akoo, Inc. Wireless broadcast link to remote receiver
US6914896B1 (en) 1999-11-05 2005-07-05 Rockwell Electronic Commerce Technologies, Llc Emergency services management network utilizing broadband voice over data networks
US6614349B1 (en) 1999-12-03 2003-09-02 Airbiquity Inc. Facility and method for tracking physical assets
US6751200B1 (en) 1999-12-06 2004-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Route discovery based piconet forming
US6512478B1 (en) 1999-12-22 2003-01-28 Rockwell Technologies, Llc Location position system for relay assisted tracking
US6354493B1 (en) 1999-12-23 2002-03-12 Sensormatic Electronics Corporation System and method for finding a specific RFID tagged article located in a plurality of RFID tagged articles
GB9930645D0 (en) 1999-12-23 2000-02-16 Koninkl Philips Electronics Nv Location alarm
US6617962B1 (en) 2000-01-06 2003-09-09 Samsys Technologies Inc. System for multi-standard RFID tags
US6313745B1 (en) 2000-01-06 2001-11-06 Fujitsu Limited System and method for fitting room merchandise item recognition using wireless tag
WO2001056907A1 (en) 2000-01-31 2001-08-09 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Method and apparatus for container management
US6262662B1 (en) 2000-02-25 2001-07-17 Xerox Corporation Systems and methods that detect proximity information using electric field sensing devices and a page identification using embedded identification tags
US6975941B1 (en) 2002-04-24 2005-12-13 Chung Lau Method and apparatus for intelligent acquisition of position information
JP2001242210A (en) 2000-02-29 2001-09-07 Murata Mfg Co Ltd High frequency part, communication device and characteristic measuring method of high frequency part
US6547137B1 (en) 2000-02-29 2003-04-15 Larry J. Begelfer System for distribution and control of merchandise
US6800533B1 (en) 2000-03-06 2004-10-05 Chartered Semiconductor Manufacturing Ltd. Integrated vertical spiral inductor on semiconductor material
US6701215B1 (en) 2000-05-08 2004-03-02 Greg C. Stadermann Bulk mailing tracking system
GB0013619D0 (en) 2000-06-06 2000-07-26 Glaxo Group Ltd Sample container
US7005968B1 (en) 2000-06-07 2006-02-28 Symbol Technologies, Inc. Wireless locating and tracking systems
US7103344B2 (en) 2000-06-08 2006-09-05 Menard Raymond J Device with passive receiver
US20020002627A1 (en) 2000-06-20 2002-01-03 Graham Stead Method and system for interconnecting remote intelligent devices with a network
US6381467B1 (en) 2000-06-22 2002-04-30 Motorola, Inc. Method and apparatus for managing an ad hoc wireless network
US6847892B2 (en) 2001-10-29 2005-01-25 Digital Angel Corporation System for localizing and sensing objects and providing alerts
US6559620B2 (en) 2001-03-21 2003-05-06 Digital Angel Corporation System and method for remote monitoring utilizing a rechargeable battery
US6587755B1 (en) 2000-07-12 2003-07-01 International Business Machines Corporation Virtual signs for improving information communicated to the automotive driver
US6659947B1 (en) 2000-07-13 2003-12-09 Ge Medical Systems Information Technologies, Inc. Wireless LAN architecture for integrated time-critical and non-time-critical services within medical facilities
KR100469735B1 (en) 2000-07-18 2005-02-02 삼성전자주식회사 Call admission method in cdma mobile communication system
US6529142B2 (en) 2000-07-24 2003-03-04 Shipong Norman Yeh Parked vehicle location finder
US7161476B2 (en) 2000-07-26 2007-01-09 Bridgestone Firestone North American Tire, Llc Electronic tire management system
WO2002007993A2 (en) 2000-07-26 2002-01-31 Bridgestone/Firestone, Inc. Electronic tire management system
US6795823B1 (en) 2000-08-31 2004-09-21 Neoris Logistics, Inc. Centralized system and method for optimally routing and tracking articles
EP2341470A1 (en) 2000-09-07 2011-07-06 Savi Technology, Inc. Method and apparatus for tracking devices using tags
US6720888B2 (en) 2000-09-07 2004-04-13 Savi Technology, Inc. Method and apparatus for tracking mobile devices using tags
US6940392B2 (en) 2001-04-24 2005-09-06 Savi Technology, Inc. Method and apparatus for varying signals transmitted by a tag
US6765484B2 (en) 2000-09-07 2004-07-20 Savi Technology, Inc. Method and apparatus for supplying commands to a tag
US6542114B1 (en) 2000-09-07 2003-04-01 Savi Technology, Inc. Method and apparatus for tracking items using dual frequency tags
US6360169B1 (en) 2000-09-07 2002-03-19 Umesh Dudabey System for determining and tracking changes in location
GB2367720B (en) 2000-10-04 2004-08-18 Hewlett Packard Co Method and apparatus for disabling mobile telephones
US6883710B2 (en) 2000-10-11 2005-04-26 Amerasia International Technology, Inc. Article tracking system and method
US6424264B1 (en) 2000-10-12 2002-07-23 Safetzone Technologies Corporation System for real-time location of people in a fixed environment
US6741174B2 (en) 2000-10-30 2004-05-25 Ocean Systems Engineering Corporation Environment and hazard condition monitoring system
US7034683B2 (en) 2000-11-06 2006-04-25 Loran Technologies, Inc. Electronic vehicle product and personnel monitoring
US6747562B2 (en) 2001-11-13 2004-06-08 Safetzone Technologies Corporation Identification tag for real-time location of people
US7253717B2 (en) 2000-11-29 2007-08-07 Mobile Technics Llc Method and system for communicating with and tracking RFID transponders
US6600418B2 (en) 2000-12-12 2003-07-29 3M Innovative Properties Company Object tracking and management system and method using radio-frequency identification tags
US6807792B2 (en) 2000-12-18 2004-10-26 Tetra Laval Holdings & Finance, Sa Spout singulator for closure feed system
US7733818B2 (en) 2000-12-22 2010-06-08 Terahop Networks, Inc. Intelligent node communication using network formation messages in a mobile Ad hoc network
US7940716B2 (en) 2005-07-01 2011-05-10 Terahop Networks, Inc. Maintaining information facilitating deterministic network routing
US7133704B2 (en) 2000-12-22 2006-11-07 Terahop Networks, Inc. Manufacture of LPRF device wake up using wireless tag
US7155264B2 (en) 2000-12-22 2006-12-26 Terahop Networks, Inc. Systems and methods having LPRF device wake up using wireless tag
US7830850B2 (en) 2000-12-22 2010-11-09 Terahop Networks, Inc. Class-switching in class-based data communcations network
US8280345B2 (en) 2000-12-22 2012-10-02 Google Inc. LPRF device wake up using wireless tag
US6745027B2 (en) 2000-12-22 2004-06-01 Seekernet Incorporated Class switched networks for tracking articles
US7522568B2 (en) 2000-12-22 2009-04-21 Terahop Networks, Inc. Propagating ad hoc wireless networks based on common designation and routine
US6934540B2 (en) 2000-12-22 2005-08-23 Seekernet, Inc. Network formation in asset-tracking system based on asset class
US20080303897A1 (en) 2000-12-22 2008-12-11 Terahop Networks, Inc. Visually capturing and monitoring contents and events of cargo container
US20100330930A1 (en) 2000-12-22 2010-12-30 Twitchell Robert W Lprf device wake up using wireless tag
US7221668B2 (en) 2000-12-22 2007-05-22 Terahop Networks, Inc. Communications within population of wireless transceivers based on common designation
JP3816334B2 (en) 2000-12-22 2006-08-30 株式会社エヌ・ティ・ティ・ドコモ Radio resource allocation method and base station
US7830273B2 (en) * 2005-08-18 2010-11-09 Terahop Networks, Inc. Sensor networks for pipeline monitoring
US7200132B2 (en) 2000-12-22 2007-04-03 Terahop Networks, Inc. Forming ad hoc RSI networks among transceivers sharing common designation
US8315563B2 (en) 2000-12-22 2012-11-20 Google Inc. Wireless reader tags (WRTs) with sensor components in asset monitoring and tracking systems
US7209468B2 (en) 2000-12-22 2007-04-24 Terahop Networks, Inc. Forming communication cluster of wireless AD HOC network based on common designation
US7430437B2 (en) 2000-12-22 2008-09-30 Terahop Networks, Inc. Transmitting sensor-acquired data using step-power filtering
US7209771B2 (en) 2000-12-22 2007-04-24 Terahop Networks, Inc. Battery powered wireless transceiver having LPRF component and second wake up receiver
US20020098861A1 (en) 2001-01-19 2002-07-25 International Business Machines Corporation Method and system for preventing wireless devices from interfering with other equipment in a sensitive area
US20020146985A1 (en) 2001-01-31 2002-10-10 Axonn Corporation Battery operated remote transceiver (BORT) system and method
ATE498166T1 (en) 2001-02-12 2011-02-15 Symbol Technologies Inc ARCHITECTURE FOR RADIO FREQUENCY IDENTIFICATION
US7137003B2 (en) 2001-02-27 2006-11-14 Qualcomm Incorporated Subscriber identity module verification during power management
EP1246094A1 (en) 2001-03-27 2002-10-02 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Container surveillance system and related method
US7171476B2 (en) 2001-04-20 2007-01-30 Motorola, Inc. Protocol and structure for self-organizing network
GB0110759D0 (en) 2001-05-02 2001-06-27 Marks Roger J Antenna clamp
US20020170961A1 (en) 2001-05-17 2002-11-21 Bruce Dickson Method and system for providing shopping assistance using RFID-tagged items
AU2002310023A1 (en) 2001-05-22 2002-12-03 Geospatial Technologies, Inc. A durable global asset-tracking device and a method of using the same
US6988667B2 (en) 2001-05-31 2006-01-24 Alien Technology Corporation Methods and apparatuses to identify devices
US6822432B2 (en) 2001-06-22 2004-11-23 Network Technologies Group, Llc Methods and systems for automated pipeline testing
US7161926B2 (en) 2001-07-03 2007-01-09 Sensoria Corporation Low-latency multi-hop ad hoc wireless network
US6894600B2 (en) 2001-07-05 2005-05-17 The Goodyear Tire & Rubber Company Energy conservation in battery powered tag
US20030141973A1 (en) 2001-07-24 2003-07-31 Hen-Geul Yeh Smart object locator
US6737974B2 (en) 2001-09-18 2004-05-18 Kent H. Dickinson Shipping container and system along with shipping method employing the same
US6674364B1 (en) 2001-09-28 2004-01-06 Digital Innovations, L.L.C. Object finder
US6766169B2 (en) 2001-10-30 2004-07-20 Qualcomm Incorporated Scheduling acquisition attempts of service providing systems
US7233958B2 (en) 2002-02-01 2007-06-19 Sap Aktiengesellschaft Communications in an item tracking system
US7969306B2 (en) 2002-01-11 2011-06-28 Sap Aktiengesellschaft Context-aware and real-time item tracking system architecture and scenarios
WO2003063103A1 (en) 2002-01-18 2003-07-31 Georgia Tech Research Corporation Monitoring and tracking of assets by utilizing wireless communications
US6980823B2 (en) 2002-01-31 2005-12-27 Qualcomm Inc. Intermediate wake mode to track sleep clock frequency in a wireless communication device
US20050159187A1 (en) 2002-03-18 2005-07-21 Greg Mendolia Antenna system and method
US20030179073A1 (en) 2002-03-20 2003-09-25 Ohanes Ghazarian Electronic secure locking system
US6876945B2 (en) 2002-03-25 2005-04-05 Nicholas Jon Emord Seamless sensory system
US7327280B2 (en) 2002-08-15 2008-02-05 California Institute Of Technology Emergency vehicle traffic signal preemption system
GB0208449D0 (en) 2002-04-10 2002-05-22 Zarlink Semiconductor Ab Method of saving power in RF devices
US7230933B2 (en) 2002-04-17 2007-06-12 Microsoft Corporation Reducing idle power consumption in a networked battery operated device
US7184423B2 (en) 2002-04-23 2007-02-27 Machine Talker Inc. Self coordinated machine network
US7015817B2 (en) 2002-05-14 2006-03-21 Shuan Michael Copley Personal tracking device
CA2387106A1 (en) 2002-05-21 2003-11-21 Information Mediary Corporation Method for measuring temperature using a remote, passive, calibrated rf/rfid tag including a method for calibration
US20050249185A1 (en) * 2002-06-07 2005-11-10 Poor Robert D Routing in wireless networks
US7251233B2 (en) 2002-06-24 2007-07-31 Intel Corporation Call routing in a location-aware network
US20040021572A1 (en) 2002-08-05 2004-02-05 Schoen Marc L. Electronic baggage tracking and identification
US6753775B2 (en) 2002-08-27 2004-06-22 Hi-G-Tek Ltd. Smart container monitoring system
US6961021B2 (en) 2002-08-29 2005-11-01 Omron Corporation Wireless node that uses a circular polarized antenna and a mechanism for preventing corner reflections of an inside of a metal box space
US7002472B2 (en) 2002-09-04 2006-02-21 Northrop Grumman Corporation Smart and secure container
US6975614B2 (en) 2002-09-04 2005-12-13 Harris Corporation Intelligent communication node object beacon framework in a mobile ad hoc network
WO2004038638A2 (en) 2002-10-09 2004-05-06 Mdf Holdings, Inc. System and method for tracking the location of multiple mobile radio transceiver units
US7072697B2 (en) 2002-10-22 2006-07-04 Nokia Corporation Method and device for transponder aided wake-up of a low power radio device by a wake-up event
US20040100394A1 (en) 2002-10-28 2004-05-27 Hitt Dale K. Distributed environmental control in a wireless sensor system
US7274295B2 (en) 2002-10-30 2007-09-25 At&T Bls Intellectual Property, Inc. Instantaneous mobile access to all pertinent life events
EP2485507B1 (en) 2002-11-11 2014-07-16 Nokia Corporation Location dependent messaging
US7344037B1 (en) 2002-11-18 2008-03-18 Mi-Jack Products, Inc. Inventory storage and retrieval system and method with guidance for load-handling vehicle
CA2427369A1 (en) 2002-12-24 2004-06-24 Research In Motion Limited Methods and apparatus for controlling power to electrical circuitry of a wireless communication device having a subscriber identity module (sim) interface
US7091859B2 (en) 2003-01-13 2006-08-15 Symbol Technologies, Inc. Package-integrated RF relay
EP1584077A1 (en) 2003-01-14 2005-10-12 United Technologies Corporation Shipping container and method of using same
US20040246463A1 (en) 2003-01-29 2004-12-09 Milinusic Tomislav F. Method and apparatus for optical inertial measurement
US20040183673A1 (en) 2003-01-31 2004-09-23 Nageli Hans Peter Portable detachable self-contained tracking unit for two-way satellite communication with a central server
US7323981B2 (en) 2003-02-20 2008-01-29 Global Statistics, Inc. Container tracking system
GB2424979A (en) 2003-02-21 2006-10-11 Westinghouse Goverment Environ Cargo lock and monitoring apparatus
US7135976B2 (en) 2003-03-31 2006-11-14 Rftrax, Inc. Wireless monitoring device
US6927688B2 (en) 2003-04-02 2005-08-09 Caci International Inc. Method for enabling communication and condition monitoring from inside of a sealed shipping container using impulse radio wireless techniques
US7196622B2 (en) 2003-04-09 2007-03-27 Savi Technology, Inc. State monitoring of a container
US7489244B2 (en) 2003-04-09 2009-02-10 Visible Assets, Inc. Networked RF tag for tracking baggage
US7489245B2 (en) 2003-04-09 2009-02-10 Visible Assets, Inc Networked RF tag for tracking baggage
US20100033330A1 (en) 2003-04-09 2010-02-11 Visible Assets, Inc. Auditable security for cargo containers and other repositories
BRPI0411487A (en) 2003-06-17 2006-07-25 United Security Appl Id Inc tracking system for use in identifying the contents of a container, system for tracking items in a collection, system for managing items in a collection, and method for managing items in a collection
US7177623B2 (en) 2003-07-02 2007-02-13 The United States Of America As Represented By The Secretary Of The Army Localized cellular awareness and tracking of emergencies
US7701858B2 (en) 2003-07-17 2010-04-20 Sensicast Systems Method and apparatus for wireless communication in a mesh network
US7191934B2 (en) 2003-07-21 2007-03-20 Salamander Technologies, Inc. Technique for creating incident-specific credentials at the scene of a large-scale incident or WMD event
US7282944B2 (en) 2003-07-25 2007-10-16 Power Measurement, Ltd. Body capacitance electric field powered device for high voltage lines
US7098784B2 (en) 2003-09-03 2006-08-29 System Planning Corporation System and method for providing container security
US7158803B1 (en) 2003-09-16 2007-01-02 Verizon Corporate Services Group Inc. Emergency services for wireless data access networks
US20050087235A1 (en) 2003-10-22 2005-04-28 Skorpik James R. Sensor assembly, system including RFID sensor assemblies, and method
US7148803B2 (en) 2003-10-24 2006-12-12 Symbol Technologies, Inc. Radio frequency identification (RFID) based sensor networks
US7136667B2 (en) 2003-10-28 2006-11-14 Nokia Corporation Method and radio terminal equipment arrangement for power control, radio terminal equipment and secondary terminal unit
US7716160B2 (en) 2003-11-07 2010-05-11 Alien Technology Corporation Methods and apparatuses to identify devices
US20050125325A1 (en) 2003-12-08 2005-06-09 Chai Zhong H. Efficient aggregate summary views of massive numbers of items in highly concurrent update environments
EP1692668A4 (en) 2003-12-09 2008-10-08 Savi Techn Inc Item-level visibility of nested and adjacent containers
JP4629971B2 (en) 2003-12-11 2011-02-09 株式会社半導体エネルギー研究所 Nonlinear A / D converted digital signal compatible D / A conversion circuit, audio signal processing circuit incorporating the same, and display device
US7394372B2 (en) 2003-12-30 2008-07-01 G2 Microsystems Pty. Ltd. Method and apparatus for aggregating and communicating tracking information
US7212122B2 (en) 2003-12-30 2007-05-01 G2 Microsystems Pty. Ltd. Methods and apparatus of meshing and hierarchy establishment for tracking devices
US7049982B2 (en) 2003-12-31 2006-05-23 Lear Corporation Vehicle information display and communication system having an antenna array
US7526944B2 (en) 2004-01-07 2009-05-05 Ashok Sabata Remote monitoring of pipelines using wireless sensor network
US20050249215A1 (en) * 2004-02-19 2005-11-10 Kelsey Richard A Directing packets in a mesh network
KR100689550B1 (en) 2004-02-28 2007-03-02 삼성전자주식회사 How to Send Hello Packet in Mobile Ad Hoc Network
US7165722B2 (en) 2004-03-10 2007-01-23 Microsoft Corporation Method and system for communicating with identification tags
US7138913B2 (en) 2004-03-12 2006-11-21 Transport International Pool, Inc. Selective reporting of events in asset tracking system
US7126470B2 (en) 2004-03-31 2006-10-24 Harris Corporation Wireless ad-hoc RFID tracking system
KR100624792B1 (en) 2004-04-22 2006-09-20 엘지전자 주식회사 Wireless network system
US8131300B2 (en) * 2004-04-28 2012-03-06 Motorola Solutions, Inc. Routing protocol within hybrid-cellular networks
US7348875B2 (en) 2004-05-04 2008-03-25 Battelle Memorial Institute Semi-passive radio frequency identification (RFID) tag with active beacon
US20050261037A1 (en) 2004-05-18 2005-11-24 Raghunath Mandayam T Conservation of battery power in mobile devices having communication capabilities
US7376507B1 (en) 2004-05-27 2008-05-20 Sandia Corporation Geophysics-based method of locating a stationary earth object
US7142121B2 (en) 2004-06-04 2006-11-28 Endicott Interconnect Technologies, Inc. Radio frequency device for tracking goods
US7088229B2 (en) 2004-06-14 2006-08-08 Oracle International Corporation Methods and systems for verifying the position and status of hierarchically arranged objects
US7319397B2 (en) 2004-08-26 2008-01-15 Avante International Technology, Inc. RFID device for object monitoring, locating, and tracking
US7536188B1 (en) 2004-09-01 2009-05-19 Avaya Inc. Communication device locating system
US7419101B2 (en) 2004-09-13 2008-09-02 Omron Corporation Physical distribution management apparatus, physical distribution management pallet and physical distribution management system
US7349803B2 (en) 2004-10-18 2008-03-25 Trex Enterprises Corp. Daytime stellar imager
US7349804B2 (en) 2004-10-18 2008-03-25 Trex Enterprises Corp. Daytime stellar imager
US7339469B2 (en) 2004-11-22 2008-03-04 Maersk Logistics Usa, Inc. Shipping container monitoring and tracking system
TW200617792A (en) 2004-11-26 2006-06-01 Ind Tech Res Inst Method and device applying RFID system tag to serve as local card reader and for power detection
US7317382B2 (en) 2004-12-13 2008-01-08 Battelle Memorial Institute Remote communications devices, wireless communications systems, and wireless communications methods
US7330736B2 (en) 2004-12-17 2008-02-12 Bbn Technologies Corp. Methods and apparatus for reduced energy communication in an ad hoc network
FI118291B (en) 2004-12-22 2007-09-14 Timo D Haemaelaeinen Energy efficient wireless sensor network, node devices for the same and method of arranging, the communications in a wireless sensor network
US7589616B2 (en) 2005-01-20 2009-09-15 Avaya Inc. Mobile devices including RFID tag readers
US7121502B2 (en) 2005-01-26 2006-10-17 Raytheon Company Pseudo GPS aided multiple projectile bistatic guidance
US20060231611A1 (en) 2005-03-23 2006-10-19 Chakiris Phil M Radio frequency identification purchase transactions
US7369047B2 (en) 2005-03-30 2008-05-06 Crossbow Technology, Inc. Adaptive sensing network
WO2006113391A2 (en) 2005-04-19 2006-10-26 Jaymart Sensors, Llc Miniaturized inertial measurement unit and associated methods
US8111143B2 (en) 2005-04-29 2012-02-07 Hewlett-Packard Development Company, L.P. Assembly for monitoring an environment
US20070008408A1 (en) 2005-06-22 2007-01-11 Ron Zehavi Wide area security system and method
KR100766039B1 (en) 2005-07-06 2007-10-12 삼성전자주식회사 Structure of a superframe transmitted in a wireless communication network, a method of transmitting the superframe, and a wake-up control method of a device through the superframe
JP2007058166A (en) 2005-07-25 2007-03-08 Konica Minolta Opto Inc Dichroic prism and image projection apparatus using the same
US7440781B2 (en) 2005-10-07 2008-10-21 Symbol Technologies, Inc. System and method for power conservation in a wireless device
WO2008036425A1 (en) 2006-01-01 2008-03-27 Terahop Networks, Inc. Determining presence of radio frequency communication device
US8548908B2 (en) 2007-04-11 2013-10-01 First Data Corporation Mobile commerce infrastructure systems and methods
US7990947B2 (en) * 2007-06-12 2011-08-02 Robert W. Twitchell, Jr. Network watermark
US7937068B2 (en) 2007-08-23 2011-05-03 Motorola Solutions, Inc. Emergency dispatch management and prioritization of communication resources
US8041773B2 (en) 2007-09-24 2011-10-18 The Research Foundation Of State University Of New York Automatic clustering for self-organizing grids
WO2009151877A2 (en) * 2008-05-16 2009-12-17 Terahop Networks, Inc. Systems and apparatus for securing a container
US8315237B2 (en) 2008-10-29 2012-11-20 Google Inc. Managing and monitoring emergency services sector resources
US8462662B2 (en) 2008-05-16 2013-06-11 Google Inc. Updating node presence based on communication pathway
US9137739B2 (en) * 2009-01-28 2015-09-15 Headwater Partners I Llc Network based service policy implementation with network neutrality and user privacy
US8055286B1 (en) 2008-08-27 2011-11-08 Sprint Spectrum L.P. Modification of en-route message to add destination port number selected based at least in part on message originator
US8155026B2 (en) * 2008-09-11 2012-04-10 Verizon Patent And Licensing Inc. Method and system for identifying network paths
WO2010096127A1 (en) 2008-10-29 2010-08-26 Terahop Networks, Inc. Network and application merging and asset tracking
US8275404B2 (en) 2008-10-29 2012-09-25 Google Inc. Managing and monitoring emergency services sector resources
US8300551B2 (en) 2009-01-28 2012-10-30 Google Inc. Ascertaining presence in wireless networks
US8705523B2 (en) 2009-02-05 2014-04-22 Google Inc. Conjoined class-based networking

Also Published As

Publication number Publication date
US9907115B2 (en) 2018-02-27
US20100265042A1 (en) 2010-10-21
US10194486B2 (en) 2019-01-29
US20180167998A1 (en) 2018-06-14
US20130012122A1 (en) 2013-01-10
US10652953B2 (en) 2020-05-12
US8705523B2 (en) 2014-04-22
US20190141781A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
US20200314957A1 (en) Conjoined Class-Based Networking
US10813030B2 (en) Maintaining information facilitating deterministic network routing
US12445490B2 (en) Network watermark
US8462662B2 (en) Updating node presence based on communication pathway
US8699381B2 (en) Ascertaining presence in wireless networks
US10719674B2 (en) Scalable asset location and tracking and sensor monitoring system
US20170245215A1 (en) Determining Presence of a Radio Frequency Communication Device
US20150350245A1 (en) Network watermark
EP2507646B1 (en) Message-based location of mobile network nodes

Legal Events

Date Code Title Description
AS Assignment

Owner name: GOOGLE LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:GOOGLE INC.;REEL/FRAME:052331/0716

Effective date: 20170929

Owner name: GOOGLE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KLJ CONSULTING LLC;REEL/FRAME:052331/0022

Effective date: 20120323

Owner name: KLJ CONSULTING LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TERAHOP NETWORKS, INC.;REEL/FRAME:052330/0941

Effective date: 20110916

Owner name: TERAHOP NETWORKS, INC., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOOP, LAMONTE PETER;ROBINS, DAVID S.;SIGNING DATES FROM 20100505 TO 20100512;REEL/FRAME:052330/0785

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION