US20200216710A1 - Energy curable high reactivity multi vinylether or acrylate functional resins - Google Patents
Energy curable high reactivity multi vinylether or acrylate functional resins Download PDFInfo
- Publication number
- US20200216710A1 US20200216710A1 US16/823,034 US202016823034A US2020216710A1 US 20200216710 A1 US20200216710 A1 US 20200216710A1 US 202016823034 A US202016823034 A US 202016823034A US 2020216710 A1 US2020216710 A1 US 2020216710A1
- Authority
- US
- United States
- Prior art keywords
- acrylate
- methacrylate
- coating
- independently
- heteroatom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 title claims description 44
- 229960000834 vinyl ether Drugs 0.000 title description 46
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 title description 30
- 229920005989 resin Polymers 0.000 title description 20
- 239000011347 resin Substances 0.000 title description 20
- 230000009257 reactivity Effects 0.000 title description 5
- 125000005842 heteroatom Chemical group 0.000 claims description 80
- 239000003054 catalyst Substances 0.000 claims description 77
- 239000002904 solvent Substances 0.000 claims description 48
- 239000011541 reaction mixture Substances 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 41
- -1 hydroxyalkyl acrylates Chemical class 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 36
- 238000010992 reflux Methods 0.000 claims description 34
- 150000003077 polyols Chemical class 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 32
- 229920005862 polyol Polymers 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 31
- 238000000576 coating method Methods 0.000 claims description 29
- 239000000976 ink Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 27
- 239000011248 coating agent Substances 0.000 claims description 24
- 229910052717 sulfur Inorganic materials 0.000 claims description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 13
- 239000000853 adhesive Substances 0.000 claims description 13
- 230000001070 adhesive effect Effects 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000005809 transesterification reaction Methods 0.000 claims description 13
- 125000006832 (C1-C10) alkylene group Chemical group 0.000 claims description 12
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 claims description 12
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 8
- 150000001412 amines Chemical class 0.000 claims description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 7
- 239000008199 coating composition Substances 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 5
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 claims description 5
- 238000004806 packaging method and process Methods 0.000 claims description 5
- 238000007639 printing Methods 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 claims description 4
- 239000002841 Lewis acid Substances 0.000 claims description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 4
- 239000003849 aromatic solvent Substances 0.000 claims description 4
- 150000001924 cycloalkanes Chemical class 0.000 claims description 4
- 150000007517 lewis acids Chemical class 0.000 claims description 4
- 239000003973 paint Substances 0.000 claims description 4
- CXOOGGOQFGCERQ-UHFFFAOYSA-N (2-methyl-2-nitropropyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(C)(C)[N+]([O-])=O CXOOGGOQFGCERQ-UHFFFAOYSA-N 0.000 claims description 3
- FDPPXZRLXIPXJB-UHFFFAOYSA-N (2-methyl-2-nitropropyl) prop-2-enoate Chemical compound [O-][N+](=O)C(C)(C)COC(=O)C=C FDPPXZRLXIPXJB-UHFFFAOYSA-N 0.000 claims description 3
- FMQPBWHSNCRVQJ-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-yl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C(F)(F)F)C(F)(F)F FMQPBWHSNCRVQJ-UHFFFAOYSA-N 0.000 claims description 3
- MNSWITGNWZSAMC-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-yl prop-2-enoate Chemical compound FC(F)(F)C(C(F)(F)F)OC(=O)C=C MNSWITGNWZSAMC-UHFFFAOYSA-N 0.000 claims description 3
- LMAUULKNZLEMGN-UHFFFAOYSA-N 1-ethyl-3,5-dimethylbenzene Chemical compound CCC1=CC(C)=CC(C)=C1 LMAUULKNZLEMGN-UHFFFAOYSA-N 0.000 claims description 3
- QTKPMCIBUROOGY-UHFFFAOYSA-N 2,2,2-trifluoroethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(F)(F)F QTKPMCIBUROOGY-UHFFFAOYSA-N 0.000 claims description 3
- VBHXIMACZBQHPX-UHFFFAOYSA-N 2,2,2-trifluoroethyl prop-2-enoate Chemical compound FC(F)(F)COC(=O)C=C VBHXIMACZBQHPX-UHFFFAOYSA-N 0.000 claims description 3
- PRAMZQXXPOLCIY-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid Chemical compound CC(=C)C(=O)OCCS(O)(=O)=O PRAMZQXXPOLCIY-UHFFFAOYSA-N 0.000 claims description 3
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 claims description 3
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 claims description 3
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 claims description 3
- BEWCNXNIQCLWHP-UHFFFAOYSA-N 2-(tert-butylamino)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCNC(C)(C)C BEWCNXNIQCLWHP-UHFFFAOYSA-N 0.000 claims description 3
- KDAKDBASXBEFFK-UHFFFAOYSA-N 2-(tert-butylamino)ethyl prop-2-enoate Chemical compound CC(C)(C)NCCOC(=O)C=C KDAKDBASXBEFFK-UHFFFAOYSA-N 0.000 claims description 3
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 claims description 3
- PTJDGKYFJYEAOK-UHFFFAOYSA-N 2-butoxyethyl prop-2-enoate Chemical compound CCCCOCCOC(=O)C=C PTJDGKYFJYEAOK-UHFFFAOYSA-N 0.000 claims description 3
- GPOGMJLHWQHEGF-UHFFFAOYSA-N 2-chloroethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCl GPOGMJLHWQHEGF-UHFFFAOYSA-N 0.000 claims description 3
- WHBAYNMEIXUTJV-UHFFFAOYSA-N 2-chloroethyl prop-2-enoate Chemical compound ClCCOC(=O)C=C WHBAYNMEIXUTJV-UHFFFAOYSA-N 0.000 claims description 3
- FWWXYLGCHHIKNY-UHFFFAOYSA-N 2-ethoxyethyl prop-2-enoate Chemical compound CCOCCOC(=O)C=C FWWXYLGCHHIKNY-UHFFFAOYSA-N 0.000 claims description 3
- CHNGPLVDGWOPMD-UHFFFAOYSA-N 2-ethylbutyl 2-methylprop-2-enoate Chemical compound CCC(CC)COC(=O)C(C)=C CHNGPLVDGWOPMD-UHFFFAOYSA-N 0.000 claims description 3
- JGRXEBOFWPLEAV-UHFFFAOYSA-N 2-ethylbutyl prop-2-enoate Chemical compound CCC(CC)COC(=O)C=C JGRXEBOFWPLEAV-UHFFFAOYSA-N 0.000 claims description 3
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 claims description 3
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 3
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 claims description 3
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 claims description 3
- VWJAVBOLCVPIAK-UHFFFAOYSA-N 2-methoxybutyl 2-methylprop-2-enoate Chemical compound CCC(OC)COC(=O)C(C)=C VWJAVBOLCVPIAK-UHFFFAOYSA-N 0.000 claims description 3
- FURRSXHPLKQVIR-UHFFFAOYSA-N 2-methoxybutyl prop-2-enoate Chemical compound CCC(OC)COC(=O)C=C FURRSXHPLKQVIR-UHFFFAOYSA-N 0.000 claims description 3
- IXPWKHNDQICVPZ-UHFFFAOYSA-N 2-methylhex-1-en-3-yne Chemical compound CCC#CC(C)=C IXPWKHNDQICVPZ-UHFFFAOYSA-N 0.000 claims description 3
- HVVPYFQMCGANJX-UHFFFAOYSA-N 2-methylprop-2-enyl prop-2-enoate Chemical compound CC(=C)COC(=O)C=C HVVPYFQMCGANJX-UHFFFAOYSA-N 0.000 claims description 3
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 claims description 3
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 claims description 3
- CEXQWAAGPPNOQF-UHFFFAOYSA-N 2-phenoxyethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOC1=CC=CC=C1 CEXQWAAGPPNOQF-UHFFFAOYSA-N 0.000 claims description 3
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 claims description 3
- ILZXXGLGJZQLTR-UHFFFAOYSA-N 2-phenylethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC1=CC=CC=C1 ILZXXGLGJZQLTR-UHFFFAOYSA-N 0.000 claims description 3
- HPSGLFKWHYAKSF-UHFFFAOYSA-N 2-phenylethyl prop-2-enoate Chemical compound C=CC(=O)OCCC1=CC=CC=C1 HPSGLFKWHYAKSF-UHFFFAOYSA-N 0.000 claims description 3
- GQTFHSAAODFMHB-UHFFFAOYSA-N 2-prop-2-enoyloxyethanesulfonic acid Chemical compound OS(=O)(=O)CCOC(=O)C=C GQTFHSAAODFMHB-UHFFFAOYSA-N 0.000 claims description 3
- NWKKCUWIMOZYOO-UHFFFAOYSA-N 3-methoxybutyl 2-methylprop-2-enoate Chemical compound COC(C)CCOC(=O)C(C)=C NWKKCUWIMOZYOO-UHFFFAOYSA-N 0.000 claims description 3
- NPYMXLXNEYZTMQ-UHFFFAOYSA-N 3-methoxybutyl prop-2-enoate Chemical compound COC(C)CCOC(=O)C=C NPYMXLXNEYZTMQ-UHFFFAOYSA-N 0.000 claims description 3
- ULYIFEQRRINMJQ-UHFFFAOYSA-N 3-methylbutyl 2-methylprop-2-enoate Chemical compound CC(C)CCOC(=O)C(C)=C ULYIFEQRRINMJQ-UHFFFAOYSA-N 0.000 claims description 3
- ZVYGIPWYVVJFRW-UHFFFAOYSA-N 3-methylbutyl prop-2-enoate Chemical compound CC(C)CCOC(=O)C=C ZVYGIPWYVVJFRW-UHFFFAOYSA-N 0.000 claims description 3
- MUPJJZVGSOUSFH-UHFFFAOYSA-N 4-(2-cyanoethyl)-4-nitroheptanedinitrile Chemical compound N#CCCC([N+](=O)[O-])(CCC#N)CCC#N MUPJJZVGSOUSFH-UHFFFAOYSA-N 0.000 claims description 3
- YGQURMQHUGDYAO-UHFFFAOYSA-N 4-[2-[2-(4-nitrophenyl)imidazo[2,1-b][1,3]benzothiazol-6-yl]oxyethyl]morpholine Chemical compound C1=CC([N+](=O)[O-])=CC=C1C1=CN2C3=CC=C(OCCN4CCOCC4)C=C3SC2=N1 YGQURMQHUGDYAO-UHFFFAOYSA-N 0.000 claims description 3
- NUXLDNTZFXDNBA-UHFFFAOYSA-N 6-bromo-2-methyl-4h-1,4-benzoxazin-3-one Chemical compound C1=C(Br)C=C2NC(=O)C(C)OC2=C1 NUXLDNTZFXDNBA-UHFFFAOYSA-N 0.000 claims description 3
- RUZXDTHZHJTTRO-UHFFFAOYSA-N 7-amino-4h-1,4-benzoxazin-3-one Chemical compound N1C(=O)COC2=CC(N)=CC=C21 RUZXDTHZHJTTRO-UHFFFAOYSA-N 0.000 claims description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 3
- PCVSIMQAFWRUEC-UHFFFAOYSA-N N2-[1-[methyl-(phenylmethyl)amino]-3-(2-naphthalenyl)-1-oxopropan-2-yl]-N1-(2-nitrophenyl)pyrrolidine-1,2-dicarboxamide Chemical compound C=1C=C2C=CC=CC2=CC=1CC(NC(=O)C1N(CCC1)C(=O)NC=1C(=CC=CC=1)[N+]([O-])=O)C(=O)N(C)CC1=CC=CC=C1 PCVSIMQAFWRUEC-UHFFFAOYSA-N 0.000 claims description 3
- LCXXNKZQVOXMEH-UHFFFAOYSA-N Tetrahydrofurfuryl methacrylate Chemical compound CC(=C)C(=O)OCC1CCCO1 LCXXNKZQVOXMEH-UHFFFAOYSA-N 0.000 claims description 3
- QMEMFEMQJJOZGM-RMKNXTFCSA-N [(e)-3-phenylprop-2-enyl] prop-2-enoate Chemical compound C=CC(=O)OC\C=C\C1=CC=CC=C1 QMEMFEMQJJOZGM-RMKNXTFCSA-N 0.000 claims description 3
- OXOPJTLVRHRSDJ-SNAWJCMRSA-N [(e)-but-2-enyl] 2-methylprop-2-enoate Chemical compound C\C=C\COC(=O)C(C)=C OXOPJTLVRHRSDJ-SNAWJCMRSA-N 0.000 claims description 3
- 238000010533 azeotropic distillation Methods 0.000 claims description 3
- AOJOEFVRHOZDFN-UHFFFAOYSA-N benzyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CC=C1 AOJOEFVRHOZDFN-UHFFFAOYSA-N 0.000 claims description 3
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 claims description 3
- FCSHDIVRCWTZOX-DVTGEIKXSA-N clobetasol Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CCl)(O)[C@@]1(C)C[C@@H]2O FCSHDIVRCWTZOX-DVTGEIKXSA-N 0.000 claims description 3
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 claims description 3
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 claims description 3
- WRAABIJFUKKEJQ-UHFFFAOYSA-N cyclopentyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCC1 WRAABIJFUKKEJQ-UHFFFAOYSA-N 0.000 claims description 3
- BTQLDZMOTPTCGG-UHFFFAOYSA-N cyclopentyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCC1 BTQLDZMOTPTCGG-UHFFFAOYSA-N 0.000 claims description 3
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 claims description 3
- FKIRSCKRJJUCNI-UHFFFAOYSA-N ethyl 7-bromo-1h-indole-2-carboxylate Chemical compound C1=CC(Br)=C2NC(C(=O)OCC)=CC2=C1 FKIRSCKRJJUCNI-UHFFFAOYSA-N 0.000 claims description 3
- DWXAVNJYFLGAEF-UHFFFAOYSA-N furan-2-ylmethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CO1 DWXAVNJYFLGAEF-UHFFFAOYSA-N 0.000 claims description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 3
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 claims description 3
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 claims description 3
- 150000002734 metacrylic acid derivatives Chemical class 0.000 claims description 3
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 claims description 3
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 claims description 3
- QHGUPRQTQITEPO-UHFFFAOYSA-N oxan-2-yl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCO1 QHGUPRQTQITEPO-UHFFFAOYSA-N 0.000 claims description 3
- FGWRVVZMNXRWDQ-UHFFFAOYSA-N oxan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCO1 FGWRVVZMNXRWDQ-UHFFFAOYSA-N 0.000 claims description 3
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 claims description 3
- GYDSPAVLTMAXHT-UHFFFAOYSA-N pentyl 2-methylprop-2-enoate Chemical compound CCCCCOC(=O)C(C)=C GYDSPAVLTMAXHT-UHFFFAOYSA-N 0.000 claims description 3
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 claims description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 3
- QIWKUEJZZCOPFV-UHFFFAOYSA-N phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1 QIWKUEJZZCOPFV-UHFFFAOYSA-N 0.000 claims description 3
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 claims description 3
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 claims description 3
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 claims description 3
- WPBNLDNIZUGLJL-UHFFFAOYSA-N prop-2-ynyl prop-2-enoate Chemical compound C=CC(=O)OCC#C WPBNLDNIZUGLJL-UHFFFAOYSA-N 0.000 claims description 3
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 claims description 3
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 claims description 3
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 claims description 3
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 claims description 3
- MUTNCGKQJGXKEM-UHFFFAOYSA-N tamibarotene Chemical compound C=1C=C2C(C)(C)CCC(C)(C)C2=CC=1NC(=O)C1=CC=C(C(O)=O)C=C1 MUTNCGKQJGXKEM-UHFFFAOYSA-N 0.000 claims description 3
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 claims description 3
- UBLMWQYLVOVZMT-UHFFFAOYSA-N tert-butyl n-(3-acetylphenyl)carbamate Chemical compound CC(=O)C1=CC=CC(NC(=O)OC(C)(C)C)=C1 UBLMWQYLVOVZMT-UHFFFAOYSA-N 0.000 claims description 3
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 claims description 3
- KTIBRDNFZLYLNA-UHFFFAOYSA-N 2-(2-hydroxyethenoxy)ethenol Chemical compound OC=COC=CO KTIBRDNFZLYLNA-UHFFFAOYSA-N 0.000 claims description 2
- IJSVVICYGLOZHA-UHFFFAOYSA-N 2-methyl-n-phenylprop-2-enamide Chemical compound CC(=C)C(=O)NC1=CC=CC=C1 IJSVVICYGLOZHA-UHFFFAOYSA-N 0.000 claims description 2
- 238000010146 3D printing Methods 0.000 claims description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 2
- UIERETOOQGIECD-UHFFFAOYSA-N Angelic acid Natural products CC=C(C)C(O)=O UIERETOOQGIECD-UHFFFAOYSA-N 0.000 claims description 2
- 239000007848 Bronsted acid Substances 0.000 claims description 2
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 claims description 2
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 claims description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims description 2
- 125000005395 methacrylic acid group Chemical group 0.000 claims description 2
- AWJZTPWDQYFQPQ-UHFFFAOYSA-N methyl 2-chloroprop-2-enoate Chemical compound COC(=O)C(Cl)=C AWJZTPWDQYFQPQ-UHFFFAOYSA-N 0.000 claims description 2
- WFKDPJRCBCBQNT-UHFFFAOYSA-N n,2-dimethylprop-2-enamide Chemical compound CNC(=O)C(C)=C WFKDPJRCBCBQNT-UHFFFAOYSA-N 0.000 claims description 2
- QRWZCJXEAOZAAW-UHFFFAOYSA-N n,n,2-trimethylprop-2-enamide Chemical compound CN(C)C(=O)C(C)=C QRWZCJXEAOZAAW-UHFFFAOYSA-N 0.000 claims description 2
- JMCVCHBBHPFWBF-UHFFFAOYSA-N n,n-diethyl-2-methylprop-2-enamide Chemical compound CCN(CC)C(=O)C(C)=C JMCVCHBBHPFWBF-UHFFFAOYSA-N 0.000 claims description 2
- OVHHHVAVHBHXAK-UHFFFAOYSA-N n,n-diethylprop-2-enamide Chemical compound CCN(CC)C(=O)C=C OVHHHVAVHBHXAK-UHFFFAOYSA-N 0.000 claims description 2
- ZIWDVJPPVMGJGR-UHFFFAOYSA-N n-ethyl-2-methylprop-2-enamide Chemical compound CCNC(=O)C(C)=C ZIWDVJPPVMGJGR-UHFFFAOYSA-N 0.000 claims description 2
- SWPMNMYLORDLJE-UHFFFAOYSA-N n-ethylprop-2-enamide Chemical compound CCNC(=O)C=C SWPMNMYLORDLJE-UHFFFAOYSA-N 0.000 claims description 2
- UIERETOOQGIECD-ONEGZZNKSA-N tiglic acid Chemical compound C\C=C(/C)C(O)=O UIERETOOQGIECD-ONEGZZNKSA-N 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 abstract description 35
- 239000004417 polycarbonate Substances 0.000 abstract description 35
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 45
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 24
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- 238000007792 addition Methods 0.000 description 15
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 14
- 125000000217 alkyl group Chemical group 0.000 description 14
- 0 C*O*OC(=O)O*O*[2H]C.C=CCBOC(=O)O*O*C Chemical compound C*O*OC(=O)O*O*[2H]C.C=CCBOC(=O)O*O*C 0.000 description 13
- GOYLFROSCCAARR-UHFFFAOYSA-N carbonic acid;ethenoxyethene Chemical compound OC(O)=O.C=COC=C GOYLFROSCCAARR-UHFFFAOYSA-N 0.000 description 13
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 11
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 11
- 239000006227 byproduct Substances 0.000 description 11
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 125000000753 cycloalkyl group Chemical group 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 229960004418 trolamine Drugs 0.000 description 8
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical group COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- NFDXQGNDWIPXQL-UHFFFAOYSA-N 1-cyclooctyldiazocane Chemical compound C1CCCCCCC1N1NCCCCCC1 NFDXQGNDWIPXQL-UHFFFAOYSA-N 0.000 description 6
- QDFXRVAOBHEBGJ-UHFFFAOYSA-N 3-(cyclononen-1-yl)-4,5,6,7,8,9-hexahydro-1h-diazonine Chemical compound C1CCCCCCC=C1C1=NNCCCCCC1 QDFXRVAOBHEBGJ-UHFFFAOYSA-N 0.000 description 6
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000012973 diazabicyclooctane Substances 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- 238000005292 vacuum distillation Methods 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- IEZWOVIWXFLQTP-UHFFFAOYSA-N hydroperoxyethene Chemical class OOC=C IEZWOVIWXFLQTP-UHFFFAOYSA-N 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 5
- 229950006389 thiodiglycol Drugs 0.000 description 5
- HMBNQNDUEFFFNZ-UHFFFAOYSA-N 4-ethenoxybutan-1-ol Chemical group OCCCCOC=C HMBNQNDUEFFFNZ-UHFFFAOYSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- 238000006845 Michael addition reaction Methods 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 150000002357 guanidines Chemical class 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 150000003512 tertiary amines Chemical class 0.000 description 4
- 150000003568 thioethers Chemical class 0.000 description 4
- YOBOXHGSEJBUPB-MTOQALJVSA-N (z)-4-hydroxypent-3-en-2-one;zirconium Chemical compound [Zr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O YOBOXHGSEJBUPB-MTOQALJVSA-N 0.000 description 3
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 3
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 3
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 3
- 150000008041 alkali metal carbonates Chemical class 0.000 description 3
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000005262 alkoxyamine group Chemical group 0.000 description 3
- 150000003868 ammonium compounds Chemical class 0.000 description 3
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 3
- 229910052792 caesium Inorganic materials 0.000 description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 3
- 239000012975 dibutyltin dilaurate Substances 0.000 description 3
- PKKGKUDPKRTKLJ-UHFFFAOYSA-L dichloro(dimethyl)stannane Chemical compound C[Sn](C)(Cl)Cl PKKGKUDPKRTKLJ-UHFFFAOYSA-L 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 150000002460 imidazoles Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000004714 phosphonium salts Chemical class 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229960003975 potassium Drugs 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000011736 potassium bicarbonate Substances 0.000 description 3
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 3
- 235000015497 potassium bicarbonate Nutrition 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 235000011181 potassium carbonates Nutrition 0.000 description 3
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 3
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 3
- 235000011118 potassium hydroxide Nutrition 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 3
- CJDXLHTYSXHWDC-UHFFFAOYSA-N 2-ethenylsulfanylethanol Chemical compound OCCSC=C CJDXLHTYSXHWDC-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GPBURHMJWLWASO-UHFFFAOYSA-N C=CC(=O)OCCOCCN(CCOCCOC(=O)C=C)CCOCCOC(=O)C=C.C=CC(=O)OCCSCCOC(=O)C=C Chemical compound C=CC(=O)OCCOCCN(CCOCCOC(=O)C=C)CCOCCOC(=O)C=C.C=CC(=O)OCCSCCOC(=O)C=C GPBURHMJWLWASO-UHFFFAOYSA-N 0.000 description 2
- VIZORQUEIQEFRT-UHFFFAOYSA-N Diethyl adipate Chemical compound CCOC(=O)CCCCC(=O)OCC VIZORQUEIQEFRT-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- UDSFAEKRVUSQDD-UHFFFAOYSA-N Dimethyl adipate Chemical compound COC(=O)CCCCC(=O)OC UDSFAEKRVUSQDD-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical group CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical group CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 2
- MOOIXEMFUKBQLJ-UHFFFAOYSA-N [1-(ethenoxymethyl)cyclohexyl]methanol Chemical compound C=COCC1(CO)CCCCC1 MOOIXEMFUKBQLJ-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- HRKQOINLCJTGBK-UHFFFAOYSA-N dihydroxidosulfur Chemical compound OSO HRKQOINLCJTGBK-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000007306 functionalization reaction Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- 229960003505 mequinol Drugs 0.000 description 2
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 2
- 125000005911 methyl carbonate group Chemical class 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000013557 residual solvent Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 125000005309 thioalkoxy group Chemical group 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 125000005919 1,2,2-trimethylpropyl group Chemical group 0.000 description 1
- 125000005918 1,2-dimethylbutyl group Chemical group 0.000 description 1
- 125000006218 1-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- BWGRDBSNKQABCB-UHFFFAOYSA-N 4,4-difluoro-N-[3-[3-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl]-1-thiophen-2-ylpropyl]cyclohexane-1-carboxamide Chemical compound CC(C)C1=NN=C(C)N1C1CC2CCC(C1)N2CCC(NC(=O)C1CCC(F)(F)CC1)C1=CC=CS1 BWGRDBSNKQABCB-UHFFFAOYSA-N 0.000 description 1
- 239000012958 Amine synergist Substances 0.000 description 1
- LYPRDKZAZQJKSF-UHFFFAOYSA-N C=COCCCCOC(=O)OCCN(CCOC(=O)OCCCCOC=C)CCOC(=O)OCCN(CCOC(=O)OCCCCOC=C)CCOC(=O)OCCCCOC=C.C=COCCCCOC(=O)OCCSCCOC(=O)OCCSCCOC(=O)OCCCCOC=C Chemical compound C=COCCCCOC(=O)OCCN(CCOC(=O)OCCCCOC=C)CCOC(=O)OCCN(CCOC(=O)OCCCCOC=C)CCOC(=O)OCCCCOC=C.C=COCCCCOC(=O)OCCSCCOC(=O)OCCSCCOC(=O)OCCCCOC=C LYPRDKZAZQJKSF-UHFFFAOYSA-N 0.000 description 1
- QVWGXNDZXXASMX-UHFFFAOYSA-N CC(C)(C)CC1CCC(CC(C)(C)C)CC1.CC(C)(C)CCCCC(C)(C)C Chemical compound CC(C)(C)CC1CCC(CC(C)(C)C)CC1.CC(C)(C)CCCCC(C)(C)C QVWGXNDZXXASMX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- LFZAGIJXANFPFN-UHFFFAOYSA-N N-[3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-thiophen-2-ylpropyl]acetamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CCC(C=1SC=CC=1)NC(C)=O)C LFZAGIJXANFPFN-UHFFFAOYSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002676 chrysenyl group Chemical group C1(=CC=CC=2C3=CC=C4C=CC=CC4=C3C=CC12)* 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- VNGORJHUDAPOQZ-UHFFFAOYSA-N copper;propan-2-olate Chemical compound [Cu+2].CC(C)[O-].CC(C)[O-] VNGORJHUDAPOQZ-UHFFFAOYSA-N 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004855 decalinyl group Chemical group C1(CCCC2CCCCC12)* 0.000 description 1
- DIOQZVSQGTUSAI-NJFSPNSNSA-N decane Chemical compound CCCCCCCCC[14CH3] DIOQZVSQGTUSAI-NJFSPNSNSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000002192 heptalenyl group Chemical group 0.000 description 1
- 125000005844 heterocyclyloxy group Chemical group 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002443 hydroxylamines Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 125000003427 indacenyl group Chemical group 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 239000013627 low molecular weight specie Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- ZCYXXKJEDCHMGH-UHFFFAOYSA-N nonane Chemical compound CCCC[CH]CCCC ZCYXXKJEDCHMGH-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BKIMMITUMNQMOS-UHFFFAOYSA-N normal nonane Natural products CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 1
- 238000005935 nucleophilic addition reaction Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- RPDJEKMSFIRVII-UHFFFAOYSA-N oxomethylidenehydrazine Chemical compound NN=C=O RPDJEKMSFIRVII-UHFFFAOYSA-N 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000012985 polymerization agent Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- IZSFVWCXDBEUQK-UHFFFAOYSA-N propan-2-ol;zinc Chemical compound [Zn].CC(C)O.CC(C)O IZSFVWCXDBEUQK-UHFFFAOYSA-N 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 1
- RVEZZJVBDQCTEF-UHFFFAOYSA-N sulfenic acid Chemical compound SO RVEZZJVBDQCTEF-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F16/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F16/12—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D135/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D135/08—Copolymers with vinyl ethers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/02—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C217/04—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C217/06—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
- C07C217/08—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to an acyclic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/02—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C217/04—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C217/28—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/10—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C323/11—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
- C07C323/12—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F26/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
- C08F26/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/28—Oxygen or compounds releasing free oxygen
- C08F4/32—Organic compounds
- C08F4/38—Mixtures of peroxy-compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/02—Aliphatic polycarbonates
- C08G64/0208—Aliphatic polycarbonates saturated
- C08G64/0225—Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen
- C08G64/0241—Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/02—Aliphatic polycarbonates
- C08G64/0208—Aliphatic polycarbonates saturated
- C08G64/0225—Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen
- C08G64/025—Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/02—Aliphatic polycarbonates
- C08G64/0291—Aliphatic polycarbonates unsaturated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/42—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/101—Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/106—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/106—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09D11/107—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D135/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D135/02—Homopolymers or copolymers of esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D169/00—Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J135/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J135/02—Homopolymers or copolymers of esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J135/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J135/08—Copolymers with vinyl ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J4/00—Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
Definitions
- the present technology is generally related to energy curable high reactivity multi vinylether or acrylate functional resins, methods of their preparation through an azeotropic transesterification process, and their use in downstream applications.
- heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) is provided:
- a process for preparing a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein.
- the process includes contacting in a solvent a heteroatom-containing polyol with a carbonate in the presence of a catalyst to form a reaction mixture; heating the reaction mixture under azeotropic reflux conditions to form an alcohol or water and a heteroatom-containing polycarbonate; isolating the heteroatom-containing polycarbonate from the excess carbonate and solvent; contacting the isolated heteroatom-containing polycarbonate with a vinyl ether in the presence of a catalyst to form a second reaction mixture; and heating the reaction mixture under azeotropic reflux conditions to form a second alcohol or water.
- the reaction is pushed forward by the removal of the alcohols or water (produced as by-products) from the reaction mixture under azeotropic reflux conditions.
- a process for preparing a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein.
- the process includes contacting in a solvent a hydroxy-functional vinyl ether with a carbonate in the presence of a catalyst to form a reaction mixture; heating the reaction mixture under azeotropic reflux conditions to form an alcohol or water and a vinyl ether carbonate; isolating the vinyl ether carbonate from the excess carbonate and solvent; contacting the isolated vinyl ether carbonate with a heteroatom-containing polyol in the presence of a catalyst to form a second reaction mixture; and heating the reaction mixture under azeotropic reflux conditions to form a second alcohol or water.
- the reaction is driven forward by the removal of the alcohols or water (produced as by-products) from the reaction mixture under azeotropic reflux conditions.
- heteroatom-containing acrylate molecule of formula (II) is provided:
- a coating composition in another aspect, includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- an ink or coating formulation in another aspect, includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- an optical fiber coating includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- FIG. 1 is a chart illustrating the decreased cure energy (i.e., increased cure speed) of a triethanolamine-carbonate-vinyl ether adduct (MT-041) as compared to a conventional Michael adduct of an acrylate (Laromer® PO94F), according to the examples.
- MT-041 triethanolamine-carbonate-vinyl ether adduct
- Layerer® PO94F Michael adduct of an acrylate
- FIG. 2 is a chart illustrating the decreased cure energy (i.e., increased cure speed) of a triethanolamine-carbonate-vinyl ether adduct (GM1046-041/8863) as compared to a conventional vinyl ether (GM1046-026/8863) and triethanolamine (TEA/8863), according to the examples.
- substituted refers to an alkyl, alkenyl, alkynyl, aryl, or ether group, as defined below (e.g., an alkyl group) in which one or more bonds to a hydrogen atom contained therein are replaced by a bond to non-hydrogen or non-carbon atoms.
- Substituted groups also include groups in which one or more bonds to a carbon(s) or hydrogen(s) atom are replaced by one or more bonds, including double or triple bonds, to a heteroatom.
- a substituted group will be substituted with one or more substituents, unless otherwise specified.
- a substituted group is substituted with 1, 2, 3, 4, 5, or 6 substituents.
- substituent groups include: halogens (i.e., F, Cl, Br, and I); hydroxyls; alkoxy, alkenoxy, alkynoxy, aryloxy, aralkyloxy, heterocyclyloxy, and heterocyclylalkoxy groups; carbonyls (oxo); carboxyls; esters; urethanes; oximes; hydroxylamines; alkoxyamines; aralkoxyamines; thiols; sulfides; sulfoxides; sulfones; sulfonyls; sulfonamides; amines; N-oxides; hydrazines; hydrazides; hydrazones; azides; amides; ureas; amidines; guanidines; enamines; imides; isocyanates; isothiocyanates;
- alkyl groups include straight chain and branched alkyl groups having from 1 to about 20 carbon atoms, and typically from 1 to 12 carbons or, in some embodiments, from 1 to 8 carbon atoms.
- alkyl groups include cycloalkyl groups as defined below. Alkyl groups may be substituted or unsubstituted. Examples of straight chain alkyl groups include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, and n-octyl groups.
- branched alkyl groups include, but are not limited to, isopropyl, isobutyl, sec-butyl, t-butyl, neopentyl, and isopentyl groups.
- Representative substituted alkyl groups may be substituted one or more times with, for example, amino, thio, hydroxy, cyano, alkoxy, and/or halo groups such as F, Cl, Br, and I groups.
- haloalkyl is an alkyl group having one or more halo groups. In some embodiments, haloalkyl refers to a per-haloalkyl group.
- alkyl groups may include in addition to those listed above, but are not limited to, 2-pentyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, 2-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethylbutyl, 2-ethylbutyl, 1-ethyl-2-methylpropyl, 2-heptyl, 3-heptyl, 2-ethylpentyl, 1-propylbutyl, 2-ethylhexyl, 2-propylh
- Alkylene groups are divalent alkyl groups.
- Cycloalkyl groups are cyclic alkyl groups such as, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl groups.
- the cycloalkyl group has 3 to 8 ring members, whereas in other embodiments the number of ring carbon atoms range from 3 to 5, 6, or 7. Cycloalkyl groups may be substituted or unsubstituted.
- Cycloalkyl groups further include polycyclic cycloalkyl groups such as, but not limited to, norbornyl, adamantyl, bornyl, camphenyl, isocamphenyl, and carenyl groups, and fused rings such as, but not limited to, decalinyl, and the like. Cycloalkyl groups also include rings that are substituted with straight or branched chain alkyl groups as defined above.
- Representative substituted cycloalkyl groups may be mono-substituted or substituted more than once, such as, but not limited to: 2,2-; 2,3-; 2,4-; 2,5-; or 2,6-disubstituted cyclohexyl groups or mono-, di-, or tri-substituted norbornyl or cycloheptyl groups, which may be substituted with, for example, alkyl, alkoxy, amino, thio, hydroxy, cyano, and/or halo groups.
- aryl or “aromatic,” groups are cyclic aromatic hydrocarbons that do not contain heteroatoms.
- Aryl groups include monocyclic, bicyclic and polycyclic ring systems.
- aryl groups include, but are not limited to, phenyl, azulenyl, heptalenyl, biphenylenyl, indacenyl, fluorenyl, phenanthrenyl, triphenylenyl, pyrenyl, naphthacenyl, chrysenyl, biphenyl, anthracenyl, indenyl, indanyl, pentalenyl, and naphthyl groups.
- aryl groups contain 6-14 carbons, and in others from 6 to 12 or even 6-10 carbon atoms in the ring portions of the groups.
- aryl groups includes groups containing fused rings, such as fused aromatic-aliphatic ring systems (e.g., indanyl, tetrahydronaphthyl, and the like).
- Aryl groups may be substituted or unsubstituted.
- (meth)acrylic or (meth)acrylate refers to acrylic or methacrylic acid, esters of acrylic or methacrylic acid, and salts, amides, and other suitable derivatives of acrylic or methacrylic acid, and mixtures thereof.
- suitable (meth)acrylic monomers include, without limitation, the following methacrylate esters: methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate (BMA), isopropyl methacrylate, isobutyl methacrylate, n-amyl methacrylate, n-hexyl methacrylate, isoamyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, t-butylaminoethyl methacrylate, 2-sulfoethyl methacrylate, trifluoroethyl methacrylate, glycidyl methacrylate (GMA), benzyl methacrylate, allyl methacrylate, ally
- Suitable acrylate esters include, without limitation, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate (BA), n-decyl acrylate, isobutyl acrylate, n-amyl acrylate, n-hexyl acrylate, isoamyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, t-butylaminoethyl acrylate, 2-sulfoethyl acrylate, trifluoroethyl acrylate, glycidyl acrylate, benzyl acrylate, allyl acrylate, 2-n-butoxyethyl acrylate, 2-chloroethyl acrylate,
- acrylic-containing group or “methacrylate-containing group” refers to a compound that has a polymerizable acrylate or methacrylate group.
- the state-of-the-art approach is advantageous due to relatively low resin manufacturing costs. While it is sufficient for some applications, it has certain disadvantages in others.
- One disadvantage is the loss of energy cure responsive double bond density due to the Michael addition of an amine, thiol or similar heteroatom component to an acrylate group of the precursor resin. The more mono or di-substituted amines are incorporated into the resin, the lower the acrylate functionality of the final resin and the higher the probability that non-UV active, migrating components are present, which is of great concern, especially in sensitive food packaging applications.
- Another disadvantage pertains to the increased inhibitor levels required to ensure process and storage stability of the highly reactive Michael adducts. This ultimately decreases the cure speeds of the coating or ink on a coating or printing line.
- multifunctional vinyl ether functional polycarbonate heteroatom-containing straight and branched polycarbonates as described herein in various embodiments, have a significantly improved cure profile over products made according to the state-of-the-art process but lack any of the above mentioned disadvantages.
- Such polycarbonates include heteroatom-containing polycarbonate polyfunctional-vinyl ether molecules of formula (I) and straight and branched heteroatom-containing acrylate molecules of formula (II) as described herein in various embodiments.
- the polycarbonates disclosed herein can be based on alkoxylated triethanolamine or thiodiglycol.
- heteroatom-containing energy cure active molecules with polyol backbones which are rendered energy cure active in a holistic approach.
- These heteroatom-containing energy cure active molecules with polyol backbones do not require post-functionalization via Michael addition reaction to obtain the desired ⁇ -methylene reactive center and thus lack the problems typically associated with Michael adducts.
- the multifunctional vinyl ether functional polycarbonate heteroatom-containing straight and branched polycarbonates provided herein have a number of advantages compared to Michael adducts.
- the weight percent of nitrogen (or other heteroatoms) per unit weight is much higher than for Michael adducts, which results in a higher number of ⁇ -methylene reactive centers per unit weight.
- the conversion of an energy-curable functional group to a Michael adduct generally reduces reactivity and crosslink density, which is not an issue for the molecules provided herein.
- termination of the core molecule with vinyl ether groups rather than (meth)acrylic esters also removes the requirement for free radical inhibition during manufacturing and storage time, since vinyl ethers do not self-react under free radical conditions.
- combining the terminal vinyl ether with the core carbonate structure significantly reduces the overall polarity of the molecule and its resulting viscosity in comparison to the more polar Michael adducts.
- heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) is provided:
- each A independently is an optionally substituted C 1 -C 10 alkylene group. In another embodiment, each A independently is —CH 2 CH 2 —.
- each B independently is a C 1 -C 10 alkylene group optionally substituted with one or more R 2 groups, wherein each R 2 group independently is a C 1 -C 6 alkyl or two R 2 groups can join together to form a 5, 6, or 7-membered cycloalkyl.
- each B independently is:
- polyfunctional-vinyl ether molecule of formula (I) is selected from the group consisting of:
- the polyfunctional-vinyl ether molecules exhibits a viscosity from about 10 centipoise to about 1000 centipoise at 25° C. (when neat). In another embodiment, the polyfunctional-vinyl ether molecule provided herein exhibits a viscosity of about 10 centipoise to about 300 centipoise at 25° C.
- a process for preparing a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I).
- the process includes contacting in a solvent a heteroatom-containing polyol with a carbonate in the presence of a catalyst to form a reaction mixture; heating the reaction mixture under azeotropic reflux conditions to form an alcohol or water and a heteroatom-containing polycarbonate; isolating the heteroatom-containing polycarbonate from the excess carbonate and solvent; contacting the isolated heteroatom-containing polycarbonate with a vinyl ether in the presence of a catalyst to form a second reaction mixture; and heating the reaction mixture under azeotropic reflux conditions to form a second alcohol or water.
- the reaction is driven forward by the removal of the alcohols or water (produced as by-products) from the reaction mixture under azeotropic reflux conditions.
- the heteroatom-containing polyol is an alkanolamine, a thioalcohol, an alkoxyamine, or a thioalkoxy. In another embodiment, the heteroatom-containing polyol is triethanolamine or thiodiglycol.
- the carbonate is an alkyl ester of an organic polyacid. In another embodiment, the carbonate is dimethyl carbonate, diethyl carbonate, dimethyl adipate, diethyl adipate, or citric acid triethyl ester.
- the contacting of the heteroatom-containing polyol with the carbonate and the catalyst in a solvent may occur in different orderings.
- the contacting of the heteroatom-containing polyol with the carbonate and the catalyst can occur simultaneously.
- the contacting of the heteroatom-containing polyol with the carbonate and the catalyst can occur sequentially wherein the order of addition varies.
- the heteroatom-containing polyol is added to the solvent, followed by the addition of the carbonate, and subsequently the addition of the catalyst.
- the heteroatom-containing polyol, carbonate, and catalyst are heated to achieve azeotropic reflux conditions to facilitate removal of an alcohol or water formed by the reaction.
- the reaction mixture is heated to a temperature of about 70° C. to about 140° C.
- the reaction mixture is heated to about 100° C.
- the azeotropic mixture has a boiling point of about 54-55° C. The reaction is pushed forward by the removal of the alcohol or water by-product under the azeotropic reflux conditions.
- the reaction of the heteroatom-containing polyol, carbonate, and catalyst produces a heteroatom-containing polycarbonate that is then isolated.
- the isolated heteroatom-containing polycarbonate is then contacted with a vinyl ether in the presence of a catalyst to form a second reaction mixture.
- the vinyl ether is 4-hydroxybutyl vinyl ether, cyclohexanedimethanol mono-vinyl ether, or 2-vinylsulfanylethanol. These hydroxyl vinyl ethers and other similar hydroxyl vinyl ethers are commercially available. Additionally, preparations of the aforementioned hydroxyl vinyl ethers and other similar hydroxyl vinyl ethers are well known in the art.
- an alcohol or mercaptoalcohol is heated under pressure in the presence of a strong base, like methoxide or hydroxide, in the presence of acetylene.
- a strong base like methoxide or hydroxide
- the base-catalyzed condensation of acetylene with the alcohol occurs at about 120-180° C.
- the reaction proceeds by the formation of an alcoholate, which undergoes nucleophilic addition to the acetylenic double bond.
- the product regenerates the alcoholate by proton exchange.
- the contacting of the heteroatom-containing polycarbonate with the vinyl ether and the catalyst in a solvent may occur in different orderings.
- the contacting of the heteroatom-containing polycarbonate with the vinyl ether and the catalyst can occur simultaneously.
- the contacting of the heteroatom-containing polycarbonate with the vinyl ether and the catalyst can occur sequentially wherein the order of addition varies.
- the heteroatom-containing polycarbonate is added to the solvent, followed by the addition of the vinyl ether, and subsequently the addition of the catalyst.
- the heteroatom-containing polycarbonate, vinyl ether, and catalyst are heated to achieve azeotropic reflux conditions to facilitate removal of an alcohol or water formed by the reaction.
- the reaction mixture is heated to a temperature of about 70° C. to about 140° C. This may include heating the reaction mixture from about 70° C. to about 120° C., from about 80° C. to about 140° C., from about 90° C. to about 110° C.
- the reaction mixture is heated to about 100° C.
- the azeotropic mixture has a boiling point of about 54° C. to about 55° C. The reaction is driven forward by the removal of the alcohol or water by-product under the azeotropic reflux conditions.
- the catalyst used for the process disclosed herein includes any catalyst that is capable of catalyzing a transesterification reaction which includes all catalysts listed in Otera, Chem. Rev. 1993, 93, 1449-1470.
- Illustrative catalysts include, but are not limited to, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, preferably of sodium, of potassium or of cesium, tertiary amines, guanidines, ammonium compounds, phosphonium compounds, organoaluminum, organotin, organozinc, organotitanium, organozirconium or organobismuth compounds, and double metal cyanide (DMC) catalysts, as described, for example, in DE 10138216 and in DE 10147712, both of which are hereby incorporated by reference in their entireties.
- the catalyst is a strong base, a mild transesterification catalyst, or a Lewis acid.
- catalysts include, but are not limited to, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, diazabicyclooctane (DABCO), diazabicyclononene (DBN), diazabicycloundecene (DBU), imidazoles, such as imidazole, 1-methylimidazole or 1,2-dimethylimidazole, titanium tetrabutoxide, titanium tetraisopropoxide, dibutyltin oxide, dibutyltin dilaurate, tin dioctoate, zirconium acetylacetonate, or mixtures of any two or more thereof.
- the catalyst is potassium hydroxide, sodium hydroxide, and sodium methoxide. Mixtures of any two or more such catalysts may be employed.
- the solvent of the disclosed process may be any solvent that can function as an azeotropic solvent.
- An azeotropic solvent is a solvent that forms an azeotrope with another material such as an alcohol or water.
- azeotropic solvents include, but are not limited to C 5 -C 10 alkanes, C 5 -C 10 cycloalkanes, and aromatic solvents.
- the azeotropic solvent is cyclohexane, toluene, dimethyl carbonate, or heptane. Mixtures of any two or more such solvents may be employed.
- a process for preparing a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein.
- the process includes contacting in a solvent a hydroxy-functional vinyl ether with a carbonate in the presence of a catalyst to form a reaction mixture; heating the reaction mixture under azeotropic reflux conditions to form an alcohol or water and a vinyl ether carbonate; isolating the vinyl ether carbonate from the excess carbonate and solvent; contacting the isolated vinyl ether carbonate with a heteroatom-containing polyol in the presence of a catalyst to form a second reaction mixture; and heating the reaction mixture under azeotropic reflux conditions to form a second alcohol or water.
- the reaction is pushed forward by the removal of the alcohols or water (produced as by-products) from the reaction mixture under azeotropic reflux conditions.
- the hydroxy-functional vinyl ether is 4-hydroxybutyl vinyl ether, cyclohexanedimethanol mono-vinyl ether, or 2-vinylsulfanylethanol.
- the carbonate is an alkyl ester of an organic polyacid. In another embodiment, the carbonate is dimethyl carbonate, diethyl carbonate, dimethyl adipate, diethyl adipate, or citric acid triethyl ester.
- the contacting of the hydroxy-functional vinyl ether with the carbonate and the catalyst in a solvent may occur in different orderings.
- the contacting of the hydroxy-functional vinyl ether with the carbonate and the catalyst can occur simultaneously.
- the contacting of the hydroxy-vinyl ether with the carbonate and the catalyst can occur sequentially wherein the order of addition varies.
- the hydroxy-functional vinyl ether is added to the solvent, followed by the addition of the carbonate, and subsequently the addition of the catalyst.
- the hydroxy-functional vinyl ether, carbonate, and catalyst are heated to achieve azeotropic reflux conditions to facilitate removal of an alcohol or water formed by the reaction.
- the reaction mixture is heated to a temperature of about 70° C. to about 140° C.
- the reaction mixture is heated to about 100° C.
- the azeotropic mixture has a boiling point of about 54-55° C. The reaction is pushed forward by the removal of the alcohol or water by-product under the azeotropic reflux conditions.
- the reaction of the hydroxy-functional vinyl ether, carbonate, and catalyst produces a vinyl ether carbonate, which is then isolated.
- the isolated vinyl ether carbonate is then contacted with a heteroatom-containing polyol in the presence of a catalyst to form a second reaction mixture.
- the heteroatom-containing polyol is an alkanolamine, a thioalcohol, an alkoxyamine, or a thioalkoxy. In another embodiment, the heteroatom-containing polyol is triethanolamine or thiodiglycol.
- the contacting of the heteroatom-containing polyol with the vinyl ether carbonate and the catalyst in a solvent may occur in different orderings.
- the contacting of the heteroatom-containing polyol with the vinyl ether carbonate and the catalyst can occur simultaneously.
- the contacting of the heteroatom-containing polyol with the vinyl ether carbonate and the catalyst can occur sequentially wherein the order of addition varies.
- the heteroatom-containing polyol is added to the solvent, followed by the addition of the vinyl ether carbonate, and subsequently the addition of the catalyst.
- the heteroatom-containing polyol, vinyl ether carbonate, and catalyst are heated to achieve azeotropic reflux conditions to facilitate removal of an alcohol or water formed by the reaction.
- the reaction mixture is heated to a temperature of about 70° C. to about 140° C. This may include heating the reaction mixture from about 70° C. to about 120° C., from about 80° C. to about 140° C., from about 90° C. to about 110° C.
- the reaction mixture is heated to about 100° C.
- the azeotropic mixture has a boiling point of about 54° C. to about 55° C. The reaction is driven forward by the removal of the alcohol or water by-product under the azeotropic reflux conditions.
- the catalyst used for the process disclosed herein includes any catalyst that is capable of catalyzing a transesterification reaction which includes all catalysts listed in Otera, Chem. Rev. 1993, 93, 1449-1470.
- Illustrative catalysts include but are not limited to, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, preferably of sodium, of potassium or of cesium, tertiary amines, guanidines, ammonium compounds, phosphonium compounds, organoaluminum, organotin, organozinc, organotitanium, organozirconium or organobismuth compounds, and also catalysts of the kind known as double metal cyanide (DMC) catalysts, as described, for example, in DE 10138216 and in DE 10147712, both of which are hereby incorporated by reference in their entireties.
- the catalyst is a strong base, a mild transesterification catalyst, or a Lewis acid.
- catalysts include but are not limited to potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, diazabicyclooctane (DABCO), diazabicyclononene (DBN), diazabicycloundecene (DBU), imidazoles, such as imidazole, 1-methylimidazole or 1,2-dimethylimidazole, titanium tetrabutoxide, titanium tetraisopropoxide, dibutyltin oxide, dibutyltin dilaurate, tin dioctoate, zirconium acetylacetonate, or mixtures of any two or more thereof.
- the catalyst is potassium hydroxide, sodium hydroxide, or sodium methoxide. Mixtures of any two or more such catalysts may be employed.
- the solvent of the disclosed process can be any solvent that can function as an azeotropic solvent.
- An azeotropic solvent is a solvent that forms an azeotrope with another material such as an alcohol or water. Examples of an azeotropic solvent include but are not limited to C 5 -C 10 alkane, a C 5 -C 10 cycloalkane, or an aromatic solvent.
- the solvent is cyclohexane, toluene, dimethyl carbonate, or heptane.
- acrylated heteroatom-based straight and branched polycarbonates as described herein in various embodiments, also exhibit significantly improved cure profiles over products made according to the state of the art processes, but which lack the above-mentioned disadvantages of the Michael adducts.
- These acrylated heteroatom-based straight and branched polycarbonates include the heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- the heteroatom-containing alcohols are acrylated via a transesterification reaction of said alcohol with methyl acrylate to form the corresponding acrylic ester by removing the methanol by-product.
- the acrylated alcohols have to be inhibited against homopolymerization with radical inhibitors for their manufacturing and for storage stability reasons.
- heteroatom-containing acrylate molecule of formula (II) is provided:
- each A independently is an optionally substituted C 1 -C 10 alkylene group. In another embodiment, each A independently is —CH 2 CH 2 —.
- the acrylate molecule of formula (II) is selected from the group consisting of:
- the acrylate molecule of formula (II) exhibits a viscosity from about 10 centipoise to about 15000 centipoise at 25° C. In another embodiment, the acrylate molecule of formula (II) exhibits a viscosity of about 10 centipoise to about 1000 centipoise at 25° C.
- the acrylate molecule of formula (II) can be prepared by a process as disclosed in U.S. Provisional Application No. 62/165,086.
- the process includes contacting in a solvent a heteroatom-containing polyol with an acrylate in the presence of a catalyst to form a reaction mixture and heating the reaction mixture under azeotropic reflux conditions to form an alcohol or water from the reaction mixture.
- the reaction is pushed forward by the removal of the alcohol or water (produced as by-products) from the reaction mixture under azeotropic reflux conditions.
- the acrylate of the process disclosed above may be a (meth)acrylate.
- the (meth)acrylate may be acrylic acid, methacrylic acid, methylmethacrylic acid, methylmethacrylate, ethylmethacrylate, and hydroxy vinyl ethers.
- (meth)acrylic or (meth)acrylate include, but are not limited, to methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate (BA), n-decyl acrylate, isobutyl acrylate, n-amyl acrylate, n-hexyl acrylate, isoamyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, t-butylaminoethyl acrylate, 2-sulfoethyl acrylate, trifluoroethyl acrylate, glycidyl acrylate, benzyl acrylate, allyl acrylate, 2-n-butoxyethyl acrylate
- acrylic and methacrylic moieties include, but are not limited to hydroxyalkyl acrylates and methacrylates, acrylic acid and its salts, acrylonitrile, acrylamide, methyl ⁇ -chloroacrylate, methyl 2-cyanoacrylate, N-ethylacrylamide, N,N-diethylacrylamide, acrolein, methacrylic acid and its salts, methacrylonitrile, methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N,N-diethylmethacrylamide, N,N-dimethylmethacrylamide, N-phenylmethacrylamide, methacrolein and acrylic or methacrylic acid derivatives containing cross-linkable functional groups, such as hydroxy, carboxyl, amino, isocyanate, glycidyl, epoxy, allyl, and the like.
- cross-linkable functional groups such as hydroxy, carboxyl, amino, isocyanate, glycid
- the catalyst employed in the process includes a catalyst that is capable of catalyzing transesterification reactions.
- Illustrative examples include the catalysts listed in Otera, Chem. Rev. 1993, 93, 1449-1470.
- Some examples of catalysts include but are not limited to, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, preferably of sodium, of potassium or of cesium, tertiary amines, guanidines, ammonium compounds, phosphonium compounds, organoaluminum, organotin, organozinc, organotitanium, organozirconium or organobismuth compounds, and also catalysts of the kind known as double metal cyanide (DMC) catalysts, as described, for example, in DE 10138216 or in DE 10147712.
- DMC double metal cyanide
- the catalyst is a strong acid, a strong base, a transesterification catalyst, a Lewis acid, a Br ⁇ nsted acid, or an amine.
- the catalyst is an alkali alkoxide.
- the alkali alkoxide includes zinc isopropoxide, copper isopropoxide, zirconium acetoacetonate, or titanium tetra-isopropoxide.
- catalysts include but are not limited to potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, diazabicyclooctane (DABCO), diazabicyclononene (DBN), diazabicycloundecene (DBU), imidazoles, such as imidazole, 1-methylimidazole or 1,2-dimethylimidazole, titanium tetrabutoxide, titanium tetraisopropoxide, dibutyltin oxide, dibutyltin dilaurate, tin dioctoate, zirconium acetylacetonate, or mixtures thereof.
- DABCO diazabicyclooctane
- DBN diazabicyclononene
- DBU diazabicycloundecene
- imidazoles such as imidazole, 1-methylimidazole or 1,2-dimethylimidazole
- titanium tetrabutoxide titanium tetraisopropoxide
- the catalyst is methane sulfonic acid, titanium isopropoxide, or an organotin reagent.
- the organotin reagent is generated in situ through the reaction of sodium methoxide and dimethyltin dichloride.
- the amount of catalyst present in the disclosed process is from about 400 ppm to about 1000 ppm based on one part of the heteroatom-containing polyol (based on weight of the monomers (heteroatom-containing polyol and acrylate) without solvent). In some embodiments, the amount of catalyst is about 1000 ppm based on one part of heteroatom-containing polyol (based on weight of the monomers (heteroatom-containing polyol and acrylate) without solvent).
- the contacting of the heteroatom-containing polyol with the acrylate and catalyst in a solvent may occur in different orderings. For example, the contacting of the heteroatom-containing polyol with the acrylate and the catalyst may occur simultaneously. Alternatively, contacting of the heteroatom-containing polyol with the acrylate and catalyst may occur sequentially, wherein the order of addition varies. In some embodiments, the heteroatom-containing polyol is added to the solvent, followed by the addition of the catalyst, and subsequently the addition of the acrylate.
- the solvent of the disclosed process may be any solvent that can function as an azeotropic solvent.
- An azeotropic solvent is a solvent that forms an azeotrope with another material such as an alcohol or water.
- azeotropic solvents include but are not limited to C 5 -C 10 alkanes, C 5 -C 10 cycloalkane, and C 6 -C 12 aromatic solvents.
- the solvent is pentane, hexane, heptane, octane, nonane, decane, cyclohexane, methyl cyclohexane, or toluene.
- the reaction mixture is heated to achieve azeotropic reflux conditions.
- the reaction mixture is heated to about 70° C. to about 140° C.
- the overhead temperature of the reaction has an azeotropic distillation temperature from about 40° C. to about 80° C.
- the overhead temperature has an azeotropic distillation temperature of about 54° C. The reaction is pushed forward by the removal of the alcohol or water, produced as a by-product, under the azeotropic reflux conditions.
- a coating composition in another aspect, includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- a coating, ink, or adhesive composition in another aspect, includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- the coating, ink, or adhesive composition is configured for use in conventional printing, 3D printing, inks, inkjet inks, paints, and packaging applications.
- the coating, ink, or adhesive composition is configured for use in digital printing.
- the coating, ink, or adhesive composition is configured for use in automotive original equipment manufacturer paint applications or automotive refinishing applications.
- an optical fiber coating includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- Example 1 Synthesis of Compound 1. 865 g triethanol amine, 3135 g dimethyl carbonate and 16 g of a 25 wt % sodium methoxide solution in methanol were heated and held at reflux for 30 min. The transesterification reaction started and methanol was generated and distilled off as an azeotropic mixture with dimethyl carbonate. Once the conversion reached the specification, the residual solvent was removed under reduced pressure at a maximum of 120° C. To this methyl carbonate function triethanol amine precursor, equimolar amounts of 4-hydroxybutyl vinyl ether (calculated on the concentration of methyl carbonate endgroups) and cyclohexane were charged at 60° C.
- Example 2 Synthesis of Compound 2. 394 g thiodiglycol, 306 g dimethyl carbonate, 600 g cyclohexane and 3 g of a 25 wt % sodium methoxide solution in methanol were heated and held at reflux for 30 min. The transesterification reaction started and methanol was generated and distilled off as azeotropic mixture with cyclohexane overhead. Once the conversion reached the specification, the residual solvent was removed under reduced pressure at a maximum of 120° C.
- Example 3 Synthesis of Compound 3. 304 g triethanol amine polymer was homogenized with polymerization inhibitors (0.7 g mequinol, 2.3 g hydroquinone), 500 g cyclohexane and 405 g methyl acrylate. To this mixture, 13.6 g sodium methoxide 25% solution in methanol and 19.8 g dimethyltin dichloride 70% solution in methanol were charged. The mixture was heated under azeotropic conditions and methanol/cyclohexane azeotrope was removed from the reactor via an automated overhead reflux splitting mechanism. Once the reaction reached the desired conversion, the access monomer and solvent were removed via a vacuum distillation step. The catalyst was removed via a caustic wash and subsequent buffer wash of the diluted crude product. The final resin was obtained by vacuum distillation under reduced pressure and a maximum temperature of 100° C. The final product was a low viscosity, slightly brown resin.
- polymerization inhibitors 0.7 g mequinol, 2.3 g hydroquinone
- Example 4 Synthesis of Compound 4. 209 g thiodiglycol was homogenized with polymerization inhibitors (0.7 g mequinol, 2.3 g hydroquinone), 500 g cyclohexane and 441 g methyl acrylate. To this mixture, 13.6 g sodium methoxide 25% solution in methanol and 19.8 g dimethyltin dichloride 70% solution in methanol were charged. The mixture was heated under azeotropic conditions and methanol/cyclohexane azeotrope was removed from the reactor via an automated overhead reflux splitting mechanism. Once the reaction reached the desired conversion, the access monomer and solvent were removed via a vacuum distillation step. The catalyst was removed via a caustic wash and subsequent buffer wash of the diluted crude product. The final resin was obtained by vacuum distillation under reduced pressure and a maximum temperature of 100° C. The final product was a low viscosity, colorless resin.
- polymerization inhibitors 0.7 g mequinol, 2.3 g hydroquinone
- Example 5 The cure energies of a triethanolamine-carbonate-vinyl ether adduct (MT041) was compared to that of an acrylic ester resin that is a conventional Michael adduct of an acrylate (PO94F) (see FIG. 1 ).
- FIG. 1 shows that the combination of a vinylether functionality with active alpha methylene groups on the same molecule results in increased cure speed, as demonstrated by the lower cure energy of MT041 than that of PO94F.
- Example 6 The cure energies of a triethanolamine-carbonate-vinyl ether adduct (GM1046-041/8863) was compared to that of a vinyl ether (GM1046-026/8863) and triethanolamine (TEA/8863) (see FIG. 2 ).
- FIG. 2 shows that the vinyl ethers or amines alone do not improve cure properties in the same way as the combination of the two functionalities, as evidenced by the lower cure energy of GM1046-041/8863 as compared to that of GM1046-026/8863 and TEA/8863.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polyesters Or Polycarbonates (AREA)
- Polyethers (AREA)
Abstract
Description
- The present application is a divisional application of U.S. application Ser. No. 15/768,288, filed on Apr. 13, 2018, which is a U.S. National Phase Application under 35 U.S.C. § 371 of International Application No. PCT/US2016/053469, filed on Sep. 23, 2016, which claims the benefit of U.S. Provisional Patent Application No. 62/242,837, filed on Oct. 16, 2015, and which are each incorporated herein by reference in their entireties.
- The present technology is generally related to energy curable high reactivity multi vinylether or acrylate functional resins, methods of their preparation through an azeotropic transesterification process, and their use in downstream applications.
- There are several factors which are critical to the commercial success of UV (ultraviolet light) and EB (electron beam) curable coatings and inks. As printing presses and coater equipment run at higher and higher speeds, reducing the hourly cost of production, there are increasing demands on the curing speed of inks and coatings. At the same time, there is considerable focus by converters on energy consumption, such that there is a trend toward lower mercury lamp energies, and in many cases, conversion to LED light sources. Both higher line speeds and lower intensity light sources place demands on the reactivity of the monomers and oligomers used in formulations for such applications.
- Another important factor for packaging applications is the increasing use of film substrates in bags, pouches, and labels. These substrates are very thin, but as a result, any shrinkage that occurs in the coating and ink during the curing process can result in wrinkling or other distortion of the film. Furthermore, in some cases, there is adhesion loss of the ink or coating to the film. Since these films are often used to package foods or beverages, there are very strict limits on the migration of unreacted monomers from the ink or coating.
- In one aspect, a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) is provided:
- wherein
-
- G is S or N;
- each D is independently S, O, or NR10, wherein R10 has the structure:
-
- each A is independently a C1-C10 alkylene group;
- each B is independently a C1-C10 alkylene group;
- each M is independently O or S;
- each x is independently an integer from 0 to 10;
- each n is independently an integer from 0 to 20;
- each y is independently an integer from 1 to 20; and
- z is 2 when G is S or z is 3 when G is N.
- In another aspect, a process is provided for preparing a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein. The process includes contacting in a solvent a heteroatom-containing polyol with a carbonate in the presence of a catalyst to form a reaction mixture; heating the reaction mixture under azeotropic reflux conditions to form an alcohol or water and a heteroatom-containing polycarbonate; isolating the heteroatom-containing polycarbonate from the excess carbonate and solvent; contacting the isolated heteroatom-containing polycarbonate with a vinyl ether in the presence of a catalyst to form a second reaction mixture; and heating the reaction mixture under azeotropic reflux conditions to form a second alcohol or water. The reaction is pushed forward by the removal of the alcohols or water (produced as by-products) from the reaction mixture under azeotropic reflux conditions.
- In one aspect, a process is provided for preparing a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein. The process includes contacting in a solvent a hydroxy-functional vinyl ether with a carbonate in the presence of a catalyst to form a reaction mixture; heating the reaction mixture under azeotropic reflux conditions to form an alcohol or water and a vinyl ether carbonate; isolating the vinyl ether carbonate from the excess carbonate and solvent; contacting the isolated vinyl ether carbonate with a heteroatom-containing polyol in the presence of a catalyst to form a second reaction mixture; and heating the reaction mixture under azeotropic reflux conditions to form a second alcohol or water. The reaction is driven forward by the removal of the alcohols or water (produced as by-products) from the reaction mixture under azeotropic reflux conditions.
- In another aspect, a heteroatom-containing acrylate molecule of formula (II) is provided:
- wherein
-
- G is S or N;
- each A is independently a C1-C10 alkylene group;
- each D is independently S, O, or NR10, wherein R has the structure:
-
- each x is independently an integer from 0 to 10;
- each n is independently an integer from 0 to 20;
- each y is independently an integer from 1 to 20; and
- z is 2 when G is S or z is 3 when G is N.
- In another aspect, a coating composition is provided. The coating composition includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- In another aspect, an ink or coating formulation is provided. The ink or coating formulation includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- In yet another aspect, an optical fiber coating is provided. The optical fiber coating includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
-
FIG. 1 is a chart illustrating the decreased cure energy (i.e., increased cure speed) of a triethanolamine-carbonate-vinyl ether adduct (MT-041) as compared to a conventional Michael adduct of an acrylate (Laromer® PO94F), according to the examples. -
FIG. 2 is a chart illustrating the decreased cure energy (i.e., increased cure speed) of a triethanolamine-carbonate-vinyl ether adduct (GM1046-041/8863) as compared to a conventional vinyl ether (GM1046-026/8863) and triethanolamine (TEA/8863), according to the examples. - Various embodiments are described hereinafter. It should be noted that the specific embodiments are not intended as an exhaustive description or as a limitation to the broader aspects discussed herein. One aspect described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced with any other embodiment(s).
- As used herein, “about” will be understood by persons of ordinary skill in the art and will vary to some extent depending upon the context in which it is used. If there are uses of the term which are not clear to persons of ordinary skill in the art, given the context in which it is used, “about” will mean up to plus or minus 10% of the particular term.
- The use of the terms “a” and “an” and “the” and similar referents in the context of describing the elements (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein may be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the embodiments and does not pose a limitation on the scope of the claims unless otherwise stated. No language in the specification should be construed as indicating any non-claimed element as essential.
- In general, the term “substituted,” unless specifically defined differently, refers to an alkyl, alkenyl, alkynyl, aryl, or ether group, as defined below (e.g., an alkyl group) in which one or more bonds to a hydrogen atom contained therein are replaced by a bond to non-hydrogen or non-carbon atoms. Substituted groups also include groups in which one or more bonds to a carbon(s) or hydrogen(s) atom are replaced by one or more bonds, including double or triple bonds, to a heteroatom. Thus, a substituted group will be substituted with one or more substituents, unless otherwise specified. In some embodiments, a substituted group is substituted with 1, 2, 3, 4, 5, or 6 substituents. Examples of substituent groups include: halogens (i.e., F, Cl, Br, and I); hydroxyls; alkoxy, alkenoxy, alkynoxy, aryloxy, aralkyloxy, heterocyclyloxy, and heterocyclylalkoxy groups; carbonyls (oxo); carboxyls; esters; urethanes; oximes; hydroxylamines; alkoxyamines; aralkoxyamines; thiols; sulfides; sulfoxides; sulfones; sulfonyls; sulfonamides; amines; N-oxides; hydrazines; hydrazides; hydrazones; azides; amides; ureas; amidines; guanidines; enamines; imides; isocyanates; isothiocyanates; cyanates; thiocyanates; imines; nitro groups; nitriles (i.e., CN); and the like. For some groups, substituted may provide for attachment of an alkyl group to another defined group, such as a cycloalkyl group.
- As used herein, “alkyl” groups include straight chain and branched alkyl groups having from 1 to about 20 carbon atoms, and typically from 1 to 12 carbons or, in some embodiments, from 1 to 8 carbon atoms. As employed herein, “alkyl groups” include cycloalkyl groups as defined below. Alkyl groups may be substituted or unsubstituted. Examples of straight chain alkyl groups include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, and n-octyl groups. Examples of branched alkyl groups include, but are not limited to, isopropyl, isobutyl, sec-butyl, t-butyl, neopentyl, and isopentyl groups. Representative substituted alkyl groups may be substituted one or more times with, for example, amino, thio, hydroxy, cyano, alkoxy, and/or halo groups such as F, Cl, Br, and I groups. As used herein the term haloalkyl is an alkyl group having one or more halo groups. In some embodiments, haloalkyl refers to a per-haloalkyl group. In general, alkyl groups may include in addition to those listed above, but are not limited to, 2-pentyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, 2-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethylbutyl, 2-ethylbutyl, 1-ethyl-2-methylpropyl, 2-heptyl, 3-heptyl, 2-ethylpentyl, 1-propylbutyl, 2-ethylhexyl, 2-propylheptyl, 1,1,3,3-tetramethylbutyl, nonyl, decyl, n-undecyl, n-dodecyl, n-tridecyl, iso-tridecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, n-eicosyl, and the like.
- Alkylene groups are divalent alkyl groups.
- Cycloalkyl groups are cyclic alkyl groups such as, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl groups. In some embodiments, the cycloalkyl group has 3 to 8 ring members, whereas in other embodiments the number of ring carbon atoms range from 3 to 5, 6, or 7. Cycloalkyl groups may be substituted or unsubstituted. Cycloalkyl groups further include polycyclic cycloalkyl groups such as, but not limited to, norbornyl, adamantyl, bornyl, camphenyl, isocamphenyl, and carenyl groups, and fused rings such as, but not limited to, decalinyl, and the like. Cycloalkyl groups also include rings that are substituted with straight or branched chain alkyl groups as defined above. Representative substituted cycloalkyl groups may be mono-substituted or substituted more than once, such as, but not limited to: 2,2-; 2,3-; 2,4-; 2,5-; or 2,6-disubstituted cyclohexyl groups or mono-, di-, or tri-substituted norbornyl or cycloheptyl groups, which may be substituted with, for example, alkyl, alkoxy, amino, thio, hydroxy, cyano, and/or halo groups.
- As used herein, “aryl”, or “aromatic,” groups are cyclic aromatic hydrocarbons that do not contain heteroatoms. Aryl groups include monocyclic, bicyclic and polycyclic ring systems. Thus, aryl groups include, but are not limited to, phenyl, azulenyl, heptalenyl, biphenylenyl, indacenyl, fluorenyl, phenanthrenyl, triphenylenyl, pyrenyl, naphthacenyl, chrysenyl, biphenyl, anthracenyl, indenyl, indanyl, pentalenyl, and naphthyl groups. In some embodiments, aryl groups contain 6-14 carbons, and in others from 6 to 12 or even 6-10 carbon atoms in the ring portions of the groups. The phrase “aryl groups” includes groups containing fused rings, such as fused aromatic-aliphatic ring systems (e.g., indanyl, tetrahydronaphthyl, and the like). Aryl groups may be substituted or unsubstituted.
- As used herein, the term (meth)acrylic or (meth)acrylate refers to acrylic or methacrylic acid, esters of acrylic or methacrylic acid, and salts, amides, and other suitable derivatives of acrylic or methacrylic acid, and mixtures thereof. Illustrative examples of suitable (meth)acrylic monomers include, without limitation, the following methacrylate esters: methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate (BMA), isopropyl methacrylate, isobutyl methacrylate, n-amyl methacrylate, n-hexyl methacrylate, isoamyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, t-butylaminoethyl methacrylate, 2-sulfoethyl methacrylate, trifluoroethyl methacrylate, glycidyl methacrylate (GMA), benzyl methacrylate, allyl methacrylate, 2-n-butoxyethyl methacrylate, 2-chloroethyl methacrylate, sec-butyl-methacrylate, tert-butyl methacrylate, 2-ethylbutyl methacrylate, cinnamyl methacrylate, crotyl methacrylate, cyclohexyl methacrylate, cyclopentyl methacrylate, 2-ethoxyethyl methacrylate, furfuryl methacrylate, hexafluoroisopropyl methacrylate, methallyl methacrylate, 3-methoxybutyl methacrylate, 2-methoxybutyl methacrylate, 2-nitro-2-methylpropyl methacrylate, n-octylmethacrylate, 2-ethylhexyl methacrylate, 2-phenoxyethyl methacrylate, 2-phenylethyl methacrylate, phenyl methacrylate, propargyl methacrylate, tetrahydrofurfuryl methacrylate and tetrahydropyranyl methacrylate. Example of suitable acrylate esters include, without limitation, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate (BA), n-decyl acrylate, isobutyl acrylate, n-amyl acrylate, n-hexyl acrylate, isoamyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, t-butylaminoethyl acrylate, 2-sulfoethyl acrylate, trifluoroethyl acrylate, glycidyl acrylate, benzyl acrylate, allyl acrylate, 2-n-butoxyethyl acrylate, 2-chloroethyl acrylate, sec-butyl-acrylate, tert-butyl acrylate, 2-ethylbutyl acrylate, cinnamyl acrylate, crotyl acrylate, cyclohexyl acrylate, cyclopentyl acrylate, 2-ethoxyethyl acrylate, furfuryl acrylate, hexafluoroisopropyl acrylate, methallyl acrylate, 3-methoxybutyl acrylate, 2-methoxybutyl acrylate, 2-nitro-2-methylpropyl acrylate, n-octylacrylate, 2-ethylhexyl acrylate, 2-phenoxyethyl acrylate, 2-phenylethyl acrylate, phenyl acrylate, propargyl acrylate, tetrahydrofurfuryl acrylate and tetrahydropyranyl acrylate.
- As used herein, the term “acrylic-containing group” or “methacrylate-containing group” refers to a compound that has a polymerizable acrylate or methacrylate group.
- As noted above, there are very strict limits on the migration of unreacted monomers from curable inks or coatings, particularly when used in food packaging applications. The current state of the art addresses the reactivity issue by either maximizing the number of reactive acrylate double bonds per unit molecular weight and/or by introducing resins that increase the cure speed due to synergistic effects and reduced oxygen inhibition. Examples covering the latter approach are alkyl amine and thioether resins manufactured by post-modification of acrylate functional resins via amine- or thio-Michael additions at acrylic double bonds.
- The effect of such molecules thereby is twofold. The combination of tertiary amines with photo-excited species such as benzophenone in a UV formulation leads to the formation of an α-methylene based radical which acts as a polymerization agent. This is referred to as an amine synergist. In addition, these α-methylene based radicals can also be formed by reaction with peroxy radical intermediates resulting from the reaction of atmospheric oxygen with acrylate radicals. These acrylate based peroxy radical intermediates would otherwise inhibit further acrylate polymerization in a coating or ink. The corresponding thioethers react in a similar fashion.
- The state-of-the-art approach is advantageous due to relatively low resin manufacturing costs. While it is sufficient for some applications, it has certain disadvantages in others. One disadvantage is the loss of energy cure responsive double bond density due to the Michael addition of an amine, thiol or similar heteroatom component to an acrylate group of the precursor resin. The more mono or di-substituted amines are incorporated into the resin, the lower the acrylate functionality of the final resin and the higher the probability that non-UV active, migrating components are present, which is of great concern, especially in sensitive food packaging applications.
- Additionally, in order to minimize the risk of reducing the average functionality per molecule, primary amines with two Michael-active amine protons are frequently used for functionalization purposes, which leads to a chain extension of the precursor resin. Since coatings and inks are generally formulated to a specific application viscosity, and higher molecular weight often increases viscosity, the flexibility in formulating coatings and inks containing these materials becomes limited. This is of particular concern in UV inkjet printing applications, which require very low application viscosities.
- Another disadvantage pertains to the increased inhibitor levels required to ensure process and storage stability of the highly reactive Michael adducts. This ultimately decreases the cure speeds of the coating or ink on a coating or printing line.
- It has now been surprisingly found that multifunctional vinyl ether functional polycarbonate heteroatom-containing straight and branched polycarbonates as described herein in various embodiments, have a significantly improved cure profile over products made according to the state-of-the-art process but lack any of the above mentioned disadvantages. Such polycarbonates include heteroatom-containing polycarbonate polyfunctional-vinyl ether molecules of formula (I) and straight and branched heteroatom-containing acrylate molecules of formula (II) as described herein in various embodiments. In one embodiment, the polycarbonates disclosed herein can be based on alkoxylated triethanolamine or thiodiglycol.
- Provided herein are heteroatom-containing energy cure active molecules with polyol backbones, which are rendered energy cure active in a holistic approach. These heteroatom-containing energy cure active molecules with polyol backbones do not require post-functionalization via Michael addition reaction to obtain the desired α-methylene reactive center and thus lack the problems typically associated with Michael adducts.
- The multifunctional vinyl ether functional polycarbonate heteroatom-containing straight and branched polycarbonates provided herein have a number of advantages compared to Michael adducts. The weight percent of nitrogen (or other heteroatoms) per unit weight is much higher than for Michael adducts, which results in a higher number of α-methylene reactive centers per unit weight. Additionally, the conversion of an energy-curable functional group to a Michael adduct generally reduces reactivity and crosslink density, which is not an issue for the molecules provided herein. Third, termination of the core molecule with vinyl ether groups rather than (meth)acrylic esters also removes the requirement for free radical inhibition during manufacturing and storage time, since vinyl ethers do not self-react under free radical conditions. Fourth, combining the terminal vinyl ether with the core carbonate structure significantly reduces the overall polarity of the molecule and its resulting viscosity in comparison to the more polar Michael adducts.
- In one aspect, a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) is provided:
- wherein
-
- G is S or N;
- each D is independently S, O, or NR10, wherein R10 has the structure:
-
- each A is independently a C1-C10 alkylene group;
- each B is independently a C1-C10 alkylene group;
- each M is independently O or S;
- each x is independently an integer from 0 to 10;
- each n is independently an integer from 0 to 20;
- each y is independently an integer from 1 to 20; and
- z is 2 when G is S or z is 3 when G is N.
- In one embodiment, each A independently is an optionally substituted C1-C10 alkylene group. In another embodiment, each A independently is —CH2CH2—.
- In one embodiment, each B independently is a C1-C10 alkylene group optionally substituted with one or more R2 groups, wherein each R2 group independently is a C1-C6 alkyl or two R2 groups can join together to form a 5, 6, or 7-membered cycloalkyl. In another embodiment, each B independently is:
- In one embodiment, the polyfunctional-vinyl ether molecule of formula (I) is selected from the group consisting of:
- In one embodiment, the polyfunctional-vinyl ether molecules exhibits a viscosity from about 10 centipoise to about 1000 centipoise at 25° C. (when neat). In another embodiment, the polyfunctional-vinyl ether molecule provided herein exhibits a viscosity of about 10 centipoise to about 300 centipoise at 25° C.
- In one aspect, a process is provided for preparing a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I). The process includes contacting in a solvent a heteroatom-containing polyol with a carbonate in the presence of a catalyst to form a reaction mixture; heating the reaction mixture under azeotropic reflux conditions to form an alcohol or water and a heteroatom-containing polycarbonate; isolating the heteroatom-containing polycarbonate from the excess carbonate and solvent; contacting the isolated heteroatom-containing polycarbonate with a vinyl ether in the presence of a catalyst to form a second reaction mixture; and heating the reaction mixture under azeotropic reflux conditions to form a second alcohol or water. The reaction is driven forward by the removal of the alcohols or water (produced as by-products) from the reaction mixture under azeotropic reflux conditions.
- In one embodiment, the heteroatom-containing polyol is an alkanolamine, a thioalcohol, an alkoxyamine, or a thioalkoxy. In another embodiment, the heteroatom-containing polyol is triethanolamine or thiodiglycol.
- In one embodiment, the carbonate is an alkyl ester of an organic polyacid. In another embodiment, the carbonate is dimethyl carbonate, diethyl carbonate, dimethyl adipate, diethyl adipate, or citric acid triethyl ester.
- The contacting of the heteroatom-containing polyol with the carbonate and the catalyst in a solvent may occur in different orderings. For example, the contacting of the heteroatom-containing polyol with the carbonate and the catalyst can occur simultaneously. Alternatively, the contacting of the heteroatom-containing polyol with the carbonate and the catalyst can occur sequentially wherein the order of addition varies. In some embodiments, the heteroatom-containing polyol is added to the solvent, followed by the addition of the carbonate, and subsequently the addition of the catalyst.
- The heteroatom-containing polyol, carbonate, and catalyst are heated to achieve azeotropic reflux conditions to facilitate removal of an alcohol or water formed by the reaction. In one embodiment, the reaction mixture is heated to a temperature of about 70° C. to about 140° C. In another embodiment, the reaction mixture is heated to about 100° C. In some embodiments, the azeotropic mixture has a boiling point of about 54-55° C. The reaction is pushed forward by the removal of the alcohol or water by-product under the azeotropic reflux conditions.
- The reaction of the heteroatom-containing polyol, carbonate, and catalyst produces a heteroatom-containing polycarbonate that is then isolated. The isolated heteroatom-containing polycarbonate is then contacted with a vinyl ether in the presence of a catalyst to form a second reaction mixture. In one embodiment, the vinyl ether is 4-hydroxybutyl vinyl ether, cyclohexanedimethanol mono-vinyl ether, or 2-vinylsulfanylethanol. These hydroxyl vinyl ethers and other similar hydroxyl vinyl ethers are commercially available. Additionally, preparations of the aforementioned hydroxyl vinyl ethers and other similar hydroxyl vinyl ethers are well known in the art. For example, an alcohol or mercaptoalcohol is heated under pressure in the presence of a strong base, like methoxide or hydroxide, in the presence of acetylene. The base-catalyzed condensation of acetylene with the alcohol occurs at about 120-180° C. The reaction proceeds by the formation of an alcoholate, which undergoes nucleophilic addition to the acetylenic double bond. The product regenerates the alcoholate by proton exchange.
- The contacting of the heteroatom-containing polycarbonate with the vinyl ether and the catalyst in a solvent may occur in different orderings. For example, the contacting of the heteroatom-containing polycarbonate with the vinyl ether and the catalyst can occur simultaneously. Alternatively, the contacting of the heteroatom-containing polycarbonate with the vinyl ether and the catalyst can occur sequentially wherein the order of addition varies. In some embodiments, the heteroatom-containing polycarbonate is added to the solvent, followed by the addition of the vinyl ether, and subsequently the addition of the catalyst.
- The heteroatom-containing polycarbonate, vinyl ether, and catalyst are heated to achieve azeotropic reflux conditions to facilitate removal of an alcohol or water formed by the reaction. In one embodiment, the reaction mixture is heated to a temperature of about 70° C. to about 140° C. This may include heating the reaction mixture from about 70° C. to about 120° C., from about 80° C. to about 140° C., from about 90° C. to about 110° C. In another embodiment, the reaction mixture is heated to about 100° C. In some embodiments, the azeotropic mixture has a boiling point of about 54° C. to about 55° C. The reaction is driven forward by the removal of the alcohol or water by-product under the azeotropic reflux conditions.
- The catalyst used for the process disclosed herein includes any catalyst that is capable of catalyzing a transesterification reaction which includes all catalysts listed in Otera, Chem. Rev. 1993, 93, 1449-1470. Illustrative catalysts include, but are not limited to, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, preferably of sodium, of potassium or of cesium, tertiary amines, guanidines, ammonium compounds, phosphonium compounds, organoaluminum, organotin, organozinc, organotitanium, organozirconium or organobismuth compounds, and double metal cyanide (DMC) catalysts, as described, for example, in DE 10138216 and in DE 10147712, both of which are hereby incorporated by reference in their entireties. In some embodiments, the catalyst is a strong base, a mild transesterification catalyst, or a Lewis acid.
- Specific examples of catalysts include, but are not limited to, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, diazabicyclooctane (DABCO), diazabicyclononene (DBN), diazabicycloundecene (DBU), imidazoles, such as imidazole, 1-methylimidazole or 1,2-dimethylimidazole, titanium tetrabutoxide, titanium tetraisopropoxide, dibutyltin oxide, dibutyltin dilaurate, tin dioctoate, zirconium acetylacetonate, or mixtures of any two or more thereof. In some embodiments, the catalyst is potassium hydroxide, sodium hydroxide, and sodium methoxide. Mixtures of any two or more such catalysts may be employed.
- The solvent of the disclosed process may be any solvent that can function as an azeotropic solvent. An azeotropic solvent is a solvent that forms an azeotrope with another material such as an alcohol or water. Examples of azeotropic solvents include, but are not limited to C5-C10 alkanes, C5-C10 cycloalkanes, and aromatic solvents. In some embodiments, the azeotropic solvent is cyclohexane, toluene, dimethyl carbonate, or heptane. Mixtures of any two or more such solvents may be employed.
- In another aspect, a process is provided for preparing a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein. The process includes contacting in a solvent a hydroxy-functional vinyl ether with a carbonate in the presence of a catalyst to form a reaction mixture; heating the reaction mixture under azeotropic reflux conditions to form an alcohol or water and a vinyl ether carbonate; isolating the vinyl ether carbonate from the excess carbonate and solvent; contacting the isolated vinyl ether carbonate with a heteroatom-containing polyol in the presence of a catalyst to form a second reaction mixture; and heating the reaction mixture under azeotropic reflux conditions to form a second alcohol or water. The reaction is pushed forward by the removal of the alcohols or water (produced as by-products) from the reaction mixture under azeotropic reflux conditions.
- In one embodiment, the hydroxy-functional vinyl ether is 4-hydroxybutyl vinyl ether, cyclohexanedimethanol mono-vinyl ether, or 2-vinylsulfanylethanol.
- In one embodiment, the carbonate is an alkyl ester of an organic polyacid. In another embodiment, the carbonate is dimethyl carbonate, diethyl carbonate, dimethyl adipate, diethyl adipate, or citric acid triethyl ester.
- The contacting of the hydroxy-functional vinyl ether with the carbonate and the catalyst in a solvent may occur in different orderings. For example, the contacting of the hydroxy-functional vinyl ether with the carbonate and the catalyst can occur simultaneously. Alternatively, the contacting of the hydroxy-vinyl ether with the carbonate and the catalyst can occur sequentially wherein the order of addition varies. In some embodiments, the hydroxy-functional vinyl ether is added to the solvent, followed by the addition of the carbonate, and subsequently the addition of the catalyst.
- The hydroxy-functional vinyl ether, carbonate, and catalyst are heated to achieve azeotropic reflux conditions to facilitate removal of an alcohol or water formed by the reaction. In one embodiment, the reaction mixture is heated to a temperature of about 70° C. to about 140° C. In another embodiment, the reaction mixture is heated to about 100° C. In some embodiments, the azeotropic mixture has a boiling point of about 54-55° C. The reaction is pushed forward by the removal of the alcohol or water by-product under the azeotropic reflux conditions.
- The reaction of the hydroxy-functional vinyl ether, carbonate, and catalyst produces a vinyl ether carbonate, which is then isolated. The isolated vinyl ether carbonate is then contacted with a heteroatom-containing polyol in the presence of a catalyst to form a second reaction mixture.
- In one embodiment, the heteroatom-containing polyol is an alkanolamine, a thioalcohol, an alkoxyamine, or a thioalkoxy. In another embodiment, the heteroatom-containing polyol is triethanolamine or thiodiglycol.
- The contacting of the heteroatom-containing polyol with the vinyl ether carbonate and the catalyst in a solvent may occur in different orderings. For example, the contacting of the heteroatom-containing polyol with the vinyl ether carbonate and the catalyst can occur simultaneously. Alternatively, the contacting of the heteroatom-containing polyol with the vinyl ether carbonate and the catalyst can occur sequentially wherein the order of addition varies. In some embodiments, the heteroatom-containing polyol is added to the solvent, followed by the addition of the vinyl ether carbonate, and subsequently the addition of the catalyst.
- The heteroatom-containing polyol, vinyl ether carbonate, and catalyst are heated to achieve azeotropic reflux conditions to facilitate removal of an alcohol or water formed by the reaction. In one embodiment, the reaction mixture is heated to a temperature of about 70° C. to about 140° C. This may include heating the reaction mixture from about 70° C. to about 120° C., from about 80° C. to about 140° C., from about 90° C. to about 110° C. In another embodiment, the reaction mixture is heated to about 100° C. In some embodiments, the azeotropic mixture has a boiling point of about 54° C. to about 55° C. The reaction is driven forward by the removal of the alcohol or water by-product under the azeotropic reflux conditions.
- The catalyst used for the process disclosed herein includes any catalyst that is capable of catalyzing a transesterification reaction which includes all catalysts listed in Otera, Chem. Rev. 1993, 93, 1449-1470. Illustrative catalysts include but are not limited to, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, preferably of sodium, of potassium or of cesium, tertiary amines, guanidines, ammonium compounds, phosphonium compounds, organoaluminum, organotin, organozinc, organotitanium, organozirconium or organobismuth compounds, and also catalysts of the kind known as double metal cyanide (DMC) catalysts, as described, for example, in DE 10138216 and in DE 10147712, both of which are hereby incorporated by reference in their entireties. In some embodiments, the catalyst is a strong base, a mild transesterification catalyst, or a Lewis acid.
- Specific examples of catalysts include but are not limited to potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, diazabicyclooctane (DABCO), diazabicyclononene (DBN), diazabicycloundecene (DBU), imidazoles, such as imidazole, 1-methylimidazole or 1,2-dimethylimidazole, titanium tetrabutoxide, titanium tetraisopropoxide, dibutyltin oxide, dibutyltin dilaurate, tin dioctoate, zirconium acetylacetonate, or mixtures of any two or more thereof. In some embodiments, the catalyst is potassium hydroxide, sodium hydroxide, or sodium methoxide. Mixtures of any two or more such catalysts may be employed.
- The solvent of the disclosed process can be any solvent that can function as an azeotropic solvent. An azeotropic solvent is a solvent that forms an azeotrope with another material such as an alcohol or water. Examples of an azeotropic solvent include but are not limited to C5-C10 alkane, a C5-C10 cycloalkane, or an aromatic solvent. In some embodiments, the solvent is cyclohexane, toluene, dimethyl carbonate, or heptane.
- It has also been surprisingly found that acrylated heteroatom-based straight and branched polycarbonates, as described herein in various embodiments, also exhibit significantly improved cure profiles over products made according to the state of the art processes, but which lack the above-mentioned disadvantages of the Michael adducts. These acrylated heteroatom-based straight and branched polycarbonates include the heteroatom-containing acrylate molecule of formula (II) as disclosed herein. The heteroatom-containing alcohols are acrylated via a transesterification reaction of said alcohol with methyl acrylate to form the corresponding acrylic ester by removing the methanol by-product. The acrylated alcohols have to be inhibited against homopolymerization with radical inhibitors for their manufacturing and for storage stability reasons.
- Despite their strong inhibition, these resins also show cure enhancement upon polymerizing them in standard energy cure formulations. The advantages over this system is again the uninfluenced functionality of the final acrylate, because the hetero atom (i.e. amine) is part of the molecular backbone rather than an amine-Michael addition product. The corresponding product viscosity at comparable molecular weight is slightly higher than the one of the vinylether version. Another advantage of this route are the manufacturing costs, which are lower than those of the vinylether resins, mostly due to raw material choice. However, a distinct disadvantage of the acrylic esters is their heavy radical inhibition, which can cause discoloration and adds low molecular weight species to the final resin. Nonetheless, the heteroatom-containing acrylates exhibit significantly increased cure speed when compared to state-of-the-art amine Michael-adducts.
- In one aspect, a heteroatom-containing acrylate molecule of formula (II) is provided:
- wherein
-
- G is S or N;
- each A is independently a C1-C10 alkylene group;
- each D is independently S, O, or NR10, wherein R has the structure:
-
- each x is independently an integer from 0 to 10;
- each n is independently an integer from 0 to 20;
- each y is independently an integer from 1 to 20; and
- z is 2 when G is S or z is 3 when G is N.
- In one embodiment, each A independently is an optionally substituted C1-C10 alkylene group. In another embodiment, each A independently is —CH2CH2—.
- In one embodiment, the acrylate molecule of formula (II) is selected from the group consisting of:
- In one embodiment, the acrylate molecule of formula (II) exhibits a viscosity from about 10 centipoise to about 15000 centipoise at 25° C. In another embodiment, the acrylate molecule of formula (II) exhibits a viscosity of about 10 centipoise to about 1000 centipoise at 25° C.
- The acrylate molecule of formula (II) can be prepared by a process as disclosed in U.S. Provisional Application No. 62/165,086. The process includes contacting in a solvent a heteroatom-containing polyol with an acrylate in the presence of a catalyst to form a reaction mixture and heating the reaction mixture under azeotropic reflux conditions to form an alcohol or water from the reaction mixture. The reaction is pushed forward by the removal of the alcohol or water (produced as by-products) from the reaction mixture under azeotropic reflux conditions.
- The acrylate of the process disclosed above may be a (meth)acrylate. The (meth)acrylate may be acrylic acid, methacrylic acid, methylmethacrylic acid, methylmethacrylate, ethylmethacrylate, and hydroxy vinyl ethers. Other suitable examples of the (meth)acrylic or (meth)acrylate include, but are not limited, to methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate (BA), n-decyl acrylate, isobutyl acrylate, n-amyl acrylate, n-hexyl acrylate, isoamyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, t-butylaminoethyl acrylate, 2-sulfoethyl acrylate, trifluoroethyl acrylate, glycidyl acrylate, benzyl acrylate, allyl acrylate, 2-n-butoxyethyl acrylate, 2-chloroethyl acrylate, sec-butyl-acrylate, tert-butyl acrylate, 2-ethylbutyl acrylate, cinnamyl acrylate, crotyl acrylate, cyclohexyl acrylate, cyclopentyl acrylate, 2-ethoxyethyl acrylate, furfuryl acrylate, hexafluoroisopropyl acrylate, methallyl acrylate, 3-methoxybutyl acrylate, 2-methoxybutyl acrylate, 2-nitro-2-methylpropyl acrylate, n-octylacrylate, 2-ethylhexyl acrylate, 2-phenoxyethyl acrylate, 2-phenylethyl acrylate, phenyl acrylate, propargyl acrylate, tetrahydrofurfuryl acrylate and tetrahydropyranyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate (BMA), isopropyl methacrylate, isobutyl methacrylate, n-amyl methacrylate, n-hexyl methacrylate, isoamyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, t-butylaminoethyl methacrylate, 2-sulfoethyl methacrylate, trifluoroethyl methacrylate, glycidyl methacrylate (GMA), benzyl methacrylate, allyl methacrylate, 2-n-butoxyethyl methacrylate, 2-chloroethyl methacrylate, sec-butyl-methacrylate, tert-butyl methacrylate, 2-ethylbutyl methacrylate, cinnamyl methacrylate, crotyl methacrylate, cyclohexyl methacrylate, cyclopentyl methacrylate, 2-ethoxyethyl methacrylate, furfuryl methacrylate, hexafluoroisopropyl methacrylate, methallyl methacrylate, 3-methoxybutyl methacrylate, 2-methoxybutyl methacrylate, 2-nitro-2-methylpropyl methacrylate, n-octylmethacrylate, 2-ethylhexyl methacrylate, 2-phenoxyethyl methacrylate, 2-phenylethyl methacrylate, phenyl methacrylate, propargyl methacrylate, tetrahydrofurfuryl methacrylate and tetrahydropyranyl methacrylate. Examples of other suitable acrylic and methacrylic moieties include, but are not limited to hydroxyalkyl acrylates and methacrylates, acrylic acid and its salts, acrylonitrile, acrylamide, methyl α-chloroacrylate, methyl 2-cyanoacrylate, N-ethylacrylamide, N,N-diethylacrylamide, acrolein, methacrylic acid and its salts, methacrylonitrile, methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N,N-diethylmethacrylamide, N,N-dimethylmethacrylamide, N-phenylmethacrylamide, methacrolein and acrylic or methacrylic acid derivatives containing cross-linkable functional groups, such as hydroxy, carboxyl, amino, isocyanate, glycidyl, epoxy, allyl, and the like.
- The catalyst employed in the process includes a catalyst that is capable of catalyzing transesterification reactions. Illustrative examples include the catalysts listed in Otera, Chem. Rev. 1993, 93, 1449-1470. Some examples of catalysts include but are not limited to, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, preferably of sodium, of potassium or of cesium, tertiary amines, guanidines, ammonium compounds, phosphonium compounds, organoaluminum, organotin, organozinc, organotitanium, organozirconium or organobismuth compounds, and also catalysts of the kind known as double metal cyanide (DMC) catalysts, as described, for example, in DE 10138216 or in DE 10147712. In some embodiments, the catalyst is a strong acid, a strong base, a transesterification catalyst, a Lewis acid, a Brønsted acid, or an amine. In other embodiments, the catalyst is an alkali alkoxide. In specific embodiments, the alkali alkoxide includes zinc isopropoxide, copper isopropoxide, zirconium acetoacetonate, or titanium tetra-isopropoxide.
- Specific examples of catalysts include but are not limited to potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, diazabicyclooctane (DABCO), diazabicyclononene (DBN), diazabicycloundecene (DBU), imidazoles, such as imidazole, 1-methylimidazole or 1,2-dimethylimidazole, titanium tetrabutoxide, titanium tetraisopropoxide, dibutyltin oxide, dibutyltin dilaurate, tin dioctoate, zirconium acetylacetonate, or mixtures thereof. In some embodiments, the catalyst is methane sulfonic acid, titanium isopropoxide, or an organotin reagent. In one embodiment, the organotin reagent is generated in situ through the reaction of sodium methoxide and dimethyltin dichloride.
- The amount of catalyst present in the disclosed process is from about 400 ppm to about 1000 ppm based on one part of the heteroatom-containing polyol (based on weight of the monomers (heteroatom-containing polyol and acrylate) without solvent). In some embodiments, the amount of catalyst is about 1000 ppm based on one part of heteroatom-containing polyol (based on weight of the monomers (heteroatom-containing polyol and acrylate) without solvent).
- The contacting of the heteroatom-containing polyol with the acrylate and catalyst in a solvent may occur in different orderings. For example, the contacting of the heteroatom-containing polyol with the acrylate and the catalyst may occur simultaneously. Alternatively, contacting of the heteroatom-containing polyol with the acrylate and catalyst may occur sequentially, wherein the order of addition varies. In some embodiments, the heteroatom-containing polyol is added to the solvent, followed by the addition of the catalyst, and subsequently the addition of the acrylate.
- The solvent of the disclosed process may be any solvent that can function as an azeotropic solvent. An azeotropic solvent is a solvent that forms an azeotrope with another material such as an alcohol or water. Examples of azeotropic solvents include but are not limited to C5-C10 alkanes, C5-C10 cycloalkane, and C6-C12 aromatic solvents. In some embodiments, the solvent is pentane, hexane, heptane, octane, nonane, decane, cyclohexane, methyl cyclohexane, or toluene.
- Once the heteroatom-containing polyol and acrylate are contacted with a catalyst in a solvent, the reaction mixture is heated to achieve azeotropic reflux conditions. In one embodiment, the reaction mixture is heated to about 70° C. to about 140° C. In another embodiment, the overhead temperature of the reaction has an azeotropic distillation temperature from about 40° C. to about 80° C. In some embodiments, the overhead temperature has an azeotropic distillation temperature of about 54° C. The reaction is pushed forward by the removal of the alcohol or water, produced as a by-product, under the azeotropic reflux conditions.
- In another aspect, a coating composition is provided. The coating composition includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- In another aspect, a coating, ink, or adhesive composition is provided. The coating, ink, or adhesive composition includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- In one embodiment, the coating, ink, or adhesive composition is configured for use in conventional printing, 3D printing, inks, inkjet inks, paints, and packaging applications. In another embodiment, the coating, ink, or adhesive composition is configured for use in digital printing. In another embodiment, the coating, ink, or adhesive composition is configured for use in automotive original equipment manufacturer paint applications or automotive refinishing applications.
- In yet another aspect, an optical fiber coating is provided. The optical fiber coating includes a heteroatom-containing polycarbonate polyfunctional-vinyl ether molecule of formula (I) as disclosed herein or a heteroatom-containing acrylate molecule of formula (II) as disclosed herein.
- The present embodiments, thus generally described, will be understood more readily by reference to the following examples, which are provided by way of illustration and are not intended to be limiting of the present technology in any way.
- Example 1. Synthesis of Compound 1. 865 g triethanol amine, 3135 g dimethyl carbonate and 16 g of a 25 wt % sodium methoxide solution in methanol were heated and held at reflux for 30 min. The transesterification reaction started and methanol was generated and distilled off as an azeotropic mixture with dimethyl carbonate. Once the conversion reached the specification, the residual solvent was removed under reduced pressure at a maximum of 120° C. To this methyl carbonate function triethanol amine precursor, equimolar amounts of 4-hydroxybutyl vinyl ether (calculated on the concentration of methyl carbonate endgroups) and cyclohexane were charged at 60° C. The mixture was heated again to full reflux and as methanol was generated in this transesterification process, cyclohexane formed a low boiling azeotropic mixture with methanol, which was removed via an automated overhead reflux splitting mechanism. After reaching the desired high conversion, the product was purified via vacuum distillation under reduced pressure and temperatures at a maximum of 120° C. The final product exhibited a low viscosity and was a slightly brown free flowing resin.
- Example 2. Synthesis of Compound 2. 394 g thiodiglycol, 306 g dimethyl carbonate, 600 g cyclohexane and 3 g of a 25 wt % sodium methoxide solution in methanol were heated and held at reflux for 30 min. The transesterification reaction started and methanol was generated and distilled off as azeotropic mixture with cyclohexane overhead. Once the conversion reached the specification, the residual solvent was removed under reduced pressure at a maximum of 120° C. To this methyl carbonate functional thioether precursor, equimolar amounts of 4-hydroxybutyl vinyl ether (calculated on the concentration of methyl carbonate endgroups, determined by 1H-NMR) and 500 g cyclohexane were charged at 60° C. The mixture was heated again to full reflux and as methanol was generated in this transesterification process, cyclohexane formed a low boiling azeotropic mixture with methanol, which was removed via an automated overhead reflux splitting mechanism. After reaching the desired high conversion, the product was purified via vacuum distillation under reduced pressure and temperatures at a maximum of 120° C. The final product was a low viscosity, colorless free flowing resin.
- Example 3. Synthesis of Compound 3. 304 g triethanol amine polymer was homogenized with polymerization inhibitors (0.7 g mequinol, 2.3 g hydroquinone), 500 g cyclohexane and 405 g methyl acrylate. To this mixture, 13.6 g sodium methoxide 25% solution in methanol and 19.8 g dimethyltin dichloride 70% solution in methanol were charged. The mixture was heated under azeotropic conditions and methanol/cyclohexane azeotrope was removed from the reactor via an automated overhead reflux splitting mechanism. Once the reaction reached the desired conversion, the access monomer and solvent were removed via a vacuum distillation step. The catalyst was removed via a caustic wash and subsequent buffer wash of the diluted crude product. The final resin was obtained by vacuum distillation under reduced pressure and a maximum temperature of 100° C. The final product was a low viscosity, slightly brown resin.
- Example 4. Synthesis of Compound 4. 209 g thiodiglycol was homogenized with polymerization inhibitors (0.7 g mequinol, 2.3 g hydroquinone), 500 g cyclohexane and 441 g methyl acrylate. To this mixture, 13.6 g sodium methoxide 25% solution in methanol and 19.8 g dimethyltin dichloride 70% solution in methanol were charged. The mixture was heated under azeotropic conditions and methanol/cyclohexane azeotrope was removed from the reactor via an automated overhead reflux splitting mechanism. Once the reaction reached the desired conversion, the access monomer and solvent were removed via a vacuum distillation step. The catalyst was removed via a caustic wash and subsequent buffer wash of the diluted crude product. The final resin was obtained by vacuum distillation under reduced pressure and a maximum temperature of 100° C. The final product was a low viscosity, colorless resin.
- Example 5. The cure energies of a triethanolamine-carbonate-vinyl ether adduct (MT041) was compared to that of an acrylic ester resin that is a conventional Michael adduct of an acrylate (PO94F) (see
FIG. 1 ).FIG. 1 shows that the combination of a vinylether functionality with active alpha methylene groups on the same molecule results in increased cure speed, as demonstrated by the lower cure energy of MT041 than that of PO94F. - Example 6. The cure energies of a triethanolamine-carbonate-vinyl ether adduct (GM1046-041/8863) was compared to that of a vinyl ether (GM1046-026/8863) and triethanolamine (TEA/8863) (see
FIG. 2 ).FIG. 2 shows that the vinyl ethers or amines alone do not improve cure properties in the same way as the combination of the two functionalities, as evidenced by the lower cure energy of GM1046-041/8863 as compared to that of GM1046-026/8863 and TEA/8863. - While certain embodiments have been illustrated and described, it should be understood that changes and modifications can be made therein in accordance with ordinary skill in the art without departing from the technology in its broader aspects as defined in the following claims.
- The embodiments, illustratively described herein may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms “comprising,” “including,” “containing,” etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the claimed technology. Additionally, the phrase “consisting essentially of” will be understood to include those elements specifically recited and those additional elements that do not materially affect the basic and novel characteristics of the claimed technology. The phrase “consisting of” excludes any element not specified.
- The present disclosure is not to be limited in terms of the particular embodiments described in this application. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and compositions within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds compositions or biological systems, which can of course vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
- In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.
- As will be understood by one skilled in the art, for any and all purposes, particularly in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art all language such as “up to,” “at least,” “greater than,” “less than,” and the like, include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member.
- All publications, patent applications, issued patents, and other documents referred to in this specification are herein incorporated by reference as if each individual publication, patent application, issued patent, or other document was specifically and individually indicated to be incorporated by reference in its entirety. Definitions that are contained in text incorporated by reference are excluded to the extent that they contradict definitions in this disclosure.
- Other embodiments are set forth in the following claims.
Claims (14)
1. An ink, coating, or adhesive composition comprising a polyfunctional acrylate molecule of formula (II):
wherein
G is S or N;
each A is independently a C1-C10 alkylene group;
each D is independently S, O, or NR10, wherein R10 has the structure:
2. The ink, coating, or adhesive composition of claim 1 , wherein A is an optionally substituted C1-C10 alkylene group.
3. The ink, coating, or adhesive composition of claim 1 , wherein A is —CH2CH2—.
5. The ink, coating, or adhesive composition of claim 1 , wherein the molecule exhibits a viscosity from about 10 centipoise to about 15000 centipoise at 25° C.
6. The ink, coating, or adhesive composition of claim 1 , wherein the molecule exhibits a viscosity of about 10 centipoise to about 1000 centipoise at 25° C.
7. The ink, coating, or adhesive composition of claim 1 , wherein the composition is configured for use in conventional printing, 3D printing, inks, inkjet inks, paints, and packaging applications.
8. The ink, coating, or adhesive composition of claim 1 , wherein the composition is a coating composition, wherein the coating is configured for use in automotive original equipment manufacturer paint applications or automotive refinishing applications.
9. A process for preparing a polyfunctional acrylate molecule, the process comprising
contacting in a solvent a heteroatom-containing polyol with an acrylate in the presence of a catalyst to form a reaction mixture; and
heating the reaction mixture under azeotropic reflux conditions to form an alcohol or water from the reaction mixture;
wherein:
the alcohol or water is removed from the reaction mixture under the azeotropic reflux conditions; and
the polyfunctional acrylate molecule is a molecule of formula (II):
wherein
G is S or N;
each A is independently a C1-C10 alkylene group;
each D is independently S, O, or NR10, wherein R10 has the structure:
10. The process of claim 9 , wherein the heating is conducted from about 70° C. to about 140° C.
11. The process of claim 9 , wherein the catalyst comprises a strong acid, strong base, a transesterification catalyst, a Lewis acid, a Brønsted acid, or an amine.
12. The process of claim 9 , wherein an overhead temperature of the reaction has an azeotropic distillation temperature from about 40° C. to about 80° C.
13. The process of claim 9 , wherein the acrylate comprises a (meth)acrylate comprising acrylic acid, methacrylic acid, methylmethacrylic acid, methylmethacrylate, ethylmethacrylate, hydroxy vinyl ether, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate (BA), n-decyl acrylate, isobutyl acrylate, n-amyl acrylate, n-hexyl acrylate, isoamyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, t-butylaminoethyl acrylate, 2-sulfoethyl acrylate, trifluoroethyl acrylate, glycidyl acrylate, benzyl acrylate, allyl acrylate, 2-n-butoxyethyl acrylate, 2-chloroethyl acrylate, sec-butyl-acrylate, tert-butyl acrylate, 2-ethylbutyl acrylate, cinnamyl acrylate, crotyl acrylate, cyclohexyl acrylate, cyclopentyl acrylate, 2-ethoxyethyl acrylate, furfuryl acrylate, hexafluoroisopropyl acrylate, methallyl acrylate, 3-methoxybutyl acrylate, 2-methoxybutyl acrylate, 2-nitro-2-methylpropyl acrylate, n-octylacrylate, 2-ethylhexyl acrylate, 2-phenoxyethyl acrylate, 2-phenylethyl acrylate, phenyl acrylate, propargyl acrylate, tetrahydrofurfuryl acrylate, tetrahydropyranyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate (BMA), isopropyl methacrylate, isobutyl methacrylate, n-amyl methacrylate, n-hexyl methacrylate, isoamyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, t-butylaminoethyl methacrylate, 2-sulfoethyl methacrylate, trifluoroethyl methacrylate, glycidyl methacrylate (GMA), benzyl methacrylate, allyl methacrylate, 2-n-butoxyethyl methacrylate, 2-chloroethyl methacrylate, sec-butyl-methacrylate, tert-butyl methacrylate, 2-ethylbutyl methacrylate, cinnamyl methacrylate, crotyl methacrylate, cyclohexyl methacrylate, cyclopentyl methacrylate, 2-ethoxyethyl methacrylate, furfuryl methacrylate, hexafluoroisopropyl methacrylate, methallyl methacrylate, 3-methoxybutyl methacrylate, 2-methoxybutyl methacrylate, 2-nitro-2-methylpropyl methacrylate, n-octylmethacrylate, 2-ethylhexyl methacrylate, 2-phenoxyethyl methacrylate, 2-phenylethyl methacrylate, phenyl methacrylate, propargyl methacrylate, tetrahydrofurfuryl methacrylate and tetrahydropyranyl methacrylate. Examples of other suitable acrylic and methacrylic moieties include, but are not limited to hydroxyalkyl acrylates and methacrylates, acrylic acid and its salts, acrylonitrile, acrylamide, methyl α-chloroacrylate, methyl 2-cyanoacrylate, N-ethylacrylamide, N,N-diethylacrylamide, acrolein, methacrylic acid and its salts, methacrylonitrile, methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N,N-diethylmethacrylamide, N,N-dimethylmethacrylamide, N-phenylmethacrylamide, or methacrolein.
14. The process of claim 9 , wherein the solvent comprises C5-C10 alkanes, C5-C10 cycloalkane, or C6-C12 aromatic solvents.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/823,034 US20200216710A1 (en) | 2015-10-16 | 2020-03-18 | Energy curable high reactivity multi vinylether or acrylate functional resins |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562242837P | 2015-10-16 | 2015-10-16 | |
| PCT/US2016/053469 WO2017065957A1 (en) | 2015-10-16 | 2016-09-23 | Energy curable high reactivity multi vinylether or acrylate functional resins |
| US201815768288A | 2018-04-13 | 2018-04-13 | |
| US16/823,034 US20200216710A1 (en) | 2015-10-16 | 2020-03-18 | Energy curable high reactivity multi vinylether or acrylate functional resins |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/768,288 Division US10633553B2 (en) | 2015-10-16 | 2016-09-23 | Energy curable high reactivity multi vinylether or acrylate functional resins |
| PCT/US2016/053469 Division WO2017065957A1 (en) | 2015-10-16 | 2016-09-23 | Energy curable high reactivity multi vinylether or acrylate functional resins |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20200216710A1 true US20200216710A1 (en) | 2020-07-09 |
Family
ID=58517754
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/768,288 Expired - Fee Related US10633553B2 (en) | 2015-10-16 | 2016-09-23 | Energy curable high reactivity multi vinylether or acrylate functional resins |
| US16/823,034 Abandoned US20200216710A1 (en) | 2015-10-16 | 2020-03-18 | Energy curable high reactivity multi vinylether or acrylate functional resins |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/768,288 Expired - Fee Related US10633553B2 (en) | 2015-10-16 | 2016-09-23 | Energy curable high reactivity multi vinylether or acrylate functional resins |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US10633553B2 (en) |
| EP (1) | EP3362490A4 (en) |
| JP (1) | JP2018532023A (en) |
| KR (1) | KR20180057719A (en) |
| CN (1) | CN108368200B (en) |
| BR (1) | BR112018007535A2 (en) |
| WO (1) | WO2017065957A1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020202507A1 (en) * | 2019-04-03 | 2020-10-08 | 共栄社化学株式会社 | Aqueous thermosetting resin composition and cured film |
| GB202001675D0 (en) * | 2020-02-07 | 2020-03-25 | Domino Printing Sciences Plc | Ink compositions |
| JPWO2024010032A1 (en) * | 2022-07-06 | 2024-01-11 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2065448A1 (en) * | 2007-11-28 | 2009-06-03 | FUJIFILM Corporation | Ink composition and ink jet recording method |
| EP2367056A2 (en) * | 2010-03-15 | 2011-09-21 | Fujifilm Corporation | Method of preparing lithographic printing plate |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3963771A (en) | 1970-09-02 | 1976-06-15 | Union Carbide Corporation | Amine acrylate addition reaction products |
| US3844916A (en) | 1972-09-18 | 1974-10-29 | Desoto Inc | Radiation curable non-gelled michael addition reaction products |
| DE3706355A1 (en) | 1987-02-27 | 1988-09-08 | Basf Ag | ADDITIONAL PRODUCTS OF ACRYLATES AND AMINES AND THEIR USE IN RADIANT CURRENT MEASURES |
| US4786682A (en) | 1987-06-25 | 1988-11-22 | Ppg Industries, Inc. | Coating compositions prepared from Michael adducts |
| EP0355558A1 (en) | 1988-08-18 | 1990-02-28 | Siemens Aktiengesellschaft | Insulating tape for manufaturing an impregnated insulating jacket for electric conductors |
| JPH05506849A (en) | 1990-02-06 | 1993-10-07 | アイエスピー インヴェストメンツ インコーポレイテッド | vinyl ether compound |
| US5159098A (en) * | 1990-09-10 | 1992-10-27 | Isp Investments Inc. | Alk-1-enyloxy carbamates |
| US5180424A (en) | 1991-10-07 | 1993-01-19 | Westvaco Corporation | Michael addition aminopolyester resins as dilution extenders for zinc-containing metal resinate inks |
| US5804301A (en) * | 1996-01-11 | 1998-09-08 | Avery Dennison Corporation | Radiation-curable coating compositions |
| US6172129B1 (en) | 1999-01-29 | 2001-01-09 | Sartomer Technologies, Inc. | Cyclic amine acrylate monomers and polymers |
| SE520406C2 (en) | 2000-09-13 | 2003-07-08 | Perstorp Specialty Chem Ab | Radiation curable dendritic oligomer or polymer |
| CN1476426A (en) | 2000-10-20 | 2004-02-18 | Ucb公司 | Dimethylamine/ester adducts and their use in polymerizable compositions |
| DE10138216A1 (en) | 2001-08-03 | 2003-02-20 | Bayer Ag | Production of aliphatic polycarbonate polymer e.g. poly(ether-carbonate) polyol, involves ring-opening polymerization of cyclic carbonate in the presence of double metal cyanide catalyst |
| DE10147712A1 (en) | 2001-09-27 | 2003-04-17 | Basf Ag | Process for the production of aliphatic polycarbonates |
| DE602004008602T2 (en) | 2004-07-15 | 2008-06-12 | Agfa Graphics N.V. | New radiation-curable compositions |
| EP1731541A1 (en) | 2005-06-10 | 2006-12-13 | Cytec Surface Specialties, S.A. | Low extractable radiation curable compositions containing aminoacrylates |
| US7378523B2 (en) * | 2005-08-25 | 2008-05-27 | National Starch And Chemical Investment Holding Corporation | Quinolinols as fluxing and accelerating agents for underfill compositions |
| EP1876166A1 (en) | 2006-06-29 | 2008-01-09 | Cytec Surface Specialties, S.A. | Radiation curable amino(meth)acrylates |
| IN2009CN03580A (en) | 2006-12-21 | 2015-09-11 | Agfa Graphics Nv | |
| PL2097458T5 (en) | 2006-12-21 | 2017-10-31 | Agfa Graphics Nv | Novel radiation curable compositions |
| US8129447B2 (en) * | 2007-09-28 | 2012-03-06 | Fujifilm Corporation | Ink composition and inkjet recording method using the same |
| CN102066437B (en) * | 2008-06-18 | 2013-07-24 | 日本电石工业株式会社 | Multifunctional vinyl ether and resin composition containing same |
| JP5760300B2 (en) * | 2009-09-10 | 2015-08-05 | 株式会社リコー | Inkjet ink composition material and inkjet ink composition |
| GB201005060D0 (en) | 2010-03-25 | 2010-05-12 | Davidson Robert S | Synergists |
| GB201314455D0 (en) | 2013-08-13 | 2013-09-25 | Contamac Ltd | Monomers for use in a polymerizable composition and high refractive index polymer for opthalmic applications |
| JP6186294B2 (en) * | 2014-03-07 | 2017-08-23 | 富士フイルム株式会社 | Antireflection film, polarizing plate, image display device, and production method of antireflection film |
-
2016
- 2016-09-23 CN CN201680072706.6A patent/CN108368200B/en not_active Expired - Fee Related
- 2016-09-23 BR BR112018007535A patent/BR112018007535A2/en not_active Application Discontinuation
- 2016-09-23 WO PCT/US2016/053469 patent/WO2017065957A1/en not_active Ceased
- 2016-09-23 US US15/768,288 patent/US10633553B2/en not_active Expired - Fee Related
- 2016-09-23 KR KR1020187013241A patent/KR20180057719A/en not_active Withdrawn
- 2016-09-23 JP JP2018519406A patent/JP2018532023A/en active Pending
- 2016-09-23 EP EP16855934.2A patent/EP3362490A4/en not_active Withdrawn
-
2020
- 2020-03-18 US US16/823,034 patent/US20200216710A1/en not_active Abandoned
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2065448A1 (en) * | 2007-11-28 | 2009-06-03 | FUJIFILM Corporation | Ink composition and ink jet recording method |
| EP2367056A2 (en) * | 2010-03-15 | 2011-09-21 | Fujifilm Corporation | Method of preparing lithographic printing plate |
Also Published As
| Publication number | Publication date |
|---|---|
| US20180312715A1 (en) | 2018-11-01 |
| US10633553B2 (en) | 2020-04-28 |
| CN108368200A (en) | 2018-08-03 |
| CN108368200B (en) | 2021-09-17 |
| EP3362490A4 (en) | 2019-08-21 |
| EP3362490A1 (en) | 2018-08-22 |
| WO2017065957A1 (en) | 2017-04-20 |
| KR20180057719A (en) | 2018-05-30 |
| JP2018532023A (en) | 2018-11-01 |
| BR112018007535A2 (en) | 2018-10-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20200216710A1 (en) | Energy curable high reactivity multi vinylether or acrylate functional resins | |
| JP5900253B2 (en) | (Meth) acrylic modified organopolysiloxane, radiation curable silicone composition, silicone release paper, and method for producing them | |
| CN107960081B (en) | Energy-curable hyperbranched polycarbonate polyol backbone multifunctional acrylate | |
| JP5362217B2 (en) | Method for producing crosslinkable oligomer | |
| US11746096B2 (en) | Polycyclocarbonate compounds and polymers formed therefrom | |
| US11180579B2 (en) | Active energy ray-curable composition | |
| JP2007211240A (en) | Acrylic modified polybutadiene | |
| JP2018517029A (en) | Preparation of hyperbranched polycarbonate polyols and their use | |
| WO2020008879A1 (en) | (meth)acrylate-terminated polycarbonate oligomer | |
| US8288580B2 (en) | Benzophenone compound | |
| JP2022024597A (en) | Curable composition | |
| JP6277381B2 (en) | Glycidyl group-containing (meth) acrylamide | |
| TWI802679B (en) | Compound containing unsaturated double bond, oxygen absorber using same, and resin composition | |
| TW201800381A (en) | Curable composition | |
| US20210130543A1 (en) | Synthesis of cyanurate and multifunctional alcohol-based polyether acrylate for uv curable materials | |
| KR20170028899A (en) | Diacrylate-compound-containing composition and cured product thereof | |
| JP6432603B2 (en) | Triacrylate compound, method for producing the same, and composition | |
| US9315445B2 (en) | Photoreactive monomers | |
| JP4916704B2 (en) | Water-based metallic paint composition | |
| US20160083331A1 (en) | Polyfunctional (meth)acrylate, and method for producing same | |
| EP0483796A2 (en) | A composition comprising polyether compounds, a process for the preparation thereof and a curable resin composition | |
| KR20070089123A (en) | Carbamate functional addition polymer and preparation method thereof | |
| JP2020026428A (en) | Ester compound, ester composition, (meth) acrylate compound, and cured product, as well as method of producing ester compound and method for producing (meth) acrylate compound | |
| TW202523714A (en) | Bifunctional (meth)acrylate-containing composition, and curable composition and cured product using the same | |
| JPH1036362A (en) | Epoxy compound and use thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |