US20200086565A1 - System and head for continuously manufacturing composite structure - Google Patents
System and head for continuously manufacturing composite structure Download PDFInfo
- Publication number
- US20200086565A1 US20200086565A1 US16/528,964 US201916528964A US2020086565A1 US 20200086565 A1 US20200086565 A1 US 20200086565A1 US 201916528964 A US201916528964 A US 201916528964A US 2020086565 A1 US2020086565 A1 US 2020086565A1
- Authority
- US
- United States
- Prior art keywords
- print head
- composite material
- cure
- curing
- head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 238000007599 discharging Methods 0.000 claims abstract description 42
- 239000003623 enhancer Substances 0.000 claims abstract description 32
- 238000010894 electron beam technology Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000004033 plastic Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 41
- 230000002787 reinforcement Effects 0.000 description 39
- 239000011159 matrix material Substances 0.000 description 33
- 239000000835 fiber Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012255 powdered metal Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- NCJXHPIYRWIILF-UHFFFAOYSA-N 1h-triazole-4,5-dione Chemical compound OC1=NN=NC1=O NCJXHPIYRWIILF-UHFFFAOYSA-N 0.000 description 1
- 238000010146 3D printing Methods 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000109 continuous material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- -1 photopolymers Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/54—Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
- B29C70/545—Perforating, cutting or machining during or after moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B22F3/008—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/118—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/255—Enclosures for the building material, e.g. powder containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
- B29C64/268—Arrangements for irradiation using laser beams; using electron beams [EB]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/314—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C69/00—Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
- B29C69/001—Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore a shaping technique combined with cutting, e.g. in parts or slices combined with rearranging and joining the cut parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/38—Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/38—Housings, e.g. machine housings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/08—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/14—Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present disclosure relates generally to a manufacturing system and, more particularly, to a system and head for continuously manufacturing composite structures.
- Continuous fiber 3D printing involves the use of continuous fibers embedded within a matrix discharging from a moveable print head.
- the matrix can be a traditional thermoplastic, a powdered metal, a liquid resin (e.g., a UV curable and/or two-part resin), or a combination of any of these and other known matrixes.
- a head-mounted cure enhancer e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.
- a cure enhancer e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.
- CF3D® provides for increased strength, compared to manufacturing processes that do not utilize continuous fiber reinforcement, improvements can be made to the structure and/or operation of existing systems.
- the disclosed additive manufacturing system is uniquely configured to provide these improvements and/or to address other issues of the prior art.
- the present disclosure is directed to an additive manufacturing system.
- the additive manufacturing system may include a support, and a print head connected to and moveable by the support in multiple dimensions.
- the system may also include a cure enhancer mounted to the print head and configured to expose composite material discharging from the print head to energy, and a curing tool mounted to the print head downstream of the cure enhancer.
- the curing tool may be configured to expose the composite material to additional energy.
- the present disclosure is directed to a method for additively manufacturing a composite structure.
- the method may include discharging from a print head a composite material, and moving in multiple dimensions the print head during discharging of the composite material.
- the method may also include exposing the composite material discharging from the print head to cure energy at a first location downstream of the print head, and exposing the composite material to additional energy at a second location further downstream of the print head.
- FIG. 1 is an isometric illustration of an exemplary disclosed additive manufacturing system
- FIG. 2 is a diagrammatic illustration of an exemplary print head that may be utilized with the system of FIG. 1 ;
- FIGS. 3, 4, and 5 are diagrammatic illustrations of various cure arrangements that may be utilized with the print head of FIG. 2 .
- FIG. 1 illustrates an exemplary system 10 , which may be used to manufacture a composite structure 12 having any desired cross-sectional shape (e.g., ellipsoidal, polygonal, etc.).
- System 10 may include at least a moveable support 14 and a print head (“head”) 16 .
- Head 16 may be coupled to and moved by support 14 .
- support 14 is a robotic arm capable of moving head 16 in multiple directions during fabrication of structure 12 , such that a resulting longitudinal axis of structure 12 is three-dimensional. It is contemplated, however, that support 14 could alternatively be an overhead gantry, a hybrid gantry/arm, or another type of movement system that is capable of moving head 16 in multiple directions during fabrication of structure 12 .
- support 14 is shown as being capable of multi-axis (e.g., six or more axes) movement, it is contemplated that any other type of support 14 capable of moving head 16 in the same or in a different manner could also be utilized, if desired.
- a drive may mechanically couple head 16 to support 14 and may include components that cooperate to move and/or supply power or materials to head 16 .
- Head 16 may be configured to receive or otherwise contain a matrix.
- the matrix may include any type of material (e.g., a liquid resin, such as a zero-volatile organic compound resin; a powdered metal; a solid filament, etc.) that is curable.
- Exemplary matrixes include thermosets, single- or multi-part epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, thiols, alkenes, thiol-enes, reversible resins (e.g., Triazolinedione, a covalent-adaptable network, a spatioselective reversible resin, etc.) and more.
- reversible resins e.g., Triazolinedione, a covalent-adaptable network, a spatioselective reversible resin, etc.
- the matrix inside head 16 may be pressurized, for example by an external device (e.g., an extruder or another type of pump—not shown) that is fluidly connected to head 16 via a corresponding conduit (not shown).
- the matrix pressure may be generated completely inside of head 16 by a similar type of device.
- the matrix may be gravity-fed through and/or mixed within head 16 .
- the matrix inside head 16 may need to be kept cool and/or dark to inhibit premature curing; while in other instances, the matrix may need to be kept warm for similar reasons. In either situation, head 16 may be specially configured (e.g., insulated, temperature-controlled, shielded, etc.) to provide for these needs.
- the matrix may be used to coat, encase, or otherwise at least partially surround or saturate (e.g., wet) any number of continuous reinforcements (e.g., separate fibers, tows, rovings, ribbons, and/or sheets of material) and, together with the reinforcements, make up at least a portion (e.g., a wall) of composite structure 12 .
- the reinforcements may be stored within (e.g., on separate internal spools—not shown) or otherwise passed through head 16 (e.g., fed from one or more external spools—not shown).
- the reinforcements may be of the same type and have the same diameter and cross-sectional shape (e.g., circular, square, flat, hollow, solid, etc.), or of a different type with different diameters and/or cross-sectional shapes.
- the reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials that can be at least partially encased in the matrix discharging from head 16 .
- the reinforcements may be exposed to (e.g., coated with) the matrix while the reinforcements are inside head 16 , while the reinforcements are being passed to head 16 (e.g., as a prepreg material), and/or while the reinforcements are discharging from head 16 , as desired.
- the matrix, dry reinforcements, and/or reinforcements that are already exposed to the matrix may be transported into head 16 in any manner apparent to one skilled in the art.
- the matrix and reinforcement may be discharged from head 16 via at least two different modes of operation.
- a first mode of operation the matrix and reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from head 16 , as head 16 is moved by support 14 to create the 3-dimensional shape of structure 12 .
- a second mode of operation at least the reinforcement is pulled from head 16 , such that a tensile stress is created in the reinforcement during discharge.
- the matrix may cling to the reinforcement and thereby also be pulled from head 16 along with the reinforcement, and/or the matrix may be discharged from head 16 under pressure along with the pulled reinforcement.
- the resulting tension in the reinforcement may increase a strength of structure 12 (e.g., by aligning the reinforcements, inhibiting buckling, equally distributing loads, etc.), while also allowing for a greater length of unsupported structure 12 to have a straighter trajectory (e.g., by creating moments that oppose gravity).
- the reinforcement may be pulled from head 16 as a result of head 16 moving away from an anchor point 18 .
- a length of matrix-impregnated reinforcement may be pulled and/or pushed from head 16 , deposited onto a stationary or moveable anchor point 18 , and cured, such that the discharged material adheres to anchor point 18 .
- head 16 may be moved away from anchor point 18 , and the relative movement may cause additional reinforcement to be pulled from head 16 .
- the movement of the reinforcement through head 16 could be assisted (e.g., via internal feed mechanisms), if desired.
- the discharge rate of the reinforcement from head 16 may primarily be the result of relative movement between head 16 and anchor point 18 , such that tension is created within the reinforcement.
- any number of reinforcements may be passed axially through head 16 and be discharged together with at least a partial coating of matrix (matrix represented as “M” in FIG. 2 ).
- one or more cure enhancers e.g., one or more light sources, ultrasonic emitters, lasers, heaters, catalyst dispensers, microwave generators, etc.
- the cure energy may trigger a chemical reaction, increase a rate of chemical reaction already occurring within the matrix, sinter the material, harden the material, or otherwise cause the material to cure as it discharges from head 16 .
- higher levels of interlaminar strength, increased fiber volume, and/or decreased void content may be realized by pressing newly discharging material against underlying layers of material that were discharged during previous fabrication passes of head 16 , before, after, and/or while the newly discharged material is exposed to the energy from cure enhancers 20 .
- This pressing action may be facilitated by a rolling or sliding compactor 24 located at the discharge end of head 16 .
- Exemplary compactors 24 are illustrated in FIGS. 2 (e.g., a rolling compactor) and 3 - 5 (e.g., a sliding compactor).
- Compactor 24 may embody any type of device known in the art for compressing the composite material discharging from a nozzle 26 of head 16 and/or for pressing the material against a previously discharged layer of material.
- compactor 24 embodies a roller that is biased (e.g., via a spring 28 ) away from head 16 and toward the discharging material. It is contemplated, however, that a shoe-type compactor, a skirt-type compactor, or another type of compactor could alternatively or additionally be utilized.
- Compactor 24 may be location- and/or pressure-adjustable.
- a controller 22 may be provided and communicatively coupled with support 14 , head 16 , any number and type of cure enhancers 20 , and/or compactor 24 .
- Controller 22 may embody a single processor or multiple processors that include a means for controlling an operation of system 10 .
- Controller 22 may include one or more general- or special-purpose processors or microprocessors.
- Controller 22 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, matrix characteristics, reinforcement characteristics, characteristics of structure 12 , and corresponding parameters of each component of system 10 .
- Various other known circuits may be associated with controller 22 , including power supply circuitry, signal-conditioning circuitry, solenoid/motor driver circuitry, communication circuitry, and other appropriate circuitry.
- controller 22 may be capable of communicating with other components of system 10 via wired and/or wireless transmission.
- One or more maps may be stored in the memory of controller 22 and used during fabrication of structure 12 .
- Each of these maps may include a collection of data in the form of models, lookup tables, graphs, and/or equations.
- the maps are used by controller 22 to determine desired characteristics of cure enhancers 20 , the associated matrix, and/or the associated reinforcements at different locations within structure 12 .
- the characteristics may include, among others, a type, quantity, and/or configuration of reinforcement and/or matrix to be discharged at a particular location within structure 12 , and/or an amount, intensity, shape, and/or location of desired curing and/or compacting.
- Controller 22 may then correlate operation of support 14 (e.g., the location and/or orientation of head 16 ) and/or the discharge of material from head 16 (a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.) with the operation of cure enhancers 20 and compactor 24 , such that structure 12 is produced in a desired manner.
- support 14 e.g., the location and/or orientation of head 16
- the discharge of material from head 16 a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.
- the composite material may only be partially cured by one or more cure enhancers 20 , such that a desired shape and/or position of the composite material is temporarily maintained.
- the curing initiated by cure enhancer(s) 20 may only be surface-deep.
- an additional curing tool 30 may be beneficial.
- FIGS. 3-5 illustrate different arrangements of curing tool 30 relative to cure enhancer 20 , compactor 24 , and nozzle 26 .
- curing tool 30 may be mounted to head 16 and generate a different type of cure energy than cure enhancer 20 .
- cure enhancer 20 is a UV light source in the embodiment of FIG. 3
- curing tool 30 is an electron beam generator.
- curing tool 30 may be configured to generate a beam, line, or field of energy directed into and/or through the composite material being discharged by nozzle 26 .
- the electron beam, line, and/or field generated by curing tool 30 may pass into and/or through the discharging material more readily than light and/or heat, making it ideal for large diameter discharge and/or material that blocks light (e.g., opaque material such as carbon fibers) and/or heat.
- curing tool 30 trails behind nozzle 26 and cure enhancer 20 , but leads compactor 24 .
- curing tool 30 may be pivotally connected to head 16 via one or more (e.g., two axially separated) hinges 32 .
- Hinges 32 may allow head 16 to turn from a first trajectory to a second trajectory, while curing tool 30 continues to follow the first trajectory for a desired period of time.
- an actuator (not show) could be associated with hinges 32 to affect selective pivoting of hinges 32 , if desired.
- hinges 32 could be replaced with stationary brackets (not shown).
- curing tool 30 may be positioned to ride just above an outer surface of the discharging material (e.g., within an offset distance that is about equal to or less than a diameter of the discharging material). This may help to ensure focus and efficient use of the energy from curing tool 30 into only the discharging material or into both the discharging material and a relatively small area surrounding the material.
- the location of curing tool 30 just above the surface of the discharging material may provide stable support for compactor 24 , which may be connected to head 16 via curing tool 30 .
- compactor 24 may be able to exert pressure on the discharging material while the material is still in a relatively plastic phase. That is, more manipulation of the material may be possible prior to exposure to the energy from curing tool 30 .
- compactor 24 may be connected directly (i.e., not through curing tool 30 ) to head 16 .
- curing tool 30 may be spaced away from the discharging material by a greater distance (i.e., a distance greater than a diameter of the discharging material), as shown in FIG. 4 . This may allow for some dissipation of the energy from curing tool 30 to a greater area surrounding the discharging material, which may help to ensure deeper and/or more thorough curing of structure 12 .
- compactor 24 may be located downstream of nozzle 26 (e.g., immediately adjacent nozzle 26 ), but upstream of cure enhancer 20 and curing tool 30 . This configuration is illustrated in FIG. 5 .
- the discharging material may be more pliable at this point in time and location, enabling greater compaction and/or greater control over compaction.
- cure enhancer 20 it may be possible to mount cure enhancer 20 to hinge(s) 32 , if desired.
- the disclosed systems may be used to continuously manufacture composite structures having any desired cross-sectional shape and length.
- the composite structures may include any number of different fibers of the same or different types and of the same or different diameters, and any number of different matrixes of the same or different makeup. Operation of system 10 will now be described in detail.
- information regarding a desired structure 12 may be loaded into system 10 (e.g., into controller 22 that is responsible for regulating operations of support 14 and/or head 16 ).
- This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.), connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), desired weave patterns, weave transition locations, etc.
- a size e.g., diameter, wall thickness, length, etc.
- a contour e.g., a trajectory
- surface features e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.
- connection geometry e.g., locations and sizes of couplings, tees, splices, etc.
- this information may alternatively or additionally be loaded into system 10 at different times and/or continuously during the manufacturing event, if desired.
- one or more different reinforcements and/or matrix materials may be selectively installed and/or continuously supplied into system 10 .
- individual fibers, tows, and/or ribbons may be passed through head 16 .
- the reinforcements may be passed under compactor 24 and/or attached to anchor point 18 .
- Installation of the matrix material may include filling head 16 and/or coupling of an extruder (not shown) to head 16 .
- the component information may then be used to control operation of system 10 .
- the reinforcements may be pulled and/or pushed along with the matrix material from head 16 .
- Support 14 may also selectively move head 16 and/or the anchor point in a desired manner, such that an axis of the resulting structure 12 follows a desired three-dimensional trajectory. Once structure 12 has grown to a desired length, structure 12 may be severed from system 10 .
- the disclosed head 16 may have improved curing and discharge-location control. Curing may be improved via precise control over the location(s) at which a desired amount and intensity of cure energy impinges discharging material. Discharge-location control may improve curing, such that the discharging material does not move significantly after compactor 24 has moved over the material.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Composite Materials (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Robotics (AREA)
Abstract
Description
- This application is based on and claims the benefit of priority from U.S. Provisional Application No. 62/730,541 that was filed on Sep. 13, 2018, the contents of which are expressly incorporated herein by reference.
- The present disclosure relates generally to a manufacturing system and, more particularly, to a system and head for continuously manufacturing composite structures.
- Continuous fiber 3D printing (a.k.a., CF3D®) involves the use of continuous fibers embedded within a matrix discharging from a moveable print head. The matrix can be a traditional thermoplastic, a powdered metal, a liquid resin (e.g., a UV curable and/or two-part resin), or a combination of any of these and other known matrixes. Upon exiting the print head, a head-mounted cure enhancer (e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.) is activated to initiate and/or complete curing of the matrix. This curing occurs almost immediately, allowing for unsupported structures to be fabricated in free space. When fibers, particularly continuous fibers, are embedded within the structure, a strength of the structure may be multiplied beyond the matrix-dependent strength. An example of this technology is disclosed in U.S. Pat. 9,511,543 that issued to Tyler on Dec. 6, 2016 (“the '543 patent”).
- Although CF3D® provides for increased strength, compared to manufacturing processes that do not utilize continuous fiber reinforcement, improvements can be made to the structure and/or operation of existing systems. The disclosed additive manufacturing system is uniquely configured to provide these improvements and/or to address other issues of the prior art.
- In one aspect, the present disclosure is directed to an additive manufacturing system. The additive manufacturing system may include a support, and a print head connected to and moveable by the support in multiple dimensions. The system may also include a cure enhancer mounted to the print head and configured to expose composite material discharging from the print head to energy, and a curing tool mounted to the print head downstream of the cure enhancer. The curing tool may be configured to expose the composite material to additional energy.
- In another aspect, the present disclosure is directed to a method for additively manufacturing a composite structure. The method may include discharging from a print head a composite material, and moving in multiple dimensions the print head during discharging of the composite material. The method may also include exposing the composite material discharging from the print head to cure energy at a first location downstream of the print head, and exposing the composite material to additional energy at a second location further downstream of the print head.
-
FIG. 1 is an isometric illustration of an exemplary disclosed additive manufacturing system; and -
FIG. 2 is a diagrammatic illustration of an exemplary print head that may be utilized with the system ofFIG. 1 ; and -
FIGS. 3, 4, and 5 are diagrammatic illustrations of various cure arrangements that may be utilized with the print head ofFIG. 2 . -
FIG. 1 illustrates anexemplary system 10, which may be used to manufacture acomposite structure 12 having any desired cross-sectional shape (e.g., ellipsoidal, polygonal, etc.).System 10 may include at least amoveable support 14 and a print head (“head”) 16.Head 16 may be coupled to and moved bysupport 14. In the disclosed embodiment ofFIG. 1 ,support 14 is a robotic arm capable of movinghead 16 in multiple directions during fabrication ofstructure 12, such that a resulting longitudinal axis ofstructure 12 is three-dimensional. It is contemplated, however, thatsupport 14 could alternatively be an overhead gantry, a hybrid gantry/arm, or another type of movement system that is capable of movinghead 16 in multiple directions during fabrication ofstructure 12. Althoughsupport 14 is shown as being capable of multi-axis (e.g., six or more axes) movement, it is contemplated that any other type ofsupport 14 capable of movinghead 16 in the same or in a different manner could also be utilized, if desired. In some embodiments, a drive may mechanically couplehead 16 to support 14 and may include components that cooperate to move and/or supply power or materials tohead 16. -
Head 16 may be configured to receive or otherwise contain a matrix. The matrix may include any type of material (e.g., a liquid resin, such as a zero-volatile organic compound resin; a powdered metal; a solid filament, etc.) that is curable. Exemplary matrixes include thermosets, single- or multi-part epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, thiols, alkenes, thiol-enes, reversible resins (e.g., Triazolinedione, a covalent-adaptable network, a spatioselective reversible resin, etc.) and more. In one embodiment, the matrix insidehead 16 may be pressurized, for example by an external device (e.g., an extruder or another type of pump—not shown) that is fluidly connected tohead 16 via a corresponding conduit (not shown). In another embodiment, however, the matrix pressure may be generated completely inside ofhead 16 by a similar type of device. In yet other embodiments, the matrix may be gravity-fed through and/or mixed withinhead 16. In some instances, the matrix insidehead 16 may need to be kept cool and/or dark to inhibit premature curing; while in other instances, the matrix may need to be kept warm for similar reasons. In either situation,head 16 may be specially configured (e.g., insulated, temperature-controlled, shielded, etc.) to provide for these needs. - The matrix may be used to coat, encase, or otherwise at least partially surround or saturate (e.g., wet) any number of continuous reinforcements (e.g., separate fibers, tows, rovings, ribbons, and/or sheets of material) and, together with the reinforcements, make up at least a portion (e.g., a wall) of
composite structure 12. The reinforcements may be stored within (e.g., on separate internal spools—not shown) or otherwise passed through head 16 (e.g., fed from one or more external spools—not shown). When multiple reinforcements are simultaneously used, the reinforcements may be of the same type and have the same diameter and cross-sectional shape (e.g., circular, square, flat, hollow, solid, etc.), or of a different type with different diameters and/or cross-sectional shapes. The reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials that can be at least partially encased in the matrix discharging fromhead 16. - The reinforcements may be exposed to (e.g., coated with) the matrix while the reinforcements are inside
head 16, while the reinforcements are being passed to head 16 (e.g., as a prepreg material), and/or while the reinforcements are discharging fromhead 16, as desired. The matrix, dry reinforcements, and/or reinforcements that are already exposed to the matrix (e.g., wetted reinforcements) may be transported intohead 16 in any manner apparent to one skilled in the art. - The matrix and reinforcement may be discharged from
head 16 via at least two different modes of operation. In a first mode of operation, the matrix and reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) fromhead 16, ashead 16 is moved bysupport 14 to create the 3-dimensional shape ofstructure 12. In a second mode of operation, at least the reinforcement is pulled fromhead 16, such that a tensile stress is created in the reinforcement during discharge. In this mode of operation, the matrix may cling to the reinforcement and thereby also be pulled fromhead 16 along with the reinforcement, and/or the matrix may be discharged fromhead 16 under pressure along with the pulled reinforcement. In the second mode of operation, where the matrix material is being pulled fromhead 16 with the reinforcement, the resulting tension in the reinforcement may increase a strength of structure 12 (e.g., by aligning the reinforcements, inhibiting buckling, equally distributing loads, etc.), while also allowing for a greater length ofunsupported structure 12 to have a straighter trajectory (e.g., by creating moments that oppose gravity). - The reinforcement may be pulled from
head 16 as a result ofhead 16 moving away from ananchor point 18. In particular, at the start of structure-formation, a length of matrix-impregnated reinforcement may be pulled and/or pushed fromhead 16, deposited onto a stationary ormoveable anchor point 18, and cured, such that the discharged material adheres toanchor point 18. Thereafter,head 16 may be moved away fromanchor point 18, and the relative movement may cause additional reinforcement to be pulled fromhead 16. It should be noted that the movement of the reinforcement throughhead 16 could be assisted (e.g., via internal feed mechanisms), if desired. However, the discharge rate of the reinforcement fromhead 16 may primarily be the result of relative movement betweenhead 16 andanchor point 18, such that tension is created within the reinforcement. - Any number of reinforcements (represented as “R”) may be passed axially through
head 16 and be discharged together with at least a partial coating of matrix (matrix represented as “M” inFIG. 2 ). At discharge (or shortly thereafter), one or more cure enhancers (e.g., one or more light sources, ultrasonic emitters, lasers, heaters, catalyst dispensers, microwave generators, etc.) 20 may expose the matrix coating to a cure energy (e.g., light energy, electromagnetic radiation, vibrations, heat, a chemical catalyst or hardener, etc.). The cure energy may trigger a chemical reaction, increase a rate of chemical reaction already occurring within the matrix, sinter the material, harden the material, or otherwise cause the material to cure as it discharges fromhead 16. - In some applications, higher levels of interlaminar strength, increased fiber volume, and/or decreased void content may be realized by pressing newly discharging material against underlying layers of material that were discharged during previous fabrication passes of
head 16, before, after, and/or while the newly discharged material is exposed to the energy fromcure enhancers 20. This pressing action may be facilitated by a rolling or slidingcompactor 24 located at the discharge end ofhead 16.Exemplary compactors 24 are illustrated inFIGS. 2 (e.g., a rolling compactor) and 3-5 (e.g., a sliding compactor).Compactor 24 may embody any type of device known in the art for compressing the composite material discharging from anozzle 26 ofhead 16 and/or for pressing the material against a previously discharged layer of material. In the depicted example,compactor 24 embodies a roller that is biased (e.g., via a spring 28) away fromhead 16 and toward the discharging material. It is contemplated, however, that a shoe-type compactor, a skirt-type compactor, or another type of compactor could alternatively or additionally be utilized.Compactor 24 may be location- and/or pressure-adjustable. - A
controller 22 may be provided and communicatively coupled withsupport 14,head 16, any number and type ofcure enhancers 20, and/orcompactor 24.Controller 22 may embody a single processor or multiple processors that include a means for controlling an operation ofsystem 10.Controller 22 may include one or more general- or special-purpose processors or microprocessors.Controller 22 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, matrix characteristics, reinforcement characteristics, characteristics ofstructure 12, and corresponding parameters of each component ofsystem 10. Various other known circuits may be associated withcontroller 22, including power supply circuitry, signal-conditioning circuitry, solenoid/motor driver circuitry, communication circuitry, and other appropriate circuitry. Moreover,controller 22 may be capable of communicating with other components ofsystem 10 via wired and/or wireless transmission. - One or more maps may be stored in the memory of
controller 22 and used during fabrication ofstructure 12. Each of these maps may include a collection of data in the form of models, lookup tables, graphs, and/or equations. In the disclosed embodiment, the maps are used bycontroller 22 to determine desired characteristics ofcure enhancers 20, the associated matrix, and/or the associated reinforcements at different locations withinstructure 12. The characteristics may include, among others, a type, quantity, and/or configuration of reinforcement and/or matrix to be discharged at a particular location withinstructure 12, and/or an amount, intensity, shape, and/or location of desired curing and/or compacting.Controller 22 may then correlate operation of support 14 (e.g., the location and/or orientation of head 16) and/or the discharge of material from head 16 (a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.) with the operation ofcure enhancers 20 andcompactor 24, such thatstructure 12 is produced in a desired manner. - In some applications, the composite material may only be partially cured by one or
more cure enhancers 20, such that a desired shape and/or position of the composite material is temporarily maintained. In these applications, the curing initiated by cure enhancer(s) 20 may only be surface-deep. In order to provide a more thorough, deeper, and/or longer-lasting cure, anadditional curing tool 30 may be beneficial.FIGS. 3-5 illustrate different arrangements of curingtool 30 relative to cureenhancer 20,compactor 24, andnozzle 26. - As shown in
FIG. 3 , curingtool 30 may be mounted to head 16 and generate a different type of cure energy thancure enhancer 20. For example, cureenhancer 20 is a UV light source in the embodiment ofFIG. 3 , while curingtool 30 is an electron beam generator. As an electron beam generator, curingtool 30 may be configured to generate a beam, line, or field of energy directed into and/or through the composite material being discharged bynozzle 26. The electron beam, line, and/or field generated by curingtool 30 may pass into and/or through the discharging material more readily than light and/or heat, making it ideal for large diameter discharge and/or material that blocks light (e.g., opaque material such as carbon fibers) and/or heat. - In the configuration of
FIG. 3 , curingtool 30 trails behindnozzle 26 andcure enhancer 20, but leadscompactor 24. In order to help ensure that the energy from curingtool 30 is properly absorbed by the composite material, while also allowinghead 16 to follow a complex trajectory, curingtool 30 may be pivotally connected to head 16 via one or more (e.g., two axially separated) hinges 32.Hinges 32 may allowhead 16 to turn from a first trajectory to a second trajectory, while curingtool 30 continues to follow the first trajectory for a desired period of time. It is contemplated that an actuator (not show) could be associated withhinges 32 to affect selective pivoting ofhinges 32, if desired. It is also contemplated that hinges 32 could be replaced with stationary brackets (not shown). - In the embodiment of
FIG. 3 , curingtool 30 may be positioned to ride just above an outer surface of the discharging material (e.g., within an offset distance that is about equal to or less than a diameter of the discharging material). This may help to ensure focus and efficient use of the energy from curingtool 30 into only the discharging material or into both the discharging material and a relatively small area surrounding the material. In addition, the location of curingtool 30 just above the surface of the discharging material may provide stable support forcompactor 24, which may be connected to head 16 via curingtool 30. - As shown in
FIG. 4 , it may be beneficial in some applications to positioncompactor 24 betweencure enhancer 20 and curingtool 30. In this position,compactor 24 may be able to exert pressure on the discharging material while the material is still in a relatively plastic phase. That is, more manipulation of the material may be possible prior to exposure to the energy from curingtool 30. In this embodiment,compactor 24 may be connected directly (i.e., not through curing tool 30) tohead 16. - In addition, curing
tool 30 may be spaced away from the discharging material by a greater distance (i.e., a distance greater than a diameter of the discharging material), as shown inFIG. 4 . This may allow for some dissipation of the energy from curingtool 30 to a greater area surrounding the discharging material, which may help to ensure deeper and/or more thorough curing ofstructure 12. - In some situations, it may be beneficial to at least partially compact the discharging material prior to any energy exposure from
cure enhancer 20 and/or curingtool 30. For this purpose,compactor 24 may be located downstream of nozzle 26 (e.g., immediately adjacent nozzle 26), but upstream ofcure enhancer 20 and curingtool 30. This configuration is illustrated inFIG. 5 . The discharging material may be more pliable at this point in time and location, enabling greater compaction and/or greater control over compaction. However, care should be taken to avoid excessive buildup of matrix (e.g., uncured, partially cured, and/or fully cured matrix) oncompactor 24. - As also shown in
FIG. 5 , it may be possible to mountcure enhancer 20 to hinge(s) 32, if desired. In this example, it may be beneficial to extend the source location of cure energy toward the discharging material surface (e.g., via a light pipe 34 or other offset pipe), such that the amount of energy absorbed by the discharging material is sufficient to at least partially cure at least an outer surface of the material. - The disclosed systems may be used to continuously manufacture composite structures having any desired cross-sectional shape and length. The composite structures may include any number of different fibers of the same or different types and of the same or different diameters, and any number of different matrixes of the same or different makeup. Operation of
system 10 will now be described in detail. - At a start of a manufacturing event, information regarding a desired
structure 12 may be loaded into system 10 (e.g., intocontroller 22 that is responsible for regulating operations ofsupport 14 and/or head 16). This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.), connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), desired weave patterns, weave transition locations, etc. It should be noted that this information may alternatively or additionally be loaded intosystem 10 at different times and/or continuously during the manufacturing event, if desired. Based on the component information, one or more different reinforcements and/or matrix materials may be selectively installed and/or continuously supplied intosystem 10. - To install the reinforcements, individual fibers, tows, and/or ribbons may be passed through
head 16. In some embodiments, the reinforcements may be passed undercompactor 24 and/or attached to anchorpoint 18. Installation of the matrix material may include fillinghead 16 and/or coupling of an extruder (not shown) tohead 16. - The component information may then be used to control operation of
system 10. For example, the reinforcements may be pulled and/or pushed along with the matrix material fromhead 16.Support 14 may also selectively movehead 16 and/or the anchor point in a desired manner, such that an axis of the resultingstructure 12 follows a desired three-dimensional trajectory. Oncestructure 12 has grown to a desired length,structure 12 may be severed fromsystem 10. - The disclosed
head 16 may have improved curing and discharge-location control. Curing may be improved via precise control over the location(s) at which a desired amount and intensity of cure energy impinges discharging material. Discharge-location control may improve curing, such that the discharging material does not move significantly aftercompactor 24 has moved over the material. - It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed system and head. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed system and head. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/528,964 US20200086565A1 (en) | 2018-09-13 | 2019-08-01 | System and head for continuously manufacturing composite structure |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862730541P | 2018-09-13 | 2018-09-13 | |
| US16/528,964 US20200086565A1 (en) | 2018-09-13 | 2019-08-01 | System and head for continuously manufacturing composite structure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20200086565A1 true US20200086565A1 (en) | 2020-03-19 |
Family
ID=69772111
Family Applications (7)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/424,381 Abandoned US20200086563A1 (en) | 2018-09-13 | 2019-05-28 | System and head for continuously manufacturing composite structure |
| US16/516,119 Active 2040-03-05 US11235539B2 (en) | 2018-09-13 | 2019-07-18 | Fiber management arrangement and method for additive manufacturing system |
| US16/528,964 Abandoned US20200086565A1 (en) | 2018-09-13 | 2019-08-01 | System and head for continuously manufacturing composite structure |
| US16/531,055 Active 2040-06-03 US11338528B2 (en) | 2018-09-13 | 2019-08-03 | System for additively manufacturing composite structures |
| US17/643,321 Abandoned US20220097315A1 (en) | 2018-09-13 | 2021-12-08 | Fiber management arrangement and method for additive manufacturing system |
| US17/643,339 Abandoned US20220097316A1 (en) | 2018-09-13 | 2021-12-08 | Fiber management arrangement and method for additive manufacturing system |
| US17/659,968 Abandoned US20220242060A1 (en) | 2018-09-13 | 2022-04-20 | System for additively manufacturing composite structures |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/424,381 Abandoned US20200086563A1 (en) | 2018-09-13 | 2019-05-28 | System and head for continuously manufacturing composite structure |
| US16/516,119 Active 2040-03-05 US11235539B2 (en) | 2018-09-13 | 2019-07-18 | Fiber management arrangement and method for additive manufacturing system |
Family Applications After (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/531,055 Active 2040-06-03 US11338528B2 (en) | 2018-09-13 | 2019-08-03 | System for additively manufacturing composite structures |
| US17/643,321 Abandoned US20220097315A1 (en) | 2018-09-13 | 2021-12-08 | Fiber management arrangement and method for additive manufacturing system |
| US17/643,339 Abandoned US20220097316A1 (en) | 2018-09-13 | 2021-12-08 | Fiber management arrangement and method for additive manufacturing system |
| US17/659,968 Abandoned US20220242060A1 (en) | 2018-09-13 | 2022-04-20 | System for additively manufacturing composite structures |
Country Status (2)
| Country | Link |
|---|---|
| US (7) | US20200086563A1 (en) |
| WO (2) | WO2020055466A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220184882A1 (en) * | 2019-01-25 | 2022-06-16 | Continuous Composites Inc. | System for additively manufacturing composite structure |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200086563A1 (en) * | 2018-09-13 | 2020-03-19 | Cc3D Llc | System and head for continuously manufacturing composite structure |
| US11465343B2 (en) | 2019-12-17 | 2022-10-11 | Saudi Arabian Oil Company | Manufacturing continuous fiber reinforced thermoplastic components with layers of unidirectional tape |
| US20210178659A1 (en) * | 2019-12-17 | 2021-06-17 | Saudi Arabian Oil Company | Grooved die for manufacturing unidirectional tape |
| US11794402B2 (en) | 2019-12-18 | 2023-10-24 | Saudi Arabian Oil Company | Reducing manufacturing defects of a wound filament product |
| SE544550C2 (en) * | 2020-04-07 | 2022-07-12 | Bondtech Ab | Filament feeding device for use in 3D-printing, the device comprising an adjuster element |
| US20230173753A1 (en) * | 2020-04-27 | 2023-06-08 | Stratasys Ltd. | Leveling system for three-dimensional printing |
| CN111688193B (en) * | 2020-06-13 | 2021-05-14 | 西安交通大学 | Direct-writing 3D printing device and method for controllable bias continuous fiber reinforced composites |
| US11926099B2 (en) * | 2021-04-27 | 2024-03-12 | Continuous Composites Inc. | Additive manufacturing system |
| DE102021114572B4 (en) | 2021-06-07 | 2024-03-28 | Olbrich Gmbh | Process for the production of a multi-layer PVC semi-finished product and a corresponding device |
| US11982397B2 (en) | 2021-10-26 | 2024-05-14 | Saudi Arabian Oil Company | Resin rich polyurea-based integrated external layer for reinforced thermosetting resin piping protection |
Family Cites Families (194)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3286305A (en) | 1964-09-03 | 1966-11-22 | Rexall Drug Chemical | Apparatus for continuous manufacture of hollow articles |
| BE791272A (en) | 1971-11-13 | 1973-03-01 | Castro Nunez Elem Huecos | CONTINUOUS MANUFACTURING MACHINE FOR HOLLOW ELEMENTS |
| US3984271A (en) | 1973-06-25 | 1976-10-05 | Owens-Corning Fiberglas Corporation | Method of manufacturing large diameter tubular structures |
| US3993726A (en) | 1974-01-16 | 1976-11-23 | Hercules Incorporated | Methods of making continuous length reinforced plastic articles |
| US4557783A (en) * | 1983-12-05 | 1985-12-10 | Cincinnati Milacron Inc. | Composite tape laying machine and method |
| DE3424269C2 (en) | 1984-06-30 | 1994-01-27 | Krupp Ag | Device for producing reinforced profiles and reinforced hoses |
| US4643940A (en) | 1984-08-06 | 1987-02-17 | The Dow Chemical Company | Low density fiber-reinforced plastic composites |
| US4696707A (en) * | 1987-08-18 | 1987-09-29 | The Ingersoll Milling Machine Company | Composite tape placement apparatus with natural path generation means |
| US4851065A (en) | 1986-01-17 | 1989-07-25 | Tyee Aircraft, Inc. | Construction of hollow, continuously wound filament load-bearing structure |
| DE3619981A1 (en) | 1986-06-13 | 1987-12-17 | Freudenberg Carl Fa | METHOD AND DEVICE FOR PRODUCING A THREAD-REINFORCED HOSE FROM POLYMER MATERIAL |
| US5037691A (en) | 1986-09-15 | 1991-08-06 | Compositech, Ltd. | Reinforced plastic laminates for use in the production of printed circuit boards and process for making such laminates and resulting products |
| US4943338A (en) * | 1988-09-26 | 1990-07-24 | Cincinnati Milacron Inc. | Multi-tow fiber placement machine with full band width clamp, cut, and restart capability |
| DE3835575A1 (en) | 1988-10-19 | 1990-04-26 | Bayer Ag | COMPOSITES |
| US5121329A (en) | 1989-10-30 | 1992-06-09 | Stratasys, Inc. | Apparatus and method for creating three-dimensional objects |
| DE4102257A1 (en) | 1991-01-23 | 1992-07-30 | Artos Med Produkte | Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angle |
| US5296335A (en) | 1993-02-22 | 1994-03-22 | E-Systems, Inc. | Method for manufacturing fiber-reinforced parts utilizing stereolithography tooling |
| US5746967A (en) | 1995-06-26 | 1998-05-05 | Fox Lite, Inc. | Method of curing thermoset resin with visible light |
| US6305769B1 (en) * | 1995-09-27 | 2001-10-23 | 3D Systems, Inc. | Selective deposition modeling system and method |
| US5700347A (en) * | 1996-01-11 | 1997-12-23 | The Boeing Company | Thermoplastic multi-tape application head |
| US6144008A (en) | 1996-11-22 | 2000-11-07 | Rabinovich; Joshua E. | Rapid manufacturing system for metal, metal matrix composite materials and ceramics |
| US5866058A (en) | 1997-05-29 | 1999-02-02 | Stratasys Inc. | Method for rapid prototyping of solid models |
| IL121458A0 (en) * | 1997-08-03 | 1998-02-08 | Lipsker Daniel | Rapid prototyping |
| US5936861A (en) | 1997-08-15 | 1999-08-10 | Nanotek Instruments, Inc. | Apparatus and process for producing fiber reinforced composite objects |
| US6022207A (en) * | 1998-01-26 | 2000-02-08 | Stratasys, Inc. | Rapid prototyping system with filament supply spool monitoring |
| US6261675B1 (en) | 1999-03-23 | 2001-07-17 | Hexcel Corporation | Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures |
| WO2001034371A2 (en) | 1999-11-05 | 2001-05-17 | Z Corporation | Material systems and methods of three-dimensional printing |
| US6501554B1 (en) | 2000-06-20 | 2002-12-31 | Ppt Vision, Inc. | 3D scanner and method for measuring heights and angles of manufactured parts |
| US6799081B1 (en) | 2000-11-15 | 2004-09-28 | Mcdonnell Douglas Corporation | Fiber placement and fiber steering systems and corresponding software for composite structures |
| US6471800B2 (en) | 2000-11-29 | 2002-10-29 | Nanotek Instruments, Inc. | Layer-additive method and apparatus for freeform fabrication of 3-D objects |
| US6797220B2 (en) | 2000-12-04 | 2004-09-28 | Advanced Ceramics Research, Inc. | Methods for preparation of three-dimensional bodies |
| US6803003B2 (en) | 2000-12-04 | 2004-10-12 | Advanced Ceramics Research, Inc. | Compositions and methods for preparing multiple-component composite materials |
| US20020113331A1 (en) | 2000-12-20 | 2002-08-22 | Tan Zhang | Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers |
| US6899777B2 (en) | 2001-01-02 | 2005-05-31 | Advanced Ceramics Research, Inc. | Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same |
| US20030044539A1 (en) | 2001-02-06 | 2003-03-06 | Oswald Robert S. | Process for producing photovoltaic devices |
| US7029621B2 (en) | 2001-03-01 | 2006-04-18 | Schroeder Ernest C | Apparatus and method of fabricating fiber reinforced plastic parts |
| US6767619B2 (en) | 2001-05-17 | 2004-07-27 | Charles R. Owens | Preform for manufacturing a material having a plurality of voids and method of making the same |
| US6866807B2 (en) | 2001-09-21 | 2005-03-15 | Stratasys, Inc. | High-precision modeling filament |
| CA2369710C (en) | 2002-01-30 | 2006-09-19 | Anup Basu | Method and apparatus for high resolution 3d scanning of objects having voids |
| US6934600B2 (en) | 2002-03-14 | 2005-08-23 | Auburn University | Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites |
| US7229586B2 (en) | 2002-05-07 | 2007-06-12 | Dunlap Earl N | Process for tempering rapid prototype parts |
| US7572403B2 (en) | 2003-09-04 | 2009-08-11 | Peihua Gu | Multisource and multimaterial freeform fabrication |
| US7293590B2 (en) | 2003-09-22 | 2007-11-13 | Adc Acquisition Company | Multiple tape laying apparatus and method |
| US7063118B2 (en) | 2003-11-20 | 2006-06-20 | Adc Acquisition Company | Composite tape laying apparatus and method |
| US7039485B2 (en) | 2004-03-12 | 2006-05-02 | The Boeing Company | Systems and methods enabling automated return to and/or repair of defects with a material placement machine |
| US7824001B2 (en) | 2004-09-21 | 2010-11-02 | Z Corporation | Apparatus and methods for servicing 3D printers |
| US7681615B2 (en) * | 2005-08-04 | 2010-03-23 | The Boeing Company | Tow width adaptable placement head device and method |
| US7680555B2 (en) | 2006-04-03 | 2010-03-16 | Stratasys, Inc. | Auto tip calibration in an extrusion apparatus |
| US7555404B2 (en) | 2007-08-09 | 2009-06-30 | The Boeing Company | Methods and systems for automated ply boundary and orientation inspection |
| US8151854B2 (en) | 2007-10-16 | 2012-04-10 | Ingersoll Machine Tools, Inc. | Fiber placement machine platform system having interchangeable head and creel assemblies |
| DE102008022946B4 (en) | 2008-05-09 | 2014-02-13 | Fit Fruth Innovative Technologien Gmbh | Apparatus and method for applying powders or pastes |
| KR100995983B1 (en) | 2008-07-04 | 2010-11-23 | 재단법인서울대학교산학협력재단 | Cross-printing method and apparatus of circuit board |
| JP2013504007A (en) | 2009-09-04 | 2013-02-04 | バイエル・マテリアルサイエンス・リミテッド・ライアビリティ・カンパニー | Automated manufacturing method for polyurethane turbine blades |
| US8221669B2 (en) | 2009-09-30 | 2012-07-17 | Stratasys, Inc. | Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments |
| DE102009052835A1 (en) | 2009-11-13 | 2011-05-19 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Method for producing a component from a fiber-reinforced material |
| US9086033B2 (en) | 2010-09-13 | 2015-07-21 | Experimental Propulsion Lab, Llc | Additive manufactured propulsion system |
| US8920697B2 (en) | 2010-09-17 | 2014-12-30 | Stratasys, Inc. | Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments |
| US8282758B2 (en) | 2010-09-24 | 2012-10-09 | General Electric Company | System and method for the automated delivery and layup of resin infused fibers |
| KR101172859B1 (en) | 2010-10-04 | 2012-08-09 | 서울대학교산학협력단 | Ultra precision machining apparatus using nano-scale three dimensional printing and method using the same |
| DE102011109369A1 (en) | 2011-08-04 | 2013-02-07 | Arburg Gmbh + Co Kg | Method and device for producing a three-dimensional object with fiber feed |
| US9457521B2 (en) | 2011-09-01 | 2016-10-04 | The Boeing Company | Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts |
| EP2589481B1 (en) | 2011-11-04 | 2016-01-20 | Ralph Peter Hegler | Device for continuously manufacturing a composite pipe with connection sleeve |
| US20130164498A1 (en) | 2011-12-21 | 2013-06-27 | Adc Acquisition Company | Thermoplastic composite prepreg for automated fiber placement |
| US10518490B2 (en) | 2013-03-14 | 2019-12-31 | Board Of Regents, The University Of Texas System | Methods and systems for embedding filaments in 3D structures, structural components, and structural electronic, electromagnetic and electromechanical components/devices |
| US9884318B2 (en) | 2012-02-10 | 2018-02-06 | Adam Perry Tow | Multi-axis, multi-purpose robotics automation and quality adaptive additive manufacturing |
| US8919410B2 (en) | 2012-03-08 | 2014-12-30 | Fives Machining Systems, Inc. | Small flat composite placement system |
| US9764378B2 (en) | 2012-04-04 | 2017-09-19 | Massachusetts Institute Of Technology | Methods and apparatus for actuated fabricator |
| DE102012007439A1 (en) | 2012-04-13 | 2013-10-17 | Compositence Gmbh | Laying head and apparatus and method for building a three-dimensional preform for a component made of a fiber composite material |
| GB201210851D0 (en) | 2012-06-19 | 2012-08-01 | Eads Uk Ltd | Extrusion-based additive manufacturing system |
| GB201210850D0 (en) | 2012-06-19 | 2012-08-01 | Eads Uk Ltd | Thermoplastic polymer powder |
| EP2874791B2 (en) | 2012-07-20 | 2022-08-17 | MAG Aerospace Industries, LLC | Composite waste and water transport elements and methods of manufacture for use on aircraft |
| US9308690B2 (en) | 2012-07-31 | 2016-04-12 | Makerbot Industries, Llc | Fabrication of objects with enhanced structural characteristics |
| US8962717B2 (en) | 2012-08-20 | 2015-02-24 | Basf Se | Long-fiber-reinforced flame-retardant polyesters |
| US9511543B2 (en) | 2012-08-29 | 2016-12-06 | Cc3D Llc | Method and apparatus for continuous composite three-dimensional printing |
| US9233506B2 (en) | 2012-12-07 | 2016-01-12 | Stratasys, Inc. | Liquefier assembly for use in additive manufacturing system |
| US20140232035A1 (en) | 2013-02-19 | 2014-08-21 | Hemant Bheda | Reinforced fused-deposition modeling |
| US9527240B2 (en) * | 2013-03-15 | 2016-12-27 | Stratasys, Inc. | Additive manufacturing system and method for printing three-dimensional parts using velocimetry |
| US9381702B2 (en) | 2013-03-15 | 2016-07-05 | Seriforge Inc. | Composite preforms including three-dimensional interconnections |
| US9156205B2 (en) | 2013-03-22 | 2015-10-13 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
| US9815268B2 (en) | 2013-03-22 | 2017-11-14 | Markforged, Inc. | Multiaxis fiber reinforcement for 3D printing |
| US9126367B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
| US10259160B2 (en) | 2013-03-22 | 2019-04-16 | Markforged, Inc. | Wear resistance in 3D printing of composites |
| US9186846B1 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Methods for composite filament threading in three dimensional printing |
| US9186848B2 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
| US11237542B2 (en) | 2013-03-22 | 2022-02-01 | Markforged, Inc. | Composite filament 3D printing using complementary reinforcement formations |
| US9126365B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
| US9149988B2 (en) | 2013-03-22 | 2015-10-06 | Markforged, Inc. | Three dimensional printing |
| US9688028B2 (en) | 2013-03-22 | 2017-06-27 | Markforged, Inc. | Multilayer fiber reinforcement design for 3D printing |
| CN107813495A (en) | 2013-03-22 | 2018-03-20 | 格雷戈里·托马斯·马克 | 3D printing |
| US9956725B2 (en) | 2013-03-22 | 2018-05-01 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
| US10682844B2 (en) | 2013-03-22 | 2020-06-16 | Markforged, Inc. | Embedding 3D printed fiber reinforcement in molded articles |
| US20170173868A1 (en) | 2013-03-22 | 2017-06-22 | Markforged, Inc. | Continuous and random reinforcement in a 3d printed part |
| US9694544B2 (en) | 2013-03-22 | 2017-07-04 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
| US9539762B2 (en) | 2013-03-22 | 2017-01-10 | Markforged, Inc. | 3D printing with kinematic coupling |
| US9579851B2 (en) | 2013-03-22 | 2017-02-28 | Markforged, Inc. | Apparatus for fiber reinforced additive manufacturing |
| EP3003694B1 (en) | 2013-05-31 | 2018-10-10 | United Technologies Corporation | Continuous fiber-reinforced component fabrication |
| WO2014197732A2 (en) * | 2013-06-05 | 2014-12-11 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
| CN105765137B (en) | 2013-10-30 | 2018-08-24 | 莱恩奥罗克澳大利亚私人有限公司 | The method for making object |
| US10618217B2 (en) | 2013-10-30 | 2020-04-14 | Branch Technology, Inc. | Cellular fabrication and apparatus for additive manufacturing |
| WO2015065936A2 (en) | 2013-10-30 | 2015-05-07 | Boyd Iv R Platt | Additive manufacturing of buildings and other structures |
| US20160243762A1 (en) | 2013-11-15 | 2016-08-25 | Fleming Robert J | Automated design, simulation, and shape forming process for creating structural elements and designed objects |
| US9085109B2 (en) * | 2013-11-15 | 2015-07-21 | Makerbot Industries, Llc | Three-dimensional printer tool systems |
| WO2015073992A1 (en) | 2013-11-15 | 2015-05-21 | Fleming Robert J | Shape forming process and application thereof for creating structural elements and designed objects |
| WO2015077262A1 (en) | 2013-11-19 | 2015-05-28 | Guill Tool & Engineering | Coextruded, multilayered and multicomponent 3d printing inputs |
| TWI491495B (en) * | 2013-12-13 | 2015-07-11 | 三緯國際立體列印科技股份有限公司 | Printing head module |
| CA2935221C (en) | 2013-12-26 | 2022-10-04 | Texas Tech University System | Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts |
| WO2015156877A2 (en) | 2014-01-17 | 2015-10-15 | Graphene 3D Lab Inc. | Fused filament fabrication using multi-segment filament |
| CN105960330A (en) | 2014-02-04 | 2016-09-21 | 萨米尔·沙赫 | Apparatus and method for fabricating customizable three-dimensional objects |
| WO2015149054A1 (en) | 2014-03-28 | 2015-10-01 | Ez Print, Llc | 3d print bed having permanent coating |
| US10449731B2 (en) | 2014-04-30 | 2019-10-22 | Magna International Inc. | Apparatus and process for forming three-dimensional objects |
| WO2015182675A1 (en) | 2014-05-27 | 2015-12-03 | 学校法人日本大学 | Three-dimensional printing system, three-dimensional printing method, molding device, fiber-containing object, and production method therefor |
| US20160012935A1 (en) | 2014-07-11 | 2016-01-14 | Empire Technology Development Llc | Feedstocks for additive manufacturing and methods for their preparation and use |
| US9808991B2 (en) | 2014-07-29 | 2017-11-07 | Cc3D Llc. | Method and apparatus for additive mechanical growth of tubular structures |
| US10052822B1 (en) * | 2014-08-01 | 2018-08-21 | Amazon Technologies, Inc. | Selective pausing of 3D print jobs |
| DE102014215935A1 (en) | 2014-08-12 | 2016-02-18 | Airbus Operations Gmbh | Apparatus and method for manufacturing components from a fiber reinforced composite material |
| CA2996031C (en) | 2014-08-21 | 2022-10-18 | Mosaic Manufacturing Ltd. | Series enabled multi-material extrusion technology |
| US9931778B2 (en) | 2014-09-18 | 2018-04-03 | The Boeing Company | Extruded deposition of fiber reinforced polymers |
| US10118375B2 (en) | 2014-09-18 | 2018-11-06 | The Boeing Company | Extruded deposition of polymers having continuous carbon nanotube reinforcements |
| WO2016077473A1 (en) | 2014-11-14 | 2016-05-19 | Nielsen-Cole Cole | Additive manufacturing techniques and systems to form composite materials |
| EP3227089A1 (en) | 2014-12-01 | 2017-10-11 | SABIC Global Technologies B.V. | Nozzle tool changing for material extrusion additive manufacturing |
| US20170259507A1 (en) | 2014-12-01 | 2017-09-14 | Sabic Global Technologies B.V. | Additive manufacturing process automation systems and methods |
| EP3227090B1 (en) | 2014-12-01 | 2019-01-30 | SABIC Global Technologies B.V. | Rapid nozzle cooling for additive manufacturing |
| US10226103B2 (en) | 2015-01-05 | 2019-03-12 | Markforged, Inc. | Footwear fabrication by composite filament 3D printing |
| FR3031471A1 (en) | 2015-01-09 | 2016-07-15 | Daher Aerospace | PROCESS FOR THE PRODUCTION OF A COMPLEX COMPOSITE WORKPIECE, IN PARTICULAR A THERMOPLASTIC MATRIX AND PIECE OBTAINED BY SUCH A METHOD |
| US9878481B2 (en) * | 2015-03-02 | 2018-01-30 | Makerbot Industries, Llc | Extruder for three-dimensional printers |
| US20160263823A1 (en) | 2015-03-09 | 2016-09-15 | Frederick Matthew Espiau | 3d printed radio frequency absorber |
| US20160271876A1 (en) | 2015-03-22 | 2016-09-22 | Robert Bruce Lower | Apparatus and method of embedding cable in 3D printed objects |
| US11141901B2 (en) | 2015-03-31 | 2021-10-12 | Kyoraku Co., Ltd. | Molded resin strand, method for modeling three-dimensional object, and method for manufacturing molded resin strand |
| CN107614766B (en) * | 2015-04-03 | 2021-04-27 | 明亮简化结构有限责任公司 | Apparatus and related methods for controllably cutting fibers |
| WO2016196382A1 (en) | 2015-06-01 | 2016-12-08 | Velo3D, Inc. | Three-dimensional printing and three-dimensional objects formed using the same |
| DE102015109855A1 (en) | 2015-06-19 | 2016-12-22 | Airbus Operations Gmbh | Method for producing components, in particular elongated profiles from strip-shaped, pre-impregnated fibers (prepreg) |
| CN105034366B (en) * | 2015-06-30 | 2017-06-16 | 英华达(上海)科技有限公司 | A kind of detection method of 3D printer and its printing reduction degree |
| DE102015008313A1 (en) * | 2015-06-30 | 2017-01-05 | Airbus Defence and Space GmbH | Device and method |
| US11571278B2 (en) | 2015-07-07 | 2023-02-07 | Align Technology, Inc. | Systems, apparatuses and methods for dental appliances with integrally formed features |
| US11045282B2 (en) | 2015-07-07 | 2021-06-29 | Align Technology, Inc. | Direct fabrication of aligners with interproximal force coupling |
| WO2017006178A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Systems, apparatuses and methods for substance delivery from dental appliances and for ornamental designs on dental appliances |
| US11419710B2 (en) | 2015-07-07 | 2022-08-23 | Align Technology, Inc. | Systems, apparatuses and methods for substance delivery from dental appliance |
| US11642194B2 (en) | 2015-07-07 | 2023-05-09 | Align Technology, Inc. | Multi-material aligners |
| US10492888B2 (en) | 2015-07-07 | 2019-12-03 | Align Technology, Inc. | Dental materials using thermoset polymers |
| US11576750B2 (en) | 2015-07-07 | 2023-02-14 | Align Technology, Inc. | Direct fabrication of aligners for arch expansion |
| EP3319800A4 (en) | 2015-07-09 | 2019-04-24 | Something3d Ltd. | Method and apparatus for three dimensional printing |
| US9944016B2 (en) | 2015-07-17 | 2018-04-17 | Lawrence Livermore National Security, Llc | High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites |
| US20170015060A1 (en) | 2015-07-17 | 2017-01-19 | Lawrence Livermore National Security, Llc | Additive manufacturing continuous filament carbon fiber epoxy composites |
| US9926796B2 (en) | 2015-07-28 | 2018-03-27 | General Electric Company | Ply, method for manufacturing ply, and method for manufacturing article with ply |
| US10343355B2 (en) | 2015-07-31 | 2019-07-09 | The Boeing Company | Systems for additively manufacturing composite parts |
| US10131132B2 (en) | 2015-07-31 | 2018-11-20 | The Boeing Company | Methods for additively manufacturing composite parts |
| US10195784B2 (en) | 2015-07-31 | 2019-02-05 | The Boeing Company | Systems for additively manufacturing composite parts |
| US10232550B2 (en) | 2015-07-31 | 2019-03-19 | The Boeing Company | Systems for additively manufacturing composite parts |
| US10201941B2 (en) | 2015-07-31 | 2019-02-12 | The Boeing Company | Systems for additively manufacturing composite parts |
| US10343330B2 (en) | 2015-07-31 | 2019-07-09 | The Boeing Company | Systems for additively manufacturing composite parts |
| US10232570B2 (en) | 2015-07-31 | 2019-03-19 | The Boeing Company | Systems for additively manufacturing composite parts |
| US10582619B2 (en) | 2015-08-24 | 2020-03-03 | Board Of Regents, The University Of Texas System | Apparatus for wire handling and embedding on and within 3D printed parts |
| WO2017035313A1 (en) | 2015-08-25 | 2017-03-02 | University Of South Carolina | Integrated robotic 3d printing system for printing of fiber reinforced parts |
| US10464268B2 (en) | 2015-08-25 | 2019-11-05 | The Boeing Company | Composite feedstock strips for additive manufacturing and methods of forming thereof |
| US10357924B2 (en) | 2015-08-25 | 2019-07-23 | The Boeing Company | Composite feedstock strips for additive manufacturing and methods of forming thereof |
| US10336056B2 (en) | 2015-08-31 | 2019-07-02 | Colorado School Of Mines | Hybrid additive manufacturing method |
| GB201516943D0 (en) | 2015-09-24 | 2015-11-11 | Victrex Mfg Ltd | Polymeric materials |
| US10207426B2 (en) | 2015-10-14 | 2019-02-19 | Northrop Grumman Systems Corporation | Continuous fiber filament for fused deposition modeling (FDM) additive manufactured (AM) structures |
| US11097440B2 (en) | 2015-11-05 | 2021-08-24 | United States Of America As Represented By The Administrator Of Nasa | Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof |
| US10513080B2 (en) | 2015-11-06 | 2019-12-24 | United States Of America As Represented By The Administrator Of Nasa | Method for the free form fabrication of articles out of electrically conductive filaments using localized heating |
| US10500836B2 (en) | 2015-11-06 | 2019-12-10 | United States Of America As Represented By The Administrator Of Nasa | Adhesion test station in an extrusion apparatus and methods for using the same |
| US10471654B2 (en) * | 2015-11-09 | 2019-11-12 | Nike, Inc. | Selective attachment of a yarn structure |
| US9889606B2 (en) | 2015-11-09 | 2018-02-13 | Nike, Inc. | Tack and drag printing |
| US10894353B2 (en) | 2015-11-09 | 2021-01-19 | United States Of America As Represented By The Administrator Of Nasa | Devices and methods for additive manufacturing using flexible filaments |
| EP3168034A1 (en) | 2015-11-12 | 2017-05-17 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for additive production of a component |
| CN108495740A (en) | 2015-11-17 | 2018-09-04 | 泽菲罗斯公司 | Increasing material manufacturing material system |
| ITUB20155642A1 (en) | 2015-11-17 | 2017-05-17 | Milano Politecnico | Equipment and method for three-dimensional printing of continuous fiber composite materials |
| US10150262B2 (en) | 2015-11-20 | 2018-12-11 | The Boeing Company | System and method for cutting material in continuous fiber reinforced additive manufacturing |
| US20170151728A1 (en) | 2015-11-30 | 2017-06-01 | Ut-Battelle, Llc | Machine and a Method for Additive Manufacturing with Continuous Fiber Reinforcements |
| US10625466B2 (en) | 2015-12-08 | 2020-04-21 | Xerox Corporation | Extrusion printheads for three-dimensional object printers |
| US10173410B2 (en) * | 2015-12-08 | 2019-01-08 | Northrop Grumman Systems Corporation | Device and method for 3D printing with long-fiber reinforcement |
| US10456968B2 (en) | 2015-12-08 | 2019-10-29 | Xerox Corporation | Three-dimensional object printer with multi-nozzle extruders and dispensers for multi-nozzle extruders and printheads |
| US10335991B2 (en) | 2015-12-08 | 2019-07-02 | Xerox Corporation | System and method for operation of multi-nozzle extrusion printheads in three-dimensional object printers |
| WO2017100783A1 (en) | 2015-12-11 | 2017-06-15 | Massachusetts Institute Of Technology | Systems, devices, and methods for deposition-based three-dimensional printing |
| DE102015122647A1 (en) | 2015-12-22 | 2017-06-22 | Arburg Gmbh + Co. Kg | Device and method for producing a three-dimensional object with a fiber feed device |
| US10369742B2 (en) | 2015-12-28 | 2019-08-06 | Southwest Research Institute | Reinforcement system for additive manufacturing, devices and methods using the same |
| EP3402653B1 (en) | 2016-01-12 | 2023-03-08 | Markforged, Inc. | Embedding 3d printed fiber reinforcement in molded articles |
| KR101755015B1 (en) | 2016-01-14 | 2017-07-06 | 주식회사 키스타 | Transformer controlling movement of head unit and tension and temperature of plastic formable material |
| KR101826970B1 (en) | 2016-01-14 | 2018-02-07 | 주식회사 키스타 | Raw material feeding apparatus for feeding raw material made of plastic formable materials, and three-dimensional product manufacturing robot having the same |
| KR101785703B1 (en) | 2016-01-14 | 2017-10-17 | 주식회사 키스타 | Head unit and head supply unit for controlling discharge of raw material made of plastic formable materials |
| AU2017208085B2 (en) | 2016-01-15 | 2019-09-12 | Markforged, Inc. | Continuous and random reinforcement in a 3D printed part |
| JP6251925B2 (en) | 2016-01-22 | 2017-12-27 | 国立大学法人岐阜大学 | Manufacturing method of three-dimensional structure and filament for 3D printer |
| JP6602678B2 (en) | 2016-01-22 | 2019-11-06 | 国立大学法人岐阜大学 | Manufacturing method of three-dimensional structure |
| EP3414080A2 (en) | 2016-02-11 | 2018-12-19 | Martin Kuster | Movable printing devices for three-dimensional printers |
| WO2017142867A1 (en) | 2016-02-15 | 2017-08-24 | Georgia-Pacific Chemicals Llc | Extrusion additive manufacturing of pellets or filaments of thermosetting resins |
| WO2017150186A1 (en) | 2016-02-29 | 2017-09-08 | 学校法人日本大学 | Three-dimensional printing apparatus and three-dimensional printing method |
| EP3426474B1 (en) | 2016-03-10 | 2023-10-25 | Mantis Composites Inc. | Additive manufacturing of composites |
| EP3219474B1 (en) | 2016-03-16 | 2019-05-08 | Airbus Operations GmbH | Method and device for 3d-printing a fiber reinforced composite component by tape-laying |
| US10052813B2 (en) | 2016-03-28 | 2018-08-21 | Arevo, Inc. | Method for additive manufacturing using filament shaping |
| US10234342B2 (en) | 2016-04-04 | 2019-03-19 | Xerox Corporation | 3D printed conductive compositions anticipating or indicating structural compromise |
| US10884388B2 (en) * | 2016-09-06 | 2021-01-05 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
| US10040240B1 (en) * | 2017-01-24 | 2018-08-07 | Cc3D Llc | Additive manufacturing system having fiber-cutting mechanism |
| WO2019078974A1 (en) * | 2017-10-20 | 2019-04-25 | Desktop Metal, Inc. | Nozzle servicing techniques for additive fabrication systems |
| US10981640B2 (en) * | 2018-07-16 | 2021-04-20 | The Boeing Company | Method and system for verification of tow end placement |
| US20200086563A1 (en) * | 2018-09-13 | 2020-03-19 | Cc3D Llc | System and head for continuously manufacturing composite structure |
-
2019
- 2019-05-28 US US16/424,381 patent/US20200086563A1/en not_active Abandoned
- 2019-05-31 WO PCT/US2019/034837 patent/WO2020055466A1/en not_active Ceased
- 2019-07-18 US US16/516,119 patent/US11235539B2/en active Active
- 2019-07-26 WO PCT/US2019/043735 patent/WO2020055513A1/en not_active Ceased
- 2019-08-01 US US16/528,964 patent/US20200086565A1/en not_active Abandoned
- 2019-08-03 US US16/531,055 patent/US11338528B2/en active Active
-
2021
- 2021-12-08 US US17/643,321 patent/US20220097315A1/en not_active Abandoned
- 2021-12-08 US US17/643,339 patent/US20220097316A1/en not_active Abandoned
-
2022
- 2022-04-20 US US17/659,968 patent/US20220242060A1/en not_active Abandoned
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220184882A1 (en) * | 2019-01-25 | 2022-06-16 | Continuous Composites Inc. | System for additively manufacturing composite structure |
| US11485070B2 (en) * | 2019-01-25 | 2022-11-01 | Continuous Composites Inc. | System for additively manufacturing composite structure |
Also Published As
| Publication number | Publication date |
|---|---|
| US20220242060A1 (en) | 2022-08-04 |
| US20220097315A1 (en) | 2022-03-31 |
| WO2020055466A1 (en) | 2020-03-19 |
| US20200086587A1 (en) | 2020-03-19 |
| US11338528B2 (en) | 2022-05-24 |
| US11235539B2 (en) | 2022-02-01 |
| US20200086574A1 (en) | 2020-03-19 |
| US20220097316A1 (en) | 2022-03-31 |
| WO2020055513A1 (en) | 2020-03-19 |
| US20200086563A1 (en) | 2020-03-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20200086565A1 (en) | System and head for continuously manufacturing composite structure | |
| US11220048B2 (en) | Additive manufacturing method for discharging interlocking continuous reinforcement | |
| US11014290B2 (en) | Additive manufacturing system having automated reinforcement threading | |
| US11325304B2 (en) | System and method for additive manufacturing | |
| US11130285B2 (en) | Print head and method for printing composite structure and temporary support | |
| US10807303B2 (en) | Additive manufacturing system implementing hardener pre-impregnation | |
| US10932325B2 (en) | Additive manufacturing system and method for discharging coated continuous composites | |
| US10967569B2 (en) | Additive manufacturing system having interchangeable nozzle tips | |
| US11400643B2 (en) | System for additively manufacturing composite structure | |
| US20190202119A1 (en) | System and print head for continuously manufacturing composite structure | |
| US11110654B2 (en) | System and print head for continuously manufacturing composite structure | |
| US20220242040A1 (en) | System and head for continuously manufacturing composite structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: CONTINUOUS COMPOSITES INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAMBLING, COLIN HUGH;BUDGE, TREVOR DAVID;STOCKETT, RYAN;REEL/FRAME:052956/0401 Effective date: 20190729 |
|
| AS | Assignment |
Owner name: CONTINUOUS COMPOSITES INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAMBLING, COLIN HUGH;BUDGE, TREVOR DAVID;STOCKETT, RYAN;REEL/FRAME:053231/0407 Effective date: 20190729 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PRE-INTERVIEW COMMUNICATION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |