US20200093166A1 - Process for manufacturing a sweetener and use thereof - Google Patents
Process for manufacturing a sweetener and use thereof Download PDFInfo
- Publication number
- US20200093166A1 US20200093166A1 US16/697,047 US201916697047A US2020093166A1 US 20200093166 A1 US20200093166 A1 US 20200093166A1 US 201916697047 A US201916697047 A US 201916697047A US 2020093166 A1 US2020093166 A1 US 2020093166A1
- Authority
- US
- United States
- Prior art keywords
- sweetener
- solution
- rebaudioside
- stevioside
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
- A23L27/33—Artificial sweetening agents containing sugars or derivatives
- A23L27/36—Terpene glycosides
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT OF FLOUR OR DOUGH FOR BAKING, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS
- A21D13/00—Finished or partly finished bakery products
- A21D13/06—Products with modified nutritive value, e.g. with modified starch content
- A21D13/062—Products with modified nutritive value, e.g. with modified starch content with modified sugar content; Sugar-free products
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT OF FLOUR OR DOUGH FOR BAKING, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS
- A21D2/00—Treatment of flour or dough by adding materials thereto before or during baking
- A21D2/08—Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
- A21D2/14—Organic oxygen compounds
- A21D2/18—Carbohydrates
- A21D2/181—Sugars or sugar alcohols
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT OF FLOUR OR DOUGH FOR BAKING, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS
- A21D2/00—Treatment of flour or dough by adding materials thereto before or during baking
- A21D2/08—Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
- A21D2/36—Vegetable material
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/12—Fermented milk preparations; Treatment using microorganisms or enzymes
- A23C9/13—Fermented milk preparations; Treatment using microorganisms or enzymes using additives
- A23C9/1307—Milk products or derivatives; Fruit or vegetable juices; Sugars, sugar alcohols, sweeteners; Oligosaccharides; Organic acids or salts thereof or acidifying agents; Flavours, dyes or pigments; Inert or aerosol gases; Carbonation methods
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G3/00—Sweetmeats; Confectionery; Marzipan; Coated or filled products
- A23G3/34—Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
- A23G3/36—Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G3/00—Sweetmeats; Confectionery; Marzipan; Coated or filled products
- A23G3/34—Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
- A23G3/36—Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds
- A23G3/48—Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds containing plants or parts thereof, e.g. fruits, seeds, extracts
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G9/00—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
- A23G9/32—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G9/00—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
- A23G9/32—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
- A23G9/42—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing plants or parts thereof, e.g. fruits, seeds, extracts
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
- A23L2/60—Sweeteners
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
- A23L27/33—Artificial sweetening agents containing sugars or derivatives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
- A23L27/33—Artificial sweetening agents containing sugars or derivatives
- A23L27/34—Sugar alcohols
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/50—Soya sauce
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
Definitions
- the present invention relates to a process for producing a highly purified sweet steviol glycoside mixture, Stevioside and Rebaudioside A from the extract of the Stevia rebaudiana Bertoni plant and use thereof in various food products and beverages.
- sweeteners such as dulcin, sodium cyclamate and saccharin has been restricted.
- natural sweeteners have been receiving increasing demand.
- Stevia rebaudiana Bertoni is a plant that produces an alternative sweetener that has an added advantage of being a natural plant product.
- the sweet steviol glycosides have functional and sensory properties superior to those of many high potency sweeteners.
- the extract of Stevia rebaudiana plant contains a mixture of different sweet diterpene glycosides, which have a single base—steviol and differ by the presence of carbohydrate residues at positions C13 and C19. These glycosides accumulate in Stevia leaves and compose approximately 10%-20% of the total dry weight. Typically, on a dry weight basis, the four major glycosides found in the leaves of Stevia are Dulcoside A (0.3%), Rebaudioside C (0.6%), Rebaudioside A (3.8%) and Stevioside (9.1%). Other glycosides identified in Stevia extract include Rebaudioside B, C, D, E, and F, Steviolbioside and Rubusoside.
- Stevioside and Rebaudioside A The physical and sensory properties are well studied only for Stevioside and Rebaudioside A. They were tested for stability in carbonated beverages and found to be both heat and pH stable (Chang and Cook, 1983). The sweetness potency of Stevioside is around 210 times higher than sucrose, Rebaudioside A in between 200 and 400 times, and Rebaudioside C and Dulcoside A around 30 times (Phillips, 1989 and Tanaka, 1997).
- glycosides can be as a result of contamination of other substances, presented in extract.
- One of the main ways to improve the taste quality is the enzymatic glycosylation of mixture of semi-purified steviol glycosides. Another way to produce highly purified individual glycosides with standard characteristics and minimal content of accompanying compounds.
- the invention related to the purification of two main glycosides—Stevioside and Rebaudioside A and use thereof.
- Rebaudioside A A method for the recovery of Rebaudioside A from the leaves of Stevia rebaudiana plants has been developed (U.S. Pat. No. 4,082,858). Again, final purification is achieved by liquid chromatography subsequent to an initial extraction with water and an alkanol having from 1 to 3 carbon carbons, preferably methanol. It is also known that water may be used as the initial solvent; their preferred solvent at this stage is a liquid haloalkane having from 1 to 4 carbon atoms.
- the preferred second solvent is an alkanol having from 1 to 3 carbon atoms, while the preferred third solvent is an alkanol having from 1 to 4 carbon atoms and optionally minor amounts of water.
- Individual sweet glycosides can be obtained from the Stevia rebaudiana plant.
- a mixture of sweet glycosides extracted from the Stevia rebaudiana plant is processed to remove impurities by using two types of ion-exchangers.
- the solution is dried.
- Stevioside precipitates out.
- the filtrate is further concentrated and cooled to precipitate out Rebaudioside A.
- This Rebaudioside A can be further purified as can the previously obtained Stevioside (U.S. Pat. No. 5,962,678).
- a large amount of toxic organic solvent, such as methanol is used.
- the unfavorable taste of the glycosides can be as a result of contamination of impurities, presented in extract.
- An object of the present invention is to provide a commercially valuable process for producing a highly purified sweetener from the extract of Stevia rebaudiana Bertoni plant and use thereof in various food products and beverages, which overcomes the disadvantages of the related art.
- the invention in part, pertains to the dried and powdered leaves being subjected to water extraction and the resulted extracts is purified using treatment with a base such as calcium hydroxide and then iron chloride.
- the filtrate was deionized on, e.g., Amberlite FPC23H, Amberlite FPA51, and Amberlite FPA98C1.
- the filtrate is concentrated under vacuum and spray dried.
- the isolation and purification of Stevioside and Rebaudioside A were developed using alcoholic precipitation and ultrafiltration.
- the highly purified Stevioside and Rebaudioside A were obtained. Any type of existing Stevia extract with various ratios of sweet steviol glycosides are feasible.
- the highly purified glycosides were applied in various foods and beverages as sweetener.
- the invention in part, pertains to a purified sweet glycosides extract produced from the Stevia rebaudiana plant, wherein the main sweet glycosides are Rebaudioside A and Stevioside, obtained by a process including drying Stevia rebaudiana leaves, treating the leaves to extract an aqueous liquid solution containing mixed sweet steviol glycosides, extracting the Stevia rebaudiana leaves, obtaining an extract, filtering the extract, obtaining a filtrate, treating the filtrate with a base such as calcium hydroxide, treating the extract with trivalent iron chloride, desalting, decolorizing, and evaporating the filtrate to dryness.
- a base such as calcium hydroxide
- purified Rebaudioside A and Stevioside can be obtained by dissolving sweet steviol glycosides in methanol at ambient temperatures to precipitate Stevioside, filtering the solution to recover a precipitate of Stevioside, purifying, recovering a high purity Stevioside, concentrating the remaining solution and evaporating to dryness, suspending the powder in ethanol, heating and then cooling the solution to precipitate Rebaudioside A. Suspending the crystalline Rebaudioside A obtained in ethanol-water solution at cool conditions (10-12° C.) prepares a high purity of Rebaudioside A. Stevioside or Rebaudioside A has a purity of at least 98%. Applications are found in various foods such as chocolate, ice cream, beverage, dairy products, as a sweetener in a tablet form.
- FIG. 1 shows a sensory evaluation of raw Stevia extract, Stevioside, and Rebaudioside A
- FIG. 2 shows a sensory evaluation of Stevioside with a different grade of purity
- FIG. 3 shows a sensory evaluation of Rebaudioside A with a different grade of purity
- the dried leaves of Stevia rebaudiana Bertoni were extracted by 10 volumes of water.
- the proportion of extraction water preferably was about 5 liters to about 15 liters (pH 6.0 to 7.0) to one kilogram of leaves. Greater volumes of solvent can be used, however, it was not preferable from the practical standpoint.
- the duration of extraction may be from 0.5 hours to 24 hours, with a period of from about 1 hours to about 6 hours preferred.
- the extraction temperature can be in the limits of 25-90° C., however the temperatures between 45-75° C. are more preferable.
- the plant material was separated from the solution by filtration, and the pH of the filtrate was adjusted to about 10 with calcium hydroxide and heated between 40-60° C., preferably from 50° C. to 55° C., for about 0.5-1.0 hours, cooled to ambient temperature with slow agitation, and neutralized by FeCl 3 . After mixing for 10-15 minutes, the precipitate was removed by filtration; the filtrate was passed through the Celite, deionized, and decolorized by Amberlite FPC23H, Amberlite FPA51, and Amberlite FPA98Cl by conventional manner. The solution was concentrated and spray dried.
- the resulting sweet steviol glycoside mixture was a yellow powder and had a content of 3.4% Dulcoside, 64.6% Stevioside, 6.7% Rebaudioside C and 25.3% Rebaudioside A.
- the obtained powder was dissolved in methanol and maintained at a temperatures 20-50° C., preferably at 20-25° C., for 0.5-6.0 hours, preferably 0.5-1.0 hours with agitation.
- the proportion of extract and methanol was between 1:2-1:7, w/v, preferably 1:5. During this time the precipitate was formed, which was filtered and dried. According to the HPLC analysis, the powder contents were around 90-91% of Stevioside. A second treatment by methanol was not efficient to prepare high purity Stevioside.
- the powder was mixed with two volumes of 90% of ethanol and at 10-12° C. and maintained for about 30 minutes with slow agitation.
- the precipitate was separated by filtration and dried under vacuum.
- the Stevioside with about 98.5-99.4% purity was obtained.
- the filtrates were combined and used for recovery of Rebaudioside A.
- the remaining solution was evaporated to remove the methanol, the syrup obtained diluted with water and passed through polysulfone based ultrafiltration membranes (with a filtering discrimination of 2.5 kDa) (Liumar Technologies, Ottawa, Canada) with diafiltration.
- the filtrate was concentrated and spray dried.
- the obtained powder was mixed with 96.2% ethanol and maintained at 45-50° C. for about 30 minutes with agitation.
- the proportion of syrup and ethanol was between 1:2-1:7, w/v, preferably 1:5.
- the precipitate was formed, which was filtered and dried.
- Rebaudioside A with 88-90% purity was obtained.
- the powder was mixed with two volumes of 92% ethanol and maintained at 10-12° C. for about 60 minutes with slow agitation. The crystals were filtered and dried.
- Rebaudioside A with 98.9% purity was obtained.
- Rebaudioside A has the highest sweetness level (5.96), followed by Stevioside with a mean score of 4.62, and commercial Stevia extract had the lowest mean score of 2.96.
- Rebaudioside A had the lowest score for bitterness (1.76), and commercial Stevia extract was the most bitter compared to the other samples.
- Rebaudioside A had the highest score of 4.05 followed by Stevioside (3.81) and raw extract (3.16) ( FIG. 1 ).
- the highly purified sweeteners can be favorably used for seasoning various food products (for instance, soy sauce, soy sauce powder, soy paste, soy paste powder, dressings, mayonnaise, vinegar, powdered vinegar, bakery products and confectioneries, frozen-desserts, meat products, fish-meat products, potato salad, bottled and canned foods, fruit and vegetables) in intact or mixed forms with other sweeteners, such as corn syrup, glucose, maltose, sucrose, lactose, aspartame, saccharin, sugar alcohols, organic and amino acids, flavors and/or coloring agents.
- the products are favorably usable as a low-cariogenic and low-calorie sweetener because it is less fermentable by oral dental-caries causative microorganisms.
- Exemplary applications include low-cariogenic food products such as confectioneries including chewing gum, chocolate, biscuits, cookies, toffee and candy. Additionally applications include soft drinks such as coffee, cocoa, juice, carbonated drinks, sour milk beverage, yogurt drinks and alcoholic drinks, such as brandy, whisky, vodka and wine.
- the sweeteners are usable for sweetening drugs and cosmetics.
- the leaves of Stevia rebaudiana are dried at 55° C. for three hours in a vacuum oven and powdered (30 mesh).
- One kg of the obtained material was mixed with 10 liters of water (pH 6.5) and heated to 55° C. with slow agitation for 10 hours.
- the plant material was separated from the solution by filtration and the pH of the filtrate was adjusted to 10 with about 24 grams of calcium hydroxide and heated to 50° C. for 0.5 hours.
- the obtained mixture was cooled to ambient temperature and the pH was adjusted to about 7.0 by about 53 grams of FeCl 3 . After mixing for 15 minutes the precipitate was removed by filtration.
- the slightly yellow filtrate was passed through the Celite, deionized, and decolorized by conventional manner on Amberlite FPC23H, Amberlite FPA51, and Amberlite FPA98Cl commercialized by ROHM & HAAS Co., Germany.
- the solution was concentrated and spray dried.
- the yield was 122 grams of powder with a content of sweet glycosides of about 91%.
- the sweet steviol glycoside mixture contains 3.4% Dulcoside, 64.6% Stevioside, 6.7% Rebaudioside C and 25.3% Rebaudioside A.
- a sweet steviol glycoside mixture with a purity of at least about 95% was obtained.
- a sweet steviol glycoside mixture with a purity of at least about 98% was obtained.
- the powder was mixed with two parts of 90% of ethanol, and maintained at 10-12° C. for about 30 minutes with slow agitation.
- the precipitate was separated by filtration and dried under vacuum.
- the product weighed 58.8 grams and contained 99.3% Stevioside.
- Stevioside with a purity of at least about 98% was obtained.
- the formula for the beverage was as below:
- the drinks with highly purified Rebaudioside A and Stevioside were superior with an excellent flavor and taste.
- the formula for the beverage was as below:
- the beverages prepared with different sweeteners were given to 10 judges for comparison.
- the products are low-cariogenic and low-calorie chocolate with excellent texture. Also, the organoleptic test carried out with 20 panelists revealed no lingering after-taste. The most desirable ones were the products with Rebaudioside-98.9% (19 members) and Stevioside 99.3% (16 members).
- vanilla flavor (1.0% of the mixture weight) and coloring (0.025% of the mixture weight) are added into the mixture after aging.
- the mixture was then transferred to ice cream maker to produce ice cream automatically. Samples of ice creams produced were transferred to seal containers and were kept in the freezer at a temperature of ⁇ 18° C.
- sweeteners does not affect the physicochemical properties of ice cream, as well as the overall attributes of color, smoothness, surface texture, air cell, vanilla aroma intensity, vanilla taste, chalkiness, iciness and melting rate.
- Organoleptic test carried out with 20 panelists. The most desirable ones were the products with 98.9% Rebaudioside A (18 members) and 99.3% Stevioside (14 members).
- the product is a low-calorie and low-cariogenic yoghurt without foreign taste and odor.
- a mixture consisting of 58.5% lactose, 10% calcium silicate, 5% cross-carmellose, 5% L-leucine, 1% aerosol 200, 0.5% magnesium stearate, and 20% of a sweetener, obtained according to the EXAMPLE 2 or 3, was kneaded sufficiently. Then the mixture was shaped with the use of a tabletting machine, equipped with punchers of 6.2 mm diameter, into tablets of 70 mg each, 3.0 mm thick, and 10 ⁇ 1 kg hardness
- the tablets can be easily administrated due to their appropriate sweetness.
- the formulations using low grade of Stevioside and Rebaudioside A were somewhat sticky with solubility about 3-4 minutes in water at 25° C.
- the tablets, prepared with highly purified Rebaudioside A show the best characteristics with the solubility around 20-30 seconds.
- a tooth paste was prepared by kneading a composition comprising of calcium phosphate, 45.0%; carboxymethylcellulose, 1.5%; carrageenan, 0.5%; glycerol, 18.0%; polyoxyethylene sorbitan mono-ester, 2.0%; beta-cyclodextrin, 1.5%; sodium laurylsarcosinate, 0.2%; flavoring, 1.0%; preservative, 0.1%; Rebaudioside A or Stevioside, obtained according to the EXAMPLE 2 or 3, 0.2%; and water to 100%, by usual way.
- the product possesses good foaming and cleaning abilities with appropriate sweetness.
- Rebaudioside A/Stevioside mixture (1:1, w/w) obtained according to the invention was added to 1000 mL of soy sauce and mixed homogenously.
- the products had an excellent taste and texture.
- Flour (0.0%), margarine (30.0%), fructose (10.0%), maltitol (8.0%), whole milk (1.0%), salt (0.2%), baking powder (0.15%), vanillin (0.1%), Rebaudioside A or Stevioside (0.55%), obtained according to this invention were kneaded well in dough-mixing machine. After molding of the dough the cookies were baked at 200° C. for 15 minutes.
- the product is a low-calorie diet cookie with excellent taste and appropriate sweetness.
- sucrose-based sweetener with stevia-based sweeteners having improved taste, mouthfeel and flavor properties.
- sucrose and stevia-based sweeteners have very different melting characteristics and solubility, conventional co-crystallization techniques would not result in a suitable product.
- sugar is about 66% soluble in water
- Rebaudioside A is only about 1% soluble
- Stevia 95 (containing steviol glycosides at 95% purity) is only about 34% soluble in water.
- Sugar has a melting point of about 186° C.
- Rebaudioside A has a melting point of about 240° C.
- Stevia 95 is mostly amorphous.
- the resulting low-calorie sweetener can be used in any food, beverage or consumer healthcare product.
- Other ingredients can be incorporated into the low-calorie sweetener using this process, including but not limited to sugar, salt, vitamins, minerals, supplements, homeopathic agents, preservatives, citric acid, juniper tincture, ascorbic acid, sodium benzoate, colorings, flavorings, and a combination thereof.
- CGTases cyclodextrin glycosyltransferase
- Bacillus stearothermophilus to produce stevia-based sweeteners, including, but not limited to, Steviosides, Rebaudioside A and purified sweet steviol glycoside mixtures.
- 1488 g of granulated sugar with moisture content adjusted to 0.80% was distributed to form a layer with thickness of 30 mm on a vibrating tray.
- 12.05 g stevioside obtained according to EXAMPLE 2 was dissolved in 18.07 g of solvent mixture containing 4 volumes of water per 1 volume of ethyl alcohol to make stevioside 40% (w/w) solution.
- the solution was heated up to 40° C. for prevention of crystal formation and was dispersed on the granulated sugar by means of an air-powered pneumatic method with pressure of compressed air at 0.1 MPa over a period of 100 seconds while maintaining the intensity of vibration at 1200 vibrations per minute (vpm).
- the granulated sugar was dried over a period of 10 minutes by means of a convective method in a drum-type drying apparatus set at a temperature of 65° C. until its moisture content was 0.09%.
- the sweetener produced has a homogenous and intact structure of crystal sugar and has a taste profile identical to sucrose, with sweetness power about or at least about 3 times higher than sugar.
- the sweetener produced has a homogenous and intact structure of crystalline sugar and has a taste profile identical to sucrose, with sweetness power about or at least about 3 times higher than sugar.
- a mixture of 50 kg of sugar with 192 gm of Reb A obtained according to EXAMPLE 3 was thoroughly blended in a ribbon blender and then compacted into sheets of product using a roll compaction unit (IR 520 roll compactor or similar unit) applying roll speeds ranging between about 12 to 16 rpm under a roll pressure of about 14 to 17 bar, which was then milled and classified to get optimum sized granules of the sugar-Reb A blend.
- a roll compaction unit IR 520 roll compactor or similar unit
- the sugar-Reb A granules had sweetness profile like sugar with about two times the sweetness potency of sugar
- a mixture of 65 kg of sugar with 188 gm of Steviol Glycoside obtained according to EXAMPLE 1 was thoroughly blended in a ribbon blender and then compacted into sheets of product using a roll compaction unit (IR 520 roll compactor or similar unit) applying roll speeds ranging between about 12 to 16 rpm under a roll pressure of about 14 to 17 bar, which was then milled and classified to get optimum sized granules of the sugar-Steviol Glycoside blend.
- a roll compaction unit IR 520 roll compactor or similar unit
- the sugar-Steviol Glycoside granules had a sweetness profile like sugar with at least 50% higher sweetness than sugar alone.
- a sugar solution of 65 kg of refined sugar in 35 kg of warm water was made and mixed thoroughly with 138 gm of Reb A obtained according to EXAMPLE 3 .
- the solution mixture was passed through multiple-effect evaporators, and then to the vacuum pans to reach the desired level of super-saturation, when the sugar liquor is “seeded” with invert sugar to initiate formation of sugar crystals.
- the sugar liquor with developing crystals is then discharged in a mixer to complete the crystallization and then to a centrifugal for separation of crystals from mother liquor.
- the separated crystals are then dried in a fluidized bed dryer/cooler.
- the co-crystallized sugar-Reb A had sweetness profile like sugar with at least 50% higher sweetness potency than sugar alone.
- 1488 g of granulated sugar with moisture content adjusted to 0.80% was distributed to form a layer with thickness of 30 mm on a vibrating tray.
- 11.58 g of the purified sweet steviol glycoside mixture obtained according to EXAMPLE 1 was dissolved in 17.37 g of solvent mixture containing 4 volumes of water per 1 volume of ethyl alcohol to make 40% (w/w) solution.
- the solution was heated up to 40° C. for prevention of crystal formation and was dispersed on the granulated sugar by means of an air-powered pneumatic method with pressure of compressed air at 0.1 MPa over a period of 100 seconds while maintaining the intensity of vibration at 1200 vpm.
- the granulated sugar was dried over a period of 10 minutes by means of a convective method in a drum-type drying apparatus set at a temperature of 65° C. until its moisture content was 0.05%.
- the sweetener produced has a homogenous and intact structure of crystalline sugar and has taste profile identical to sucrose with sweetness power 3 times higher than sugar.
- a low intensity sweetener such as sucrose
- a crystallization inhibitor in water.
- the ratio of the low intensity sweetener to the crystallization inhibitor is between about 1:1 to about 100:1 (w/w), or preferably between about 50:1 to about 80:1 (w/w).
- the resulting solution is then purged with nitrogen at a rate of about 1 to about 10 liters per minute per liter of solution, at a temperature of about 50° C. to about 80° C., preferably between about 65° C. to about 75° C.
- the purging takes place for a period of about 0.5 hours to about 10 hours, preferably about 1 hour to about 2 hours.
- the solution is then combined with a solution of a high intensity sweetener, and the combined solution is evaporated to obtain a concentrated sweetener composition with about 90% to about 97% (w/w) total solids.
- the evaporation can be carried out using any suitable device, at a temperature of about 100° C. to about 150° C., preferably about 120° C. to about 140° C., under a vacuum of about 300 mbar to about 800 mbar, preferably about 600 mbar to about 800 mbar, for a period of about 0.5 minute to about 2 minutes, preferably for about 0.7 minute to about 1.3 minutes.
- the concentrated sweetener composition is then fed to an impact beating apparatus, such as, but not limited to, a shear mixer, turbulizer, aerator, extrusion device or any other device capable of introducing shear mechanical impact or agitation to the concentrated sweetener composition.
- the mechanical impact duration on the concentrated sweetener composition is about 0.01 second to about 300 seconds, preferably about 0.5 second to 100 seconds, and more preferably about 10 seconds to about 60 seconds.
- the impact beating apparatus is provided with a water vapor removal system to remove water vapor formed by the fast release of the heat of crystallization of the concentrated sweetener composition as granules are formed.
- the water vapor removal system can be, but is not limited to, a vacuum condenser, a dry gas supply, and the like. If dry gas is used, examples of suitable gas are air and nitrogen.
- the resulting sweetening composition granules are then dried using any apparatus suitable for drying granules or powder, such as, but not limited to, a vacuum dryer, belt dryer, fluid bed dryer, and the like.
- the drying can take place at a temperature of about 50° C. to about 80° C., preferably about 60° C. to about 70° C.
- the granules are then sifted to obtain fractions of various particle sizes.
- the particle sizes ranged from about 0.5 mm to about 2 mm.
- the evaporated solution was fed to an impact beating machine (Bepex Turbulizer type) operating at 50 rpm.
- the shear mixing action of the impact beater initiated intense crystallization and residual water evaporation due to the fast release of heat of crystallization. This transformed the sugar solution into free flowing granules approx 1-2 mm in diameter.
- the impact beating device was connected to a vacuum condenser to facilitate quick removal of water vapors from crystallization zone and preventing “caking” of obtained granules.
- the residual moisture of obtained granulated powder was 2.5%.
- the granules were transferred to a drum-type drying apparatus set at a temperature of 65° C. and dried until its moisture content was 0.06%.
- the produced sweetener appeared as white granular powder and had taste profile identical to sucrose with a sweetness power 2 times higher than sugar.
- the evaporated solution was fed to an impact beating machine (Bepex Turbulizer type) operating at 50 rpm.
- the shear mixing action of the impact beater initiated intense crystallization and residual water evaporation due to the fast release of heat of crystallization. This transformed the sugar solution into free flowing granules approx 1-2 mm in diameter.
- the impact beating device was connected to a vacuum condenser to facilitate quick removal of water vapors from crystallization zone and preventing “caking” of obtained granules.
- the residual moisture of the obtained granulated powder was 3%.
- the granules were transferred to a drum-type drying apparatus set at a temperature of 65° C. and dried until its moisture content was 0.08%.
- the produced sweetener appeared as white granular powder and had taste profile identical to sucrose with sweetness power 2 times higher than sugar.
- the impact beating device was connected to a vacuum condenser to facilitate quick removal of water vapors from crystallization zone and preventing “caking” of obtained granules.
- the residual moisture of obtained granulated powder was 3%.
- the granules were transferred to drum-type drying apparatus set at a temperature of 65° C. and dried until its moisture content was 0.08%.
- the produced sweetener appeared as yellowish granular powder and had taste profile close to sucrose with sweetness power 2 times higher than sugar.
- Sucrose, invert sugar, Rebaudioside A obtained according to EXAMPLE 3, and purified sweet steviol glycoside mixture obtained according to EXAMPLE 1 were dissolved in the water to prepare the control samples for sweetener compositions.
- the concentration of components is indicated in Table 4.
- the samples prepared according to Examples 21, 22, 23 demonstrated significant improvements in key taste attributes in comparison with respective control samples.
- the samples prepared by process of Examples 21 and 22 were significantly superior to sample prepared by process of Example 23. Therefore it can be concluded that the deoxygenation of solution by nitrogen purge reduces the color formation and undesirable taste characteristics of final compositions.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Inorganic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Botany (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Seasonings (AREA)
Abstract
Description
- This application is a continuation-in-part application of and claims the benefit of priority to U.S. patent application Ser. No. 12/720,888, filed Mar. 10, 2010, which is a continuation-in-part application of the following applications: U.S. patent application Ser. No. 11/246,066, filed Oct. 11, 2005, now U.S. Pat. No. 7,807,206; U.S. patent application Ser. No. 11/246,152, filed Oct. 11, 2005, now U.S. Pat. No. 7,862,845; U.S. provisional application Ser. No. 61/260,593, filed Nov. 12, 2009; U.S. provisional application Ser. No. 61/290,778, filed Dec. 29, 2009; U.S. patent application Ser. No. 12/684,129, filed Jan. 8, 2010; U.S. patent application Ser. No. 12/684,130, filed Jan. 8, 2010; and U.S. patent application Ser. No. 12/684,981, filed Jan. 11, 2010.
- The present invention relates to a process for producing a highly purified sweet steviol glycoside mixture, Stevioside and Rebaudioside A from the extract of the Stevia rebaudiana Bertoni plant and use thereof in various food products and beverages.
- In view of food sanitation, the use of artificial sweeteners such as dulcin, sodium cyclamate and saccharin has been restricted. However natural sweeteners have been receiving increasing demand. Stevia rebaudiana Bertoni is a plant that produces an alternative sweetener that has an added advantage of being a natural plant product. In addition, the sweet steviol glycosides have functional and sensory properties superior to those of many high potency sweeteners.
- The extract of Stevia rebaudiana plant contains a mixture of different sweet diterpene glycosides, which have a single base—steviol and differ by the presence of carbohydrate residues at positions C13 and C19. These glycosides accumulate in Stevia leaves and compose approximately 10%-20% of the total dry weight. Typically, on a dry weight basis, the four major glycosides found in the leaves of Stevia are Dulcoside A (0.3%), Rebaudioside C (0.6%), Rebaudioside A (3.8%) and Stevioside (9.1%). Other glycosides identified in Stevia extract include Rebaudioside B, C, D, E, and F, Steviolbioside and Rubusoside.
- The physical and sensory properties are well studied only for Stevioside and Rebaudioside A. They were tested for stability in carbonated beverages and found to be both heat and pH stable (Chang and Cook, 1983). The sweetness potency of Stevioside is around 210 times higher than sucrose, Rebaudioside A in between 200 and 400 times, and Rebaudioside C and Dulcoside A around 30 times (Phillips, 1989 and Tanaka, 1997).
- However, apart from its high level of sweetness, they have also intrinsic properties of post-bitter taste and unpleasant and undesirable aftertaste. Some undesirable taste characteristics of glycosides can be as a result of contamination of other substances, presented in extract.
- One of the main ways to improve the taste quality is the enzymatic glycosylation of mixture of semi-purified steviol glycosides. Another way to produce highly purified individual glycosides with standard characteristics and minimal content of accompanying compounds.
- The invention related to the purification of two main glycosides—Stevioside and Rebaudioside A and use thereof.
- A process for the recovery of diterpene glycosides, including Stevioside from the Stevia rebaudiana plant is described (U.S. Pat. No. 4,361,697). A variety of solvents, having different polarities, were used in a sequential treatment that concluded with a high performance liquid chromatographic (HPLC) separation procedure.
- A method for the recovery of Rebaudioside A from the leaves of Stevia rebaudiana plants has been developed (U.S. Pat. No. 4,082,858). Again, final purification is achieved by liquid chromatography subsequent to an initial extraction with water and an alkanol having from 1 to 3 carbon carbons, preferably methanol. It is also known that water may be used as the initial solvent; their preferred solvent at this stage is a liquid haloalkane having from 1 to 4 carbon atoms. The preferred second solvent is an alkanol having from 1 to 3 carbon atoms, while the preferred third solvent is an alkanol having from 1 to 4 carbon atoms and optionally minor amounts of water.
- Individual sweet glycosides can be obtained from the Stevia rebaudiana plant. A mixture of sweet glycosides extracted from the Stevia rebaudiana plant is processed to remove impurities by using two types of ion-exchangers. After removing the mixed sweet glycosides from the second column with methanol, the solution is dried. Upon refluxing the dried solids in a methanol solution and then cooling the solution, Stevioside precipitates out. The filtrate is further concentrated and cooled to precipitate out Rebaudioside A. This Rebaudioside A can be further purified as can the previously obtained Stevioside (U.S. Pat. No. 5,962,678). However, a large amount of toxic organic solvent, such as methanol is used.
- However, all the above-mentioned methods allow the production of Stevioside and Rebaudioside A not in highly purified grade, which further possess a residual bitterness and aftertaste.
- On the other hand, the unfavorable taste of the glycosides can be as a result of contamination of impurities, presented in extract. Highly purified Stevioside and Rebaudioside A possessing an improved taste profile and there is a need to provide an easy and commercially valuable process for the manufacturing the highly purified Stevioside and Rebaudioside A, and use thereof in various beverages and food products.
- An object of the present invention is to provide a commercially valuable process for producing a highly purified sweetener from the extract of Stevia rebaudiana Bertoni plant and use thereof in various food products and beverages, which overcomes the disadvantages of the related art.
- The invention, in part, pertains to the dried and powdered leaves being subjected to water extraction and the resulted extracts is purified using treatment with a base such as calcium hydroxide and then iron chloride. The filtrate was deionized on, e.g., Amberlite FPC23H, Amberlite FPA51, and Amberlite FPA98C1. The filtrate is concentrated under vacuum and spray dried. The isolation and purification of Stevioside and Rebaudioside A were developed using alcoholic precipitation and ultrafiltration. The highly purified Stevioside and Rebaudioside A were obtained. Any type of existing Stevia extract with various ratios of sweet steviol glycosides are feasible.
- The highly purified glycosides were applied in various foods and beverages as sweetener.
- The invention, in part, pertains to a purified sweet glycosides extract produced from the Stevia rebaudiana plant, wherein the main sweet glycosides are Rebaudioside A and Stevioside, obtained by a process including drying Stevia rebaudiana leaves, treating the leaves to extract an aqueous liquid solution containing mixed sweet steviol glycosides, extracting the Stevia rebaudiana leaves, obtaining an extract, filtering the extract, obtaining a filtrate, treating the filtrate with a base such as calcium hydroxide, treating the extract with trivalent iron chloride, desalting, decolorizing, and evaporating the filtrate to dryness.
- In the invention, purified Rebaudioside A and Stevioside can be obtained by dissolving sweet steviol glycosides in methanol at ambient temperatures to precipitate Stevioside, filtering the solution to recover a precipitate of Stevioside, purifying, recovering a high purity Stevioside, concentrating the remaining solution and evaporating to dryness, suspending the powder in ethanol, heating and then cooling the solution to precipitate Rebaudioside A. Suspending the crystalline Rebaudioside A obtained in ethanol-water solution at cool conditions (10-12° C.) prepares a high purity of Rebaudioside A. Stevioside or Rebaudioside A has a purity of at least 98%. Applications are found in various foods such as chocolate, ice cream, beverage, dairy products, as a sweetener in a tablet form.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
- The accompanying drawings are included to provide a further understanding of the invention. The drawings illustrate embodiments of the invention and together with the description serve to explain the principles of the embodiments of the invention.
-
FIG. 1 shows a sensory evaluation of raw Stevia extract, Stevioside, and Rebaudioside A; -
FIG. 2 shows a sensory evaluation of Stevioside with a different grade of purity; and -
FIG. 3 shows a sensory evaluation of Rebaudioside A with a different grade of purity; - Advantages of the present invention will become more apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
- The dried leaves of Stevia rebaudiana Bertoni were extracted by 10 volumes of water. The proportion of extraction water preferably was about 5 liters to about 15 liters (pH 6.0 to 7.0) to one kilogram of leaves. Greater volumes of solvent can be used, however, it was not preferable from the practical standpoint. The duration of extraction may be from 0.5 hours to 24 hours, with a period of from about 1 hours to about 6 hours preferred.
- The extraction temperature can be in the limits of 25-90° C., however the temperatures between 45-75° C. are more preferable.
- The plant material was separated from the solution by filtration, and the pH of the filtrate was adjusted to about 10 with calcium hydroxide and heated between 40-60° C., preferably from 50° C. to 55° C., for about 0.5-1.0 hours, cooled to ambient temperature with slow agitation, and neutralized by FeCl3. After mixing for 10-15 minutes, the precipitate was removed by filtration; the filtrate was passed through the Celite, deionized, and decolorized by Amberlite FPC23H, Amberlite FPA51, and Amberlite FPA98Cl by conventional manner. The solution was concentrated and spray dried.
- The resulting sweet steviol glycoside mixture was a yellow powder and had a content of 3.4% Dulcoside, 64.6% Stevioside, 6.7% Rebaudioside C and 25.3% Rebaudioside A.
- An HPLC analysis of the obtained product was carried out using an Agilent Technologies 1100 Series (USA) equipped with Zorbax-NH2 column using acetonitrile-water gradient from 80:20, v/v (2 minutes) to 50:50, v/v during 70 minutes and UV detector at 210 nm.
- The obtained powder was dissolved in methanol and maintained at a temperatures 20-50° C., preferably at 20-25° C., for 0.5-6.0 hours, preferably 0.5-1.0 hours with agitation. The proportion of extract and methanol was between 1:2-1:7, w/v, preferably 1:5. During this time the precipitate was formed, which was filtered and dried. According to the HPLC analysis, the powder contents were around 90-91% of Stevioside. A second treatment by methanol was not efficient to prepare high purity Stevioside.
- For the further purification, the powder was mixed with two volumes of 90% of ethanol and at 10-12° C. and maintained for about 30 minutes with slow agitation. The precipitate was separated by filtration and dried under vacuum. The Stevioside with about 98.5-99.4% purity was obtained.
- The filtrates were combined and used for recovery of Rebaudioside A. For this purpose the remaining solution was evaporated to remove the methanol, the syrup obtained diluted with water and passed through polysulfone based ultrafiltration membranes (with a filtering discrimination of 2.5 kDa) (Liumar Technologies, Ottawa, Canada) with diafiltration. The filtrate was concentrated and spray dried. The obtained powder was mixed with 96.2% ethanol and maintained at 45-50° C. for about 30 minutes with agitation. The proportion of syrup and ethanol was between 1:2-1:7, w/v, preferably 1:5. During this time the precipitate was formed, which was filtered and dried. Rebaudioside A with 88-90% purity was obtained. For the further purification the powder was mixed with two volumes of 92% ethanol and maintained at 10-12° C. for about 60 minutes with slow agitation. The crystals were filtered and dried. Rebaudioside A with 98.9% purity was obtained.
- Based on the results of preliminary test on the sweetening power of the sweeteners, aqueous solutions of commercial Stevia extract (0.05%) commercialized by Ganzhou Julong High-Tech Food Industry Co., Ltd (China), Stevioside (0.07%), and Rebaudioside A (0.028%) were prepared.
- The organoleptic test was carried out with 30 previously trained panel members. It was observed that Rebaudioside A has the highest sweetness level (5.96), followed by Stevioside with a mean score of 4.62, and commercial Stevia extract had the lowest mean score of 2.96. Rebaudioside A had the lowest score for bitterness (1.76), and commercial Stevia extract was the most bitter compared to the other samples. For overall acceptability, Rebaudioside A had the highest score of 4.05 followed by Stevioside (3.81) and raw extract (3.16) (
FIG. 1 ). - The taste profile of Stevioside with 99.3% of purity was more preferable as compared with 90.2 and 95.4% (
FIG. 2 ). The similar feature was obtained for Rebaudioside A with various grades of purity (FIG. 3 ). - The highly purified sweeteners can be favorably used for seasoning various food products (for instance, soy sauce, soy sauce powder, soy paste, soy paste powder, dressings, mayonnaise, vinegar, powdered vinegar, bakery products and confectioneries, frozen-desserts, meat products, fish-meat products, potato salad, bottled and canned foods, fruit and vegetables) in intact or mixed forms with other sweeteners, such as corn syrup, glucose, maltose, sucrose, lactose, aspartame, saccharin, sugar alcohols, organic and amino acids, flavors and/or coloring agents.
- The products are favorably usable as a low-cariogenic and low-calorie sweetener because it is less fermentable by oral dental-caries causative microorganisms. Exemplary applications include low-cariogenic food products such as confectioneries including chewing gum, chocolate, biscuits, cookies, toffee and candy. Additionally applications include soft drinks such as coffee, cocoa, juice, carbonated drinks, sour milk beverage, yogurt drinks and alcoholic drinks, such as brandy, whisky, vodka and wine. In addition to the above-described uses, the sweeteners are usable for sweetening drugs and cosmetics.
- The following examples illustrate preferred embodiments of the invention.
- The leaves of Stevia rebaudiana are dried at 55° C. for three hours in a vacuum oven and powdered (30 mesh). One kg of the obtained material was mixed with 10 liters of water (pH 6.5) and heated to 55° C. with slow agitation for 10 hours. The plant material was separated from the solution by filtration and the pH of the filtrate was adjusted to 10 with about 24 grams of calcium hydroxide and heated to 50° C. for 0.5 hours. The obtained mixture was cooled to ambient temperature and the pH was adjusted to about 7.0 by about 53 grams of FeCl3. After mixing for 15 minutes the precipitate was removed by filtration.
- The slightly yellow filtrate was passed through the Celite, deionized, and decolorized by conventional manner on Amberlite FPC23H, Amberlite FPA51, and Amberlite FPA98Cl commercialized by ROHM & HAAS Co., Germany. The solution was concentrated and spray dried. The yield was 122 grams of powder with a content of sweet glycosides of about 91%. The sweet steviol glycoside mixture contains 3.4% Dulcoside, 64.6% Stevioside, 6.7% Rebaudioside C and 25.3% Rebaudioside A. In another embodiment, a sweet steviol glycoside mixture with a purity of at least about 95% was obtained. In a further embodiment, a sweet steviol glycoside mixture with a purity of at least about 98% was obtained.
- 100 grams (on the base of dry material) of the sweet steviol glycoside powder obtained by the process of EXAMPLE 1 was mixed with 0.5 liters of methanol and maintained at 25° C. for 45 minutes with slow agitation. The precipitate Stevioside was filtered and dried. 61.2 grams of Stevioside with 90.6% purity was obtained.
- For the further purification the powder was mixed with two parts of 90% of ethanol, and maintained at 10-12° C. for about 30 minutes with slow agitation. The precipitate was separated by filtration and dried under vacuum. The product weighed 58.8 grams and contained 99.3% Stevioside. In another embodiment, Stevioside with a purity of at least about 98% was obtained.
- The remaining solutions after separation of Stevioside (EXAMPLE 2) were combined, and methanol was removed by evaporation. The syrup was diluted with water and passed through polysulfone based ultrafiltration membranes (with a filtering discrimination of 2.5 kDa) (Liumar Technologies, Ottawa, Canada) with diafiltration. The filtrate was concentrated and spray dried. 40.8 grams of powder with content of Rebaudioside A of around 60% were obtained. The powder was mixed with five volumes (w/v) of 96.2% ethanol and maintained at 50° C. for 30 minutes with slow agitation. The precipitate was filtered and dried. Rebaudioside A with 89.8% purity was obtained. The powder was mixed with two volumes of 92% of ethanol and maintained at 12° C. for 60 minutes with slow agitation. The crystals were filtered and dried. 23.6 grams of Rebaudioside A of 98.9% purity was obtained. In another embodiment, Rebaudioside A with a purity of at least about 98% was obtained.
- Low-Calorie Orange Juice Drink
- Orange concentrate (35%), citric acid (0.38%), ascorbic acid (0.05%), sodium benzoate (0.02%), orange red color (0.01%), orange flavor (0.20%), and sweetener (0.06%) containing 90.2, 95.4 or 99.3% of Stevioside, or 80, 90, or 98.9% of Rebaudioside A were blended and dissolved completely in the water (up to 100%) and pasteurized. The sensory evaluation of the samples is summarized in the TABLE 1. The data shows that best results were obtained for highly purified Rebaudioside A and Stevioside.
-
TABLE 1 Comments Sample Flavor Aftertaste Mouth feel Stevioside - Sweet and balanced flavor Slight bitterness in Acceptable 90.2% aftertaste Stevioside - Sweet and balanced flavor Slight bitterness in Acceptable 95.4% aftertaste Stevioside - Sweet, pleasant, balanced flavor Clean, no bitterness Quite full 99.3% Rebaudioside Sweet, rounded and balanced Almost no any Acceptable A - 80.0% Flavor bitterness Rebaudioside Sweet, rounded and balanced Almost no any Full A - 90.0% Flavor bitterness Rebaudioside High quality of sweetness, Clean, no unpleasant Quite full A - 98.9% pleasant, taste similar to aftertaste sucrose, balanced flavor - By the same way can be prepared juices from other fruits, such as apple, lemon, apricot, cherry, pineapple, etc.
- The formula for the beverage was as below:
-
Ingredients Quantity, kg Sugar 30.0 Sweetener 0.4 Citric acid 2.5 Green tea extract 25.0 Salt 0.3 Lemon tincture 10.0 L Juniper tincture 8.0 L Sodium benzoate 0.17 Carbonated water up to 1000 L - Sensory and physicochemical characteristics of the drink are presented in the TABLE 2.
- The drinks with highly purified Rebaudioside A and Stevioside were superior with an excellent flavor and taste.
-
TABLE 2 Characteristics Stevioside - Rebaudioside Rebaudioside Item Stevioside - 90.2% 99.3% A - 90.0% A - 98.9% Appearance Transparent liquid, Transparent Transparent Transparent free of sediment liquid, free of liquid, free of liquid, free of and strange sediment and sediment and sediment and impurities. A light strange strange strange opalescence, caused impurities. A impurities. A impurities. A by features of used light light light raw materials is opalescence, opalescence, opalescence, possible. caused by caused by caused by features of features of features of used raw used raw used raw materials is materials is materials is possible. possible. possible. Color From light yellow up to From light From light From light Yellow yellow up to yellow up to yellow up to yellow yellow yellow Taste Sour-sweet, some Sour-sweet, Sour-sweet, Sour-sweet, bitterness in expression of almost no any expression of aftertaste sweetness is bitterness, sweetness is rapid. The expression of rapid. taste is sweetness is satisfactory. rapid. - The formula for the beverage was as below:
-
Ingredients Quantity, % Cola flavor 0.340 Phosphoric acid (85%) 0.100 Sodium citrate 0.310 Sodium benzoate 0.018 Citric acid 0.018 Sweetener 0.030 Carbonated water to 100 - The beverages prepared with different sweeteners were given to 10 judges for comparison.
- TABLE 3 shows the results.
-
TABLE 3 Number of panelists Comparison Stevioside- Stevioside- Rebaudioside A Rebaudioside A Point 90.2% 99.3% 90.0% 98.9% Bitter taste 6 2 3 0 Astringent taste 6 2 3 0 Aftertaste 6 2 3 0 Quality of Sweet, Clean (7 of the Sweet, some Clean (10 of the sweet taste bitterness in 10 judges) bitterness in 10 judges) aftertaste (6 of aftertaste (5 of the 10 judges) the 10 judges) Overall Satisfactory (5 Satisfactory (8 Satisfactory (8 Satisfactory (10 evaluation of the 10 of the 10 of the 10 of the 10 judges) judges) judges) judges) - The above results show that the beverages prepared using highly purified Stevioside and Rebaudioside A possessing good organoleptic characteristics.
- A composition containing 30 kg of cacao liquor, 11.5 kg of cacao butter, 14 kg of milk powder, 44 kg of sorbitol, 0.1 kg of salt, and 0.1 kg of sweetener prepared according to the EXAMPLES 2 or 3, was kneaded sufficiently, and the mixture was then placed in a refiner to reduce its particle size for 24 hours. Thereafter, the content was transferred into a conche, 300 grams of lecithin was added, and the composition was kneaded at 50° C. for 48 hours. Then, the content was placed in a shaping apparatus, and solidified.
- The products are low-cariogenic and low-calorie chocolate with excellent texture. Also, the organoleptic test carried out with 20 panelists revealed no lingering after-taste. The most desirable ones were the products with Rebaudioside-98.9% (19 members) and Stevioside 99.3% (16 members).
- 1.50 kg of whole milk were heated to 45° C., and 300 grams of milk cream, 100 grams of tagatose, 90 grams of sorbitol, 6 grams of carrageenan as a stabilizer, 3 grams of polysorbate-80 as an emulsifier, and 1.0 gram of sweetener prepared according to the EXAMPLES 2 or 3, were added into the milk and was stirred until the ingredients completely dissolved. The mixture then was pasteurized at a temperature of 80° C. for 25 seconds. The homogenization of the obtained mixture was carried out at a pressure of 800 bars and the samples were kept at a temperature of 4° C. for 24 hours to complete the aging process. Vanilla flavor (1.0% of the mixture weight) and coloring (0.025% of the mixture weight) are added into the mixture after aging. The mixture was then transferred to ice cream maker to produce ice cream automatically. Samples of ice creams produced were transferred to seal containers and were kept in the freezer at a temperature of −18° C.
- The application of sweeteners does not affect the physicochemical properties of ice cream, as well as the overall attributes of color, smoothness, surface texture, air cell, vanilla aroma intensity, vanilla taste, chalkiness, iciness and melting rate. Organoleptic test carried out with 20 panelists. The most desirable ones were the products with 98.9% Rebaudioside A (18 members) and 99.3% Stevioside (14 members).
- In 5 kg of defatted milk, 4.0 grams of sweetener, prepared according to EXAMPLES 2 and 3, were dissolved. After pasteurizing at 82° C. for 20 minutes, the milk was cooled to 40° C. A starter in amount of 150 grams was added and the mixture was incubated at 37° C. for 6 hours. Then, the fermented mass was maintained at 10-15° C. for 12 hours.
- The product is a low-calorie and low-cariogenic yoghurt without foreign taste and odor.
- A mixture, consisting of 58.5% lactose, 10% calcium silicate, 5% cross-carmellose, 5% L-leucine, 1% aerosol 200, 0.5% magnesium stearate, and 20% of a sweetener, obtained according to the EXAMPLE 2 or 3, was kneaded sufficiently. Then the mixture was shaped with the use of a tabletting machine, equipped with punchers of 6.2 mm diameter, into tablets of 70 mg each, 3.0 mm thick, and 10±1 kg hardness
- The tablets can be easily administrated due to their appropriate sweetness. However, the formulations using low grade of Stevioside and Rebaudioside A were somewhat sticky with solubility about 3-4 minutes in water at 25° C. The tablets, prepared with highly purified Rebaudioside A show the best characteristics with the solubility around 20-30 seconds.
- A tooth paste was prepared by kneading a composition comprising of calcium phosphate, 45.0%; carboxymethylcellulose, 1.5%; carrageenan, 0.5%; glycerol, 18.0%; polyoxyethylene sorbitan mono-ester, 2.0%; beta-cyclodextrin, 1.5%; sodium laurylsarcosinate, 0.2%; flavoring, 1.0%; preservative, 0.1%; Rebaudioside A or Stevioside, obtained according to the EXAMPLE 2 or 3, 0.2%; and water to 100%, by usual way. The product possesses good foaming and cleaning abilities with appropriate sweetness.
- 0.8 g of Rebaudioside A/Stevioside mixture (1:1, w/w) obtained according to the invention was added to 1000 mL of soy sauce and mixed homogenously. The products had an excellent taste and texture.
- 1 kg of wheat flour, 37.38 grams of fructooligosaccharide syrup, 80 grams of margarine, 20 grams of salt, 20 grams of yeasts, and 0.25 grams of high purity Rebaudioside A or Stevioside, obtained according to the EXAMPLE 2 or 3 were placed into the blender and mixed well. 600 ml of water was poured into the mixture and kneaded sufficiently. At the completion of the kneading process, the dough was shaped and raised for 30 to 45 minutes. The ready dough was placed in oven and baked for 45 minutes. Bread samples had creamy white color, and smooth texture.
- Flour (50.0%), margarine (30.0%), fructose (10.0%), maltitol (8.0%), whole milk (1.0%), salt (0.2%), baking powder (0.15%), vanillin (0.1%), Rebaudioside A or Stevioside (0.55%), obtained according to this invention were kneaded well in dough-mixing machine. After molding of the dough the cookies were baked at 200° C. for 15 minutes.
- The product is a low-calorie diet cookie with excellent taste and appropriate sweetness.
- 123 g of hen eggs, 45 g of sugar, 345 g of sorbitol liquid, 2.0 g of sucrose fatty acid ester, 0.35 g of Rebaudioside A or Stevioside was mixed with 100 g of wheat flour and 200 g of water in order to prepare a cake according to a conventional method. The product had an excellent taste with an optimal sweet flavor.
- The following examples describe a process to make a sucrose-based sweetener with stevia-based sweeteners having improved taste, mouthfeel and flavor properties. Because sucrose and stevia-based sweeteners have very different melting characteristics and solubility, conventional co-crystallization techniques would not result in a suitable product. For example, while sugar is about 66% soluble in water, Rebaudioside A is only about 1% soluble, and Stevia 95 (containing steviol glycosides at 95% purity) is only about 34% soluble in water. Sugar has a melting point of about 186° C., while Rebaudioside A has a melting point of about 240° C., and
Stevia 95 is mostly amorphous. - Because of these and other disparities, conventional processes would not lead to a suitable product.
- Instead, the following process was developed to overcome the difficulties associated with working with sweetening components having such different properties. The resulting low-calorie sweetener can be used in any food, beverage or consumer healthcare product. Other ingredients can be incorporated into the low-calorie sweetener using this process, including but not limited to sugar, salt, vitamins, minerals, supplements, homeopathic agents, preservatives, citric acid, juniper tincture, ascorbic acid, sodium benzoate, colorings, flavorings, and a combination thereof.
- Although the processes described in the following Examples make references to the sweeteners made in Examples 1-3, it is to be understood that these processes can be used with any stevia-based sweeteners, including but not limited to Rebaudioside A, Stevioside, and purified sweet steviol glycoside mixtures, made by using any process, including the enzymatic transglycosylation processes described in co-pending U.S. Patent Application Ser. Nos. 11/246,066, 12/684,129 and 12/684,130, the entire contents of which are incorporated by reference herein. The processes described in these co-pending applications involve an enzymatic transglycosylation process using CGTases (cyclodextrin glycosyltransferase) produced by cultures of Bacillus stearothermophilus to produce stevia-based sweeteners, including, but not limited to, Steviosides, Rebaudioside A and purified sweet steviol glycoside mixtures.
- 1488 g of granulated sugar with moisture content adjusted to 0.80% was distributed to form a layer with thickness of 30 mm on a vibrating tray. 12.05 g stevioside obtained according to EXAMPLE 2, was dissolved in 18.07 g of solvent mixture containing 4 volumes of water per 1 volume of ethyl alcohol to make stevioside 40% (w/w) solution. The solution was heated up to 40° C. for prevention of crystal formation and was dispersed on the granulated sugar by means of an air-powered pneumatic method with pressure of compressed air at 0.1 MPa over a period of 100 seconds while maintaining the intensity of vibration at 1200 vibrations per minute (vpm). The granulated sugar was dried over a period of 10 minutes by means of a convective method in a drum-type drying apparatus set at a temperature of 65° C. until its moisture content was 0.09%.
- The sweetener produced has a homogenous and intact structure of crystal sugar and has a taste profile identical to sucrose, with sweetness power about or at least about 3 times higher than sugar.
- 1490 g of granulated sugar with moisture content adjusted to 0.90% was distributed to form a layer with thickness of 30 mm on a vibrating tray. 10.03 g rebaudioside A obtained according to EXAMPLE 3, was dissolved in 15.04 g of solvent mixture containing 4 volumes of water per 1 volume of ethyl alcohol to make rebaudioside A 40% (w/w) solution. The solution was heated up to 40° C. for prevention of crystal formation and was dispersed on the granulated sugar by means of an air-powered pneumatic method with pressure of compressed air at 0.1 MPa over a period of 100 seconds while maintaining the intensity of vibration at 1200 vpm. The granulated sugar was dried over a period of 10 minutes by means of a convective method in a drum-type drying apparatus set at a temperature of 65° C. until its moisture content was 0.08%.
- The sweetener produced has a homogenous and intact structure of crystalline sugar and has a taste profile identical to sucrose, with sweetness power about or at least about 3 times higher than sugar.
- A mixture of 50 kg of sugar with 192 gm of Reb A obtained according to EXAMPLE 3 was thoroughly blended in a ribbon blender and then compacted into sheets of product using a roll compaction unit (IR 520 roll compactor or similar unit) applying roll speeds ranging between about 12 to 16 rpm under a roll pressure of about 14 to 17 bar, which was then milled and classified to get optimum sized granules of the sugar-Reb A blend.
- The sugar-Reb A granules had sweetness profile like sugar with about two times the sweetness potency of sugar
- A mixture of 65 kg of sugar with 188 gm of Steviol Glycoside obtained according to EXAMPLE 1 was thoroughly blended in a ribbon blender and then compacted into sheets of product using a roll compaction unit (IR 520 roll compactor or similar unit) applying roll speeds ranging between about 12 to 16 rpm under a roll pressure of about 14 to 17 bar, which was then milled and classified to get optimum sized granules of the sugar-Steviol Glycoside blend.
- The sugar-Steviol Glycoside granules had a sweetness profile like sugar with at least 50% higher sweetness than sugar alone.
- A sugar solution of 65 kg of refined sugar in 35 kg of warm water was made and mixed thoroughly with 138 gm of Reb A obtained according to EXAMPLE 3 . The solution mixture was passed through multiple-effect evaporators, and then to the vacuum pans to reach the desired level of super-saturation, when the sugar liquor is “seeded” with invert sugar to initiate formation of sugar crystals. The sugar liquor with developing crystals is then discharged in a mixer to complete the crystallization and then to a centrifugal for separation of crystals from mother liquor. The separated crystals are then dried in a fluidized bed dryer/cooler.
- The co-crystallized sugar-Reb A had sweetness profile like sugar with at least 50% higher sweetness potency than sugar alone.
- 1488 g of granulated sugar with moisture content adjusted to 0.80% was distributed to form a layer with thickness of 30 mm on a vibrating tray. 11.58 g of the purified sweet steviol glycoside mixture obtained according to EXAMPLE 1 was dissolved in 17.37 g of solvent mixture containing 4 volumes of water per 1 volume of ethyl alcohol to make 40% (w/w) solution. The solution was heated up to 40° C. for prevention of crystal formation and was dispersed on the granulated sugar by means of an air-powered pneumatic method with pressure of compressed air at 0.1 MPa over a period of 100 seconds while maintaining the intensity of vibration at 1200 vpm. The granulated sugar was dried over a period of 10 minutes by means of a convective method in a drum-type drying apparatus set at a temperature of 65° C. until its moisture content was 0.05%.
- The sweetener produced has a homogenous and intact structure of crystalline sugar and has taste profile identical to sucrose with sweetness power 3 times higher than sugar.
- In the following examples, a low intensity sweetener, such as sucrose, is combined with a crystallization inhibitor in water. The ratio of the low intensity sweetener to the crystallization inhibitor is between about 1:1 to about 100:1 (w/w), or preferably between about 50:1 to about 80:1 (w/w).
- In Examples 21 and 22, the resulting solution is then purged with nitrogen at a rate of about 1 to about 10 liters per minute per liter of solution, at a temperature of about 50° C. to about 80° C., preferably between about 65° C. to about 75° C. The purging takes place for a period of about 0.5 hours to about 10 hours, preferably about 1 hour to about 2 hours.
- The solution is then combined with a solution of a high intensity sweetener, and the combined solution is evaporated to obtain a concentrated sweetener composition with about 90% to about 97% (w/w) total solids. The evaporation can be carried out using any suitable device, at a temperature of about 100° C. to about 150° C., preferably about 120° C. to about 140° C., under a vacuum of about 300 mbar to about 800 mbar, preferably about 600 mbar to about 800 mbar, for a period of about 0.5 minute to about 2 minutes, preferably for about 0.7 minute to about 1.3 minutes.
- The concentrated sweetener composition is then fed to an impact beating apparatus, such as, but not limited to, a shear mixer, turbulizer, aerator, extrusion device or any other device capable of introducing shear mechanical impact or agitation to the concentrated sweetener composition. The mechanical impact duration on the concentrated sweetener composition is about 0.01 second to about 300 seconds, preferably about 0.5 second to 100 seconds, and more preferably about 10 seconds to about 60 seconds.
- In one embodiment, the impact beating apparatus is provided with a water vapor removal system to remove water vapor formed by the fast release of the heat of crystallization of the concentrated sweetener composition as granules are formed. The water vapor removal system can be, but is not limited to, a vacuum condenser, a dry gas supply, and the like. If dry gas is used, examples of suitable gas are air and nitrogen.
- The resulting sweetening composition granules are then dried using any apparatus suitable for drying granules or powder, such as, but not limited to, a vacuum dryer, belt dryer, fluid bed dryer, and the like. The drying can take place at a temperature of about 50° C. to about 80° C., preferably about 60° C. to about 70° C.
- The granules are then sifted to obtain fractions of various particle sizes. In one embodiment, the particle sizes ranged from about 0.5 mm to about 2 mm.
- 50 kg of granulated sugar and 1 kg of invert sugar were dissolved in 30 liters of water at 80° C. The obtained solution was maintained at 70° C. and purged with nitrogen through a nozzle installed at the bottom of the tank during 1 hour. The nitrogen was delivered at a rate of about 1 liter per minute per liter of solution. 175 g of purified sweet steviol glycoside mixture obtained according to EXAMPLE 1 was dissolved in 0.3 liter of water and added to the sugar solution. The solution was evaporated in vacuum evaporator at 800 mbar vacuum and 125° C. until 95° brix was achieved. The feed rate to evaporator was adjusted to achieve solution residency time of 0.5 to 1 min. The evaporated solution was fed to an impact beating machine (Bepex Turbulizer type) operating at 50 rpm. The shear mixing action of the impact beater initiated intense crystallization and residual water evaporation due to the fast release of heat of crystallization. This transformed the sugar solution into free flowing granules approx 1-2 mm in diameter. The impact beating device was connected to a vacuum condenser to facilitate quick removal of water vapors from crystallization zone and preventing “caking” of obtained granules. The residual moisture of obtained granulated powder was 2.5%. The granules were transferred to a drum-type drying apparatus set at a temperature of 65° C. and dried until its moisture content was 0.06%.
- The produced sweetener appeared as white granular powder and had taste profile identical to sucrose with a sweetness power 2 times higher than sugar.
- 50 kg of granulated sugar and 1 kg of invert sugar were dissolved in 30 liters of water at 80° C. The obtained solution was maintained at 70° C. and purged with nitrogen through a nozzle installed at the bottom of the tank during 1 hour. The nitrogen was delivered at a rate 1 liter per minute per liter of solution. 150 g of Rebaudioside A obtained according to EXAMPLE 3 was dissolved in 0.3 liter of water and added to the sugar solution. The solution was evaporated in vacuum evaporator at 800 mbar vacuum and 125° C. until 95° brix was achieved. The feed rate to evaporator was adjusted to achieve solution residency time of 0.5 to 1 min. The evaporated solution was fed to an impact beating machine (Bepex Turbulizer type) operating at 50 rpm. The shear mixing action of the impact beater initiated intense crystallization and residual water evaporation due to the fast release of heat of crystallization. This transformed the sugar solution into free flowing granules approx 1-2 mm in diameter. The impact beating device was connected to a vacuum condenser to facilitate quick removal of water vapors from crystallization zone and preventing “caking” of obtained granules. The residual moisture of the obtained granulated powder was 3%. The granules were transferred to a drum-type drying apparatus set at a temperature of 65° C. and dried until its moisture content was 0.08%.
- The produced sweetener appeared as white granular powder and had taste profile identical to sucrose with sweetness power 2 times higher than sugar.
- 50 kg of granulated sugar and 1 kg of invert sugar were dissolved in 30 liters of water at 80° C. 150 g of Rebaudioside A obtained according to EXAMPLE 3 was dissolved in 0.3 liter of water and added to the sugar solution. The solution was evaporated in a vacuum evaporator at 800 mbar vacuum and 125° C. until 95° brix was achieved. The feed rate to the evaporator was adjusted to achieve solution residency time of 0.5 to 1 min. The evaporated solution was fed to an impact beating machine (Bepex Turbulizer type) operating at 50 rpm. The shear mixing action of the impact beater initiated intense crystallization and residual water evaporation due to fast release of heat of crystallization. This transformed the sugar solution into free flowing granules approx 1-2 mm in diameter. The impact beating device was connected to a vacuum condenser to facilitate quick removal of water vapors from crystallization zone and preventing “caking” of obtained granules. The residual moisture of obtained granulated powder was 3%. The granules were transferred to drum-type drying apparatus set at a temperature of 65° C. and dried until its moisture content was 0.08%.
- The produced sweetener appeared as yellowish granular powder and had taste profile close to sucrose with sweetness power 2 times higher than sugar.
- Sucrose, invert sugar, Rebaudioside A obtained according to EXAMPLE 3, and purified sweet steviol glycoside mixture obtained according to EXAMPLE 1 were dissolved in the water to prepare the control samples for sweetener compositions. The concentration of components is indicated in Table 4.
-
TABLE 4 Control samples Concentration, mg/L Invert Steviol Control samples Sucrose sugar glycosides RebA Control sucrose 50,000 0 0 0 Control Steviol glycosides 24,420 488.5 91.5 0 Control RebA 24,440 488.8 0 73.3 - A trained panel of 15 sensory analysts evaluated the control samples and the sweeteners compositions prepared according to Examples 21, 22, 23. The sweetener compositions were dissolved in water at 2.5% (wt/vol) concentrations. The evaluation results are summarized in Table 5.
-
TABLE 5 Evaluation of sweetener compositions Evaluation results Sweetness Licorice Samples Sweetness Bitterness lingering aftertaste Control sucrose ++++ − − − Control Steviol ++++ ++++ ++++ ++++ glycosides Control RebA ++++ +++ +++ +++ Steviol glycoside ++++ + + − composition (EXAMPLE 21) Reb A composition ++++ − + − (EXAMPLE 22) Reb A composition ++++ +++ ++ ++ (EXAMPLE 23) - The samples prepared according to Examples 21, 22, 23 demonstrated significant improvements in key taste attributes in comparison with respective control samples. The samples prepared by process of Examples 21 and 22 were significantly superior to sample prepared by process of Example 23. Therefore it can be concluded that the deoxygenation of solution by nitrogen purge reduces the color formation and undesirable taste characteristics of final compositions.
- It is to be understood that the foregoing descriptions and specific embodiments shown herein are merely illustrative of the best mode of the invention and the principles thereof, and that modifications and additions may be easily made by those skilled in the art without departing for the spirit and scope of the invention, which is therefore understood to be limited only by the scope of the appended claims.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/697,047 US20200093166A1 (en) | 2005-10-11 | 2019-11-26 | Process for manufacturing a sweetener and use thereof |
Applications Claiming Priority (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/246,066 US7807206B2 (en) | 2005-10-11 | 2005-10-11 | Sweetner and use |
| US11/246,152 US7862845B2 (en) | 2005-10-11 | 2005-10-11 | Process for manufacturing a sweetener and use thereof |
| US26059309P | 2009-11-12 | 2009-11-12 | |
| US29077809P | 2009-12-29 | 2009-12-29 | |
| US12/684,129 US8318232B2 (en) | 2005-10-11 | 2010-01-08 | Sweetner and use |
| US12/684,130 US8323716B2 (en) | 2005-10-11 | 2010-01-08 | Sweetner and use |
| US12/684,981 US8298599B2 (en) | 2005-10-11 | 2010-01-11 | Process for manufacturing a sweetener and use thereof |
| US12/720,888 US8334006B2 (en) | 2005-10-11 | 2010-03-10 | Process for manufacturing a sweetener and use thereof |
| US13/016,545 US8790730B2 (en) | 2005-10-11 | 2011-01-28 | Process for manufacturing a sweetener and use thereof |
| US14/273,056 US10531683B2 (en) | 2005-10-11 | 2014-05-08 | Process for manufacturing a sweetener and use thereof |
| US16/697,047 US20200093166A1 (en) | 2005-10-11 | 2019-11-26 | Process for manufacturing a sweetener and use thereof |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/273,056 Continuation US10531683B2 (en) | 2005-10-11 | 2014-05-08 | Process for manufacturing a sweetener and use thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20200093166A1 true US20200093166A1 (en) | 2020-03-26 |
Family
ID=44353922
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/016,545 Active 2027-01-01 US8790730B2 (en) | 2005-10-11 | 2011-01-28 | Process for manufacturing a sweetener and use thereof |
| US14/273,056 Expired - Lifetime US10531683B2 (en) | 2005-10-11 | 2014-05-08 | Process for manufacturing a sweetener and use thereof |
| US16/697,047 Pending US20200093166A1 (en) | 2005-10-11 | 2019-11-26 | Process for manufacturing a sweetener and use thereof |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/016,545 Active 2027-01-01 US8790730B2 (en) | 2005-10-11 | 2011-01-28 | Process for manufacturing a sweetener and use thereof |
| US14/273,056 Expired - Lifetime US10531683B2 (en) | 2005-10-11 | 2014-05-08 | Process for manufacturing a sweetener and use thereof |
Country Status (1)
| Country | Link |
|---|---|
| US (3) | US8790730B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210100272A1 (en) * | 2018-04-04 | 2021-04-08 | Optibiotix Limited | Sweeteners And Methods Of Production Thereof |
Families Citing this family (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8790730B2 (en) | 2005-10-11 | 2014-07-29 | Purecircle Usa | Process for manufacturing a sweetener and use thereof |
| US8318459B2 (en) | 2011-02-17 | 2012-11-27 | Purecircle Usa | Glucosyl stevia composition |
| US9392799B2 (en) | 2011-02-17 | 2016-07-19 | Purecircle Sdn Bhd | Glucosyl stevia composition |
| US9107436B2 (en) | 2011-02-17 | 2015-08-18 | Purecircle Sdn Bhd | Glucosylated steviol glycoside as a flavor modifier |
| US9386797B2 (en) | 2011-02-17 | 2016-07-12 | Purecircle Sdn Bhd | Glucosyl stevia composition |
| US8257948B1 (en) | 2011-02-17 | 2012-09-04 | Purecircle Usa | Method of preparing alpha-glucosyl Stevia composition |
| EP3461342A1 (en) | 2009-11-12 | 2019-04-03 | PureCircle USA Inc. | Granulation of a stevia sweetener |
| US20150344512A1 (en) | 2011-12-19 | 2015-12-03 | Purecircle Usa Inc. | Methods of purifying steviol glycosides and uses of the same |
| US10696706B2 (en) | 2010-03-12 | 2020-06-30 | Purecircle Usa Inc. | Methods of preparing steviol glycosides and uses of the same |
| WO2011112892A1 (en) | 2010-03-12 | 2011-09-15 | Purecircle Usa Inc. | High-purity steviol glycosides |
| US9510611B2 (en) | 2010-12-13 | 2016-12-06 | Purecircle Sdn Bhd | Stevia composition to improve sweetness and flavor profile |
| WO2012177727A1 (en) * | 2011-06-20 | 2012-12-27 | Purecircle Usa Inc. | Stevia composition |
| BR112013014589B1 (en) | 2010-12-13 | 2019-04-02 | Purecircle Usa Inc. | METHOD FOR PREPARING A HIGHLY SOLUBLE REBAUDIOSIDE COMPOSITION |
| US10362797B2 (en) | 2011-02-10 | 2019-07-30 | Purecircle Sdn Bhd | Stevia composition |
| US11690391B2 (en) | 2011-02-17 | 2023-07-04 | Purecircle Sdn Bhd | Glucosylated steviol glycoside as a flavor modifier |
| US9603373B2 (en) | 2011-02-17 | 2017-03-28 | Purecircle Sdn Bhd | Glucosyl stevia composition |
| US9474296B2 (en) | 2011-02-17 | 2016-10-25 | Purecircle Sdn Bhd | Glucosyl stevia composition |
| US9894922B2 (en) | 2011-05-18 | 2018-02-20 | Purecircle Sdn Bhd | Glucosyl rebaudioside C |
| US10021899B2 (en) | 2011-05-31 | 2018-07-17 | Purecircle Sdn Bhd | Stevia composition |
| WO2012164383A1 (en) * | 2011-06-03 | 2012-12-06 | Abba Pharma Limited | Sweetness enhanced sugars and sugar like products |
| ES2579827T3 (en) | 2011-06-03 | 2016-08-17 | Purecircle Usa | Stevia composition |
| US9771434B2 (en) | 2011-06-23 | 2017-09-26 | Purecircle Sdn Bhd | Products from stevia rebaudiana |
| US10480019B2 (en) | 2011-08-10 | 2019-11-19 | Purecircle Sdn Bhd | Process for producing high-purity rubusoside |
| WO2013026151A1 (en) * | 2011-08-19 | 2013-02-28 | Justbio Inc. | Improved stevia rebaudiana extract and formulation, and uses thereof |
| FR2979193B1 (en) * | 2011-08-30 | 2016-03-18 | Tereos France | PULVERULENT COMPOSITION COMPRISING A STEVIA EXTRACT AND A CARBOHYDRATE, METHOD FOR MANUFACTURING THE SAME AND APPLICATION THEREOF IN THE FOOD AND PHARMACEUTICAL FIELD |
| EP3811786A1 (en) | 2011-09-07 | 2021-04-28 | PureCircle USA Inc. | Highly soluble stevia sweetener and method for producing thereof |
| ES2787899T3 (en) | 2011-12-19 | 2020-10-19 | Purecircle Sdn Bhd | Methods to purify steviol glycosides |
| US10292412B2 (en) | 2012-02-15 | 2019-05-21 | Kraft Foods Global Brands Llc | High solubility natural sweetener compositions |
| US9752174B2 (en) | 2013-05-28 | 2017-09-05 | Purecircle Sdn Bhd | High-purity steviol glycosides |
| CN103974628B (en) | 2012-05-22 | 2019-04-05 | 谱赛科有限责任公司 | High purity steviol glycosides |
| US11013248B2 (en) | 2012-05-25 | 2021-05-25 | Kraft Foods Group Brands Llc | Shelf stable, concentrated, liquid flavorings and methods of preparing beverages with the concentrated liquid flavorings |
| CN112220026A (en) | 2013-06-07 | 2021-01-15 | 谱赛科美国股份有限公司 | Stevia extract with selected steviol glycosides as aroma, salt and sweetness profile modifiers |
| US10952458B2 (en) | 2013-06-07 | 2021-03-23 | Purecircle Usa Inc | Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier |
| CN103483402A (en) * | 2013-10-14 | 2014-01-01 | 上海交通大学 | Method for purifying and preparing stevioside and rebaudioside-A |
| CN107072237B (en) | 2014-09-02 | 2021-12-14 | 谱赛科有限责任公司 | Stevia Extract |
| USPP27937P3 (en) | 2014-11-30 | 2017-04-25 | S&W Seed Company | Stevia plant named ‘SW 107’ |
| USPP27815P3 (en) | 2014-12-08 | 2017-03-28 | S&W Seed Company | Stevia plant named ‘SW 201’ |
| WO2016187559A1 (en) | 2015-05-20 | 2016-11-24 | Cargill, Incorporated | Glycoside compositions |
| CN104926892A (en) * | 2015-06-04 | 2015-09-23 | 广西大学 | Method for extracting rubusoside from sweet tea |
| US10517321B2 (en) * | 2015-07-10 | 2019-12-31 | Sweet Green Fields USA LLC | Compositions of steviol multiglycosylated derivatives and stevia components |
| US12478084B2 (en) | 2015-07-10 | 2025-11-25 | Tate & Lyle Technology Limited | Compositions of steviol glycosides and/or multiglycosylated derivatives thereof |
| PL3367816T3 (en) | 2015-10-26 | 2024-05-06 | Purecircle Usa Inc. | Steviol glycoside compositions |
| USPP28373P3 (en) | 2015-11-17 | 2017-09-12 | S&W Seed Company | Stevia plant named ‘SW 129’ |
| CN108712864A (en) | 2015-12-15 | 2018-10-26 | 谱赛科美国股份有限公司 | steviol glycoside composition |
| CN106900850B (en) * | 2015-12-22 | 2020-04-28 | 内蒙古蒙牛乳业(集团)股份有限公司 | Yoghourt and preparation method thereof |
| USPP28977P3 (en) | 2016-03-31 | 2018-02-20 | S&W Seed Company | Stevia plant named ‘SW 227’ |
| RU2019100423A (en) * | 2016-06-14 | 2020-07-14 | ПЬЮРСЁРКЛ ЮЭсЭй ИНК. | STEVIOL GLYCOSIDE COMPOSITIONS, METHODS FOR PREPARATION AND APPLICATION |
| JP7678799B2 (en) * | 2020-04-27 | 2025-05-16 | サントリーホールディングス株式会社 | Method for producing steviol glycoside composition |
Family Cites Families (168)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3723410A (en) | 1970-12-01 | 1973-03-27 | Amazon Natural Drug Co | Method of producing stevioside |
| JPS51142570A (en) | 1975-06-04 | 1976-12-08 | Morita Kagaku Kogyo | Method of imparting sweetness to food or pharmaceutical agent |
| JPS525800A (en) | 1975-06-27 | 1977-01-17 | Sanyo Kokusaku Pulp Co Ltd | Method of purifying stevioside |
| JPS5283731A (en) | 1976-01-01 | 1977-07-12 | Ajinomoto Co Inc | Rebaudiosides |
| JPS52100500A (en) | 1976-02-18 | 1977-08-23 | Japan Organo Co Ltd | Purification and concentration of aqueous stevioside extract |
| JPS52136200A (en) | 1976-05-12 | 1977-11-14 | Daicel Chem Ind Ltd | Extraction purification of stevioside |
| JPS5338669A (en) | 1976-09-16 | 1978-04-08 | Toyo Soda Mfg Co Ltd | Separation of natural sweetening agent |
| JPS5430199A (en) | 1977-08-08 | 1979-03-06 | Sanyo Kokusaku Pulp Co Ltd | Purification of stevia sweetening agnet |
| JPS54132599A (en) | 1978-04-04 | 1979-10-15 | Sanyo Kokusaku Pulp Co Ltd | Separation and purification of stevioside sweetening |
| US4219571A (en) | 1978-06-15 | 1980-08-26 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Process for producing a sweetener |
| JPS5539731A (en) | 1978-09-11 | 1980-03-19 | Res Inst For Prod Dev | Extraction of stevioside |
| JPS5581567A (en) | 1978-12-13 | 1980-06-19 | Res Inst For Prod Dev | Extraction and purification of stevioside |
| JPS5592400A (en) | 1978-12-29 | 1980-07-12 | Daikin Ind Ltd | Purification of stevioside |
| JPS55120770A (en) | 1979-03-14 | 1980-09-17 | Chisso Corp | Purification of stevioside solution |
| JPS55138372A (en) | 1979-04-13 | 1980-10-29 | Chisso Corp | Purification of stevioside solution |
| JPS55162953A (en) | 1979-06-04 | 1980-12-18 | Yamada Masami | Preparation of stevioside |
| JPS5699768A (en) | 1980-01-09 | 1981-08-11 | Hayashibara Biochem Lab Inc | Preparation of steviol glycoside |
| JPS56109568A (en) | 1980-02-01 | 1981-08-31 | Maruzen Kasei Kk | Purification of stevia sweetening substance |
| JPS56121455A (en) | 1980-02-27 | 1981-09-24 | Ajinomoto Co Inc | Separation of stevioside and rebaudioside a by crystallization |
| JPS56121454A (en) | 1980-02-27 | 1981-09-24 | Ajinomoto Co Inc | Separation of stevioside and rebaudioside a by crystallization |
| JPS56121453A (en) | 1980-02-27 | 1981-09-24 | Ajinomoto Co Inc | Separation of stevioside and rebaudioside a |
| JPS56160962A (en) | 1980-05-14 | 1981-12-11 | Dick Fine Chem Kk | Purification of solution containing stevioside-type sweetening substance |
| JPS55159770A (en) | 1980-05-26 | 1980-12-12 | Res Inst For Prod Dev | Extraction and purification of stevioside |
| JPS572656A (en) | 1980-06-05 | 1982-01-08 | Shinnakamura Kagaku Kogyo Kk | Decoloration and purification of stevia extract |
| JPS575663A (en) | 1980-06-13 | 1982-01-12 | Res Inst For Prod Dev | Purification of stevioside through extraction |
| JPS5746998A (en) | 1980-09-04 | 1982-03-17 | Fuji Food:Kk | Preparation of stevioside |
| US4454290A (en) | 1980-09-22 | 1984-06-12 | Dynapol | Stevioside analogs |
| JPS5775992A (en) | 1980-10-30 | 1982-05-12 | Tama Seikagaku Kk | Purification of stevioside |
| JPS5846310B2 (en) | 1980-11-19 | 1983-10-15 | 丸善化成株式会社 | How to isolate the main sweetening components in Stevia |
| JPS57134498A (en) | 1981-02-12 | 1982-08-19 | Hayashibara Biochem Lab Inc | Anhydrous crystalline maltitol and its preparation and use |
| US4361697A (en) | 1981-05-21 | 1982-11-30 | F. K. Suzuki International, Inc. | Extraction, separation and recovery of diterpene glycosides from Stevia rebaudiana plants |
| JPS5820170A (en) | 1981-07-24 | 1983-02-05 | Toshizo Fukushima | Preparation of sweetener |
| JPS5828247A (en) | 1981-08-10 | 1983-02-19 | Mitsubishi Acetate Co Ltd | Purification method of stevioside solution |
| JPS5828246A (en) | 1981-08-10 | 1983-02-19 | Mitsubishi Acetate Co Ltd | Preparation of stevioside |
| JPS58149697A (en) | 1982-02-27 | 1983-09-06 | Dainippon Ink & Chem Inc | Method for producing β-1,3 glycosyl stevioside |
| JPS58212760A (en) | 1982-06-04 | 1983-12-10 | Sekisui Chem Co Ltd | Purification of stevia sweetening substance |
| JPS58212759A (en) | 1982-06-04 | 1983-12-10 | Sekisui Chem Co Ltd | Purification of stevia sweetening substance |
| JPS5945848A (en) | 1982-09-09 | 1984-03-14 | Morita Kagaku Kogyo Kk | Novel natural sweetener |
| JPS607108A (en) | 1983-06-24 | 1985-01-14 | Mitsubishi Electric Corp | Oil-filled electric apparatus |
| US4612942A (en) | 1984-03-08 | 1986-09-23 | Stevia Company, Inc. | Flavor enhancing and modifying materials |
| JPS6192283A (en) | 1984-10-08 | 1986-05-10 | 日本電気株式会社 | Hermetical seal structure of door |
| US4657638A (en) | 1985-07-29 | 1987-04-14 | University Of Florida | Distillation column |
| US4599403A (en) | 1985-10-07 | 1986-07-08 | Harold Levy | Method for recovery of stevioside |
| JPS62166861A (en) | 1986-01-20 | 1987-07-23 | Sanpack:Kk | Extraction and purification of sweetener component from dry leaf of stevia |
| ATE97910T1 (en) | 1987-07-21 | 1993-12-15 | Roger H Giovanetto | PROCESS FOR OBTAINING STEVIOIDES FROM VEGETABLE RAW MATERIAL. |
| JP3111203B2 (en) | 1987-12-26 | 2000-11-20 | 中里 隆憲 | Plants belonging to new Stevia varieties |
| DE3810681A1 (en) | 1988-03-29 | 1989-10-12 | Udo Kienle | METHOD FOR PRODUCING A NATURAL SWEETENER BASED ON STEVIA REBAUDIANA AND ITS USE |
| JP2898688B2 (en) | 1990-03-14 | 1999-06-02 | 日本製紙株式会社 | Highly sweetened sugar-added stevia sweetener and process for producing the same |
| CN1024348C (en) | 1990-05-23 | 1994-04-27 | 孟凡彬 | Process for extracting stevioside from ordinary resin |
| US5576042A (en) | 1991-10-25 | 1996-11-19 | Fuisz Technologies Ltd. | High intensity particulate polysaccharide based liquids |
| JPH067108A (en) | 1992-06-23 | 1994-01-18 | P C C Technol:Kk | Stevia sweet substance extraction and separation method |
| JPH06192283A (en) | 1992-12-17 | 1994-07-12 | Ikeda Pan:Kk | Method for production pure rebaudioside a |
| CN1032651C (en) | 1993-09-21 | 1996-08-28 | 袁斯鸣 | Method for refining stevioside |
| JP3436317B2 (en) | 1993-11-24 | 2003-08-11 | 大日本インキ化学工業株式会社 | Method for producing stevia sweetener |
| JPH07177862A (en) | 1993-12-24 | 1995-07-18 | Morita Kagaku Kogyo Kk | Slightly water-soluble sweetener |
| US5549757A (en) | 1994-06-10 | 1996-08-27 | Ingredient Technology Corporation | Process for recrystallizing sugar and product thereof |
| JPH08214A (en) | 1994-06-17 | 1996-01-09 | Ikeda Pan:Kk | Rebaudioside a-based sweetener and its production |
| JP3262458B2 (en) | 1994-07-29 | 2002-03-04 | キヤノン株式会社 | Recording device |
| CN1112565A (en) | 1995-03-06 | 1995-11-29 | 北京市环境保护科学研究院 | Process for extracting stevioside by membrane method combined technology |
| JP3352860B2 (en) | 1995-10-19 | 2002-12-03 | 守田化学工業株式会社 | α-Glucosylated Stevia sweetener |
| RU2111969C1 (en) | 1995-11-08 | 1998-05-27 | Республиканская научно-исследовательская лаборатория по биологически активным веществам | Method of stevioside preparing |
| US5962678A (en) | 1996-09-13 | 1999-10-05 | Alberta Research Council | Method of extracting selected sweet glycosides from the Stevia rebaudiana plant |
| TW557327B (en) | 1996-11-08 | 2003-10-11 | Hayashibara Biochem Lab | Kojibiose phosphorylase, its preparation and uses |
| JPH10271928A (en) | 1997-01-30 | 1998-10-13 | Morita Kagaku Kogyo Kk | New plant belonging to stevia rabaudiana berton. |
| JP2002262822A (en) | 1997-01-30 | 2002-09-17 | Morita Kagaku Kogyo Kk | Sweetener obtained from plant body of variety of stevia rebaudiana cultivatable from seed |
| RU2156083C2 (en) | 1997-06-24 | 2000-09-20 | Дмитриенко Николай Васильевич | Method of obtaining extract from stevia grass |
| RU2123267C1 (en) | 1997-06-24 | 1998-12-20 | Дмитриенко Николай Васильевич | Method of preparing concentrate of extract from powder of stevia herb |
| US5972120A (en) | 1997-07-19 | 1999-10-26 | National Research Council Of Canada | Extraction of sweet compounds from Stevia rebaudiana Bertoni |
| JP3646497B2 (en) | 1997-12-22 | 2005-05-11 | 味の素株式会社 | Granular sweetener |
| CN1078217C (en) | 1998-02-18 | 2002-01-23 | 南开大学 | Adsorption resin method for conectrating and separating vegetable baudy glucoside from stevioside |
| CN1098860C (en) | 1998-06-08 | 2003-01-15 | 江苏省中国科学院植物研究所 | Process for separating and concentrating high-quality stevioside |
| JP2000236842A (en) | 1998-12-24 | 2000-09-05 | Nippon Paper Industries Co Ltd | Stevia sweetener |
| US6228996B1 (en) | 1999-02-24 | 2001-05-08 | James H. Zhou | Process for extracting sweet diterpene glycosides |
| RU2167544C2 (en) | 1999-03-09 | 2001-05-27 | Краснодарский научно-исследовательский институт хранения и переработки сельскохозяйственной продукции | Method of preparing extract from plant stevia rebaudiana bertoni for winemaking |
| US20020132320A1 (en) | 2001-01-10 | 2002-09-19 | Wang Peng George | Glycoconjugate synthesis using a pathway-engineered organism |
| RU2198548C1 (en) | 2001-06-01 | 2003-02-20 | Общество с ограниченной ответственностью Научно-производственное холдинговое объединение "СТЕВИЯ-АГРОМЕДФАРМ" | Method of producing extract from plants stevia rebaudiana bertoni |
| CN1132840C (en) | 2001-10-24 | 2003-12-31 | 青岛创升生物科技有限公司 | Stevioside glycoside refining process |
| EP1476556A2 (en) | 2002-02-14 | 2004-11-17 | Novozymes A/S | Process for producing starch hydrolysate |
| SE0200539D0 (en) | 2002-02-25 | 2002-02-25 | Metcon Medicin Ab | Granulation process and starch granulate |
| CN1237182C (en) | 2002-06-25 | 2006-01-18 | 山东华仙甜菊股份有限公司 | Process for improving taste of ribaudiose |
| US7638151B2 (en) | 2003-03-10 | 2009-12-29 | Danisco Us Inc. | Grain compositions containing pre-biotic isomalto-oligosaccharides and methods of making and using same |
| BRPI0507583A (en) | 2004-03-17 | 2007-07-03 | Cargill Inc | low glycemic index sweeteners and products made using the same |
| US7476248B2 (en) | 2004-04-06 | 2009-01-13 | Alcon, Inc. | Method of calculating the required lens power for an opthalmic implant |
| US7923552B2 (en) | 2004-10-18 | 2011-04-12 | SGF Holdings, LLC | High yield method of producing pure rebaudioside A |
| US7838044B2 (en) | 2004-12-21 | 2010-11-23 | Purecircle Sdn Bhd | Extraction, separation and modification of sweet glycosides from the Stevia rebaudiana plant |
| US20060142555A1 (en) | 2004-12-23 | 2006-06-29 | Council Of Scientific And Industrial Research | Process for production of steviosides from stevia rebaudiana bertoni |
| WO2006072879A1 (en) | 2005-01-07 | 2006-07-13 | Ranbaxy Laboratories Limited | Preparation of sweetener tablets of stevia extract by dry granulation methods |
| WO2006072878A1 (en) | 2005-01-07 | 2006-07-13 | Ranbaxy Laboratories Limited | Oral dosage forms of sertraline having controlled particle size and processes for their preparation |
| US7838011B2 (en) | 2005-02-14 | 2010-11-23 | Pankaj Modi | Stabilized protein compositions for topical administration and methods of making same |
| US8318459B2 (en) | 2011-02-17 | 2012-11-27 | Purecircle Usa | Glucosyl stevia composition |
| US8790730B2 (en) | 2005-10-11 | 2014-07-29 | Purecircle Usa | Process for manufacturing a sweetener and use thereof |
| US7862845B2 (en) | 2005-10-11 | 2011-01-04 | Purecircle Sdn Bhd | Process for manufacturing a sweetener and use thereof |
| US8257948B1 (en) | 2011-02-17 | 2012-09-04 | Purecircle Usa | Method of preparing alpha-glucosyl Stevia composition |
| US8334006B2 (en) | 2005-10-11 | 2012-12-18 | Purecircle Sdn Bhd | Process for manufacturing a sweetener and use thereof |
| US7807206B2 (en) | 2005-10-11 | 2010-10-05 | Purecircle Sdn Bhd | Sweetner and use |
| US8318232B2 (en) | 2005-10-11 | 2012-11-27 | Purecircle Sdn Bhd | Sweetner and use |
| US8337927B2 (en) | 2005-10-11 | 2012-12-25 | Purecircle Sdn Bhd | Process for manufacturing a sweetener and use thereof |
| US8956677B2 (en) | 2005-11-23 | 2015-02-17 | The Coca-Cola Company | High-potency sweetener composition with glucosamine and compositions sweetened therewith |
| US20070116839A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | High-Potency Sweetener Composition With C-Reactive Protein Reducing Substance and Compositions Sweetened Therewith |
| US8377491B2 (en) | 2005-11-23 | 2013-02-19 | The Coca-Cola Company | High-potency sweetener composition with vitamin and compositions sweetened therewith |
| US8940350B2 (en) | 2005-11-23 | 2015-01-27 | The Coca-Cola Company | Cereal compositions comprising high-potency sweeteners |
| US8435587B2 (en) | 2005-11-23 | 2013-05-07 | The Coca-Cola Company | High-potency sweetener composition with long-chain primary aliphatic saturated alcohol and compositions sweetened therewith |
| US8367138B2 (en) | 2005-11-23 | 2013-02-05 | The Coca-Cola Company | Dairy composition with high-potency sweetener |
| US20070116833A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | High-Potency Sweetener Composition with Calcium and Compositions Sweetened Therewith |
| US20070134391A1 (en) | 2005-11-23 | 2007-06-14 | The Coca-Cola Company | High-Potency Sweetener Composition for Treatment and/or Prevention of Autoimmune Disorders and Compositions Sweetened Therewith |
| US20070116829A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | Pharmaceutical Composition with High-Potency Sweetener |
| US8993027B2 (en) | 2005-11-23 | 2015-03-31 | The Coca-Cola Company | Natural high-potency tabletop sweetener compositions with improved temporal and/or flavor profile, methods for their formulation, and uses |
| DK2526778T3 (en) | 2005-11-23 | 2017-03-27 | Coca Cola Co | Natural High Strength Sweetener Compositions with Improved Time Profile and / or Taste Profile, Methods of Formulation thereof and Applications thereof |
| US20070116825A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | Confection with High-Potency Sweetener |
| US9144251B2 (en) | 2005-11-23 | 2015-09-29 | The Coca-Cola Company | High-potency sweetener composition with mineral and compositions sweetened therewith |
| US8945652B2 (en) | 2005-11-23 | 2015-02-03 | The Coca-Cola Company | High-potency sweetener for weight management and compositions sweetened therewith |
| US9101160B2 (en) | 2005-11-23 | 2015-08-11 | The Coca-Cola Company | Condiments with high-potency sweetener |
| US8940351B2 (en) | 2005-11-23 | 2015-01-27 | The Coca-Cola Company | Baked goods comprising high-potency sweetener |
| US8962058B2 (en) | 2005-11-23 | 2015-02-24 | The Coca-Cola Company | High-potency sweetener composition with antioxidant and compositions sweetened therewith |
| US20070116820A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | Edible gel compositions comprising high-potency sweeteners |
| US20070116836A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | High-Potency Sweetener Composition for Treatment and/or Prevention of Osteoporosis and Compositions Sweetened Therewith |
| US8524304B2 (en) | 2005-11-23 | 2013-09-03 | The Coca-Cola Company | High-potency sweetener composition with probiotics/prebiotics and compositions sweetened therewith |
| US8524303B2 (en) | 2005-11-23 | 2013-09-03 | The Coca-Cola Company | High-potency sweetener composition with phytosterol and compositions sweetened therewith |
| US20070116831A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | Dental Composition with High-Potency Sweetener |
| US8367137B2 (en) | 2005-11-23 | 2013-02-05 | The Coca-Cola Company | High-potency sweetener composition with fatty acid and compositions sweetened therewith |
| US8512789B2 (en) | 2005-11-23 | 2013-08-20 | The Coca-Cola Company | High-potency sweetener composition with dietary fiber and compositions sweetened therewith |
| US8435588B2 (en) | 2005-11-23 | 2013-05-07 | The Coca-Cola Company | High-potency sweetener composition with an anti-inflammatory agent and compositions sweetened therewith |
| US20070116823A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | High-potency sweetener for hydration and sweetened hydration composition |
| US8956678B2 (en) | 2005-11-23 | 2015-02-17 | The Coca-Cola Company | High-potency sweetener composition with preservative and compositions sweetened therewith |
| US20070116800A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | Chewing Gum with High-Potency Sweetener |
| US20070116822A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | High-potency sweetener composition with saponin and compositions sweetened therewith |
| US7927851B2 (en) | 2006-03-21 | 2011-04-19 | Vineland Research And Innovation Centre | Compositions having ent-kaurenoic acid 13-hydroxylase activity and methods for producing same |
| US8791253B2 (en) | 2006-06-19 | 2014-07-29 | The Coca-Cola Company | Rebaudioside A composition and method for purifying rebaudioside A |
| EP2049673B1 (en) | 2006-08-11 | 2011-04-13 | Danisco US Inc. | Native grain amylases in enzyme combinations for granular starch hydrolysis |
| CN101541294B (en) | 2006-09-20 | 2013-01-23 | 株式会社汤山制作所 | Pharmaceutical packaging device |
| FR2906712B1 (en) | 2006-10-09 | 2025-02-28 | France Chirurgie Instr | SIMPLIFIED INSTALLATION METAL PLUG. |
| FR2906973B1 (en) | 2006-10-17 | 2009-01-16 | Roquette Freres | GRANULATED EDULCORING COMPOSITION |
| US20080102497A1 (en) | 2006-10-31 | 2008-05-01 | Dominic Wong | Enzymatic hydrolysis of starch |
| US8017168B2 (en) | 2006-11-02 | 2011-09-13 | The Coca-Cola Company | High-potency sweetener composition with rubisco protein, rubiscolin, rubiscolin derivatives, ace inhibitory peptides, and combinations thereof, and compositions sweetened therewith |
| US20080107787A1 (en) | 2006-11-02 | 2008-05-08 | The Coca-Cola Company | Anti-Diabetic Composition with High-Potency Sweetener |
| US9101161B2 (en) | 2006-11-02 | 2015-08-11 | The Coca-Cola Company | High-potency sweetener composition with phytoestrogen and compositions sweetened therewith |
| FI20070521A7 (en) | 2006-11-10 | 2008-05-11 | Atacama Labs Oy | Granules, tablets and granulation method |
| CN101200480B (en) | 2006-12-15 | 2011-03-30 | 成都华高药业有限公司 | Extraction method of rebaudioside A |
| MY148593A (en) | 2007-01-22 | 2013-05-15 | Cargill Inc | Method of producing purified rebaudioside a compositions using solvent/antisolvent crystallization |
| US9877500B2 (en) | 2007-03-14 | 2018-01-30 | Concentrate Manufacturing Company Of Ireland | Natural beverage products |
| BRPI0701736A (en) | 2007-04-05 | 2008-07-15 | Stevia Natus Produtos Naturais | physical-chemical industrial process of obtaining natural sweeteners and pure active principles of stevioside and rebaudioside a from stevia leaf without the use of organic solvents for the manufacture of sweeteners |
| EP3115452B1 (en) | 2007-04-26 | 2019-10-16 | Hayashibara Co., Ltd. | Branched alpha-glucan, alpha-glucosyltransferase which forms glucan, their preparation and uses |
| US8030481B2 (en) | 2007-05-21 | 2011-10-04 | The Coca-Cola Company | Stevioside polymorphic and amorphous forms, methods for their formulation, and uses |
| US8709521B2 (en) | 2007-05-22 | 2014-04-29 | The Coca-Cola Company | Sweetener compositions having enhanced sweetness and improved temporal and/or flavor profiles |
| US20080292775A1 (en) | 2007-05-22 | 2008-11-27 | The Coca-Cola Company | Delivery Systems for Natural High-Potency Sweetener Compositions, Methods for Their Formulation, and Uses |
| US20080292765A1 (en) | 2007-05-22 | 2008-11-27 | The Coca-Cola Company | Sweetness Enhancers, Sweetness Enhanced Sweetener Compositions, Methods for Their Formulation, and Uses |
| JP5726523B2 (en) | 2007-06-29 | 2015-06-03 | マクニール ニュートリショナルズ,エル エル シー | Tabletop sweetener containing stevia and method for producing the same |
| US7964232B2 (en) | 2007-09-17 | 2011-06-21 | Pepsico, Inc. | Steviol glycoside isomers |
| TWI475963B (en) | 2008-02-25 | 2015-03-11 | Coca Cola Co | Rebaudioside a derivative products and methods for making |
| FR2929533B1 (en) | 2008-04-03 | 2010-04-30 | Novasep | MULTICOLOUR GRADIENT SEPARATION PROCESS. |
| US20110033525A1 (en) | 2008-04-11 | 2011-02-10 | Zhijun Liu | Diterpene Glycosides as Natural Solubilizers |
| US8321670B2 (en) | 2008-07-11 | 2012-11-27 | Bridgewater Systems Corp. | Securing dynamic authorization messages |
| KR101345172B1 (en) | 2008-07-18 | 2013-12-27 | 엘지디스플레이 주식회사 | Electrophoretic display deivce |
| US20120058236A1 (en) | 2009-04-09 | 2012-03-08 | Cargill Incorporated | Sweetener composition comprising high solubility form of rebaudioside a and method of making |
| KR20120027363A (en) | 2009-06-16 | 2012-03-21 | 이피씨 (베이징) 내추럴 프로덕츠 컴퍼니, 리미티드 | Composition comprising rebaudioside d for reducing or eliminating aftertaste and preparation method thereof |
| US8299224B2 (en) | 2009-10-15 | 2012-10-30 | Purecircle Sdn Bhd | High-purity Rebaudioside D |
| US8703224B2 (en) | 2009-11-04 | 2014-04-22 | Pepsico, Inc. | Method to improve water solubility of Rebaudioside D |
| US20110111115A1 (en) | 2009-11-06 | 2011-05-12 | Jingang Shi | Rebaudioside a polymorphs and methods to prepare them |
| EP3461342A1 (en) | 2009-11-12 | 2019-04-03 | PureCircle USA Inc. | Granulation of a stevia sweetener |
| WO2011090709A1 (en) | 2009-12-28 | 2011-07-28 | The Coca-Cola Company | Sweetness enhancers, compositions thereof, and methods for use |
| US20110189360A1 (en) | 2010-02-04 | 2011-08-04 | Pepsico, Inc. | Method to Increase Solubility Limit of Rebaudioside D in an Aqueous Solution |
| CN105671108A (en) | 2010-06-02 | 2016-06-15 | 沃维公司 | Recombinant production of steviol glycosides |
| WO2012075030A1 (en) | 2010-11-30 | 2012-06-07 | Massachusetts Institute Of Technology | Microbial production of natural sweeteners, diterpenoid steviol glycosides |
| US20130309389A1 (en) | 2010-12-13 | 2013-11-21 | Cargill, Incorporated | Glycoside blends |
| WO2012082493A1 (en) | 2010-12-13 | 2012-06-21 | Cargill, Incorporated | Crystalline forms of rebaudioside b |
| BR112013014814B1 (en) | 2010-12-24 | 2019-09-03 | Daicel Corp | process to produce acetic acid |
| WO2013022989A2 (en) | 2011-08-08 | 2013-02-14 | Evolva Sa | Recombinant production of steviol glycosides |
| JP6192283B2 (en) | 2012-10-11 | 2017-09-06 | スリーエム イノベイティブ プロパティズ カンパニー | Fastener parts |
-
2011
- 2011-01-28 US US13/016,545 patent/US8790730B2/en active Active
-
2014
- 2014-05-08 US US14/273,056 patent/US10531683B2/en not_active Expired - Lifetime
-
2019
- 2019-11-26 US US16/697,047 patent/US20200093166A1/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210100272A1 (en) * | 2018-04-04 | 2021-04-08 | Optibiotix Limited | Sweeteners And Methods Of Production Thereof |
| US12213501B2 (en) * | 2018-04-04 | 2025-02-04 | Optibiotix Limited | Methods for modifying high intensity sweetener glycosides |
Also Published As
| Publication number | Publication date |
|---|---|
| US20110195169A1 (en) | 2011-08-11 |
| US20140242244A1 (en) | 2014-08-28 |
| US10531683B2 (en) | 2020-01-14 |
| US8790730B2 (en) | 2014-07-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20200093166A1 (en) | Process for manufacturing a sweetener and use thereof | |
| US8334006B2 (en) | Process for manufacturing a sweetener and use thereof | |
| US8337927B2 (en) | Process for manufacturing a sweetener and use thereof | |
| US8293307B2 (en) | Process for manufacturing a sweetener and use thereof | |
| US7862845B2 (en) | Process for manufacturing a sweetener and use thereof | |
| US8293302B2 (en) | Process for manufacturing a sweetener and use thereof | |
| JP2024156842A (en) | Method for purifying steviol glycosides and uses thereof | |
| US8293304B2 (en) | Process for manufacturing a sweetener and use thereof | |
| US8293306B2 (en) | Process for manufacturing a sweetener and use thereof | |
| EP2544538A1 (en) | High-purity steviol glycosides | |
| US8591980B2 (en) | Low calorie composite sweetener as sugar alternative and methods for producing the same | |
| US8298601B2 (en) | Process for manufacturing a sweetener and use thereof | |
| US8298599B2 (en) | Process for manufacturing a sweetener and use thereof | |
| US8293303B2 (en) | Process for manufacturing a sweetener and use thereof | |
| US8298600B2 (en) | Process for manufacturing a sweetener and use thereof | |
| US8293305B2 (en) | Process for manufacturing a sweetener and use thereof | |
| US8293301B2 (en) | Process for manufacturing a sweetener and use thereof | |
| US8298603B2 (en) | Process for manufacturing a sweetener and use thereof | |
| JP2019208503A (en) | Acid taste enhancing agent, and acid ingredient-containing composition containing the same | |
| US8298602B2 (en) | Process for manufacturing a sweetener and use thereof | |
| EP3616532B1 (en) | Sweetener composition and method for improving taste of stevia extract |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| AS | Assignment |
Owner name: PURECIRCLE USA, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PURKAYASTHA, SIDDHARTHA;MARKOSYAN, AVETIK;MALSAGOV, MAGOMET;SIGNING DATES FROM 20110711 TO 20110930;REEL/FRAME:060072/0036 Owner name: PURECIRCLE SDN BHD, MALAYSIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PURECIRCLE USA/PURECIRCLE USA INC.;REEL/FRAME:059324/0896 Effective date: 20150722 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |