[go: up one dir, main page]

US20190376991A1 - Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments - Google Patents

Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments Download PDF

Info

Publication number
US20190376991A1
US20190376991A1 US16/316,057 US201716316057A US2019376991A1 US 20190376991 A1 US20190376991 A1 US 20190376991A1 US 201716316057 A US201716316057 A US 201716316057A US 2019376991 A1 US2019376991 A1 US 2019376991A1
Authority
US
United States
Prior art keywords
condition
vitro diagnostic
instrument
diagnostic instrument
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/316,057
Inventor
Arnold Rudorfer
Steven Magowan
Govindraj Peesapati
Robert Kachelries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare Diagnostics Inc
Original Assignee
Siemens Healthcare Diagnostics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Healthcare Diagnostics Inc filed Critical Siemens Healthcare Diagnostics Inc
Priority to US16/316,057 priority Critical patent/US20190376991A1/en
Assigned to SIEMENS HEALTHCARE DIAGNOSTICS INC. reassignment SIEMENS HEALTHCARE DIAGNOSTICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KACHELRIES, Robert, PEESAPATI, Govindraj, RUDORFER, ARNOLD, MAGOWAN, Steven
Publication of US20190376991A1 publication Critical patent/US20190376991A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00623Quality control of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/40ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management of medical equipment or devices, e.g. scheduling maintenance or upgrades
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32287Medical, chemical, biological laboratory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34477Fault prediction, analyzing signal trends
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45169Medical, rontgen, x ray

Definitions

  • the present disclosure relates to methods and apparatus adapted to predict failures in instruments.
  • automated apparatus such as in vitro diagnostic instruments may include the use of robotics and are used to test and/or process biological liquids (otherwise referred to herein as “specimens”).
  • Such automated apparatus are complex and from time-to-time may experience failures (e.g., malfunctions).
  • Certain types of recurring malfunctions are relative easy to diagnose and the apparatus themselves may generate an “error code,” which will lead the user to a set of instructions that provide a solution to rectify the malfunction.
  • error code which will lead the user to a set of instructions that provide a solution to rectify the malfunction.
  • these types of solutions may be problematic.
  • a method of predicting failures of an in vitro diagnostic instrument includes monitoring, via one or more monitoring devices associated with one or more components of the in vitro diagnostic instrument, one or more condition-based maintenance parameters of the in vitro diagnostic instrument; providing the one or more condition-based maintenance parameters of the in vitro diagnostic instrument to a local database; transmitting condition-based maintenance data to a remote server; storing the condition-based maintenance data at the remote server; analyzing the condition-based maintenance data according to a failure prediction engine including failure prediction criteria; and performing an action based on predefined deviation from the failure prediction criteria.
  • an in vitro diagnostic instrument maintenance apparatus includes one or more monitoring devices configured to monitor condition-based parameters of one or more instrument components; a local server coupled to the one or more monitoring devices, the local server including: an instrument check module configured to test functionality of the one or more instrument components, and obtain the condition-based parameters of the one or more instrument components; a local database configured to contain a compilation of the condition-based parameters; a remote server configured to communicate with the local server and configured to receive and store the condition-based parameters in a condition-based parameter database, the remote server including: a failure prediction engine, and a failure rules model.
  • an in vitro diagnostic instrument maintenance apparatus includes monitoring devices configured to monitor condition-based parameters of instrument components of an in vitro diagnostic instrument; a local workstation server of the in vitro diagnostic instrument coupled to the monitoring devices, the local workstation server including: an instrument check module configured to test functionality of the instrument components, and obtain the condition-based parameters of the instrument components; a local database configured to contain a compilation of the condition-based parameters; a remote server configured to communicate with the local workstation server and configured to receive and store the condition-based parameters in a condition-based parameter database, the remote server including: a failure prediction engine, and a failure rules model.
  • FIG. 1 illustrates a schematic diagram of an in vitro diagnostic instrument maintenance apparatus for multiple instruments at a location according to one or more embodiments.
  • FIG. 2 illustrates a schematic functional diagram of an in vitro diagnostic instrument maintenance apparatus according to one or more embodiments.
  • FIG. 3 illustrates a schematic diagram of an in vitro diagnostic instrument maintenance apparatus for a single instrument at a location according to one or more embodiments.
  • FIG. 4 illustrates a flowchart of a method of predicting failures of an in vitro diagnostic instrument according one or more embodiments to embodiments.
  • failures in automated medical testing and processing equipment are typically diagnosed after they occur, such as by the operator receiving an equipment-generated error code indicating that a malfunction has occurred, and providing instructions on how to rectify the identified malfunction.
  • This after-the-fact, reactionary approach although adequate for malfunction diagnosis in the in vitro diagnostic instruments, may result in excessive repair downtime, and possibly extra labor costs due to overtime for unnecessarily-urgent repairs.
  • an in vitro diagnostic instrument maintenance apparatus and method helps to detect upcoming or impending failures.
  • the method and apparatus measures performance of one or more specific condition-based maintenance parameters (hereinafter “CBM parameters”) in order to make predictions about impending malfunctions.
  • CBM parameters condition-based maintenance parameters
  • a failure prediction engine may compare the one or more measured CBM parameters against a pattern library of “normal” parameters that are indicative of normal behavior. If the measured value of the CBM parameter over time is deviating from the “normal” as identified by a CBM failure prediction engine, appropriate actions can be undertaken to address the deviation.
  • the identification of a deviating CBM parameter may be indicative of deterioration (e.g., wear or impending failure) of a component (motor, heating unit, carousel, pump, valve, aspiration/dispense system, interfaces between sub-systems, processors, power supplies, or the like).
  • a CBM parameter deviation of a predefined magnitude e.g., slope above a predetermined magnitude
  • Such in vitro diagnostic instrument maintenance apparatus and methods may provide one or more benefits and/or advantages, such as: 1) reduced instrument down-time by knowing upfront what the root-cause and what needs to be fixed, 2) reduced mean time to repair by having the right set of components (spare parts) available (in advance) to replace the defective ones, 3) ability to schedule repairs at opportune times, 4) increased first time repair rates, and/or 5 ) reduction in service spare parts by knowing upfront which components are most likely to fail.
  • one or more embodiments of the disclosure provides methods and apparatus configured and operable to rapidly identify and notify an operator of an impending malfunction of an in vitro diagnostic instrument.
  • the in vitro instrument maintenance apparatus 100 includes one or more monitoring devices 102 A, 102 B configured to monitor condition-based parameters of one or more instrument components of one or more instruments 104 A- 104 N.
  • One or more than one instrument 104 - 104 N may be monitored.
  • the one or more instruments 104 A- 104 N may comprise one or more testing and/or processing apparatus, such as clinical chemistry testing apparatus, immuno-assay testing apparatus, vessel mover, sample handler, and/or the like.
  • One or more than one of the components of the testing and/or processing apparatus of one or more of the instruments 104 A- 104 N may be monitored.
  • the components of the instruments 104 A- 104 N being monitored may be one or more motors, pumps, probes, aspiration/dispense systems, valves, reservoirs, lines, moving components, and/or the like.
  • Monitoring by the monitoring devices 102 A, 102 B may be by way of sensors or current and/or voltage sensors/taps on electrical circuits, or other suitable devices. Sensors may be used, for example, to monitor time, distance, position, strain, drift, load, resistance (friction or electrical), speed, acceleration, temperature, # of cycles, component level, light presence, intensity, and/or gradients, pressure and/or vacuum levels, fluid level, flow, leaks, or fluid presence or absence, fluid constituent concentration or condition, bubbles, vibration, noise, capacitance, contamination, contact, closure, state, proximity, or the like of various subcomponents.
  • Sensors may be used, for example, to monitor time, distance, position, strain, drift, load, resistance (friction or electrical), speed, acceleration, temperature, # of cycles, component level, light presence, intensity, and/or gradients, pressure and/or vacuum levels, fluid level, flow, leaks, or fluid presence or absence, fluid constituent concentration or condition, bubbles, vibration, noise, capacitance, contamination, contact, closure, state,
  • Condition of pumps, motors, or other electrical components may be monitored by current and/or voltage taps on electrical circuits that are coupled to the motors, pumps, and/or other electrical components. Backlash or other types of degradation may be monitored.
  • software-related CBM parameters may be monitored, such as bar code reader cycles (or reads and/or failures), component connectivity, processor crashes, restarts, CPU utilization, memory usage, or the like. Derivatives and/or integrals, or other manipulations of measured values of any of the above may be obtained and monitored.
  • the in vitro instrument maintenance apparatus 100 may include a local data server 106 coupled to the one or more monitoring devices 102 A, 102 B.
  • the coupling may be by way of a network 108 , such as a suitable wired or wireless network.
  • Each of the monitoring devices 102 A, 102 B may include a conditioning/communication circuit (e.g., CC circuit 103 ) that is operable to processes the signal from the monitoring device 102 A, 102 B and provide it in proper form for communication to the local data server 106 through the network 108 .
  • Network 108 may be a local area network (LAN), wireless local area network (WLAN), power line communication (PLC) network, or the like. Other suitable networks may be used.
  • the local data server 106 may be any suitable computer device including a processor 110 , memory 112 , and communication interface 114 .
  • Communication interface 114 may include any suitable device or devices enabling communication with the network 108 and the internet 116 , such as Ethernet adapter, and a router and/or modem, or the like.
  • Local data server 106 may include a checking module 118 (otherwise referred to as an instrument check/device check component), which may be configured to: test functionality of the one or more components of one or more devices included in the instruments 104 A- 104 N.
  • the one or more devices may be one or more analyzers, a sample handler, vessel mover, pre-analytic module (e.g., centrifuge), post-analytic module, decapper, recapper, or the like of an in vitro diagnostic instrument 104 A- 104 N.
  • checking module 118 may obtain the condition-based parameters of the one or more instrument components such as a pressure signal value, an acceleration value, a motor anomaly such as backlash or slop, a velocity value (linear or rotational), a displacement value (linear or rotational), a current value, a voltage value, a power value, a state, a light (e.g., photometer) reading, a level reading, a noise reading, transducer or sensor noise level, a valve condition reading, a fluid condition reading (e.g., pH), and/or the like. Derivatives, integrals, or other manipulations of the above may be used as the end CBM parameter that is monitored.
  • Data on functionality and condition-based parameters of the one or more instrument components may be stored in memory 112 in a local database 120 .
  • Data may include time stamps as well as absolute values.
  • Local database 120 may be configured to contain a compilation of the condition-based parameters for each instrument 104 A- 104 N being thus monitored. The compilation may include the data sampled over time, and may include maximum value, minimum value, mean value, and/or standard deviation.
  • the local database 120 may receive condition-based parameters from multiple instruments 104 A- 104 N. Sampling may be taken at any suitable interval, such as every minute, day, week, upon startup, or any other time period.
  • the apparatus 100 may include a remote server, such as a CBM analysis server 122 shown, that may be configured to communicate with the local data server 106 . Communication may be via communication interface 123 communicating with local data server 106 through the internet 116 , for example.
  • Remote server e.g., CBM analysis server 122
  • CBM analysis server 122 which may be at a different facility than local data server 106 , may receive and store data on the CBM parameters and functionality data from the local data server 106 in memory 124 , such as in a condition-based maintenance (CBM) parameter database 125 .
  • the data may include the previously-mentioned raw data, time stamps, and may include maximum, minimum, mean, and/or standard deviation data of the various instrument components. Other suitable related or associated data may be included.
  • the CBM analysis server 122 may also include a failure prediction engine module 126 , and a failure rules model 128 configured as software or a combination of hardware and software.
  • the failure prediction engine module 126 uses the data on CBM parameters from the one or more instruments 104 A- 104 N to generate predictions of impending failures of components thereof.
  • data over time may be collected for condition-based parameters such as pump backlash of multiple pumps of an aliquotter, IMT Probe, reagent arm location, sample probe pressure and/or location, and/or other components.
  • the collected condition-based parameters may be compared against failure patterns and/or normal patterns stored in a failure pattern library 130 . If the collected condition-based parameters over time are determined to be dissimilar enough (from a normal pattern) or similar enough (as compared to a failure pattern) from a corresponding pattern stored in the failure pattern library 130 , then the failure rules module 132 may be triggered.
  • the degree of dissimilarity may be determined by exceeding one or more thresholds or any other pattern recognition method.
  • a deviation from normal of a suitable magnitude above one or more threshold magnitudes is noted as denoting a failure pattern, wherein normal patterns may be stored in the failure pattern library 130 .
  • a solver may also provide some indication of the confidence level in the failure prediction, based on the degree of similarity or difference.
  • failure patterns may be stored in the failure pattern library 130 and failure may be determined based on the degree of likeness of the measured to the stored failure pattern. Likeness may be determined by being above certain thresholds or within pre-established threshold bands.
  • Other suitable means for determining the similarity or difference may involve curve fitting and goodness of fit, multi- or linear regression analysis, non-linear regression analysis, Mahanobolis distance analysis, decision trees, or the like.
  • a rule is collected from the rules database 133 and fired and a suitable action is launched by the failure rules module 132 .
  • the actions may be as provided in block 234 of FIG. 2 .
  • the action may be an alert that provides a warning to the local operator 134 through the data server user interface 136 .
  • the warning may be provided through a visual warning (e.g., displayed on a visual display monitor) to the local operator 134 and/or a remote operator 140 that a component of an instrument 104 A- 104 N is about to malfunction.
  • An audible warning may also be initiated.
  • a service call (e.g., service ticket) may be initiated to an instrument manufacture or servicer, wherein a service technician is sent to the location of the instrument 104 A- 104 N to repair the component that has been flagged as being subject to an impending failure on the instrument 104 A- 104 N. Suitable spare parts may be taken with the service technician based upon knowledge of the impending failure provided by failure rules module 132 .
  • a CBM data manager 138 may be configured as software or a combination of software and hardware and may facilitate exchange of data between the failure prediction engine module 126 and the CBM Parameter database 125 . Further, CBM data manager 138 may initiate pull of CBM parameters from the local database 120 through communication interface 123 as commanded via input from the remote operator 140 through analysis server user interface 142 .
  • the CBM data manager 138 may initiate pull of the CBM parameter data from the local database 120 at preprogrammed intervals, such as hourly, daily, or other suitable intervals.
  • the checking module 118 may be preprogrammed to push the data to the CBM analysis server 122 via the communication interface 114 at preprogramed intervals, such as hourly, daily, or other suitable intervals.
  • the local operator 134 may initiate, via suitable commands, a push of the CBM data to the CBM analysis server 122 via the communication interface 114 .
  • a communication monitor 145 may be included to identify the identity of the local data server (e.g., local data server 106 ) and respond as to the completeness of respective communications and data transmission therefrom.
  • an in vitro diagnostic instrument maintenance apparatus 300 is shown and described with reference to FIG. 3 .
  • the in vitro diagnostic instrument maintenance apparatus 300 includes monitoring devices 102 A- 102 N configured to monitor condition-based parameters of instrument components 104 1 - 104 N of an in vitro diagnostic instrument 104 A. Monitoring devices 102 A- 102 N may be as discussed herein above. Multiple components of the in vitro diagnostic instrument 104 A may be monitored.
  • the in vitro diagnostic instrument 104 A may include a local workstation server 306 of the in vitro diagnostic instrument 104 A coupled to the monitoring devices 102 A- 102 N.
  • the local workstation server 306 is configured to operate the components 104 1 - 104 N and one or more devices of the in vitro diagnostic instrument 104 A.
  • the local workstation server 306 may include, as previously described, a checking module 118 configured to: test functionality of the instrument components 104 1 - 104 N , and obtain the condition-based parameters of the instrument components 104 1 - 104 N , which are stored in memory 112 .
  • the local workstation server 306 may include a local database 120 configured to contain a compilation of the condition-based parameters.
  • the in vitro diagnostic instrument maintenance apparatus 300 may include a remote server (e.g., a CBM analysis server 122 ) as previously described.
  • CBM analysis server 122 may be configured to communicate with the local server (e.g., local workstation server 306 ) and configured to receive and store the condition-based parameters in the CBM parameter database 125 , wherein the remote server (e.g., a CBM analysis server 122 ) includes a failure prediction engine module 126 , and a failure rules module 132 , which function to predict impending failure and issue corrective actions.
  • CBM parameters and data from other in vitro diagnostic instruments may also be provided to the remote server (e.g., CBM Analysis server 122 ) through communication through the internet 116 as indicated by arrow 344 .
  • a method 400 of predicting failures of an in vitro diagnostic instrument (e.g., in vitro diagnostic instrument 104 A- 104 N) is provided.
  • the method 400 includes, in 402 , monitoring, via one or more monitoring devices (e.g., 102 A- 102 N) associated with one or more components (e.g., components 104 1 - 104 N ) of the in vitro diagnostic instrument, one or more condition-based maintenance parameters of the in vitro diagnostic instrument.
  • Data on functionality of the e.g., instrument components 104 1 - 104 N ) may also be monitored.
  • the method includes providing the one or more condition-based maintenance parameters of the in vitro diagnostic instrument to a local database (e.g., to local database 120 ). Any suitable sampling routine may be used.
  • the condition-based maintenance data is transmitted to a remote server (e.g., CBM analysis server 122 ). Transmission may be automatic at any suitable interval or initiated by local operator 134 or remote operator 140 .
  • the method 400 includes storing the condition-based maintenance data at the remote server (e.g., in CBM parameter database 125 ), such as in a CBM parameter database 125 in memory 124 .
  • the method 400 further includes, in 410 , analyzing the condition-based maintenance data according to a failure prediction engine (e.g., failure prediction engine module 126 ) including failure prediction criteria.
  • the failure prediction criteria may be a pattern wherein a pattern of the condition-based maintenance data is compared against known (previously collected) patterns in the failure pattern library 130 for that component. Any suitable method for comparison may be used, such as threshold based comparisons, wherein if a preselected threshold is exceeded, then a failure may be predicted to occur.
  • the method 400 further includes, in 412 , performing an action based on predefined deviation from the failure prediction criteria. For example, if the deviation is above a defined threshold amount then an action may be undertaken; otherwise, the CBM analysis server 122 continues to monitor the component.
  • Actions may include alerts (e.g., warnings, request for additional information, such as input from the local operator 134 , requests for further functionality data or condition-based maintenance data by either the local operator 134 or remote operator 140 , or scheduling of maintenance including possibly ordering replacement parts for worn or parts that have been flagged by the method for impending failure.
  • alerts e.g., warnings, request for additional information, such as input from the local operator 134 , requests for further functionality data or condition-based maintenance data by either the local operator 134 or remote operator 140 , or scheduling of maintenance including possibly ordering replacement parts for worn or parts that have been flagged by the method for impending failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Biomedical Technology (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Methods of predicting failures of in vitro diagnostic instruments. The methods include monitoring with one or more monitoring devices associated with one or more components of the in vitro diagnostic instrument, one or more condition-based maintenance (CBM) parameters of the in vitro diagnostic instrument, providing the one or more condition-based maintenance parameters to a local database, transmitting condition-based maintenance data to a remote service location, storing the condition-based maintenance data at the remote service location, analyzing the condition-based maintenance data according to a failure prediction engine including failure prediction criteria, and performing an action based on predefined deviation from the failure prediction criteria. Apparatus configured to carry out the methods are provided, as are other aspects.

Description

    RELATED APPLICATION
  • This application claims priority to U.S. Provisional Application Ser. No. 62/366,360 entitled “METHODS AND APPARATUS FOR PREDICTING AND PREVENTING FAILURE OF IN VITRO DIAGNOSTIC INSTRUMENTS” filed on Jul. 25, 2016, the disclosure of which is hereby incorporated by reference in its entirety herein.
  • FIELD
  • The present disclosure relates to methods and apparatus adapted to predict failures in instruments.
  • BACKGROUND
  • In medical testing and processing, automated apparatus such as in vitro diagnostic instruments may include the use of robotics and are used to test and/or process biological liquids (otherwise referred to herein as “specimens”). Such automated apparatus are complex and from time-to-time may experience failures (e.g., malfunctions). Certain types of recurring malfunctions are relative easy to diagnose and the apparatus themselves may generate an “error code,” which will lead the user to a set of instructions that provide a solution to rectify the malfunction. However, these types of solutions may be problematic.
  • Accordingly, methods and apparatus that may improve upon malfunction solutions in such in vitro diagnostic instruments are sought after.
  • SUMMARY
  • In one method embodiment, a method of predicting failures of an in vitro diagnostic instrument is provided. The method includes monitoring, via one or more monitoring devices associated with one or more components of the in vitro diagnostic instrument, one or more condition-based maintenance parameters of the in vitro diagnostic instrument; providing the one or more condition-based maintenance parameters of the in vitro diagnostic instrument to a local database; transmitting condition-based maintenance data to a remote server; storing the condition-based maintenance data at the remote server; analyzing the condition-based maintenance data according to a failure prediction engine including failure prediction criteria; and performing an action based on predefined deviation from the failure prediction criteria.
  • In an apparatus embodiment, an in vitro diagnostic instrument maintenance apparatus is provided. The apparatus includes one or more monitoring devices configured to monitor condition-based parameters of one or more instrument components; a local server coupled to the one or more monitoring devices, the local server including: an instrument check module configured to test functionality of the one or more instrument components, and obtain the condition-based parameters of the one or more instrument components; a local database configured to contain a compilation of the condition-based parameters; a remote server configured to communicate with the local server and configured to receive and store the condition-based parameters in a condition-based parameter database, the remote server including: a failure prediction engine, and a failure rules model.
  • In another embodiment, an in vitro diagnostic instrument maintenance apparatus is provided. The in vitro diagnostic instrument maintenance apparatus includes monitoring devices configured to monitor condition-based parameters of instrument components of an in vitro diagnostic instrument; a local workstation server of the in vitro diagnostic instrument coupled to the monitoring devices, the local workstation server including: an instrument check module configured to test functionality of the instrument components, and obtain the condition-based parameters of the instrument components; a local database configured to contain a compilation of the condition-based parameters; a remote server configured to communicate with the local workstation server and configured to receive and store the condition-based parameters in a condition-based parameter database, the remote server including: a failure prediction engine, and a failure rules model.
  • Still other aspects, features, and advantages of the present disclosure may be readily apparent from the following detailed description illustrating a number of example embodiments. The present invention may also be capable of different embodiments, and its several details may be modified in various respects, all without departing from the scope of the present disclosure. Accordingly, the disclosure is to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure as defined in the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a schematic diagram of an in vitro diagnostic instrument maintenance apparatus for multiple instruments at a location according to one or more embodiments.
  • FIG. 2 illustrates a schematic functional diagram of an in vitro diagnostic instrument maintenance apparatus according to one or more embodiments.
  • FIG. 3 illustrates a schematic diagram of an in vitro diagnostic instrument maintenance apparatus for a single instrument at a location according to one or more embodiments.
  • FIG. 4 illustrates a flowchart of a method of predicting failures of an in vitro diagnostic instrument according one or more embodiments to embodiments.
  • DETAILED DESCRIPTION
  • Failures in automated medical testing and processing equipment (e.g., in vitro diagnostic instruments) are typically diagnosed after they occur, such as by the operator receiving an equipment-generated error code indicating that a malfunction has occurred, and providing instructions on how to rectify the identified malfunction. This after-the-fact, reactionary approach, although adequate for malfunction diagnosis in the in vitro diagnostic instruments, may result in excessive repair downtime, and possibly extra labor costs due to overtime for unnecessarily-urgent repairs.
  • In one or more embodiments, an in vitro diagnostic instrument maintenance apparatus and method helps to detect upcoming or impending failures. The method and apparatus measures performance of one or more specific condition-based maintenance parameters (hereinafter “CBM parameters”) in order to make predictions about impending malfunctions.
  • Knowing the performance of one or more specific CBM parameters, a failure prediction engine may compare the one or more measured CBM parameters against a pattern library of “normal” parameters that are indicative of normal behavior. If the measured value of the CBM parameter over time is deviating from the “normal” as identified by a CBM failure prediction engine, appropriate actions can be undertaken to address the deviation. The identification of a deviating CBM parameter may be indicative of deterioration (e.g., wear or impending failure) of a component (motor, heating unit, carousel, pump, valve, aspiration/dispense system, interfaces between sub-systems, processors, power supplies, or the like). When a CBM parameter deviation of a predefined magnitude (e.g., slope above a predetermined magnitude) is measured, the component can be fixed by a customer service engineer before the instrument stops working.
  • Such in vitro diagnostic instrument maintenance apparatus and methods may provide one or more benefits and/or advantages, such as: 1) reduced instrument down-time by knowing upfront what the root-cause and what needs to be fixed, 2) reduced mean time to repair by having the right set of components (spare parts) available (in advance) to replace the defective ones, 3) ability to schedule repairs at opportune times, 4) increased first time repair rates, and/or 5) reduction in service spare parts by knowing upfront which components are most likely to fail.
  • In view of the foregoing, one or more embodiments of the disclosure provides methods and apparatus configured and operable to rapidly identify and notify an operator of an impending malfunction of an in vitro diagnostic instrument.
  • These and other aspects and features of embodiments of the disclosure will be described with reference to FIGS. 1-4 herein.
  • In accordance with one or more apparatus embodiments, referring to FIGS. 1 and 2, an in vitro instrument maintenance apparatus 100 is shown and described. The in vitro instrument maintenance apparatus 100 includes one or more monitoring devices 102A, 102B configured to monitor condition-based parameters of one or more instrument components of one or more instruments 104A-104N. One or more than one instrument 104-104N may be monitored. The one or more instruments 104A-104N may comprise one or more testing and/or processing apparatus, such as clinical chemistry testing apparatus, immuno-assay testing apparatus, vessel mover, sample handler, and/or the like. One or more than one of the components of the testing and/or processing apparatus of one or more of the instruments 104A-104N may be monitored. The components of the instruments 104A-104N being monitored may be one or more motors, pumps, probes, aspiration/dispense systems, valves, reservoirs, lines, moving components, and/or the like.
  • Monitoring by the monitoring devices 102A, 102B may be by way of sensors or current and/or voltage sensors/taps on electrical circuits, or other suitable devices. Sensors may be used, for example, to monitor time, distance, position, strain, drift, load, resistance (friction or electrical), speed, acceleration, temperature, # of cycles, component level, light presence, intensity, and/or gradients, pressure and/or vacuum levels, fluid level, flow, leaks, or fluid presence or absence, fluid constituent concentration or condition, bubbles, vibration, noise, capacitance, contamination, contact, closure, state, proximity, or the like of various subcomponents. Condition of pumps, motors, or other electrical components may be monitored by current and/or voltage taps on electrical circuits that are coupled to the motors, pumps, and/or other electrical components. Backlash or other types of degradation may be monitored. In other embodiments, software-related CBM parameters may be monitored, such as bar code reader cycles (or reads and/or failures), component connectivity, processor crashes, restarts, CPU utilization, memory usage, or the like. Derivatives and/or integrals, or other manipulations of measured values of any of the above may be obtained and monitored.
  • The in vitro instrument maintenance apparatus 100 may include a local data server 106 coupled to the one or more monitoring devices 102A, 102B. For example, the coupling may be by way of a network 108, such as a suitable wired or wireless network. Each of the monitoring devices 102A, 102B may include a conditioning/communication circuit (e.g., CC circuit 103) that is operable to processes the signal from the monitoring device 102A, 102B and provide it in proper form for communication to the local data server 106 through the network 108. Network 108 may be a local area network (LAN), wireless local area network (WLAN), power line communication (PLC) network, or the like. Other suitable networks may be used.
  • The local data server 106 may be any suitable computer device including a processor 110, memory 112, and communication interface 114. Communication interface 114 may include any suitable device or devices enabling communication with the network 108 and the internet 116, such as Ethernet adapter, and a router and/or modem, or the like.
  • Local data server 106 may include a checking module 118 (otherwise referred to as an instrument check/device check component), which may be configured to: test functionality of the one or more components of one or more devices included in the instruments 104A-104N. For example, the one or more devices may be one or more analyzers, a sample handler, vessel mover, pre-analytic module (e.g., centrifuge), post-analytic module, decapper, recapper, or the like of an in vitro diagnostic instrument 104A-104N. Functionality may be tested by any suitable means, such as reading digital inputs and/or outputs, reading analog inputs, and motor status signals, testing connectivity of motors and/or heaters, and/or verifying that signals are within a normal operating range therefor. In some embodiments, checking module 118 may obtain the condition-based parameters of the one or more instrument components such as a pressure signal value, an acceleration value, a motor anomaly such as backlash or slop, a velocity value (linear or rotational), a displacement value (linear or rotational), a current value, a voltage value, a power value, a state, a light (e.g., photometer) reading, a level reading, a noise reading, transducer or sensor noise level, a valve condition reading, a fluid condition reading (e.g., pH), and/or the like. Derivatives, integrals, or other manipulations of the above may be used as the end CBM parameter that is monitored.
  • Data on functionality and condition-based parameters of the one or more instrument components may be stored in memory 112 in a local database 120. Data may include time stamps as well as absolute values. Local database 120 may be configured to contain a compilation of the condition-based parameters for each instrument 104A-104N being thus monitored. The compilation may include the data sampled over time, and may include maximum value, minimum value, mean value, and/or standard deviation. In the depicted embodiment, the local database 120 may receive condition-based parameters from multiple instruments 104A-104N. Sampling may be taken at any suitable interval, such as every minute, day, week, upon startup, or any other time period.
  • The apparatus 100 may include a remote server, such as a CBM analysis server 122 shown, that may be configured to communicate with the local data server 106. Communication may be via communication interface 123 communicating with local data server 106 through the internet 116, for example. Remote server (e.g., CBM analysis server 122), which may be at a different facility than local data server 106, may receive and store data on the CBM parameters and functionality data from the local data server 106 in memory 124, such as in a condition-based maintenance (CBM) parameter database 125. The data may include the previously-mentioned raw data, time stamps, and may include maximum, minimum, mean, and/or standard deviation data of the various instrument components. Other suitable related or associated data may be included.
  • The CBM analysis server 122 may also include a failure prediction engine module 126, and a failure rules model 128 configured as software or a combination of hardware and software. The failure prediction engine module 126 uses the data on CBM parameters from the one or more instruments 104A-104N to generate predictions of impending failures of components thereof.
  • For example, data over time may be collected for condition-based parameters such as pump backlash of multiple pumps of an aliquotter, IMT Probe, reagent arm location, sample probe pressure and/or location, and/or other components. The collected condition-based parameters may be compared against failure patterns and/or normal patterns stored in a failure pattern library 130. If the collected condition-based parameters over time are determined to be dissimilar enough (from a normal pattern) or similar enough (as compared to a failure pattern) from a corresponding pattern stored in the failure pattern library 130, then the failure rules module 132 may be triggered. The degree of dissimilarity may be determined by exceeding one or more thresholds or any other pattern recognition method. In some embodiments, a deviation from normal of a suitable magnitude above one or more threshold magnitudes is noted as denoting a failure pattern, wherein normal patterns may be stored in the failure pattern library 130. A solver may also provide some indication of the confidence level in the failure prediction, based on the degree of similarity or difference. In other embodiments, failure patterns may be stored in the failure pattern library 130 and failure may be determined based on the degree of likeness of the measured to the stored failure pattern. Likeness may be determined by being above certain thresholds or within pre-established threshold bands. Other suitable means for determining the similarity or difference, as the case may be, may involve curve fitting and goodness of fit, multi- or linear regression analysis, non-linear regression analysis, Mahanobolis distance analysis, decision trees, or the like.
  • Based on the rule for the deviation of that type, a rule is collected from the rules database 133 and fired and a suitable action is launched by the failure rules module 132. For example, the actions may be as provided in block 234 of FIG. 2. In one example, the action may be an alert that provides a warning to the local operator 134 through the data server user interface 136. The warning may be provided through a visual warning (e.g., displayed on a visual display monitor) to the local operator 134 and/or a remote operator 140 that a component of an instrument 104A-104N is about to malfunction. An audible warning may also be initiated. Optionally or additionally, a service call (e.g., service ticket) may be initiated to an instrument manufacture or servicer, wherein a service technician is sent to the location of the instrument 104A-104N to repair the component that has been flagged as being subject to an impending failure on the instrument 104A-104N. Suitable spare parts may be taken with the service technician based upon knowledge of the impending failure provided by failure rules module 132.
  • A CBM data manager 138 may be configured as software or a combination of software and hardware and may facilitate exchange of data between the failure prediction engine module 126 and the CBM Parameter database 125. Further, CBM data manager 138 may initiate pull of CBM parameters from the local database 120 through communication interface 123 as commanded via input from the remote operator 140 through analysis server user interface 142.
  • In other embodiments, the CBM data manager 138 may initiate pull of the CBM parameter data from the local database 120 at preprogrammed intervals, such as hourly, daily, or other suitable intervals. In other embodiments, the checking module 118 may be preprogrammed to push the data to the CBM analysis server 122 via the communication interface 114 at preprogramed intervals, such as hourly, daily, or other suitable intervals. In other embodiments, the local operator 134 may initiate, via suitable commands, a push of the CBM data to the CBM analysis server 122 via the communication interface 114.
  • Other instruments (not shown) coupled to other local servers (not shown) may also provide CBM parameters and functionality data through the internet 116 (as indicated by arrow 144) to communication interface 123 such that failure prediction thereof may also occur in the manner described herein. A communication monitor 145 may be included to identify the identity of the local data server (e.g., local data server 106) and respond as to the completeness of respective communications and data transmission therefrom.
  • In accordance with another embodiment of the disclosure, an in vitro diagnostic instrument maintenance apparatus 300 is shown and described with reference to FIG. 3. The in vitro diagnostic instrument maintenance apparatus 300 includes monitoring devices 102A-102N configured to monitor condition-based parameters of instrument components 104 1-104 N of an in vitro diagnostic instrument 104A. Monitoring devices 102A-102N may be as discussed herein above. Multiple components of the in vitro diagnostic instrument 104A may be monitored.
  • The in vitro diagnostic instrument 104A may include a local workstation server 306 of the in vitro diagnostic instrument 104A coupled to the monitoring devices 102A-102N. The local workstation server 306 is configured to operate the components 104 1-104 N and one or more devices of the in vitro diagnostic instrument 104A. The local workstation server 306 may include, as previously described, a checking module 118 configured to: test functionality of the instrument components 104 1-104 N, and obtain the condition-based parameters of the instrument components 104 1-104 N, which are stored in memory 112. The local workstation server 306 may include a local database 120 configured to contain a compilation of the condition-based parameters.
  • The in vitro diagnostic instrument maintenance apparatus 300 may include a remote server (e.g., a CBM analysis server 122) as previously described. CBM analysis server 122 may be configured to communicate with the local server (e.g., local workstation server 306) and configured to receive and store the condition-based parameters in the CBM parameter database 125, wherein the remote server (e.g., a CBM analysis server 122) includes a failure prediction engine module 126, and a failure rules module 132, which function to predict impending failure and issue corrective actions. CBM parameters and data from other in vitro diagnostic instruments (not shown) may also be provided to the remote server (e.g., CBM Analysis server 122) through communication through the internet 116 as indicated by arrow 344.
  • In accordance with another embodiment of the disclosure, a method 400 of predicting failures of an in vitro diagnostic instrument (e.g., in vitro diagnostic instrument 104A-104N) is provided. The method 400 includes, in 402, monitoring, via one or more monitoring devices (e.g., 102A-102N) associated with one or more components (e.g., components 104 1-104 N) of the in vitro diagnostic instrument, one or more condition-based maintenance parameters of the in vitro diagnostic instrument. Data on functionality of the (e.g., instrument components 104 1-104 N) may also be monitored. In 404, the method includes providing the one or more condition-based maintenance parameters of the in vitro diagnostic instrument to a local database (e.g., to local database 120). Any suitable sampling routine may be used. In 406, the condition-based maintenance data is transmitted to a remote server (e.g., CBM analysis server 122). Transmission may be automatic at any suitable interval or initiated by local operator 134 or remote operator 140. In 408, the method 400 includes storing the condition-based maintenance data at the remote server (e.g., in CBM parameter database 125), such as in a CBM parameter database 125 in memory 124.
  • The method 400 further includes, in 410, analyzing the condition-based maintenance data according to a failure prediction engine (e.g., failure prediction engine module 126) including failure prediction criteria. The failure prediction criteria may be a pattern wherein a pattern of the condition-based maintenance data is compared against known (previously collected) patterns in the failure pattern library 130 for that component. Any suitable method for comparison may be used, such as threshold based comparisons, wherein if a preselected threshold is exceeded, then a failure may be predicted to occur. The method 400 further includes, in 412, performing an action based on predefined deviation from the failure prediction criteria. For example, if the deviation is above a defined threshold amount then an action may be undertaken; otherwise, the CBM analysis server 122 continues to monitor the component. Actions may include alerts (e.g., warnings, request for additional information, such as input from the local operator 134, requests for further functionality data or condition-based maintenance data by either the local operator 134 or remote operator 140, or scheduling of maintenance including possibly ordering replacement parts for worn or parts that have been flagged by the method for impending failure.
  • While specific apparatus and methods have been shown by way of example embodiments herein, it should be understood that other and different embodiments are possible. It is intended that the disclosure is to cover all modifications, equivalents, and alternatives falling within the scope of the claims.

Claims (20)

What is claimed is:
1. A method of predicting failures of an in vitro diagnostic instrument, comprising:
monitoring, via one or more monitoring devices associated with one or more components of the in vitro diagnostic instrument, one or more condition-based maintenance parameters of the in vitro diagnostic instrument;
providing the one or more condition-based maintenance parameters of the in vitro diagnostic instrument to a local database;
transmitting condition-based maintenance data to a remote server;
storing the condition-based maintenance data at the remote server;
analyzing the condition-based maintenance data according to a failure prediction engine including failure prediction criteria; and
performing an action based on predefined deviation from the failure prediction criteria.
2. The method of claim 1, comprising processing the one or more condition-based maintenance parameters to provide processed condition-based maintenance data.
3. The method of claim 2, wherein the processed condition-based maintenance data comprises a maximum, minimum, mean, and standard deviation of the one or more condition-based maintenance parameters over a predefined period of time.
4. The method of claim 1, wherein the one or more condition-based maintenance parameters of the in vitro diagnostic instrument comprises one or more of:
a temperature of a component of the in vitro diagnostic instrument;
a pressure in a component of the in vitro diagnostic instrument;
a liquid level in a component of the in vitro diagnostic instrument;
a current drawn by a component of the in vitro diagnostic instrument;
a flow rate through a component of the in vitro diagnostic instrument; and
a backlash in a pump component of the in vitro diagnostic instrument.
5. The method of claim 1, comprising setting a collection frequency of the one or more condition-based maintenance parameters of the in vitro diagnostic instrument.
6. The method of claim 1, comprising setting an upload frequency of the condition-based maintenance data of the in vitro diagnostic instrument.
7. The method of claim 1, wherein the transmitting of the condition-based maintenance data to the remote server comprises a conditional push operation where a condition must be met before the transmitting takes place.
8. The method of claim 1, wherein the transmitting of the condition-based maintenance data to the remote server comprises a pull operation where the transmitting is requested by the remote server.
9. The method of claim 1, wherein analyzing the condition-based maintenance data according to failure prediction engine comprises determining a failure pattern match.
10. The method of claim 9, wherein the failure pattern match comprises exceeding a predetermined slope of the condition-based maintenance data over a predetermined period of time.
11. The method of claim 1, wherein analyzing the condition-based maintenance data according to failure prediction engine comprises determining a threshold deviation from normal.
12. The method of claim 1, wherein the action comprises triggering one or more predefined rules from a rules engine.
13. The method of claim 12, wherein the predefined rules comprise one or more of:
provide a notice or warning to an instrument operator;
create report;
request more condition-based maintenance data from the instrument;
automatic instrument shutdown; and
schedule service of the instrument.
14. The method of claim 1, wherein the failure prediction criteria comprises a preset threshold value against which the condition-based maintenance data is compared.
15. An in vitro diagnostic instrument maintenance apparatus, comprising:
one or more monitoring devices configured to monitor condition-based parameters of one or more instrument components;
a local server coupled to the one or more monitoring devices, the local server including:
an instrument check module configured to:
test functionality of the one or more instrument components, and
obtain the condition-based parameters of the one or more instrument components;
a local database configured to contain a compilation of the condition-based parameters; and
a remote server configured to communicate with the local server and configured to receive and store the condition-based parameters in a condition-based parameter database, the remote server including:
a failure prediction engine, and
a failure rules model.
16. The in vitro diagnostic instrument maintenance apparatus of claim 15, wherein the condition-based parameters comprise one or more of:
a temperature of a component of the in vitro diagnostic instrument;
a pressure in a component of the in vitro diagnostic instrument;
a liquid level in a component of the in vitro diagnostic instrument;
a current drawn by a component of the in vitro diagnostic instrument;
a flow rate through a component of the in vitro diagnostic instrument; and
a backlash in a pump component of the in vitro diagnostic instrument.
17. The in vitro diagnostic instrument maintenance apparatus of claim 15, wherein the local database is configured to receive the condition-based parameters from multiple in vitro diagnostic instruments.
18. The in vitro diagnostic instrument maintenance apparatus of claim 15, wherein the condition-based parameters of one or more instrument components comprises software-related operating parameters.
19. The in vitro diagnostic instrument maintenance apparatus of claim 15, wherein the condition-based parameters of the one or more instrument components are processed to determine a rate of change over time or a difference over time.
20. An in vitro diagnostic instrument maintenance apparatus, comprising:
monitoring devices configured to monitor condition-based parameters of instrument components of an in vitro diagnostic instrument;
a local workstation server of the in vitro diagnostic instrument coupled to the monitoring devices, the local workstation server including:
an instrument check module configured to:
test functionality of the instrument components, and
obtain the condition-based parameters of the instrument components;
a local database configured to contain a compilation of the condition-based parameters; and
a remote server configured to communicate with the local workstation server and configured to receive and store the condition-based parameters in a condition-based parameter database, the remote server including:
a failure prediction engine, and
a failure rules model.
US16/316,057 2016-07-25 2017-07-18 Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments Abandoned US20190376991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/316,057 US20190376991A1 (en) 2016-07-25 2017-07-18 Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662366360P 2016-07-25 2016-07-25
US16/316,057 US20190376991A1 (en) 2016-07-25 2017-07-18 Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments
PCT/US2017/042564 WO2018022351A1 (en) 2016-07-25 2017-07-18 Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/042564 A-371-Of-International WO2018022351A1 (en) 2016-07-25 2017-07-18 Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/636,098 Continuation US20240255533A1 (en) 2016-07-25 2024-04-15 Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments

Publications (1)

Publication Number Publication Date
US20190376991A1 true US20190376991A1 (en) 2019-12-12

Family

ID=61016498

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/316,057 Abandoned US20190376991A1 (en) 2016-07-25 2017-07-18 Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments
US18/636,098 Pending US20240255533A1 (en) 2016-07-25 2024-04-15 Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/636,098 Pending US20240255533A1 (en) 2016-07-25 2024-04-15 Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments

Country Status (3)

Country Link
US (2) US20190376991A1 (en)
EP (2) EP3488307B1 (en)
WO (1) WO2018022351A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009168A (en) * 2021-02-24 2021-06-22 桂林优利特医疗电子有限公司 Performance analysis remote service system of in-vitro diagnosis equipment
WO2021204315A1 (en) * 2020-04-09 2021-10-14 W.O.M. World Of Medicine Gmbh Method for simulating and sensing the likelihood of failure during operation of a medical product, and data system for storing and transmitting same
US11366651B2 (en) * 2020-03-31 2022-06-21 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Framework for hardware-specific analytic plugins
US11955230B2 (en) * 2016-08-29 2024-04-09 Beckman Coulter, Inc. Remote data analysis and diagnosis
US20240211340A1 (en) * 2021-09-06 2024-06-27 Wuhan United Imaging Healthcare Co., Ltd. Systems and methods for failure warning
US12067534B2 (en) 2019-01-25 2024-08-20 Beckman Coulter, Inc. Maintenance management system for laboratory instrumentation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2573336A (en) * 2018-05-04 2019-11-06 Stratec Biomedical Ag Method for self-diagnostics of independent machine components
WO2021015854A1 (en) 2019-07-24 2021-01-28 Siemens Healthcare Diagnostics Inc. Optimization-based load planning systems and methods for laboratory analyzers
WO2021015872A1 (en) 2019-07-24 2021-01-28 Siemens Healthcare Diagnostics Inc. Methods and apparatus of maintenance scheduling in automated testing over a planning period
CN114754665B (en) * 2022-03-24 2023-08-11 苏州思萃融合基建技术研究所有限公司 Method and system for monitoring strain of sectional steel structure building in construction period
LU103205B1 (en) * 2023-10-16 2025-04-22 Stratec Se Method for predicting failures of an instrument

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020077795A1 (en) * 2000-09-21 2002-06-20 Woods Joseph Thomas System, method and storage medium for predicting impact performance of thermoplastic
JP4149178B2 (en) * 2001-03-09 2008-09-10 松下電器産業株式会社 Remote maintenance system
EP1913506A4 (en) * 2005-07-11 2008-08-13 Brooks Automation Inc Intelligent condition monitoring and fault diagnostic system for predictive maintenance
US20080040152A1 (en) * 2006-08-10 2008-02-14 The Boeing Company Systems and Methods for Health Management of Single or Multi-Platform Systems
US8437904B2 (en) * 2007-06-12 2013-05-07 The Boeing Company Systems and methods for health monitoring of complex systems
US9149187B2 (en) * 2009-01-16 2015-10-06 International Business Machines Corporation Online monitoring of patient for routine checkups
EP2305105B1 (en) * 2009-10-05 2012-05-16 Roche Diagnostics GmbH Methods for the detection of a malfunction in a sensor for in-vivo analyte measurement
JP5371905B2 (en) * 2010-07-30 2013-12-18 シスメックス株式会社 Sample processing apparatus management system, sample processing apparatus, management apparatus, and management method
CN102270271B (en) * 2011-05-03 2014-03-19 北京中瑞泰科技有限公司 Equipment failure early warning and optimizing method and system based on similarity curve
US20160132375A1 (en) * 2011-09-12 2016-05-12 Ortho-Clinical Diagnostics, Inc. Method for detecting the impending analytical failure of networked diagnostic clinical analyzers
US10881339B2 (en) * 2012-06-29 2021-01-05 Dexcom, Inc. Use of sensor redundancy to detect sensor failures
JP6046935B2 (en) * 2012-07-23 2016-12-21 株式会社日立ハイテクノロジーズ Maintenance support system
US9019124B2 (en) * 2012-12-20 2015-04-28 Solar Turbines Incorporated System and method for monitoring and alerting on equipment errors
WO2015023443A1 (en) * 2013-08-16 2015-02-19 Siemens Healthcare Diagnostics Inc. User interface tool kit for mobile devices
EP3146431B1 (en) * 2014-05-20 2020-09-09 Siemens Healthcare Diagnostics Inc. Intelligent service assistant inference engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955230B2 (en) * 2016-08-29 2024-04-09 Beckman Coulter, Inc. Remote data analysis and diagnosis
US12067534B2 (en) 2019-01-25 2024-08-20 Beckman Coulter, Inc. Maintenance management system for laboratory instrumentation
US11366651B2 (en) * 2020-03-31 2022-06-21 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Framework for hardware-specific analytic plugins
WO2021204315A1 (en) * 2020-04-09 2021-10-14 W.O.M. World Of Medicine Gmbh Method for simulating and sensing the likelihood of failure during operation of a medical product, and data system for storing and transmitting same
JP2023520716A (en) * 2020-04-09 2023-05-18 ヴェー.オー.エム. ワールド オブ メディシン ゲーエムベーハー A method for simulating and sensing potential failures during operation of a medical product and a data system for storing and transmitting potential failures during operation of a medical product
US20230162849A1 (en) * 2020-04-09 2023-05-25 W.O.M. World of Medicine Method for Simulating and Sensing the Likelihood of Failure During Operation of a Medical Product, and Data System for Storing and Transmitting Same
CN113009168A (en) * 2021-02-24 2021-06-22 桂林优利特医疗电子有限公司 Performance analysis remote service system of in-vitro diagnosis equipment
US20240211340A1 (en) * 2021-09-06 2024-06-27 Wuhan United Imaging Healthcare Co., Ltd. Systems and methods for failure warning

Also Published As

Publication number Publication date
EP3933533B1 (en) 2023-11-15
US20240255533A1 (en) 2024-08-01
EP3488307A1 (en) 2019-05-29
WO2018022351A1 (en) 2018-02-01
EP3488307A4 (en) 2019-08-07
EP3488307B1 (en) 2021-10-06
EP3933533A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
US20240255533A1 (en) Methods and apparatus for predicting and preventing failure of in vitro diagnostic instruments
CN109001649B (en) Intelligent power supply diagnosis system and protection method
EP1242923B1 (en) A process for the monitoring and diagnostics of data from a remote asset
EP2836881B1 (en) Embedded prognostics on plc platforms for equipment condition monitoring, diagnosis and time-to-failure/service prediction
EP3002651B1 (en) Monitoring means and monitoring method for monitoring at least one step of a process run on an industrial site
US20110145180A1 (en) Diagnostic Method for a Process Automation System
EP4174601A1 (en) System, apparatus and method for monitoring condition of an asset in technical installation
WO2019091773A1 (en) A method of determining a microbiological risk level in a food batch
CN117129698B (en) Abnormality alarm and retest system and method for full-automatic coagulation tester
US10289474B2 (en) Fixing system, server, terminal device, fixing method, and recording medium
JP2010266271A (en) Abnormal cause estimation method, analysis system, information management server device
CN112684159B (en) Techniques for checking analyzer status
US20220163504A1 (en) Sensor Monitoring System with Cloud Based Interface
CN115511237A (en) Device operation condition monitoring method and system
US20240280598A1 (en) Diagnostic System, Automatic Analyzer, and Diagnostic Method
US20230161679A1 (en) Method of determining application-specific total plausibilities of measured values of at least one measurand measured by a measurement system in a specific application
CN119153055A (en) Medical equipment analysis method and medical equipment management platform
CN115146895B (en) Method and system for assessing the health of a mechanical system
JPWO2020129818A1 (en) Mechanical equipment diagnostic system, mechanical equipment diagnostic method, and mechanical equipment diagnostic program
JP7643971B2 (en) Chemical Analysis Equipment
JP2003050618A (en) Process device management method and process device management device
JP2022541408A (en) System and method for automatic wet stock management
CN119644805B (en) A high-precision titration intelligent control method and system
KR102863239B1 (en) Diagnostic device, diagnostic method, semiconductor manufacturing device system and semiconductor device manufacturing system
US20240331855A1 (en) Predictive maintenance system and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS HEALTHCARE DIAGNOSTICS INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUDORFER, ARNOLD;MAGOWAN, STEVEN;PEESAPATI, GOVINDRAJ;AND OTHERS;SIGNING DATES FROM 20160726 TO 20160804;REEL/FRAME:047925/0324

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION