[go: up one dir, main page]

US20190371700A1 - Semiconductor package structure having a multi-thermal interface material structure - Google Patents

Semiconductor package structure having a multi-thermal interface material structure Download PDF

Info

Publication number
US20190371700A1
US20190371700A1 US15/992,045 US201815992045A US2019371700A1 US 20190371700 A1 US20190371700 A1 US 20190371700A1 US 201815992045 A US201815992045 A US 201815992045A US 2019371700 A1 US2019371700 A1 US 2019371700A1
Authority
US
United States
Prior art keywords
tim
tim layer
semiconductor
layer
package structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/992,045
Other versions
US10515869B1 (en
Inventor
Ting-Yu Yeh
Chia-Hao Hsu
Weiming Chris Chen
Kuo-Chiang Ting
Tu-Hao Yu
Shang-Yun Hou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to US15/992,045 priority Critical patent/US10515869B1/en
Assigned to TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD. reassignment TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, WEIMING CHRIS, HOU, SHANG-YUN, HSU, CHIA-HAO, TING, KUO-CHIANG, YEH, TING-YU, YU, TU-HAO
Priority to TW108101885A priority patent/TWI705537B/en
Priority to CN201910146963.5A priority patent/CN110544687B/en
Publication of US20190371700A1 publication Critical patent/US20190371700A1/en
Priority to US16/725,189 priority patent/US12062590B2/en
Application granted granted Critical
Publication of US10515869B1 publication Critical patent/US10515869B1/en
Priority to US18/769,425 priority patent/US20240363483A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/18Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
    • H01L27/0688
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D88/00Three-dimensional [3D] integrated devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1751Function
    • H01L2224/17515Bump connectors having different functions
    • H01L2224/17517Bump connectors having different functions including bump connectors providing primarily mechanical support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29012Shape in top view
    • H01L2224/29013Shape in top view being rectangular or square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29309Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/3301Structure
    • H01L2224/3303Layer connectors having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3312Layout
    • H01L2224/3315Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • H01L2224/33151Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry being uniform, i.e. having a uniform pitch across the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3312Layout
    • H01L2224/3316Random layout, i.e. layout with no symmetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Definitions

  • the semiconductor integrated circuit (IC) industry has experienced rapid growth. Technological advances in IC materials and design have produced generations of ICs where each generation of ICs includes smaller and more complex circuits than those of the previous generation.
  • the smaller and more complex circuits are two-dimensional (2D) in nature, in that the area occupied by the integrated IC's components is on the surface of the semiconductor wafer.
  • 2DIC formation faces physical limits. One of these limits is the minimum area needed to accommodate the integrated components.
  • more devices are included in one chip or die, more complex designs are required.
  • 3DIC three-dimensional integrated circuits
  • 3DIC package applications such as package-on-package (PoP) are becoming increasingly popular and widely used in mobile devices because they can enhance electrical performance by integrating logic chips (e.g., application processors (APs)), high capacity/bandwidth memory chips (e.g., wide input/output (WIO) chips, low power double data rate X (LPDDRx) chips, and the like), and/or other heterogeneous chips (e.g., sensors, micro-electro-mechanicals (MEMs), networking devices, and the like), for instance.
  • logic chips e.g., application processors (APs)
  • WIO wide input/output
  • LPDDRx low power double data rate X
  • MEMs micro-electro-mechanicals
  • FIG. 1 is a flowchart representing a method for forming a semiconductor package structure according to aspects of the present disclosure.
  • FIGS. 2A to 2D are schematic drawings illustrating a semiconductor package structure at various fabrication stages constructed according to aspects of one or more embodiments of the present disclosure.
  • FIG. 3 is a cross-sectional view of a semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • FIG. 4 is a cross-sectional view of a semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • FIG. 5 is a schematic drawing illustrating a semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • FIG. 6 is a schematic drawing illustrating a semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • FIG. 7 is a schematic drawing illustrating another semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • FIG. 8 is a schematic drawing illustrating another semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • first and second features are formed in direct contact
  • additional features may be formed between the first and second features, such that the first and second features may not be in direct contact
  • present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • spatially relative terms such as “beneath,” “below,” “lower,” “above,” “upper,” “on” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures.
  • the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
  • the apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • first,” “second” and “third” describe various elements, components, regions, layers and/or sections, but these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another.
  • the terms such as “first,” “second” and “third” when used herein do not imply a sequence or order unless clearly indicated by the context.
  • the terms “approximately,” “substantially,” “substantial” and “about” are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation.
  • the terms can refer to a range of variation of less than or equal to ⁇ 10% of that numerical value, such as less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 4%, less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • two numerical values can be deemed to be “substantially” the same or equal if a difference between the values is less than or equal to ⁇ 10% of an average of the values, such as less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 14%, less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • substantially parallel can refer to a range of angular variation relative to 0° that is less than or equal to ⁇ 10°, such as less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 4°, less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • substantially perpendicular can refer to a range of angular variation relative to 90° that is less than or equal to ⁇ 10°, such as less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 4°, less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • testing structures may be included to aid in the verification testing of the 3D packaging or 3DIC devices.
  • the testing structures may include, for example, test pads formed in a redistribution layer or on a substrate that allows the testing of the 3D packaging or 3DIC, the use of probes and/or probe cards, and the like.
  • the verification testing may be performed on intermediate structures as well as the final structure.
  • the structures and methods disclosed herein may be used in conjunction with testing methodologies that incorporate intermediate verification of known good dies to increase the yield and decrease costs.
  • a chip or a package carrying an integrated circuit is commonly mounted on a package carrier, such as a substrate or a circuit board, that provides electrical connections from the chip (also referred to as a die) to the exterior of the package.
  • Heat dissipation is a challenge in 3DIC package structures because it is not easy to efficiently dissipate the heat generated by the dies in an inner or a center region of the 3DIC package structures.
  • dies such as CPU dies generate more heat than other dies, and thus a temperature in one region may be higher than a temperature in other region. As a result, the heat may be trapped and cause a sharp local temperature peak (sometimes referred to as a hot spot). The hot spot may adversely affect the electrical performance and reliability of the whole 3DIC package structure.
  • a heat spreader or a heat sink is attached to the dies through a thermal interface material (TIM) layer, which has a high thermal conductivity for effectively dissipating the heat generated by dies into the heat sink.
  • TIM thermal interface material
  • Each TIM can be designed with specific characteristics to meet specific requirements. For example, some TIMs have higher thermal conductivity while others have better adhesion. In some instances, one TIM is selected to meet the thermal requirement at the cost of thermal conductivity.
  • the package structure may include regions having different temperatures, and may therefore suffer from various stresses, different heat dissipation efficiencies and different adhesions are required. It is difficult to have a single TIM layer that meets all requirements.
  • the present disclosure therefore provides a semiconductor package structure including a multi-TIM structure and a method for forming the same.
  • the multi-TIM structure includes at least two TIM layers with different thermal conductivities and adhesion properties.
  • the multi-TIM structure includes different TIM layers depending on the stress applied to the semiconductor package structure.
  • the multi-TIM structure may include a TIM layer having greater adhesion in regions exposed to greater stress and another TIM layer having less adhesion in other regions receiving less stress.
  • the multi-TIM structure includes different TIM layers depending on heat generated during operation.
  • the multi-TIM structure may include a TIM layer having greater thermal conductivity in regions accommodating dies generating more heat and another TIM layer having less thermal conductivity in regions accommodating dies generating less heat.
  • FIG. 1 is a method for forming a semiconductor package structure 10 according to aspects of the present disclosure.
  • the method 10 includes an operation 12 , receiving a substrate including a die region and a first semiconductor die and a second semiconductor die disposed in the die region.
  • the method 10 includes an operation 14 , defining a first area where heat conduction is needed and a second area where adhesion is needed in the die region.
  • the method 10 includes an operation 16 , disposing a first TIM layer in the first area and a second TIM layer in the second area.
  • a thermal conductivity of the first TIM layer is greater than a thermal conductivity of the second TIM layer
  • an adhesion of the second TIM layer is greater than an adhesion of the first TIM layer.
  • the method 10 includes an operation 18 , disposing a heat sink over the first TIM layer and the second TIM layer.
  • the method 10 will be further described according to one or more embodiments. It should be noted that the operations of the method 10 may be rearranged or otherwise modified within the scope of the various aspects. It should be further be noted that additional processes may be provided before, during, and after the method 10 , and that some other processes may only be briefly described herein. Thus, other implementations are possible within the scope of the various aspects described herein.
  • FIGS. 2A to 2D are schematic drawings illustrating a semiconductor package structure 100 a at various fabrication stages constructed according to aspects of one or more embodiments of the present disclosure, and FIGS. 3 and 4 are cross-sectional views taken along line I-I′ of FIG. 2D .
  • the semiconductor package structure 100 a includes a first package.
  • the first package can be a carrier or a substrate 110 of one or more packages.
  • the first package is a laminate substrate 110 .
  • the laminate substrate 110 may be a plastic substrate or a ceramic substrate. Alternatively, the substrate 110 may be a build-up substrate.
  • the first substrate 110 includes at least a first region 112 a and a second region 112 b .
  • the first region 112 a is a region defined and configured for accommodating one or more packages or dies, therefore the first region 112 a can be referred to as a die region.
  • the first region 112 a of the substrate 110 may include a plurality of first bonding pads (not shown) for bonding with the package or die.
  • the second region 112 b of the substrate 110 is a region that is not configured for accommodating the packages or dies. In some embodiments, the second region 112 b surrounds the first region 112 a , as shown in FIG. 1A , but the disclosure is not limited thereto.
  • the semiconductor package structure 100 a may include a plurality of second packages.
  • the plurality of second packages can be a plurality of semiconductor dies.
  • a substrate 110 including a die region 112 a and a first semiconductor die 120 and a second semiconductor 122 disposed in the die region 112 a is received, according to operation 12 .
  • at least a first semiconductor die 120 and at least a second semiconductor die 122 are provided in some embodiments.
  • the first semiconductor die 120 and the second semiconductor die 122 are dies have the same size and function.
  • the first semiconductor die 120 is different in size compared to the second semiconductor die 122 .
  • the first semiconductor die 120 is different in function compared to the second semiconductor die 122 .
  • the first and second semiconductor dies 120 and 122 may each be an integrated circuit (IC) chip, a system on chip (SoC), or a portion thereof.
  • the first semiconductor die 120 can be an application-specific integrated circuit (ASIC) die, an application processing (AP) die, a logic die, which may further be a central processing unit (CPU) die or a graphic processing unit (GPU) die, or the like.
  • the second semiconductor die 122 can be a memory die such as a high bandwidth memory (HBM) die, or the like.
  • HBM high bandwidth memory
  • each of the first and second semiconductor dies 120 and 122 includes a wafer.
  • the wafer may be, for example but not limited thereto, a silicon (Si) wafer.
  • the wafer may alternatively be made of some other suitable elementary semiconductor, such as diamond or germanium (Ge); a suitable compound semiconductor, such as silicon carbide (SiC), indium arsenide (InAs), or indium phosphide (InP); or a suitable alloy semiconductor, such as SiGeC, gallium arsenic phosphide (GaAsP), or GaInP.
  • the wafer may include various doped regions (not shown), isolation structures (not shown), other devices, or a combination thereof.
  • the first and second semiconductor dies 120 and 122 may include various passive and active microelectronic devices such as resistors, capacitors, inductors, diodes, metal-oxide-semiconductor field effect transistors (MOSFETs), complementary metal-oxide-semiconductor (CMOS) devices, bipolar junction transistors (BJTs), laterally diffused MOS (LDMOS) transistors, high power MOS transistors, or other types of transistors. They may include a microelectromechanical system (MEMS) device and/or a nanoelectromechanical system (NEMS) device.
  • MEMS microelectromechanical system
  • NEMS nanoelectromechanical system
  • the first and second semiconductor dies 120 and 122 are bonded to the first region 112 a of the substrate 110 through a plurality of connectors 130 (shown in FIGS. 3 and 4 ).
  • the first and second semiconductor dies 120 and 122 can be flipped upside down such that active surfaces of the first and second semiconductor dies 120 and 122 face the substrate 110 and are bonded to the substrate 110 .
  • the first and second semiconductor dies 120 and 122 are bonded by any suitable mechanism.
  • the connectors 130 such as solder balls (also referred to as solder bumps), can be disposed on bonding pads, which are formed on the active surfaces of the first and second semiconductor dies 120 and 122 .
  • the connectors 130 are then aligned with and brought into contact with the bonding pads over the substrate 110 to produce electrical coupling between the substrate 110 and the first and second semiconductor dies 120 and 122 .
  • the first semiconductor die 120 and the second semiconductor 122 can be arranged along a first direction D 1 , as shown in FIG. 2A , but the disclosure is not limited thereto.
  • an underfill 132 is next dispensed or injected into a space between the substrate 110 , the first semiconductor die 120 and the second semiconductor die 122 .
  • the underfill 132 is injected to fill the space in order to reduce stress exerted on the bonded structures after the bonding.
  • the underfill 132 can include polymers such as resin epoxy, or other suitable materials.
  • the underfill 132 can include fillers, such as silica, to adjust the mechanical strength of the underfill 132 .
  • the semiconductor package structure 100 a may include adhesive materials 134 disposed in the second region 112 b of the substrate 110 , as shown in FIG. 2A .
  • the adhesive materials 134 may include a viscous gel or liquid material, such as thermal grease, silver paste or solder.
  • supporting elements such as spacer or stiffener can be disposed over the substrate 110 . In some embodiments, the supporting elements are attached to the substrate 110 by the adhesive material 134 .
  • a first area 114 - 1 and a second area 114 - 2 are defined in the first region 112 a , that is the die region 112 a , according to operation 14 .
  • the first area 114 - 1 is defined as an area where heat conduction is needed while the second area 114 - 2 is defined as an area where adhesion is needed.
  • the definition of the first area 114 - 1 and the second area 114 - 2 can be modified depending on different product requirements.
  • the first area 114 - 1 can be defined correspondingly to the first semiconductor die 120
  • the second area 114 - 2 can be defined correspondingly to the second semiconductor die 122 as shown in FIG. 2B , but the disclosure is not limited thereto.
  • a first TIM layer 142 is disposed in the first area 114 - 1 and a second TIM layer 144 is disposed in the second area 114 - 2 , according to operation 16 .
  • the semiconductor package structure 100 a includes a multi-TIM structure 140 a disposed over the plurality of semiconductor dies 120 and 122 .
  • the multi-TIM structure 140 a includes the first TIM layer 142 and the second TIM layer 144 .
  • the first TIM layer 142 and the second TIM layer 144 are arranged in a second direction D 2 .
  • the second direction D 2 is the same as the first direction D 1 , as shown in FIG. 2C , but the disclosure is not limited thereto.
  • the first TIM layer 142 is formed on one of the plurality of semiconductor dies, such as the first semiconductor die 120
  • the second TIM layer 144 is formed on another one of the plurality of semiconductor dies, such as the second semiconductor die 122 , but the disclosure is not limited thereto.
  • the first TIM layer 142 and the second TIM layer 144 are separated from each other by an air gap 143 .
  • the air gap 143 can further reduce lateral thermal interaction between the first and second semiconductor dies 120 and 122 .
  • the first TIM layer 142 and the second TIM layer 144 can be in contact with each other, as shown in FIG. 4 .
  • the first TIM layer 142 can overlap a portion of the second TIM layer 144 , or vice versa, though not shown.
  • the first TIM layer 142 and the second TIM layer 144 of the multi-TIM structure 140 a are disposed on the first and second semiconductor dies 120 and 122 .
  • each of the first and second TIM layers 142 and 144 is in physical contact with the top surfaces of the first and second semiconductor dies 120 and 122 .
  • the first TIM layer 142 and the second TIM layer 144 each have a thickness of between about 20 ⁇ m and about 200 ⁇ m, but the disclosure is not limited thereto.
  • the semiconductor package structure 100 a further includes the heat sink (also referred to as a lid) 150 in contact with the first TIM layer 120 and the second layer 122 .
  • the heat sink 150 may have a high thermal conductivity, for example, between approximately 200 watts per meter kelvin (W/mK) and approximately 400 W/mK or more, and may be formed using a metal, a metal alloy, graphene, carbon nanotubes (CNT), or the like.
  • the heat sink 150 is mounted over, and thermally coupled to, the first and second semiconductor dies 120 and 122 through the multi-TIM structure 140 a .
  • the multi-TIM structure 140 a not only couples the heat sink 150 to the first and second semiconductor dies 120 and 122 , but also helps to dissipate the heat generated by the semiconductor dies 120 and 122 into the heat sink 150 .
  • a thermal conductivity (Tk) of the first TIM layer 142 is different from a thermal conductivity of the second TIM layer 144 .
  • the thermal conductivity of the first TIM layer 142 is greater than the thermal conductivity of the second TIM layer 144 .
  • the thermal conductivity of the first TIM layer 142 is greater than approximately 10 W/mK, but the disclosure is not limited thereto.
  • the thermal conductivity of the second TIM layer 144 is smaller than approximately 10 W/mK.
  • the thermal conductivity of the second TIM layer 144 is smaller than approximately 5 W/mK, but the disclosure is not limited thereto.
  • the second TIM layer 144 may be a polymer having a thermal conductivity of between approximately 3 W/mK and approximately 5 W/mK.
  • the first TIM layer 142 may include a base material with thermal conductive fillers.
  • the base material may include one or more of plastics, adhesives, glues, epoxies, polymers, thermoplastics, silicone, grease, oil, resin, or the like.
  • the thermal conductive fillers may increase the thermal conductivity of the first TIM layer 142 to between approximately 10 W/mK and approximately 50 W/mK or more.
  • Applicable conductive filler materials may include aluminum oxide (AlO), boron nitride (BN), aluminum nitride (AlN), aluminum (Al), copper (Cu), silver (Ag), indium (In), a combination thereof, or the like.
  • the TIM layer 142 may include other materials such as a metallic-based or solder-based material comprising Ag, indium paste, or the like.
  • the first TIM layer 142 having the thermal conductivity greater than 10 W/mK helps to transfer or dissipate heat more efficiently. For example, when a TIM layer having the thermal conductivity smaller than 10 W/mK is adopted over a semiconductor die (e.g.
  • the heat generated by the semiconductor die may not be transferred or dissipated in time, and thus the package may suffer thermomechanical stresses. As a result, cracks may occur between the semiconductor die and the heat sink or even in the semiconductor die itself.
  • the first semiconductor die 120 includes a first heat output and the second semiconductor die 122 includes a second heat output less than the first heat output.
  • the first heat output of the first semiconductor die 120 is greater than the second heat output of the second semiconductor die 122 .
  • the first area 114 - 1 which is defined where the heat conduction is needed, is also defined correspondingly to the first semiconductor die 120 .
  • the first TIM layer 142 having the greater thermal conductivity disposed in the first area 114 - 1 is also disposed on the first semiconductor die 120 while the second TIM layer 144 having the less thermal conductivity but better adhesion is disposed on the second semiconductor die 122 . Therefore, the heat generated by the first semiconductor die 120 can be more efficiently dissipated to the heat sink by the first TIM layer 142 .
  • the TIM layers 142 and 144 with different thermal conductivities are provided to the semiconductor dies 120 and 122 with different heat outputs. Consequently, heat dissipation efficiency is improved and made uniform, and thus warpage caused by heat can be reduced.
  • FIG. 5 is a schematic drawing illustrating a semiconductor package structure 100 b according to aspects of one or more embodiments of the present disclosure. It should be noted that similar elements in FIG. 2C and FIG. 5 are designated by the same numerals. Further, similar elements in FIG. 2C and FIG. 5 can include similar materials and can be formed by operations 12 to 18 of the method 10 ; therefore, such redundant details are omitted in the interest of brevity, and only the differences are mentioned. Additionally, the heat sink 150 is omitted from FIG. 5 , however those skilled in the art would easily understand the arrangement of the heat sink 150 according to the aforementioned description.
  • the difference between the semiconductor package structure 100 a and the semiconductor package structure 100 b is that a first area 114 - 1 where the heat conduction is needed is defined between two second areas 114 - 2 where the adhesion is needed. Further, the difference between the semiconductor package structure 100 a and the semiconductor package structure 100 b is that the TIM structure 140 b of the semiconductor package structure 100 b further includes a third TIM layer 146 .
  • the first and second semiconductor dies 120 and 122 are arranged along the first direction D 1 .
  • the first area 114 - 1 and the second areas 114 - 2 are defined along a second direction D 2 , and the second direction D 2 can be the same as the first direction D 1 , as shown in FIG. 5 .
  • the first and second semiconductor dies 120 and 122 , the first TIM layer 142 disposed in the first area 114 - a , and the second TIM layer 144 and the third TIM layer 146 disposed in the second areas 114 - 2 are arranged along a same direction D 1 /D 2 .
  • the first TIM layer 142 , the second TIM layer 144 and the third TIM layer 146 are separated from each other by air gaps 143 , which can further reduce lateral thermal interaction between the first and second semiconductor dies 120 and 122 .
  • the first TIM layer 142 , the second TIM layer 144 and the third TIM layer 146 can be in contact with each other.
  • the first TIM layer 142 , the second TIM layer 144 and the third TIM layer 146 can overlap each other.
  • the first TIM layer 142 is disposed in the first area 114 - 1
  • the second TIM layer 144 and the third TIM layer 146 are disposed in the second areas 114 - 2 . Therefore, the first TIM layer 142 is disposed between the second TIM layer 144 and the third TIM layer 146 from a top view, as shown in FIG. 5 .
  • the first TIM layer 142 covers a portion of the first semiconductor die 120 and a portion of the second semiconductor die 122
  • the second TIM layer 144 covers another portion of the first semiconductor die 120 and the third TIM layer 146 covers another portion of the second semiconductor die 122 .
  • the second and third TIM layers 144 and 146 are disposed over at least four corners of the die region 112 a , as shown in FIG. 4 . Further, the second TIM layer 144 covers two corners of the first semiconductor die 120 and the third TIM layer 146 covers two corners of the second semiconductor die 122 .
  • the thermal conductivity of the first TIM layer 142 is greater than that of the second TIM layer 144 . Further, the thermal conductivity of the first TIM layer 142 is also greater than a thermal conductivity of the third TIM layer 146 . In some embodiments, the thermal conductivity of the third TIM layer 146 can be the same as that of the second TIM layer 144 . In other embodiments, the thermal conductivities of the second and third TIM layers 144 and 146 are different from each other. It is worth noting that adhesion of the TIM material is inversely proportional to the thermal conductivity of the TIM material. Therefore, the first TIM layer 142 with the greater thermal conductivity has less adhesion. In other words, the second and third TIM layers 144 and 146 have less thermal conductivity, but greater adhesion.
  • heat can cause thermal stress and warpage in the 3DIC package structure leading to cracks in the connectors 130 .
  • warpage appears to occur at a periphery of the die, especially at the corners; therefore the second and third TIM layers 144 and 146 having the greater adhesion are disposed at the corners of the first region 112 a .
  • the first and second semiconductor dies 120 and 122 can be secured to the heat sink by the second and third TIM layers 144 and 146 even though warpage occurs.
  • the first TIM layer 142 with the greater thermal conductivity helps to dissipate the heat to the heat sink 150 .
  • the TIM layers 142 to 146 with different adhesions are provided to the different regions which are exposed to different stresses. Accordingly, heat dissipation efficiency is improved and warpage caused by heat is reduced by the first TIM layer 142 , while adhesion between the first/second semiconductor dies 120 / 122 and the heat sink is improved by the second and third TIM layers 144 and 146 .
  • FIG. 6 is a schematic drawing illustrating a semiconductor package structure 100 c according to aspects of one or more embodiments of the present disclosure. It should be noted that similar elements in FIGS. 5 and 6 are designated by the same numerals. Further, similar elements in FIGS. 5 and 6 can include similar materials and can be formed by operation 12 to 18 of the method 10 ; therefore, such redundant details are omitted in the interest of brevity, and only the differences are mentioned. Additionally, the heat sink 150 is omitted from FIG. 6 , however those skilled in the art would easily understand the arrangement of the heat sink 150 according to the aforementioned description.
  • the difference between the semiconductor package structure 100 b and the semiconductor package structure 100 c is that the definition of the first area 114 - 1 and the second areas 114 - 2 and the arrangement of the multi-TIM structure 140 c of the semiconductor package structure 100 c are different from that of the multi-TIM structure 140 b of the semiconductor package structure 100 b.
  • the multi-TIM structure 140 c of the semiconductor package structure 100 c includes the first TIM layer 142 , the second TIM layer 144 and the third TIM layer 146 .
  • the first semiconductor die 120 and the second semiconductor die 122 are arranged along a first direction D 1 .
  • the first area 114 - 1 and the second areas 114 - 2 are defined along a second direction D 2 . Therefore the first TIM layer 142 , the second TIM layer 144 and the third TIM layer 146 are arranged along the second direction D 2 .
  • the second direction D 2 is different from the first direction D 1 , as shown in FIG. 6 .
  • the first direction D 1 and the second direction D 2 are perpendicular to each other, but the disclosure is not limited thereto.
  • the first TIM layer 142 overlaps a portion of each of semiconductor dies 120 and 122
  • the second TIM layer 144 overlaps another portion of each of the semiconductor dies 120 and 122
  • the third TIM layer 146 overlaps the other portion of each of the semiconductor dies 120 and 122 , but the disclosure is not limited thereto.
  • the first TIM layer 142 , the second TIM layer 144 and the third TIM layer 146 are separated from each other by air gaps 143 .
  • the air gaps 143 can further reduce lateral thermal interaction between the first and second semiconductor dies 120 and 122 .
  • the first TIM layer 142 , the second TIM layer 144 and the third TIM layer 146 can be in contact with each other. In other embodiments, the first TIM layer 142 , the second TIM layer 144 and the third TIM layer 146 can overlap each other.
  • the thermal conductivity of the first TIM layer 142 is greater than that of the second TIM layer 144 . Further, the thermal conductivity of the first TIM layer 142 is also greater than a thermal conductivity of the third TIM layer 146 . In some embodiments, the thermal conductivity of the third TIM layer 146 can be the same as that of the second TIM layer 144 . In other embodiments, the thermal conductivities of the second and third TIM layers 144 and 146 are different from each other. It is worth noting that adhesion of the TIM material is inversely proportional to the thermal conductivity of the TIM material. Therefore, the first TIM layer 142 with the greater thermal conductivity has less adhesion. In other words, the second and third TIM layers 144 and 146 have less thermal conductivity, but greater adhesion.
  • the second and third TIM layers 144 and 146 having the greater adhesion are disposed over a periphery of the first region 112 a .
  • the second and third TIM layers 144 and 146 are disposed over at least four corners of the first region 112 a , as shown in FIG. 6 .
  • the second TIM layer 144 covers two corners of the first semiconductor die 120 and two corners of the second semiconductor die 122
  • the third TIM layer 146 covers another two corners of the first semiconductor die 120 and another two corners of the second semiconductor die 122 , as shown in FIG. 6 . Therefore, not only all corners of the first region 112 a but also all corners of the first and second semiconductor dies 120 and 122 are secured to the heat sink by the second and third TIM layers 144 and 146 . Meanwhile, the first TIM layer 142 with the higher thermal conductivity helps to dissipate the heat to the heat sink 150 .
  • the TIM layers 142 to 146 with different adhesions are provided to the different regions which are exposed to different stresses. Accordingly, heat dissipation efficiency is improved and warpage caused by heat is reduced by the first TIM layer 142 while adhesion between the first/second semiconductor dies 120 / 122 and the heat sink is improved by the second and third TIM layers 144 and 146 .
  • FIG. 7 is a schematic drawing illustrating a semiconductor package structure 100 d according to aspects of one or more embodiments of the present disclosure. It should be noted that similar elements in FIG. 2C and FIG. 7 are designated by the same numerals. Further, similar elements in FIG. 2C and FIG. 7 can include similar materials and can be formed by operation 12 to 18 of the method 10 ; therefore, such redundant details are omitted in the interest of brevity, and only the differences are mentioned. Additionally, the heat sink 150 is omitted from FIG. 7 , however those skilled in the art would easily understand the arrangement of the heat sink 150 according to the aforementioned description.
  • the difference between the semiconductor package structure 100 a and the semiconductor package structure 100 d is that the definition of the first area 114 - 1 and the second area 114 - 2 and the arrangement of the multi-TIM structure 140 d of the semiconductor package structure 100 d is different from that of the semiconductor package structure 100 a .
  • the second area 114 - 2 is defined to surround the first area 114 - 1 , as shown in FIG. 7 .
  • the first area 114 - 1 is defined in a center of the die region (the first region) 112 a
  • the second area 114 - 2 is defined in a periphery of the die region 112 a.
  • the multi-TIM structure 140 d of the semiconductor package structure 100 d includes a first TIM layer 142 disposed in the first area 114 - 1 and a second TIM layer 144 disposed in the second area 114 - 2 .
  • the amount of TIM layers can be adjusted to meet different product requirements.
  • the first TIM layer 142 is disposed in the center of the first region 112 a and the second TIM layer 144 is disposed in the periphery of the first region 112 a .
  • the second TIM layer 144 surrounds the first TIM layer 142 from a top view, but the disclosure is not limited thereto.
  • the second TIM layer 144 covers not only the corners of the first region 112 a , but also the entire periphery of the first region 112 a , as shown in FIG. 7 .
  • the first TIM layer 142 and the second TIM layer 144 are separated from each other by an air gap 143 .
  • the first TIM layer 142 and the second TIM layer 144 can be in contact with each other.
  • the first TIM layer 142 can overlap a portion of the second TIM layer 144 , or vice versa, though not shown.
  • the thermal conductivity of the first TIM layer 142 is greater than that of the second TIM layer 144 .
  • the first TIM layer 142 located in the center of the first region 112 a is used to dissipate heat into the heat sink.
  • adhesion of the TIM material is inversely proportional to the thermal conductivity of the TIM material; therefore, the first TIM layer 142 with the greater thermal conductivity has less adhesion.
  • the second TIM layer 144 has less thermal conductivity, but greater adhesion.
  • the second TIM layer 144 is disposed over a periphery of the first region 112 a . Therefore, the first and second semiconductor dies 120 and 122 can be secured to the heat sink 150 even though warpage occurs.
  • the TIM layers 142 and 144 with different adhesions are provided to the different regions which are exposed to different stresses. Accordingly, heat dissipation efficiency is improved and warpage is reduced by the first TIM layer 142 while adhesion between the first/second semiconductor dies 120 / 122 and the heat sink is improved by the second TIM layer 144 .
  • FIG. 8 is a schematic drawing illustrating a semiconductor package structure 100 e according to aspects of one or more embodiments of the present disclosure. It should be noted that similar elements in FIGS. 7 and 8 are designated by the same numerals. Further, similar elements in FIGS. 7 and 8 can include similar materials and can be formed by operation 12 to 18 of the method 10 ; therefore, in the interest of brevity, only the differences are mentioned. In some embodiments, the difference between the semiconductor package structure 100 d and the semiconductor package structure 100 e is that definition of the first area 114 - 1 and the second area 114 - 2 and the arrangement of the multi-TIM structure 140 e of the semiconductor package structure 100 e . As shown in FIG.
  • the second area 114 - 2 surrounds the first area 114 - 1 .
  • the first area 114 - 1 is defined in a center of the die region (the first region) 112 a
  • the second area 114 - 2 is defined in a periphery of the die region 112 a
  • the first area 114 - 1 is defined correspondingly to the first semiconductor die 120 , as shown in FIG. 8 .
  • the heat sink 150 is omitted from FIG. 8 ; however, those skilled in the art would easily understand the arrangement of the heat sink 150 according to the aforementioned description.
  • the semiconductor package structure 100 e includes a plurality of semiconductor dies.
  • the semiconductor package structure 100 e includes at least a first semiconductor die 120 such as a CPU die, and a plurality of second semiconductor dies 122 such as HBM dies.
  • the first semiconductor die 120 and the second semiconductor dies 122 are disposed in the first region 112 a of the substrate 110 .
  • the second semiconductor dies 122 are disposed at two sides of the first semiconductor die 120 from a top view, as shown in FIG. 8 , but the disclosure is not limited thereto.
  • the first semiconductor die 120 can include a first heat output and the second semiconductor dies 122 can include a second heat output.
  • the first heat output of the first semiconductor die 120 i.e., the CPU die
  • the second semiconductor dies 122 i.e., the HBM dies.
  • the multi-TIM structure 140 e of the semiconductor package structure 100 e includes a first TIM layer 142 and a second TIM layer 144 .
  • the amount of TIM layers can be adjusted to meet different product requirements.
  • the first TIM layer 142 is disposed in the first area 114 - 1 in the center of the first region 112 a and the second TIM layer 144 is disposed in the second area 114 - 2 in the periphery of the first region 112 a to surround the first TIM layer 142 from a top view.
  • the first TIM layer 142 in the first area 114 - 1 covers the first semiconductor die 120 while the second TIM layer 144 in the second area 114 - 2 covers the second semiconductor dies 122 , as shown in FIG. 8 .
  • the second TIM layer 144 covers corners of the first semiconductor die 120 and corners of the second semiconductor dies 122 , but the disclosure is not limited thereto.
  • the first TIM layer 142 and the second TIM layer 144 are separated from each other by an air gap 143 .
  • the first TIM layer 142 and the second TIM layer 144 can be contact in with each other.
  • the first TIM layer 142 can overlap a portion of the second TIM layer 144 , or vice versa, though not shown.
  • the thermal conductivity of the first TIM layer 142 is greater than that of the second TIM layer 144 .
  • the first TIM layer 142 disposed over the first semiconductor die 122 which has the greater heat output, is used to dissipate more heat into the heat sink.
  • adhesion of the TIM material is inversely proportional to the thermal conductivity of the TIM material. Therefore, the first TIM layer 142 with the greater thermal conductivity has less adhesion.
  • the second TIM layer 144 has less thermal conductivity, but greater adhesion.
  • the second TIM layer 144 is disposed over the periphery of the first region 112 a , which is exposed to greater stress.
  • the second TIM layer 144 Since the second heat output of the second semiconductor dies 122 is less than the first heat output, the second TIM layer 144 has sufficient thermal conductivity to dissipate the heat into the heat sink while meeting the adhesion requirements in the periphery. Accordingly, the first semiconductor die 120 and the second semiconductor dies 122 can be secured to the heat sink by the second TIM layer 144 even though warpage occurs.
  • the TIM layers 142 and 144 with different thermal conductivities are provided to the semiconductor dies 120 and 122 with different heat outputs. Accordingly, heat dissipation efficiency is improved and made uniform, and thus warpage is reduced by the first TIM layer 142 . Further, the TIM layers 142 and 144 with different adhesions are provided to the different regions which are exposed to different stresses. Accordingly, adhesion between the first/second semiconductor dies 120 / 122 and the heat sink is improved by the second TIM layer 144 .
  • the present disclosure therefore provides a semiconductor package structure including a multi-TIM structure.
  • the multi-TIM structure includes at least two TIM layers with different thermal conductivities and adhesions.
  • the multi-TIM structure includes different TIM layers depending on the stress applied to the semiconductor package structure.
  • the multi-TIM structure may include a TIM layer having greater adhesion in regions exposed to greater stress and another TIM layer having less adhesion in other regions receiving less stress.
  • the multi-TIM structure includes different TIM layers depending on heat generated during operation.
  • the multi-TIM structure may include a TIM layer having greater thermal conductivity in regions accommodating dies generating more heat and another TIM layer having less thermal conductivity in regions accommodating dies generating less heat.
  • the present disclosure provides a semiconductor structure including a substrate, a plurality of semiconductor dies over the substrate, and a multi-TIM structure over the plurality of semiconductor dies.
  • the multi-TIM structure includes a first TIM layer and a second TIM layer. A thermal conductivity of the first TIM layer is different from a thermal conductivity of the second TIM layer.
  • a semiconductor package structure includes a substrate, a first semiconductor and a second semiconductor over the substrate, and a multi-TIM structure disposed over the first semiconductor die and the second semiconductor die.
  • the first semiconductor die includes a first heat output and the second semiconductor die includes a second heat output less than the first heat output.
  • the multi-TIM structure includes a first TIM layer disposed over at least a portion of the first semiconductor die and a second TIM layer. A thermal conductivity of the first TIM layer is greater than a thermal conductivity of the second TIM layer.
  • a method for forming a semiconductor package structure includes following operations.
  • a substrate including a die region and a first semiconductor die and a second die disposed in the die region is received.
  • a first area where heat conduction is needed and a second area where adhesion is needed are defined in the die region.
  • a first TIM layer is disposed in the first area and a second TIM layer is disposed in the second area.
  • a thermal conductivity of the first TIM layer is greater than a thermal conductivity of the second TIM layer, and an adhesion of the second TIM layer is greater than an adhesion of the first TIM layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A semiconductor package structure includes a substrate, a first semiconductor and a second semiconductor over the substrate, and a multi-TIM structure disposed over the first semiconductor die and the second semiconductor die. The first semiconductor die includes a first heat output and the second semiconductor die includes a second heat output less than the first heat output. The multi-TIM structure includes a first TIM layer disposed over at least a portion of the first semiconductor die and a second TIM layer. A thermal conductivity of the first TIM layer is higher than a thermal conductivity of the second TIM layer. The first TIM layer covers the first semiconductor die.

Description

    BACKGROUND
  • The semiconductor integrated circuit (IC) industry has experienced rapid growth. Technological advances in IC materials and design have produced generations of ICs where each generation of ICs includes smaller and more complex circuits than those of the previous generation. The smaller and more complex circuits are two-dimensional (2D) in nature, in that the area occupied by the integrated IC's components is on the surface of the semiconductor wafer. However, 2DIC formation faces physical limits. One of these limits is the minimum area needed to accommodate the integrated components. In addition, when more devices are included in one chip or die, more complex designs are required.
  • To enable further increases in circuit density, three-dimensional integrated circuits (3DIC) have been developed. 3DIC package applications such as package-on-package (PoP) are becoming increasingly popular and widely used in mobile devices because they can enhance electrical performance by integrating logic chips (e.g., application processors (APs)), high capacity/bandwidth memory chips (e.g., wide input/output (WIO) chips, low power double data rate X (LPDDRx) chips, and the like), and/or other heterogeneous chips (e.g., sensors, micro-electro-mechanicals (MEMs), networking devices, and the like), for instance.
  • During the usage of the package, heat is generated. The heat can cause thermal stress and warpage in the 3DIC package structure leading to cracks in the solder balls. Even with molding compounds in the 3DIC package structure, the problems of excess heat and warpage still cannot be entirely eliminated.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It should be noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
  • FIG. 1 is a flowchart representing a method for forming a semiconductor package structure according to aspects of the present disclosure.
  • FIGS. 2A to 2D are schematic drawings illustrating a semiconductor package structure at various fabrication stages constructed according to aspects of one or more embodiments of the present disclosure.
  • FIG. 3 is a cross-sectional view of a semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • FIG. 4 is a cross-sectional view of a semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • FIG. 5 is a schematic drawing illustrating a semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • FIG. 6 is a schematic drawing illustrating a semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • FIG. 7 is a schematic drawing illustrating another semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • FIG. 8 is a schematic drawing illustrating another semiconductor package structure according to aspects of one or more embodiments of the present disclosure.
  • DETAILED DESCRIPTION
  • The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of elements and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper,” “on” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • As used herein, the terms such as “first,” “second” and “third” describe various elements, components, regions, layers and/or sections, but these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another. The terms such as “first,” “second” and “third” when used herein do not imply a sequence or order unless clearly indicated by the context.
  • As used herein, the terms “approximately,” “substantially,” “substantial” and “about” are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation. For example, when used in conjunction with a numerical value, the terms can refer to a range of variation of less than or equal to ±10% of that numerical value, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±4%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. For example, two numerical values can be deemed to be “substantially” the same or equal if a difference between the values is less than or equal to ±10% of an average of the values, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±14%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. For example, “substantially” parallel can refer to a range of angular variation relative to 0° that is less than or equal to ±10°, such as less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±4°, less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0.5°, less than or equal to ±0.1°, or less than or equal to ±0.05°. For example, “substantially” perpendicular can refer to a range of angular variation relative to 90° that is less than or equal to ±10°, such as less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±4°, less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0.5°, less than or equal to ±0.1°, or less than or equal to ±0.05°.
  • Other features and processes may also be included. For example, testing structures may be included to aid in the verification testing of the 3D packaging or 3DIC devices. The testing structures may include, for example, test pads formed in a redistribution layer or on a substrate that allows the testing of the 3D packaging or 3DIC, the use of probes and/or probe cards, and the like. The verification testing may be performed on intermediate structures as well as the final structure. Additionally, the structures and methods disclosed herein may be used in conjunction with testing methodologies that incorporate intermediate verification of known good dies to increase the yield and decrease costs.
  • In 3DIC, a chip or a package carrying an integrated circuit is commonly mounted on a package carrier, such as a substrate or a circuit board, that provides electrical connections from the chip (also referred to as a die) to the exterior of the package. Heat dissipation is a challenge in 3DIC package structures because it is not easy to efficiently dissipate the heat generated by the dies in an inner or a center region of the 3DIC package structures. In some embodiments, dies such as CPU dies generate more heat than other dies, and thus a temperature in one region may be higher than a temperature in other region. As a result, the heat may be trapped and cause a sharp local temperature peak (sometimes referred to as a hot spot). The hot spot may adversely affect the electrical performance and reliability of the whole 3DIC package structure.
  • Therefore, heat generated in the device dies during operation needs to be dissipated. In some embodiments, to dissipate the heat, a heat spreader or a heat sink is attached to the dies through a thermal interface material (TIM) layer, which has a high thermal conductivity for effectively dissipating the heat generated by dies into the heat sink. Each TIM can be designed with specific characteristics to meet specific requirements. For example, some TIMs have higher thermal conductivity while others have better adhesion. In some instances, one TIM is selected to meet the thermal requirement at the cost of thermal conductivity. However, since the package structure may include regions having different temperatures, and may therefore suffer from various stresses, different heat dissipation efficiencies and different adhesions are required. It is difficult to have a single TIM layer that meets all requirements.
  • The present disclosure therefore provides a semiconductor package structure including a multi-TIM structure and a method for forming the same. In some embodiments, the multi-TIM structure includes at least two TIM layers with different thermal conductivities and adhesion properties. In some embodiments, the multi-TIM structure includes different TIM layers depending on the stress applied to the semiconductor package structure. For example, the multi-TIM structure may include a TIM layer having greater adhesion in regions exposed to greater stress and another TIM layer having less adhesion in other regions receiving less stress. In some embodiments, the multi-TIM structure includes different TIM layers depending on heat generated during operation. For example, the multi-TIM structure may include a TIM layer having greater thermal conductivity in regions accommodating dies generating more heat and another TIM layer having less thermal conductivity in regions accommodating dies generating less heat.
  • FIG. 1 is a method for forming a semiconductor package structure 10 according to aspects of the present disclosure. The method 10 includes an operation 12, receiving a substrate including a die region and a first semiconductor die and a second semiconductor die disposed in the die region. The method 10 includes an operation 14, defining a first area where heat conduction is needed and a second area where adhesion is needed in the die region. The method 10 includes an operation 16, disposing a first TIM layer in the first area and a second TIM layer in the second area. In some embodiments, a thermal conductivity of the first TIM layer is greater than a thermal conductivity of the second TIM layer, and an adhesion of the second TIM layer is greater than an adhesion of the first TIM layer. The method 10 includes an operation 18, disposing a heat sink over the first TIM layer and the second TIM layer. The method 10 will be further described according to one or more embodiments. It should be noted that the operations of the method 10 may be rearranged or otherwise modified within the scope of the various aspects. It should be further be noted that additional processes may be provided before, during, and after the method 10, and that some other processes may only be briefly described herein. Thus, other implementations are possible within the scope of the various aspects described herein.
  • FIGS. 2A to 2D are schematic drawings illustrating a semiconductor package structure 100 a at various fabrication stages constructed according to aspects of one or more embodiments of the present disclosure, and FIGS. 3 and 4 are cross-sectional views taken along line I-I′ of FIG. 2D. The semiconductor package structure 100 a includes a first package. In some embodiments, the first package can be a carrier or a substrate 110 of one or more packages. In some embodiments, the first package is a laminate substrate 110. The laminate substrate 110 may be a plastic substrate or a ceramic substrate. Alternatively, the substrate 110 may be a build-up substrate. In some embodiments, the first substrate 110 includes at least a first region 112 a and a second region 112 b. The first region 112 a is a region defined and configured for accommodating one or more packages or dies, therefore the first region 112 a can be referred to as a die region. The first region 112 a of the substrate 110 may include a plurality of first bonding pads (not shown) for bonding with the package or die. The second region 112 b of the substrate 110 is a region that is not configured for accommodating the packages or dies. In some embodiments, the second region 112 b surrounds the first region 112 a, as shown in FIG. 1A, but the disclosure is not limited thereto.
  • Still referring to FIG. 2A, the semiconductor package structure 100 a may include a plurality of second packages. In some embodiments, the plurality of second packages can be a plurality of semiconductor dies. In some embodiments, a substrate 110 including a die region 112 a and a first semiconductor die 120 and a second semiconductor 122 disposed in the die region 112 a is received, according to operation 12. For example but not limited thereto, at least a first semiconductor die 120 and at least a second semiconductor die 122 are provided in some embodiments. In some embodiments, the first semiconductor die 120 and the second semiconductor die 122 are dies have the same size and function. In some embodiments, the first semiconductor die 120 is different in size compared to the second semiconductor die 122. In some embodiments, the first semiconductor die 120 is different in function compared to the second semiconductor die 122. The first and second semiconductor dies 120 and 122 may each be an integrated circuit (IC) chip, a system on chip (SoC), or a portion thereof. For example, the first semiconductor die 120 can be an application-specific integrated circuit (ASIC) die, an application processing (AP) die, a logic die, which may further be a central processing unit (CPU) die or a graphic processing unit (GPU) die, or the like. The second semiconductor die 122 can be a memory die such as a high bandwidth memory (HBM) die, or the like.
  • In some embodiments, each of the first and second semiconductor dies 120 and 122 includes a wafer. The wafer may be, for example but not limited thereto, a silicon (Si) wafer. The wafer may alternatively be made of some other suitable elementary semiconductor, such as diamond or germanium (Ge); a suitable compound semiconductor, such as silicon carbide (SiC), indium arsenide (InAs), or indium phosphide (InP); or a suitable alloy semiconductor, such as SiGeC, gallium arsenic phosphide (GaAsP), or GaInP. The wafer may include various doped regions (not shown), isolation structures (not shown), other devices, or a combination thereof. The first and second semiconductor dies 120 and 122 may include various passive and active microelectronic devices such as resistors, capacitors, inductors, diodes, metal-oxide-semiconductor field effect transistors (MOSFETs), complementary metal-oxide-semiconductor (CMOS) devices, bipolar junction transistors (BJTs), laterally diffused MOS (LDMOS) transistors, high power MOS transistors, or other types of transistors. They may include a microelectromechanical system (MEMS) device and/or a nanoelectromechanical system (NEMS) device.
  • The first and second semiconductor dies 120 and 122 are bonded to the first region 112 a of the substrate 110 through a plurality of connectors 130 (shown in FIGS. 3 and 4). In some embodiments, the first and second semiconductor dies 120 and 122 can be flipped upside down such that active surfaces of the first and second semiconductor dies 120 and 122 face the substrate 110 and are bonded to the substrate 110. The first and second semiconductor dies 120 and 122 are bonded by any suitable mechanism. For example, the connectors 130, such as solder balls (also referred to as solder bumps), can be disposed on bonding pads, which are formed on the active surfaces of the first and second semiconductor dies 120 and 122. The connectors 130 are then aligned with and brought into contact with the bonding pads over the substrate 110 to produce electrical coupling between the substrate 110 and the first and second semiconductor dies 120 and 122. Additionally, the first semiconductor die 120 and the second semiconductor 122 can be arranged along a first direction D1, as shown in FIG. 2A, but the disclosure is not limited thereto.
  • Still referring to FIG. 2A, an underfill 132 is next dispensed or injected into a space between the substrate 110, the first semiconductor die 120 and the second semiconductor die 122. The underfill 132 is injected to fill the space in order to reduce stress exerted on the bonded structures after the bonding. In some embodiments, the underfill 132 can include polymers such as resin epoxy, or other suitable materials. In some embodiments, the underfill 132 can include fillers, such as silica, to adjust the mechanical strength of the underfill 132.
  • The semiconductor package structure 100 a may include adhesive materials 134 disposed in the second region 112 b of the substrate 110, as shown in FIG. 2A. In some embodiments, the adhesive materials 134 may include a viscous gel or liquid material, such as thermal grease, silver paste or solder. In some embodiments, supporting elements (not shown) such as spacer or stiffener can be disposed over the substrate 110. In some embodiments, the supporting elements are attached to the substrate 110 by the adhesive material 134.
  • Referring to FIG. 2B, a first area 114-1 and a second area 114-2 are defined in the first region 112 a, that is the die region 112 a, according to operation 14. In some embodiments, the first area 114-1 is defined as an area where heat conduction is needed while the second area 114-2 is defined as an area where adhesion is needed. It should be noted that the definition of the first area 114-1 and the second area 114-2 can be modified depending on different product requirements. For example, the first area 114-1 can be defined correspondingly to the first semiconductor die 120, and the second area 114-2 can be defined correspondingly to the second semiconductor die 122 as shown in FIG. 2B, but the disclosure is not limited thereto.
  • Referring to FIG. 2C, a first TIM layer 142 is disposed in the first area 114-1 and a second TIM layer 144 is disposed in the second area 114-2, according to operation 16. Accordingly, the semiconductor package structure 100 a includes a multi-TIM structure 140 a disposed over the plurality of semiconductor dies 120 and 122. In some embodiments, the multi-TIM structure 140 a includes the first TIM layer 142 and the second TIM layer 144. The first TIM layer 142 and the second TIM layer 144 are arranged in a second direction D2. In some embodiments, the second direction D2 is the same as the first direction D1, as shown in FIG. 2C, but the disclosure is not limited thereto. In some embodiments, the first TIM layer 142 is formed on one of the plurality of semiconductor dies, such as the first semiconductor die 120, while the second TIM layer 144 is formed on another one of the plurality of semiconductor dies, such as the second semiconductor die 122, but the disclosure is not limited thereto.
  • As shown in FIGS. 2C and 3, in some embodiments, the first TIM layer 142 and the second TIM layer 144 are separated from each other by an air gap 143. The air gap 143 can further reduce lateral thermal interaction between the first and second semiconductor dies 120 and 122. However, in some embodiments, the first TIM layer 142 and the second TIM layer 144 can be in contact with each other, as shown in FIG. 4. In other embodiments, the first TIM layer 142 can overlap a portion of the second TIM layer 144, or vice versa, though not shown.
  • The first TIM layer 142 and the second TIM layer 144 of the multi-TIM structure 140 a are disposed on the first and second semiconductor dies 120 and 122. In some embodiments, each of the first and second TIM layers 142 and 144 is in physical contact with the top surfaces of the first and second semiconductor dies 120 and 122. In an exemplary embodiment, the first TIM layer 142 and the second TIM layer 144 each have a thickness of between about 20 μm and about 200 μm, but the disclosure is not limited thereto.
  • Referring to FIGS. 2D and 3, a heat sink 150 is then disposed over the first TIM layer 120 and the second TIM layer 122 according to operation 18. Therefore, the semiconductor package structure 100 a further includes the heat sink (also referred to as a lid) 150 in contact with the first TIM layer 120 and the second layer 122. The heat sink 150 may have a high thermal conductivity, for example, between approximately 200 watts per meter kelvin (W/mK) and approximately 400 W/mK or more, and may be formed using a metal, a metal alloy, graphene, carbon nanotubes (CNT), or the like. The heat sink 150 is mounted over, and thermally coupled to, the first and second semiconductor dies 120 and 122 through the multi-TIM structure 140 a. The multi-TIM structure 140 a not only couples the heat sink 150 to the first and second semiconductor dies 120 and 122, but also helps to dissipate the heat generated by the semiconductor dies 120 and 122 into the heat sink 150.
  • It is worth noting that a thermal conductivity (Tk) of the first TIM layer 142 is different from a thermal conductivity of the second TIM layer 144. For example, the thermal conductivity of the first TIM layer 142 is greater than the thermal conductivity of the second TIM layer 144. In some embodiments, the thermal conductivity of the first TIM layer 142 is greater than approximately 10 W/mK, but the disclosure is not limited thereto. In some embodiments, the thermal conductivity of the second TIM layer 144 is smaller than approximately 10 W/mK. In other embodiments, the thermal conductivity of the second TIM layer 144 is smaller than approximately 5 W/mK, but the disclosure is not limited thereto. For example, the second TIM layer 144 may be a polymer having a thermal conductivity of between approximately 3 W/mK and approximately 5 W/mK. The first TIM layer 142 may include a base material with thermal conductive fillers. In some embodiments, the base material may include one or more of plastics, adhesives, glues, epoxies, polymers, thermoplastics, silicone, grease, oil, resin, or the like. The thermal conductive fillers may increase the thermal conductivity of the first TIM layer 142 to between approximately 10 W/mK and approximately 50 W/mK or more. Applicable conductive filler materials may include aluminum oxide (AlO), boron nitride (BN), aluminum nitride (AlN), aluminum (Al), copper (Cu), silver (Ag), indium (In), a combination thereof, or the like. In other embodiments, the TIM layer 142 may include other materials such as a metallic-based or solder-based material comprising Ag, indium paste, or the like. The first TIM layer 142 having the thermal conductivity greater than 10 W/mK helps to transfer or dissipate heat more efficiently. For example, when a TIM layer having the thermal conductivity smaller than 10 W/mK is adopted over a semiconductor die (e.g. a CPU die), of which the heat output is greater than a memory die, the heat generated by the semiconductor die may not be transferred or dissipated in time, and thus the package may suffer thermomechanical stresses. As a result, cracks may occur between the semiconductor die and the heat sink or even in the semiconductor die itself.
  • In some embodiments, the first semiconductor die 120 includes a first heat output and the second semiconductor die 122 includes a second heat output less than the first heat output. For example, when the first semiconductor die 120 is a CPU die and the second semiconductor die 122 is a memory die, the first heat output of the first semiconductor die 120 is greater than the second heat output of the second semiconductor die 122. As mentioned above, the first area 114-1, which is defined where the heat conduction is needed, is also defined correspondingly to the first semiconductor die 120. Therefore, the first TIM layer 142 having the greater thermal conductivity disposed in the first area 114-1 is also disposed on the first semiconductor die 120 while the second TIM layer 144 having the less thermal conductivity but better adhesion is disposed on the second semiconductor die 122. Therefore, the heat generated by the first semiconductor die 120 can be more efficiently dissipated to the heat sink by the first TIM layer 142.
  • By adopting the multi-TIM structure 140 a, the TIM layers 142 and 144 with different thermal conductivities are provided to the semiconductor dies 120 and 122 with different heat outputs. Consequently, heat dissipation efficiency is improved and made uniform, and thus warpage caused by heat can be reduced.
  • FIG. 5 is a schematic drawing illustrating a semiconductor package structure 100 b according to aspects of one or more embodiments of the present disclosure. It should be noted that similar elements in FIG. 2C and FIG. 5 are designated by the same numerals. Further, similar elements in FIG. 2C and FIG. 5 can include similar materials and can be formed by operations 12 to 18 of the method 10; therefore, such redundant details are omitted in the interest of brevity, and only the differences are mentioned. Additionally, the heat sink 150 is omitted from FIG. 5, however those skilled in the art would easily understand the arrangement of the heat sink 150 according to the aforementioned description. In some embodiments, the difference between the semiconductor package structure 100 a and the semiconductor package structure 100 b is that a first area 114-1 where the heat conduction is needed is defined between two second areas 114-2 where the adhesion is needed. Further, the difference between the semiconductor package structure 100 a and the semiconductor package structure 100 b is that the TIM structure 140 b of the semiconductor package structure 100 b further includes a third TIM layer 146.
  • As shown in FIG. 5, the first and second semiconductor dies 120 and 122 are arranged along the first direction D1. The first area 114-1 and the second areas 114-2 are defined along a second direction D2, and the second direction D2 can be the same as the first direction D1, as shown in FIG. 5. Accordingly, the first and second semiconductor dies 120 and 122, the first TIM layer 142 disposed in the first area 114-a, and the second TIM layer 144 and the third TIM layer 146 disposed in the second areas 114-2 are arranged along a same direction D1/D2. In some embodiments, the first TIM layer 142, the second TIM layer 144 and the third TIM layer 146 are separated from each other by air gaps 143, which can further reduce lateral thermal interaction between the first and second semiconductor dies 120 and 122. However, in some embodiments, the first TIM layer 142, the second TIM layer 144 and the third TIM layer 146 can be in contact with each other. In other embodiments, the first TIM layer 142, the second TIM layer 144 and the third TIM layer 146 can overlap each other.
  • In some embodiments, the first TIM layer 142 is disposed in the first area 114-1, while the second TIM layer 144 and the third TIM layer 146 are disposed in the second areas 114-2. Therefore, the first TIM layer 142 is disposed between the second TIM layer 144 and the third TIM layer 146 from a top view, as shown in FIG. 5. In some embodiments, the first TIM layer 142 covers a portion of the first semiconductor die 120 and a portion of the second semiconductor die 122, while the second TIM layer 144 covers another portion of the first semiconductor die 120 and the third TIM layer 146 covers another portion of the second semiconductor die 122. In some embodiments, the second and third TIM layers 144 and 146 are disposed over at least four corners of the die region 112 a, as shown in FIG. 4. Further, the second TIM layer 144 covers two corners of the first semiconductor die 120 and the third TIM layer 146 covers two corners of the second semiconductor die 122.
  • In some embodiments, the thermal conductivity of the first TIM layer 142 is greater than that of the second TIM layer 144. Further, the thermal conductivity of the first TIM layer 142 is also greater than a thermal conductivity of the third TIM layer 146. In some embodiments, the thermal conductivity of the third TIM layer 146 can be the same as that of the second TIM layer 144. In other embodiments, the thermal conductivities of the second and third TIM layers 144 and 146 are different from each other. It is worth noting that adhesion of the TIM material is inversely proportional to the thermal conductivity of the TIM material. Therefore, the first TIM layer 142 with the greater thermal conductivity has less adhesion. In other words, the second and third TIM layers 144 and 146 have less thermal conductivity, but greater adhesion.
  • As mentioned above, heat can cause thermal stress and warpage in the 3DIC package structure leading to cracks in the connectors 130. In some embodiments, warpage appears to occur at a periphery of the die, especially at the corners; therefore the second and third TIM layers 144 and 146 having the greater adhesion are disposed at the corners of the first region 112 a. Accordingly, the first and second semiconductor dies 120 and 122 can be secured to the heat sink by the second and third TIM layers 144 and 146 even though warpage occurs. Meanwhile, the first TIM layer 142 with the greater thermal conductivity helps to dissipate the heat to the heat sink 150.
  • By adopting the multi-TIM structure 140 b, the TIM layers 142 to 146 with different adhesions are provided to the different regions which are exposed to different stresses. Accordingly, heat dissipation efficiency is improved and warpage caused by heat is reduced by the first TIM layer 142, while adhesion between the first/second semiconductor dies 120/122 and the heat sink is improved by the second and third TIM layers 144 and 146.
  • FIG. 6 is a schematic drawing illustrating a semiconductor package structure 100 c according to aspects of one or more embodiments of the present disclosure. It should be noted that similar elements in FIGS. 5 and 6 are designated by the same numerals. Further, similar elements in FIGS. 5 and 6 can include similar materials and can be formed by operation 12 to 18 of the method 10; therefore, such redundant details are omitted in the interest of brevity, and only the differences are mentioned. Additionally, the heat sink 150 is omitted from FIG. 6, however those skilled in the art would easily understand the arrangement of the heat sink 150 according to the aforementioned description. In some embodiments, the difference between the semiconductor package structure 100 b and the semiconductor package structure 100 c is that the definition of the first area 114-1 and the second areas 114-2 and the arrangement of the multi-TIM structure 140 c of the semiconductor package structure 100 c are different from that of the multi-TIM structure 140 b of the semiconductor package structure 100 b.
  • In some embodiments, the multi-TIM structure 140 c of the semiconductor package structure 100 c includes the first TIM layer 142, the second TIM layer 144 and the third TIM layer 146. The first semiconductor die 120 and the second semiconductor die 122 are arranged along a first direction D1. The first area 114-1 and the second areas 114-2 are defined along a second direction D2. Therefore the first TIM layer 142, the second TIM layer 144 and the third TIM layer 146 are arranged along the second direction D2. In some embodiments, the second direction D2 is different from the first direction D1, as shown in FIG. 6. In some embodiments, the first direction D1 and the second direction D2 are perpendicular to each other, but the disclosure is not limited thereto. The first TIM layer 142 overlaps a portion of each of semiconductor dies 120 and 122, the second TIM layer 144 overlaps another portion of each of the semiconductor dies 120 and 122, and the third TIM layer 146 overlaps the other portion of each of the semiconductor dies 120 and 122, but the disclosure is not limited thereto. In some embodiments, the first TIM layer 142, the second TIM layer 144 and the third TIM layer 146 are separated from each other by air gaps 143. The air gaps 143 can further reduce lateral thermal interaction between the first and second semiconductor dies 120 and 122. However, in some embodiments, the first TIM layer 142, the second TIM layer 144 and the third TIM layer 146 can be in contact with each other. In other embodiments, the first TIM layer 142, the second TIM layer 144 and the third TIM layer 146 can overlap each other.
  • In some embodiments, the thermal conductivity of the first TIM layer 142 is greater than that of the second TIM layer 144. Further, the thermal conductivity of the first TIM layer 142 is also greater than a thermal conductivity of the third TIM layer 146. In some embodiments, the thermal conductivity of the third TIM layer 146 can be the same as that of the second TIM layer 144. In other embodiments, the thermal conductivities of the second and third TIM layers 144 and 146 are different from each other. It is worth noting that adhesion of the TIM material is inversely proportional to the thermal conductivity of the TIM material. Therefore, the first TIM layer 142 with the greater thermal conductivity has less adhesion. In other words, the second and third TIM layers 144 and 146 have less thermal conductivity, but greater adhesion.
  • As mentioned above, heat can cause thermal stress and warpage in the 3DIC package structure leading to cracks in the connectors 130. In some embodiments, warpage is observed to occur at a periphery of the die, especially at the corners. Therefore, the second and third TIM layers 144 and 146 having the greater adhesion are disposed over a periphery of the first region 112 a. For example, the second and third TIM layers 144 and 146 are disposed over at least four corners of the first region 112 a, as shown in FIG. 6. Further, the second TIM layer 144 covers two corners of the first semiconductor die 120 and two corners of the second semiconductor die 122, while the third TIM layer 146 covers another two corners of the first semiconductor die 120 and another two corners of the second semiconductor die 122, as shown in FIG. 6. Therefore, not only all corners of the first region 112 a but also all corners of the first and second semiconductor dies 120 and 122 are secured to the heat sink by the second and third TIM layers 144 and 146. Meanwhile, the first TIM layer 142 with the higher thermal conductivity helps to dissipate the heat to the heat sink 150.
  • By adopting the multi-TIM structure 140 c, the TIM layers 142 to 146 with different adhesions are provided to the different regions which are exposed to different stresses. Accordingly, heat dissipation efficiency is improved and warpage caused by heat is reduced by the first TIM layer 142 while adhesion between the first/second semiconductor dies 120/122 and the heat sink is improved by the second and third TIM layers 144 and 146.
  • FIG. 7 is a schematic drawing illustrating a semiconductor package structure 100 d according to aspects of one or more embodiments of the present disclosure. It should be noted that similar elements in FIG. 2C and FIG. 7 are designated by the same numerals. Further, similar elements in FIG. 2C and FIG. 7 can include similar materials and can be formed by operation 12 to 18 of the method 10; therefore, such redundant details are omitted in the interest of brevity, and only the differences are mentioned. Additionally, the heat sink 150 is omitted from FIG. 7, however those skilled in the art would easily understand the arrangement of the heat sink 150 according to the aforementioned description. In some embodiments, the difference between the semiconductor package structure 100 a and the semiconductor package structure 100 d is that the definition of the first area 114-1 and the second area 114-2 and the arrangement of the multi-TIM structure 140 d of the semiconductor package structure 100 d is different from that of the semiconductor package structure 100 a. In some embodiments, the second area 114-2 is defined to surround the first area 114-1, as shown in FIG. 7. In some embodiments, the first area 114-1 is defined in a center of the die region (the first region) 112 a, while the second area 114-2 is defined in a periphery of the die region 112 a.
  • As shown in FIG. 7, the multi-TIM structure 140 d of the semiconductor package structure 100 d includes a first TIM layer 142 disposed in the first area 114-1 and a second TIM layer 144 disposed in the second area 114-2. However, the amount of TIM layers can be adjusted to meet different product requirements. Accordingly, the first TIM layer 142 is disposed in the center of the first region 112 a and the second TIM layer 144 is disposed in the periphery of the first region 112 a. As shown in FIG. 7, the second TIM layer 144 surrounds the first TIM layer 142 from a top view, but the disclosure is not limited thereto. Further, the second TIM layer 144 covers not only the corners of the first region 112 a, but also the entire periphery of the first region 112 a, as shown in FIG. 7. In some embodiments, the first TIM layer 142 and the second TIM layer 144 are separated from each other by an air gap 143. However, in some embodiments, the first TIM layer 142 and the second TIM layer 144 can be in contact with each other. In other embodiments, the first TIM layer 142 can overlap a portion of the second TIM layer 144, or vice versa, though not shown.
  • In some embodiments, the thermal conductivity of the first TIM layer 142 is greater than that of the second TIM layer 144. Thus, the first TIM layer 142 located in the center of the first region 112 a is used to dissipate heat into the heat sink. As mentioned above, adhesion of the TIM material is inversely proportional to the thermal conductivity of the TIM material; therefore, the first TIM layer 142 with the greater thermal conductivity has less adhesion. In other words, the second TIM layer 144 has less thermal conductivity, but greater adhesion. In some embodiments, the second TIM layer 144 is disposed over a periphery of the first region 112 a. Therefore, the first and second semiconductor dies 120 and 122 can be secured to the heat sink 150 even though warpage occurs.
  • By adopting the multi-TIM structure 140 d, the TIM layers 142 and 144 with different adhesions are provided to the different regions which are exposed to different stresses. Accordingly, heat dissipation efficiency is improved and warpage is reduced by the first TIM layer 142 while adhesion between the first/second semiconductor dies 120/122 and the heat sink is improved by the second TIM layer 144.
  • FIG. 8 is a schematic drawing illustrating a semiconductor package structure 100 e according to aspects of one or more embodiments of the present disclosure. It should be noted that similar elements in FIGS. 7 and 8 are designated by the same numerals. Further, similar elements in FIGS. 7 and 8 can include similar materials and can be formed by operation 12 to 18 of the method 10; therefore, in the interest of brevity, only the differences are mentioned. In some embodiments, the difference between the semiconductor package structure 100 d and the semiconductor package structure 100 e is that definition of the first area 114-1 and the second area 114-2 and the arrangement of the multi-TIM structure 140 e of the semiconductor package structure 100 e. As shown in FIG. 8, the second area 114-2 surrounds the first area 114-1. In some embodiments, the first area 114-1 is defined in a center of the die region (the first region) 112 a, while the second area 114-2 is defined in a periphery of the die region 112 a. Further, the first area 114-1 is defined correspondingly to the first semiconductor die 120, as shown in FIG. 8. Additionally, the heat sink 150 is omitted from FIG. 8; however, those skilled in the art would easily understand the arrangement of the heat sink 150 according to the aforementioned description. In some embodiments, the semiconductor package structure 100 e includes a plurality of semiconductor dies. For example, the semiconductor package structure 100 e includes at least a first semiconductor die 120 such as a CPU die, and a plurality of second semiconductor dies 122 such as HBM dies. The first semiconductor die 120 and the second semiconductor dies 122 are disposed in the first region 112 a of the substrate 110. In some embodiments, the second semiconductor dies 122 are disposed at two sides of the first semiconductor die 120 from a top view, as shown in FIG. 8, but the disclosure is not limited thereto. The first semiconductor die 120 can include a first heat output and the second semiconductor dies 122 can include a second heat output. As mentioned above, the first heat output of the first semiconductor die 120 (i.e., the CPU die) is greater than the second heat output of the second semiconductor dies 122 (i.e., the HBM dies).
  • Still referring to FIG. 8, the multi-TIM structure 140 e of the semiconductor package structure 100 e includes a first TIM layer 142 and a second TIM layer 144. However, the amount of TIM layers can be adjusted to meet different product requirements. In some embodiments, the first TIM layer 142 is disposed in the first area 114-1 in the center of the first region 112 a and the second TIM layer 144 is disposed in the second area 114-2 in the periphery of the first region 112 a to surround the first TIM layer 142 from a top view. Further, the first TIM layer 142 in the first area 114-1 covers the first semiconductor die 120 while the second TIM layer 144 in the second area 114-2 covers the second semiconductor dies 122, as shown in FIG. 8. In some embodiments, the second TIM layer 144 covers corners of the first semiconductor die 120 and corners of the second semiconductor dies 122, but the disclosure is not limited thereto. In some embodiments, the first TIM layer 142 and the second TIM layer 144 are separated from each other by an air gap 143. However, in some embodiments, the first TIM layer 142 and the second TIM layer 144 can be contact in with each other. In other embodiments, the first TIM layer 142 can overlap a portion of the second TIM layer 144, or vice versa, though not shown.
  • In some embodiments, the thermal conductivity of the first TIM layer 142 is greater than that of the second TIM layer 144. Thus, the first TIM layer 142 disposed over the first semiconductor die 122, which has the greater heat output, is used to dissipate more heat into the heat sink. As mentioned above, adhesion of the TIM material is inversely proportional to the thermal conductivity of the TIM material. Therefore, the first TIM layer 142 with the greater thermal conductivity has less adhesion. In other words, the second TIM layer 144 has less thermal conductivity, but greater adhesion. As shown in FIG. 8, the second TIM layer 144 is disposed over the periphery of the first region 112 a, which is exposed to greater stress. Since the second heat output of the second semiconductor dies 122 is less than the first heat output, the second TIM layer 144 has sufficient thermal conductivity to dissipate the heat into the heat sink while meeting the adhesion requirements in the periphery. Accordingly, the first semiconductor die 120 and the second semiconductor dies 122 can be secured to the heat sink by the second TIM layer 144 even though warpage occurs.
  • By adopting the multi-TIM structure 140 e, the TIM layers 142 and 144 with different thermal conductivities are provided to the semiconductor dies 120 and 122 with different heat outputs. Accordingly, heat dissipation efficiency is improved and made uniform, and thus warpage is reduced by the first TIM layer 142. Further, the TIM layers 142 and 144 with different adhesions are provided to the different regions which are exposed to different stresses. Accordingly, adhesion between the first/second semiconductor dies 120/122 and the heat sink is improved by the second TIM layer 144.
  • The present disclosure therefore provides a semiconductor package structure including a multi-TIM structure. In some embodiments, the multi-TIM structure includes at least two TIM layers with different thermal conductivities and adhesions. In some embodiments, the multi-TIM structure includes different TIM layers depending on the stress applied to the semiconductor package structure. For example, the multi-TIM structure may include a TIM layer having greater adhesion in regions exposed to greater stress and another TIM layer having less adhesion in other regions receiving less stress. In some embodiments, the multi-TIM structure includes different TIM layers depending on heat generated during operation. For example, the multi-TIM structure may include a TIM layer having greater thermal conductivity in regions accommodating dies generating more heat and another TIM layer having less thermal conductivity in regions accommodating dies generating less heat.
  • The present disclosure provides a semiconductor structure including a substrate, a plurality of semiconductor dies over the substrate, and a multi-TIM structure over the plurality of semiconductor dies. The multi-TIM structure includes a first TIM layer and a second TIM layer. A thermal conductivity of the first TIM layer is different from a thermal conductivity of the second TIM layer.
  • In some embodiments, a semiconductor package structure is provided. The semiconductor package structure includes a substrate, a first semiconductor and a second semiconductor over the substrate, and a multi-TIM structure disposed over the first semiconductor die and the second semiconductor die. The first semiconductor die includes a first heat output and the second semiconductor die includes a second heat output less than the first heat output. The multi-TIM structure includes a first TIM layer disposed over at least a portion of the first semiconductor die and a second TIM layer. A thermal conductivity of the first TIM layer is greater than a thermal conductivity of the second TIM layer.
  • In some embodiments, a method for forming a semiconductor package structure is provided. The method includes following operations. A substrate including a die region and a first semiconductor die and a second die disposed in the die region is received. A first area where heat conduction is needed and a second area where adhesion is needed are defined in the die region. A first TIM layer is disposed in the first area and a second TIM layer is disposed in the second area. In some embodiments, a thermal conductivity of the first TIM layer is greater than a thermal conductivity of the second TIM layer, and an adhesion of the second TIM layer is greater than an adhesion of the first TIM layer.
  • The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.

Claims (23)

What is claimed is:
1. A semiconductor package structure comprising:
a substrate;
a plurality of semiconductor dies over the substrate; and
a multi-thermal interface material (TIM) structure over the plurality of semiconductor dies,
wherein the multi-TIM structure comprises a first TIM layer and a second TIM layer, and a thermal conductivity (Tk) of the first TIM layer is different from a thermal conductivity of the second TIM layer, the first TIM layer overlaps a portion of each of the plurality of semiconductor dies, and the second TIM layer overlaps another portion of each of the plurality of semiconductor dies.
2. (canceled)
3. (canceled)
4. The semiconductor package structure of claim 1, wherein the first TIM layer is separated from the second TIM layer by an air gap.
5. The semiconductor package structure of claim 1, wherein the first TIM layer is in contact with the second TIM layer.
6. The semiconductor package structure of claim 1, wherein the second TIM layer surrounds the first TIM layer from a top view.
7. The semiconductor package structure of claim 1, wherein the plurality of semiconductor dies are arranged along a first direction, and the first TIM layer and the second TIM layer are arranged along a second direction different from the first direction.
8. The semiconductor package structure of claim 1, wherein the plurality of semiconductor dies, the first TIM layer and the second TIM layer are arranged along a same direction.
9. The semiconductor package structure of claim 1, wherein the multi-TIM structure further comprises a third TIM layer, and the first TIM layer is disposed between the second TIM layer and the third TIM layer from a top view.
10. A semiconductor package structure comprising:
a substrate;
a first semiconductor die and a second semiconductor die disposed over the substrate, wherein the first semiconductor die includes a first heat output and the second semiconductor die includes a second heat output less than the first heat output; and
a multi-TIM structure disposed over the first semiconductor die and the second semiconductor die, the multi-TIM structure comprising a first TIM layer disposed over at least a portion of the first semiconductor die and a second TIM layer,
wherein a thermal conductivity of the first TIM layer is greater than a thermal conductivity of the second TIM layer.
11. The semiconductor package structure of claim 10, wherein the thermal conductivity of the first TIM layer is greater than approximately 10 watts per meter kelvin (W/mK).
12. The semiconductor package structure of claim 10, wherein the thermal conductivity of the second TIM layer is smaller than approximately 10 W/mK.
13. The semiconductor package structure of claim 10, wherein the first TIM layer comprises a base material and thermal conductive fillers, the base material comprises plastics, adhesives, glues, epoxies, polymers, thermoplastics, silicone, grease, oil or resin, and the thermal conductive fillers comprise aluminum oxide (AlO), boron nitride (BN), aluminum nitride (AlN), aluminum (Al), copper (Cu), silver (Ag), or indium (In).
14. The semiconductor package structure of claim 10, wherein the second TIM layer comprises polymer.
15. The semiconductor package structure of claim 10, wherein an adhesion of the first TIM layer is different from an adhesion of the second TIM layer.
16. The semiconductor package structure of claim 10, further comprising a heat sink disposed over the multi-TIM structure and in contact with the multi-TIM structure.
17-20. (canceled)
21. A semiconductor package structure comprising:
a substrate comprising a first region and a second region;
a plurality of semiconductor dies and in the first region of the substrate; and
a multi-TIM structure over the plurality of semiconductor dies in the first region, the multi-TIM structure comprising at least a first TIM layer and at least a second TIM layer,
wherein an adhesion of the first TIM layer is less than an adhesion of the second TIM layer, and the second TIM layer is disposed over corners of the first region.
22. The semiconductor package structure of claim 21, wherein a thermal conductivity of the first TIM layer is different from a thermal conductivity of the second TIM layer.
23. The semiconductor package structure of claim 21, wherein the second TIM layer further covers a periphery of the first region.
24. The semiconductor package structure of claim 21, wherein the second TIM layer surrounds the first TIM layer from a top view.
25. The semiconductor package structure of claim 1, wherein the multi-TIM structure has a consistent thickness.
26. The semiconductor package structure of claim 1, wherein an area of the first TIM layer is greater than an area of the second TIM layer.
US15/992,045 2018-05-29 2018-05-29 Semiconductor package structure having a multi-thermal interface material structure Active US10515869B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/992,045 US10515869B1 (en) 2018-05-29 2018-05-29 Semiconductor package structure having a multi-thermal interface material structure
TW108101885A TWI705537B (en) 2018-05-29 2019-01-17 Semiconductor package structure and method for manufacturing the same
CN201910146963.5A CN110544687B (en) 2018-05-29 2019-02-27 Semiconductor package structure and method for forming semiconductor package structure
US16/725,189 US12062590B2 (en) 2018-05-29 2019-12-23 Method for manufacturing semiconductor package structure
US18/769,425 US20240363483A1 (en) 2018-05-29 2024-07-11 Semiconductor package structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/992,045 US10515869B1 (en) 2018-05-29 2018-05-29 Semiconductor package structure having a multi-thermal interface material structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/725,189 Division US12062590B2 (en) 2018-05-29 2019-12-23 Method for manufacturing semiconductor package structure

Publications (2)

Publication Number Publication Date
US20190371700A1 true US20190371700A1 (en) 2019-12-05
US10515869B1 US10515869B1 (en) 2019-12-24

Family

ID=68692770

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/992,045 Active US10515869B1 (en) 2018-05-29 2018-05-29 Semiconductor package structure having a multi-thermal interface material structure
US16/725,189 Active 2040-05-26 US12062590B2 (en) 2018-05-29 2019-12-23 Method for manufacturing semiconductor package structure
US18/769,425 Pending US20240363483A1 (en) 2018-05-29 2024-07-11 Semiconductor package structure

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/725,189 Active 2040-05-26 US12062590B2 (en) 2018-05-29 2019-12-23 Method for manufacturing semiconductor package structure
US18/769,425 Pending US20240363483A1 (en) 2018-05-29 2024-07-11 Semiconductor package structure

Country Status (3)

Country Link
US (3) US10515869B1 (en)
CN (1) CN110544687B (en)
TW (1) TWI705537B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200051890A1 (en) * 2018-08-10 2020-02-13 Cerebras Systems Inc. Apparatuses and methods for implementing a sliding thermal interface between substrates with varying coefficients of thermal expansion
US20200135613A1 (en) * 2018-10-30 2020-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with enhanced thermal dissipation and method for making the same
US20210125951A1 (en) * 2019-10-28 2021-04-29 Qualcomm Incorporated Integrated device comprising interconnect structures having an inner interconnect, a dielectric layer and a conductive layer
US20220199549A1 (en) * 2019-04-01 2022-06-23 Samsung Electronics Co., Ltd. Semiconductor package
US20220359339A1 (en) * 2021-05-05 2022-11-10 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-TIM Packages and Method Forming Same
US20240038617A1 (en) * 2022-07-26 2024-02-01 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure and manufacturing method thereof
US20240203754A1 (en) * 2022-12-16 2024-06-20 Arieca Inc. Method of deposition of a thermal interface material onto a circuit assembly and an integrated circuit formed therefrom
TWI886810B (en) * 2023-12-18 2025-06-11 台灣積體電路製造股份有限公司 Package shuttle, structure including the same, and method of transporting semiconductor packages
KR102899498B1 (en) * 2021-05-05 2025-12-11 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Multi-tim packages and method forming same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021119930A1 (en) * 2019-12-16 2021-06-24 华为技术有限公司 Chip package and fabrication method therefor
US11637050B2 (en) * 2021-03-31 2023-04-25 Qorvo Us, Inc. Package architecture utilizing wafer to wafer bonding
US11532535B2 (en) 2021-04-14 2022-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor die package with thermal management features and method for forming the same
US11750089B2 (en) 2021-10-28 2023-09-05 Alpha And Omega Semiconductor International Lp Power converter for high power density
US20240088093A1 (en) * 2022-09-13 2024-03-14 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated Circuit Packages and Methods of Forming the Same

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757620A (en) * 1994-12-05 1998-05-26 International Business Machines Corporation Apparatus for cooling of chips using blind holes with customized depth
US5604978A (en) * 1994-12-05 1997-02-25 International Business Machines Corporation Method for cooling of chips using a plurality of materials
US5587882A (en) * 1995-08-30 1996-12-24 Hewlett-Packard Company Thermal interface for a heat sink and a plurality of integrated circuits mounted on a substrate
US6212074B1 (en) * 2000-01-31 2001-04-03 Sun Microsystems, Inc. Apparatus for dissipating heat from a circuit board having a multilevel surface
US6748350B2 (en) * 2001-09-27 2004-06-08 Intel Corporation Method to compensate for stress between heat spreader and thermal interface material
US7031162B2 (en) * 2003-09-26 2006-04-18 International Business Machines Corporation Method and structure for cooling a dual chip module with one high power chip
US7193318B2 (en) * 2004-08-18 2007-03-20 International Business Machines Corporation Multiple power density chip structure
JP2006073655A (en) * 2004-08-31 2006-03-16 Toshiba Corp Semiconductor module
US7230334B2 (en) * 2004-11-12 2007-06-12 International Business Machines Corporation Semiconductor integrated circuit chip packages having integrated microchannel cooling modules
US7338818B2 (en) * 2005-05-19 2008-03-04 International Business Machines Corporation Systems and arrangements to assess thermal performance
US7787248B2 (en) * 2006-06-26 2010-08-31 International Business Machines Corporation Multi-fluid cooling system, cooled electronics module, and methods of fabrication thereof
US20080237841A1 (en) * 2007-03-27 2008-10-02 Arana Leonel R Microelectronic package, method of manufacturing same, and system including same
US7843058B2 (en) 2007-10-30 2010-11-30 Taiwan Semiconductor Manufacturing Company, Ltd. Flip chip packages with spacers separating heat sinks and substrates
US8202765B2 (en) * 2009-01-22 2012-06-19 International Business Machines Corporation Achieving mechanical and thermal stability in a multi-chip package
US8081468B2 (en) * 2009-06-17 2011-12-20 Laird Technologies, Inc. Memory modules including compliant multilayered thermally-conductive interface assemblies
US8227904B2 (en) * 2009-06-24 2012-07-24 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
KR101589441B1 (en) * 2009-08-07 2016-01-28 삼성전자주식회사 Semiconductor module
US8779582B2 (en) 2010-10-20 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Compliant heat spreader for flip chip packaging having thermally-conductive element with different metal material areas
US8797057B2 (en) 2011-02-11 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Testing of semiconductor chips with microbumps
US8803316B2 (en) 2011-12-06 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. TSV structures and methods for forming the same
US8803292B2 (en) 2012-04-27 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. Through-substrate vias and methods for forming the same
US9443783B2 (en) 2012-06-27 2016-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. 3DIC stacking device and method of manufacture
US9257364B2 (en) * 2012-06-27 2016-02-09 Intel Corporation Integrated heat spreader that maximizes heat transfer from a multi-chip package
US9041192B2 (en) * 2012-08-29 2015-05-26 Broadcom Corporation Hybrid thermal interface material for IC packages with integrated heat spreader
US9299649B2 (en) 2013-02-08 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. 3D packages and methods for forming the same
US8802504B1 (en) 2013-03-14 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. 3D packages and methods for forming the same
US9685393B2 (en) * 2013-03-04 2017-06-20 The Hong Kong University Of Science And Technology Phase-change chamber with patterned regions of high and low affinity to a phase-change medium for electronic device cooling
US8993380B2 (en) 2013-03-08 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for 3D IC package
US9089051B2 (en) * 2013-06-27 2015-07-21 International Business Machines Corporation Multichip module with stiffening frame and associated covers
US9076754B2 (en) * 2013-08-02 2015-07-07 Taiwan Semiconductor Manufacturing Company, Ltd. 3DIC packages with heat sinks attached to heat dissipating rings
US9735082B2 (en) * 2013-12-04 2017-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. 3DIC packaging with hot spot thermal management features
US9269694B2 (en) * 2013-12-11 2016-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Packages with thermal management features for reduced thermal crosstalk and methods of forming same
US9059127B1 (en) * 2014-01-09 2015-06-16 International Business Machines Corporation Packages for three-dimensional die stacks
US9281254B2 (en) 2014-02-13 2016-03-08 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming integrated circuit package
US9425126B2 (en) 2014-05-29 2016-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy structure for chip-on-wafer-on-substrate
US9496189B2 (en) 2014-06-13 2016-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Stacked semiconductor devices and methods of forming same
US9490188B2 (en) * 2014-09-12 2016-11-08 International Business Machines Corporation Compute intensive module packaging
US9781819B2 (en) * 2015-07-31 2017-10-03 Laird Technologies, Inc. Multifunctional components for electronic devices and related methods of providing thermal management and board level shielding
US9806002B2 (en) * 2015-12-23 2017-10-31 Intel Corporation Multi-reference integrated heat spreader (IHS) solution
WO2017123188A1 (en) * 2016-01-11 2017-07-20 Intel Corporation Multiple-chip package with multiple thermal interface materials
US9847320B2 (en) * 2016-03-09 2017-12-19 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and method of fabricating the same
US10182514B2 (en) * 2016-06-27 2019-01-15 International Business Machines Corporation Thermal interface material structures
US9859262B1 (en) * 2016-07-08 2018-01-02 Globalfoundries Inc. Thermally enhanced package to reduce thermal interaction between dies
WO2018106226A1 (en) * 2016-12-07 2018-06-14 Intel Corporation Multi-chip packages and sinterable paste for use with thermal interface materials
US10228735B2 (en) * 2017-06-29 2019-03-12 Intel Corporation Methods of direct cooling of packaged devices and structures formed thereby
US20190006259A1 (en) * 2017-06-29 2019-01-03 Intel Corporation Cooling solution designs for microelectronic packages
US10461011B2 (en) * 2017-12-27 2019-10-29 Intel Corporation Microelectronics package with an integrated heat spreader having indentations

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923412B2 (en) * 2018-08-10 2021-02-16 Cerebras Systems Inc. Apparatuses and methods for implementing a sliding thermal interface between substrates with varying coefficients of thermal expansion
US20200051890A1 (en) * 2018-08-10 2020-02-13 Cerebras Systems Inc. Apparatuses and methods for implementing a sliding thermal interface between substrates with varying coefficients of thermal expansion
US20200135613A1 (en) * 2018-10-30 2020-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with enhanced thermal dissipation and method for making the same
US12183655B2 (en) * 2018-10-30 2024-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with enhanced thermal dissipation and method for making the same
US20220367318A1 (en) * 2018-10-30 2022-11-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with enhanced thermal dissipation and method for making the same
US11626343B2 (en) * 2018-10-30 2023-04-11 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with enhanced thermal dissipation and method for making the same
US20220199549A1 (en) * 2019-04-01 2022-06-23 Samsung Electronics Co., Ltd. Semiconductor package
US11862571B2 (en) * 2019-04-01 2024-01-02 Samsung Electronics Co., Ltd. Semiconductor package
US11676922B2 (en) * 2019-10-28 2023-06-13 Qualcomm Incorporated Integrated device comprising interconnect structures having an inner interconnect, a dielectric layer and a conductive layer
US20210125951A1 (en) * 2019-10-28 2021-04-29 Qualcomm Incorporated Integrated device comprising interconnect structures having an inner interconnect, a dielectric layer and a conductive layer
TWI789901B (en) * 2021-05-05 2023-01-11 台灣積體電路製造股份有限公司 Package and method of forming same
DE102021119360A1 (en) 2021-05-05 2022-11-10 Taiwan Semiconductor Manufacturing Co., Ltd. MULTI-TIM PACKAGES AND THEIR MANUFACTURING PROCESSES
US20220359339A1 (en) * 2021-05-05 2022-11-10 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-TIM Packages and Method Forming Same
KR102899498B1 (en) * 2021-05-05 2025-12-11 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Multi-tim packages and method forming same
US20240038617A1 (en) * 2022-07-26 2024-02-01 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure and manufacturing method thereof
US20240203754A1 (en) * 2022-12-16 2024-06-20 Arieca Inc. Method of deposition of a thermal interface material onto a circuit assembly and an integrated circuit formed therefrom
TWI886810B (en) * 2023-12-18 2025-06-11 台灣積體電路製造股份有限公司 Package shuttle, structure including the same, and method of transporting semiconductor packages

Also Published As

Publication number Publication date
US12062590B2 (en) 2024-08-13
CN110544687A (en) 2019-12-06
US10515869B1 (en) 2019-12-24
US20200144155A1 (en) 2020-05-07
US20240363483A1 (en) 2024-10-31
CN110544687B (en) 2021-04-16
TWI705537B (en) 2020-09-21
TW202005010A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US20240363483A1 (en) Semiconductor package structure
CN104733329B (en) Semiconductor package and technique
CN104716109B (en) Package with thermal management components that reduce thermal crosstalk and method of forming the same
US12183659B2 (en) Embedded cooling assemblies for advanced device packaging and methods of manufacturing the same
CN108292637B (en) Multi-datum Integrated Heat Sink (IHS) solution
US8526186B2 (en) Electronic assembly including die on substrate with heat spreader having an open window on the die
US11456232B2 (en) Thermal assemblies for multi-chip packages
Lau Evolution and outlook of TSV and 3D IC/Si integration
CA2713151C (en) Semiconductor stack assembly having reduced thermal spreading resistance and methods of making same
US20180261528A1 (en) Semiconductor package with improved heat dissipation
US8941233B1 (en) Integrated circuit package with inter-die thermal spreader layers
Lau Recent advances and new trends in nanotechnology and 3D integration for semiconductor industry
CN112151475A (en) Integrated circuit package with solder thermal interface material
KR20220116426A (en) Thermally conductive slug/active die to improve cooling of stacked bottom die
CN112670187B (en) Chip packaging structure and forming method thereof
CN101276795B (en) Semiconductor Package Structure
US9070657B2 (en) Heat conductive substrate for integrated circuit package
US20250336755A1 (en) Semiconductor package with double-sided thermal solution and method for forming the same
Lau 5 D IC Integration
JP2020188082A (en) Semiconductor package
US20250349666A1 (en) Semiconductor package with heat spreading lid
US20240339429A1 (en) Packaging systems and methods for semiconductor devices
US20240222219A1 (en) Package architectures with heterogeneous integration of various device thicknesses
US20250219030A1 (en) Semiconductor device and method of forming same
TW202527261A (en) Package structure and method for forming the same

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD., T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YEH, TING-YU;HSU, CHIA-HAO;CHEN, WEIMING CHRIS;AND OTHERS;REEL/FRAME:046220/0993

Effective date: 20180529

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4