US20200207839A1 - Immunoglobulin purification - Google Patents
Immunoglobulin purification Download PDFInfo
- Publication number
- US20200207839A1 US20200207839A1 US16/538,604 US201916538604A US2020207839A1 US 20200207839 A1 US20200207839 A1 US 20200207839A1 US 201916538604 A US201916538604 A US 201916538604A US 2020207839 A1 US2020207839 A1 US 2020207839A1
- Authority
- US
- United States
- Prior art keywords
- immunoglobulin
- anion exchange
- exchange chromatography
- solution
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108060003951 Immunoglobulin Proteins 0.000 title claims abstract description 87
- 102000018358 immunoglobulin Human genes 0.000 title claims abstract description 87
- 238000000746 purification Methods 0.000 title description 21
- 239000000463 material Substances 0.000 claims abstract description 63
- 238000000034 method Methods 0.000 claims abstract description 46
- 239000012528 membrane Substances 0.000 claims abstract description 30
- 238000005571 anion exchange chromatography Methods 0.000 claims abstract description 29
- 239000008366 buffered solution Substances 0.000 claims abstract description 14
- 108090000623 proteins and genes Proteins 0.000 claims description 47
- 102000004169 proteins and genes Human genes 0.000 claims description 46
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 19
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 19
- 238000011210 chromatographic step Methods 0.000 claims description 11
- -1 wherein the aqueous Substances 0.000 claims description 11
- 238000002305 strong-anion-exchange chromatography Methods 0.000 claims description 4
- 238000005349 anion exchange Methods 0.000 abstract description 14
- 239000007864 aqueous solution Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 49
- 239000000126 substance Substances 0.000 description 41
- 230000005526 G1 to G0 transition Effects 0.000 description 21
- 235000002639 sodium chloride Nutrition 0.000 description 21
- 102000004196 processed proteins & peptides Human genes 0.000 description 19
- 108090000765 processed proteins & peptides Proteins 0.000 description 19
- 229920001184 polypeptide Polymers 0.000 description 18
- 150000003839 salts Chemical class 0.000 description 16
- 238000001042 affinity chromatography Methods 0.000 description 11
- 238000010828 elution Methods 0.000 description 11
- 238000005342 ion exchange Methods 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 125000001424 substituent group Chemical group 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 9
- 238000001542 size-exclusion chromatography Methods 0.000 description 9
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 9
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 238000004587 chromatography analysis Methods 0.000 description 7
- 230000001143 conditioned effect Effects 0.000 description 7
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 7
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 6
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 6
- 229920002684 Sepharose Polymers 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 238000005341 cation exchange Methods 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 238000004255 ion exchange chromatography Methods 0.000 description 6
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 241000282414 Homo sapiens Species 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 229940072221 immunoglobulins Drugs 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- YFVGRULMIQXYNE-UHFFFAOYSA-M lithium;dodecyl sulfate Chemical compound [Li+].CCCCCCCCCCCCOS([O-])(=O)=O YFVGRULMIQXYNE-UHFFFAOYSA-M 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 239000012928 buffer substance Substances 0.000 description 3
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 3
- 238000005277 cation exchange chromatography Methods 0.000 description 3
- 229920001429 chelating resin Polymers 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 2
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 239000012614 Q-Sepharose Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 101710120037 Toxin CcdB Proteins 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000003957 anion exchange resin Substances 0.000 description 2
- 125000000837 carbohydrate group Chemical group 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- JMZFEHDNIAQMNB-UHFFFAOYSA-N m-aminophenylboronic acid Chemical compound NC1=CC=CC(B(O)O)=C1 JMZFEHDNIAQMNB-UHFFFAOYSA-N 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 239000012723 sample buffer Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000012784 weak cation exchange Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229920002271 DEAE-Sepharose Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000491 Polyphenylsulfone Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000004775 Tyvek Substances 0.000 description 1
- 229920000690 Tyvek Polymers 0.000 description 1
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000012436 analytical size exclusion chromatography Methods 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000011091 antibody purification Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 239000013622 capto Q Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000012500 ion exchange media Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000011140 membrane chromatography Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000012799 strong cation exchange Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/06—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
- C07K16/065—Purification, fragmentation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39591—Stabilisation, fragmentation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/16—Extraction; Separation; Purification by chromatography
- C07K1/18—Ion-exchange chromatography
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/06—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2866—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
Definitions
- the current invention is in the field of purification of polypeptides. It is reported a method for providing an immunoglobulin in monomeric form by separating the immunoglobulin in solution from impurities, especially from the immunoglobulin in aggregated form and from immunoglobulin fragments.
- Proteins and especially immunoglobulins play an important role in today's medical portfolio. For human application every therapeutic protein has to meet distinct criteria. To ensure the safety of biopharmaceutical agents for humans, nucleic acids, viruses and host cell proteins, which could cause harm, have to be removed especially. To meet regulatory specifications one or more purification steps have to follow the fermentation process. Among other things, purity, throughput, and yield play an important role in determining an appropriate purification process.
- affinity chromatography with microbial proteins e.g. protein A or protein G affinity chromatography
- ion exchange chromatography e.g. cation exchange (sulfopropyl or carboxymethyl resins), anion exchange (amino ethyl resins) and mixed-mode ion exchange
- thiophilic adsorption e.g. with beta-mercaptoethanol and other SH ligands
- hydrophobic interaction or aromatic adsorption chromatography e.g. with phenyl-sepharose, aza-arenophilic resins, or m-aminophenylboronic acid
- metal chelate affinity chromatography e.g.
- Ni(II)- and Cu(II)-affinity material size exclusion chromatography
- electrophoretical methods such as gel electrophoresis, capillary electrophoresis
- Necina, R., et al. (Biotechnol. Bioeng. 60 (1998) 689-698) reported the capture of human monoclonal antibodies directly from cell culture supernatants by ion exchange media exhibiting high charge density.
- WO 89/05157 a method is reported for the purification of product immunoglobulins by directly subjecting the cell culture medium to a cation exchange treatment.
- a one-step purification of monoclonal IgG antibodies from mouse ascites is described by Danielsson, A., et al., J. Immunol. Meth. 115 (1988), 79-88.
- WO 2004/076485 reports a process for antibody purification by protein A and ion exchange chromatography.
- EP 0 530 447 a process for purifying IgG monoclonal antibodies by a combination of three chromatographic steps is reported. The removal of protein A from antibody preparations is reported in U.S. Pat. No. 4,983,722.
- Recombinant monoclonal antibody processes often employ anion-exchange chromatography to bind trace levels of impurities and potential contaminants such as DNA, host cell protein, and virus, while allowing the antibody to flow through (Knudsen, H. L., et al., J. Chrom. A 907 (2001) 145-154).
- WO 95/16037 reports the purification of anti-EGF-R/anti-CD3 bispecific monoclonal antibodies from hybrid hybridoma performed by protein A and cation exchange chromatography. The separation of antibody monomers from its multimers by use of ion exchange chromatography is reported in EP 1 084 136.
- U.S. Pat. No. 5,429,746 relates to the application of hydrophobic interaction chromatography combination chromatography to the purification of antibody molecule proteins.
- An anionic modified microporous membrane for use for the filtration of fluids, particular parenteral or biological liquids contaminated with charged particulates, is reported in U.S. Pat. No. 4,604,208.
- WO 03/040166 reports a membrane and a device designed for the removal of trace impurities in protein containing streams.
- the current invention comprises aspects in the field of immunoglobulin purification. It has been found that an anion exchange chromatography step, in which the immunoglobulin in monomeric form can be obtained from an anion exchange material in a flow-through mode, has to be performed in a narrow pH value range of from e.g. pH 7.8 to pH 8.8. Surprisingly a small deviation from this pH value range, e.g., to pH 7.0 or pH 9.0, abolishes this effect. With the method according to the invention it is possible to separate in a single step the immunoglobulin in monomeric form from the immunoglobulin in aggregated form and from immunoglobulin fragments.
- One aspect is a method for obtaining an immunoglobulin in monomeric form, wherein the method comprises the following step:
- the term “ion exchange material” or grammatical equivalents thereof denotes an immobile matrix that carries covalently bound charged substituents. For overall charge neutrality not covalently bound counter ions are bound to the charged substituents by ionic interaction.
- the “ion exchange material” has the ability to exchange its not covalently bound counter ions for similarly charged binding partners or ions of the surrounding solution.
- the “ion exchange material” is referred to as “cation exchange material” or as “anion exchange material”.
- the “ion exchange material” is referred to, e.g.
- cation exchange materials as sulfonic acid or sulfopropyl resin (S), or as carboxymethyl resin (CM).
- the “ion exchange material” can additionally be classified as strong or weak ion exchange material, depending on the strength of the covalently bound charged substituent.
- strong cation exchange materials have a sulfonic acid group, preferably a sulfopropyl group, as charged substituent
- weak cation exchange materials have a carboxylic acid group, preferably a carboxymethyl group, as charged substituent.
- Strong anion exchange materials have a quarternary ammonium group
- weak anion exchange materials have a diethylaminoethyl group as charged substituent.
- membrane denotes both a microporous or macroporous membrane.
- the membrane itself is composed of a polymeric material such as, e.g. polyethylene, polypropylene, ethylene vinyl acetate copolymers, polytetrafluoroethylene, polycarbonate, poly vinyl chloride, polyamides (nylon, e.g. ZetaporeTM, N 66 PosidyneTM), polyesters, cellulose acetate, regenerated cellulose, cellulose composites, polysulphones, polyethersulfones, polyarylsulphones, polyphenylsulphones, polyacrylonitrile, polyvinylidene fluoride, non-woven and woven fabrics (e.g. Tyvek®), fibrous material, or of inorganic material such as zeolithe, SiO 2 , Al 2 O 3 , TiO 2 , or hydroxyapatite.
- Ion exchange materials are available under different names and from a multitude of companies such as e.g. cation exchange resins Bio-Rex® (e.g. type 70), Chelex® (e.g. type 100), Macro-Prep® (e.g. type CM, High S, 25 S), AGO (e.g. type 50W,
- Bio-Rex® e.g. type 70
- Chelex® e.g. type 100
- Macro-Prep® e.g. type CM, High S, 25 S
- AGO e.g. type 50W
- IEC CM e.g. type 825, 2825, 5025, LG
- IEC SP e.g. type 420N, 825
- IEC QA e.g. type LG, 825) available from Shoko America Inc., 50W cation exchange resin available from Eichrom Technologies Inc., and such as e.g. anion exchange resins like Dowex® 1 available from Dow chemical company, AGO (e.g. type 1, 2, 4), Bio-Rex® 5, DEAE Bio-Gel 1, Macro-Prep® DEAE all available from BioRad Laboratories, anion exchange resin type 1 available from Eichrom Technologies Inc., Source Q, ANX Sepharose® 4, DEAE Sepharose® (e.g.
- Membrane ion exchange materials are available from different companies such as membrane cation exchange materials MustangTM C and MustangTM S available from Pall Corporation, SartobindTM CM, SartobindTM S available from Sartorius, and anion exchange membranes, such as MustangTM Q available from Pall Corporation, SartobindTM Q available from Sartorius.
- a membrane ion exchange material the binding sites can be found at the flow-through pore walls and not hidden within diffusion pores allowing the mass transfer via convection rather than diffusion.
- the additional chromatography step is a cation exchange chromatography step employing a membrane cation exchange material selected from SartobindTM CM, or SartobindTM S, or MustangTM S, or MustangTM C.
- the anion exchange material is a Q-type membrane anion exchange material or Q-type anion exchange column.
- polypeptide is a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 20 amino acid residues are referred to as “peptides.”
- a “protein” is a macromolecule comprising one or more polypeptide chains or at least one polypeptide chain of more than 100 amino acid residues.
- a protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.
- immunoglobulin and grammatical equivalents thereof denotes a molecule consisting of two light polypeptide chains and two heavy polypeptide chains.
- Each of the heavy and light polypeptide chains comprises a variable region (generally the amino terminal portion of the polypeptide chains), which contains a binding domain for interaction with an antigen.
- Each of the heavy and light polypeptide chains also comprises a constant region (generally the carboxyl terminal portion of the polypeptide chains), which may mediate the binding of the antibody to host tissue or factors including various cells of the immune system, some phagocytic cells and a first component (Clq) of the classical complement system.
- the light and heavy polypeptide chains are chains each consisting of a variable region, i.e.
- immunoglobulin also refers to a protein consisting of polypeptides encoded by immunoglobulin genes.
- the recognized immunoglobulin genes include the different constant region genes as well as the myriad immunoglobulin variable region genes.
- Immunoglobulins may exist in a variety of forms. Immunoglobulin fragments are e.g. Fv, Fab, and F(ab) 2 as well as single chains (e.g. Huston, J. S., et al., Proc.
- the immunoglobulin is a monoclonal immunoglobulin.
- immunoglobulin in monomeric form and grammatical equivalents thereof denotes an immunoglobulin molecule not associated with a second immunoglobulin molecule, i.e. neither covalently nor non-covalently bound to another immunoglobulin molecule.
- immunoglobulin in aggregated form and grammatical equivalents thereof denotes an immunoglobulin molecule which is associated, either covalently or non-covalently, with at least one additional immunoglobulin molecule or fragment thereof, and which is eluted in a chromatography with a size exclusion chromatography column before the immunoglobulin in monomeric form.
- an immunoglobulin is essentially in monomeric form, i.e. at least 90% of the immunoglobulin are in monomeric from, in one embodiment at least 95% of the immunoglobulin are in monomeric form, in another embodiment at least 98% of the immunoglobulin are in monomeric form, in a further embodiment at least 99% of the immunoglobulin are in monomeric form, and in still another embodiment more than 99% of the immunoglobulin are in monomeric form determined as peak area of a size exclusion chromatogram of the immunoglobulin.
- in monomeric and in aggregated/fragmented form denotes a mixture comprising at least immunoglobulin molecules not associated with other immunoglobulin molecules, immunoglobulin molecules associated with other immunoglobulin molecules, and/or parts of other immunoglobulin molecules.
- 100% denotes that the amount of components other than a specified component are below the detection limit of the referred to analytical method under the specified conditions.
- the term “monomeric immunoglobulin depleted of immunoglobulin aggregates and immunoglobulin fragments” denotes that the monomeric immunoglobulin accounts in certain embodiments for at least 90% by weight, at least 95% by weight, at least 98% by weight, or at least 99% by weight.
- the immunoglobulin aggregates and immunoglobulin fragments account in certain embodiments for not more than 10% by weight, not more than 5% by weight, not more than 2% by weight, or not more than 1% by weight of the preparation.
- the final purification step is a so called “polishing step” for the removal of trace impurities and contaminants like residual HCP (host cell protein), DNA (host cell nucleic acid), viruses, or endotoxins.
- polishing step only often an anion exchange material in a flow-through mode is used.
- flow-through mode denotes an operation mode of a purification method, in which a solution containing a substance of interest, e.g. an immunoglobulin in monomeric form, to be purified is brought in contact with a stationary phase, in one embodiment a solid phase, whereby the substance of interest does not bind to that stationary phase.
- a substance of interest e.g. an immunoglobulin in monomeric form
- the substance of interest is obtained either in the flow-through (if the purification method is a chromatographical method) or the supernatant (if the purification method is a batch method).
- Substances not of interest e.g.
- an immunoglobulin in aggregated form and/or immunoglobulin fragments which were also present in the solution prior to the bringing into contact with the stationary phase, bind to the stationary phase and are therewith removed from the solution.
- This does not denote that 100% of the substances not of interest are removed from the solution but essentially 100% of the substances not of interest are removed, in specific embodiments at least 50% of the substances not of interest are removed from the solution, at least 75% of the substances not of interest are removed the from solution, at least 90% of the substances not of interest are removed from the solution, or more than 95% of the substances not of interest are removed from the solution as determined by the peak area of a size exclusion chromatography.
- the term “applying to” and grammatical equivalents thereof denotes a partial step of a purification method, in which a solution containing a substance of interest to be purified is brought in contact with a stationary phase.
- a solution is added to a chromatographic device in which the stationary phase is located, or b) that a stationary phase is added to the solution.
- the solution containing the substance of interest to be purified passes through the stationary phase allowing for an interaction between the stationary phase and the substances in solution.
- some substances of the solution are bound to the stationary phase and, thus, are removed from the solution. Other substances remain in solution.
- the substances remaining in solution can be found in the flow-through.
- the “flow-through” denotes the solution obtained after the passage of the chromatographic device.
- the chromatographic device is a column with chromatography material, or in another embodiment a cassette with membrane chromatography material.
- the substance of interest not bound to the stationary phase can be recovered from the flow-though by methods familiar to a person of skill in the art, such as e.g. precipitation, salting out, ultrafiltration, diafiltration, lyophilization, affinity chromatography, or solvent volume reduction to obtain a concentrated solution.
- the stationary phase is added, e.g. as a powder, to the solution containing the substance of interest to be purified allowing for an interaction between the stationary phase and the substances in solution. After the interaction the stationary phase in removed, e.g. by filtration, and the substance of interest not bound to the stationary phase is obtained in the supernatant.
- a substance of interest e.g. an immunoglobulin
- a stationary phase e.g. a membrane ion exchange material.
- a substance of interest e.g. an immunoglobulin
- a stationary phase e.g. a membrane ion exchange material.
- This does not denote that 100% of the substance of interest remains in solution but essentially 100% of the substance of interest remains in solution, in specific embodiments at least 50% of the substance of interest remains in solution, at least 65% of the substance of interest remains in solution, at least 80% of the substance of interest remains in solution, at least 90% of the substance of interest remains in solution, or more than 95% of the substance of interest remains in solution as determined by the peak area of a size exclusion chromatography.
- buffered denotes a solution, in which changes of pH due to the addition or release of acidic or basic substances is leveled by a buffer substance. Any buffer substance resulting in such an effect can be used.
- pharmaceutically acceptable buffer substances are used, such as e.g. phosphoric acid and salts thereof, citric acid and salts thereof, morpholine, 2-(N-morpholino) ethanesulfonic acid and salts thereof, histidine and salts thereof, glycine and salts thereof, or tris (hydroxymethyl) aminomethane (TRIS) and salts thereof.
- the buffer substance is selected from phosphoric acid and salts thereof, citric acid and salts thereof, or histidine and salts thereof.
- the buffered solution may comprise an additional salt, such as e.g. sodium chloride, sodium sulphate, potassium chloride, potassium sulfate, sodium citrate, or potassium citrate.
- binding-and-elute mode denotes an operation mode of a purification method, in which a solution containing a substance of interest to be purified is brought in contact with a stationary phase, in one embodiment with a solid phase, whereby the substance of interest binds to the stationary phase.
- a solution containing a substance of interest to be purified is brought in contact with a stationary phase, in one embodiment with a solid phase, whereby the substance of interest binds to the stationary phase.
- the current invention reports a method for obtaining an immunoglobulin in monomeric form, wherein the method comprises the following step:
- condition under which the immunoglobulin in monomeric form does not bind to the anion exchange chromatography material denotes conditions at which an immunoglobulin in monomeric form is not bound by the anion exchange chromatography material when brought in contact with the anion exchange material.
- the aqueous, buffered solution has a pH value of from pH 7.8 to pH 8.8. In a further embodiment such a condition is a pH value of the aqueous, buffered solution of from pH 8.0 to pH 8.5.
- an anion exchange chromatography step in which the immunoglobulin in monomeric form can be obtained from the anion exchange material in a flow-through mode, can be performed in a narrow pH value range of from pH 7.8 to pH 8.8, in one embodiment of from pH 8.0 to pH 8.5. Surprisingly a small deviation of this pH value range, e.g. to pH 7.0 or pH 9.0, reduces this effect. With the method according to the invention it is possible to separate in a single step the immunoglobulin in monomeric form from the immunoglobulin in aggregated form and from immunoglobulin fragments.
- the method according to the invention can be employed as a single step method or combined with other steps, such as, e.g., in one embodiment with a protein A chromatography step or a hydrophobic charge induction chromatography step.
- the anion exchange chromatography material is a membrane anion exchange chromatography material. It is also advantageous e.g. to remove the bulk of the host cell proteins and culture by-products in a foremost purification step employing an affinity chromatography.
- the affinity chromatography may e.g. be a protein A affinity chromatography, a protein G affinity chromatography, a hydrophobic charge induction chromatography (HCIC), or a hydrophobic interaction chromatography (HIC, e.g. with phenyl-sepharose, aza-arenophilic resins, or m-aminophenylboronic acid).
- the method according to the invention comprises a protein A chromatography step or a HCIC chromatography step prior to the anion exchange chromatography step.
- the method comprises more than one chromatography step
- parameters such as e.g. the pH value or the conductivity of the solution, have to be adjusted.
- the pH value of the aqueous, buffered solution applied to the anion exchange chromatography material is of from pH 7.8 to pH 8.8, in another embodiment of from pH 8.0 to pH 8.5.
- FIG. 1A A solution containing an anti-CCRS antibody was adjusted to pH 7.0, 7.5 and 8.0 (fractions designated as pH x.x load); 5 mg of protein were each brought in contact with a 15 cm 2 membrane adsorber in flow-though mode (fractions designated as pH x.x flow-through). The bound substances were eluted with sodium chloride (fractions designated as pH x.x elution). Fractions were analyzed by SDS-PAGE with Coomassie brilliant blue staining.
- FIG. 1B A solution containing an anti-CCRS antibody was adjusted to pH 8.5 and 9.0 (fractions designated as pH x.x. load); 5 mg of protein were each brought in contact with a 15 cm 2 membrane adsorber in flow thought mode (fractions designated as pH x.x flow-through). The bound substances were eluted with sodium chloride (fractions designated as pH x.x elution). Fractions were analyzed by SDS-PAGE with Coomassie-Staining.
- FIG. 1C-1 , FIG. 1C-2 , FIG. 1C-3 , FIG. 1C-4 Comparison of load and flow-through fractions of an anti-CCRS antibody containing solution at pH 7.5 ( FIG. 1C-1 and FIG. 1C-2 ) and load and flow-through fraction at pH 8.5 ( FIG. 1C-3 and FIG. 1C-4 ) by analytical size exclusion chromatography. Aggregates and fragments can be detected in the flow-through at pH 7.5, but not at pH 8.5.
- FIG. 2A-1 and FIG. 2A-2 Overlay showing load and flow-through fraction of a CD19 antibody at pH 7.5 ( FIG. 2A-1 ) and pH 8.5 ( FIG. 2A-2 ). Aggregates can be detected in the flow-through at pH 7.5, but not in the flow-through at pH 8.5.
- FIG. 2B Table showing the removal of aggregates from anti-CCRS antibody and anti-CD19 antibody solutions. Reduction in the flow-though is at pH values above pH 7.5, such as pH 8.5.
- FIG. 3 Scale-up experiment: A solution containing an anti-CCRS antibody was adjusted to pH 8.5 and 25 mg were pumped through a 75 cm 2 membrane adsorber (fractions designated as pH x.x flow-through). The bound substances were eluted with sodium chloride (fractions designated as pH x.x. elution). Fractions were analyzed by SDS-PAGE with Coomassie-Staining.
- FIG. 4 A solution containing an anti-CCRS antibody was adjusted to pH 8.5 (fraction designated as pH 8.5 load) and 6 mg protein were pumped through a 1 ml Q-Sepharose® fast-flow anion exchange chromatography column (fractions designated as pH 8.5 flow-through). The column was eluted with sodium chloride (fractions designated as pH 8.5. elution). Fractions were analyzed by SDS-PAGE with Coomassie-Staining.
- mAb CCR5 an anti-CCR5 antibody
- mAb CD19 an anti-CD19 antibody
- the mAb CCR5 was eluted from the protein A column under acidic conditions. Before further processing the pH value of the fraction containing the immunoglobulin was adjusted by dialysis against a buffered solution (e.g. tris (hydroxymethyl) amino-methane (TRIS) or phosphate buffer) to pH values of 7.0, 7.5, 8.0, 8.5, and 9.0. This material is referred to in the following as conditioned protein A eluate of mAb CCRS.
- a buffered solution e.g. tris (hydroxymethyl) amino-methane (TRIS) or phosphate buffer
- the mAb CD19 was eluted from the protein A column under acidic conditions. Before further processing the pH value of the fraction containing the immunoglobulin was adjusted by dialysis against a buffered solution (e.g. tris (hydroxymethyl) amino-methane (TRIS) or phosphate buffer) to a pH value of pH 8.5. This material is referred to in the following as conditioned protein A eluate of mAb CD19.
- a buffered solution e.g. tris (hydroxymethyl) amino-methane (TRIS) or phosphate buffer
- the solution containing the immunoglobulin was centrifuged to remove debris. An aliquot of the clarified supernatant was admixed with 1 ⁇ 4 volumes (v/v) of 4 ⁇ LDS sample buffer and 1/10 volume (v/v) of 0.5 M 1,4-dithiotreitol (DTT). Then the samples were incubated for 10 min. at 70 ° C. and protein separated by SDS-PAGE.
- the NuPAGE® Pre-Cast gel system (Invitrogen Corp.) was used according to the manufacturer's instruction. In particular, 10% NuPAGE® Novex® Bis-TRIS Pre-Cast gels (pH 6.4) and a NuPAGE® MOPS running buffer was used.
- Conditioned protein A eluates of mAb CCRS with pH 7.0, 7.5, 8.0, 8.5 and 9.0 were each adjusted to a concentration of 1 mg/ml. 5 ml of each solution was applied separately to a regenerated and equilibrated (to the respective pH) Q-membrane adsorber (membrane anion exchange material, membrane area: 15 cm 2 ) in flow-though mode with the help of a chromatographic system. The membrane was afterwards washed with buffer of the correspondent pH. Bound protein was eluted with a salt gradient at the correspondent pH values.
- Conditioned protein A eluates of mAb CD19 with pH 7.0, 7.5, 8.0, 8.5 and 9.0 were each adjusted to a concentration of 1 mg/ml. 5 ml of each solution was applied separately to a regenerated and equilibrated (to the respective pH) Q-membrane adsorber (15 cm 2 ) in flow-though mode with the help of a chromatographic system. The membrane was afterwards washed with buffer of the correspondent pH. Bound protein was eluted with a salt gradient at the correspondent pH values.
- a protein A eluate of mAb CCRS was conditioned at pH 8.5 and adjusted to a concentration of 1 mg/ml.
- example 1 could be reproduced at a 5-fold larger scale.
- the flow-through was depleted from immunoglobulin aggregates and immunoglobulin fragments. Both impurities could be eluted from the membrane adsorber with a salt gradient.
- Conditioned protein A eluate of mAb CCRS at pH 8.5 was adjusted to a concentration of 1 mg/ml. 6 ml of the solution was applied to a regenerated and equilibrated (to pH 8.5) Q Sepharose® FF in flow-though mode with the help of a chromatographic system. The sepharose was afterwards washed with buffer of the correspondent pH. Bound protein was eluted with a salt gradient at the correspondent pH values.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mycology (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
The current invention reports a method for purifying an immunoglobulin, wherein the method comprises applying an aqueous, buffered solution comprising an immunoglobulin in monomeric, in aggregated, and in fragmented form to an anion exchange chromatography material under conditions whereby the immunoglobulin in monomeric form does not bind to the anion exchange material, and recovering the immunoglobulin in monomeric form in the flow-through from the anion exchange chromatography material, whereby the buffered aqueous solution has a pH value of from 8.0 to 8.5. In one embodiment the anion exchange chromatography material is a membrane anion exchange chromatography material.
Description
- This application is a continuation of U.S. patent application Ser. No. 15/461,198, filed Mar. 16, 2017, which is a continuation of U.S. patent application Ser. No. 13/141,306, filed Jun. 21, 2011, which is a National Stage Entry of International Application No. PCT/EP2009/009157, having an international filing date of Dec. 18, 2009, which claims priority to and the benefit of European Application No. 08022236.7, filed Dec. 22, 2008, the entire contents of which applications are hereby incorporated by reference.
- The current invention is in the field of purification of polypeptides. It is reported a method for providing an immunoglobulin in monomeric form by separating the immunoglobulin in solution from impurities, especially from the immunoglobulin in aggregated form and from immunoglobulin fragments.
- Proteins and especially immunoglobulins play an important role in today's medical portfolio. For human application every therapeutic protein has to meet distinct criteria. To ensure the safety of biopharmaceutical agents for humans, nucleic acids, viruses and host cell proteins, which could cause harm, have to be removed especially. To meet regulatory specifications one or more purification steps have to follow the fermentation process. Among other things, purity, throughput, and yield play an important role in determining an appropriate purification process.
- Different methods are well established and widespread used for protein purification, such as affinity chromatography with microbial proteins (e.g. protein A or protein G affinity chromatography), ion exchange chromatography (e.g. cation exchange (sulfopropyl or carboxymethyl resins), anion exchange (amino ethyl resins) and mixed-mode ion exchange), thiophilic adsorption (e.g. with beta-mercaptoethanol and other SH ligands), hydrophobic interaction or aromatic adsorption chromatography (e.g. with phenyl-sepharose, aza-arenophilic resins, or m-aminophenylboronic acid), metal chelate affinity chromatography (e.g. with Ni(II)- and Cu(II)-affinity material), size exclusion chromatography, and electrophoretical methods (such as gel electrophoresis, capillary electrophoresis) (see e.g. Vijayalakshmi, M. A., Appl. Biochem. Biotech. 75 (1998) 93-102).
- Necina, R., et al. (Biotechnol. Bioeng. 60 (1998) 689-698) reported the capture of human monoclonal antibodies directly from cell culture supernatants by ion exchange media exhibiting high charge density. In WO 89/05157 a method is reported for the purification of product immunoglobulins by directly subjecting the cell culture medium to a cation exchange treatment. A one-step purification of monoclonal IgG antibodies from mouse ascites is described by Danielsson, A., et al., J. Immunol. Meth. 115 (1988), 79-88.
- Mhatre, R., et al., J. Chrom. A 707 (1995) 225-231, explored the purification of antibody Fab fragments by cation exchange chromatography and pH gradient elution. WO 94/00561 reports human monoclonal anti-rhesus antibodies and cell lines producing the same. A method for purifying a polypeptide by ion exchange chromatography is reported in WO 2004/024866 in which a gradient wash is used to resolve a polypeptide of interest from one or more contaminants. Schwarz, A., et al., Laborpraxis 21 (1997) 62-66, report the purification of monoclonal antibodies with a CM-HyperD-column. WO 2004/076485 reports a process for antibody purification by protein A and ion exchange chromatography. In EP 0 530 447 a process for purifying IgG monoclonal antibodies by a combination of three chromatographic steps is reported. The removal of protein A from antibody preparations is reported in U.S. Pat. No. 4,983,722.
- Recombinant monoclonal antibody processes often employ anion-exchange chromatography to bind trace levels of impurities and potential contaminants such as DNA, host cell protein, and virus, while allowing the antibody to flow through (Knudsen, H. L., et al., J. Chrom. A 907 (2001) 145-154).
- WO 95/16037 reports the purification of anti-EGF-R/anti-CD3 bispecific monoclonal antibodies from hybrid hybridoma performed by protein A and cation exchange chromatography. The separation of antibody monomers from its multimers by use of ion exchange chromatography is reported in
EP 1 084 136. U.S. Pat. No. 5,429,746 relates to the application of hydrophobic interaction chromatography combination chromatography to the purification of antibody molecule proteins. An anionic modified microporous membrane for use for the filtration of fluids, particular parenteral or biological liquids contaminated with charged particulates, is reported in U.S. Pat. No. 4,604,208. WO 03/040166 reports a membrane and a device designed for the removal of trace impurities in protein containing streams. - A method for recovering a polypeptide is reported in U.S. Pat. No. 6,716,598. In U.S. 2006/0194953 a method is reported for selectively removing leaked protein A from antibody purified by means of protein A affinity chromatography. The separation of protein monomers from aggregates by use of ion-exchange chromatography is reported in WO 99/62936. Lynch, P. and Londo, T., Gen. Eng. News 11 (1997) 17, report a system for aggregate removal from affinity-purified therapeutic-grade antibody. A two-step purification of a murine monoclonal antibody intended for therapeutic application in man is reported by Jiskoot, W., et al., J. Immunol. Meth. 124 (1989) 143-156.
- The current invention comprises aspects in the field of immunoglobulin purification. It has been found that an anion exchange chromatography step, in which the immunoglobulin in monomeric form can be obtained from an anion exchange material in a flow-through mode, has to be performed in a narrow pH value range of from e.g. pH 7.8 to pH 8.8. Surprisingly a small deviation from this pH value range, e.g., to pH 7.0 or pH 9.0, abolishes this effect. With the method according to the invention it is possible to separate in a single step the immunoglobulin in monomeric form from the immunoglobulin in aggregated form and from immunoglobulin fragments.
- One aspect is a method for obtaining an immunoglobulin in monomeric form, wherein the method comprises the following step:
-
- applying an aqueous, buffered solution comprising an immunoglobulin in monomeric and in aggregated form and/or immunoglobulin fragments to an anion exchange chromatography material,
whereby the immunoglobulin depleted of immunoglobulin aggregates and immunoglobulin fragments is recovered from the flow-through or supernatant of the anion exchange chromatography material, wherein the aqueous, buffered solution has a pH value of from pH 7.8 to pH 8.8, and thereby an immunoglobulin in monomeric form is obtained. In one embodiment the aqueous, buffered solution has a pH value of from pH 8.0 to pH 8.5. In another embodiment the anion exchange chromatography material is a membrane anion exchange chromatography material. In a further embodiment the anion exchange chromatography material is a strong anion exchange chromatography material. In another embodiment the strong anion exchange chromatography material is Q-sepharose®, i.e. a cross-linked agarose matrix (R) to which quaternary ammonium groups of the formula R—O—CH2CHOHCH2OCH2CHOHCH2N+(CH3)3 are covalently bound. In still another embodiment the method comprises as first step an additional protein A chromatography step or an additional HCIC chromatography step or an additional ion exchange chromatography step.
- applying an aqueous, buffered solution comprising an immunoglobulin in monomeric and in aggregated form and/or immunoglobulin fragments to an anion exchange chromatography material,
- The term “ion exchange material” or grammatical equivalents thereof denotes an immobile matrix that carries covalently bound charged substituents. For overall charge neutrality not covalently bound counter ions are bound to the charged substituents by ionic interaction. The “ion exchange material” has the ability to exchange its not covalently bound counter ions for similarly charged binding partners or ions of the surrounding solution. Depending on the charge of its exchangeable counter ions the “ion exchange material” is referred to as “cation exchange material” or as “anion exchange material”. Depending on the nature of the charged group (substituent) the “ion exchange material” is referred to, e.g. in the case of cation exchange materials, as sulfonic acid or sulfopropyl resin (S), or as carboxymethyl resin (CM). Depending on the chemical nature of the charged group/substituent the “ion exchange material” can additionally be classified as strong or weak ion exchange material, depending on the strength of the covalently bound charged substituent. For example, strong cation exchange materials have a sulfonic acid group, preferably a sulfopropyl group, as charged substituent, weak cation exchange materials have a carboxylic acid group, preferably a carboxymethyl group, as charged substituent. Strong anion exchange materials have a quarternary ammonium group, and weak anion exchange materials have a diethylaminoethyl group as charged substituent.
- The term “membrane” denotes both a microporous or macroporous membrane. The membrane itself is composed of a polymeric material such as, e.g. polyethylene, polypropylene, ethylene vinyl acetate copolymers, polytetrafluoroethylene, polycarbonate, poly vinyl chloride, polyamides (nylon, e.g. Zetapore™, N66 Posidyne™), polyesters, cellulose acetate, regenerated cellulose, cellulose composites, polysulphones, polyethersulfones, polyarylsulphones, polyphenylsulphones, polyacrylonitrile, polyvinylidene fluoride, non-woven and woven fabrics (e.g. Tyvek®), fibrous material, or of inorganic material such as zeolithe, SiO2, Al2O3, TiO2, or hydroxyapatite.
- Ion exchange materials are available under different names and from a multitude of companies such as e.g. cation exchange resins Bio-Rex® (e.g. type 70), Chelex® (e.g. type 100), Macro-Prep® (e.g. type CM, High S, 25 S), AGO (e.g. type 50W,
- MP) all available from BioRad Laboratories, WCX 2 available from Ciphergen, Dowex® MAC-3 available from Dow chemical company, Cellulose CM (e.g. type 23, 52), hyper-D, partisphere available from Whatman plc., Amberlite® IRC (e.g. type 76, 747, 748), Amberlite® GT 73, Toyopearl® (e.g. type SP, CM, 650M) all available from Tosoh Bioscience GmbH, CM 1500 and CM 3000 available from BioChrom Labs, SP-Sepharose™, CM-Sepharose™ available from GE Healthcare, Poros resins available from PerSeptive Biosystems, Asahipak ES (e.g. type 502C), CXpak P, IEC CM (e.g. type 825, 2825, 5025, LG), IEC SP (e.g. type 420N, 825), IEC QA (e.g. type LG, 825) available from Shoko America Inc., 50W cation exchange resin available from Eichrom Technologies Inc., and such as e.g. anion exchange resins like Dowex® 1 available from Dow chemical company, AGO (e.g. type 1, 2, 4), Bio-Rex® 5, DEAE Bio-Gel 1, Macro-Prep® DEAE all available from BioRad Laboratories, anion exchange resin type 1 available from Eichrom Technologies Inc., Source Q, ANX Sepharose® 4, DEAE Sepharose® (e.g. type CL-6B, FF), Q Sepharose®, Capto Q®, Capto S® all available from GE Healthcare, AX-300 available from PerkinElmer, Asahipak ES-502C, AXpak WA (e.g. type 624, G), IEC DEAE all available from Shoko America Inc., Amberlite® IRA-96, Toyopearl® DEAE, TSKgel DEAE all available from Tosoh Bioscience GmbH, Germany. Membrane ion exchange materials are available from different companies such as membrane cation exchange materials Mustang™ C and Mustang™ S available from Pall Corporation, Sartobind™ CM, Sartobind™ S available from Sartorius, and anion exchange membranes, such as Mustang™ Q available from Pall Corporation, Sartobind™ Q available from Sartorius. In a membrane ion exchange material the binding sites can be found at the flow-through pore walls and not hidden within diffusion pores allowing the mass transfer via convection rather than diffusion. In one embodiment the additional chromatography step is a cation exchange chromatography step employing a membrane cation exchange material selected from Sartobind™ CM, or Sartobind™ S, or Mustang™ S, or Mustang™ C. In another embodiment the anion exchange material is a Q-type membrane anion exchange material or Q-type anion exchange column.
- A “polypeptide” is a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 20 amino acid residues are referred to as “peptides.”
- A “protein” is a macromolecule comprising one or more polypeptide chains or at least one polypeptide chain of more than 100 amino acid residues. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.
- The term “immunoglobulin” and grammatical equivalents thereof denotes a molecule consisting of two light polypeptide chains and two heavy polypeptide chains. Each of the heavy and light polypeptide chains comprises a variable region (generally the amino terminal portion of the polypeptide chains), which contains a binding domain for interaction with an antigen. Each of the heavy and light polypeptide chains also comprises a constant region (generally the carboxyl terminal portion of the polypeptide chains), which may mediate the binding of the antibody to host tissue or factors including various cells of the immune system, some phagocytic cells and a first component (Clq) of the classical complement system. In one embodiment the light and heavy polypeptide chains are chains each consisting of a variable region, i.e. VL or VH, and a constant region, i.e. of CL in case of a light polypeptide chain, or of
C H1, hinge,C H2,C H3, andoptionally C H4 in case of a heavy polypeptide chain. The term “immunoglobulin” also refers to a protein consisting of polypeptides encoded by immunoglobulin genes. The recognized immunoglobulin genes include the different constant region genes as well as the myriad immunoglobulin variable region genes. Immunoglobulins may exist in a variety of forms. Immunoglobulin fragments are e.g. Fv, Fab, and F(ab)2 as well as single chains (e.g. Huston, J. S., et al., Proc. Natl. Acad. Sci. USA 85 (1988) 5879-5883; Bird et al., Science 242 (1988) 423-426; Hood et al., Immunology, Benjamin N.Y., 2nd edition (1984); and Hunkapiller and Hood, Nature 323 (1986) 15-16). In one embodiment of the method according to the invention the immunoglobulin is a monoclonal immunoglobulin. - The term “immunoglobulin in monomeric form” and grammatical equivalents thereof denotes an immunoglobulin molecule not associated with a second immunoglobulin molecule, i.e. neither covalently nor non-covalently bound to another immunoglobulin molecule. The term “immunoglobulin in aggregated form” and grammatical equivalents thereof denotes an immunoglobulin molecule which is associated, either covalently or non-covalently, with at least one additional immunoglobulin molecule or fragment thereof, and which is eluted in a chromatography with a size exclusion chromatography column before the immunoglobulin in monomeric form. The term “in monomeric form” and grammatical equivalents thereof as used within this application not necessarily denotes that 100% of an immunoglobulin molecule are present in monomeric form. It denotes that an immunoglobulin is essentially in monomeric form, i.e. at least 90% of the immunoglobulin are in monomeric from, in one embodiment at least 95% of the immunoglobulin are in monomeric form, in another embodiment at least 98% of the immunoglobulin are in monomeric form, in a further embodiment at least 99% of the immunoglobulin are in monomeric form, and in still another embodiment more than 99% of the immunoglobulin are in monomeric form determined as peak area of a size exclusion chromatogram of the immunoglobulin. The term “in monomeric and in aggregated/fragmented form” denotes a mixture comprising at least immunoglobulin molecules not associated with other immunoglobulin molecules, immunoglobulin molecules associated with other immunoglobulin molecules, and/or parts of other immunoglobulin molecules.
- In this mixture neither the monomeric form nor the aggregated form nor the fragmented form is present exclusively.
- The term “100%” denotes that the amount of components other than a specified component are below the detection limit of the referred to analytical method under the specified conditions.
- The terms “90%”, “95%”, “98%”, “99%” denote no exact values but values within the accuracy of the referred to analytical method under the specified conditions.
- The term “monomeric immunoglobulin depleted of immunoglobulin aggregates and immunoglobulin fragments” denotes that the monomeric immunoglobulin accounts in certain embodiments for at least 90% by weight, at least 95% by weight, at least 98% by weight, or at least 99% by weight. In turn the immunoglobulin aggregates and immunoglobulin fragments account in certain embodiments for not more than 10% by weight, not more than 5% by weight, not more than 2% by weight, or not more than 1% by weight of the preparation.
- General chromatographic methods and their use are known to a person skilled in the art. See for example, Chromatography, 5th edition, Part A: Fundamentals and Techniques, Heftmann, E. (ed.), Elsevier Science Publishing Company, New York, (1992); Advanced Chromatographic and Electromigration Methods in Biosciences, Deyl, Z. (ed.), Elsevier Science BV, Amsterdam, The Netherlands, (1998); Chromatography Today, Poole, C. F., and Poole, S. K., Elsevier Science Publishing Company, New York, (1991); Scopes, Protein Purification: Principles and Practice (1982); Sambrook, J., et al. (eds.), Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; Current Protocols in Molecular Biology, Ausubel, F. M., et al. (eds), John Wiley & Sons, Inc., New York.
- For the purification of recombinantly produced immunoglobulins often a combination of different chromatographical steps is employed. Generally a protein A affinity chromatography is followed by one or two additional separation steps. The final purification step is a so called “polishing step” for the removal of trace impurities and contaminants like residual HCP (host cell protein), DNA (host cell nucleic acid), viruses, or endotoxins. For this polishing step only often an anion exchange material in a flow-through mode is used.
- The term “flow-through mode” and grammatical equivalents thereof denotes an operation mode of a purification method, in which a solution containing a substance of interest, e.g. an immunoglobulin in monomeric form, to be purified is brought in contact with a stationary phase, in one embodiment a solid phase, whereby the substance of interest does not bind to that stationary phase. As a result the substance of interest is obtained either in the flow-through (if the purification method is a chromatographical method) or the supernatant (if the purification method is a batch method). Substances not of interest, e.g. an immunoglobulin in aggregated form and/or immunoglobulin fragments, which were also present in the solution prior to the bringing into contact with the stationary phase, bind to the stationary phase and are therewith removed from the solution. This does not denote that 100% of the substances not of interest are removed from the solution but essentially 100% of the substances not of interest are removed, in specific embodiments at least 50% of the substances not of interest are removed from the solution, at least 75% of the substances not of interest are removed the from solution, at least 90% of the substances not of interest are removed from the solution, or more than 95% of the substances not of interest are removed from the solution as determined by the peak area of a size exclusion chromatography.
- The term “applying to” and grammatical equivalents thereof denotes a partial step of a purification method, in which a solution containing a substance of interest to be purified is brought in contact with a stationary phase. This denotes that a) the solution is added to a chromatographic device in which the stationary phase is located, or b) that a stationary phase is added to the solution. In case a) the solution containing the substance of interest to be purified passes through the stationary phase allowing for an interaction between the stationary phase and the substances in solution. Depending on the conditions, such as e.g. pH, conductivity, salt concentration, temperature, and/or flow rate, some substances of the solution are bound to the stationary phase and, thus, are removed from the solution. Other substances remain in solution. The substances remaining in solution can be found in the flow-through. The “flow-through” denotes the solution obtained after the passage of the chromatographic device. In one embodiment the chromatographic device is a column with chromatography material, or in another embodiment a cassette with membrane chromatography material. The substance of interest not bound to the stationary phase can be recovered from the flow-though by methods familiar to a person of skill in the art, such as e.g. precipitation, salting out, ultrafiltration, diafiltration, lyophilization, affinity chromatography, or solvent volume reduction to obtain a concentrated solution. In case b) the stationary phase is added, e.g. as a powder, to the solution containing the substance of interest to be purified allowing for an interaction between the stationary phase and the substances in solution. After the interaction the stationary phase in removed, e.g. by filtration, and the substance of interest not bound to the stationary phase is obtained in the supernatant.
- The term “does not bind to” and grammatical equivalents thereof denotes that a substance of interest, e.g. an immunoglobulin, remains in solution when brought in contact with a stationary phase, e.g. a membrane ion exchange material. This does not denote that 100% of the substance of interest remains in solution but essentially 100% of the substance of interest remains in solution, in specific embodiments at least 50% of the substance of interest remains in solution, at least 65% of the substance of interest remains in solution, at least 80% of the substance of interest remains in solution, at least 90% of the substance of interest remains in solution, or more than 95% of the substance of interest remains in solution as determined by the peak area of a size exclusion chromatography.
- The term “buffered” denotes a solution, in which changes of pH due to the addition or release of acidic or basic substances is leveled by a buffer substance. Any buffer substance resulting in such an effect can be used. In one embodiment pharmaceutically acceptable buffer substances are used, such as e.g. phosphoric acid and salts thereof, citric acid and salts thereof, morpholine, 2-(N-morpholino) ethanesulfonic acid and salts thereof, histidine and salts thereof, glycine and salts thereof, or tris (hydroxymethyl) aminomethane (TRIS) and salts thereof. In another embodiment the buffer substance is selected from phosphoric acid and salts thereof, citric acid and salts thereof, or histidine and salts thereof. Optionally the buffered solution may comprise an additional salt, such as e.g. sodium chloride, sodium sulphate, potassium chloride, potassium sulfate, sodium citrate, or potassium citrate.
- The term “bind-and-elute mode” and grammatical equivalents thereof denotes an operation mode of a purification method, in which a solution containing a substance of interest to be purified is brought in contact with a stationary phase, in one embodiment with a solid phase, whereby the substance of interest binds to the stationary phase. As a result the substance of interest is retained on the stationary phase whereas substances not of interest are removed with the flow-through or the supernatant. The substance of interest is afterwards eluted from the stationary phase in a second step and thereby recovered from the stationary phase with an elution solution.
- Thus, the current invention reports a method for obtaining an immunoglobulin in monomeric form, wherein the method comprises the following step:
-
- applying an aqueous, buffered solution comprising an immunoglobulin in monomeric and in aggregated form and/or immunoglobulin fragments to an anion exchange chromatography material under conditions whereby the immunoglobulin does not bind to the anion exchange chromatography material,
whereby the immunoglobulin in monomeric form is recovered from the flow-through, and
wherein the aqueous, buffered solution has a pH value of from pH 7.8 to pH 8.8.
- applying an aqueous, buffered solution comprising an immunoglobulin in monomeric and in aggregated form and/or immunoglobulin fragments to an anion exchange chromatography material under conditions whereby the immunoglobulin does not bind to the anion exchange chromatography material,
- The term “conditions under which the immunoglobulin in monomeric form does not bind to the anion exchange chromatography material” and grammatical equivalents thereof denotes conditions at which an immunoglobulin in monomeric form is not bound by the anion exchange chromatography material when brought in contact with the anion exchange material. This does not denote that 100% of the immunoglobulin in monomeric form is not bound but essentially 100% of the immunoglobulin in monomeric form is not bound, in specific embodiments at least 50% of the immunoglobulin in monomeric form is not bound, at least 65% of the immunoglobulin in monomeric form is not bound, at least 80% of the immunoglobulin in monomeric form is not bound, at least 90% of the immunoglobulin in monomeric form is not bound, or more than 95% of the immunoglobulin in monomeric form is not bound to the anion exchange material as determined by the peak area in a size exclusion chromatography. In one embodiment the aqueous, buffered solution has a pH value of from pH 7.8 to pH 8.8. In a further embodiment such a condition is a pH value of the aqueous, buffered solution of from pH 8.0 to pH 8.5.
- It has now surprisingly been found that an anion exchange chromatography step, in which the immunoglobulin in monomeric form can be obtained from the anion exchange material in a flow-through mode, can be performed in a narrow pH value range of from pH 7.8 to pH 8.8, in one embodiment of from pH 8.0 to pH 8.5. Surprisingly a small deviation of this pH value range, e.g. to pH 7.0 or pH 9.0, reduces this effect. With the method according to the invention it is possible to separate in a single step the immunoglobulin in monomeric form from the immunoglobulin in aggregated form and from immunoglobulin fragments.
- The method according to the invention can be employed as a single step method or combined with other steps, such as, e.g., in one embodiment with a protein A chromatography step or a hydrophobic charge induction chromatography step.
- In one embodiment the anion exchange chromatography material is a membrane anion exchange chromatography material. It is also advantageous e.g. to remove the bulk of the host cell proteins and culture by-products in a foremost purification step employing an affinity chromatography. The affinity chromatography may e.g. be a protein A affinity chromatography, a protein G affinity chromatography, a hydrophobic charge induction chromatography (HCIC), or a hydrophobic interaction chromatography (HIC, e.g. with phenyl-sepharose, aza-arenophilic resins, or m-aminophenylboronic acid). In one embodiment the method according to the invention comprises a protein A chromatography step or a HCIC chromatography step prior to the anion exchange chromatography step.
- In one embodiment of the method according to the invention, wherein the method comprises more than one chromatography step, prior to the application of a solution to one step (or to a subsequent step) of the purification method, parameters, such as e.g. the pH value or the conductivity of the solution, have to be adjusted. In one embodiment the pH value of the aqueous, buffered solution applied to the anion exchange chromatography material is of from pH 7.8 to pH 8.8, in another embodiment of from pH 8.0 to pH 8.5.
- The following examples and figures are provided to aid the understanding of the present invention, the true scope of which is set forth in the appended claims. It is understood that modifications can be made in the procedures set forth without departing from the spirit of the invention.
-
FIG. 1A A solution containing an anti-CCRS antibody was adjusted to pH 7.0, 7.5 and 8.0 (fractions designated as pH x.x load); 5 mg of protein were each brought in contact with a 15 cm2 membrane adsorber in flow-though mode (fractions designated as pH x.x flow-through). The bound substances were eluted with sodium chloride (fractions designated as pH x.x elution). Fractions were analyzed by SDS-PAGE with Coomassie brilliant blue staining. -
FIG. 1B A solution containing an anti-CCRS antibody was adjusted to pH 8.5 and 9.0 (fractions designated as pH x.x. load); 5 mg of protein were each brought in contact with a 15 cm2 membrane adsorber in flow thought mode (fractions designated as pH x.x flow-through). The bound substances were eluted with sodium chloride (fractions designated as pH x.x elution). Fractions were analyzed by SDS-PAGE with Coomassie-Staining. -
FIG. 1C-1 ,FIG. 1C-2 ,FIG. 1C-3 ,FIG. 1C-4 Comparison of load and flow-through fractions of an anti-CCRS antibody containing solution at pH 7.5 (FIG. 1C-1 andFIG. 1C-2 ) and load and flow-through fraction at pH 8.5 (FIG. 1C-3 andFIG. 1C-4 ) by analytical size exclusion chromatography. Aggregates and fragments can be detected in the flow-through at pH 7.5, but not at pH 8.5. -
FIG. 2A-1 andFIG. 2A-2 Overlay showing load and flow-through fraction of a CD19 antibody at pH 7.5 (FIG. 2A-1 ) and pH 8.5 (FIG. 2A-2 ). Aggregates can be detected in the flow-through at pH 7.5, but not in the flow-through at pH 8.5. -
FIG. 2B Table showing the removal of aggregates from anti-CCRS antibody and anti-CD19 antibody solutions. Reduction in the flow-though is at pH values above pH 7.5, such as pH 8.5. -
FIG. 3 Scale-up experiment: A solution containing an anti-CCRS antibody was adjusted to pH 8.5 and 25 mg were pumped through a 75 cm2 membrane adsorber (fractions designated as pH x.x flow-through). The bound substances were eluted with sodium chloride (fractions designated as pH x.x. elution). Fractions were analyzed by SDS-PAGE with Coomassie-Staining. -
FIG. 4 A solution containing an anti-CCRS antibody was adjusted to pH 8.5 (fraction designated as pH 8.5 load) and 6 mg protein were pumped through a 1 ml Q-Sepharose® fast-flow anion exchange chromatography column (fractions designated as pH 8.5 flow-through). The column was eluted with sodium chloride (fractions designated as pH 8.5. elution). Fractions were analyzed by SDS-PAGE with Coomassie-Staining. - An anti-CCR5 antibody (hereinafter referred to as mAb CCR5, see e.g. WO 2006/103100) and an anti-CD19 antibody (hereinafter referred to as mAb CD19) were purified in a first step with a protein A affinity chromatography.
- The mAb CCR5 was eluted from the protein A column under acidic conditions. Before further processing the pH value of the fraction containing the immunoglobulin was adjusted by dialysis against a buffered solution (e.g. tris (hydroxymethyl) amino-methane (TRIS) or phosphate buffer) to pH values of 7.0, 7.5, 8.0, 8.5, and 9.0. This material is referred to in the following as conditioned protein A eluate of mAb CCRS.
- The mAb CD19 was eluted from the protein A column under acidic conditions. Before further processing the pH value of the fraction containing the immunoglobulin was adjusted by dialysis against a buffered solution (e.g. tris (hydroxymethyl) amino-methane (TRIS) or phosphate buffer) to a pH value of pH 8.5. This material is referred to in the following as conditioned protein A eluate of mAb CD19.
- Size Exclusion Chromatography:
-
- resin: TSK 3000 (Tosohaas)
- column: 300×7.8 mm
- flow rate: 0.5 ml/min
- buffer: 200 mM potassium phosphate buffer containing 250 mM potassium chloride, adjusted to pH 7.0
- wavelength: 280 nm
- LDS sample buffer, fourfold concentrate (4×): 4 g glycerol, 0.682 g TRIS-Base, 0.666 g TRIS-hydrochloride, 0.8 g LDS (lithium dodecyl sulfate), 0.006 g EDTA (ethylene diamin tetra acetic acid), 0.75 ml of a 1% by weight (w/w) solution of Serva Blue G250 in water, 0.75 ml of a 1% by weight (w/w) solution of phenol red, add water to make a total volume of 10 ml.
- The solution containing the immunoglobulin was centrifuged to remove debris. An aliquot of the clarified supernatant was admixed with ¼ volumes (v/v) of 4×LDS sample buffer and 1/10 volume (v/v) of 0.5
M 1,4-dithiotreitol (DTT). Then the samples were incubated for 10 min. at 70 ° C. and protein separated by SDS-PAGE. The NuPAGE® Pre-Cast gel system (Invitrogen Corp.) was used according to the manufacturer's instruction. In particular, 10% NuPAGE® Novex® Bis-TRIS Pre-Cast gels (pH 6.4) and a NuPAGE® MOPS running buffer was used. - Conditioned protein A eluates of mAb CCRS with pH 7.0, 7.5, 8.0, 8.5 and 9.0 were each adjusted to a concentration of 1 mg/ml. 5 ml of each solution was applied separately to a regenerated and equilibrated (to the respective pH) Q-membrane adsorber (membrane anion exchange material, membrane area: 15 cm2) in flow-though mode with the help of a chromatographic system. The membrane was afterwards washed with buffer of the correspondent pH. Bound protein was eluted with a salt gradient at the correspondent pH values.
- It has been found that mAb CCRS did not bind at pH 7.0 and 7.5 to the membrane adsorber. Slight binding was achieved between pH 8.0 and 8.5. At pH 9.0 strong binding of the antibody appeared. Analysis of the flow-through and elution fractions by size exclusion chromatography and SDS-PAGE revealed a significant removal of immunoglobulin aggregates and immunoglobulin fragments from the flow-through at pH 8.0 and 8.5. No removal was visible at pH 7.0 and 7.5 and high product losses due to matrix binding occurred at pH 9.0. With conductivity driven elution at pH 8.0 and pH 8.5 fractions enriched with immunoglobulin aggregates and immunoglobulin fragments were obtained.
- Conditioned protein A eluates of mAb CD19 with pH 7.0, 7.5, 8.0, 8.5 and 9.0 were each adjusted to a concentration of 1 mg/ml. 5 ml of each solution was applied separately to a regenerated and equilibrated (to the respective pH) Q-membrane adsorber (15 cm2) in flow-though mode with the help of a chromatographic system. The membrane was afterwards washed with buffer of the correspondent pH. Bound protein was eluted with a salt gradient at the correspondent pH values.
- It has been found that mAb CD19 did not bind at pH 7.0 and 7.5 to the membrane adsorber. Slight binding was achieved between pH 8.0 and 8.5. At pH 9.0 strong binding of the immunoglobulin appeared. Analysis of the flow-through and elution fractions by size exclusion chromatography and SDS-PAGE revealed a significant removal of immunoglobulin aggregates and immunoglobulin fragments of the immunoglobulin from the product at pH 8.0 and 8.5. No removal was visible at pH 7.0 and pH 7.5 and high product losses due to matrix binding occurred at pH 9.0. With conductivity driven elution at pH 8.0 and pH 8.5 fractions enriched with immunoglobulin aggregates and immunoglobulin fragments were obtained.
- A protein A eluate of mAb CCRS was conditioned at pH 8.5 and adjusted to a concentration of 1 mg/ml.
- 25 ml of the solution was applied to a regenerated and equilibrated (to pH 8.5) Q-membrane adsorber (75 cm2 membrane surface area) in flow-through mode with the help of a chromatographic system. The membrane was afterwards washed with buffer of pH 8.5. Bound protein was eluted with a salt gradient at the correspondent pH values.
- The result of example 1 could be reproduced at a 5-fold larger scale. The flow-through was depleted from immunoglobulin aggregates and immunoglobulin fragments. Both impurities could be eluted from the membrane adsorber with a salt gradient.
- Conditioned protein A eluate of mAb CCRS at pH 8.5 was adjusted to a concentration of 1 mg/ml. 6 ml of the solution was applied to a regenerated and equilibrated (to pH 8.5) Q Sepharose® FF in flow-though mode with the help of a chromatographic system. The sepharose was afterwards washed with buffer of the correspondent pH. Bound protein was eluted with a salt gradient at the correspondent pH values.
- Analysis of the flow-through and the eluted fractions by size exclusion chromatography and SDS-PAGE revealed a significant removal of immunoglobulin aggregates and immunoglobulin fragments of the immunoglobulin from the product at pH 8.5. With conductivity driven elution at pH 8.0 and pH 8.5 fractions enriched with immunoglobulin aggregates and immunoglobulin fragments were obtained.
Claims (7)
1-4. (canceled)
5. A method for obtaining an immunoglobulin in monomeric form, wherein the method comprises the following step:
a. applying an aqueous, buffered solution comprising an immunoglobulin in monomeric and in aggregated form and/or immunoglobulin fragments to an anion exchange chromatography material,
wherein the aqueous, buffered solution has a pH value of from pH 8.0 to pH 8.5, and
whereby the immunoglobulin depleted of immunoglobulin aggregates and immunoglobulin fragments is recovered from the flow-through of the anion exchange chromatography material and thereby an immunoglobulin in monomeric form is obtained.
6. The method according to claim 5 , characterized in that said anion exchange chromatography material is a membrane anion exchange chromatography material.
7. The method according to claim 5 , characterized in that said anion exchange chromatography material is a strong anion exchange chromatography material.
8. The method according claim 5 , characterized in that said method comprises prior to step a) an additional protein A chromatography step or a HCIC chromatography step.
9. The method according to claim 8 , characterized in that said anion exchange chromatography material is a membrane anion exchange chromatography material.
10. The method according to claim 8 , characterized in that said anion exchange chromatography material is a strong anion exchange chromatography material.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/538,604 US20200207839A1 (en) | 2008-12-22 | 2019-08-12 | Immunoglobulin purification |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP08022236 | 2008-12-22 | ||
| EP08022236.7 | 2008-12-22 | ||
| PCT/EP2009/009157 WO2010072381A1 (en) | 2008-12-22 | 2009-12-18 | Immunoglobulin purification |
| US201113141306A | 2011-06-21 | 2011-06-21 | |
| US15/461,198 US20180162930A1 (en) | 2008-12-22 | 2017-03-16 | Immunoglobulin purification |
| US16/538,604 US20200207839A1 (en) | 2008-12-22 | 2019-08-12 | Immunoglobulin purification |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/461,198 Continuation US20180162930A1 (en) | 2008-12-22 | 2017-03-16 | Immunoglobulin purification |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20200207839A1 true US20200207839A1 (en) | 2020-07-02 |
Family
ID=40668760
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/141,306 Active 2031-11-09 US9631008B2 (en) | 2008-12-22 | 2009-12-18 | Immunoglobulin purification |
| US15/461,198 Abandoned US20180162930A1 (en) | 2008-12-22 | 2017-03-16 | Immunoglobulin purification |
| US16/538,604 Abandoned US20200207839A1 (en) | 2008-12-22 | 2019-08-12 | Immunoglobulin purification |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/141,306 Active 2031-11-09 US9631008B2 (en) | 2008-12-22 | 2009-12-18 | Immunoglobulin purification |
| US15/461,198 Abandoned US20180162930A1 (en) | 2008-12-22 | 2017-03-16 | Immunoglobulin purification |
Country Status (12)
| Country | Link |
|---|---|
| US (3) | US9631008B2 (en) |
| EP (1) | EP2379108B1 (en) |
| JP (1) | JP2012513425A (en) |
| KR (1) | KR20110086184A (en) |
| CN (1) | CN102264392A (en) |
| AU (1) | AU2009331897A1 (en) |
| BR (1) | BRPI0923541A2 (en) |
| CA (1) | CA2745707A1 (en) |
| ES (1) | ES2488542T3 (en) |
| IL (1) | IL212646A0 (en) |
| MX (1) | MX2011006654A (en) |
| WO (1) | WO2010072381A1 (en) |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103276033A (en) | 2006-09-13 | 2013-09-04 | 雅培制药有限公司 | Cell culture improvements |
| US8911964B2 (en) | 2006-09-13 | 2014-12-16 | Abbvie Inc. | Fed-batch method of making human anti-TNF-alpha antibody |
| CN105111309A (en) | 2008-10-20 | 2015-12-02 | Abbvie公司 | Isolation and purification of antibodies using protein an appinity chromatography |
| CN104974251A (en) | 2008-10-20 | 2015-10-14 | Abbvie公司 | Viral inactivation during purification of antibodies |
| AU2009331897A1 (en) | 2008-12-22 | 2010-07-01 | F. Hoffmann-La Roche Ag | Immunoglobulin purification |
| KR101997543B1 (en) | 2010-07-30 | 2019-07-09 | 이엠디 밀리포어 코포레이션 | Chromatogrphy media and method |
| WO2012030512A1 (en) * | 2010-09-03 | 2012-03-08 | Percivia Llc. | Flow-through protein purification process |
| IL212911A0 (en) * | 2011-05-16 | 2011-07-31 | Omrix Biopharmaceuticals Ltd | Immunoglobulin reduced in thrombogenic contaminants and preparation thereof |
| EP2773439A4 (en) * | 2011-10-31 | 2015-07-01 | Merck Sharp & Dohme | CHROMATOGRAPHY METHOD FOR DECOMPOSING HETEROGENEOUS ANTIBODY AGGREGATES |
| EP3188816B1 (en) | 2014-09-02 | 2021-06-09 | EMD Millipore Corporation | Chromatography media comprising discrete porous bundles of nanofibrils |
| CA2966515C (en) | 2014-12-08 | 2021-04-27 | Emd Millipore Corporation | Mixed bed ion exchange adsorber |
| CN117242095A (en) * | 2021-04-23 | 2023-12-15 | 和铂医药(上海)有限责任公司 | Method for purifying bispecific antibody |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170121376A1 (en) * | 2014-06-12 | 2017-05-04 | Biosyn Arzneimittel Gmbh | Preparation Methods for a Novel Generation of Biological Safe KLH Products Used for Cancer Treatment, for the Development of Conjugated Therapeutic Vaccines and as Challenging Agents |
Family Cites Families (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4272521A (en) | 1979-07-16 | 1981-06-09 | Cutter Laboratories, Inc. | Purified immune serum globulin |
| US4604208A (en) | 1983-12-29 | 1986-08-05 | Chaokang Chu | Liquid filtration using an anionic microporous membrane |
| JPH0662436B2 (en) | 1986-05-19 | 1994-08-17 | 株式会社ミドリ十字 | Method for producing intravenous immunoglobulin preparation |
| US5118796A (en) | 1987-12-09 | 1992-06-02 | Centocor, Incorporated | Efficient large-scale purification of immunoglobulins and derivatives |
| US4983722A (en) | 1988-06-08 | 1991-01-08 | Miles Inc. | Removal of protein A from antibody preparations |
| DE4118912C1 (en) | 1991-06-08 | 1992-07-02 | Biotest Pharma Gmbh, 6072 Dreieich, De | |
| BR9305557A (en) | 1992-06-26 | 1997-03-25 | Aetsrn | Human monoclonal anti-Rhesus-D antibodies and pharmaceutical composition containing them |
| IT1271461B (en) | 1993-12-01 | 1997-05-28 | Menarini Ricerche Sud Spa | ANTI-CD3 / ANTI-EGFR MONOCLONAL ANTI-BODY ANTIBODY, PROCESS FOR PRODUCTION AND ITS USE. |
| US5429746A (en) | 1994-02-22 | 1995-07-04 | Smith Kline Beecham Corporation | Antibody purification |
| EP0998486B2 (en) | 1997-06-13 | 2012-02-01 | Genentech, Inc. | Protein recovery by chromatography followed by filtration upon a charged layer |
| TW505655B (en) * | 1997-10-14 | 2002-10-11 | Tanox Inc | Enhanced aggregate removal from bulk-biologicals using ion exchange chromatography |
| IL139609A (en) | 1998-06-01 | 2006-06-11 | Genentech Inc | Separation of polypeptide monomers |
| EP1440304A2 (en) | 2001-11-02 | 2004-07-28 | Millipore Corporation | Membrane adsorber device |
| JP4319979B2 (en) | 2002-04-26 | 2009-08-26 | ジェネンテック・インコーポレーテッド | Non-affinity purification of proteins |
| JP5303092B2 (en) | 2002-09-11 | 2013-10-02 | ジェネンテック, インコーポレイテッド | Protein purification |
| GB0304576D0 (en) | 2003-02-28 | 2003-04-02 | Lonza Biologics Plc | Protein a chromatography |
| DK1601697T3 (en) | 2003-02-28 | 2007-10-01 | Lonza Biologics Plc | Purification of antibody by protein A and ion exchange chromatography |
| WO2005077130A2 (en) | 2004-02-11 | 2005-08-25 | Tanox, Inc. | A method for the removal of aggregate proteins from recombinant samples using ion exchange chromatography |
| AU2005279347A1 (en) | 2004-08-30 | 2006-03-09 | Lonza Biologics Plc. | Affinity- plus ion exchange- chromatography for purifying antibodies |
| MX2007011129A (en) | 2005-03-11 | 2007-11-06 | Wyeth Corp | A method of weak partitioning chromatography. |
| TW200720289A (en) | 2005-04-01 | 2007-06-01 | Hoffmann La Roche | Antibodies against CCR5 and uses thereof |
| CA2611815A1 (en) | 2005-06-17 | 2006-12-28 | Elan Pharma International Limited | Methods of purifying anti a beta antibodies |
| CA2632519A1 (en) * | 2005-12-06 | 2007-07-05 | Amgen Inc. | Polishing steps used in multi-step protein purification processes |
| CN101437839A (en) | 2006-03-20 | 2009-05-20 | 米德列斯公司 | Protein purification |
| NZ611859A (en) | 2006-04-05 | 2014-12-24 | Abbvie Biotechnology Ltd | Antibody purification |
| BRPI0806367A2 (en) | 2007-01-22 | 2011-09-06 | Genentech Inc | antibody purification methods |
| AU2008256411B2 (en) * | 2007-06-01 | 2013-08-22 | F. Hoffmann-La Roche Ag | Immunoglobulin purification |
| AU2009331897A1 (en) | 2008-12-22 | 2010-07-01 | F. Hoffmann-La Roche Ag | Immunoglobulin purification |
-
2009
- 2009-12-18 AU AU2009331897A patent/AU2009331897A1/en not_active Abandoned
- 2009-12-18 JP JP2011542709A patent/JP2012513425A/en active Pending
- 2009-12-18 US US13/141,306 patent/US9631008B2/en active Active
- 2009-12-18 MX MX2011006654A patent/MX2011006654A/en not_active Application Discontinuation
- 2009-12-18 WO PCT/EP2009/009157 patent/WO2010072381A1/en not_active Ceased
- 2009-12-18 ES ES09796320.1T patent/ES2488542T3/en active Active
- 2009-12-18 EP EP09796320.1A patent/EP2379108B1/en not_active Revoked
- 2009-12-18 CA CA2745707A patent/CA2745707A1/en not_active Abandoned
- 2009-12-18 KR KR1020117014284A patent/KR20110086184A/en not_active Ceased
- 2009-12-18 BR BRPI0923541A patent/BRPI0923541A2/en not_active IP Right Cessation
- 2009-12-18 CN CN2009801519516A patent/CN102264392A/en active Pending
-
2011
- 2011-05-03 IL IL212646A patent/IL212646A0/en unknown
-
2017
- 2017-03-16 US US15/461,198 patent/US20180162930A1/en not_active Abandoned
-
2019
- 2019-08-12 US US16/538,604 patent/US20200207839A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170121376A1 (en) * | 2014-06-12 | 2017-05-04 | Biosyn Arzneimittel Gmbh | Preparation Methods for a Novel Generation of Biological Safe KLH Products Used for Cancer Treatment, for the Development of Conjugated Therapeutic Vaccines and as Challenging Agents |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2009331897A1 (en) | 2010-07-01 |
| US9631008B2 (en) | 2017-04-25 |
| JP2012513425A (en) | 2012-06-14 |
| IL212646A0 (en) | 2011-07-31 |
| MX2011006654A (en) | 2011-07-12 |
| CA2745707A1 (en) | 2010-07-01 |
| KR20110086184A (en) | 2011-07-27 |
| EP2379108A1 (en) | 2011-10-26 |
| EP2379108B1 (en) | 2014-06-25 |
| US20110257370A1 (en) | 2011-10-20 |
| ES2488542T3 (en) | 2014-08-27 |
| BRPI0923541A2 (en) | 2016-01-26 |
| CN102264392A (en) | 2011-11-30 |
| US20180162930A1 (en) | 2018-06-14 |
| WO2010072381A1 (en) | 2010-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20200207839A1 (en) | Immunoglobulin purification | |
| US11261238B2 (en) | Immunoglobulin purification | |
| US9631007B2 (en) | Method for the purification of antibodies | |
| US20220411466A1 (en) | Method to increase antibody yield during ion exchange chromatography |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |