US20190358235A1 - Therapeutic Combination of a PI3K Inhibitor and a BTK Inhibitor - Google Patents
Therapeutic Combination of a PI3K Inhibitor and a BTK Inhibitor Download PDFInfo
- Publication number
- US20190358235A1 US20190358235A1 US16/388,832 US201916388832A US2019358235A1 US 20190358235 A1 US20190358235 A1 US 20190358235A1 US 201916388832 A US201916388832 A US 201916388832A US 2019358235 A1 US2019358235 A1 US 2019358235A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- inhibitor
- pi3k
- canceled
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940124291 BTK inhibitor Drugs 0.000 title claims abstract description 217
- 239000012828 PI3K inhibitor Substances 0.000 title claims abstract description 118
- 229940043441 phosphoinositide 3-kinase inhibitor Drugs 0.000 title claims abstract description 118
- 230000001225 therapeutic effect Effects 0.000 title abstract description 10
- 239000003112 inhibitor Substances 0.000 claims abstract description 146
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 80
- 108091007960 PI3Ks Proteins 0.000 claims abstract description 51
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 claims abstract description 49
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 claims abstract description 49
- 210000003289 regulatory T cell Anatomy 0.000 claims abstract description 9
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 claims abstract description 8
- 210000003630 histaminocyte Anatomy 0.000 claims abstract description 6
- 210000004443 dendritic cell Anatomy 0.000 claims abstract description 5
- 210000000440 neutrophil Anatomy 0.000 claims abstract description 5
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 claims abstract description 4
- 210000002950 fibroblast Anatomy 0.000 claims abstract description 4
- 210000002443 helper t lymphocyte Anatomy 0.000 claims abstract description 4
- 210000002540 macrophage Anatomy 0.000 claims abstract description 4
- 210000001616 monocyte Anatomy 0.000 claims abstract description 4
- 210000000822 natural killer cell Anatomy 0.000 claims abstract description 4
- 210000002707 regulatory b cell Anatomy 0.000 claims abstract description 4
- 229940125814 BTK kinase inhibitor Drugs 0.000 claims abstract description 3
- 210000004027 cell Anatomy 0.000 claims description 76
- 150000003839 salts Chemical class 0.000 claims description 73
- 239000008194 pharmaceutical composition Substances 0.000 claims description 64
- 238000000034 method Methods 0.000 claims description 50
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 36
- 201000011510 cancer Diseases 0.000 claims description 29
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 claims description 23
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 claims description 15
- 238000011260 co-administration Methods 0.000 claims description 13
- 230000003463 hyperproliferative effect Effects 0.000 claims description 13
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 claims description 8
- 230000011664 signaling Effects 0.000 claims description 8
- 208000031261 Acute myeloid leukaemia Diseases 0.000 claims description 5
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 claims description 5
- 210000000987 immune system Anatomy 0.000 claims description 5
- 238000001990 intravenous administration Methods 0.000 claims description 4
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 3
- 238000007918 intramuscular administration Methods 0.000 claims description 3
- 238000007912 intraperitoneal administration Methods 0.000 claims description 3
- 238000007920 subcutaneous administration Methods 0.000 claims description 3
- 208000025324 B-cell acute lymphoblastic leukemia Diseases 0.000 claims description 2
- 210000001102 germinal center b cell Anatomy 0.000 claims description 2
- 238000002560 therapeutic procedure Methods 0.000 abstract description 3
- 125000001424 substituent group Chemical group 0.000 description 187
- -1 coatings Substances 0.000 description 170
- 125000005843 halogen group Chemical group 0.000 description 169
- 125000001072 heteroaryl group Chemical group 0.000 description 166
- 125000004093 cyano group Chemical group *C#N 0.000 description 155
- 125000000217 alkyl group Chemical group 0.000 description 145
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 141
- 150000001875 compounds Chemical class 0.000 description 141
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 120
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 117
- 239000000203 mixture Substances 0.000 description 115
- 229910052760 oxygen Inorganic materials 0.000 description 114
- 125000003118 aryl group Chemical group 0.000 description 112
- 229910052717 sulfur Inorganic materials 0.000 description 111
- 125000004432 carbon atom Chemical group C* 0.000 description 106
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 103
- 125000000623 heterocyclic group Chemical group 0.000 description 89
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 89
- 125000000753 cycloalkyl group Chemical group 0.000 description 86
- 125000004765 (C1-C4) haloalkyl group Chemical group 0.000 description 85
- 229920006395 saturated elastomer Polymers 0.000 description 71
- 229910052739 hydrogen Inorganic materials 0.000 description 66
- 125000004429 atom Chemical group 0.000 description 63
- 125000005842 heteroatom Chemical group 0.000 description 62
- 239000001257 hydrogen Substances 0.000 description 62
- 229910052757 nitrogen Inorganic materials 0.000 description 62
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 60
- 125000003545 alkoxy group Chemical group 0.000 description 55
- 125000000304 alkynyl group Chemical group 0.000 description 53
- 229910052731 fluorine Inorganic materials 0.000 description 52
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 49
- 239000000460 chlorine Substances 0.000 description 49
- 229910052801 chlorine Inorganic materials 0.000 description 49
- 150000002431 hydrogen Chemical group 0.000 description 47
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 46
- 239000001301 oxygen Substances 0.000 description 46
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 45
- 238000011282 treatment Methods 0.000 description 45
- 125000003342 alkenyl group Chemical group 0.000 description 44
- 230000000694 effects Effects 0.000 description 44
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 43
- 125000004404 heteroalkyl group Chemical group 0.000 description 38
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 36
- 229910052799 carbon Inorganic materials 0.000 description 36
- 239000011593 sulfur Substances 0.000 description 36
- 125000003710 aryl alkyl group Chemical group 0.000 description 35
- 229910052794 bromium Inorganic materials 0.000 description 35
- 229910052736 halogen Inorganic materials 0.000 description 35
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 34
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 33
- 125000002950 monocyclic group Chemical group 0.000 description 33
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 33
- 150000002367 halogens Chemical class 0.000 description 30
- 125000006583 (C1-C3) haloalkyl group Chemical group 0.000 description 28
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 28
- 238000002360 preparation method Methods 0.000 description 28
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 27
- 229910052740 iodine Inorganic materials 0.000 description 27
- 235000014113 dietary fatty acids Nutrition 0.000 description 26
- 239000000194 fatty acid Substances 0.000 description 26
- 229930195729 fatty acid Natural products 0.000 description 26
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 26
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 24
- 239000002904 solvent Substances 0.000 description 23
- 208000032839 leukemia Diseases 0.000 description 22
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Substances C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 22
- 206010025323 Lymphomas Diseases 0.000 description 21
- 239000004094 surface-active agent Substances 0.000 description 21
- 125000000171 (C1-C6) haloalkyl group Chemical group 0.000 description 20
- 239000003795 chemical substances by application Substances 0.000 description 20
- 125000006413 ring segment Chemical group 0.000 description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 19
- 229920001223 polyethylene glycol Polymers 0.000 description 19
- 229910052701 rubidium Inorganic materials 0.000 description 19
- 125000003709 fluoroalkyl group Chemical group 0.000 description 18
- 150000003254 radicals Chemical class 0.000 description 18
- 201000010099 disease Diseases 0.000 description 17
- 239000000546 pharmaceutical excipient Substances 0.000 description 17
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 17
- 239000004480 active ingredient Substances 0.000 description 16
- 229940002612 prodrug Drugs 0.000 description 16
- 239000000651 prodrug Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 125000000464 thioxo group Chemical group S=* 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 125000004452 carbocyclyl group Chemical group 0.000 description 15
- 125000005884 carbocyclylalkyl group Chemical group 0.000 description 15
- 125000005885 heterocycloalkylalkyl group Chemical group 0.000 description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 15
- 125000006374 C2-C10 alkenyl group Chemical group 0.000 description 14
- 239000002202 Polyethylene glycol Substances 0.000 description 14
- 125000002619 bicyclic group Chemical group 0.000 description 14
- 241000124008 Mammalia Species 0.000 description 13
- 125000001931 aliphatic group Chemical group 0.000 description 13
- 239000002552 dosage form Substances 0.000 description 13
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 13
- NCAIGTHBQTXTLR-UHFFFAOYSA-N phentermine hydrochloride Chemical compound [Cl-].CC(C)([NH3+])CC1=CC=CC=C1 NCAIGTHBQTXTLR-UHFFFAOYSA-N 0.000 description 13
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 13
- 125000004076 pyridyl group Chemical group 0.000 description 13
- 210000003719 b-lymphocyte Anatomy 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 208000035475 disorder Diseases 0.000 description 12
- 235000019441 ethanol Nutrition 0.000 description 12
- 125000001153 fluoro group Chemical group F* 0.000 description 12
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 12
- 125000000714 pyrimidinyl group Chemical group 0.000 description 12
- 238000003419 tautomerization reaction Methods 0.000 description 12
- 108010029445 Agammaglobulinaemia Tyrosine Kinase Proteins 0.000 description 11
- 102000001714 Agammaglobulinaemia Tyrosine Kinase Human genes 0.000 description 11
- 125000003277 amino group Chemical group 0.000 description 11
- 150000002148 esters Chemical class 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 11
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 10
- 208000006673 asthma Diseases 0.000 description 10
- 239000000969 carrier Substances 0.000 description 10
- 125000000392 cycloalkenyl group Chemical group 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 10
- 229960005277 gemcitabine Drugs 0.000 description 10
- 235000011187 glycerol Nutrition 0.000 description 10
- 125000004366 heterocycloalkenyl group Chemical group 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 125000004043 oxo group Chemical group O=* 0.000 description 10
- 235000013772 propylene glycol Nutrition 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 9
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 9
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- 125000002252 acyl group Chemical group 0.000 description 9
- 125000003368 amide group Chemical group 0.000 description 9
- 125000000000 cycloalkoxy group Chemical group 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 125000003386 piperidinyl group Chemical group 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 229910001868 water Inorganic materials 0.000 description 9
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 8
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 8
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 8
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 8
- 229930182558 Sterol Natural products 0.000 description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 8
- 150000001721 carbon Chemical group 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 description 8
- 239000012453 solvate Substances 0.000 description 8
- 235000003702 sterols Nutrition 0.000 description 8
- 150000003432 sterols Chemical class 0.000 description 8
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 8
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 7
- 208000003950 B-cell lymphoma Diseases 0.000 description 7
- 208000011691 Burkitt lymphomas Diseases 0.000 description 7
- 201000004681 Psoriasis Diseases 0.000 description 7
- 229920002472 Starch Polymers 0.000 description 7
- 125000004423 acyloxy group Chemical group 0.000 description 7
- 150000001408 amides Chemical class 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 7
- 239000007884 disintegrant Substances 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 150000002430 hydrocarbons Chemical group 0.000 description 7
- 238000010172 mouse model Methods 0.000 description 7
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 7
- 125000006239 protecting group Chemical group 0.000 description 7
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 206010039073 rheumatoid arthritis Diseases 0.000 description 7
- 235000019698 starch Nutrition 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 7
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 6
- 102100023085 Serine/threonine-protein kinase mTOR Human genes 0.000 description 6
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 235000010443 alginic acid Nutrition 0.000 description 6
- 229920000615 alginic acid Polymers 0.000 description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 6
- 125000002837 carbocyclic group Chemical group 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 6
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 6
- 239000011737 fluorine Substances 0.000 description 6
- 201000003444 follicular lymphoma Diseases 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- XYFPWWZEPKGCCK-GOSISDBHSA-N ibrutinib Chemical compound C1=2C(N)=NC=NC=2N([C@H]2CN(CCC2)C(=O)C=C)N=C1C(C=C1)=CC=C1OC1=CC=CC=C1 XYFPWWZEPKGCCK-GOSISDBHSA-N 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 210000004185 liver Anatomy 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 208000020968 mature T-cell and NK-cell non-Hodgkin lymphoma Diseases 0.000 description 6
- 125000002757 morpholinyl group Chemical group 0.000 description 6
- 229940049964 oleate Drugs 0.000 description 6
- 201000002528 pancreatic cancer Diseases 0.000 description 6
- 229920005862 polyol Polymers 0.000 description 6
- 150000003077 polyols Chemical class 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 6
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 6
- 239000003981 vehicle Substances 0.000 description 6
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 5
- QMNUDYFKZYBWQX-UHFFFAOYSA-N 1H-quinazolin-4-one Chemical compound C1=CC=C2C(=O)N=CNC2=C1 QMNUDYFKZYBWQX-UHFFFAOYSA-N 0.000 description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 5
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 5
- 208000007766 Kaposi sarcoma Diseases 0.000 description 5
- 206010033128 Ovarian cancer Diseases 0.000 description 5
- 206010061535 Ovarian neoplasm Diseases 0.000 description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- 208000007536 Thrombosis Diseases 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 description 5
- 239000004359 castor oil Substances 0.000 description 5
- 235000019438 castor oil Nutrition 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 125000001309 chloro group Chemical group Cl* 0.000 description 5
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 5
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 5
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 5
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 5
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 5
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 5
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical class CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 5
- 239000000787 lecithin Chemical class 0.000 description 5
- 235000010445 lecithin Nutrition 0.000 description 5
- 206010025135 lupus erythematosus Diseases 0.000 description 5
- 201000001441 melanoma Diseases 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 125000001624 naphthyl group Chemical group 0.000 description 5
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 210000002307 prostate Anatomy 0.000 description 5
- 208000037803 restenosis Diseases 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- 239000000600 sorbitol Substances 0.000 description 5
- 235000010356 sorbitol Nutrition 0.000 description 5
- 125000000547 substituted alkyl group Chemical group 0.000 description 5
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- 235000015112 vegetable and seed oil Nutrition 0.000 description 5
- 239000008158 vegetable oil Substances 0.000 description 5
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 4
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 4
- 125000004198 2-fluorophenyl group Chemical group [H]C1=C([H])C(F)=C(*)C([H])=C1[H] 0.000 description 4
- 125000004204 2-methoxyphenyl group Chemical group [H]C1=C([H])C(*)=C(OC([H])([H])[H])C([H])=C1[H] 0.000 description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- 208000023275 Autoimmune disease Diseases 0.000 description 4
- 108091008875 B cell receptors Proteins 0.000 description 4
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 4
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 4
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 4
- 208000032843 Hemorrhage Diseases 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 239000002177 L01XE27 - Ibrutinib Substances 0.000 description 4
- 229930195725 Mannitol Natural products 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- 208000004403 Prostatic Hyperplasia Diseases 0.000 description 4
- 102000001708 Protein Isoforms Human genes 0.000 description 4
- 108010029485 Protein Isoforms Proteins 0.000 description 4
- 125000000066 S-methyl group Chemical group [H]C([H])([H])S* 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 108091008874 T cell receptors Proteins 0.000 description 4
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 4
- 210000001744 T-lymphocyte Anatomy 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 239000000783 alginic acid Substances 0.000 description 4
- 229960001126 alginic acid Drugs 0.000 description 4
- 150000004781 alginic acids Chemical class 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 206010003246 arthritis Diseases 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 125000002393 azetidinyl group Chemical group 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical class [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 208000034158 bleeding Diseases 0.000 description 4
- 230000000740 bleeding effect Effects 0.000 description 4
- 210000000481 breast Anatomy 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 230000010261 cell growth Effects 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 235000010980 cellulose Nutrition 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 229960001507 ibrutinib Drugs 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 229940070765 laurate Drugs 0.000 description 4
- 235000010355 mannitol Nutrition 0.000 description 4
- 239000000594 mannitol Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 4
- 239000008108 microcrystalline cellulose Substances 0.000 description 4
- 229940016286 microcrystalline cellulose Drugs 0.000 description 4
- 150000007522 mineralic acids Chemical class 0.000 description 4
- KXBDTLQSDKGAEB-UHFFFAOYSA-N n-[3-[[5-fluoro-2-[4-(2-methoxyethoxy)anilino]pyrimidin-4-yl]amino]phenyl]prop-2-enamide Chemical group C1=CC(OCCOC)=CC=C1NC1=NC=C(F)C(NC=2C=C(NC(=O)C=C)C=CC=2)=N1 KXBDTLQSDKGAEB-UHFFFAOYSA-N 0.000 description 4
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 150000007524 organic acids Chemical class 0.000 description 4
- 230000002611 ovarian Effects 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 229940124531 pharmaceutical excipient Drugs 0.000 description 4
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 125000001544 thienyl group Chemical group 0.000 description 4
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 description 4
- 238000005809 transesterification reaction Methods 0.000 description 4
- 125000004306 triazinyl group Chemical group 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- 210000004981 tumor-associated macrophage Anatomy 0.000 description 4
- MEJYDZQQVZJMPP-ULAWRXDQSA-N (3s,3ar,6r,6ar)-3,6-dimethoxy-2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan Chemical class CO[C@H]1CO[C@@H]2[C@H](OC)CO[C@@H]21 MEJYDZQQVZJMPP-ULAWRXDQSA-N 0.000 description 3
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 3
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 3
- CTPDSKVQLSDPLC-UHFFFAOYSA-N 2-(oxolan-2-ylmethoxy)ethanol Chemical compound OCCOCC1CCCO1 CTPDSKVQLSDPLC-UHFFFAOYSA-N 0.000 description 3
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 3
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 3
- 239000005711 Benzoic acid Substances 0.000 description 3
- 108010006654 Bleomycin Proteins 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 101100016516 Caenorhabditis elegans hbl-1 gene Proteins 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 3
- 101100356020 Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) recA gene Proteins 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 3
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 3
- 241001024304 Mino Species 0.000 description 3
- 229920000881 Modified starch Polymers 0.000 description 3
- 101100042680 Mus musculus Slc7a1 gene Proteins 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- 229910003827 NRaRb Inorganic materials 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 235000019483 Peanut oil Nutrition 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 3
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 3
- 206010039710 Scleroderma Diseases 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000005215 alkyl ethers Chemical class 0.000 description 3
- 235000010233 benzoic acid Nutrition 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 229960001561 bleomycin Drugs 0.000 description 3
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 235000010338 boric acid Nutrition 0.000 description 3
- 125000001246 bromo group Chemical group Br* 0.000 description 3
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 235000015165 citric acid Nutrition 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 235000005687 corn oil Nutrition 0.000 description 3
- 239000002285 corn oil Substances 0.000 description 3
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 3
- GHVNFZFCNZKVNT-UHFFFAOYSA-M decanoate Chemical compound CCCCCCCCCC([O-])=O GHVNFZFCNZKVNT-UHFFFAOYSA-M 0.000 description 3
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical class CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 3
- 229940113088 dimethylacetamide Drugs 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 3
- 229940093471 ethyl oleate Drugs 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 235000011087 fumaric acid Nutrition 0.000 description 3
- 125000002541 furyl group Chemical group 0.000 description 3
- 125000005456 glyceride group Chemical class 0.000 description 3
- 239000001087 glyceryl triacetate Substances 0.000 description 3
- 235000013773 glyceryl triacetate Nutrition 0.000 description 3
- 150000002334 glycols Chemical class 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229940093915 gynecological organic acid Drugs 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 3
- IFSDAJWBUCMOAH-HNNXBMFYSA-N idelalisib Chemical compound C1([C@@H](NC=2C=3N=CNC=3N=CN=2)CC)=NC2=CC=CC(F)=C2C(=O)N1C1=CC=CC=C1 IFSDAJWBUCMOAH-HNNXBMFYSA-N 0.000 description 3
- 125000002883 imidazolyl group Chemical group 0.000 description 3
- 239000002563 ionic surfactant Substances 0.000 description 3
- 201000005202 lung cancer Diseases 0.000 description 3
- 208000020816 lung neoplasm Diseases 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 229940116315 oxalic acid Drugs 0.000 description 3
- 208000008443 pancreatic carcinoma Diseases 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 239000000312 peanut oil Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 235000019260 propionic acid Nutrition 0.000 description 3
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 3
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 3
- ARIWANIATODDMH-UHFFFAOYSA-N rac-1-monolauroylglycerol Chemical compound CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 3
- 229960004889 salicylic acid Drugs 0.000 description 3
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 125000003107 substituted aryl group Chemical group 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 239000011975 tartaric acid Substances 0.000 description 3
- 235000002906 tartaric acid Nutrition 0.000 description 3
- 229960001367 tartaric acid Drugs 0.000 description 3
- 150000003899 tartaric acid esters Chemical class 0.000 description 3
- 125000003831 tetrazolyl group Chemical group 0.000 description 3
- 125000001113 thiadiazolyl group Chemical group 0.000 description 3
- 210000001685 thyroid gland Anatomy 0.000 description 3
- 230000037317 transdermal delivery Effects 0.000 description 3
- 229960002622 triacetin Drugs 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- WJTCHBVEUFDSIK-NWDGAFQWSA-N (2r,5s)-1-benzyl-2,5-dimethylpiperazine Chemical compound C[C@@H]1CN[C@@H](C)CN1CC1=CC=CC=C1 WJTCHBVEUFDSIK-NWDGAFQWSA-N 0.000 description 2
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 2
- 125000000027 (C1-C10) alkoxy group Chemical group 0.000 description 2
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 2
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 2
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 description 2
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- OEZPKXDBWNXBRE-UHFFFAOYSA-N 2,3-bis(2-hydroxyethoxy)propyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCC(OCCO)COCCO OEZPKXDBWNXBRE-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- KHICUSAUSRBPJT-UHFFFAOYSA-N 2-(2-octadecanoyloxypropanoyloxy)propanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC(C)C(=O)OC(C)C(O)=O KHICUSAUSRBPJT-UHFFFAOYSA-N 0.000 description 2
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 2
- ZVUNTIMPQCQCAQ-UHFFFAOYSA-N 2-dodecanoyloxyethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCC ZVUNTIMPQCQCAQ-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- GWURVZXLMOHAMZ-ZDUSSCGKSA-N 3-[(1s)-1-(7h-purin-6-ylamino)ethyl]-2-pyridin-2-ylquinoline-8-carbonitrile Chemical compound C1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)=CC2=CC=CC(C#N)=C2N=C1C1=CC=CC=N1 GWURVZXLMOHAMZ-ZDUSSCGKSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- PXACTUVBBMDKRW-UHFFFAOYSA-N 4-bromobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(Br)C=C1 PXACTUVBBMDKRW-UHFFFAOYSA-N 0.000 description 2
- GCNTZFIIOFTKIY-UHFFFAOYSA-N 4-hydroxypyridine Chemical compound OC1=CC=NC=C1 GCNTZFIIOFTKIY-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 206010004664 Biliary fibrosis Diseases 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-DUZGATOHSA-N D-isoascorbic acid Chemical compound OC[C@@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-DUZGATOHSA-N 0.000 description 2
- 201000004624 Dermatitis Diseases 0.000 description 2
- 206010012689 Diabetic retinopathy Diseases 0.000 description 2
- 101100278318 Dictyostelium discoideum dohh-2 gene Proteins 0.000 description 2
- 239000001263 FEMA 3042 Substances 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 241000714260 Human T-lymphotropic virus 1 Species 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 206010061252 Intraocular melanoma Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 208000003456 Juvenile Arthritis Diseases 0.000 description 2
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical class CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 150000001204 N-oxides Chemical class 0.000 description 2
- XFAZZQREFHAALG-UHFFFAOYSA-N N-{1-amino-6-[(5-nitro-2-furoyl)amino]-1-oxohexan-2-yl}-23-(indol-3-yl)-20-oxo-4,7,10,13,16-pentaoxa-19-azatricosan-1-amide Chemical compound C=1NC2=CC=CC=C2C=1CCCC(=O)NCCOCCOCCOCCOCCOCCC(=O)NC(C(=O)N)CCCCNC(=O)C1=CC=C([N+]([O-])=O)O1 XFAZZQREFHAALG-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 2
- 229910004749 OS(O)2 Inorganic materials 0.000 description 2
- 108010038807 Oligopeptides Chemical class 0.000 description 2
- 102000015636 Oligopeptides Human genes 0.000 description 2
- 102000038030 PI3Ks Human genes 0.000 description 2
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 2
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 2
- 208000033766 Prolymphocytic Leukemia Diseases 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 201000000582 Retinoblastoma Diseases 0.000 description 2
- 206010038933 Retinopathy of prematurity Diseases 0.000 description 2
- 208000021386 Sjogren Syndrome Diseases 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 208000000389 T-cell leukemia Diseases 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 2
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 description 2
- 208000004608 Ureteral Obstruction Diseases 0.000 description 2
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 2
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 2
- 201000005969 Uveal melanoma Diseases 0.000 description 2
- WDENQIQQYWYTPO-IBGZPJMESA-N acalabrutinib Chemical compound CC#CC(=O)N1CCC[C@H]1C1=NC(C=2C=CC(=CC=2)C(=O)NC=2N=CC=CC=2)=C2N1C=CN=C2N WDENQIQQYWYTPO-IBGZPJMESA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 206010064930 age-related macular degeneration Diseases 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 2
- 210000002565 arteriole Anatomy 0.000 description 2
- 150000005840 aryl radicals Chemical class 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 230000001363 autoimmune Effects 0.000 description 2
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 229960004203 carnitine Drugs 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 150000005829 chemical entities Chemical class 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 208000037976 chronic inflammation Diseases 0.000 description 2
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 2
- 208000019425 cirrhosis of liver Diseases 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 229940097362 cyclodextrins Drugs 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 235000010350 erythorbic acid Nutrition 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 210000001508 eye Anatomy 0.000 description 2
- 230000004761 fibrosis Effects 0.000 description 2
- 230000003176 fibrotic effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- LRBQNJMCXXYXIU-QWKBTXIPSA-N gallotannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@H]2[C@@H]([C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-QWKBTXIPSA-N 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000000174 gluconic acid Substances 0.000 description 2
- 235000012208 gluconic acid Nutrition 0.000 description 2
- 229940074046 glyceryl laurate Drugs 0.000 description 2
- 125000004438 haloalkoxy group Chemical group 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 201000011066 hemangioma Diseases 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 206010020718 hyperplasia Diseases 0.000 description 2
- 238000011575 immunodeficient mouse model Methods 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 125000002346 iodo group Chemical group I* 0.000 description 2
- 229940026239 isoascorbic acid Drugs 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 125000000842 isoxazolyl group Chemical group 0.000 description 2
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 238000011813 knockout mouse model Methods 0.000 description 2
- 238000012332 laboratory investigation Methods 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 208000002780 macular degeneration Diseases 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- XTAOBLPTAMEZGX-NSHDSACASA-N n-[(1s)-1-(5,7-difluoro-2-pyridin-2-ylquinolin-3-yl)ethyl]-7h-purin-6-amine Chemical compound C1([C@@H](NC=2C=3NC=NC=3N=CN=2)C)=CC2=C(F)C=C(F)C=C2N=C1C1=CC=CC=N1 XTAOBLPTAMEZGX-NSHDSACASA-N 0.000 description 2
- KWRYMZHCQIOOEB-LBPRGKRZSA-N n-[(1s)-1-(7-fluoro-2-pyridin-2-ylquinolin-3-yl)ethyl]-7h-purin-6-amine Chemical compound C1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)=CC2=CC=C(F)C=C2N=C1C1=CC=CC=N1 KWRYMZHCQIOOEB-LBPRGKRZSA-N 0.000 description 2
- UXXKQMOJHRKZRA-NSHDSACASA-N n-[(1s)-1-[2-(3,5-difluorophenyl)-8-fluoroquinolin-3-yl]ethyl]-7h-purin-6-amine Chemical compound C1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)=CC2=CC=CC(F)=C2N=C1C1=CC(F)=CC(F)=C1 UXXKQMOJHRKZRA-NSHDSACASA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- YYZUSRORWSJGET-UHFFFAOYSA-N octanoic acid ethyl ester Natural products CCCCCCCC(=O)OCC YYZUSRORWSJGET-UHFFFAOYSA-N 0.000 description 2
- 201000002575 ocular melanoma Diseases 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 229960003742 phenol Drugs 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 229920001184 polypeptide Chemical class 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 125000006412 propinylene group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 208000005069 pulmonary fibrosis Diseases 0.000 description 2
- 125000005495 pyridazyl group Chemical group 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 201000002793 renal fibrosis Diseases 0.000 description 2
- 201000006845 reticulosarcoma Diseases 0.000 description 2
- 208000029922 reticulum cell sarcoma Diseases 0.000 description 2
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical class O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 210000004927 skin cell Anatomy 0.000 description 2
- 208000017520 skin disease Diseases 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical class [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 229940032147 starch Drugs 0.000 description 2
- 229960004274 stearic acid Drugs 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 125000005864 sulfonamidyl group Chemical group 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 150000003462 sulfoxides Chemical group 0.000 description 2
- 125000004962 sulfoxyl group Chemical group 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 229920002258 tannic acid Polymers 0.000 description 2
- 235000015523 tannic acid Nutrition 0.000 description 2
- 229940033123 tannic acid Drugs 0.000 description 2
- 230000002381 testicular Effects 0.000 description 2
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 2
- 125000000335 thiazolyl group Chemical group 0.000 description 2
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 239000001069 triethyl citrate Substances 0.000 description 2
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 2
- 235000013769 triethyl citrate Nutrition 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 230000005747 tumor angiogenesis Effects 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 229940116269 uric acid Drugs 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 238000002689 xenotransplantation Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- 125000004454 (C1-C6) alkoxycarbonyl group Chemical group 0.000 description 1
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- 125000005988 1,1-dioxo-thiomorpholinyl group Chemical group 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- 125000005871 1,3-benzodioxolyl group Chemical group 0.000 description 1
- 125000005877 1,4-benzodioxanyl group Chemical group 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- WDQFELCEOPFLCZ-UHFFFAOYSA-N 1-(2-hydroxyethyl)pyrrolidin-2-one Chemical compound OCCN1CCCC1=O WDQFELCEOPFLCZ-UHFFFAOYSA-N 0.000 description 1
- XYFPWWZEPKGCCK-SFHVURJKSA-N 1-[(3s)-3-[4-amino-3-(4-phenoxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]piperidin-1-yl]prop-2-en-1-one Chemical group C1=2C(N)=NC=NC=2N([C@@H]2CN(CCC2)C(=O)C=C)N=C1C(C=C1)=CC=C1OC1=CC=CC=C1 XYFPWWZEPKGCCK-SFHVURJKSA-N 0.000 description 1
- AOWCOHYBGYRYGE-UHFFFAOYSA-N 1-[2,3-bis(2-oxopropoxy)propoxy]propan-2-one Chemical compound CC(=O)COCC(OCC(C)=O)COCC(C)=O AOWCOHYBGYRYGE-UHFFFAOYSA-N 0.000 description 1
- RYCNUMLMNKHWPZ-SNVBAGLBSA-N 1-acetyl-sn-glycero-3-phosphocholine Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C RYCNUMLMNKHWPZ-SNVBAGLBSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- QIZPVNNYFKFJAD-UHFFFAOYSA-N 1-chloro-2-prop-1-ynylbenzene Chemical compound CC#CC1=CC=CC=C1Cl QIZPVNNYFKFJAD-UHFFFAOYSA-N 0.000 description 1
- ARIWANIATODDMH-AWEZNQCLSA-N 1-lauroyl-sn-glycerol Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)CO ARIWANIATODDMH-AWEZNQCLSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- HBXWUCXDUUJDRB-UHFFFAOYSA-N 1-octadecoxyoctadecane Chemical compound CCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCC HBXWUCXDUUJDRB-UHFFFAOYSA-N 0.000 description 1
- WRGQSWVCFNIUNZ-GDCKJWNLSA-N 1-oleoyl-sn-glycerol 3-phosphate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)COP(O)(O)=O WRGQSWVCFNIUNZ-GDCKJWNLSA-N 0.000 description 1
- 125000005987 1-oxo-thiomorpholinyl group Chemical group 0.000 description 1
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- ZPDQFUYPBVXUKS-YADHBBJMSA-N 1-stearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP(O)(=O)OC[C@H](N)C(O)=O ZPDQFUYPBVXUKS-YADHBBJMSA-N 0.000 description 1
- YTORMSBGFMQNEO-UHFFFAOYSA-N 2,3-dihydroxypropyl decanoate;2,3-dihydroxypropyl octanoate;(3-hydroxy-2-octanoyloxypropyl) octanoate;propane-1,2,3-triol Chemical compound OCC(O)CO.CCCCCCCC(=O)OCC(O)CO.CCCCCCCCCC(=O)OCC(O)CO.CCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCC YTORMSBGFMQNEO-UHFFFAOYSA-N 0.000 description 1
- UGDAWAQEKLURQI-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethanol;hydrate Chemical compound O.OCCOCCO UGDAWAQEKLURQI-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- MQFYRUGXOJAUQK-UHFFFAOYSA-N 2-[2-[2-(2-octadecanoyloxyethoxy)ethoxy]ethoxy]ethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOCCOCCOCCOC(=O)CCCCCCCCCCCCCCCCC MQFYRUGXOJAUQK-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- PPPFYBPQAPISCT-UHFFFAOYSA-N 2-hydroxypropyl acetate Chemical compound CC(O)COC(C)=O PPPFYBPQAPISCT-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- DUIOKRXOKLLURE-UHFFFAOYSA-N 2-octylphenol Chemical class CCCCCCCCC1=CC=CC=C1O DUIOKRXOKLLURE-UHFFFAOYSA-N 0.000 description 1
- 125000006088 2-oxoazepinyl group Chemical group 0.000 description 1
- 125000004638 2-oxopiperazinyl group Chemical group O=C1N(CCNC1)* 0.000 description 1
- 125000004637 2-oxopiperidinyl group Chemical group O=C1N(CCCC1)* 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- LUVRKEJEPQACTI-LBPRGKRZSA-N 3-amino-n-[(1s)-1-(5-chloro-4-oxo-3-phenylquinazolin-2-yl)ethyl]pyrazine-2-carboxamide Chemical compound N([C@@H](C)C=1N(C(=O)C2=C(Cl)C=CC=C2N=1)C=1C=CC=CC=1)C(=O)C1=NC=CN=C1N LUVRKEJEPQACTI-LBPRGKRZSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- 125000003469 3-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- MBVFRSJFKMJRHA-UHFFFAOYSA-N 4-fluoro-1-benzofuran-7-carbaldehyde Chemical compound FC1=CC=C(C=O)C2=C1C=CO2 MBVFRSJFKMJRHA-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- POILWHVDKZOXJZ-UHFFFAOYSA-N 4-hydroxypent-3-en-2-one Chemical compound CC(O)=CC(C)=O POILWHVDKZOXJZ-UHFFFAOYSA-N 0.000 description 1
- 125000005986 4-piperidonyl group Chemical group 0.000 description 1
- SEJLPXCPMNSRAM-UHFFFAOYSA-N 6-amino-9-(1-but-2-ynoylpyrrolidin-3-yl)-7-(4-phenoxyphenyl)purin-8-one Chemical group C1N(C(=O)C#CC)CCC1N1C(=O)N(C=2C=CC(OC=3C=CC=CC=3)=CC=2)C2=C(N)N=CN=C21 SEJLPXCPMNSRAM-UHFFFAOYSA-N 0.000 description 1
- SEJLPXCPMNSRAM-GOSISDBHSA-N 6-amino-9-[(3r)-1-but-2-ynoylpyrrolidin-3-yl]-7-(4-phenoxyphenyl)purin-8-one Chemical group C1N(C(=O)C#CC)CC[C@H]1N1C(=O)N(C=2C=CC(OC=3C=CC=CC=3)=CC=2)C2=C(N)N=CN=C21 SEJLPXCPMNSRAM-GOSISDBHSA-N 0.000 description 1
- SEJLPXCPMNSRAM-SFHVURJKSA-N 6-amino-9-[(3s)-1-but-2-ynoylpyrrolidin-3-yl]-7-(4-phenoxyphenyl)purin-8-one Chemical group C1N(C(=O)C#CC)CC[C@@H]1N1C(=O)N(C=2C=CC(OC=3C=CC=CC=3)=CC=2)C2=C(N)N=CN=C21 SEJLPXCPMNSRAM-SFHVURJKSA-N 0.000 description 1
- SJVQHLPISAIATJ-ZDUSSCGKSA-N 8-chloro-2-phenyl-3-[(1S)-1-(7H-purin-6-ylamino)ethyl]-1-isoquinolinone Chemical compound C1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)=CC2=CC=CC(Cl)=C2C(=O)N1C1=CC=CC=C1 SJVQHLPISAIATJ-ZDUSSCGKSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 208000004476 Acute Coronary Syndrome Diseases 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 101100297694 Arabidopsis thaliana PIP2-7 gene Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 230000024704 B cell apoptotic process Effects 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 230000003844 B-cell-activation Effects 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 208000023611 Burkitt leukaemia Diseases 0.000 description 1
- 125000005865 C2-C10alkynyl group Chemical group 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 206010012442 Dermatitis contact Diseases 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 208000002249 Diabetes Complications Diseases 0.000 description 1
- 206010012655 Diabetic complications Diseases 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- 206010014080 Ecchymosis Diseases 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000001534 FEMA 4201 Substances 0.000 description 1
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 1
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 1
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 1
- 108091006109 GTPases Proteins 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- 208000007465 Giant cell arteritis Diseases 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 241000711557 Hepacivirus Species 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000600756 Homo sapiens 3-phosphoinositide-dependent protein kinase 1 Proteins 0.000 description 1
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 101000690268 Homo sapiens Proline-rich AKT1 substrate 1 Proteins 0.000 description 1
- 101001117146 Homo sapiens [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 1, mitochondrial Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102100022338 Integrin alpha-M Human genes 0.000 description 1
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 1
- 208000011200 Kawasaki disease Diseases 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 208000005777 Lupus Nephritis Diseases 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 208000030289 Lymphoproliferative disease Diseases 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 208000037538 Myelomonocytic Juvenile Leukemia Diseases 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- 201000002481 Myositis Diseases 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 208000002454 Nasopharyngeal Carcinoma Diseases 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 1
- 102100038332 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Human genes 0.000 description 1
- 102100036061 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform Human genes 0.000 description 1
- 102100036056 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform Human genes 0.000 description 1
- 102100036052 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Human genes 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 1
- 208000007048 Polymyalgia Rheumatica Diseases 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- NKSOSPOXQKNIKJ-CLFAGFIQSA-N Polyoxyethylene dioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCOC(=O)CCCCCCC\C=C/CCCCCCCC NKSOSPOXQKNIKJ-CLFAGFIQSA-N 0.000 description 1
- 229920002690 Polyoxyl 40 HydrogenatedCastorOil Polymers 0.000 description 1
- 229920002701 Polyoxyl 40 Stearate Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Chemical class 0.000 description 1
- 208000002389 Pouchitis Diseases 0.000 description 1
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 description 1
- 102100024091 Proline-rich AKT1 substrate 1 Human genes 0.000 description 1
- 102000009516 Protein Serine-Threonine Kinases Human genes 0.000 description 1
- 108010009341 Protein Serine-Threonine Kinases Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 108091078243 Rho family Proteins 0.000 description 1
- 102000042463 Rho family Human genes 0.000 description 1
- 101100456541 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) MEC3 gene Proteins 0.000 description 1
- 101100483663 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UFD1 gene Proteins 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 1
- 208000007156 Spondylarthritis Diseases 0.000 description 1
- 201000002661 Spondylitis Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 208000002667 Subdural Hematoma Diseases 0.000 description 1
- 239000001833 Succinylated monoglyceride Substances 0.000 description 1
- XZAGBDSOKNXTDT-UHFFFAOYSA-N Sucrose monopalmitate Chemical compound CCCCCCCCCCCCCCCC(O)=O.OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(CO)O1 XZAGBDSOKNXTDT-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- LWZFANDGMFTDAV-BURFUSLBSA-N [(2r)-2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O LWZFANDGMFTDAV-BURFUSLBSA-N 0.000 description 1
- CWRILEGKIAOYKP-SSDOTTSWSA-M [(2r)-3-acetyloxy-2-hydroxypropyl] 2-aminoethyl phosphate Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCCN CWRILEGKIAOYKP-SSDOTTSWSA-M 0.000 description 1
- KGUHOFWIXKIURA-VQXBOQCVSA-N [(2r,3s,4s,5r,6r)-6-[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl dodecanoate Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](COC(=O)CCCCCCCCCCC)O[C@@H]1O[C@@]1(CO)[C@@H](O)[C@H](O)[C@@H](CO)O1 KGUHOFWIXKIURA-VQXBOQCVSA-N 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- ZAKOWWREFLAJOT-ADUHFSDSSA-N [2,5,7,8-tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydrochromen-6-yl] acetate Chemical group CC(=O)OC1=C(C)C(C)=C2OC(CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-ADUHFSDSSA-N 0.000 description 1
- 102100024148 [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 1, mitochondrial Human genes 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical group 0.000 description 1
- 150000001345 alkine derivatives Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 208000002029 allergic contact dermatitis Diseases 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- RJZNFXWQRHAVBP-UHFFFAOYSA-I aluminum;magnesium;pentahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Al+3] RJZNFXWQRHAVBP-UHFFFAOYSA-I 0.000 description 1
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical group [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- SMWDFEZZVXVKRB-UHFFFAOYSA-N anhydrous quinoline Natural products N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 229940127090 anticoagulant agent Drugs 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 125000002785 azepinyl group Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000003936 benzamides Chemical class 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000005870 benzindolyl group Chemical group 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- 125000005875 benzo[b][1,4]dioxepinyl group Chemical group 0.000 description 1
- 125000005876 benzo[b][1,4]oxazinyl group Chemical group 0.000 description 1
- 125000005873 benzo[d]thiazolyl group Chemical group 0.000 description 1
- 125000000928 benzodioxinyl group Chemical group O1C(=COC2=C1C=CC=C2)* 0.000 description 1
- 125000002047 benzodioxolyl group Chemical group O1OC(C2=C1C=CC=C2)* 0.000 description 1
- 125000004601 benzofurazanyl group Chemical group N1=C2C(=NO1)C(=CC=C2)* 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 125000005878 benzonaphthofuranyl group Chemical group 0.000 description 1
- 125000005872 benzooxazolyl group Chemical group 0.000 description 1
- 125000004619 benzopyranyl group Chemical group O1C(C=CC2=C1C=CC=C2)* 0.000 description 1
- 125000005874 benzothiadiazolyl group Chemical group 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- GSCLMSFRWBPUSK-UHFFFAOYSA-N beta-Butyrolactone Chemical compound CC1CC(=O)O1 GSCLMSFRWBPUSK-UHFFFAOYSA-N 0.000 description 1
- 150000001602 bicycloalkyls Chemical group 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 210000001109 blastomere Anatomy 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 206010006007 bone sarcoma Diseases 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical class CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 229960003563 calcium carbonate Drugs 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 230000009400 cancer invasion Effects 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229940084030 carboxymethylcellulose calcium Drugs 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000009087 cell motility Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- MPVDXIMFBOLMNW-UHFFFAOYSA-N chembl1615565 Chemical group OC1=CC=C2C=C(S(O)(=O)=O)C=C(S(O)(=O)=O)C2=C1N=NC1=CC=CC=C1 MPVDXIMFBOLMNW-UHFFFAOYSA-N 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000012069 chiral reagent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 108700043024 cholylsarcosine Proteins 0.000 description 1
- 208000019069 chronic childhood arthritis Diseases 0.000 description 1
- 231100000762 chronic effect Toxicity 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 229940121657 clinical drug Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000008271 cosmetic emulsion Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000005356 cycloalkylalkenyl group Chemical group 0.000 description 1
- 125000005215 cycloalkylheteroaryl group Chemical group 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000006547 cyclononyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000004980 cyclopropylene group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- DTPCFIHYWYONMD-UHFFFAOYSA-N decaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO DTPCFIHYWYONMD-UHFFFAOYSA-N 0.000 description 1
- 125000005507 decahydroisoquinolyl group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229940096516 dextrates Drugs 0.000 description 1
- XLIDPNGFCHXNGX-UHFFFAOYSA-N dialuminum;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Si+4] XLIDPNGFCHXNGX-UHFFFAOYSA-N 0.000 description 1
- 125000005509 dibenzothiophenyl group Chemical group 0.000 description 1
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical compound [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- UYAAVKFHBMJOJZ-UHFFFAOYSA-N diimidazo[1,3-b:1',3'-e]pyrazine-5,10-dione Chemical compound O=C1C2=CN=CN2C(=O)C2=CN=CN12 UYAAVKFHBMJOJZ-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 125000005879 dioxolanyl group Chemical group 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229940018602 docusate Drugs 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 125000004428 fluoroalkoxy group Chemical group 0.000 description 1
- 125000001207 fluorophenyl group Chemical group 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 125000003844 furanonyl group Chemical group 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical class O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 229940075529 glyceryl stearate Drugs 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000000262 haloalkenyl group Chemical group 0.000 description 1
- 125000000232 haloalkynyl group Chemical group 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 208000006750 hematuria Diseases 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004475 heteroaralkyl group Chemical group 0.000 description 1
- 125000005844 heterocyclyloxy group Chemical group 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- IIRDTKBZINWQAW-UHFFFAOYSA-N hexaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCO IIRDTKBZINWQAW-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 230000007236 host immunity Effects 0.000 description 1
- 238000011577 humanized mouse model Methods 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical group O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000008629 immune suppression Effects 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 208000033065 inborn errors of immunity Diseases 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229940060367 inert ingredients Drugs 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000004628 isothiazolidinyl group Chemical group S1N(CCC1)* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 125000003965 isoxazolidinyl group Chemical group 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 201000005992 juvenile myelomonocytic leukemia Diseases 0.000 description 1
- 229960000448 lactic acid Drugs 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940059904 light mineral oil Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 229940049918 linoleate Drugs 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-M linolenate Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC([O-])=O DTOSIQBPPRVQHS-PDBXOOCHSA-M 0.000 description 1
- 229940040452 linolenate Drugs 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229920001427 mPEG Polymers 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229940098895 maleic acid Drugs 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 208000000516 mast-cell leukemia Diseases 0.000 description 1
- 208000008585 mastocytosis Diseases 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 229940037959 monooctanoin Drugs 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- JJYKJUXBWFATTE-UHFFFAOYSA-N mosher's acid Chemical compound COC(C(O)=O)(C(F)(F)F)C1=CC=CC=C1 JJYKJUXBWFATTE-UHFFFAOYSA-N 0.000 description 1
- 208000001725 mucocutaneous lymph node syndrome Diseases 0.000 description 1
- 230000003843 mucus production Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 206010028537 myelofibrosis Diseases 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 229940105132 myristate Drugs 0.000 description 1
- 125000001419 myristoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- VUGSYQVLTFXFNA-NSHDSACASA-N n-[(1s)-1-(6-fluoro-3-pyridin-2-ylquinoxalin-2-yl)ethyl]-7h-purin-6-amine Chemical compound C1([C@@H](NC=2C=3NC=NC=3N=CN=2)C)=NC2=CC=C(F)C=C2N=C1C1=CC=CC=N1 VUGSYQVLTFXFNA-NSHDSACASA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 201000011216 nasopharynx carcinoma Diseases 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000010309 neoplastic transformation Effects 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 125000005060 octahydroindolyl group Chemical group N1(CCC2CCCCC12)* 0.000 description 1
- 125000005061 octahydroisoindolyl group Chemical group C1(NCC2CCCCC12)* 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012053 oil suspension Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- 125000005476 oxopyrrolidinyl group Chemical group 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 229940100460 peg-100 stearate Drugs 0.000 description 1
- 229940077412 peg-12 laurate Drugs 0.000 description 1
- 229940008456 peg-32 oleate Drugs 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000008251 pharmaceutical emulsion Substances 0.000 description 1
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 229940067626 phosphatidylinositols Drugs 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000003906 phosphoinositides Chemical class 0.000 description 1
- 125000005541 phosphonamide group Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 210000004694 pigment cell Anatomy 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229960000540 polacrilin potassium Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001693 poly(ether-ester) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 229940097941 polyglyceryl-10 laurate Drugs 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Chemical class 0.000 description 1
- 150000007519 polyprotic acids Chemical class 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920002451 polyvinyl alcohol Chemical class 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- WVWZXTJUCNEUAE-UHFFFAOYSA-M potassium;1,2-bis(ethenyl)benzene;2-methylprop-2-enoate Chemical compound [K+].CC(=C)C([O-])=O.C=CC1=CC=CC=C1C=C WVWZXTJUCNEUAE-UHFFFAOYSA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229920003124 powdered cellulose Polymers 0.000 description 1
- 235000019814 powdered cellulose Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 208000028529 primary immunodeficiency disease Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229940116423 propylene glycol diacetate Drugs 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- WBHHMMIMDMUBKC-QJWNTBNXSA-M ricinoleate Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O WBHHMMIMDMUBKC-QJWNTBNXSA-M 0.000 description 1
- 229940066675 ricinoleate Drugs 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000003579 shift reagent Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 238000003797 solvolysis reaction Methods 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 229950006451 sorbitan laurate Drugs 0.000 description 1
- 235000011067 sorbitan monolaureate Nutrition 0.000 description 1
- 229950004959 sorbitan oleate Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229940114926 stearate Drugs 0.000 description 1
- 229940071209 stearoyl lactylate Drugs 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000000434 stratum corneum Anatomy 0.000 description 1
- 125000005415 substituted alkoxy group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000019327 succinylated monoglyceride Nutrition 0.000 description 1
- 229940032085 sucrose monolaurate Drugs 0.000 description 1
- 229940035023 sucrose monostearate Drugs 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 150000003457 sulfones Chemical group 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 206010043207 temporal arteritis Diseases 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 125000001984 thiazolidinyl group Chemical group 0.000 description 1
- 125000005985 thienyl[1,3]dithianyl group Chemical group 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 125000005424 tosyloxy group Chemical group S(=O)(=O)(C1=CC=C(C)C=C1)O* 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 125000005455 trithianyl group Chemical group 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000004862 vasculogenesis Effects 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 102100036537 von Willebrand factor Human genes 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
- A61K31/52—Purines, e.g. adenine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/517—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4985—Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/53—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
Definitions
- a therapeutic combination of a phosphoinositide 3-kinase (PI3K) inhibitor and a Bruton's Tyrosine Kinase (BTK) inhibitor and uses of the therapeutic combination are disclosed herein.
- PI3K phosphoinositide 3-kinase
- BTK Bruton's Tyrosine Kinase
- PI3K kinases are members of a unique and conserved family of intracellular lipid kinases that phosphorylate the 3′-OH group on phosphatidylinositols or phosphoinositides. PI3K kinases are key signaling enzymes that relay signals from cell surface receptors to downstream effectors. The PI3K family comprises 15 kinases with distinct substrate specificities, expression patterns, and modes of regulation.
- the class I PI3K kinases (p110 ⁇ , p110 ⁇ , p110 ⁇ , and p110 ⁇ ) are typically activated by tyrosine kinases or G-protein coupled receptors to generate PIP3, which engages downstream effectors such as those in the Akt/PDK1 pathway, mTOR, the Tec family kinases, and the Rho family GTPases.
- the PI3K signaling pathway is known to be one of the most highly mutated in human cancers.
- PI3K signaling is also a key factor in disease states including hematologic malignancies, non-Hodgkin lymphoma (such as diffuse large B-cell lymphoma), allergic contact dermatitis, rheumatoid arthritis, osteoarthritis, inflammatory bowel diseases, chronic obstructive pulmonary disorder, psoriasis, multiple sclerosis, asthma, disorders related to diabetic complications, and inflammatory complications of the cardiovascular system such as acute coronary syndrome.
- the role of PI3K in cancer has been discussed, for example, in J. A. Engleman, Nat. Rev. Cancer 2009, 9, 550-562.
- the PI3K- ⁇ and PI3K- ⁇ isoforms are preferentially expressed in normal and malignant leukocytes.
- the delta ( ⁇ ) isoform of class I PI3K (PI3K- ⁇ ) is involved in mammalian immune system functions such as T-cell function, B-cell activation, mast cell activation, dendritic cell function, and neutrophil activity. Due to its role in immune system function, PI3K- ⁇ is also involved in a number of diseases related to undesirable immune response such as allergic reactions, inflammatory diseases, inflammation mediated angiogenesis, rheumatoid arthritis, auto-immune diseases such as lupus, asthma, emphysema and other respiratory diseases.
- diseases related to undesirable immune response such as allergic reactions, inflammatory diseases, inflammation mediated angiogenesis, rheumatoid arthritis, auto-immune diseases such as lupus, asthma, emphysema and other respiratory diseases.
- PI3K- ⁇ The gamma ( ⁇ ) isoform of class I PI3K (PI3K- ⁇ ) is also involved in immune system functions and plays a role in leukocyte signaling and has been implicated in inflammation, rheumatoid arthritis, and autoimmune diseases such as lupus.
- Downstream mediators of the PI3K signal transduction pathway include Akt and mammalian target of rapamycin (mTOR).
- Akt Akt
- mTOR mammalian target of rapamycin
- Akt is a serine-threonine kinase related to the lipid kinases of the PI3K family and has been implicated in a wide range of biological processes including cell growth, cell proliferation, cell motility and survival. Disregulation of the mTOR pathway has been reported in various types of cancer.
- PI3K inhibitors are prime targets for drug development, as described in J. E. Kurt and I. Ray-Coquard, Anticancer Res. 2012, 32, 2463-70.
- PI3K inhibitors are known, including those that are PI3K- ⁇ inhibitors, PI3K- ⁇ inhibitors, and PI3K- ⁇ , ⁇ inhibitors.
- BTK Bruton's Tyrosine Kinase
- BTK inhibitors have thus been developed as potential therapies, as described in O. Cruz et al., OncoTargets and Therapy 2013, 6, 161-176.
- the supportive microenvironment (which may make up the majority of the tumor mass) is a dynamic force that enables tumor survival.
- the tumor microenvironment is generally defined as a complex mixture of “cells, soluble factors, signaling molecules, extracellular matrices, and mechanical cues that promote neoplastic transformation, support tumor growth and invasion, protect the tumor from host immunity, foster therapeutic resistance, and provide niches for dominant metastases to thrive,” as described in Swartz et al., Cancer Res., 2012, 72, 2473.
- tumors express antigens that should be recognized by T cells, tumor clearance by the immune system is rare because of immune suppression by the microenvironment. Addressing the tumor cells themselves with e.g. chemotherapy has also proven to be insufficient to overcome the protective effects of the microenvironment. New approaches are thus urgently needed for more effective treatment of solid tumors that take into account the role of the microenvironment.
- the present invention provides the unexpected finding that the combination of a PI3K inhibitor with a BTK inhibitor is effective in the treatment of any of several types of cancers such as leukemia, lymphoma and solid tumor cancers.
- the invention provides a composition comprising a PI3K inhibitor and a BTK inhibitor in combination.
- This composition is typically a pharmaceutical composition.
- the invention provides a composition comprising a PI3K- ⁇ inhibitor and a BTK inhibitor in combination.
- This composition is typically a pharmaceutical composition.
- the invention provides a composition comprising a PI3K- ⁇ inhibitor and a BTK inhibitor in combination.
- This composition is typically a pharmaceutical composition.
- the invention provides a composition comprising a PI3K- ⁇ , ⁇ inhibitor and a BTK inhibitor in combination.
- This composition is typically a pharmaceutical composition.
- the invention provides a pharmaceutical composition comprising a PI3K inhibitor and a BTK inhibitor in combination for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the invention provides a pharmaceutical composition comprising a PI3K- ⁇ inhibitor and a BTK inhibitor in combination for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the invention provides a pharmaceutical composition comprising a PI3K- ⁇ inhibitor and a BTK inhibitor in combination for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the invention provides a pharmaceutical composition comprising a PI3K- ⁇ , ⁇ inhibitor and a BTK inhibitor in combination for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the invention provides a kit comprising a composition comprising a PI3K inhibitor and a composition comprising a BTK inhibitor. These compositions are typically both pharmaceutical compositions.
- the kit is for co-administration of the PI3K inhibitor and the BTK inhibitor, either simultaneously or separately.
- the invention provides a kit comprising a composition comprising a PI3K- ⁇ inhibitor and a composition comprising a BTK inhibitor. These compositions are typically both pharmaceutical compositions.
- the kit is for co-administration of the PI3K- ⁇ inhibitor and the BTK inhibitor, either simultaneously or separately.
- the invention provides a kit comprising a composition comprising a PI3K- ⁇ inhibitor and a composition comprising a BTK inhibitor. These compositions are typically both pharmaceutical compositions.
- the kit is for co-administration of the PI3K- ⁇ inhibitor and the BTK inhibitor, either simultaneously or separately.
- the invention provides a kit comprising a composition comprising a PI3K- ⁇ , ⁇ inhibitor and a composition comprising a BTK inhibitor. These compositions are typically both pharmaceutical compositions.
- the kit is for co-administration of the PI3K- ⁇ , ⁇ inhibitor and the BTK inhibitor, either simultaneously or separately.
- the invention provides a kit comprising a composition comprising a PI3K inhibitor and a composition comprising a BTK inhibitor for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the compositions are typically both pharmaceutical compositions.
- the kit is for use in co-administration of the PI3K inhibitor and the BTK inhibitor, either simultaneously or separately, in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the invention provides a kit comprising a composition comprising a PI3K- ⁇ inhibitor and a composition comprising a BTK inhibitor for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the compositions are typically both pharmaceutical compositions.
- the kit is for use in co-administration of the PI3K- ⁇ inhibitor and the BTK inhibitor, either simultaneously or separately, in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the invention provides a kit comprising a composition comprising a PI3K- ⁇ inhibitor and a composition comprising a BTK inhibitor for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the compositions are typically both pharmaceutical compositions.
- the kit is for use in co-administration of the PI3K- ⁇ inhibitor and the BTK inhibitor, either simultaneously or separately, in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the invention provides a kit comprising a composition comprising a PI3K- ⁇ , ⁇ inhibitor and a composition comprising a BTK inhibitor for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the compositions are typically both pharmaceutical compositions.
- the kit is for use in co-administration of the PI3K- ⁇ , ⁇ inhibitor and the BTK inhibitor, either simultaneously or separately, in the treatment of leukemia, lymphoma or a solid tumor cancer.
- the invention provides a method of treating leukemia, lymphoma or a solid tumor cancer in a subject, comprising co-administering to a mammal in need thereof a therapeutically effective amount of a PI3K inhibitor and a BTK inhibitor.
- the invention provides a method of treating leukemia, lymphoma or a solid tumor cancer in a subject, comprising co-administering to a mammal in need thereof a therapeutically effective amount of a PI3K- ⁇ inhibitor and a BTK inhibitor.
- the invention provides a method of treating leukemia, lymphoma or a solid tumor cancer in a subject, comprising co-administering to a mammal in need thereof a therapeutically effective amount of a PI3K- ⁇ inhibitor and a BTK inhibitor.
- the invention provides a method of treating leukemia, lymphoma or a solid tumor cancer in a subject, comprising co-administering to a mammal in need thereof a therapeutically effective amount of a PI3K- ⁇ , ⁇ inhibitor and a BTK inhibitor.
- the BTK inhibitor in one specific embodiment, is a compound of Formula (XVIII), or a pharmaceutically acceptable salt thereof.
- the PI3K inhibitor in one specific embodiment, is a PI3K- ⁇ inhibitor, in particular a compound of Formula IX, or a pharmaceutically acceptable salt thereof.
- the BTK inhibitor is a compound of Formula (XVIII) or a pharmaceutically acceptable salt thereof
- the PI3K inhibitor is a PI3K- ⁇ inhibitor, in particular a compound of Formula IX, or a pharmaceutically acceptable salt thereof.
- FIG. 1 illustrates the sensitivity of the TMD8 diffuse large B cell lymphoma (DLBCL) cell line to individual treatment with the BTK inhibitor of Formula XVIII (“Tested Btk Inhibitor”) and the PI3K inhibitor of Formula IX (“Tested PI3K Inhibitor”) and combined treatment with Formula XVIII and Formula IX (“Btki+PI3Ki”) at different concentrations.
- the concentration of the first agent in the combination (the BTK inhibitor) and the concentration of the individual agents is given on the x-axis, and the concentration of the added PI3K inhibitor in combination with the BTK inhibitor is given in the legend.
- FIG. 2 illustrates the sensitivity of the MINO mantle cell lymphoma cell to individual treatment with the BTK inhibitor of Formula XVIII (“Tested Btk Inhibitor”) and the PI3K inhibitor of Formula IX (“Tested PI3K Inhibitor”) and combined treatment with Formula XVIII and Formula IX (“Btki+PI3Ki”) at different concentrations.
- the concentration of the first agent in the combination (the BTK inhibitor) and the concentration of the individual agents is given on the x-axis, and the concentration of the added PI3K inhibitor in combination with the BTK inhibitor is given in the legend.
- FIG. 3 illustrates the proliferative activity in primary mantle cell lymphoma cells of Formula XVIII (“Tested Btki”) and Formula IX (“Tested PI3Ki”).
- the percentage viability of cells (“% viability”, y-axis) is plotted versus the concentration of the Formula XVIII (“[Tested Btk Inhibitor]”, x-axis).
- the concentration of the individual BTK and PI3K inhibitors are also given on the x-axis.
- FIG. 4 illustrates the interaction index of the combination of the BTK inhibitor of Formula XVIII and the PI3K inhibitor of Formula IX in primary mantle cell lymphoma cells.
- FIG. 5 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K- ⁇ inhibitor of Formula (IX) are combined.
- the tested cell lines include Maver-1 (B cell lymphoma, mantle), Jeko (B cell lymphoma, mantle), CCRF (B lymphoblast, acute lymphoblastic leukemia), and SUP-B15 (B lymphoblast, acute lymphoblastic leukemia).
- the dose-effect curves for these cell lines are given in FIG. 6 , FIG. 7 , FIG. 8 , and FIG. 9 .
- ED25, ED50, ED75, and ED90 refer to the effective doses causing 25%, 50%, 75%, and 90% of the maximum biological effect (proliferation).
- FIG. 6 illustrates the dose-effect curves obtained for the tested Maver-1 cell line (B cell lymphoma, mantle) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 7 illustrates the dose-effect curves obtained for the tested Jeko cell line (B cell lymphoma, mantle) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 8 illustrates the dose-effect curves obtained for the tested CCRF cell line (B lymphoblast, acute lymphoblastic leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 9 illustrates the dose-effect curves obtained for the tested SUP-B15 cell line (B lymphoblast, acute lymphoblastic leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 10 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K- ⁇ inhibitor of Formula (IX) are combined.
- the tested cell lines include Jeko (B cell lymphoma, mantle cell lymphoma) and SU-DHL-4 (activated B cell like (ABC) diffuse large B cell lymphoma).
- Jeko B cell lymphoma, mantle cell lymphoma
- SU-DHL-4 activated B cell like (ABC) diffuse large B cell lymphoma
- FIG. 11 illustrates the dose-effect curves obtained for the tested Jeko cell line (B cell lymphoma, mantle) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 12 illustrates the dose-effect curves obtained for the tested SU-DHL-4 cell line (diffuse large B cell lymphoma, ABC) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 13 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K- ⁇ inhibitor of Formula (IX) are combined.
- the tested cell lines include CCRF (B lymphoblast, acute lymphoblastic leukemia), SUP-B15 (B lymphoblast, acute lymphoblastic leukemia), JVM-2 (prolymphocytic leukemia), Ramos (Burkitt's lymphoma), and Mino (mantle cell lymphoma).
- the dose-effect curves for these cell lines are given in FIG. 14 , FIG. 15 , FIG. 16 , and FIG. 17 . No dose-effect curve is given for Ramos (Burkitt's lymphoma) because of negative slope.
- FIG. 14 illustrates the dose-effect curves obtained for the tested CCRF cell line (B lymphoblast, acute lymphoblastic leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 15 illustrates the dose-effect curves obtained for the tested SUP-B15 cell line (B lymphoblast, acute lymphoblastic leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 16 illustrates the dose-effect curves obtained for the tested JVM-2 cell line (prolymphocytic leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 17 illustrates the dose-effect curves obtained for the tested Mino cell line (mantle cell lymphoma) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 18 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K- ⁇ inhibitor of Formula (IX) are combined.
- the tested cell lines include Raji (B lymphocyte, Burkitt's lymphoma), SU-DHL-1 (DLBCL-ABC), and Pfeiffer (follicular lymphoma).
- the dose-effect curves for these cell lines are given in FIG. 19 , FIG. 20 , and FIG. 21 .
- FIG. 19 illustrates the dose-effect curves obtained for the tested Raji cell line (B lymphocyte, Burkitt's lymphoma) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 20 illustrates the dose-effect curves obtained for the tested SU-DHL-1 cell line (DLBCL-ABC) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 21 illustrates the dose-effect curves obtained for the tested Pfeiffer cell line (follicular lymphoma) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 22 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K- ⁇ inhibitor of Formula (IX) are combined.
- the tested cell lines include Ly1 (Germinal center B-cell like diffuse large B-cell lymphoma, DLBCL-GCB), Ly7 (DLBCL-GCB), Ly19 (DLBCL-GCB), SU-DHL-2 (Activated B-cell like diffuse large B-cell lymphoma, DLBCL-ABC), and DOHH2 (follicular lymphoma, FL).
- the dose-effect curves for these cell lines are given in FIG. 23 , FIG. 24 , FIG. 25 , and FIG. 26 , except for the Ly19 cell line, which is not graphed because of a negative slope.
- FIG. 23 illustrates the dose-effect curves obtained for the tested Ly1 cell line (DLBCL-GCB) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 24 illustrates the dose-effect curves obtained for the tested Ly7 cell line (DLBCL-GCB) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 25 illustrates the dose-effect curves obtained for the tested DOHH2 cell line (FL) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 26 illustrates the dose-effect curves obtained for the tested SU-DHL-2 cell line (DLBCL-ABC) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 27 illustrates the synergy observed in certain cell lines when Formula (XVIII) and Formula (IX) are combined.
- the tested cell lines include U937 (histiocytic lymphoma and/or myeloid), K562 (leukemia, myeloid, and/or chronic myelogenous leukemia), Daudi (human Burkitt's lymphoma), and SU-DHL-6 (DLBCL-GCB and/or peripheral T-cell lymphoma, PTCL).
- the dose-effect curves for these cell lines are given in FIG. 28 , FIG. 29 , FIG. 30 , and FIG. 31 .
- FIG. 28 illustrates the dose-effect curves obtained for the tested U937 cell line (histiocytic lymphoma and/or myeloid) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 29 illustrates the dose-effect curves obtained for the tested K562 cell line (leukemia, myeloid, and/or chronic myelogenous leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 30 illustrates the dose-effect curves obtained for the tested Daudi cell line (human Burkitt's lymphoma) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 31 illustrates the dose-effect curves obtained for the tested SU-DHL-6 cell line (DLBCL-GCB and/or PTCL) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 32 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K- ⁇ inhibitor of Formula (IX) are combined.
- the tested cell lines include SU-DHL-6 (DLBCL-GCB or PTCL), TMD-8 (DLBCL-ABC), HBL-1 (DLBCL-ABC), and Rec-1 (follicular lymphoma).
- the dose-effect curves for these cell lines are given in FIG. 34 , FIG. 35 , FIG. 36 , and FIG. 37 .
- FIG. 33 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K- ⁇ inhibitor of Formula (IX) are combined.
- the tested cell lines include SU-DHL-6 (DLBCL-GCB or PTCL), TMD-8 (DLBCL-ABC), HBL-1 (DLBCL-ABC), and Rec-1 (follicular lymphoma). All corresponding CIs are shown for each of the combinations tested as listed on the x axis.
- FIG. 34 illustrates the dose-effect curves obtained for the tested SU-DHL-6 cell line (DLBCL-GCB or PTCL) cell line using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 35 illustrates the dose-effect curves obtained for the tested TMD-8 cell line (DLBCL-ABC) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 36 illustrates the dose-effect curves obtained for the tested HBL-1 cell line (DLBCL-ABC) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 37 illustrates the dose-effect curves obtained for the tested Rec-1 cell line (follicular lymphoma) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K- ⁇ inhibitor of Formula (IX) (“Inh.3”).
- the y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of ⁇ M.
- FIG. 38 illustrates tumor growth suppression in an orthotopic pancreatic cancer model. Mice were dosed orally with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K- ⁇ inhibitor of Formula (IX), or a combination of both drugs. The statistical p-value (presumption against null hypothesis) is shown for each tested single agent and for the combination against the vehicle.
- FIG. 39 illustrates the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K- ⁇ inhibitor of Formula (IX), or a combination of both inhibitors on myeloid tumor-associated macrophages (TAMs) in pancreatic tumor-bearing mice.
- FIG. 40 illustrates the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K- ⁇ inhibitor of Formula (IX), or a combination of both inhibitors on myeloid-derived suppressor cells (MDSCs) in pancreatic tumor-bearing mice.
- FIG. 41 illustrates the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K- ⁇ inhibitor of Formula (IX), or a combination of both inhibitors on regulatory T cells (Tregs) in pancreatic tumor-bearing mice.
- FIG. 42 illustrates the effects of vehicle on flux at two timepoints, as a control for comparison with FIG. 100 , in the ID8 syngeneic orthotropic ovarian cancer model.
- FIG. 43 illustrates the effects of the BTK inhibitor of Formula (XVIII) on flux at two timepoints, for comparison with FIG. 99 , in the ID8 syngeneic orthotropic ovarian cancer model.
- FIG. 44 illustrates tumor response to treatment with the BTK inhibitor of Formula (XVIII) correlates with a significant reduction in immunosuppressive tumor associated lymphocytes in tumor-bearing mice, in comparison to a control (vehicle).
- FIG. 45 illustrates that treatment with the BTK inhibitor of Formula (XVIII) impairs ID8 ovarian cancer growth in the syngeneic murine model in comparison to a control (vehicle).
- FIG. 46 illustrates that treatment with the BTK inhibitor of Formula (XVIII) induces a tumor response that correlates with a significant reduction in total B cells in tumor-bearing mice.
- FIG. 47 illustrates that treatment with the BTK inhibitor of Formula (XVIII) induces a tumor response that correlates with a significant reduction in B regulatory cells (Bregs) in tumor-bearing mice.
- FIG. 48 illustrates that treatment with the BTK inhibitor of Formula (XVIII) induces a tumor response that correlates with a significant reduction in immunosuppressive tumor associated Tregs.
- FIG. 49 illustrates that treatment with the BTK inhibitor of Formula (XVIII) induces a tumor response that correlates with an increase in CD8 + T cells.
- FIG. 50 illustrates the effects on tumor volume of vehicle (measured in mm 3 ) of the BTK inhibitor of Formula (XVIII), a combination of the BTK inhibitor of Formula (XVIII) and gemcitabine (“Gem”), and gemcitabine alone.
- FIG. 51 illustrates the effects on the amount of CD8 + T cells, given as a percentage of cells expressing the T cell receptor (CD3), of the BTK inhibitor of Formula (XVIII), a combination of the BTK inhibitor of Formula (XVIII) and gemcitabine (“Gem”), and gemcitabine alone.
- FIG. 52 illustrates the effects on the percentage of CD4 + , CD25 + , and FoxP3 + T regulatory cells (“Tregs”), given as a percentage of cells expressing the T cell receptor (CD3), of the BTK inhibitor of Formula (XVIII), a combination of the BTK inhibitor of Formula (XVIII) and gemcitabine (“Gem”), and gemcitabine alone.
- Tregs T regulatory cells
- FIG. 53 illustrates the effects on the percentage of CD11b + , LY6C low , F4/80 + , and Csflr + tumor-associated macrophages (“TAMs”), given as a percentage of cells expressing the T cell receptor (CD3), of the BTK inhibitor of Formula (XVIII), a combination of the BTK inhibitor of Formula (XVIII) and gemcitabine (“Gem”), and gemcitabine alone.
- TAMs tumor-associated macrophages
- FIG. 54 illustrates the effects on the percentage of Gr1 + and LY6C hi , F4/80 + , and Csflr + myeloid-derived suppressor cells (“MDSCs”), given as a percentage of cells expressing the T cell receptor (CD3), of the BTK inhibitor of Formula (XVIII), a combination of the BTK inhibitor of Formula (XVIII) and gemcitabine (“Gem”), and gemcitabine alone.
- MDSCs Csflr + myeloid-derived suppressor cells
- FIG. 55 illustrates representative photomicrographs and comparison of maximal thrombus size in laser injured arterioles of VWF HAI mutant mice infused with human platelets in the absence or presence of various BTK inhibitors. Representative photomicrographs are given as a comparison of maximal thrombus size in laser-injured arterioles (1 ⁇ M concentrations shown).
- FIG. 56 illustrates a quantitative comparison obtained by in vivo analysis of early thrombus dynamics in a humanized mouse laser injury model using three BTK inhibitors at a concentration 1 ⁇ M.
- FIG. 57 illustrates the effect of the tested BTK inhibitors on thrombus formation.
- MCL bleeding events were observed with 560 mg QD and 63% CLL bleeding events were observed with 420 mg QD, where bleeding event is defined as subdural hematoma, ecchymoses, GI bleeding, or hematuria.
- FIG. 58 illustrates the effect of the concentration of the tested BTK inhibitors on thrombus formation.
- FIG. 60 illustrates the results of GPVI platelet aggregation studies of Formula XVIII and Formula XX-A (ibrutinib).
- co-administration encompass administration of two or more agents (such as at least one PI3K inhibitor and at least one BTK inhibitor) to a subject (such as a human or a mammal), so that both agents and/or their metabolites are present in the subject at the same time.
- Agents are also referred to as active ingredients, or active pharmaceutical ingredients, or drugs.
- Co-administration includes simultaneous administration in separate compositions (also referred to as concurrent administration), administration at different times in separate compositions, or administration in a composition in which both agents are present. Simultaneous administration in separate compositions and administration in a composition in which both agents are present are preferred.
- an effective amount refers to that amount of a compound or combination of compounds as described herein that is sufficient to effect the intended application including, but not limited to, disease treatment.
- a therapeutically effective amount may vary depending upon the intended application (in vitro or in vivo), or the subject and disease condition being treated (e.g., the weight, age and gender of the subject), the severity of the disease condition, the manner of administration, etc. which can readily be determined by one of ordinary skill in the art.
- the term also applies to a dose that will induce a particular response in target cells, (e.g., the reduction of platelet adhesion and/or cell migration).
- the specific dose will vary depending on the particular compounds chosen, the dosing regimen to be followed, whether the compound is administered in combination with other compounds, timing of administration, the tissue to which it is administered, and the physical delivery system in which the compound is carried.
- a prophylactic effect includes delaying or eliminating the appearance of a disease or condition, delaying or eliminating the onset of symptoms of a disease or condition, slowing, halting, or reversing the progression of a disease or condition, or any combination thereof.
- pharmaceutically acceptable salt refers to salts derived from a variety of organic and inorganic counter ions known in the art.
- Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids.
- Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid and phosphoric acid.
- Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid and salicylic acid.
- Pharmaceutically acceptable base addition salts can be formed with inorganic and organic bases.
- Inorganic bases from which salts can be derived include, for example, sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese and aluminum.
- Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins. Specific examples include isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.
- the pharmaceutically acceptable base addition salt is chosen from ammonium, potassium, sodium, calcium, and magnesium salts.
- “Pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and inert ingredients.
- the use of such pharmaceutically acceptable carriers or pharmaceutically acceptable excipients for active pharmaceutical ingredients is well known in the art. Except insofar as any conventional pharmaceutically acceptable carrier or pharmaceutically acceptable excipient is incompatible with the active pharmaceutical ingredient, its use in the therapeutic compositions of the invention is contemplated. Supplementary active pharmaceutical ingredients, such as other drugs, can also be incorporated into the described compositions and methods.
- Prodrug is intended to describe a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound described herein.
- prodrug refers to a precursor of a biologically active compound that is pharmaceutically acceptable.
- a prodrug may be inactive when administered to a subject, but is converted in vivo to an active compound, for example, by hydrolysis.
- the prodrug compound often offers the advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, e.g., Bundgaard, H., Design of Prodrugs (1985) (Elsevier, Amsterdam).
- prodrug is also intended to include any covalently bonded carriers, which release the active compound in vivo when administered to a subject.
- Prodrugs of an active compound, as described herein may be prepared by modifying functional groups present in the active compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to yield the active parent compound.
- Prodrugs include, for example, compounds wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the active compound is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively.
- prodrugs include, but are not limited to, acetates, formates and benzoate derivatives of an alcohol, various ester derivatives of a carboxylic acid, or acetamide, formamide and benzamide derivatives of an amine functional group in the active compound.
- in vivo refers to an event that takes place in a subject's body.
- in vitro refers to an event that takes places outside of a subject's body.
- in vitro assays encompass cell-based assays in which cells alive or dead are employed and may also encompass a cell-free assay in which no intact cells are employed.
- the chemical structures depicted herein are intended to include compounds which differ only in the presence of one or more isotopically enriched atoms.
- compounds where one or more hydrogen atoms is replaced by deuterium or tritium, or wherein one or more carbon atoms is replaced by 13 C- or 14 C-enriched carbons are within the scope of this invention.
- ranges are used herein to describe, for example, physical or chemical properties such as weight or chemical formulae, all combinations and subcombinations of ranges and specific embodiments therein are intended to be included.
- Use of the term “about” when referring to a number or a numerical range means that the number or numerical range referred to is an approximation within experimental variability (or within statistical experimental error), and thus the number or numerical range may vary. The variation is typically from 0% to 10%, preferably from 0% to 10%, more preferably from 0% to 5% of the stated number or numerical range.
- Alkyl refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to ten carbon atoms (i.e., C 1 -C 10 alkyl and (C 1 -C 10 )alkyl).
- a numerical range such as “1 to 10” refers to each integer in the given range—e.g., “1 to 10 carbon atoms” means that the alkyl group may consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms, although the definition is also intended to cover the occurrence of the term “alkyl” where no numerical range is specifically designated.
- Typical alkyl groups include, but are in no way limited to, methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl, sec-butyl isobutyl, tertiary butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl and decyl.
- the alkyl moiety may be attached to the rest of the molecule by a single bond, such as for example, methyl (Me), ethyl (Et), n-propyl (Pr), 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl) and 3-methylhexyl.
- an alkyl group is optionally substituted by one or more of substituents which are independently alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C(O)N(R a ) 2 , —N(R a )C(O)OR a , —N(R a )C(O)OR a , —N(R a )C(O)R
- Alkylaryl refers to an -(alkyl)aryl radical where aryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for aryl and alkyl respectively.
- Alkylhetaryl refers to an -(alkyl)hetaryl radical where hetaryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for aryl and alkyl respectively.
- Alkylheterocycloalkyl refers to an -(alkyl) heterocycyl radical where alkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heterocycloalkyl and alkyl respectively.
- alkene refers to a group consisting of at least two carbon atoms and at least one carbon-carbon double bond
- an “alkyne” moiety refers to a group consisting of at least two carbon atoms and at least one carbon-carbon triple bond.
- the alkyl moiety, whether saturated or unsaturated, may be branched, straight chain, or cyclic.
- Alkenyl refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one double bond, and having from two to ten carbon atoms (i.e., C 2 -C 10 alkenyl and (C 2 -C 10 )alkenyl). Whenever it appears herein, a numerical range such as “2 to 10” refers to each integer in the given range—e.g., “2 to 10 carbon atoms” means that the alkenyl group may consist of 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms.
- the alkenyl moiety may be attached to the rest of the molecule by a single bond, such as for example, ethenyl (i.e., vinyl), prop-1-enyl (i.e., allyl), but-1-enyl, pent-1-enyl and penta-1,4-dienyl.
- ethenyl i.e., vinyl
- prop-1-enyl i.e., allyl
- but-1-enyl i.e., pent-1-enyl and penta-1,4-dienyl.
- an alkenyl group is optionally substituted by one or more substituents which are independently alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C(O)N(R a ) 2 , —N(R a )C(O)OR a , —N(R a )C(O)OR a , —N(R a )C(O)R
- Alkenyl-cycloalkyl refers to an (alkenyl)cycloalkyl radical where alkenyl and cycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for alkenyl and cycloalkyl respectively.
- Alkynyl refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one triple bond, having from two to ten carbon atoms (i.e. C 2 -C 10 alkynyl and (C 2 -C 10 )alkynyl). Whenever it appears herein, a numerical range such as “2 to 10” refers to each integer in the given range—e.g., “2 to 10 carbon atoms” means that the alkynyl group may consist of 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms.
- alkynyl may be attached to the rest of the molecule by a single bond, for example, ethynyl, propynyl, butynyl, pentynyl and hexynyl.
- an alkynyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a )
- Alkynyl-cycloalkyl refers to an -(alkynyl)cycloalkyl radical where alkynyl and cycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for alkynyl and cycloalkyl respectively.
- Carboxaldehyde refers to a —(C ⁇ O)H radical.
- Carboxyl refers to a —(C ⁇ O)OH radical.
- Cyano refers to a —CN radical.
- Cycloalkyl refers to a monocyclic or polycyclic radical that contains only carbon and hydrogen, and may be saturated, or partially unsaturated. Cycloalkyl groups include groups having from 3 to 10 ring atoms (i.e. C 2 -C 10 cycloalkyl and (C 2 -C 10 )cycloalkyl). Whenever it appears herein, a numerical range such as “3 to 10” refers to each integer in the given range—e.g., “3 to 10 carbon atoms” means that the cycloalkyl group may consist of 3 carbon atoms and greater, up to and including 10 carbon atoms.
- cycloalkyl groups include, but are not limited to the following moieties: cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, norbornyl, and the like.
- a cycloalkyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C(O)N(R a ) 2 , —N(R a )C(O)OR a , —N(R a )C(O)OR a , —N(R a )C(
- Cycloalkyl-alkenyl refers to a -(cycloalkyl)alkenyl radical where cycloalkyl and alkenyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for cycloalkyl and alkenyl, respectively.
- Cycloalkyl-heterocycloalkyl refers to a -(cycloalkyl)heterocycloalkyl radical where cycloalkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for cycloalkyl and heterocycloalkyl, respectively.
- Cycloalkyl-heteroaryl refers to a -(cycloalkyl)heteroaryl radical where cycloalkyl and heteroaryl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for cycloalkyl and heteroaryl, respectively.
- alkoxy refers to the group —O-alkyl, including from 1 to 8 carbon atoms of a straight, branched, cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy and cyclohexyloxy. “Lower alkoxy” refers to alkoxy groups containing one to six carbons.
- substituted alkoxy refers to alkoxy wherein the alkyl constituent is substituted (i.e., —O-(substituted alkyl)).
- the alkyl moiety of an alkoxy group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C
- alkoxycarbonyl refers to a group of the formula (alkoxy)(C ⁇ O)— attached through the carbonyl carbon wherein the alkoxy group has the indicated number of carbon atoms.
- a C 1 -C 6 alkoxycarbonyl group is an alkoxy group having from 1 to 6 carbon atoms attached through its oxygen to a carbonyl linker.
- Lower alkoxycarbonyl refers to an alkoxycarbonyl group wherein the alkoxy group is a lower alkoxy group.
- substituted alkoxycarbonyl refers to the group (substituted alkyl)-O—C(O)— wherein the group is attached to the parent structure through the carbonyl functionality.
- the alkyl moiety of an alkoxycarbonyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R
- “Acyl” refers to the groups (alkyl)-C(O)—, (aryl)-C(O)—, (heteroaryl)-C(O)—, (heteroalkyl)-C(O)— and (heterocycloalkyl)-C(O)—, wherein the group is attached to the parent structure through the carbonyl functionality. If the R radical is heteroaryl or heterocycloalkyl, the hetero ring or chain atoms contribute to the total number of chain or ring atoms.
- the alkyl, aryl or heteroaryl moiety of the acyl group is optionally substituted by one or more substituents which are independently alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C(O)N(R a ) 2 , —N(R a )C(O)OR a , —N(R a )C(O)OR a ,
- “Acyloxy” refers to a R(C ⁇ O)O— radical wherein “R” is alkyl, aryl, heteroaryl, heteroalkyl or heterocycloalkyl, which are as described herein. If the R radical is heteroaryl or heterocycloalkyl, the hetero ring or chain atoms contribute to the total number of chain or ring atoms.
- R of an acyloxy group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C(O)N(R a ) 2 , —N(R a )C(O)OR a , —N(R a )C(O)R a , —N(R a )C(O
- Amino or “amine” refers to a —N(R a ) 2 radical group, where each R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl, unless stated otherwise specifically in the specification.
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl, unless stated otherwise specifically in the specification.
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl
- —N(R a ) 2 is intended to include, but is not limited to, 1-pyrrolidinyl and 4-morpholinyl.
- an amino group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C(O)N(R a ) 2 , —N(R a ) 2 , —N(
- substituted amino also refers to N-oxides of the groups —NHR d , and NR d R d each as described above. N-oxides can be prepared by treatment of the corresponding amino group with, for example, hydrogen peroxide or m-chloroperoxybenzoic acid.
- “Amide” or “amido” refers to a chemical moiety with formula —C(O)N(R) 2 or —NHC(O)R, where R is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon), each of which moiety may itself be optionally substituted.
- R 2 of —N(R) 2 of the amide may optionally be taken together with the nitrogen to which it is attached to form a 4-, 5-, 6- or 7-membered ring.
- an amido group is optionally substituted independently by one or more of the substituents as described herein for alkyl, cycloalkyl, aryl, heteroaryl, or heterocycloalkyl.
- An amide may be an amino acid or a peptide molecule attached to a compound of Formula (I), thereby forming a prodrug.
- the procedures and specific groups to make such amides, including the use of protecting groups, are known to those of skill in the art and can readily be found in seminal sources such as Greene and Wuts, Protective Groups in Organic Synthesis, 3 rd Ed., John Wiley & Sons, New York, N.Y., 1999.
- Aromaatic or “aryl” or “Ar” refers to an aromatic radical with six to ten ring atoms (e.g., C 6 -C 10 aromatic or C 6 -C 10 aryl) which has at least one ring having a conjugated pi electron system which is carbocyclic (e.g., phenyl, fluorenyl, and naphthyl).
- Bivalent radicals formed from substituted benzene derivatives and having the free valences at ring atoms are named as substituted phenylene radicals.
- Bivalent radicals derived from univalent polycyclic hydrocarbon radicals whose names end in “-yl” by removal of one hydrogen atom from the carbon atom with the free valence are named by adding “-idene” to the name of the corresponding univalent radical, e.g., a naphthyl group with two points of attachment is termed naphthylidene.
- a numerical range such as “6 to 10” refers to each integer in the given range; e.g., “6 to 10 ring atoms” means that the aryl group may consist of 6 ring atoms, 7 ring atoms, etc., up to and including 10 ring atoms.
- an aryl moiety is optionally substituted by one or more substituents which are independently alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C(O)N(R a ) 2 , —N(R a )
- alkyl or “arylalkyl” refers to an (aryl)alkyl-radical where aryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for aryl and alkyl respectively.
- Ester refers to a chemical radical of formula —COOR, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon).
- R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon).
- the procedures and specific groups to make esters, including the use of protecting groups, are known to those of skill in the art and can readily be found in seminal sources such as Greene and Wuts, Protective Groups in Organic Synthesis, 3 rd Ed., John Wiley & Sons, New York, N.Y., 1999.
- an ester group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C(O)N(R a ) 2 , —N(R a )C(O)OR a , —N(R a )C(O)OR a , —N(R a )C(O)R a
- Fluoroalkyl refers to an alkyl radical, as defined above, that is substituted by one or more fluoro radicals, as defined above, for example, trifluoromethyl, difluoromethyl, 2,2,2-trifluoroethyl, 1-fluoromethyl-2-fluoroethyl, and the like.
- the alkyl part of the fluoroalkyl radical may be optionally substituted as defined above for an alkyl group.
- Halo “Halo,” “halide,” or, alternatively, “halogen” is intended to mean fluoro, chloro, bromo or iodo.
- haloalkyl “haloalkenyl,” “haloalkynyl,” and “haloalkoxy” include alkyl, alkenyl, alkynyl and alkoxy structures that are substituted with one or more halo groups or with combinations thereof.
- fluoroalkyl” and “fluoroalkoxy” include haloalkyl and haloalkoxy groups, respectively, in which the halo is fluorine.
- Heteroalkyl refers to optionally substituted alkyl, alkenyl and alkynyl radicals and which have one or more skeletal chain atoms selected from an atom other than carbon, e.g., oxygen, nitrogen, sulfur, phosphorus or combinations thereof.
- a numerical range may be given—e.g., C 1 -C 4 heteroalkyl which refers to the chain length in total, which in this example is 4 atoms long.
- a heteroalkyl group may be substituted with one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C(O)N(R a ) 2 , —N(R a )C(O)OR a , —N(R a )C(O)R a , —N(R a )C(O)OR a
- Heteroalkylaryl refers to an -(heteroalkyl)aryl radical where heteroalkyl and aryl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and aryl, respectively.
- Heteroalkylheteroaryl refers to an -(heteroalkyl)heteroaryl radical where heteroalkyl and heteroaryl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and heteroaryl, respectively.
- Heteroalkylheterocycloalkyl refers to an -(heteroalkyl)heterocycloalkyl radical where heteroalkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and heterocycloalkyl, respectively.
- Heteroalkylcycloalkyl refers to an -(heteroalkyl)cycloalkyl radical where heteroalkyl and cycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and cycloalkyl, respectively.
- Heteroaryl or “heteroaromatic” or “HetAr” refers to a 5- to 18-membered aromatic radical (e.g., C 5 -C 13 heteroaryl) that includes one or more ring heteroatoms selected from nitrogen, oxygen and sulfur, and which may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system.
- a numerical range such as “5 to 18” refers to each integer in the given range—e.g., “5 to 18 ring atoms” means that the heteroaryl group may consist of 5 ring atoms, 6 ring atoms, etc., up to and including 18 ring atoms.
- Bivalent radicals derived from univalent heteroaryl radicals whose names end in “-yl” by removal of one hydrogen atom from the atom with the free valence are named by adding “-idene” to the name of the corresponding univalent radical—e.g., a pyridyl group with two points of attachment is a pyridylidene.
- a N-containing “heteroaromatic” or “heteroaryl” moiety refers to an aromatic group in which at least one of the skeletal atoms of the ring is a nitrogen atom.
- the polycyclic heteroaryl group may be fused or non-fused.
- the heteroatom(s) in the heteroaryl radical are optionally oxidized.
- heteroaryl may be attached to the rest of the molecule through any atom of the ring(s).
- heteroaryls include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzindolyl, 1,3-benzodioxolyl, benzofuranyl, benzooxazolyl, benzo[d]thiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, benzo[b][1,4]oxazinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzoxazolyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benz
- a heteroaryl moiety is optionally substituted by one or more substituents which are independently: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilanyl, —OR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C(O)N(R a ) 2 , —N(R a )C(O)OR a , —N(R a )C(O)OR a , —N(R a )C(O)R a , —N(
- Substituted heteroaryl also includes ring systems substituted with one or more oxide (—O—) substituents, such as, for example, pyridinyl N-oxides.
- Heteroarylalkyl refers to a moiety having an aryl moiety, as described herein, connected to an alkylene moiety, as described herein, wherein the connection to the remainder of the molecule is through the alkylene group.
- Heterocycloalkyl refers to a stable 3- to 18-membered non-aromatic ring radical that comprises two to twelve carbon atoms and from one to six heteroatoms selected from nitrogen, oxygen and sulfur. Whenever it appears herein, a numerical range such as “3 to 18” refers to each integer in the given range—e.g., “3 to 18 ring atoms” means that the heterocycloalkyl group may consist of 3 ring atoms, 4 ring atoms, etc., up to and including 18 ring atoms.
- the heterocycloalkyl radical is a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems.
- the heteroatoms in the heterocycloalkyl radical may be optionally oxidized.
- One or more nitrogen atoms, if present, are optionally quaternized.
- the heterocycloalkyl radical is partially or fully saturated.
- the heterocycloalkyl may be attached to the rest of the molecule through any atom of the ring(s).
- heterocycloalkyl radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-o-
- a heterocycloalkyl moiety is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilanyl, —OR a , —SR a , —OC(O)—R a , —N(R a ) 2 , —C(O)R a , —C(O)OR a , —OC(O)N(R a ) 2 , —C(O)N(R a ) 2 , —N(R a )C(O)OR a , —N(R a )C(O)OR a , —N(R a )C(O
- Heterocycloalkyl also includes bicyclic ring systems wherein one non-aromatic ring, usually with 3 to 7 ring atoms, contains at least 2 carbon atoms in addition to 1-3 heteroatoms independently selected from oxygen, sulfur, and nitrogen, as well as combinations comprising at least one of the foregoing heteroatoms; and the other ring, usually with 3 to 7 ring atoms, optionally contains 1-3 heteroatoms independently selected from oxygen, sulfur, and nitrogen and is not aromatic.
- “Isomers” are different compounds that have the same molecular formula. “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space—i.e., having a different stereochemical configuration. “Enantiomers” are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a “racemic” mixture. The term “( ⁇ )” is used to designate a racemic mixture where appropriate. “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other. The absolute stereochemistry is specified according to the Cahn-Ingold-Prelog R-S system.
- stereochemistry at each chiral carbon can be specified by either R or S.
- Resolved compounds whose absolute configuration is unknown can be designated (+) or ( ⁇ ) depending on the direction (dextro- or levorotatory) which they rotate plane polarized light at the wavelength of the sodium D line.
- Certain of the compounds described herein contain one or more asymmetric centers and can thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that can be defined, in terms of absolute stereochemistry, as (R)- or (S)-.
- the present chemical entities, pharmaceutical compositions and methods are meant to include all such possible isomers, including racemic mixtures, optically pure forms and intermediate mixtures.
- Optically active (R)- and (S)-isomers can be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques.
- the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers.
- Enantiomeric purity refers to the relative amounts, expressed as a percentage, of the presence of a specific enantiomer relative to the other enantiomer. For example, if a compound, which may potentially have an (R)- or an (S)-isomeric configuration, is present as a racemic mixture, the enantiomeric purity is about 50% with respect to either the (R)- or (S)-isomer. If that compound has one isomeric form predominant over the other, for example, 80% (S)- and 20% (R)-, the enantiomeric purity of the compound with respect to the (S)-isomeric form is 80%.
- the enantiomeric purity of a compound can be determined in a number of ways known in the art, including but not limited to chromatography using a chiral support, polarimetric measurement of the rotation of polarized light, nuclear magnetic resonance spectroscopy using chiral shift reagents which include but are not limited to lanthanide containing chiral complexes or the Pirkle alcohol, or derivatization of a compounds using a chiral compound such as Mosher's acid followed by chromatography or nuclear magnetic resonance spectroscopy.
- “Moiety” refers to a specific segment or functional group of a molecule. Chemical moieties are often recognized chemical entities embedded in or appended to a molecule.
- Niro refers to the —NO 2 radical.
- Oxa refers to the —O— radical.
- Oxo refers to the ⁇ O radical.
- “Tautomers” are structurally distinct isomers that interconvert by tautomerization. “Tautomerization” is a form of isomerization and includes prototropic or proton-shift tautomerization, which is considered a subset of acid-base chemistry. “Prototropic tautomerization” or “proton-shift tautomerization” involves the migration of a proton accompanied by changes in bond order, often the interchange of a single bond with an adjacent double bond. Where tautomerization is possible (e.g. in solution), a chemical equilibrium of tautomers can be reached. An example of tautomerization is keto-enol tautomerization.
- keto-enol tautomerization is the interconversion of pentane-2,4-dione and 4-hydroxypent-3-en-2-one tautomers.
- tautomerization is phenol-keto tautomerization.
- phenol-keto tautomerization is the interconversion of pyridin-4-ol and pyridin-4(1H)-one tautomers.
- an enantiomerically enriched preparation of the (S)-enantiomer means a preparation of the compound having greater than 50% by weight of the (S)-enantiomer relative to the (R)-enantiomer, such as at least 75% by weight, such as at least 80% by weight.
- the enrichment can be significantly greater than 80% by weight, providing a “substantially enantiomerically enriched,” “substantially enantiomerically pure” or a “substantially non-racemic” preparation, which refers to preparations of compositions which have at least 85% by weight of one enantiomer relative to the other enantiomer, such as at least 90% by weight, and such as at least 95% by weight.
- the enrichment can be significantly greater than 80% by weight, providing a “substantially diastereomerically enriched” or “substantially diastereomerically pure” preparation, which refers to preparations of compositions which have at least 85% by weight of one diastereomer relative to other diastereomers, such as at least 90% by weight, and such as at least 95% by weight.
- the enantiomerically enriched composition has a higher potency with respect to therapeutic utility per unit mass than does the racemic mixture of that composition.
- Enantiomers can be isolated from mixtures by methods known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts; or preferred enantiomers can be prepared by asymmetric syntheses. See, for example, Jacques, et al., Enantiomers, Racemates and Resolutions, Wiley Interscience, New York, 1981; and Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill, N Y, 1962.
- a “leaving group or atom” is any group or atom that will, under selected reaction conditions, cleave from the starting material, thus promoting reaction at a specified site. Examples of such groups, unless otherwise specified, include halogen atoms and mesyloxy, p-nitrobenzensulphonyloxy and tosyloxy groups.
- Protecting group is intended to mean a group that selectively blocks one or more reactive sites in a multifunctional compound such that a chemical reaction can be carried out selectively on another unprotected reactive site and the group can then be readily removed after the selective reaction is complete.
- a variety of protecting groups are disclosed, for example, in T. H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, Third Edition, John Wiley & Sons, New York, 1999.
- Solvate refers to a compound in physical association with one or more molecules of a pharmaceutically acceptable solvent.
- “Substituted” means that the referenced group may have attached one or more additional moieties individually and independently selected from, for example, acyl, alkyl, alkylaryl, cycloalkyl, aralkyl, aryl, carbohydrate, carbonate, heteroaryl, heterocycloalkyl, hydroxy, alkoxy, aryloxy, mercapto, alkylthio, arylthio, cyano, halo, carbonyl, ester, thiocarbonyl, isocyanato, thiocyanato, isothiocyanato, nitro, oxo, perhaloalkyl, perfluoroalkyl, phosphate, silyl, sulfinyl, sulfonyl, sulfonamidyl, sulfoxyl, sulfonate, urea, and amino, including mono- and di-substituted amino groups, and protected derivatives thereof.
- substituents themselves may be substituted, for example, a cycloalkyl substituent may itself have a halide substituent at one or more of its ring carbons.
- substituted also means that one or more hydrogens on the designated atom/atoms is/are replaced with a selection from the indicated group, provided that the designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible if such combinations result in stable compounds.
- “Stable compound” or “stable structure” is defined as a compound or structure that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
- optionally substituted and “may optionally be substituted” means optional substitution with the specified groups, radicals or moieties.
- “Sulfanyl” refers to groups that include —S-(optionally substituted alkyl), —S-(optionally substituted aryl), —S-(optionally substituted heteroaryl) and —S-(optionally substituted heterocycloalkyl).
- “Sulfinyl” refers to groups that include —S(O)—H, —S(O)-(optionally substituted alkyl), —S(O)-(optionally substituted amino), —S(O)-(optionally substituted aryl), —S(O)-(optionally substituted heteroaryl) and —S(O)-(optionally substituted heterocycloalkyl).
- “Sulfonyl” refers to groups that include —S(O 2 )—H, —S(O 2 )-(optionally substituted alkyl), —S(O 2 )-(optionally substituted amino), —S(O 2 )-(optionally substituted aryl), —S(O 2 )-(optionally substituted heteroaryl), and —S(O 2 )-(optionally substituted heterocycloalkyl).
- “Sulfonamidyl” or “sulfonamido” refers to a —S( ⁇ O) 2 —NRR radical, where each R is selected independently from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon).
- the R groups in —NRR of the —S( ⁇ O) 2 —NRR radical may be taken together with the nitrogen to which it is attached to form a 4-, 5-, 6- or 7-membered ring.
- a sulfonamido group is optionally substituted by one or more of the substituents described for alkyl, cycloalkyl, aryl, heteroaryl, respectively.
- “Sulfoxyl” refers to a —S( ⁇ O) 2 OH radical.
- “Sulfonate” refers to a —S( ⁇ O) 2 —OR radical, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon). A sulfonate group is optionally substituted on R by one or more of the substituents described for alkyl, cycloalkyl, aryl, heteroaryl, respectively.
- Compounds of the invention also include crystalline and amorphous forms of those compounds, including, for example, polymorphs, pseudopolymorphs, solvates, hydrates, unsolvated polymorphs (including anhydrates), conformational polymorphs, and amorphous forms of the compounds, as well as mixtures thereof.
- Crystalstalline form” and “polymorph” are intended to include all crystalline and amorphous forms of the compound, including, for example, polymorphs, pseudopolymorphs, solvates, hydrates, unsolvated polymorphs (including anhydrates), conformational polymorphs, and amorphous forms, as well as mixtures thereof, unless a particular crystalline or amorphous form is referred to.
- An embodiment of the invention is a composition, such as a pharmaceutical composition, comprising a combination of a PI3K inhibitor and a BTK inhibitor.
- Another embodiment is a kit containing both components formulated into separate pharmaceutical compositions, which are formulated for co-administration.
- Another embodiment of the invention is a method of treating a disease or condition in a subject, in particular a hyperproliferative disorder like leukemia, lymphoma or a solid tumor cancer in a subject, comprising co-administering to the subject in need thereof a therapeutically effective amount of a combination of a PI3K inhibitor and a BTK inhibitor.
- the pharmaceutical composition comprising the combination, and the kit, are both for use in treating such disease or condition.
- the solid tumor cancer is selected from the group consisting of breast, lung, colorectal, thyroid, bone sarcoma and stomach cancers.
- the leukemia is selected from the group consisting of acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), and acute lymphoblastic leukemia (ALL).
- AML acute myelogenous leukemia
- CML chronic myelogenous leukemia
- ALL acute lymphoblastic leukemia
- the PI3K inhibitor is a PI3K- ⁇ inhibitor.
- the PI3K inhibitor is a PI3K- ⁇ inhibitor.
- the PI3K inhibitor is a PI3K- ⁇ , ⁇ inhibitor.
- the PI3K inhibitor is a PI3K- ⁇ inhibitor.
- This PI3K- ⁇ inhibitor is more preferably a compound of Formula VIII, even more preferably the compound of Formula IX.
- the BTK inhibitor is preferably a compound of Formula XVII, even more preferably the compound of Formula XVIII.
- the PI3K inhibitor is a PI3K- ⁇ inhibitor and the BTK inhibitor is a compound of Formula XVII, even more preferably the compound of Formula XVIII.
- the PI3K inhibitor is the compound of Formula IX and the BTK inhibitor is the compound of Formula XVIII.
- One or both of said inhibitors may also be in the form of a pharmaceutically acceptable salt.
- the PI3K inhibitor is a PI3K inhibitor selective for 6-PI3K, ⁇ -PI3K, or ⁇ , ⁇ -PI3K isoforms.
- the combination may be administered by any route known in the art.
- the combination of the PI3K inhibitor which is preferably selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor, with the BTK inhibitor is administered by oral, intravenous, intramuscular, intraperitoneal, subcutaneous or transdermal means. In one embodiment, the administration is by injection.
- the PI3K inhibitor which is preferably selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor, is in the form of a pharmaceutically acceptable salt.
- the BTK inhibitor is in the form of a pharmaceutically acceptable salt.
- the PI3K inhibitor which is preferably selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor, is administered to the subject before administration of the BTK inhibitor.
- the PI3K inhibitor which is preferably selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor, is administered concurrently with the administration of the BTK inhibitor.
- the PI3K inhibitor which is preferably selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor, is administered to the subject after administration of the BTK inhibitor.
- the subject is a mammal, such as a human.
- it is one of the PI3K inhibitors described in more detail in the following paragraphs.
- it is a PI3K inhibitor selected from the group consisting of PI3K- ⁇ inhibitor, PI3K- ⁇ inhibitor, and PI3K- ⁇ , ⁇ inhibitor.
- it is a PI3K- ⁇ inhibitor.
- it is a compound of Formula IX or a pharmaceutically acceptable salt thereof.
- the PI3K inhibitor which may preferably be selected from the group consisting of PI3K- ⁇ inhibitor, PI3K- ⁇ inhibitor, and PI3K- ⁇ , ⁇ inhibitor, is a compound selected from the structures disclosed in U.S. Pat. Nos. 8,193,182 and 8,569,323, and U.S. Patent Application Publication Nos. 2012/0184568 A1, 2013/0344061 A1, and 2013/0267521 A1.
- the PI3K inhibitor is a compound of Formula (I):
- the PI3K inhibitor, PI3K- ⁇ inhibitor, PI3K- ⁇ inhibitor, or PI3K- ⁇ , ⁇ inhibitor is a compound of Formula (I-1):
- the PI3K inhibitor is a compound of Formula (III), also known as (S)-3-(1-((9H-purin-6-yl)amino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one,
- the PI3K inhibitor is a compound of Formula (IV), also known as (S)-3-amino-N-(1-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)pyrazine-2-carboxamide,
- the PI3K inhibitor is a compound selected from the structures disclosed in U.S. Pat. Nos. 8,193,199 and 8,586,739. In an exemplary embodiment, the PI3K inhibitor is a compound of Formula (V):
- X 1 is C(R 9 ). In a further preferred embodiment, X 1 is C(R 9 ) and X 2 is N. In a further embodiment, X 1 is C(R 9 ) and X 2 is C(R 10 ).
- R 1 is phenyl substituted by 0 or 1 R 2 substituents, and the phenyl is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is unsubstituted phenyl.
- R 1 is phenyl substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is selected from 2-methylphenyl, 2-chlorophenyl, 2-trifluoromethylphenyl, 2-fluorophenyl and 2-methoxyphenyl.
- R 1 is phenoxy
- R 1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, 0C 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsubstituted unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S.
- R 1 is selected from pyridyl and pyrimidinyl.
- R 3 is selected from halo, C 1-4 haloalkyl, cyano, nitro, —C(O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C(NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —OC 2-6 alkylNR a R a , —OC 2-6 alkylOR a , —SR a , —S( ⁇ O)R a , —S( ⁇ O) 2 R a , —S( ⁇ O)NR a R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N(R a
- R 3 is H.
- R 3 is selected from F, Cl, C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C 1-6 haloalkyl, OC 1-6 alkyl, Br, Cl, F, I and C 1-6 alkyl.
- R 5 is, independently, in each instance, H, halo, C 1-6 alkyl, C 1-4 haloalkyl, or C 1-6 alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl; or both R 5 groups together form a C 3-6 spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl.
- R 5 is H.
- one R 5 is S-methyl, the other is H.
- At least one R 5 is halo, C 1-6 alkyl, C 1-4 haloalkyl, or C 1-6 alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl.
- R 6 is H.
- R 6 is F, Cl, cyano or nitro.
- R 7 is H.
- R 7 is F, Cl, cyano or nitro.
- R 8 is selected from H, CF 3 , C 1-3 alkyl, Br, Cl and F.
- R 8 is H.
- R 8 is selected from CF 3 , C 1-3 alkyl, Br, Cl and F.
- R 9 is H.
- R 9 is selected from halo, C 1-4 haloalkyl, cyano, nitro, C( ⁇ O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —OC 2-6 alkylNR a R a , —OC 2-6 alkylOR a , —SR a , —S( ⁇ O)R a , —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR a R a , S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N(
- R 9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C 1-4 haloalkyl, cyano, nitro, —C( ⁇ O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —
- R 10 is H.
- R m is cyano, nitro, CO 2 R a , C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)OR a , —S( ⁇ O) 2 N(R a )C( ⁇ O)NR a R a , S( ⁇ O)R b , S( ⁇ O) 2 R b or S( ⁇ O) 2 NR a R a .
- R 11 is H.
- the PI3K inhibitor is a compound of Formula (VI):
- X 1 is C(R 9 ). In a further preferred embodiment, X 1 is C(R 9 ) and X 2 is N. In a further embodiment, X 1 is C(R 9 ) and X 2 is C(R 10 ).
- R 1 is phenyl substituted by 0 or 1 R 2 substituents, and the phenyl is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1 -4haloalkyl.
- R 1 is unsubstituted phenyl.
- R 1 is phenyl substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is selected from 2-methylphenyl, 2-chlorophenyl, 2-trifluoromethylphenyl, 2-fluorophenyl and 2-methoxyphenyl.
- R 1 is phenoxy
- R 1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, 0C 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsubstituted unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S.
- R 1 is selected from pyridyl and pyrimidinyl.
- R 3 is selected from halo, C 1-4 haloalkyl, cyano, nitro, —C(O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C(NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —OC 2-6 alkylNR a R a , —OC 2-6 alkylOR a , —SR a , —S( ⁇ O)R a , —S( ⁇ O) 2 R a , —S( ⁇ O)NR a R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N(R a
- R 3 is H.
- R 3 is selected from F, Cl, C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C 1-6 haloalkyl, OC 1-6 alkyl, Br, Cl, F, I and C 1-6 alkyl.
- R 5 is, independently, in each instance, H, halo, C 1-6 alkyl, C 1-4 haloalkyl, or C 1-6 alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl; or both R 5 groups together form a C 3-6 spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl.
- R 5 is H.
- one R 5 is S-methyl, the other is H.
- At least one R 5 is halo, C 1-6 alkyl, C 1-4 haloalkyl, or C 1-6 alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl.
- R 6 is H.
- R 6 is F, Cl, cyano or nitro.
- R 7 is H.
- R 7 is F, Cl, cyano or nitro.
- R 8 is selected from H, CF 3 , C 1-3 alkyl, Br, Cl and F.
- R 8 is H.
- R 8 is selected from CF 3 , C 1-3 alkyl, Br, Cl and F.
- R 9 is H.
- R 9 is selected from halo, C 1-4 haloalkyl, cyano, nitro, —C( ⁇ O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —OC 2-6 alkylNR a R a , —OC 2-6 alkylOR a , —SR a , —S( ⁇ O)R a , —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR a R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N
- R 9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C 1-4 haloalkyl, cyano, nitro, —C( ⁇ O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —
- R 10 is H.
- R 10 is cyano, nitro, CO 2 R a , C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)OR a , —S( ⁇ O) 2 N(R a )C( ⁇ O)NR a R a , S( ⁇ O)R b , S( ⁇ O) 2 R b or S( ⁇ O) 2 NR a R a .
- R 11 is H.
- the PI3K inhibitor is a compound of Formula (VII):
- X 1 is C(R 9 ). In a further preferred embodiment, X 1 is C(R 9 ) and X 2 is N. In a further embodiment, X 1 is C(R 9 ) and X 2 is C(R 10 ).
- R 1 is phenyl substituted by 0 or 1 R 2 substituents, and the phenyl is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is unsubstituted phenyl.
- R 1 is phenyl substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is selected from 2-methylphenyl, 2-chlorophenyl, 2-trifluoromethylphenyl, 2-fluorophenyl and 2-methoxyphenyl.
- R 1 is phenoxy
- R 1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsubstituted unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S.
- R 1 is selected from pyridyl and pyrimidinyl.
- R 3 is selected from halo, C 1-4 haloalkyl, cyano, nitro, —C(O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C(NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —OC 2-6 alkylNR a R a , —OC 2-6 alkylOR a , —SR a , —S( ⁇ O)R a , —S( ⁇ O) 2 R a , —S( ⁇ O)NR a R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N(R a
- R 3 is H.
- R 3 is selected from F, Cl, C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C 1-6 haloalkyl, OC 1-6 alkyl, Br, Cl, F, I and C 1-6 alkyl.
- R 5 is, independently, in each instance, H, halo, C 1-6 alkyl, C 1-4 haloalkyl, or C 1-6 alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl; or both R 5 groups together form a C 3-6 spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl.
- R 5 is H.
- one R 5 is S-methyl, the other is H.
- At least one R 5 is halo, C 1-6 alkyl, C 1-4 haloalkyl, or C 1-6 alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl.
- R 6 is H.
- R 6 is F, Cl, cyano or nitro.
- R 7 is H.
- R 7 is F, Cl, cyano or nitro.
- R 8 is selected from H, CF 3 , C 1-3 alkyl, Br, Cl and F.
- R 8 is H.
- R 8 is selected from CF 3 , C 1-3 alkyl, Br, Cl and F.
- R 9 is H.
- R 9 is selected from halo, C 1-4 haloalkyl, cyano, nitro, —C( ⁇ O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —OC 2-6 alkylNR a R a , —OC 2-6 alkylOR a , —SR a , —S( ⁇ O)R a , —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR a R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N
- R 9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C 1-4 haloalkyl, cyano, nitro, —C( ⁇ O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —
- R 10 is H.
- R 10 is cyano, nitro, CO 2 R a , C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)OR a , —S( ⁇ O) 2 N(R a )C( ⁇ O)NR a R a , S( ⁇ O)R b , S( ⁇ O) 2 R b or S( ⁇ O) 2 NR a R a .
- R 11 is H.
- the PI3K inhibitor is a compound of Formula (VIII):
- X 1 is C(R 9 ). In a further preferred embodiment, X 1 is C(R 9 ) and X 2 is N. In a further embodiment, X 1 is C(R 9 ) and X 2 is C(R 10 ).
- R 1 is phenyl substituted by 0 or 1 R 2 substituents, and the phenyl is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is unsubstituted phenyl.
- R 1 is phenyl substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is selected from 2-methylphenyl, 2-chlorophenyl, 2-trifluoromethylphenyl, 2-fluorophenyl and 2-methoxyphenyl.
- R 1 is phenoxy
- R 1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl and C 1-4 haloalkyl.
- R 1 is an unsubstituted unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S.
- R 1 is selected from pyridyl and pyrimidinyl.
- R 3 is selected from halo, C 1-4 haloalkyl, cyano, nitro, —C(O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C(NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —OC 2-6 alkylNR a R a , —OC 2-6 alkylOR a , —SR a , —S( ⁇ O)R a , —S( ⁇ O) 2 R a , —S( ⁇ O)NR a R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N(R a
- R 3 is H.
- R 3 is selected from F, Cl, C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C 1-6 haloalkyl, OC 1-6 alkyl, Br, Cl, F, I and C 1-6 alkyl.
- R 5 is, independently, in each instance, H, halo, C 1-6 alkyl, C 1-4 haloalkyl, or C 1-6 alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl; or both R 5 groups together form a C 3-6 spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl.
- R 5 is H.
- one R 5 is S-methyl, the other is H.
- At least one R 5 is halo, C 1-6 alkyl, C 1-4 haloalkyl, or C 1-6 alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC 1-4 alkyl, NH 2 , NHC 1-4 alkyl, N(C 1-4 alkyl)C 1-4 alkyl.
- R 6 is H.
- R 6 is F, Cl, cyano or nitro.
- R 7 is H.
- R 7 is F, Cl, cyano or nitro.
- R 8 is selected from H, CF 3 , C 1-3 alkyl, Br, Cl and F.
- R 8 is H.
- R 8 is selected from CF 3 , C 1-3 alkyl, Br, Cl and F.
- R 9 is H.
- R 9 is selected from halo, C 1-4 haloalkyl, cyano, nitro, —C( ⁇ O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —OC 2-6 alkylNR a R a , —OC 2-6 alkylOR a , —SR a , —S( ⁇ O)R a , —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR a R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N
- R 9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C 1-4 haloalkyl, cyano, nitro, —C( ⁇ O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —OR a , —OC( ⁇ O)R a , —OC( ⁇ O)NR a R a , —OC( ⁇ O)N(R a )S( ⁇ O) 2 R a , —
- R 10 is H.
- R 10 is cyano, nitro, CO 2 R a , C( ⁇ O)NR a R a , —C( ⁇ NR a )NR a R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)R a , —S( ⁇ O) 2 N(R a )C( ⁇ O)OR a , —S( ⁇ O) 2 N(R a )C( ⁇ O)NR a R a , S( ⁇ O)R b , S( ⁇ O) 2 R b or S( ⁇ O) 2 NR a R a .
- R 11 is H.
- the PI3K inhibitor is a compound of Formula (IX):
- the PI3K- ⁇ inhibitor or PI3K- ⁇ inhibitor is (S)—N-(1-(7-fluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine or a pharmaceutically-acceptable salt thereof.
- the PI3K inhibitor is a PI3K- ⁇ inhibitor which is a compound of Formula (X):
- the PI3K inhibitor is a PI3K- ⁇ inhibitor, which is a compound of Formula (XI):
- the PI3K inhibitor or PI3K- ⁇ inhibitor is (S)—N-(1-(2-(3,5-difluorophenyl)-8-fluoroquinolin-3-yl)ethyl)-9H-purin-6-amine or a pharmaceutically-acceptable salt thereof.
- the PI3K inhibitor is a PI3K- ⁇ inhibitor which is a compound of Formula (XII):
- the PI3K inhibitor or PI3K- ⁇ inhibitor is (S)-3-(1-((9H-purin-6-yl)amino)ethyl)-2-(pyridin-2-yl)quinoline-8-carbonitrile or a pharmaceutically-acceptable salt thereof.
- the PI3K inhibitor is a PI3K- ⁇ inhibitor which is a compound of Formula (XIII):
- the PI3K inhibitor or PI3K- ⁇ inhibitor is (S)—N-(1-(5,7-difluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine or a pharmaceutically-acceptable salt thereof.
- the PI3K inhibitor is a compound selected from the structures disclosed in U.S. Pat. Nos. 7,932,260 and 8,207,153. In an exemplary embodiment, the PI3K inhibitor is a compound of Formula (XIV):
- the PI3K inhibitor is an enantiomer of Formula (XIV), as shown in Formula (XV):
- R 8 is C 1-3 alkyl, F, Cl, or CF 3 .
- n is 0 (such that there is no R 8 substituent).
- X is N and Y is CH.
- Y is CH.
- X and Y may also both be CH.
- Z is NR 7
- the bicyclic ring system containing X and Y is:
- R 6 is hydrogen, halo, or NH 2 .
- R 6 is hydrogen.
- n is 0 or 1; R 8 (if n is 1) is C 1-3 alkyl, F, Cl, or CF 3 ; R 6 is hydrogen; X is N and Y is CH or X and Y are both CH; Z is NH; R 1 are the same and are hydrogen, halo, or C 1-3 alkyl; and R 2 and R 3 , independently, are hydrogen, halo, or C 1-3 alkyl.
- R 1 , R 2 , and R 3 are hydrogen.
- R 2 and R 4 may differ provided that R 1 is H.
- R 1 is H
- free rotation is unexpectedly permitted about the bond connecting the phenyl ring substituent to the quinazoline ring, and the compounds advantageously do not exhibit atropisomerism (i.e., multiple diastereomer formation is avoided).
- R 2 and R 4 can be the same such that the compounds advantageously do not exhibit atropisomerism.
- alkyl is defined as straight chained and branched hydrocarbon groups containing the indicated number of carbon atoms, e.g., methyl, ethyl, and straight chain and branched propyl and butyl groups.
- C 1-3 alkylene” and “C 1-4 alkylene” are defined as hydrocarbon groups containing the indicated number of carbon atoms and one less hydrogen than the corresponding alkyl group.
- C 2-6 alkynyl is defined as a hydrocarbon group containing the indicated number of carbon atoms and a carbon-carbon triple bond.
- C 3-6 cycloalkyl is defined as a cyclic hydrocarbon group containing the indicated number of carbon atoms.
- C 2-6 heterocycloalkyl is defined similarly as cycloalkyl except the ring contains one or two heteroatoms selected from the group consisting of O, NR a , and S.
- halo is defined as fluoro, bromo, chloro, and iodo.
- R 1 is hydrogen, fluoro, chloro, methyl, or
- R 2 is hydrogen, methyl, chloro, or fluoro
- R 3 is hydrogen or fluoro
- R 6 is NH 2 , hydrogen, or fluoro
- R 7 is hydrogen or R 5 and R 7 are taken together to form
- R 8 is methyl, trifluoromethyl, chloro, or fluoro;
- R 4 is hydrogen, fluoro, chloro, OH, OCH 3 , OCH 2 C ⁇ CH, O(CH 2 ) 2 N(CH 3 ) 2 , C( ⁇ O)CH 3 , C ⁇ CH, CN, C( ⁇ O)NH 2 , OCH 2 C( ⁇ O)NH 2 , O(CH 2 ) 2 OCH 3 , O(CH 2 ) 2 N(CH 3 ) 2 ,
- R 5 is methyl, ethyl, propyl, phenyl, CH 2 OH, CH 2 OCH 2 C 6 H 5 , CH 2 CF 3 , CH 2 OC(CH 3 ) 3 , CH 2 C ⁇ CH, (CH 2 ) 3 N(C 2 H 5 ) 2 , (CH 2 ) 3 NH 2 , (CH 2 ) 4 NH 2 , (CH 2 ) 3 NHC( ⁇ O)OCH 2 C 6 H 5 , or (CH 2 ) 4 NHC( ⁇ O)OCH 2 C 6 H 5 ;
- R c is hydrogen, methyl, fluoro, or bromo; and n is 0 or 1.
- the PI3K inhibitor is a PI3K- ⁇ inhibitor of Formula (XVI):
- the PI3K inhibitor or PI3K- ⁇ inhibitor is (S)-2-(1-((9H-purin-6-yl)amino)propyl)-5-fluoro-3-phenylquinazolin-4(3H)-one or a pharmaceutically-acceptable salt thereof.
- the PI3K inhibitor or PI3K- ⁇ inhibitor is 4(3H)-quinazolinone, 5-fluoro-3-phenyl-2-[(1S)-1-(9H-purin-6-ylamino)propyl]-5-fluoro-3-phenyl-2- ⁇ (1S)-1-[(7H-purin-6-yl)amino]propyl ⁇ quinazolin-4(3H)-one or or a pharmaceutically-acceptable salt thereof
- PI3K inhibitors suitable for use in the described combination with a BTK inhibitor also include, but are not limited to, those described in, for example, U.S. Pat. No. 8,193,182 and U.S. Published Application Nos. 2013/0267521; 2013/0053362; 2013/0029984; 2013/0029982; 2012/0184568; and 2012/0059000.
- the BTK inhibitor may be any BTK inhibitor known in the art. In particular, it is one of the BTK inhibitors described in more detail in the following paragraphs. Preferably, it is a compound of Formula XVII or a pharmaceutically acceptable salt thereof. In one specific embodiment, it is a compound of Formula XVIII or a pharmaceutically acceptable salt thereof.
- the BTK inhibitor is a compound of Formula (XVII):
- B 1 is C(R 7 ); B 2 is C(R 8 ); B 3 is C(R 9 ); B 4 is C(R 10 ); R 7 , R 9 , and R 10 are each H; and R 8 is hydrogen or methyl.
- the ring containing X, Y and Z is selected from the group consisting of pyridyl, pyrimidyl, pyridazyl, triazinyl, thiazolyl, oxazolyl and isoxazolyl.
- the ring containing X, Y and Z is selected from the group consisting of pyridyl, pyrimidyl and pyridazyl.
- the ring containing X, Y and Z is selected from the group consisting of pyridyl and pyrimidyl.
- the ring containing X, Y and Z is pyridyl.
- R 5 is selected from the group consisting of hydrogen, fluorine, methyl, methoxy and trifluoromethyl.
- R 5 is hydrogen
- R 2 and R 3 together form a heterocycloalkyl ring selected from the group consisting of azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl and morpholinyl, optionally substituted with one or more of fluoro, hydroxyl, (C 1-3 )alkyl and (C 1-3 )alkoxy.
- R 2 and R 3 together form a heterocycloalkyl ring selected from the group consisting of azetidinyl, pyrrolidinyl and piperidinyl.
- R 2 and R 3 together form a pyrrolidinyl ring.
- R 1 is independently selected from the group consisting of (C 1-6 )alkyl, (C 2-6 )alkenyl or (C 2-6 )alkynyl, each optionally substituted with one or more substituents selected from the group consisting of hydroxyl, (C 1-4 )alkyl, (C 3-7 )cycloalkyl, [(C 1-4 )alkyl]amino, di[(C 1-4 )alkyl]amino, (C 1-3 )alkoxy, (C 3-7 )cycloalkoxy, (C 6-10 )aryl and (C 3-7 )heterocycloalkyl.
- B 1 , B 2 , B 3 and B 4 are CH; X is N; Y and Z are CH; R 5 is CH 3 ; A is N; R 2 , R 3 and R 4 are H; and R 1 is CO—CH 3 .
- B 1 , B 2 , B 3 and B 4 are CH; X and Y are N; Z is CH; R 5 is CH 3 ; A is N; R 2 , R 3 and R 4 are H; and R 1 is CO—CH 3 .
- B 1 , B 2 , B 3 and B 4 are CH; X and Y are N; Z is CH; R 5 is CH 3 ; A is CH; R 2 and R 3 together form a piperidinyl ring; R 4 is H; and R 1 is CO-ethenyl.
- B 1 , B 2 , B 3 and B 4 are CH; X, Y and Z are CH; R 5 is H; A is CH; R 2 and R 3 together form a pyrrolidinyl ring; R 4 is H; and R 1 is CO-propynyl.
- B 1 , B 2 , B 3 and B 4 are CH; X, Y and Z are CH; R 5 is CH 3 ; A is CH; R 2 and R 3 together form a piperidinyl ring; R 4 is H; and R 1 is CO-propynyl.
- B 1 , B 2 , B 3 and B 4 are CH; X and Y are N; Z is CH; R 5 is H; A is CH; R 2 and R 3 together form a morpholinyl ring; R 4 is H; and R 1 is CO-ethenyl.
- B 1 , B 2 , B 3 and B 4 are CH; X and Y are N; Z is CH; R 5 is CH 3 ; A is CH; R 2 and R 3 together form a morpholinyl ring; R 4 is H; and R 1 is CO-propynyl.
- the BTK inhibitor is a compound of Formula (XVIII):
- the BTK inhibitor is (S)-4-(8-amino-3-(1-(but-2-ynoyl)pyrrolidin-2-yl)imidazo[1,5-a]pyrazin-1-yl)-N-(pyridin-2-yl)benzamide or pharmaceutically-acceptable salt thereof.
- the BTK inhibitor is a compound of Formula (XIX) or a pharmaceutically-acceptable salt of a compound of Formula (XIX):
- the invention provides a compound according to Formula XIX, wherein B 1 is C(R 7 ); B 2 is C(R 8 ); B 3 is C(R 9 ) and B 4 is C(R 10 ).
- the BTK inhibitor is a compound of Formula (XX):
- the BTK inhibitor is ibrutinib or a pharmaceutically-acceptable salt thereof.
- the BTK inhibitor is (R)-1-(3-(4-amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one.
- the BTK inhibitor is 1-[(3R)-3-[4-amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl]piperidin-1-yl]prop-2-en-1-one.
- the BTK inhibitor is (S)-1-(3-(4-amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one.
- the BTK inhibitor has the structure of Formula (XX-A), or an enantiomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, cocrystal, or prodrug thereof.
- the BTK inhibitor is a compound of Formula (XXI):
- the BTK inhibitor is a compound of Formula (XXII):
- the BTK inhibitor is a compound of Formula (XXIII):
- the BTK inhibitor is a compound of Formula (XXIV):
- the BTK inhibitor is a compound selected from the structures disclosed in U.S. Pat. Nos. 8,450,335 and 8,609,679, and U.S. Patent Application Publication Nos. 2010/0029610 A1, 2012/0077832 A1, 2013/0065879 A1, 2013/0072469 A1, and 2013/0165462 A1.
- the BTK inhibitor is a compound of Formula (XXV) or Formula (XXVI):
- the BTK inhibitor is a compound of Formula (XXV) or Formula (XXVI), wherein:
- Ring A is an optionally substituted group selected from phenyl, a 3-7 membered saturated or partially unsaturated carbocyclic ring, an 8-10 membered bicyclic saturated, partially unsaturated or aryl ring, a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10 membered bicyclic heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
- Ring B is an optionally substituted group selected from phenyl, a 3-7 membered saturated or partially unsaturated carbocyclic ring, an 8-10 membered bicyclic saturated, partially unsaturated or aryl ring, a 5
- Ring A is an optionally substituted group selected from phenyl, a 3-7 membered saturated or partially unsaturated carbocyclic ring, an 8-10 membered bicyclic saturated, partially unsaturated or aryl ring, a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10 membered bicyclic heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Ring A is an optionally substituted phenyl group. In some embodiments, Ring A is an optionally substituted naphthyl ring or an optionally substituted bicyclic 8-10 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain other embodiments, Ring A is an optionally substituted 3-7 membered carbocyclic ring. In yet other embodiments, Ring A is an optionally substituted 4-7 membered heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, Ring A is substituted as defined herein.
- Ring A is substituted with one, two, or three groups independently selected from halogen, R o , or —(CH 2 ) 0-4 OR o , or —O(CH 2 ) 0-4 R o , wherein each R o is an alkyl or aryl group.
- substituents on Ring A include Br, I, Cl, methyl, —CF 3 , —C ⁇ CH, —OCH 2 phenyl, —OCH 2 (fluorophenyl), or —OCH 2 pyridyl.
- the BTK inhibitor is CC-292. In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XXVII):
- the BTK inhibitor is N-(3-((5-fluoro-2-((4-(2-methoxyethoxy)phenyl)amino)pyrimidin-4-yl)amino)phenyl)acrylamide or a pharmaceutically acceptable salt thereof, or a hydrochloride salt thereof.
- the preparation of this compound is described in U.S. Patent Application Publication No. 2012/0077832 A1.
- the BTK inhibitor is (N-(3-(5-fluoro-2-(4-(2-methoxyethoxy)phenylamino)pyrimidin-4-ylamino)phenyl)acrylamide), or a pharmaceutically acceptable salt thereof, or a besylate salt thereof.
- the preparation of this compound is described in U.S. Patent Application Publication No. 2010/0029610 A1 at Example 20.
- the preparation of its besylate salt is described in U.S. Patent Application Publication No. 2012/0077832 A1.
- the BTK inhibitor is a compound of Formula (XXVIII):
- the BTK inhibitor is the hydrochloride salt of a compound of Formula (XXVIII). The preparation of this compound is described in International Patent Application Publication No. WO 2013/081016 A1.
- the BTK inhibitor is 6-amino-9-(1-(but-2-ynoyl)pyrrolidin-3-yl)-7-(4-phenoxyphenyl)-7,9-dihydro-8H-purin-8-one or a pharmaceutically acceptable salt thereof, or a hydrochloride salt thereof.
- the BTK inhibitor is 6-amino-9-[(3R)-1-(2-butynoyl)-3-pyrrolidinyl]-7-(4-phenoxyphenyl)-7,9-dihydro-8H-purin-8-one or a pharmaceutically acceptable salt thereof, or a hydrochloride salt thereof.
- the preparation of this compound is described in International Patent Application Publication No. WO 2013/081016 A1.
- the BTK inhibitor is 6-amino-9-[(3S)-1-(2-butynoyl)-3-pyrrolidinyl]-7-(4-phenoxyphenyl)-7,9-dihydro-8H-purin-8-one or a pharmaceutically acceptable salt thereof, or a hydrochloride salt thereof.
- the preparation of this compound is described in International Patent Application Publication No. WO 2013/081016 A1.
- BTK inhibitors suitable for use in the described combination with a PI3K inhibitor the PI3K inhibitor in selected embodiments being selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ ,8 inhibitor also include, but are not limited to, those described in, for example, International Patent Application Publication Nos. WO 2013/010868; WO 2012/158843; WO 2012/135944; WO 2012/135937; U.S. Patent Application Publication No. 2011/0177011; and U.S. Pat. Nos. 8,501,751; 8,476,284; 8,008,309; 7,960,396; 7,825,118; 7,732,454; 7,514,444; 7,459,554; 7,405,295; and 7,393,848.
- the invention provides a pharmaceutical composition comprising a combination of a PI3K inhibitor and a BTK inhibitor.
- the PI3K inhibitor is selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor.
- Said pharmaceutical composition typically also comprises at least one pharmaceutically acceptable excipient.
- Said pharmaceutical composition is in one embodiment for use in the treatment of the diseases and conditions described below. In particular, it is for use in the treatment of hyperproliferative disorders.
- the invention provides a pharmaceutical composition comprising a combination of a PI3K inhibitor and a BTK inhibitor for treating solid tumor cancers, lymphomas and leukemia.
- the PI3K inhibitor is selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor.
- the invention provides a pharmaceutical composition comprising a combination of a PI3K inhibitor, including a PI3K inhibitor selected from the group consisting of a PI3K- ⁇ , a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor, and a BTK inhibitor for the treatment of disorders such as hyperproliferative disorder including but not limited to cancer such as acute myeloid leukemia, thymus, brain, lung, squamous cell, skin, eye, retinoblastoma, intraocular melanoma, oral cavity and oropharyngeal, bladder, gastric, stomach, pancreatic, bladder, breast, cervical, head, neck, renal, kidney, liver, ovarian, prostate, colorectal, esophageal, testicular, gynecological, thyroid, CNS, PNS, AIDS-related (e.g., lymphoma and Kaposi's sarcoma) or viral-induced cancer.
- said pharmaceutical composition is for the treatment of a non-cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e.g., psoriasis), restenosis, or prostate (e.g., benign prostatic hypertrophy (BPH)).
- a non-cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e.g., psoriasis), restenosis, or prostate (e.g., benign prostatic hypertrophy (BPH)).
- the invention further provides a pharmaceutical composition comprising a combination of a PI3K inhibitor and a BTK inhibitor for the prevention of blastocyte implantation in a mammal.
- the invention also provides a pharmaceutical composition comprising a combination of a PI3K inhibitor and a BTK inhibitor for treating a disease related to vasculogenesis or angiogenesis in a mammal which can manifest as tumor angiogenesis, chronic inflammatory disease such as rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, skin diseases such as psoriasis, eczema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi's sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer.
- chronic inflammatory disease such as rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, skin diseases such as psoriasis, eczema, and scleroderma
- diabetes diabetic retinopathy
- compositions are typically formulated to provide a therapeutically effective amount of a combination of a PI3K inhibitor, including a PI3K inhibitor selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor, and BTK inhibitor as the active ingredients, or a pharmaceutically acceptable salt, ester, prodrug, solvate, or hydrate thereof.
- a PI3K inhibitor including a PI3K inhibitor selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor, and BTK inhibitor as the active ingredients, or a pharmaceutically acceptable salt, ester, prodrug, solvate, or hydrate thereof.
- the pharmaceutical compositions contain a pharmaceutically acceptable salt and/or coordination complex thereof, and one or more pharmaceutically acceptable excipients, carriers, including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants.
- pharmaceutically acceptable excipients including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants.
- compositions are administered as a combination of a PI3K inhibitor, including a PI3K inhibitor selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor, and a BTK inhibitor.
- a PI3K inhibitor selected from the group consisting of a PI3K- ⁇ inhibitor, a PI3K- ⁇ inhibitor, and a PI3K- ⁇ , ⁇ inhibitor, and a BTK inhibitor.
- other agent(s) may be mixed into a preparation or both components may be formulated into separate preparations for use in combination separately or at the same time.
- a kit containing both components formulated into separate preparations for said use in also provided by the invention.
- the weight ratio of the PI3K inhibitor to the BTK inhibitor in the combination is typically with the range from 0.01 to 100, preferably from 2.5:1 to 1:2.5, and more preferably about 1:1.
- the concentration of each of the PI3K and BTK inhibitors provided in the pharmaceutical compositions of the invention is independently less than, for example, 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.09%, 0.08%, 0.07%, 0.06%, 0.05%, 0.04%, 0.03%, 0.02%, 0.01%, 0.009%, 0.008%, 0.007%, 0.006%, 0.005%, 0.004%, 0.003%, 0.002%, 0.001%, 0.0009%, 0.0008%, 0.0007%, 0.0006%, 0.0005%, 0.0004%, 0.0003%, 0.0002% or 0.0001% w/w, w/v or v/v of each of the BTK or 0.0001% w
- the concentration of each of the PI3K and BTK inhibitors provided in the pharmaceutical compositions of the invention is independently greater than 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 19.75%, 19.50%, 19.25% 19%, 18.75%, 18.50%, 18.25% 18%, 17.75%, 17.50%, 17.25% 17%, 16.75%, 16.50%, 16.25% 16%, 15.75%, 15.50%, 15.25% 15%, 14.75%, 14.50%, 14.25% 14%, 13.75%, 13.50%, 13.25% 13%, 12.75%, 12.50%, 12.25% 12%, 11.75%, 11.50%, 11.25% 11%, 10.75%, 10.50%, 10.25% 10%, 9.75%, 9.50%, 9.25% 9%, 8.75%, 8.50%, 8.25% 8%, 7.75%, 7.50%, 7.25% 7%, 6.75%, 6.50%, 6.25% 6%, 5.75%, 5.50%, 5.25%
- the concentration of each of the PI3K and BTK inhibitors of the invention is independently in the range from about 0.0001% to about 50%, about 0.001% to about 40%, about 0.01% to about 30%, about 0.02% to about 29%, about 0.03% to about 28%, about 0.04% to about 27%, about 0.05% to about 26%, about 0.06% to about 25%, about 0.07% to about 24%, about 0.08% to about 23%, about 0.09% to about 22%, about 0.1% to about 21%, about 0.2% to about 20%, about 0.3% to about 19%, about 0.4% to about 18%, about 0.5% to about 17%, about 0.6% to about 16%, about 0.7% to about 15%, about 0.8% to about 14%, about 0.9% to about 12% or about 1% to about 10% w/w, w/v or v/v. v/v of each of the BTK or PI3K inhibitors.
- the concentration of each of the PI3K and BTK inhibitors of the invention is independently in the range from about 0.001% to about 10%, about 0.01% to about 5%, about 0.02% to about 4.5%, about 0.03% to about 4%, about 0.04% to about 3.5%, about 0.05% to about 3%, about 0.06% to about 2.5%, about 0.07% to about 2%, about 0.08% to about 1.5%, about 0.09% to about 1%, about 0.1% to about 0.9% w/w, w/v or v/v of each of the BTK or PI3K inhibitors.
- the amount of each of the PI3K and BTK inhibitors of the invention is independently equal to or less than 10 g, 9.5 g, 9.0 g, 8.5 g, 8.0 g, 7.5 g, 7.0 g, 6.5 g, 6.0 g, 5.5 g, 5.0 g, 4.5 g, 4.0 g, 3.5 g, 3.0 g, 2.5 g, 2.0 g, 1.5 g, 1.0 g, 0.95 g, 0.9 g, 0.85 g, 0.8 g, 0.75 g, 0.7 g, 0.65 g, 0.6 g, 0.55 g, 0.5 g, 0.45 g, 0.4 g, 0.35 g, 0.3 g, 0.25 g, 0.2 g, 0.15 g, 0.1 g, 0.09 g, 0.08 g, 0.07 g, 0.06 g, 0.05 g, 0.04 g, 0.03 g, 0.02 g, 0.01 g
- the amount of each of the PI3K and BTK inhibitors of the invention is independently more than 0.0001 g, 0.0002 g, 0.0003 g, 0.0004 g, 0.0005 g, 0.0006 g, 0.0007 g, 0.0008 g, 0.0009 g, 0.001 g, 0.0015 g, 0.002 g, 0.0025 g, 0.003 g, 0.0035 g, 0.004 g, 0.0045 g, 0.005 g, 0.0055 g, 0.006 g, 0.0065 g, 0.007 g, 0.0075 g, 0.008 g, 0.0085 g, 0.009 g, 0.0095 g, 0.01 g, 0.015 g, 0.02 g, 0.025 g, 0.03 g, 0.035 g, 0.04 g, 0.045 g, 0.05 g, 0.055 g, 0.06 g, 0.065 g,
- Each of the PI3K and BTK inhibitors according to the invention is effective over a wide dosage range.
- dosages independently range from 0.01 to 1000 mg, from 0.5 to 100 mg, from 1 to 50 mg per day, and from 5 to 40 mg per day are examples of dosages that may be used.
- the exact dosage will depend upon the route of administration, the form in which the compound is administered, the gender and age of the subject to be treated, the body weight of the subject to be treated, and the preference and experience of the attending physician.
- Efficacy of the compounds and combinations of compounds described herein in treating, preventing and/or managing the indicated diseases or disorders can be tested using various animal models known in the art. Efficacy in treating, preventing and/or managing asthma can be assessed using the ova induced asthma model described, for example, in Lee et al., J. Allergy Clin. Immunol. 118(2):403-9 (2006).
- Efficacy in treating, preventing and/or managing arthritis can be assessed using the autoimmune animal models described in, for example, Williams et al., Chem Biol, 17(2):123-34 (2010), WO 2009/088986, WO 2009/088880, and WO 2011/008302.
- Efficacy in treating, preventing and/or managing psoriasis can be assessed using transgenic or knockout mouse model with targeted mutations in epidermis, vasculature or immune cells, mouse model resulting from spontaneous mutations, and immuno-deficient mouse model with xenotransplantation of human skin or immune cells, all of which are described, for example, in Boehncke et al., Clinics in Dermatology, 25: 596-605 (2007).
- Efficacy in treating, preventing and/or managing fibrosis or fibrotic conditions can be assessed using the unilateral ureteral obstruction model of renal fibrosis, which is described, for example, in Chevalier et al., Kidney International 75:1145-1152 (2009); the bleomycin induced model of pulmonary fibrosis described in, for example, Moore et al., Am. J. Physiol. Lung. Cell. Mol. Physiol. 294:L152-L160 (2008); a variety of liver/biliary fibrosis models described in, for example, Chuang et al., Clin.
- Efficacy in treating, preventing and/or managing dermatomyositis can be assessed using a myositis mouse model induced by immunization with rabbit myosin as described, for example, in Phyanagi et al., Arthritis & Rheumatism, 60(10): 3118-3127 (2009).
- Efficacy in treating, preventing and/or managing lupus can be assessed using various animal models described, for example, in Ghoreishi et al., Lupus, 19: 1029-1035 (2009); Ohl et al., Journal of Biomedicine and Biotechnology, Article ID 432595 (2011); Xia et al., Rheumatology, 50:2187-2196 (2011); Pau et al., PLoS ONE, 7(5):e36761 (2012); Mustafa et al., Toxicology, 290:156-168 (2011); Ichikawa et al., Arthritis and Rheumatism, 62(2): 493-503 (2012); Ouyang et al., J. Mol. Med.
- DLBCL diffuse large B-cell lymphoma
- a cellular growth inhibition assay used five cell lines, including four GCB (SU-DHL-4, SU-DHL-6, OCI-LY-8 and WSU-DLCL-2) and one ABC (Ri-1) subtype.
- a cellular growth inhibition assay used five cell lines that were OCI-LY-3, OCI-LY-7, Pfeiffer, Toledo and U2932.
- evidence of PI3K pathway inhibition is measured by reduction in phospho (p)-AKT.
- the kinetics of pathway modulation was characterized by examination of phosphorylation of AKT, PRAS40 and S6 following a time-course of treatment by a PI3K-inhibitor in selected cell lines.
- a PI3K-inhibitor in selected cell lines.
- some cell lines exhibited enhanced AKT phosphorylation.
- the combination effect of a PI3K inhibitor with a BTK inhibitor was observed in a cellular growth inhibition assay in the SU-DHL-4 cell line and in the OCI-LY-8 cell line with BCR crosslinking.
- a method of treating, preventing and/or managing asthma encompasses airway constriction regardless of the cause.
- Common triggers of asthma include, but are not limited to, exposure to an environmental stimulants (e.g., allergens), cold air, warm air, perfume, moist air, exercise or exertion, and emotional stress.
- an environmental stimulants e.g., allergens
- cold air warm air
- perfume moist air
- exercise or exertion e.g., exercise or exertion
- emotional stress e.g., emotional stress.
- a method of treating, preventing and/or managing one or more symptoms associated with asthma include, but are not limited to, severe coughing, airway constriction and mucus production.
- compositions and methods for preparing the same are non-limiting exemplary pharmaceutical compositions and methods for preparing the same.
- compositions for Oral Administration are provided.
- the invention provides a pharmaceutical composition for oral administration containing the combination of a PI3K and BTK inhibitor, and a pharmaceutical excipient suitable for oral administration.
- the invention provides a solid pharmaceutical composition for oral administration containing: (i) an effective amount of each of a PI3K and BTK inhibitor in combination and (ii) a pharmaceutical excipient suitable for oral administration.
- the composition further contains (iii) an effective amount of a fourth compound.
- the pharmaceutical composition may be a liquid pharmaceutical composition suitable for oral consumption.
- Pharmaceutical compositions of the invention suitable for oral administration can be presented as discrete dosage forms, such as capsules, cachets, or tablets, or liquids or aerosol sprays each containing a predetermined amount of an active ingredient as a powder or in granules, a solution, or a suspension in an aqueous or non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil liquid emulsion.
- Such dosage forms can be prepared by any of the methods of pharmacy, but all methods include the step of bringing the active ingredient(s) into association with the carrier, which constitutes one or more necessary ingredients.
- compositions are prepared by uniformly and intimately admixing the active ingredient(s) with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation.
- a tablet can be prepared by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets can be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as powder or granules, optionally mixed with an excipient such as, but not limited to, a binder, a lubricant, an inert diluent, and/or a surface active or dispersing agent.
- Molded tablets can be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the invention further encompasses anhydrous pharmaceutical compositions and dosage forms since water can facilitate the degradation of some compounds.
- water may be added (e.g., 5%) in the pharmaceutical arts as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time.
- Anhydrous pharmaceutical compositions and dosage forms of the invention can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions.
- Pharmaceutical compositions and dosage forms of the invention which contain lactose can be made anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected.
- An anhydrous pharmaceutical composition may be prepared and stored such that its anhydrous nature is maintained.
- anhydrous compositions may be packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits.
- suitable packaging include, but are not limited to, hermetically sealed foils, plastic or the like, unit dose containers, blister packs, and strip packs.
- PI3K and BTK inhibitors active ingredients can be combined in an intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques.
- the carrier can take a wide variety of forms depending on the form of preparation desired for administration.
- any of the usual pharmaceutical media can be employed as carriers, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, and the like in the case of oral liquid preparations (such as suspensions, solutions, and elixirs) or aerosols; or carriers such as starches, sugars, micro-crystalline cellulose, diluents, granulating agents, lubricants, binders, and disintegrating agents can be used in the case of oral solid preparations, in some embodiments without employing the use of lactose.
- suitable carriers include powders, capsules, and tablets, with the solid oral preparations. If desired, tablets can be coated by standard aqueous or nonaqueous techniques.
- Binders suitable for use in pharmaceutical compositions and dosage forms include, but are not limited to, corn starch, potato starch, or other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone, methyl cellulose, pre-gelatinized starch, hydroxypropyl methyl cellulose, microcrystalline cellulose, and mixtures thereof.
- natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrol
- suitable fillers for use in the pharmaceutical compositions and dosage forms disclosed herein include, but are not limited to, talc, calcium carbonate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof.
- talc calcium carbonate
- microcrystalline cellulose e.g., powdere., powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof.
- Disintegrants may be used in the compositions of the invention to provide tablets that disintegrate when exposed to an aqueous environment. Too much of a disintegrant may produce tablets which disintegrate in the bottle. Too little may be insufficient for disintegration to occur, thus altering the rate and extent of release of the active ingredients from the dosage form. Thus, a sufficient amount of disintegrant that is neither too little nor too much to detrimentally alter the release of the active ingredient(s) may be used to form the dosage forms of the compounds disclosed herein. The amount of disintegrant used may vary based upon the type of formulation and mode of administration, and may be readily discernible to those of ordinary skill in the art.
- Disintegrants that can be used to form pharmaceutical compositions and dosage forms of the invention include, but are not limited to, agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, other starches, clays, other algins, other celluloses, gums or mixtures thereof.
- Lubricants which can be used to form pharmaceutical compositions and dosage forms of the invention include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate, ethyl laureate, agar, or mixtures thereof.
- Additional lubricants include, for example, a silica gel, a coagulated aerosol of synthetic silica, or mixtures thereof.
- a lubricant can optionally be added, in an amount of less than about 1 weight percent of the pharmaceutical composition.
- the essential active ingredient therein may be combined with various sweetening or flavoring agents, coloring matter or dyes and, if so desired, emulsifying and/or suspending agents, together with such diluents as water, ethanol, propylene glycol, glycerin and various combinations thereof.
- the tablets can be uncoated or coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.
- a time delay material such as glyceryl monostearate or glyceryl distearate can be employed.
- Formulations for oral use can also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example, peanut oil, liquid paraffin or olive oil.
- Surfactants which can be used to form pharmaceutical compositions and dosage forms of the invention include, but are not limited to, hydrophilic surfactants, lipophilic surfactants, and mixtures thereof. That is, a mixture of hydrophilic surfactants may be employed, a mixture of lipophilic surfactants may be employed, or a mixture of at least one hydrophilic surfactant and at least one lipophilic surfactant may be employed.
- a suitable hydrophilic surfactant may generally have an HLB value of at least 10, while suitable lipophilic surfactants may generally have an HLB value of or less than about 10.
- An empirical parameter used to characterize the relative hydrophilicity and hydrophobicity of non-ionic amphiphilic compounds is the hydrophilic-lipophilic balance (“HLB” value).
- HLB hydrophilic-lipophilic balance
- Surfactants with lower HLB values are more lipophilic or hydrophobic, and have greater solubility in oils, while surfactants with higher HLB values are more hydrophilic, and have greater solubility in aqueous solutions.
- Hydrophilic surfactants are generally considered to be those compounds having an HLB value greater than about 10, as well as anionic, cationic, or zwitterionic compounds for which the HLB scale is not generally applicable.
- lipophilic (i.e., hydrophobic) surfactants are compounds having an HLB value equal to or less than about 10.
- HLB value of a surfactant is merely a rough guide generally used to enable formulation of industrial, pharmaceutical and cosmetic emulsions.
- Hydrophilic surfactants may be either ionic or non-ionic. Suitable ionic surfactants include, but are not limited to, alkylammonium salts; fusidic acid salts; fatty acid derivatives of amino acids, oligopeptides, and polypeptides; glyceride derivatives of amino acids, oligopeptides, and polypeptides; lecithins and hydrogenated lecithins; lysolecithins and hydrogenated lysolecithins; phospholipids and derivatives thereof; lysophospholipids and derivatives thereof; carnitine fatty acid ester salts; salts of alkylsulfates; fatty acid salts; sodium docusate; acylactylates; mono- and di-acetylated tartaric acid esters of mono- and di-glycerides; succinylated mono- and di-glycerides; citric acid esters of mono- and di-glycerides; and mixtures
- ionic surfactants include, by way of example: lecithins, lysolecithin, phospholipids, lysophospholipids and derivatives thereof; carnitine fatty acid ester salts; salts of alkylsulfates; fatty acid salts; sodium docusate; acylactylates; mono- and di-acetylated tartaric acid esters of mono- and di-glycerides; succinylated mono- and di-glycerides; citric acid esters of mono- and di-glycerides; and mixtures thereof.
- Ionic surfactants may be the ionized forms of lecithin, lysolecithin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidic acid, lysophosphatidylserine, PEG-phosphatidylethanolamine, PVP-phosphatidylethanolamine, lactylic esters of fatty acids, stearoyl-2-lactylate, stearoyl lactylate, succinylated monoglycerides, mono/diacetylated tartaric acid esters of mono/diglycerides, citric acid esters of mono/diglycerides, cholylsarcosine, caproate, caprylate, caprate,
- Hydrophilic non-ionic surfactants may include, but not limited to, alkylglucosides; alkylmaltosides; alkylthioglucosides; lauryl macrogolglycerides; polyoxyalkylene alkyl ethers such as polyethylene glycol alkyl ethers; polyoxyalkylene alkylphenols such as polyethylene glycol alkyl phenols; polyoxyalkylene alkyl phenol fatty acid esters such as polyethylene glycol fatty acids monoesters and polyethylene glycol fatty acids diesters; polyethylene glycol glycerol fatty acid esters; polyglycerol fatty acid esters; polyoxyalkylene sorbitan fatty acid esters such as polyethylene glycol sorbitan fatty acid esters; hydrophilic transesterification products of a polyol with at least one member of the group consisting of glycerides, vegetable oils, hydrogenated vegetable oils, fatty acids, and sterols; polyoxyethylene sterols, derivative
- hydrophilic-non-ionic surfactants include, without limitation, PEG-10 laurate, PEG-12 laurate, PEG-20 laurate, PEG-32 laurate, PEG-32 dilaurate, PEG-12 oleate, PEG-15 oleate, PEG-20 oleate, PEG-20 dioleate, PEG-32 oleate, PEG-200 oleate, PEG-400 oleate, PEG-15 stearate, PEG-32 distearate, PEG-40 stearate, PEG-100 stearate, PEG-20 dilaurate, PEG-25 glyceryl trioleate, PEG-32 dioleate, PEG-20 glyceryl laurate, PEG-30 glyceryl laurate, PEG-20 glyceryl stearate, PEG-20 glyceryl oleate, PEG-30 glyceryl oleate, PEG-30 glyceryl oleate
- Suitable lipophilic surfactants include, by way of example only: fatty alcohols; glycerol fatty acid esters; acetylated glycerol fatty acid esters; lower alcohol fatty acids esters; propylene glycol fatty acid esters; sorbitan fatty acid esters; polyethylene glycol sorbitan fatty acid esters; sterols and sterol derivatives; polyoxyethylated sterols and sterol derivatives; polyethylene glycol alkyl ethers; sugar esters; sugar ethers; lactic acid derivatives of mono- and di-glycerides; hydrophobic transesterification products of a polyol with at least one member of the group consisting of glycerides, vegetable oils, hydrogenated vegetable oils, fatty acids and sterols; oil-soluble vitamins/vitamin derivatives; and mixtures thereof.
- preferred lipophilic surfactants include glycerol fatty acid esters, propylene glycol fatty acid esters, and mixtures thereof, or are hydrophobic transesterification products of a polyol with at least one member of the group consisting of vegetable oils, hydrogenated vegetable oils, and triglycerides.
- the composition may include a solubilizer to ensure good solubilization and/or dissolution of the compound of the present invention and to minimize precipitation of the compound of the present invention. This can be especially important for compositions for non-oral use—e.g., compositions for injection.
- a solubilizer may also be added to increase the solubility of the hydrophilic drug and/or other components, such as surfactants, or to maintain the composition as a stable or homogeneous solution or dispersion.
- solubilizers include, but are not limited to, the following: alcohols and polyols, such as ethanol, isopropanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, butanediols and isomers thereof, glycerol, pentaerythritol, sorbitol, mannitol, transcutol, dimethyl isosorbide, polyethylene glycol, polypropylene glycol, polyvinylalcohol, hydroxypropyl methylcellulose and other cellulose derivatives, cyclodextrins and cyclodextrin derivatives; ethers of polyethylene glycols having an average molecular weight of about 200 to about 6000, such as tetrahydrofurfuryl alcohol PEG ether (glycofurol) or methoxy PEG; amides and other nitrogen-containing compounds such as 2-pyrrolidone, 2-piperidone, ⁇ -caprolactam
- solubilizers may also be used. Examples include, but not limited to, triacetin, triethylcitrate, ethyl oleate, ethyl caprylate, dimethylacetamide, N-methylpyrrolidone, N-hydroxyethylpyrrolidone, polyvinylpyrrolidone, hydroxypropyl methylcellulose, hydroxypropyl cyclodextrins, ethanol, polyethylene glycol 200-100, glycofurol, transcutol, propylene glycol, and dimethyl isosorbide.
- Particularly preferred solubilizers include sorbitol, glycerol, triacetin, ethyl alcohol, PEG-400, glycofurol and propylene glycol.
- the amount of solubilizer that can be included is not particularly limited.
- the amount of a given solubilizer may be limited to a bioacceptable amount, which may be readily determined by one of skill in the art.
- the solubilizer can be in a weight ratio of 10%, 25%, 50%, 100%, or up to about 200% by weight, based on the combined weight of the drug, and other excipients.
- very small amounts of solubilizer may also be used, such as 5%, 2%, 1% or even less.
- the solubilizer may be present in an amount of about 1% to about 100%, more typically about 5% to about 25% by weight.
- the composition can further include one or more pharmaceutically acceptable additives and excipients.
- additives and excipients include, without limitation, detackifiers, anti-foaming agents, buffering agents, polymers, antioxidants, preservatives, chelating agents, viscomodulators, tonicifiers, flavorants, colorants, odorants, opacifiers, suspending agents, binders, fillers, plasticizers, lubricants, and mixtures thereof.
- an acid or a base may be incorporated into the composition to facilitate processing, to enhance stability, or for other reasons.
- pharmaceutically acceptable bases include amino acids, amino acid esters, ammonium hydroxide, potassium hydroxide, sodium hydroxide, sodium hydrogen carbonate, aluminum hydroxide, calcium carbonate, magnesium hydroxide, magnesium aluminum silicate, synthetic aluminum silicate, synthetic hydrocalcite, magnesium aluminum hydroxide, diisopropylethylamine, ethanolamine, ethylenediamine, triethanolamine, triethylamine, triisopropanolamine, trimethylamine, tris(hydroxymethyl)aminomethane (TRIS) and the like.
- bases that are salts of a pharmaceutically acceptable acid, such as acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acid, amino acids, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, fatty acids, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluenesulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic acid, toluenesulfonic acid, uric acid, and the like.
- a pharmaceutically acceptable acid such as acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acid, amino acids
- Salts of polyprotic acids such as sodium phosphate, disodium hydrogen phosphate, and sodium dihydrogen phosphate can also be used.
- the cation can be any convenient and pharmaceutically acceptable cation, such as ammonium, alkali metals and alkaline earth metals.
- Example may include, but not limited to, sodium, potassium, lithium, magnesium, calcium and ammonium.
- Suitable acids are pharmaceutically acceptable organic or inorganic acids.
- suitable inorganic acids include hydrochloric acid, hydrobromic acid, hydriodic acid, sulfuric acid, nitric acid, boric acid, phosphoric acid, and the like.
- suitable organic acids include acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acids, amino acids, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, fatty acids, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, methanesulfonic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluenesulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic
- the invention provides a pharmaceutical composition for injection containing the combination of the PI3K and BTK inhibitors and a pharmaceutical excipient suitable for injection.
- Components and amounts of agents in the compositions are as described herein.
- Aqueous solutions in saline are also conventionally used for injection.
- Ethanol, glycerol, propylene glycol and liquid polyethylene glycol (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils may also be employed.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, for the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid and thimerosal.
- Sterile injectable solutions are prepared by incorporating the combination of the PI3K and BTK inhibitors in the required amounts in the appropriate solvent with various other ingredients as enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- certain desirable methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the invention provides a pharmaceutical composition for transdermal delivery containing the combination of the PI3K and BTK inhibitors and a pharmaceutical excipient suitable for transdermal delivery.
- compositions of the present invention can be formulated into preparations in solid, semi-solid, or liquid forms suitable for local or topical administration, such as gels, water soluble jellies, creams, lotions, suspensions, foams, powders, slurries, ointments, solutions, oils, pastes, suppositories, sprays, emulsions, saline solutions, dimethylsulfoxide (DMSO)-based solutions.
- DMSO dimethylsulfoxide
- carriers with higher densities are capable of providing an area with a prolonged exposure to the active ingredients.
- a solution formulation may provide more immediate exposure of the active ingredient to the chosen area.
- compositions also may comprise suitable solid or gel phase carriers or excipients, which are compounds that allow increased penetration of, or assist in the delivery of, therapeutic molecules across the stratum corneum permeability barrier of the skin.
- suitable solid or gel phase carriers or excipients which are compounds that allow increased penetration of, or assist in the delivery of, therapeutic molecules across the stratum corneum permeability barrier of the skin.
- humectants e.g., urea
- glycols e.g., propylene glycol
- alcohols e.g., ethanol
- fatty acids e.g., oleic acid
- surfactants e.g., isopropyl myristate and sodium lauryl sulfate
- pyrrolidones e.g., isopropyl myristate and sodium lauryl sulfate
- pyrrolidones e.glycerol monolaurate, sulfoxides, terpenes (e.g., menthol)
- amines amides, alkanes, alkanols, water, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
- transdermal delivery devices Such transdermal patches may be used to provide continuous or discontinuous infusion of the combination of the PI3K and BTK inhibitors in controlled amounts, either with or without another agent.
- transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. Nos. 5,023,252; 4,992,445 and 5,001,139. Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
- compositions for Inhalation are provided.
- compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
- the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
- the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
- Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a face mask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices that deliver the formulation in an appropriate manner.
- compositions may also be prepared from compositions described herein and one or more pharmaceutically acceptable excipients suitable for sublingual, buccal, rectal, intraosseous, intraocular, intranasal, epidural, or intraspinal administration.
- Preparations for such pharmaceutical compositions are well-known in the art. See, e.g., Anderson, Philip O.; Knoben, James E.; Troutman, William G, eds., Handbook of Clinical Drug Data, Tenth Edition, McGraw-Hill, 2002; and Pratt and Taylor, eds., Principles of Drug Action, Third Edition, Churchill Livingston, N.Y., 1990.
- Administration of the combination of the PI3K and BTK inhibitors or pharmaceutical composition of these compounds can be effected by any method that enables delivery of the compounds to the site of action. These methods include oral routes, intraduodenal routes, parenteral injection (including intravenous, intraarterial, subcutaneous, intramuscular, intravascular, intraperitoneal or infusion), topical (e.g., transdermal application), rectal administration, via local delivery by catheter or stent or through inhalation.
- the combination of compounds can also be administered intraadiposally or intrathecally.
- compositions of the invention may also be delivered via an impregnated or coated device such as a stent, for example, or an artery-inserted cylindrical polymer.
- a method of administration may, for example, aid in the prevention or amelioration of restenosis following procedures such as balloon angioplasty.
- compounds of the invention may slow or inhibit the migration and proliferation of smooth muscle cells in the arterial wall which contribute to restenosis.
- a compound of the invention may be administered, for example, by local delivery from the struts of a stent, from a stent graft, from grafts, or from the cover or sheath of a stent.
- a compound of the invention is admixed with a matrix.
- Such a matrix may be a polymeric matrix, and may serve to bond the compound to the stent.
- Polymeric matrices suitable for such use include, for example, lactone-based polyesters or copolyesters such as polylactide, polycaprolactonglycolide, polyorthoesters, polyanhydrides, polyaminoacids, polysaccharides, polyphosphazenes, poly(ether-ester) copolymers (e.g.
- PEO-PLLA polydimethylsiloxane, poly(ethylene-vinylacetate), acrylate-based polymers or copolymers (e.g., polyhydroxyethyl methylmethacrylate, polyvinyl pyrrolidinone), fluorinated polymers such as polytetrafluoroethylene and cellulose esters.
- Suitable matrices may be nondegrading or may degrade with time, releasing the compound or compounds.
- the combination of the PI3K and BTK inhibitors may be applied to the surface of the stent by various methods such as dip/spin coating, spray coating, dip-coating, and/or brush-coating.
- the compounds may be applied in a solvent and the solvent may be allowed to evaporate, thus forming a layer of compound onto the stent.
- the compound may be located in the body of the stent or graft, for example in microchannels or micropores. When implanted, the compound diffuses out of the body of the stent to contact the arterial wall.
- Such stents may be prepared by dipping a stent manufactured to contain such micropores or microchannels into a solution of the compound of the invention in a suitable solvent, followed by evaporation of the solvent. Excess drug on the surface of the stent may be removed via an additional brief solvent wash.
- compounds of the invention may be covalently linked to a stent or graft.
- a covalent linker may be used which degrades in vivo, leading to the release of the compound of the invention. Any bio-labile linkage may be used for such a purpose, such as ester, amide or anhydride linkages.
- the combination of the PI3K and BTK inhibitors may additionally be administered intravascularly from a balloon used during angioplasty. Extravascular administration of the combination of the PI3K and BTK inhibitors via the pericard or via advential application of formulations of the invention may also be performed to decrease restenosis.
- Exemplary parenteral administration forms include solutions or suspensions of active compound in sterile aqueous solutions, for example, aqueous propylene glycol or dextrose solutions. Such dosage forms can be suitably buffered, if desired.
- kits include each of the PI3K and BTK inhibitors, either alone or in combination in suitable packaging, and written material that can include instructions for use, discussion of clinical studies and listing of side effects.
- kits may also include information, such as scientific literature references, package insert materials, clinical trial results, and/or summaries of these and the like, which indicate or establish the activities and/or advantages of the composition, and/or which describe dosing, administration, side effects, drug interactions, or other information useful to the health care provider. Such information may be based on the results of various studies, for example, studies using experimental animals involving in vivo models and studies based on human clinical trials.
- the kit may further contain another agent.
- the PI3K and BTK inhibitors and the agent are provided as separate compositions in separate containers within the kit. In selected embodiments, the PI3K and BTK inhibitors and the agent are provided as a single composition within a container in the kit. Suitable packaging and additional articles for use (e.g., measuring cup for liquid preparations, foil wrapping to minimize exposure to air, and the like) are known in the art and may be included in the kit. Kits described herein can be provided, marketed and/or promoted to health providers, including physicians, nurses, pharmacists, formulary officials, and the like. Kits may also, in selected embodiments, be marketed directly to the consumer.
- an effective dosage of a PI3K or a BTK inhibitor is in the range of about 0.001 to about 100 mg per kg body weight per day, such as about 1 to about 35 mg/kg/day, in single or divided doses. For a 70 kg human, this would amount to about 0.05 to 7 g/day, such as about 0.05 to about 2.5 g/day.
- an effective dosage of a BTK inhibitor disclosed herein, either alone or administered in combination with a PI3K inhibitor is in the range of about 1 mg to about 300 mg, about 10 mg to about 250 mg, about 20 mg to about 225 mg, about 25 mg to about 200 mg, about 10 mg to about 200 mg, about 20 mg to about 150 mg, about 30 mg to about 120 mg, about 10 mg to about 90 mg, about 20 mg to about 80 mg, about 30 mg to about 70 mg, about 40 mg to about 60 mg, about 45 mg to about 55 mg, about 48 mg to about 52 mg, about 50 mg to about 150 mg, about 60 mg to about 140 mg, about 70 mg to about 130 mg, about 80 mg to about 120 mg, about 90 mg to about 110 mg, about 95 mg to about 105 mg, about 150 mg to about 250 mg, about 160 mg to about 240 mg, about 170 mg to about 230 mg, about 180 mg to about 220 mg, about 190 mg to about 210 mg, about 195 mg to about 205 mg, or about 198 to about
- an effective dosage of a BTK inhibitor disclosed herein, either alone or in combination with a PI3K inhibitor is about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, or about 250 mg.
- a BTK inhibitor disclosed herein is administered either alone or administered in combination with a PI3K inhibitor, in a single dose, while in other embodiments a BTK inhibitor disclosed herein, is administered either alone or in combination with a PI3K inhibitor, b.i.d. (twice a day).
- an effective dosage of a BTK inhibitor disclosed herein, either alone or administered in combination with a PI3K inhibitor is in the range of about 0.01 mg/kg to about 4.3 mg/kg, about 0.15 mg/kg to about 3.6 mg/kg, about 0.3 mg/kg to about 3.2 mg/kg, about 0.35 mg/kg to about 2.85 mg/kg, about 0.15 mg/kg to about 2.85 mg/kg, about 0.3 mg to about 2.15 mg/kg, about 0.45 mg/kg to about 1.7 mg/kg, about 0.15 mg/kg to about 1.3 mg/kg, about 0.3 mg/kg to about 1.15 mg/kg, about 0.45 mg/kg to about 1 mg/kg, about 0.55 mg/kg to about 0.85 mg/kg, about 0.65 mg/kg to about 0.8 mg/kg, about 0.7 mg/kg to about 0.75 mg/kg, about 0.7 mg/kg to about 2.15 mg/kg, about 0.85 mg/kg to about 2 mg/kg, about 1 mg/kg to about 1.85 mg/
- an effective dosage of a BTK inhibitor disclosed herein, either alone or administered in combination with a PI3K inhibitor is about 0.35 mg/kg, about 0.7 mg/kg, about 1 mg/kg, about 1.4 mg/kg, about 1.8 mg/kg, about 2.1 mg/kg, about 2.5 mg/kg, about 2.85 mg/kg, about 3.2 mg/kg, or about 3.6 mg/kg.
- a BTK inhibitor disclosed herein is administered either alone or in combination with a PI3K inhibitor, in a single dose, while in other embodiments a BTK inhibitor disclosed herein, is administered either alone or in combination with a PI3K inhibitor, b.i.d. (twice a day).
- an effective dosage of a PI3K inhibitor disclosed herein, either alone or administered in combination with a BTK inhibitor is in the range of about 1 mg to about 300 mg, about 10 mg to about 250 mg, about 20 mg to about 225 mg, about 25 mg to about 200 mg, about 1 mg to about 50 mg, about 5 mg to about 45 mg, about 10 mg to about 40 mg, about 15 mg to about 35 mg, about 20 mg to about 30 mg, about 23 mg to about 28 mg, about 50 mg to about 150 mg, about 60 mg to about 140 mg, about 70 mg to about 130 mg, about 80 mg to about 120 mg, about 90 mg to about 110 mg, or about 95 mg to about 105 mg, about 98 mg to about 102 mg, about 150 mg to about 250 mg, about 160 mg to about 240 mg, about 170 mg to about 230 mg, about 180 mg to about 220 mg, about 190 mg to about 210 mg, about 195 mg to about 205 mg, or about 198 to about 207 mg.
- an effective dosage of a PI3K inhibitor disclosed herein, either alone or administered in combination with a BTK inhibitor is about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, or about 250 mg.
- the PI3K inhibitor disclosed herein is administered either alone or in combination with a BTK inhibitor, in a single dose, while in other embodiments a PI3K inhibitor disclosed herein, is administered either alone or in combination with a BTK inhibitor, b.i.d. (twice a day).
- an effective dosage of a PI3K inhibitor disclosed herein, either alone or administered in combination with a BTK inhibitor is in the range of about 0.01 mg/kg to about 4.3 mg/kg, about 0.15 mg/kg to about 3.6 mg/kg, about 0.3 mg/kg to about 3.2 mg/kg, about 0.35 mg/kg to about 2.85 mg/kg, about 0.01 mg/kg to about 0.7 mg/kg, about 0.07 mg/kg to about 0.65 mg/kg, about 0.15 mg/kg to about 0.6 mg/kg, about 0.2 mg/kg to about 0.5 mg/kg, about 0.3 mg/kg to about 0.45 mg/kg, about 0.3 mg/kg to about 0.4 mg/kg, about 0.7 mg/kg to about 2.15 mg/kg, about 0.85 mg/kg to about 2 mg/kg, about 1 mg/kg to about 1.85 mg/kg, about 1.15 mg/kg to about 1.7 mg/kg, about 1.3 mg/kg to about 1.6 mg/kg, about 1.35 mg/kg to about 1.5
- an effective dosage of a PI3K inhibitor disclosed herein, either alone or administered in combination with a BTK inhibitor is about 0.4 mg/kg, about 0.7 mg/kg, about 1 mg/kg, about 1.4 mg/kg, about 1.8 mg/kg, about 2.1 mg/kg, about 2.5 mg/kg, about 2.85 mg/kg, about 3.2 mg/kg, or about 3.6 mg/kg.
- a PI3K inhibitor disclosed herein is administered either alone or in combination with a BTK inhibitor, in a single dose, while in other embodiments a PI3K inhibitor disclosed herein, is administered either alone or in combination with a BTK inhibitor, b.i.d. (twice a day).
- 10 to 200 mg BID including 50, 60, 70, 80, 90, 100 or 150 mg BID, for the BTK inhibitor
- 10 to 300 mg BID including 25, 50, 75, 100, 150 or 200 mg BID for the PI3K inhibitor.
- dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect—e.g., by dividing such larger doses into several small doses for administration throughout the day.
- the combination of the PI3K and BTK inhibitors is administered in a single dose.
- such administration will be by injection—e.g., intravenous injection, in order to introduce the agents quickly.
- other routes may be used as appropriate.
- a single dose of the combination of the PI3K and BTK inhibitors may also be used for treatment of an acute condition.
- the combination of the PI3K and BTK inhibitors is administered in multiple doses. Dosing may be about once, twice, three times, four times, five times, six times, or more than six times per day. Dosing may be about once a month, once every two weeks, once a week, or once every other day. In other embodiments, the combination of the PI3K and BTK inhibitors is administered about once per day to about 6 times per day. In another embodiment the administration of the combination of the PI3K and BTK inhibitors continues for less than about 7 days. In yet another embodiment the administration continues for more than about 6, 10, 14, 28 days, two months, six months, or one year. In some cases, continuous dosing is achieved and maintained as long as necessary.
- the combination of the PI3K and BTK inhibitors is administered for more than 1, 2, 3, 4, 5, 6, 7, 14, or 28 days. In some embodiments, the combination of the PI3K and BTK inhibitors is administered for less than 28, 14, 7, 6, 5, 4, 3, 2, or 1 day. In selected embodiments, the combination of the PI3K and BTK inhibitors is administered chronically on an ongoing basis—e.g., for the treatment of chronic effects.
- An effective amount of the combination of the PI3K and BTK inhibitors may be administered in either single or multiple doses by any of the accepted modes of administration of agents having similar utilities, including rectal, buccal, intranasal and transdermal routes, by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, orally, topically, or as an inhalant.
- the invention provides a method of treating a hyperproliferative disorder in a mammal that comprises administering to said mammal a therapeutically effective amount of a PI3K inhibitor (or a PI3K- ⁇ inhibitor, PI3K- ⁇ inhibitor, or PI3K- ⁇ , ⁇ inhibitor) and BTK inhibitor, or a pharmaceutically acceptable salt or ester, prodrug, solvate or hydrate of either or both the PI3K inhibitor (or a PI3K- ⁇ inhibitor, PI3K- ⁇ inhibitor, or PI3K- ⁇ , ⁇ inhibitor) or the BTK inhibitor.
- a PI3K inhibitor or a PI3K- ⁇ inhibitor, PI3K- ⁇ inhibitor, or PI3K- ⁇ , ⁇ inhibitor
- BTK inhibitor a pharmaceutically acceptable salt or ester, prodrug, solvate or hydrate of either or both the PI3K inhibitor (or a PI3K- ⁇ inhibitor, PI3K- ⁇ inhibitor, or PI3K- ⁇ , ⁇ inhibitor)
- the method relates to the treatment of cancer such as non-Hodgkin's lymphomas (such as diffuse large B-cell lymphoma), acute myeloid leukemia, thymus, brain, lung, squamous cell, skin, eye, retinoblastoma, intraocular melanoma, oral cavity and oropharyngeal, bladder, gastric, stomach, pancreatic, bladder, breast, cervical, head, neck, renal, kidney, liver, ovarian, prostate, colorectal, bone (e.g., metastatic bone), esophageal, testicular, gynecological, thyroid, CNS, PNS, AIDS-related (e.g.
- cancer such as non-Hodgkin's lymphomas (such as diffuse large B-cell lymphoma), acute myeloid leukemia, thymus, brain, lung, squamous cell, skin, eye, retinoblastoma, intraocular melanoma, oral cavity and
- lymphoma and Kaposi's sarcoma viral-induced cancers such as cervical carcinoma (human papillomavirus), B-cell lymphoproliferative disease and nasopharyngeal carcinoma (Epstein-Barr virus), Kaposi's Sarcoma and primary effusion lymphomas (Kaposi's sarcoma herpesvirus), hepatocellular carcinoma (hepatitis B and hepatitis C viruses), and T-cell leukemias (Human T-cell leukemia virus-1), and T-cell leukemias (Human T-cell leukemia virus-1), B cell acute lymphoblastic leukemia, Burkitt's leukemia, juvenile myelomonocytic leukemia, hairy cell leukemia, Hodgkin's disease, multiple myeloma, mast cell leukemia, or mastocytosis.
- cervical carcinoma human papillomavirus
- the method relates to the treatment of a non-cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e.g., psoriasis), restenosis, or prostate conditions (e.g., benign prostatic hypertrophy (BPH)).
- a non-cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e.g., psoriasis), restenosis, or prostate conditions (e.g., benign prostatic hypertrophy (BPH)).
- the invention provides a method of treating an inflammatory, immune, or autoimmune disorder in a mammal that comprises administering to said mammal a therapeutically effective amount of a PI3K inhibitor (or a PI3K- ⁇ inhibitor, PI3K- ⁇ inhibitor, or PI3K- ⁇ , ⁇ inhibitor) and BTK inhibitor, or a pharmaceutically acceptable salt or ester, prodrug, solvate or hydrate of either or both the PI3K inhibitor (or a PI3K- ⁇ inhibitor, PI3K- ⁇ inhibitor, or PI3K- ⁇ , ⁇ inhibitor) or the BTK inhibitor.
- a PI3K inhibitor or a PI3K- ⁇ inhibitor, PI3K- ⁇ inhibitor, or PI3K- ⁇ , ⁇ inhibitor
- BTK inhibitor a pharmaceutically acceptable salt or ester, prodrug, solvate or hydrate of either or both the PI3K inhibitor (or a PI3K- ⁇ inhibitor, PI3K- ⁇ inhibitor, or PI3K- ⁇ , ⁇ inhibitor
- the invention also provides a method of treating a disease selected from the group consisting of tumor angiogenesis, chronic inflammatory disease, rheumatoid arthritis, atherosclerosis, inflammatory bowel disease, skin diseases such as psoriasis, eczema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma and melanoma, ulcerative colitis, atopic dermatitis, pouchitis, spondylarthritis, uveitis, Behcets disease, polymyalgia rheumatica, giant-cell arteritis, sarcoidosis, Kawasaki disease, juvenile idiopathic arthritis, instaenitis suppurativa, Sjögren's syndrome, psoriatic arthritis, juvenile rheumatoid arthritis, ankylosing spondylitis,
- the invention provides a method of treating a solid tumor cancer with a composition including a combination of a PI3K inhibitor, including a PI3K- ⁇ or PI3K- ⁇ inhibitor, and a BTK inhibitor, wherein the dose is effective to inhibit signaling between the solid tumor cells and at least one microenvironment selected from the group consisting of macrophages, monocytes, mast cells, helper T cells, cytotoxic T cells, regulatory T cells, natural killer cells, myeloid-derived suppressor cells, regulatory B cells, neutrophils, dendritic cells, and fibroblasts.
- the invention provides a method of treating pancreatic cancer, breast cancer, ovarian cancer, melanoma, lung cancer, head and neck cancer, and colorectal cancer using a combination of a BTK inhibitor and a PI3K inhibitor, wherein the dose is effective to inhibit signaling between the solid tumor cells and at least one microenvironment selected from the group consisting of macrophages, monocytes, mast cells, helper T cells, cytotoxic T cells, regulatory T cells, natural killer cells, myeloid-derived suppressor cells, regulatory B cells, neutrophils, dendritic cells, and fibroblasts.
- Efficacy of the compounds and combinations of compounds described herein in treating, preventing and/or managing the indicated diseases or disorders can be tested using various models known in the art. For example, models for determining efficacy of treatments for pancreatic cancer are described in Herreros-Villanueva, et al. World J. Gastroenterol. 2012, 18, 1286-1294. Models for determining efficacy of treatments for breast cancer are described e.g. in A. Fantozzi, Breast Cancer Res. 2006, 8, 212. Models for determining efficacy of treatments for ovarian cancer are described e.g. in Mullany et al., Endocrinology 2012, 153, 1585-92; and Fong et al., J. Ovarian Res.
- Models for determining efficacy of treatments for melanoma are described e.g. in Damsky et al., Pigment Cell & Melanoma Res. 2010, 23, 853-859.
- Models for determining efficacy of treatments for lung cancer are described e.g. in Meu Giveaway et al., Genes & Development, 2005, 19, 643-664.
- Models for determining efficacy of treatments for lung cancer are described e.g. in Kim, Clin. Exp. Otorhinolaryngol. 2009, 2, 55-60; and Sano, Head Neck Oncol. 2009, 1, 32.
- Models for determining efficacy of treatments for colorectal cancer, including the CT26 model are described below in the examples.
- Efficacy of the compounds and combinations of compounds described herein in treating, preventing and/or managing other indicated diseases or disorders described here can also be tested using various models known in the art. Efficacy in treating, preventing and/or managing asthma can be assessed using the ova induced asthma model described, for example, in Lee et al., J. Allergy Clin. Immunol. 2006, 118, 403-9. Efficacy in treating, preventing and/or managing arthritis (e.g., rheumatoid or psoriatic arthritis) can be assessed using the autoimmune animal models described in, for example, Williams et al., Chem. Biol.
- Efficacy in treating, preventing and/or managing psoriasis can be assessed using transgenic or knockout mouse model with targeted mutations in epidermis, vasculature or immune cells, mouse model resulting from spontaneous mutations, and immuno-deficient mouse model with xenotransplantation of human skin or immune cells, all of which are described, for example, in Boehncke et al., Clinics in Dermatology, 2007, 25, 596-605.
- Efficacy in treating, preventing and/or managing fibrosis or fibrotic conditions can be assessed using the unilateral ureteral obstruction model of renal fibrosis, which is described, for example, in Chevalier et al., Kidney International 2009, 75, 1145-1152; the bleomycin induced model of pulmonary fibrosis described in, for example, Moore et al., Am. J. Physiol. Lung. Cell. Mol. Physiol. 2008, 294, L152-L160; a variety of liver/biliary fibrosis models described in, for example, Chuang et al., Clin. Liver Dis.
- Efficacy in treating, preventing and/or managing dermatomyositis can be assessed using a myositis mouse model induced by immunization with rabbit myosin as described, for example, in Phyanagi et al., Arthritis & Rheumatism, 2009, 60(10), 3118-3127.
- Efficacy in treating, preventing and/or managing lupus can be assessed using various animal models described, for example, in Ghoreishi et al., Lupus, 2009, 19, 1029-1035; Ohl et al., J. Biomed .
- the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof.
- the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, wherein the BTK inhibitor is Formula (XVIII), or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof.
- the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, wherein the BTK inhibitor is Formula (XVIII), or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof, further comprising the step of administering a therapeutically effective dose of an anticoagulent or antiplatelet agent.
- a BTK inhibitor wherein the BTK inhibitor is Formula (XVIII), or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof.
- the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, wherein the BTK inhibitor is Formula (XVIII), or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof, further comprising the step of administering a therapeutically effective dose of an anticoagulent or antiplatelet agent, wherein the anticoagulent or antiplatelet agent is selected from the group consisting of clopidogrel, prasugrel, ticagrelor, ticlopidine, warfarin, acenocoumarol, dicumarol, phenprocoumon, heparain, low molecular weight heparin, fondaparinux, and idraparinux.
- a BTK inhibitor wherein the BTK inhibitor is Formula (XVIII), or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug
- the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, wherein the BTK inhibitor is Formula (XVIII), and wherein the cancer is selected from the group consisting of bladder cancer, squamous cell carcinoma including head and neck cancer, pancreatic ductal adenocarcinoma (PDA), pancreatic cancer, colon carcinoma, mammary carcinoma, breast cancer, fibrosarcoma, mesothelioma, renal cell carcinoma, lung carcinoma, thyoma, prostate cancer, colorectal cancer, ovarian cancer, acute myeloid leukemia, thymus cancer, brain cancer, squamous cell cancer, skin cancer, eye cancer, retinoblastoma, melanoma, intraocular melanoma, oral cavity and oropharyngeal cancers, gastric cancer, stomach cancer, cervical cancer, head, neck, renal cancer
- the invention provides a method of treating a cancer in a human with a history of thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof.
- the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, method of treating a cancer in a human with a history of thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, wherein the BTK inhibitor is a compound of Formula (XVIII) or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof.
- a BTK inhibitor is a compound of Formula (XVIII) or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof.
- the BTK inhibitor and the anticoagulent or the antiplatelet agent are administered sequentially. In selected embodiments, the BTK inhibitor and the anticoagulent or the antiplatelet agent are administered concomittently. In selected embodiments, the BTK inhibitor is administered before the anticoagulent or the antiplatelet agent. In selected embodiments, the BTK inhibitor is administered after the anticoagulent or the antiplatelet agent.
- Preferred anti-platelet and anticoagulent agents for use in the methods of the present invention include, but are not limited to, cyclooxygenase inhibitors (e.g., aspirin), adenosine diphosphate (ADP) receptor inhibitors (e.g., clopidogrel and ticlopidine), phosphodiesterase inhibitors (e.g., cilostazol), glycoprotein IIb/IIIa inhibitors (e.g., abciximab, eptifibatide, and tirofiban), adenosine reuptake inhibitors (e.g., dipyridamole), and acetylsalicylic acid (aspirin).
- cyclooxygenase inhibitors e.g., aspirin
- ADP adenosine diphosphate
- phosphodiesterase inhibitors e.g., cilostazol
- glycoprotein IIb/IIIa inhibitors e.g., abcix
- examples of anti-platelet agents for use in the methods of the present invention include anagrelide, aspirin/extended-release dipyridamole, cilostazol, clopidogrel, dipyridamole, prasugrel, ticagrelor, ticlopidine, vorapaxar, tirofiban HCl, eptifibatide, abciximab, argatroban, bivalirudin, dalteparin, desirudin, enoxaparin, fondaparinux, heparin, lepirudin, apixaban, dabigatran etexilate mesylate, rivaroxaban, and warfarin.
- Non-limiting, exemplary embodiments of combinations of the PI3K inhibitors and BTK inhibitors described above are given in the following numbered paragraphs 1 to 50.
- the disclosure encompassed herein should in no way be construed as being limited to these examples, but rather should be construed to encompass any and all variations which become evident as a result of the teachings provided herein.
- the PI3K inhibitor and BTK inhibitor are provided in a PI3K inhibitor to BTK inhibitor ratio (by mass) selected from the group consisting of 0.01 to 1, 0.05 to 1, 0.1 to 1, 0.5 to 1, 1 to 1, 2 to 1, 5 to 1, 10 to 1, 20 to 1, and 100 to 1.
- Ficoll purified mantle cell lymphoma (MCL) cells (2 ⁇ 10 5 ) isolated from bone marrow or peripheral blood were treated with each drug alone and with six equimolar concentrations of a BTK inhibitor (Formula XVIII) and a PI3K- ⁇ inhibitor (Formula IX) ranging from 0.01 nM to 10 ⁇ M on 96-well plates in triplicate. Plated cells were then cultured in HS-5 conditioned media at 37° C. with 5% CO 2 .
- cell viability was determined using an (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay (Cell Titer 96, Promega). Viability data were used to generate cell viability curves for each drug alone and in combination for each sample.
- the potential synergy of the combination of the BTK inhibitor of Formula XVIII and the PI3K- ⁇ inhibitor of Formula IX at a given equimolar concentration was determined using the median effect model as described in Chou and Talalay, Adv Enzyme Regul. 1984, 22, 27-55.
- the statistical modeling was run in R using a script that utilizes the median effect model as described in Lee et al., J. Biopharm. Stat. 2007, 17, 461-80.
- a value of 1, less than 1, and greater than 1 using R defines an additive interaction, synergistic and antagonistic, respectively.
- the Lee et al. method calculates a 95% confidence interval for each data point. For each viability curve, to be considered synergistic, a data point must have an interaction index below 1 and the upper confidence interval must also be below 1. In order to summarize and demonstrate collective synergy results, an interaction dot blot was generated for the primary patient samples.
- the combination index obtained was ranked according to Table 1.
- results of the experiments are shown in FIG. 38 , which illustrates tumor growth suppression in the orthotopic pancreatic cancer model.
- the statistical p-value presumption against null hypothesis
- the results show that all three treatments provide statistically significant reductions in tumor volume in the pancreatic cancer model.
- FIG. 39 shows the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K inhibitor of Formula (IX), or a combination of both drugs on myeloid tumor-associated macrophages (TAMs) in pancreatic tumor-bearing mice.
- FIG. 40 illustrates the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K inhibitor of Formula (IX), or a combination of both inhibitors on myeloid-derived suppressor cells (MDSCs) in pancreatic tumor-bearing mice.
- FIG. 39 shows the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K inhibitor of Formula (IX), or a combination of both inhibitors on myeloid-derived suppressor cells (MDSCs) in pancreatic tumor-bearing mice.
- MDSCs myeloid-derived suppressor cells
- FIG. 41 illustrates the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K inhibitor of Formula (IX), or a combination of both inhibitors on regulatory T cells (Tregs) in pancreatic tumor-bearing mice.
- the results shown in FIG. 39 to FIG. 41 demonstrate that administration of the BTK inhibitor of Formula (XVIII) and the combination of the BTK inhibitor of Formula (XVIII) and the PI3K inhibitor of Formula (IX) reduce immunosuppressive tumor associated myeloid cells and Tregs in pancreatic tumor-bearing mice.
- the ID8 syngeneic orthotropic ovarian cancer murine model was used to investigate the therapeutic efficacy of the BTK inhibitor of Formula (XVIII) through treatment of the solid tumor microenvironment.
- Human ovarian cancer models including the ID8 syngeneic orthotropic ovarian cancer model and other animal models, are described in Fong and Kakar, J. Ovarian Res. 2009, 2, 12; Greenaway et al., Gynecol. Oncol. 2008, 108, 385-94; Urzua et al., Tumour Biol. 2005, 26, 236-44; Janat-Amsbury et al., Anticancer Res. 2006, 26, 3223-28; Janat-Amsbury et al., Anticancer Res.
- FIG. 42 and FIG. 43 demonstrate that the BTK inhibitor of Formula (XVIII) impairs ID8 ovarian cancer growth in the ID8 syngeneic murine model.
- FIG. 44 shows that tumor response to treatment with the BTK inhibitor of Formula (XVIII) correlates with a significant reduction in immunosuppressive tumor-associated lymphocytes in tumor-bearing mice.
- FIG. 45 shows treatment with the BTK inhibitor of Formula (XVIII) impairs ID8 ovarian cancer growth (through reduction in tumor volume) in the syngeneic murine model.
- FIG. 46 and FIG. 47 show that the tumor response induced by treatment with the BTK inhibitor of Formula (XVIII) correlates with a significant reduction in immunosuppressive B cells in tumor-bearing mice.
- FIG. 48 and FIG. 49 show that the tumor response induced by treatment with the BTK inhibitor of Formula (XVIII) correlates with a significant reduction in immunosuppressive tumor associated Tregs and an increase in CD8 + T cells.
- results shown in FIG. 42 to FIG. 49 illustrate the surprising efficacy of the BTK inhibitor of Formula (XVIII) in modulating tumor microenvironment in a model predictive of efficacy as a treatment for ovarian cancer in humans.
- KPC derived mouse pancreatic cancer cells KPC derived mouse pancreatic cancer cells (KrasG12D; Trp53R172H; Pdx1-Cre) were injected into the pancreases. Animals were treated with (1) vehicle; (2) Formula (XVIII), 15 mg/kg/BID given orally; (3) gemcitabine 15 mg/kg intravenous (IV) administered every 4 days for 3 injections; or (4) Formula (XVIII), 15 mg/kg/BID given orally with together with gemcitabine, 15 mg/kg IV administered every 4 days for 3 injections.
- Mouse tumor tissue was collected and stored in PBS/0.1% soybean trypsin inhibitor prior to enzymatic dissociation. Samples were finely minced with a scissors and mouse tissue was transferred into DMEM containing 1.0 mg/ml collagenase IV (Gibco), 0.1% soybean trypsin inhibitor, and 50 U/ml DNase (Roche) and incubated at 37 C for 30 min. with constant stirring while human tissue was digested in 2.0 mg/ml collagenase IV, 1.0 mg/ml hyluronidase, 0.1% soybean trypsin inhibitor, and 50 U/ml DNase for 45 minutes.
- DMEM containing 1.0 mg/ml collagenase IV (Gibco), 0.1% soybean trypsin inhibitor, and 50 U/ml DNase (Roche) and incubated at 37 C for 30 min. with constant stirring while human tissue was digested in 2.0 mg/ml collagenase IV, 1.0 mg/ml hyluronidase, 0.1% soybean
- Suspensions were filtered through a 100 micron filter and washed with FACS buffer (PBS/0.5% BSA/2.0 mM EDTA) prior to staining. Two million total cells were stained with antibodies as indicated. Intracellular detection of FoxP3 was achieved following permeabilization with BD Perm Buffer III (BD Biosciences) and eBioscience Fix/Perm respectively. Following surface staining, samples were acquired on a BD Fortessa and analyzed using FlowJo (Treestar) software.
- FACS buffer PBS/0.5% BSA/2.0 mM EDTA
- FIG. 50 the reduction in tumor size upon treatment is shown.
- the effects on particular cell subsets are shown in the flow cytometry data presented in FIG. 51 , FIG. 52 , FIG. 53 , and FIG. 54 .
- FIG. 50 to FIG. 54 illustrate reduction in tumor burden by modulating the tumor infiltrating MDSCs and TAMs, which affects Treg and CD8 + T cell levels, through inhibition of BTK using Formula (XVIII).
- BTK BTK inhibitors
- CC-292 Formula XXVII
- PCI-32765 ibrutinib
- CLL chronic lymphocytic leukemia
- MCL mantle cell lymphoma
- Tec and BTK play an important role in the regulation of phospholipase C ⁇ 2 (PLC ⁇ 2) downstream of the collagen receptor glycoprotein VI (GPVI) in human platelets.
- PLC ⁇ 2 phospholipase C ⁇ 2
- GPVI collagen receptor glycoprotein VI
- BTK is activated and undergoes tyrosine phosphorylation upon challenge of the platelet thrombin receptor, which requires the engagement of OW integrin and PI3K activity (Laffargue, et al., FEBS Lett. 1999, 443(1), 66-70). It has also been implicated in GPIb ⁇ -dependent thrombus stability at sites of vascular injury (Liu, et al., Blood 2006, 108(8), 2596-603).
- BTK and Tec are involved in several processes important in supporting the formation of a stable hemostatic plug, which is critical for preventing significant blood loss in response to vascular injury.
- BTK inhibitor of Formula (XVIII) and ibrutinib were evaluated on human platelet-mediated thrombosis by utilizing the in vivo human thrombus formation in the VWF HAI mice model described in Chen et al. Nat. Biotechnol. 2008, 26(1), 114-19.
- the BTK inhibitor-treated human platelets were fluorescently labeled and infused continuously through a catheter inserted into the femoral artery. Their behavior in response to laser-induced vascular injury was monitored in real time using two-channel confocal intravital microscopy (Furie and Furie, J. Clin. Invest. 2005, 115(12), 2255-62). Upon induction of arteriole injury untreated platelets rapidly formed thrombi with an average thrombus size of 6,450 ⁇ 292 mm 2 (mean ⁇ s.e.m.), as shown in FIG. 55 and FIG. 56 .
- Formula (XVIII) (1 ⁇ M) treated platelets formed a slightly smaller but not significantly different thrombi with an average thrombus size of 5733 ⁇ 393 mm 2 (mean ⁇ s.e.m.).
- a dramatic reduction in thrombus size occurred in platelets pretreated with 1 ⁇ M of Formula XX-A (ibrutinib), 2600 ⁇ 246 mm 2 (mean ⁇ s.e.m.), resulting in a reduction in maximal thrombus size by approximately 61% compared with control (P>0.001) ( FIGS. 55 and 57 ).
- Formula (XVIII) had no significant effect on human platelet-mediated thrombus formation while Formula XX-A (ibrutinib) was able to limit this process, resulting in a reduction in maximal thrombus size by 61% compared with control.
- Formula XXVII (CC-292) showed an effect similar to Formula XX-A (ibrutinib).
- results which show reduced thrombus formation for ibrutinib at physiologically relevant concentrations, may provide some mechanistic background for the Grade ⁇ 3 bleeding events (eg, subdural hematoma, gastrointestinal bleeding, hematuria and postprocedural hemorrhage) that have been reported in ⁇ 6% of patients treated with Formula XX-A (ibrutinib).
- Grade ⁇ 3 bleeding events eg, subdural hematoma, gastrointestinal bleeding, hematuria and postprocedural hemorrhage
- GPVI platelet aggregation was measured for Formula (XVIII) and Formula XX-A (ibrutinib). Blood was obtained from untreated humans, and platelets were purified from plasma-rich protein by centrifugation. Cells were resuspended to a final concentration of 350,000/ ⁇ L in buffer containing 145 mmol/L NaCl, 10 mmol/L HEPES, 0.5 mmol/L Na 2 HPO 4 , 5 mmol/L KCl, 2 mmol/L MgCl 2 , 1 mmol/L CaCl 2 , and 0.1% glucose, at pH 7.4.
- FIG. 60 the results of CVX-induced (250 ng/mL) human platelet aggregation results before and 15 min after administration of the BTK inhibitors to 6 healthy individuals are shown.
- Example 7 Study of a BTK Inhibitor and a Combination of a BTK Inhibitor and a PI3K Inhibitor in Canine Lymphoma
- Canine B cell lymphoma exists as a pathological entity that is characterized by large anaplastic, centroblastic or immunoblastic lymphocytes with high proliferative grade, significant peripheral lymphadenopathy and an aggressive clinical course. While some dogs respond initially to prednisone, most canine lymphomas progress quickly and must be treated with combination therapies, including cyclophosphamide, vincristine, doxorubicin, and prednisone (CHOP), or other cytotoxic agents. In their histopathologic features, clinical course, and high relapse rate after initial treatment, canine B cell lymphomas resemble diffuse large B cell lymphoma (DLBCL) in humans. Thus, responses of canine B cell lymphomas to experimental treatments are considered to provide proof of concept for therapeutic candidates in DLBCL.
- combination therapies including cyclophosphamide, vincristine, doxorubicin, and prednisone (CHOP), or other cytotoxic agents.
- cyclophosphamide vincris
- companion dogs with newly diagnosed or relapsed/refractory LSA were enrolled on a veterinary clinical trial of the BTK inhibitor of Formula (XVIII) (“Arm 1”) or the BTK inhibitor of Formula (XVIII) and the PI3K- ⁇ inhibitor of Formula (IX) (“Arm 2”). Enrollment has completed for Arm 1 and is ongoing for Arm 2. With approximately 1/3 of Arm 2 subjects treated, the preliminary results show that combined treatment with the BTK inhibitor of Formula (XVIII) and the PI3K- ⁇ inhibitor of Formula (IX) may have greater efficacy than treatment with the BTK inhibitor of Formula (XVIII) alone in aggressive lymphoma.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
In some embodiments, the invention includes a therapeutic combination of a phosphoinositide 3-kinase (PI3K) inhibitor, including PI3K inhibitors selective for the γ- and δ-isoforms and selective for both γ- and δ-isoforms, and a Bruton's tyrosine kinase (BTK) inhibitor. In some embodiments, the invention includes therapeutic methods of using a BTK inhibitor and a PI3K-δ inhibitor to treat solid tumor cancers by modulation of the tumor microenvironment, including macrophages, monocytes, mast cells, helper T cells, cytotoxic T cells, regulatory T cells, natural killer cells, myeloid-derived suppressor cells, regulatory B cells, neutrophils, dendritic cells, and fibroblasts.
Description
- A therapeutic combination of a phosphoinositide 3-kinase (PI3K) inhibitor and a Bruton's Tyrosine Kinase (BTK) inhibitor and uses of the therapeutic combination are disclosed herein.
- PI3K kinases are members of a unique and conserved family of intracellular lipid kinases that phosphorylate the 3′-OH group on phosphatidylinositols or phosphoinositides. PI3K kinases are key signaling enzymes that relay signals from cell surface receptors to downstream effectors. The PI3K family comprises 15 kinases with distinct substrate specificities, expression patterns, and modes of regulation. The class I PI3K kinases (p110α, p110β, p110δ, and p110γ) are typically activated by tyrosine kinases or G-protein coupled receptors to generate PIP3, which engages downstream effectors such as those in the Akt/PDK1 pathway, mTOR, the Tec family kinases, and the Rho family GTPases.
- The PI3K signaling pathway is known to be one of the most highly mutated in human cancers. PI3K signaling is also a key factor in disease states including hematologic malignancies, non-Hodgkin lymphoma (such as diffuse large B-cell lymphoma), allergic contact dermatitis, rheumatoid arthritis, osteoarthritis, inflammatory bowel diseases, chronic obstructive pulmonary disorder, psoriasis, multiple sclerosis, asthma, disorders related to diabetic complications, and inflammatory complications of the cardiovascular system such as acute coronary syndrome. The role of PI3K in cancer has been discussed, for example, in J. A. Engleman, Nat. Rev. Cancer 2009, 9, 550-562. The PI3K-δ and PI3K-γ isoforms are preferentially expressed in normal and malignant leukocytes.
- The delta (δ) isoform of class I PI3K (PI3K-δ) is involved in mammalian immune system functions such as T-cell function, B-cell activation, mast cell activation, dendritic cell function, and neutrophil activity. Due to its role in immune system function, PI3K-δ is also involved in a number of diseases related to undesirable immune response such as allergic reactions, inflammatory diseases, inflammation mediated angiogenesis, rheumatoid arthritis, auto-immune diseases such as lupus, asthma, emphysema and other respiratory diseases. The gamma (γ) isoform of class I PI3K (PI3K-γ) is also involved in immune system functions and plays a role in leukocyte signaling and has been implicated in inflammation, rheumatoid arthritis, and autoimmune diseases such as lupus.
- Downstream mediators of the PI3K signal transduction pathway include Akt and mammalian target of rapamycin (mTOR). One important function of Akt is to augment the activity of mTOR, through phosphorylation of TSC2 and other mechanisms. mTOR is a serine-threonine kinase related to the lipid kinases of the PI3K family and has been implicated in a wide range of biological processes including cell growth, cell proliferation, cell motility and survival. Disregulation of the mTOR pathway has been reported in various types of cancer.
- In view of the above, PI3K inhibitors are prime targets for drug development, as described in J. E. Kurt and I. Ray-Coquard, Anticancer Res. 2012, 32, 2463-70. Several PI3K inhibitors are known, including those that are PI3K-δ inhibitors, PI3K-γ inhibitors, and PI3K-δ,γ inhibitors.
- Bruton's Tyrosine Kinase (BTK) is a Tec family non-receptor protein kinase expressed in B cells and myeloid cells. The function of BTK in signaling pathways activated by the engagement of the B cell receptor (BCR) and FCER1 on mast cells is well established. Functional mutations in BTK in humans result in a primary immunodeficiency disease characterized by a defect in B cell development with a block between pro- and pre-B cell stages. The result is an almost complete absence of B lymphocytes, causing a pronounced reduction of serum immunoglobulin of all classes. These findings support a key role for BTK in the regulation of the production of auto-antibodies in autoimmune diseases.
- Other diseases with an important role for dysfunctional B cells are B cell malignancies. The reported role for BTK in the regulation of proliferation and apoptosis of B cells indicates the potential for BTK inhibitors in the treatment of B cell lymphomas. BTK inhibitors have thus been developed as potential therapies, as described in O. Cruz et al., OncoTargets and Therapy 2013, 6, 161-176.
- In many solid tumors, the supportive microenvironment (which may make up the majority of the tumor mass) is a dynamic force that enables tumor survival. The tumor microenvironment is generally defined as a complex mixture of “cells, soluble factors, signaling molecules, extracellular matrices, and mechanical cues that promote neoplastic transformation, support tumor growth and invasion, protect the tumor from host immunity, foster therapeutic resistance, and provide niches for dominant metastases to thrive,” as described in Swartz et al., Cancer Res., 2012, 72, 2473. Although tumors express antigens that should be recognized by T cells, tumor clearance by the immune system is rare because of immune suppression by the microenvironment. Addressing the tumor cells themselves with e.g. chemotherapy has also proven to be insufficient to overcome the protective effects of the microenvironment. New approaches are thus urgently needed for more effective treatment of solid tumors that take into account the role of the microenvironment.
- The present invention provides the unexpected finding that the combination of a PI3K inhibitor with a BTK inhibitor is effective in the treatment of any of several types of cancers such as leukemia, lymphoma and solid tumor cancers.
- In an embodiment, the invention provides a composition comprising a PI3K inhibitor and a BTK inhibitor in combination. This composition is typically a pharmaceutical composition.
- In an embodiment, the invention provides a composition comprising a PI3K-γ inhibitor and a BTK inhibitor in combination. This composition is typically a pharmaceutical composition.
- In an embodiment, the invention provides a composition comprising a PI3K-δ inhibitor and a BTK inhibitor in combination. This composition is typically a pharmaceutical composition.
- In an embodiment, the invention provides a composition comprising a PI3K-γ,δ inhibitor and a BTK inhibitor in combination. This composition is typically a pharmaceutical composition.
- In an embodiment, the invention provides a pharmaceutical composition comprising a PI3K inhibitor and a BTK inhibitor in combination for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- In an embodiment, the invention provides a pharmaceutical composition comprising a PI3K-γ inhibitor and a BTK inhibitor in combination for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- In an embodiment, the invention provides a pharmaceutical composition comprising a PI3K-δ inhibitor and a BTK inhibitor in combination for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- In an embodiment, the invention provides a pharmaceutical composition comprising a PI3K-γ,δ inhibitor and a BTK inhibitor in combination for use in the treatment of leukemia, lymphoma or a solid tumor cancer.
- In an embodiment, the invention provides a kit comprising a composition comprising a PI3K inhibitor and a composition comprising a BTK inhibitor. These compositions are typically both pharmaceutical compositions. The kit is for co-administration of the PI3K inhibitor and the BTK inhibitor, either simultaneously or separately.
- In an embodiment, the invention provides a kit comprising a composition comprising a PI3K-γ inhibitor and a composition comprising a BTK inhibitor. These compositions are typically both pharmaceutical compositions. The kit is for co-administration of the PI3K-γ inhibitor and the BTK inhibitor, either simultaneously or separately.
- In an embodiment, the invention provides a kit comprising a composition comprising a PI3K-δ inhibitor and a composition comprising a BTK inhibitor. These compositions are typically both pharmaceutical compositions. The kit is for co-administration of the PI3K-δ inhibitor and the BTK inhibitor, either simultaneously or separately.
- In an embodiment, the invention provides a kit comprising a composition comprising a PI3K-γ,δ inhibitor and a composition comprising a BTK inhibitor. These compositions are typically both pharmaceutical compositions. The kit is for co-administration of the PI3K-γ,δ inhibitor and the BTK inhibitor, either simultaneously or separately.
- In an embodiment, the invention provides a kit comprising a composition comprising a PI3K inhibitor and a composition comprising a BTK inhibitor for use in the treatment of leukemia, lymphoma or a solid tumor cancer. The compositions are typically both pharmaceutical compositions. The kit is for use in co-administration of the PI3K inhibitor and the BTK inhibitor, either simultaneously or separately, in the treatment of leukemia, lymphoma or a solid tumor cancer.
- In an embodiment, the invention provides a kit comprising a composition comprising a PI3K-γ inhibitor and a composition comprising a BTK inhibitor for use in the treatment of leukemia, lymphoma or a solid tumor cancer. The compositions are typically both pharmaceutical compositions. The kit is for use in co-administration of the PI3K-γ inhibitor and the BTK inhibitor, either simultaneously or separately, in the treatment of leukemia, lymphoma or a solid tumor cancer.
- In an embodiment, the invention provides a kit comprising a composition comprising a PI3K-δ inhibitor and a composition comprising a BTK inhibitor for use in the treatment of leukemia, lymphoma or a solid tumor cancer. The compositions are typically both pharmaceutical compositions. The kit is for use in co-administration of the PI3K-δ inhibitor and the BTK inhibitor, either simultaneously or separately, in the treatment of leukemia, lymphoma or a solid tumor cancer.
- In an embodiment, the invention provides a kit comprising a composition comprising a PI3K-γ,δ inhibitor and a composition comprising a BTK inhibitor for use in the treatment of leukemia, lymphoma or a solid tumor cancer. The compositions are typically both pharmaceutical compositions. The kit is for use in co-administration of the PI3K-γ,δ inhibitor and the BTK inhibitor, either simultaneously or separately, in the treatment of leukemia, lymphoma or a solid tumor cancer.
- In an embodiment, the invention provides a method of treating leukemia, lymphoma or a solid tumor cancer in a subject, comprising co-administering to a mammal in need thereof a therapeutically effective amount of a PI3K inhibitor and a BTK inhibitor.
- In an embodiment, the invention provides a method of treating leukemia, lymphoma or a solid tumor cancer in a subject, comprising co-administering to a mammal in need thereof a therapeutically effective amount of a PI3K-γ inhibitor and a BTK inhibitor.
- In an embodiment, the invention provides a method of treating leukemia, lymphoma or a solid tumor cancer in a subject, comprising co-administering to a mammal in need thereof a therapeutically effective amount of a PI3K-δ inhibitor and a BTK inhibitor.
- In an embodiment, the invention provides a method of treating leukemia, lymphoma or a solid tumor cancer in a subject, comprising co-administering to a mammal in need thereof a therapeutically effective amount of a PI3K-γ,δ inhibitor and a BTK inhibitor.
- The BTK inhibitor, in one specific embodiment, is a compound of Formula (XVIII), or a pharmaceutically acceptable salt thereof. The PI3K inhibitor, in one specific embodiment, is a PI3K-δ inhibitor, in particular a compound of Formula IX, or a pharmaceutically acceptable salt thereof. In one specific embodiment, the BTK inhibitor is a compound of Formula (XVIII) or a pharmaceutically acceptable salt thereof, and the PI3K inhibitor is a PI3K-δ inhibitor, in particular a compound of Formula IX, or a pharmaceutically acceptable salt thereof.
- The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings.
-
FIG. 1 illustrates the sensitivity of the TMD8 diffuse large B cell lymphoma (DLBCL) cell line to individual treatment with the BTK inhibitor of Formula XVIII (“Tested Btk Inhibitor”) and the PI3K inhibitor of Formula IX (“Tested PI3K Inhibitor”) and combined treatment with Formula XVIII and Formula IX (“Btki+PI3Ki”) at different concentrations. The concentration of the first agent in the combination (the BTK inhibitor) and the concentration of the individual agents is given on the x-axis, and the concentration of the added PI3K inhibitor in combination with the BTK inhibitor is given in the legend. -
FIG. 2 illustrates the sensitivity of the MINO mantle cell lymphoma cell to individual treatment with the BTK inhibitor of Formula XVIII (“Tested Btk Inhibitor”) and the PI3K inhibitor of Formula IX (“Tested PI3K Inhibitor”) and combined treatment with Formula XVIII and Formula IX (“Btki+PI3Ki”) at different concentrations. The concentration of the first agent in the combination (the BTK inhibitor) and the concentration of the individual agents is given on the x-axis, and the concentration of the added PI3K inhibitor in combination with the BTK inhibitor is given in the legend. -
FIG. 3 illustrates the proliferative activity in primary mantle cell lymphoma cells of Formula XVIII (“Tested Btki”) and Formula IX (“Tested PI3Ki”). The percentage viability of cells (“% viability”, y-axis) is plotted versus the concentration of the Formula XVIII (“[Tested Btk Inhibitor]”, x-axis). The concentration of the individual BTK and PI3K inhibitors (i.e. not in combination) are also given on the x-axis. -
FIG. 4 illustrates the interaction index of the combination of the BTK inhibitor of Formula XVIII and the PI3K inhibitor of Formula IX in primary mantle cell lymphoma cells. -
FIG. 5 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) are combined. The tested cell lines include Maver-1 (B cell lymphoma, mantle), Jeko (B cell lymphoma, mantle), CCRF (B lymphoblast, acute lymphoblastic leukemia), and SUP-B15 (B lymphoblast, acute lymphoblastic leukemia). The dose-effect curves for these cell lines are given inFIG. 6 ,FIG. 7 ,FIG. 8 , andFIG. 9 . ED25, ED50, ED75, and ED90 refer to the effective doses causing 25%, 50%, 75%, and 90% of the maximum biological effect (proliferation). -
FIG. 6 illustrates the dose-effect curves obtained for the tested Maver-1 cell line (B cell lymphoma, mantle) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 7 illustrates the dose-effect curves obtained for the tested Jeko cell line (B cell lymphoma, mantle) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 8 illustrates the dose-effect curves obtained for the tested CCRF cell line (B lymphoblast, acute lymphoblastic leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 9 illustrates the dose-effect curves obtained for the tested SUP-B15 cell line (B lymphoblast, acute lymphoblastic leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 10 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) are combined. The tested cell lines include Jeko (B cell lymphoma, mantle cell lymphoma) and SU-DHL-4 (activated B cell like (ABC) diffuse large B cell lymphoma). The dose-effect curves for these cell lines are given inFIG. 11 andFIG. 12 . -
FIG. 11 illustrates the dose-effect curves obtained for the tested Jeko cell line (B cell lymphoma, mantle) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 12 illustrates the dose-effect curves obtained for the tested SU-DHL-4 cell line (diffuse large B cell lymphoma, ABC) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 13 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) are combined. The tested cell lines include CCRF (B lymphoblast, acute lymphoblastic leukemia), SUP-B15 (B lymphoblast, acute lymphoblastic leukemia), JVM-2 (prolymphocytic leukemia), Ramos (Burkitt's lymphoma), and Mino (mantle cell lymphoma). The dose-effect curves for these cell lines are given inFIG. 14 ,FIG. 15 ,FIG. 16 , andFIG. 17 . No dose-effect curve is given for Ramos (Burkitt's lymphoma) because of negative slope. -
FIG. 14 illustrates the dose-effect curves obtained for the tested CCRF cell line (B lymphoblast, acute lymphoblastic leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 15 illustrates the dose-effect curves obtained for the tested SUP-B15 cell line (B lymphoblast, acute lymphoblastic leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 16 illustrates the dose-effect curves obtained for the tested JVM-2 cell line (prolymphocytic leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 17 illustrates the dose-effect curves obtained for the tested Mino cell line (mantle cell lymphoma) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 18 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) are combined. The tested cell lines include Raji (B lymphocyte, Burkitt's lymphoma), SU-DHL-1 (DLBCL-ABC), and Pfeiffer (follicular lymphoma). The dose-effect curves for these cell lines are given inFIG. 19 ,FIG. 20 , andFIG. 21 . -
FIG. 19 illustrates the dose-effect curves obtained for the tested Raji cell line (B lymphocyte, Burkitt's lymphoma) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 20 illustrates the dose-effect curves obtained for the tested SU-DHL-1 cell line (DLBCL-ABC) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 21 illustrates the dose-effect curves obtained for the tested Pfeiffer cell line (follicular lymphoma) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 22 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) are combined. The tested cell lines include Ly1 (Germinal center B-cell like diffuse large B-cell lymphoma, DLBCL-GCB), Ly7 (DLBCL-GCB), Ly19 (DLBCL-GCB), SU-DHL-2 (Activated B-cell like diffuse large B-cell lymphoma, DLBCL-ABC), and DOHH2 (follicular lymphoma, FL). The dose-effect curves for these cell lines are given inFIG. 23 ,FIG. 24 ,FIG. 25 , andFIG. 26 , except for the Ly19 cell line, which is not graphed because of a negative slope. -
FIG. 23 illustrates the dose-effect curves obtained for the tested Ly1 cell line (DLBCL-GCB) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 24 illustrates the dose-effect curves obtained for the tested Ly7 cell line (DLBCL-GCB) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 25 illustrates the dose-effect curves obtained for the tested DOHH2 cell line (FL) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 26 illustrates the dose-effect curves obtained for the tested SU-DHL-2 cell line (DLBCL-ABC) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 27 illustrates the synergy observed in certain cell lines when Formula (XVIII) and Formula (IX) are combined. The tested cell lines include U937 (histiocytic lymphoma and/or myeloid), K562 (leukemia, myeloid, and/or chronic myelogenous leukemia), Daudi (human Burkitt's lymphoma), and SU-DHL-6 (DLBCL-GCB and/or peripheral T-cell lymphoma, PTCL). The dose-effect curves for these cell lines are given inFIG. 28 ,FIG. 29 ,FIG. 30 , andFIG. 31 . -
FIG. 28 illustrates the dose-effect curves obtained for the tested U937 cell line (histiocytic lymphoma and/or myeloid) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 29 illustrates the dose-effect curves obtained for the tested K562 cell line (leukemia, myeloid, and/or chronic myelogenous leukemia) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 30 illustrates the dose-effect curves obtained for the tested Daudi cell line (human Burkitt's lymphoma) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 31 illustrates the dose-effect curves obtained for the tested SU-DHL-6 cell line (DLBCL-GCB and/or PTCL) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 32 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) are combined. The tested cell lines include SU-DHL-6 (DLBCL-GCB or PTCL), TMD-8 (DLBCL-ABC), HBL-1 (DLBCL-ABC), and Rec-1 (follicular lymphoma). The dose-effect curves for these cell lines are given inFIG. 34 ,FIG. 35 ,FIG. 36 , andFIG. 37 . -
FIG. 33 illustrates the synergy observed in certain cell lines when the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) are combined. The tested cell lines include SU-DHL-6 (DLBCL-GCB or PTCL), TMD-8 (DLBCL-ABC), HBL-1 (DLBCL-ABC), and Rec-1 (follicular lymphoma). All corresponding CIs are shown for each of the combinations tested as listed on the x axis. -
FIG. 34 illustrates the dose-effect curves obtained for the tested SU-DHL-6 cell line (DLBCL-GCB or PTCL) cell line using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 35 illustrates the dose-effect curves obtained for the tested TMD-8 cell line (DLBCL-ABC) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 36 illustrates the dose-effect curves obtained for the tested HBL-1 cell line (DLBCL-ABC) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 37 illustrates the dose-effect curves obtained for the tested Rec-1 cell line (follicular lymphoma) using combined dosing of the BTK inhibitor of Formula (XVIII) (“Inh.1”) and the PI3K-δ inhibitor of Formula (IX) (“Inh.3”). The y-axis (“Effect”) is given in units of Fa (fraction affected) and the x-axis (“Dose”) is given in linear units of μM. -
FIG. 38 illustrates tumor growth suppression in an orthotopic pancreatic cancer model. Mice were dosed orally with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K-δ inhibitor of Formula (IX), or a combination of both drugs. The statistical p-value (presumption against null hypothesis) is shown for each tested single agent and for the combination against the vehicle. -
FIG. 39 illustrates the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K-δ inhibitor of Formula (IX), or a combination of both inhibitors on myeloid tumor-associated macrophages (TAMs) in pancreatic tumor-bearing mice. -
FIG. 40 illustrates the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K-δ inhibitor of Formula (IX), or a combination of both inhibitors on myeloid-derived suppressor cells (MDSCs) in pancreatic tumor-bearing mice. -
FIG. 41 illustrates the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K-δ inhibitor of Formula (IX), or a combination of both inhibitors on regulatory T cells (Tregs) in pancreatic tumor-bearing mice. -
FIG. 42 illustrates the effects of vehicle on flux at two timepoints, as a control for comparison withFIG. 100 , in the ID8 syngeneic orthotropic ovarian cancer model. -
FIG. 43 illustrates the effects of the BTK inhibitor of Formula (XVIII) on flux at two timepoints, for comparison withFIG. 99 , in the ID8 syngeneic orthotropic ovarian cancer model. -
FIG. 44 illustrates tumor response to treatment with the BTK inhibitor of Formula (XVIII) correlates with a significant reduction in immunosuppressive tumor associated lymphocytes in tumor-bearing mice, in comparison to a control (vehicle). -
FIG. 45 illustrates that treatment with the BTK inhibitor of Formula (XVIII) impairs ID8 ovarian cancer growth in the syngeneic murine model in comparison to a control (vehicle). -
FIG. 46 illustrates that treatment with the BTK inhibitor of Formula (XVIII) induces a tumor response that correlates with a significant reduction in total B cells in tumor-bearing mice. -
FIG. 47 illustrates that treatment with the BTK inhibitor of Formula (XVIII) induces a tumor response that correlates with a significant reduction in B regulatory cells (Bregs) in tumor-bearing mice. -
FIG. 48 illustrates that treatment with the BTK inhibitor of Formula (XVIII) induces a tumor response that correlates with a significant reduction in immunosuppressive tumor associated Tregs. -
FIG. 49 illustrates that treatment with the BTK inhibitor of Formula (XVIII) induces a tumor response that correlates with an increase in CD8+ T cells. -
FIG. 50 illustrates the effects on tumor volume of vehicle (measured in mm3) of the BTK inhibitor of Formula (XVIII), a combination of the BTK inhibitor of Formula (XVIII) and gemcitabine (“Gem”), and gemcitabine alone. -
FIG. 51 illustrates the effects on the amount of CD8+ T cells, given as a percentage of cells expressing the T cell receptor (CD3), of the BTK inhibitor of Formula (XVIII), a combination of the BTK inhibitor of Formula (XVIII) and gemcitabine (“Gem”), and gemcitabine alone. -
FIG. 52 illustrates the effects on the percentage of CD4+, CD25+, and FoxP3+ T regulatory cells (“Tregs”), given as a percentage of cells expressing the T cell receptor (CD3), of the BTK inhibitor of Formula (XVIII), a combination of the BTK inhibitor of Formula (XVIII) and gemcitabine (“Gem”), and gemcitabine alone. -
FIG. 53 illustrates the effects on the percentage of CD11b+, LY6Clow, F4/80+, and Csflr+ tumor-associated macrophages (“TAMs”), given as a percentage of cells expressing the T cell receptor (CD3), of the BTK inhibitor of Formula (XVIII), a combination of the BTK inhibitor of Formula (XVIII) and gemcitabine (“Gem”), and gemcitabine alone. -
FIG. 54 illustrates the effects on the percentage of Gr1+ and LY6Chi, F4/80+, and Csflr+ myeloid-derived suppressor cells (“MDSCs”), given as a percentage of cells expressing the T cell receptor (CD3), of the BTK inhibitor of Formula (XVIII), a combination of the BTK inhibitor of Formula (XVIII) and gemcitabine (“Gem”), and gemcitabine alone. -
FIG. 55 illustrates representative photomicrographs and comparison of maximal thrombus size in laser injured arterioles of VWF HAI mutant mice infused with human platelets in the absence or presence of various BTK inhibitors. Representative photomicrographs are given as a comparison of maximal thrombus size in laser-injured arterioles (1 μM concentrations shown). -
FIG. 56 illustrates a quantitative comparison obtained by in vivo analysis of early thrombus dynamics in a humanized mouse laser injury model using three BTK inhibitors at aconcentration 1 μM. -
FIG. 57 illustrates the effect of the tested BTK inhibitors on thrombus formation. The conditions used were N=4, 3 mice per drug; anti-clotting agents <2000 μM2. In studies with ibrutinib, 48% MCL bleeding events were observed with 560 mg QD and 63% CLL bleeding events were observed with 420 mg QD, where bleeding event is defined as subdural hematoma, ecchymoses, GI bleeding, or hematuria. -
FIG. 58 illustrates the effect of the concentration of the tested BTK inhibitors on thrombus formation. -
FIG. 59 illustrates the results of GPVI platelet aggregation studies of Formula XVIII (IC50=1.15 μM) and Formula XX-A (ibrutinib, IC50=0.13 μM). -
FIG. 60 illustrates the results of GPVI platelet aggregation studies of Formula XVIII and Formula XX-A (ibrutinib). - Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs.
- The terms “co-administration” and “administered in combination with” as used herein, encompass administration of two or more agents (such as at least one PI3K inhibitor and at least one BTK inhibitor) to a subject (such as a human or a mammal), so that both agents and/or their metabolites are present in the subject at the same time. Agents are also referred to as active ingredients, or active pharmaceutical ingredients, or drugs. Co-administration includes simultaneous administration in separate compositions (also referred to as concurrent administration), administration at different times in separate compositions, or administration in a composition in which both agents are present. Simultaneous administration in separate compositions and administration in a composition in which both agents are present are preferred.
- The term “effective amount” or “therapeutically effective amount” refers to that amount of a compound or combination of compounds as described herein that is sufficient to effect the intended application including, but not limited to, disease treatment. A therapeutically effective amount may vary depending upon the intended application (in vitro or in vivo), or the subject and disease condition being treated (e.g., the weight, age and gender of the subject), the severity of the disease condition, the manner of administration, etc. which can readily be determined by one of ordinary skill in the art. The term also applies to a dose that will induce a particular response in target cells, (e.g., the reduction of platelet adhesion and/or cell migration). The specific dose will vary depending on the particular compounds chosen, the dosing regimen to be followed, whether the compound is administered in combination with other compounds, timing of administration, the tissue to which it is administered, and the physical delivery system in which the compound is carried.
- A “therapeutic effect” as that term is used herein, encompasses a therapeutic benefit and/or a prophylactic benefit. A prophylactic effect includes delaying or eliminating the appearance of a disease or condition, delaying or eliminating the onset of symptoms of a disease or condition, slowing, halting, or reversing the progression of a disease or condition, or any combination thereof.
- The term “pharmaceutically acceptable salt” refers to salts derived from a variety of organic and inorganic counter ions known in the art. Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids. Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid and phosphoric acid. Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid and salicylic acid. Pharmaceutically acceptable base addition salts can be formed with inorganic and organic bases. Inorganic bases from which salts can be derived include, for example, sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese and aluminum. Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins. Specific examples include isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine. In selected embodiments, the pharmaceutically acceptable base addition salt is chosen from ammonium, potassium, sodium, calcium, and magnesium salts.
- “Pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and inert ingredients. The use of such pharmaceutically acceptable carriers or pharmaceutically acceptable excipients for active pharmaceutical ingredients is well known in the art. Except insofar as any conventional pharmaceutically acceptable carrier or pharmaceutically acceptable excipient is incompatible with the active pharmaceutical ingredient, its use in the therapeutic compositions of the invention is contemplated. Supplementary active pharmaceutical ingredients, such as other drugs, can also be incorporated into the described compositions and methods.
- “Prodrug” is intended to describe a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound described herein. Thus, the term “prodrug” refers to a precursor of a biologically active compound that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject, but is converted in vivo to an active compound, for example, by hydrolysis. The prodrug compound often offers the advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, e.g., Bundgaard, H., Design of Prodrugs (1985) (Elsevier, Amsterdam). The term “prodrug” is also intended to include any covalently bonded carriers, which release the active compound in vivo when administered to a subject. Prodrugs of an active compound, as described herein, may be prepared by modifying functional groups present in the active compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to yield the active parent compound. Prodrugs include, for example, compounds wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the active compound is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetates, formates and benzoate derivatives of an alcohol, various ester derivatives of a carboxylic acid, or acetamide, formamide and benzamide derivatives of an amine functional group in the active compound.
- The term “in vivo” refers to an event that takes place in a subject's body.
- The term “in vitro” refers to an event that takes places outside of a subject's body. In vitro assays encompass cell-based assays in which cells alive or dead are employed and may also encompass a cell-free assay in which no intact cells are employed.
- Unless otherwise stated, the chemical structures depicted herein are intended to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds where one or more hydrogen atoms is replaced by deuterium or tritium, or wherein one or more carbon atoms is replaced by 13C- or 14C-enriched carbons, are within the scope of this invention.
- When ranges are used herein to describe, for example, physical or chemical properties such as weight or chemical formulae, all combinations and subcombinations of ranges and specific embodiments therein are intended to be included. Use of the term “about” when referring to a number or a numerical range means that the number or numerical range referred to is an approximation within experimental variability (or within statistical experimental error), and thus the number or numerical range may vary. The variation is typically from 0% to 10%, preferably from 0% to 10%, more preferably from 0% to 5% of the stated number or numerical range. The term “comprising” (and related terms such as “comprise” or “comprises” or “having” or “including”) encompasses those embodiments such as, for example, an embodiment of any composition of matter, method or process that “consist of” or “consist essentially of” the described features.
- “Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to ten carbon atoms (i.e., C1-C10alkyl and (C1-C10)alkyl). Whenever it appears herein, a numerical range such as “1 to 10” refers to each integer in the given range—e.g., “1 to 10 carbon atoms” means that the alkyl group may consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms, although the definition is also intended to cover the occurrence of the term “alkyl” where no numerical range is specifically designated. Typical alkyl groups include, but are in no way limited to, methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl, sec-butyl isobutyl, tertiary butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl and decyl. The alkyl moiety may be attached to the rest of the molecule by a single bond, such as for example, methyl (Me), ethyl (Et), n-propyl (Pr), 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl) and 3-methylhexyl. Unless stated otherwise specifically in the specification, an alkyl group is optionally substituted by one or more of substituents which are independently alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2 where each Ra is independently hydrogen, unsubstituted alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- “Alkylaryl” refers to an -(alkyl)aryl radical where aryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for aryl and alkyl respectively.
- “Alkylhetaryl” refers to an -(alkyl)hetaryl radical where hetaryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for aryl and alkyl respectively.
- “Alkylheterocycloalkyl” refers to an -(alkyl) heterocycyl radical where alkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heterocycloalkyl and alkyl respectively.
- An “alkene” moiety refers to a group consisting of at least two carbon atoms and at least one carbon-carbon double bond, and an “alkyne” moiety refers to a group consisting of at least two carbon atoms and at least one carbon-carbon triple bond. The alkyl moiety, whether saturated or unsaturated, may be branched, straight chain, or cyclic.
- “Alkenyl” refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one double bond, and having from two to ten carbon atoms (i.e., C2-C10 alkenyl and (C2-C10)alkenyl). Whenever it appears herein, a numerical range such as “2 to 10” refers to each integer in the given range—e.g., “2 to 10 carbon atoms” means that the alkenyl group may consist of 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms. The alkenyl moiety may be attached to the rest of the molecule by a single bond, such as for example, ethenyl (i.e., vinyl), prop-1-enyl (i.e., allyl), but-1-enyl, pent-1-enyl and penta-1,4-dienyl. Unless stated otherwise specifically in the specification, an alkenyl group is optionally substituted by one or more substituents which are independently alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- “Alkenyl-cycloalkyl” refers to an (alkenyl)cycloalkyl radical where alkenyl and cycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for alkenyl and cycloalkyl respectively.
- “Alkynyl” refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one triple bond, having from two to ten carbon atoms (i.e. C2-C10 alkynyl and (C2-C10)alkynyl). Whenever it appears herein, a numerical range such as “2 to 10” refers to each integer in the given range—e.g., “2 to 10 carbon atoms” means that the alkynyl group may consist of 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms. The alkynyl may be attached to the rest of the molecule by a single bond, for example, ethynyl, propynyl, butynyl, pentynyl and hexynyl. Unless stated otherwise specifically in the specification, an alkynyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- “Alkynyl-cycloalkyl” refers to an -(alkynyl)cycloalkyl radical where alkynyl and cycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for alkynyl and cycloalkyl respectively.
- “Carboxaldehyde” refers to a —(C═O)H radical.
- “Carboxyl” refers to a —(C═O)OH radical.
- “Cyano” refers to a —CN radical.
- “Cycloalkyl” refers to a monocyclic or polycyclic radical that contains only carbon and hydrogen, and may be saturated, or partially unsaturated. Cycloalkyl groups include groups having from 3 to 10 ring atoms (i.e. C2-C10 cycloalkyl and (C2-C10)cycloalkyl). Whenever it appears herein, a numerical range such as “3 to 10” refers to each integer in the given range—e.g., “3 to 10 carbon atoms” means that the cycloalkyl group may consist of 3 carbon atoms and greater, up to and including 10 carbon atoms. Illustrative examples of cycloalkyl groups include, but are not limited to the following moieties: cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, norbornyl, and the like. Unless stated otherwise specifically in the specification, a cycloalkyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- “Cycloalkyl-alkenyl” refers to a -(cycloalkyl)alkenyl radical where cycloalkyl and alkenyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for cycloalkyl and alkenyl, respectively.
- “Cycloalkyl-heterocycloalkyl” refers to a -(cycloalkyl)heterocycloalkyl radical where cycloalkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for cycloalkyl and heterocycloalkyl, respectively.
- “Cycloalkyl-heteroaryl” refers to a -(cycloalkyl)heteroaryl radical where cycloalkyl and heteroaryl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for cycloalkyl and heteroaryl, respectively.
- The term “alkoxy” refers to the group —O-alkyl, including from 1 to 8 carbon atoms of a straight, branched, cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy and cyclohexyloxy. “Lower alkoxy” refers to alkoxy groups containing one to six carbons.
- The term “substituted alkoxy” refers to alkoxy wherein the alkyl constituent is substituted (i.e., —O-(substituted alkyl)). Unless stated otherwise specifically in the specification, the alkyl moiety of an alkoxy group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- The term “alkoxycarbonyl” refers to a group of the formula (alkoxy)(C═O)— attached through the carbonyl carbon wherein the alkoxy group has the indicated number of carbon atoms. Thus a C1-C6 alkoxycarbonyl group is an alkoxy group having from 1 to 6 carbon atoms attached through its oxygen to a carbonyl linker. “Lower alkoxycarbonyl” refers to an alkoxycarbonyl group wherein the alkoxy group is a lower alkoxy group.
- The term “substituted alkoxycarbonyl” refers to the group (substituted alkyl)-O—C(O)— wherein the group is attached to the parent structure through the carbonyl functionality. Unless stated otherwise specifically in the specification, the alkyl moiety of an alkoxycarbonyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- “Acyl” refers to the groups (alkyl)-C(O)—, (aryl)-C(O)—, (heteroaryl)-C(O)—, (heteroalkyl)-C(O)— and (heterocycloalkyl)-C(O)—, wherein the group is attached to the parent structure through the carbonyl functionality. If the R radical is heteroaryl or heterocycloalkyl, the hetero ring or chain atoms contribute to the total number of chain or ring atoms. Unless stated otherwise specifically in the specification, the alkyl, aryl or heteroaryl moiety of the acyl group is optionally substituted by one or more substituents which are independently alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- “Acyloxy” refers to a R(C═O)O— radical wherein “R” is alkyl, aryl, heteroaryl, heteroalkyl or heterocycloalkyl, which are as described herein. If the R radical is heteroaryl or heterocycloalkyl, the hetero ring or chain atoms contribute to the total number of chain or ring atoms. Unless stated otherwise specifically in the specification, the “R” of an acyloxy group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- “Amino” or “amine” refers to a —N(Ra)2 radical group, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl, unless stated otherwise specifically in the specification. When a —N(Ra)2 group has two Ra substituents other than hydrogen, they can be combined with the nitrogen atom to form a 4-, 5-, 6- or 7-membered ring. For example, —N(Ra)2 is intended to include, but is not limited to, 1-pyrrolidinyl and 4-morpholinyl. Unless stated otherwise specifically in the specification, an amino group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- The term “substituted amino” also refers to N-oxides of the groups —NHRd, and NRdRd each as described above. N-oxides can be prepared by treatment of the corresponding amino group with, for example, hydrogen peroxide or m-chloroperoxybenzoic acid.
- “Amide” or “amido” refers to a chemical moiety with formula —C(O)N(R)2 or —NHC(O)R, where R is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon), each of which moiety may itself be optionally substituted. The R2 of —N(R)2 of the amide may optionally be taken together with the nitrogen to which it is attached to form a 4-, 5-, 6- or 7-membered ring. Unless stated otherwise specifically in the specification, an amido group is optionally substituted independently by one or more of the substituents as described herein for alkyl, cycloalkyl, aryl, heteroaryl, or heterocycloalkyl. An amide may be an amino acid or a peptide molecule attached to a compound of Formula (I), thereby forming a prodrug. The procedures and specific groups to make such amides, including the use of protecting groups, are known to those of skill in the art and can readily be found in seminal sources such as Greene and Wuts, Protective Groups in Organic Synthesis, 3rd Ed., John Wiley & Sons, New York, N.Y., 1999.
- “Aromatic” or “aryl” or “Ar” refers to an aromatic radical with six to ten ring atoms (e.g., C6-C10 aromatic or C6-C10 aryl) which has at least one ring having a conjugated pi electron system which is carbocyclic (e.g., phenyl, fluorenyl, and naphthyl). Bivalent radicals formed from substituted benzene derivatives and having the free valences at ring atoms are named as substituted phenylene radicals. Bivalent radicals derived from univalent polycyclic hydrocarbon radicals whose names end in “-yl” by removal of one hydrogen atom from the carbon atom with the free valence are named by adding “-idene” to the name of the corresponding univalent radical, e.g., a naphthyl group with two points of attachment is termed naphthylidene. Whenever it appears herein, a numerical range such as “6 to 10” refers to each integer in the given range; e.g., “6 to 10 ring atoms” means that the aryl group may consist of 6 ring atoms, 7 ring atoms, etc., up to and including 10 ring atoms. The term includes monocyclic or fused-ring polycyclic (i.e., rings which share adjacent pairs of ring atoms) groups. Unless stated otherwise specifically in the specification, an aryl moiety is optionally substituted by one or more substituents which are independently alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- “Aralkyl” or “arylalkyl” refers to an (aryl)alkyl-radical where aryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for aryl and alkyl respectively.
- “Ester” refers to a chemical radical of formula —COOR, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon). The procedures and specific groups to make esters, including the use of protecting groups, are known to those of skill in the art and can readily be found in seminal sources such as Greene and Wuts, Protective Groups in Organic Synthesis, 3rd Ed., John Wiley & Sons, New York, N.Y., 1999. Unless stated otherwise specifically in the specification, an ester group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- “Fluoroalkyl” refers to an alkyl radical, as defined above, that is substituted by one or more fluoro radicals, as defined above, for example, trifluoromethyl, difluoromethyl, 2,2,2-trifluoroethyl, 1-fluoromethyl-2-fluoroethyl, and the like. The alkyl part of the fluoroalkyl radical may be optionally substituted as defined above for an alkyl group.
- “Halo,” “halide,” or, alternatively, “halogen” is intended to mean fluoro, chloro, bromo or iodo. The terms “haloalkyl,” “haloalkenyl,” “haloalkynyl,” and “haloalkoxy” include alkyl, alkenyl, alkynyl and alkoxy structures that are substituted with one or more halo groups or with combinations thereof. For example, the terms “fluoroalkyl” and “fluoroalkoxy” include haloalkyl and haloalkoxy groups, respectively, in which the halo is fluorine.
- “Heteroalkyl,” “heteroalkenyl,” and “heteroalkynyl” refer to optionally substituted alkyl, alkenyl and alkynyl radicals and which have one or more skeletal chain atoms selected from an atom other than carbon, e.g., oxygen, nitrogen, sulfur, phosphorus or combinations thereof. A numerical range may be given—e.g., C1-C4 heteroalkyl which refers to the chain length in total, which in this example is 4 atoms long. A heteroalkyl group may be substituted with one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)ORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- “Heteroalkylaryl” refers to an -(heteroalkyl)aryl radical where heteroalkyl and aryl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and aryl, respectively.
- “Heteroalkylheteroaryl” refers to an -(heteroalkyl)heteroaryl radical where heteroalkyl and heteroaryl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and heteroaryl, respectively.
- “Heteroalkylheterocycloalkyl” refers to an -(heteroalkyl)heterocycloalkyl radical where heteroalkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and heterocycloalkyl, respectively.
- “Heteroalkylcycloalkyl” refers to an -(heteroalkyl)cycloalkyl radical where heteroalkyl and cycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and cycloalkyl, respectively.
- “Heteroaryl” or “heteroaromatic” or “HetAr” refers to a 5- to 18-membered aromatic radical (e.g., C5-C13 heteroaryl) that includes one or more ring heteroatoms selected from nitrogen, oxygen and sulfur, and which may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system. Whenever it appears herein, a numerical range such as “5 to 18” refers to each integer in the given range—e.g., “5 to 18 ring atoms” means that the heteroaryl group may consist of 5 ring atoms, 6 ring atoms, etc., up to and including 18 ring atoms. Bivalent radicals derived from univalent heteroaryl radicals whose names end in “-yl” by removal of one hydrogen atom from the atom with the free valence are named by adding “-idene” to the name of the corresponding univalent radical—e.g., a pyridyl group with two points of attachment is a pyridylidene. A N-containing “heteroaromatic” or “heteroaryl” moiety refers to an aromatic group in which at least one of the skeletal atoms of the ring is a nitrogen atom. The polycyclic heteroaryl group may be fused or non-fused. The heteroatom(s) in the heteroaryl radical are optionally oxidized. One or more nitrogen atoms, if present, are optionally quaternized. The heteroaryl may be attached to the rest of the molecule through any atom of the ring(s). Examples of heteroaryls include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzindolyl, 1,3-benzodioxolyl, benzofuranyl, benzooxazolyl, benzo[d]thiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, benzo[b][1,4]oxazinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzoxazolyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzofurazanyl, benzothiazolyl, benzothienyl(benzothiophenyl), benzothieno[3,2-d]pyrimidinyl, benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl, cyclopenta[d]pyrimidinyl, 6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidinyl, 5,6-dihydrobenzo[h]quinazolinyl, 5,6-dihydrobenzo[h]cinnolinyl, 6,7-dihydro-5H-benzo[6,7]cyclohepta[1,2-c]pyridazinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furazanyl, furanonyl, furo[3,2-c]pyridinyl, 5,6,7,8,9,10-hexahydrocycloocta[d]pyrimidinyl, 5,6,7,8,9,10-hexahydrocycloocta[d]pyridazinyl, 5,6,7,8,9,10-hexahydrocycloocta[d]pyridinyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, 5,8-methano-5,6,7,8-tetrahydroquinazolinyl, naphthyridinyl, 1,6-naphthyridinonyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl, 5,6,6a,7,8,9,10,10a-octahydrobenzo[h]quinazolinyl, 1-phenyl-1H-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyranyl, pyrrolyl, pyrazolyl, pyrazolo[3,4-d]pyrimidinyl, pyridinyl, pyrido[3,2-d]pyrimidinyl, pyrido[3,4-d]pyrimidinyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyrrolyl, quinazolinyl, quinoxalinyl, quinolinyl, isoquinolinyl, tetrahydroquinolinyl, 5,6,7,8-tetrahydroquinazolinyl, 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidinyl, 6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidinyl, 5,6,7,8-tetrahydropyrido[4,5-c]pyridazinyl, thiazolyl, thiadiazolyl, thiapyranyl, triazolyl, tetrazolyl, triazinyl, thieno[2,3-d]pyrimidinyl, thieno[3,2-d]pyrimidinyl, thieno[2,3-c]pyridinyl, and thiophenyl (i.e. thienyl). Unless stated otherwise specifically in the specification, a heteroaryl moiety is optionally substituted by one or more substituents which are independently: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilanyl, —ORa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- Substituted heteroaryl also includes ring systems substituted with one or more oxide (—O—) substituents, such as, for example, pyridinyl N-oxides.
- “Heteroarylalkyl” refers to a moiety having an aryl moiety, as described herein, connected to an alkylene moiety, as described herein, wherein the connection to the remainder of the molecule is through the alkylene group.
- “Heterocycloalkyl” refers to a stable 3- to 18-membered non-aromatic ring radical that comprises two to twelve carbon atoms and from one to six heteroatoms selected from nitrogen, oxygen and sulfur. Whenever it appears herein, a numerical range such as “3 to 18” refers to each integer in the given range—e.g., “3 to 18 ring atoms” means that the heterocycloalkyl group may consist of 3 ring atoms, 4 ring atoms, etc., up to and including 18 ring atoms. Unless stated otherwise specifically in the specification, the heterocycloalkyl radical is a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. The heteroatoms in the heterocycloalkyl radical may be optionally oxidized. One or more nitrogen atoms, if present, are optionally quaternized. The heterocycloalkyl radical is partially or fully saturated. The heterocycloalkyl may be attached to the rest of the molecule through any atom of the ring(s). Examples of such heterocycloalkyl radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, a heterocycloalkyl moiety is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilanyl, —ORa, —SRa, —OC(O)—Ra, —N(Ra)2, —C(O)Ra, —C(O)ORa, —OC(O)N(Ra)2, —C(O)N(Ra)2, —N(Ra)C(O)ORa, —N(Ra)C(O)Ra, —N(Ra)C(O)N(Ra)2, N(Ra)C(NRa)N(Ra)2, —N(Ra)S(O)tRa (where t is 1 or 2), —S(O)tORa (where t is 1 or 2), —S(O)tN(Ra)2 (where t is 1 or 2), or PO3(Ra)2, where each Ra is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- “Heterocycloalkyl” also includes bicyclic ring systems wherein one non-aromatic ring, usually with 3 to 7 ring atoms, contains at least 2 carbon atoms in addition to 1-3 heteroatoms independently selected from oxygen, sulfur, and nitrogen, as well as combinations comprising at least one of the foregoing heteroatoms; and the other ring, usually with 3 to 7 ring atoms, optionally contains 1-3 heteroatoms independently selected from oxygen, sulfur, and nitrogen and is not aromatic.
- “Isomers” are different compounds that have the same molecular formula. “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space—i.e., having a different stereochemical configuration. “Enantiomers” are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a “racemic” mixture. The term “(±)” is used to designate a racemic mixture where appropriate. “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other. The absolute stereochemistry is specified according to the Cahn-Ingold-Prelog R-S system. When a compound is a pure enantiomer the stereochemistry at each chiral carbon can be specified by either R or S. Resolved compounds whose absolute configuration is unknown can be designated (+) or (−) depending on the direction (dextro- or levorotatory) which they rotate plane polarized light at the wavelength of the sodium D line. Certain of the compounds described herein contain one or more asymmetric centers and can thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that can be defined, in terms of absolute stereochemistry, as (R)- or (S)-. The present chemical entities, pharmaceutical compositions and methods are meant to include all such possible isomers, including racemic mixtures, optically pure forms and intermediate mixtures. Optically active (R)- and (S)-isomers can be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers.
- “Enantiomeric purity” as used herein refers to the relative amounts, expressed as a percentage, of the presence of a specific enantiomer relative to the other enantiomer. For example, if a compound, which may potentially have an (R)- or an (S)-isomeric configuration, is present as a racemic mixture, the enantiomeric purity is about 50% with respect to either the (R)- or (S)-isomer. If that compound has one isomeric form predominant over the other, for example, 80% (S)- and 20% (R)-, the enantiomeric purity of the compound with respect to the (S)-isomeric form is 80%. The enantiomeric purity of a compound can be determined in a number of ways known in the art, including but not limited to chromatography using a chiral support, polarimetric measurement of the rotation of polarized light, nuclear magnetic resonance spectroscopy using chiral shift reagents which include but are not limited to lanthanide containing chiral complexes or the Pirkle alcohol, or derivatization of a compounds using a chiral compound such as Mosher's acid followed by chromatography or nuclear magnetic resonance spectroscopy.
- “Moiety” refers to a specific segment or functional group of a molecule. Chemical moieties are often recognized chemical entities embedded in or appended to a molecule.
- “Nitro” refers to the —NO2 radical.
- “Oxa” refers to the —O— radical.
- “Oxo” refers to the ═O radical.
- “Tautomers” are structurally distinct isomers that interconvert by tautomerization. “Tautomerization” is a form of isomerization and includes prototropic or proton-shift tautomerization, which is considered a subset of acid-base chemistry. “Prototropic tautomerization” or “proton-shift tautomerization” involves the migration of a proton accompanied by changes in bond order, often the interchange of a single bond with an adjacent double bond. Where tautomerization is possible (e.g. in solution), a chemical equilibrium of tautomers can be reached. An example of tautomerization is keto-enol tautomerization. A specific example of keto-enol tautomerization is the interconversion of pentane-2,4-dione and 4-hydroxypent-3-en-2-one tautomers. Another example of tautomerization is phenol-keto tautomerization. A specific example of phenol-keto tautomerization is the interconversion of pyridin-4-ol and pyridin-4(1H)-one tautomers.
- The terms “enantiomerically enriched,” “enantiomerically pure” and “non-racemic,” as used herein, refer to compositions in which the percent by weight of one enantiomer is greater than the amount of that one enantiomer in a control mixture of the racemic composition (e.g., greater than 1:1 by weight). For example, an enantiomerically enriched preparation of the (S)-enantiomer, means a preparation of the compound having greater than 50% by weight of the (S)-enantiomer relative to the (R)-enantiomer, such as at least 75% by weight, such as at least 80% by weight. In some embodiments, the enrichment can be significantly greater than 80% by weight, providing a “substantially enantiomerically enriched,” “substantially enantiomerically pure” or a “substantially non-racemic” preparation, which refers to preparations of compositions which have at least 85% by weight of one enantiomer relative to the other enantiomer, such as at least 90% by weight, and such as at least 95% by weight. The terms “diastereomerically enriched” and “diastereomerically pure,” as used herein, refer to compositions in which the percent by weight of one diastereomer is greater than the amount of that one diastereomer in a control mixture of diastereomers. In some embodiments, the enrichment can be significantly greater than 80% by weight, providing a “substantially diastereomerically enriched” or “substantially diastereomerically pure” preparation, which refers to preparations of compositions which have at least 85% by weight of one diastereomer relative to other diastereomers, such as at least 90% by weight, and such as at least 95% by weight.
- In preferred embodiments, the enantiomerically enriched composition has a higher potency with respect to therapeutic utility per unit mass than does the racemic mixture of that composition. Enantiomers can be isolated from mixtures by methods known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts; or preferred enantiomers can be prepared by asymmetric syntheses. See, for example, Jacques, et al., Enantiomers, Racemates and Resolutions, Wiley Interscience, New York, 1981; and Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill, N Y, 1962.
- A “leaving group or atom” is any group or atom that will, under selected reaction conditions, cleave from the starting material, thus promoting reaction at a specified site. Examples of such groups, unless otherwise specified, include halogen atoms and mesyloxy, p-nitrobenzensulphonyloxy and tosyloxy groups.
- “Protecting group” is intended to mean a group that selectively blocks one or more reactive sites in a multifunctional compound such that a chemical reaction can be carried out selectively on another unprotected reactive site and the group can then be readily removed after the selective reaction is complete. A variety of protecting groups are disclosed, for example, in T. H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, Third Edition, John Wiley & Sons, New York, 1999.
- “Solvate” refers to a compound in physical association with one or more molecules of a pharmaceutically acceptable solvent.
- “Substituted” means that the referenced group may have attached one or more additional moieties individually and independently selected from, for example, acyl, alkyl, alkylaryl, cycloalkyl, aralkyl, aryl, carbohydrate, carbonate, heteroaryl, heterocycloalkyl, hydroxy, alkoxy, aryloxy, mercapto, alkylthio, arylthio, cyano, halo, carbonyl, ester, thiocarbonyl, isocyanato, thiocyanato, isothiocyanato, nitro, oxo, perhaloalkyl, perfluoroalkyl, phosphate, silyl, sulfinyl, sulfonyl, sulfonamidyl, sulfoxyl, sulfonate, urea, and amino, including mono- and di-substituted amino groups, and protected derivatives thereof. The substituents themselves may be substituted, for example, a cycloalkyl substituent may itself have a halide substituent at one or more of its ring carbons. The term “substituted” also means that one or more hydrogens on the designated atom/atoms is/are replaced with a selection from the indicated group, provided that the designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible if such combinations result in stable compounds. “Stable compound” or “stable structure” is defined as a compound or structure that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. The terms “optionally substituted” and “may optionally be substituted” means optional substitution with the specified groups, radicals or moieties.
- “Sulfanyl” refers to groups that include —S-(optionally substituted alkyl), —S-(optionally substituted aryl), —S-(optionally substituted heteroaryl) and —S-(optionally substituted heterocycloalkyl).
- “Sulfinyl” refers to groups that include —S(O)—H, —S(O)-(optionally substituted alkyl), —S(O)-(optionally substituted amino), —S(O)-(optionally substituted aryl), —S(O)-(optionally substituted heteroaryl) and —S(O)-(optionally substituted heterocycloalkyl).
- “Sulfonyl” refers to groups that include —S(O2)—H, —S(O2)-(optionally substituted alkyl), —S(O2)-(optionally substituted amino), —S(O2)-(optionally substituted aryl), —S(O2)-(optionally substituted heteroaryl), and —S(O2)-(optionally substituted heterocycloalkyl).
- “Sulfonamidyl” or “sulfonamido” refers to a —S(═O)2—NRR radical, where each R is selected independently from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon). The R groups in —NRR of the —S(═O)2—NRR radical may be taken together with the nitrogen to which it is attached to form a 4-, 5-, 6- or 7-membered ring. A sulfonamido group is optionally substituted by one or more of the substituents described for alkyl, cycloalkyl, aryl, heteroaryl, respectively.
- “Sulfoxyl” refers to a —S(═O)2OH radical.
- “Sulfonate” refers to a —S(═O)2—OR radical, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon). A sulfonate group is optionally substituted on R by one or more of the substituents described for alkyl, cycloalkyl, aryl, heteroaryl, respectively.
- Compounds of the invention also include crystalline and amorphous forms of those compounds, including, for example, polymorphs, pseudopolymorphs, solvates, hydrates, unsolvated polymorphs (including anhydrates), conformational polymorphs, and amorphous forms of the compounds, as well as mixtures thereof. “Crystalline form” and “polymorph” are intended to include all crystalline and amorphous forms of the compound, including, for example, polymorphs, pseudopolymorphs, solvates, hydrates, unsolvated polymorphs (including anhydrates), conformational polymorphs, and amorphous forms, as well as mixtures thereof, unless a particular crystalline or amorphous form is referred to.
- An embodiment of the invention is a composition, such as a pharmaceutical composition, comprising a combination of a PI3K inhibitor and a BTK inhibitor. Another embodiment is a kit containing both components formulated into separate pharmaceutical compositions, which are formulated for co-administration.
- Another embodiment of the invention is a method of treating a disease or condition in a subject, in particular a hyperproliferative disorder like leukemia, lymphoma or a solid tumor cancer in a subject, comprising co-administering to the subject in need thereof a therapeutically effective amount of a combination of a PI3K inhibitor and a BTK inhibitor. The pharmaceutical composition comprising the combination, and the kit, are both for use in treating such disease or condition.
- In an exemplary embodiment, the solid tumor cancer is selected from the group consisting of breast, lung, colorectal, thyroid, bone sarcoma and stomach cancers.
- In an exemplary embodiment, the leukemia is selected from the group consisting of acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), and acute lymphoblastic leukemia (ALL).
- In a preferred embodiment, the PI3K inhibitor is a PI3K-γ inhibitor.
- In another preferred embodiment, the PI3K inhibitor is a PI3K-δ inhibitor.
- In another preferred embodiment, the PI3K inhibitor is a PI3K-γ,δ inhibitor.
- In a particularly preferred embodiment, the PI3K inhibitor is a PI3K-δ inhibitor. This PI3K-δ inhibitor is more preferably a compound of Formula VIII, even more preferably the compound of Formula IX.
- The BTK inhibitor is preferably a compound of Formula XVII, even more preferably the compound of Formula XVIII.
- In one specific embodiment, the PI3K inhibitor is a PI3K-δ inhibitor and the BTK inhibitor is a compound of Formula XVII, even more preferably the compound of Formula XVIII. In a specifically preferred embodiment, the PI3K inhibitor is the compound of Formula IX and the BTK inhibitor is the compound of Formula XVIII. One or both of said inhibitors may also be in the form of a pharmaceutically acceptable salt.
- In an exemplary embodiment, the PI3K inhibitor is a PI3K inhibitor selective for 6-PI3K, γ-PI3K, or γ,δ-PI3K isoforms.
- The combination may be administered by any route known in the art. In an exemplary embodiment, the combination of the PI3K inhibitor, which is preferably selected from the group consisting of a PI3K-γ inhibitor, a PI3K-δ inhibitor, and a PI3K-γ,δ inhibitor, with the BTK inhibitor is administered by oral, intravenous, intramuscular, intraperitoneal, subcutaneous or transdermal means. In one embodiment, the administration is by injection.
- In an exemplary embodiment, the PI3K inhibitor, which is preferably selected from the group consisting of a PI3K-γ inhibitor, a PI3K-δ inhibitor, and a PI3K-γ,δ inhibitor, is in the form of a pharmaceutically acceptable salt.
- In an exemplary embodiment, the BTK inhibitor is in the form of a pharmaceutically acceptable salt.
- In an exemplary embodiment, the PI3K inhibitor, which is preferably selected from the group consisting of a PI3K-γ inhibitor, a PI3K-δ inhibitor, and a PI3K-γ,δ inhibitor, is administered to the subject before administration of the BTK inhibitor.
- In an exemplary embodiment, the PI3K inhibitor, which is preferably selected from the group consisting of a PI3K-γ inhibitor, a PI3K-δ inhibitor, and a PI3K-γ,δ inhibitor, is administered concurrently with the administration of the BTK inhibitor.
- In an exemplary embodiment, the PI3K inhibitor, which is preferably selected from the group consisting of a PI3K-γ inhibitor, a PI3K-δ inhibitor, and a PI3K-γ,δ inhibitor, is administered to the subject after administration of the BTK inhibitor.
- In an exemplary embodiment, the subject is a mammal, such as a human.
- In particular, it is one of the PI3K inhibitors described in more detail in the following paragraphs. Preferably, it is a PI3K inhibitor selected from the group consisting of PI3K-γ inhibitor, PI3K-δ inhibitor, and PI3K-γ,δ inhibitor. In one specific embodiment, it is a PI3K-δ inhibitor. In a preferred embodiment, it is a compound of Formula IX or a pharmaceutically acceptable salt thereof.
- In an exemplary embodiment, the PI3K inhibitor, which may preferably be selected from the group consisting of PI3K-γ inhibitor, PI3K-δ inhibitor, and PI3K-γ,δ inhibitor, is a compound selected from the structures disclosed in U.S. Pat. Nos. 8,193,182 and 8,569,323, and U.S. Patent Application Publication Nos. 2012/0184568 A1, 2013/0344061 A1, and 2013/0267521 A1. In an exemplary embodiment, the PI3K inhibitor is a compound of Formula (I):
- or a pharmaceutically acceptable salt thereof,
wherein: - Cy is aryl or heteroaryl substituted by 0 or 1 occurrences of R3 and 0, 1, 2, or 3 occurrences of R5;
- Wb 5 is CR8, CHR8, or N;
- R8 is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heteroalkyl, alkoxy, amido, amino, acyl, acyloxy, sulfonamido, halo, cyano, hydroxyl or nitro;
- B is hydrogen, alkyl, amino, heteroalkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which is substituted with 0, 1, 2, 3, or 4 occurrences of R2;
- each R2 is independently alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxyl, nitro, phosphate, urea, or carbonate;
- X is —(CH(R9))z—;
- Y is —N(R9)—C(═O)—, —C(═O)—N(R9)—, —C(═O)—N(R9)—(CHR9)—, —N(R9)—S(═O)—, —S(═O)—N(R9)—, S(═O)2—N(R9)—, —N(R9)—C(═O)—N(R9) or —N(R9)S(═O)2—;
- z is an integer of 1, 2, 3, or 4;
- R3 is alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, fluoroalkyl, heteroalkyl, alkoxy, amido, amino, acyl, acyloxy, sulfinyl, sulfonyl, sulfoxide, sulfone, sulfonamido, halo, cyano, aryl, heteroaryl, hydroxyl, or nitro;
- each R5 is independently alkyl, alkenyl, alkynyl, cycloalkyl, heteroalkyl, alkoxy, amido, amino, acyl, acyloxy, sulfonamido, halo, cyano, hydroxyl, or nitro;
- each R9 is independently hydrogen, alkyl, cycloalkyl, heterocyclyl, or heteroalkyl; or two adjacent occurrences of R9 together with the atoms to which they are attached form a 4- to 7-membered ring;
- Wd is heterocyclyl, aryl, cycloalkyl, or heteroaryl, each of which is substituted with one or more R10, R11, R12 or R13, and
- R10, R11, R12 and R13 are each independently hydrogen, alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, heterocyclyloxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxyl, nitro, phosphate, urea, carbonate or NR′R″ wherein R′ and R″ are taken together with nitrogen to form a cyclic moiety.
- In an exemplary embodiment, the PI3K inhibitor, PI3K-γ inhibitor, PI3K-δ inhibitor, or PI3K-γ,δ inhibitor is a compound of Formula (I-1):
- or a pharmaceutically acceptable salt thereof,
wherein: - B is a moiety of Formula (II):
- Wc is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl;
- q is an integer of 0, 1, 2, 3, or 4;
- X is a bond or —(CH(R9))z—, and z is an integer of 1, 2, 3 or 4;
- Y is a bond, —N(R9)—, —O—, —S—, —S(═O)—, —S(═O)2, —C(═O)—, —C(═O)(CHR9)z—, —N(R9)—C(═O)—, —N(R9)—C(═O)NH— or —N(R9)C(R9)2—;
- z is an integer of 1, 2, 3, or 4;
- Wd is:
- X1, X2 and X3 are each independently C, CR13 or N; and X4, X5 and X6 are each independently N, NH, CR13, S or O;
- R1 is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, amido, alkoxycarbonyl, sulfonamido, halo, cyano, or nitro;
- R2 is alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, heteroarylalkyl, alkoxy, amino, halo, cyano, hydroxy or nitro; R.sup.3 is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amido, amino, alkoxycarbonyl sulfonamido, halo, cyano, hydroxy or nitro; and
- each instance of R9 is independently hydrogen, alkyl, or heterocycloalkyl.
- In an exemplary embodiment, the PI3K inhibitor is a compound of Formula (III), also known as (S)-3-(1-((9H-purin-6-yl)amino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one,
- or a pharmaceutically acceptable salt thereof.
- In an exemplary embodiment, the PI3K inhibitor is a compound of Formula (IV), also known as (S)-3-amino-N-(1-(5-chloro-4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)ethyl)pyrazine-2-carboxamide,
- or a pharmaceutically acceptable salt thereof.
- In an exemplary embodiment, the PI3K inhibitor is a compound selected from the structures disclosed in U.S. Pat. Nos. 8,193,199 and 8,586,739. In an exemplary embodiment, the PI3K inhibitor is a compound of Formula (V):
- or a pharmaceutically-acceptable salt thereof, wherein:
- X1 is C(R9) or N;
- X2 is C(R10) or N;
- Y is N(R11), O or S;
- Z is CR8 or N;
- n is 0, 1, 2 or 3;
- R1 is a direct-bonded or oxygen-linked saturated, partially saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one 0 or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4, N(C1-4alkyl)C1-4 alkyl and C1-4haloalkyl;
- R2 is selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa. —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, OS(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa and —NRaC2-6 alkylORa; or R2 is selected from C1-6alkyl, phenyl, benzyl, heteroaryl, heterocycle, —(C1-3 alkyl)heteroaryl, —(C1-3 alkyl)heterocycle, —O(C1-3 alkyl)heteroaryl, —O(C1-3 alkyl)heterocycle, —NRa(C1-3alkyl)heteroaryl, —NRa(C1-3 alkyl)heterocycle, —(C1-3 alkyl)phenyl, —O(C1-3 alkyl)phenyl and —NRa(C1-3 alkyl)phenyl all of which are substituted by 0, 1, 2 or 3 substituents selected from C1-4haloalkyl, OC1-4alkyl, Br, Cl, F, I and C1-4alkyl;
- R3 is selected from H, halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)Ra, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2R2, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaNRaRa, —NRaC2-6 alkylORa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl;
- R4 is, independently, in each instance, halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl or C1-4haloalkyl;
- R5 is, independently, in each instance, H, halo, C1-6alkyl, C1-4haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl; or both R5 groups together form a C3-6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl;
- R6 is selected from H, halo, C1-6alkyl, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa;
- R7 is selected from H, halo, C1-6alkyl, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa;
- R8 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl;
- R9 is selected from H, halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRaC(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(O)NRaRaN(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6alkylNRaRa, —NRaC1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, NRaC2-6 alkylORa, —NRaC2-6 alkylORa; or R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa and —NRaC2-6 alkylORa;
- R10 is H, C1-3alkyl, C1-3haloalkyl, cyano, nitro, CO2Ra, C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —S(═O)Rb, S(═O)2Rb or S(═O)2NRaRa;
- R11 is H or C1-4alkyl;
- Ra is independently, at each instance, H or Rb; and
- Rb is independently, at each instance, phenyl, benzyl or C1-6alkyl, the phenyl, benzyl and C1-6 alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4alkyl, C1-3 haloalkyl, —OC1-4alkyl, —NH2, —NHC1-4alkyl, —N(C1-4 alkyl)C1-4 alkyl.
- In a preferred embodiment, X1 is C(R9). In a further preferred embodiment, X1 is C(R9) and X2 is N. In a further embodiment, X1 is C(R9) and X2 is C(R10).
- In a preferred embodiment, R1 is phenyl substituted by 0 or 1 R2 substituents, and the phenyl is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl. In one specific embodiment, R1 is unsubstituted phenyl. In a further specific embodiment, R1 is phenyl substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is selected from 2-methylphenyl, 2-chlorophenyl, 2-trifluoromethylphenyl, 2-fluorophenyl and 2-methoxyphenyl.
- In a further preferred embodiment, R1 is phenoxy.
- In a further preferred embodiment, R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, 0C1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In a further specific embodiment, R1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is an unsubstituted unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S.
- In a further specific embodiment, R1 is selected from pyridyl and pyrimidinyl.
- In one embodiment, R3 is selected from halo, C1-4haloalkyl, cyano, nitro, —C(O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl.
- In one preferred embodiment, R3 is H.
- In another preferred embodiment, R3 is selected from F, Cl, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl.
- In one embodiment, R5 is, independently, in each instance, H, halo, C1-6alkyl, C1-4haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl; or both R5 groups together form a C3-6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4alkyl.
- In one preferred embodiment, R5 is H.
- In another preferred embodiment, one R5 is S-methyl, the other is H.
- In another preferred embodiment, at least one R5 is halo, C1-6alkyl, C1-4haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl.
- In a preferred embodiment, R6 is H.
- In another preferred embodiment, R6 is F, Cl, cyano or nitro.
- In a preferred embodiment, R7 is H.
- In another preferred embodiment, R7 is F, Cl, cyano or nitro.
- In a preferred embodiment, R8 is selected from H, CF3, C1-3alkyl, Br, Cl and F.
- In one specific embodiment, R8 is H.
- In another specific embodiment, R8 is selected from CF3, C1-3alkyl, Br, Cl and F.
- In a preferred embodiment, R9 is H.
- In another embodiment, R9 is selected from halo, C1-4haloalkyl, cyano, nitro, C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6alkylNRaRa, —NRaC2-6alkylORa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRaC2-6 alkyl ORa.
- In one embodiment, R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6alkylNRaRa and —NRaC2-6alkylORa.
- In one preferred embodiment, R10 is H.
- In another preferred embodiment, Rm is cyano, nitro, CO2Ra, C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, S(═O)Rb, S(═O)2Rb or S(═O)2NRaRa.
- In one preferred embodiment, R11 is H.
- In another exemplary embodiment, the PI3K inhibitor is a compound of Formula (VI):
- or a pharmaceutically-acceptable salt thereof, wherein:
- X1 is C(R9) or N;
- X2 is C(R10) or N;
- Y is N(R11), O or S;
- Z is CR8 or N;
- R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl;
- R2 is selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa and —NRaC2-6 alkylORa; or R2 is selected from C1-6alkyl, phenyl, benzyl, heteroaryl, heterocycle, —(C1-3alkyl)heteroaryl, —(C1-3alkyl)heterocycle, —O(C1-3alkyl)heteroaryl, —O(C1-3alkyl)heterocycle, —NRa(C1-3alkyl)heteroaryl, —NRa(C1-3alkyl)heterocycle, —(C1-3alkyl)phenyl, —O(C1-3 alkyl)phenyl and —NRa(C1-3 alkyl)phenyl all of which are substituted by 0, 1, 2 or 3 substituents selected from C1-4haloalkyl, OC1-4alkyl, Br, Cl, F, I and C1-4alkyl;
- R3 is selected from H, halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, C(═O)NRaRaC(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylORa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl;
- R5 is, independently, in each instance, H, halo, C1-6alkyl, C1-4haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl; or both R5 groups together form a C3-6-spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl;
- R6 is selected from H, halo, C1-6alkyl, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa;
- R7 is selected from H, halo, C1-6alkyl, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)RaS(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa;
- R8 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6 alkyl, Br, Cl, F, I and C1-6alkyl;
- R9 is selected from H, halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRaC2-6 alkylORa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRa, —NRaC2-6 alkylORa; or R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa and —NRaC2-6 alkylORa;
- R10 is H, C1-3alkyl, C1-3haloalkyl, cyano, nitro, CO2Ra, C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —S(═O)Rb, S(═O)2Rb or S(═O)2NRaRa; —R11 is H or C1-4alkyl;
- Ra is independently, at each instance, H or Rb; and
- Rb is independently, at each instance, phenyl, benzyl or C1-6alkyl, the phenyl, benzyl and C1-6 alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4alkyl, C1-3 haloalkyl, —OC1-4alkyl, —NH2, —NHC1-4alkyl, —N(C1-4 alkyl)C1-4 alkyl.
- In a preferred embodiment, X1 is C(R9). In a further preferred embodiment, X1 is C(R9) and X2 is N. In a further embodiment, X1 is C(R9) and X2 is C(R10).
- In a preferred embodiment, R1 is phenyl substituted by 0 or 1 R2 substituents, and the phenyl is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl. In one specific embodiment, R1 is unsubstituted phenyl. In a further specific embodiment, R1 is phenyl substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is selected from 2-methylphenyl, 2-chlorophenyl, 2-trifluoromethylphenyl, 2-fluorophenyl and 2-methoxyphenyl.
- In a further preferred embodiment, R1 is phenoxy.
- In a further preferred embodiment, R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, 0C1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In a further specific embodiment, R1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is an unsubstituted unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S.
- In a further specific embodiment, R1 is selected from pyridyl and pyrimidinyl.
- In one embodiment, R3 is selected from halo, C1-4haloalkyl, cyano, nitro, —C(O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)2Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6alkylNRaRa, —NRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl.
- In one preferred embodiment, R3 is H.
- In another preferred embodiment, R3 is selected from F, Cl, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl.
- In one embodiment, R5 is, independently, in each instance, H, halo, C1-6alkyl, C1-4 haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4 alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl; or both R5 groups together form a C3-6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4alkyl.
- In one preferred embodiment, R5 is H.
- In another preferred embodiment, one R5 is S-methyl, the other is H.
- In another preferred embodiment, at least one R5 is halo, C1-6alkyl, C1-4haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl.
- In a preferred embodiment, R6 is H.
- In another preferred embodiment, R6 is F, Cl, cyano or nitro.
- In a preferred embodiment, R7 is H.
- In another preferred embodiment, R7 is F, Cl, cyano or nitro.
- In a preferred embodiment, R8 is selected from H, CF3, C1-3alkyl, Br, Cl and F.
- In one specific embodiment, R8 is H.
- In another specific embodiment, R8 is selected from CF3, C1-3alkyl, Br, Cl and F.
- In a preferred embodiment, R9 is H.
- In another embodiment, R9 is selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRaC2-6 alkylORa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRaC2-6 alkylORa.
- In one embodiment, R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6alkylNRaRa and —NRaC2-6alkylORa.
- In one preferred embodiment, R10 is H.
- In another preferred embodiment, R10 is cyano, nitro, CO2Ra, C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, S(═O)Rb, S(═O)2Rb or S(═O)2NRaRa.
- In one preferred embodiment, R11 is H.
- In another exemplary embodiment, the PI3K inhibitor is a compound of Formula (VII):
- or a pharmaceutically-acceptable salt thereof, wherein:
- X1 is C(R9) or N;
- X2 is C(R10) or N;
- Y is N(R11), O or S;
- Z is CR8 or N; R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl;
- R2 is selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa and —NRaC2-6 alkylORa; or R2 is selected from C1-6alkyl, phenyl, benzyl, heteroaryl, heterocycle, —(C1-3alkyl)heteroaryl, —(C1-3alkyl)heterocycle, —O(C1-3alkyl)heteroaryl, —O(C1-3alkyl)heterocycle, —NRa(C1-3alkyl)heteroaryl, —NRa(C1-3alkyl)heterocycle, —(C1-3alkyl)phenyl, —O(C1-3 alkyl)phenyl and —NRa(C1-3 alkyl)phenyl all of which are substituted by 0, 1, 2 or 3 substituents selected from C1-4haloalkyl, OC1-4alkyl, Br, Cl, F, I and C1-4alkyl;
- R3 is selected from H, halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylOR1, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O) ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRaC2-6 alkylORa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl;
- R5 is, independently, in each instance, H, halo, C1-6alkyl, C1-4haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl; or both R5 groups together form a C3-6-spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl;
- R6 is selected from H, halo, C1-6alkyl, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)RaS(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa;
- R7 is selected from H, halo, C1-6alkyl, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)RaS(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa;
- R8 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl;
- R9 is selected from H, halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylORa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —OR8, —OC(═O)R8, —OC(═O)NR2R8, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2R8, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRaC2-6 alkylORa; or R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa and —NRaC2-6 alkylORa;
- R10 is H, C1-3alkyl, C1-3haloalkyl, cyano, nitro, CO2Ra, C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —S(═O)Rb, S(═O)2Rb or S(═O)2NRaRa;
- R11 is H or C1-4alkyl;
- Ra is independently, at each instance, H or Rb; and
- Rb is independently, at each instance, phenyl, benzyl or C1-6alkyl, the phenyl, benzyl and C1-6alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4alkyl, C1-3haloalkyl, —OC1-4alkyl, —NH2, —NHC1-4alkyl, —N(C1-4 alkyl)C1-4 alkyl.
- In a preferred embodiment, X1 is C(R9). In a further preferred embodiment, X1 is C(R9) and X2 is N. In a further embodiment, X1 is C(R9) and X2 is C(R10).
- In a preferred embodiment, R1 is phenyl substituted by 0 or 1 R2 substituents, and the phenyl is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl. In one specific embodiment, R1 is unsubstituted phenyl. In a further specific embodiment, R1 is phenyl substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is selected from 2-methylphenyl, 2-chlorophenyl, 2-trifluoromethylphenyl, 2-fluorophenyl and 2-methoxyphenyl.
- In a further preferred embodiment, R1 is phenoxy.
- In a further preferred embodiment, R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In a further specific embodiment, R1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is an unsubstituted unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S.
- In a further specific embodiment, R1 is selected from pyridyl and pyrimidinyl.
- In one embodiment, R3 is selected from halo, C1-4haloalkyl, cyano, nitro, —C(O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl.
- In one preferred embodiment, R3 is H.
- In another preferred embodiment, R3 is selected from F, Cl, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl.
- In one embodiment, R5 is, independently, in each instance, H, halo, C1-6alkyl, C1-4haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl; or both R5 groups together form a C3-6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4alkyl.
- In one preferred embodiment, R5 is H.
- In another preferred embodiment, one R5 is S-methyl, the other is H.
- In another preferred embodiment, at least one R5 is halo, C1-6alkyl, C1-4haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl.
- In a preferred embodiment, R6 is H.
- In another preferred embodiment, R6 is F, Cl, cyano or nitro.
- In a preferred embodiment, R7 is H.
- In another preferred embodiment, R7 is F, Cl, cyano or nitro.
- In a preferred embodiment, R8 is selected from H, CF3, C1-3alkyl, Br, Cl and F.
- In one specific embodiment, R8 is H.
- In another specific embodiment, R8 is selected from CF3, C1-3alkyl, Br, Cl and F.
- In a preferred embodiment, R9 is H.
- In another embodiment, R9 is selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRaC2-6alkylORa, C1-6alkyl phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O) ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(R)S(═O)2NRaRa, —NRaC2-6alkylNRaRa, —NRaC2-6alkylORa.
- In one embodiment, R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(RaC(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa and —NRaC2-6alkylORa.
- In one preferred embodiment, R10 is H.
- In another preferred embodiment, R10 is cyano, nitro, CO2Ra, C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, S(═O)Rb, S(═O)2Rb or S(═O)2NRaRa.
- In one preferred embodiment, R11 is H.
- In another exemplary embodiment, the PI3K inhibitor is a compound of Formula (VIII):
- or a pharmaceutically-acceptable salt thereof, wherein:
- X1 is C(R9) or N;
- X2 is C(R10) or N;
- Y is N(R11), O or S;
- Z is CR8 or N;
- R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl;
- R2 is selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa—C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa and —NRaC2-6 alkylORa; or R2 is selected from C1-6alkyl, phenyl, benzyl, heteroaryl, heterocycle, —(C1-3alkyl)heteroaryl, —(C1-3alkyl)heterocycle, —O(C1-3 alkyl)heteroaryl, —O(C1-3alkyl)heterocycle, —NRa(C1-3alkyl)heteroaryl, —NRa(C1-3 alkyl)heterocycle, —(C1-3alkyl)phenyl, —O(C1-3 alkyl)phenyl and —NRa(C1-3 alkyl)phenyl all of which are substituted by 0, 1, 2 or 3 substituents selected from C1-4haloalkyl, OC1-4alkyl, Br, Cl, F, I and C1-4alkyl;
- R3 is selected from H, halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa—C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaNRa, —NRa, —NRaC2-6 alkylORa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl;
- R5 is, independently, in each instance, H, halo, C1-6alkyl, C1-4haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl; or both R5 groups together form a C3-6-spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl;
- R6 is selected from H, halo, C1-6alkyl, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa;
- R7 is selected from H, halo, C1-6alkyl, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa;
- R8 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6 alkyl, Br, Cl, F, I and C1-6alkyl;
- R9 is selected from H, halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRaC2-6 alkylORa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRaC2-6 alkylORa; or R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═0)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa and —NRaC2-6 alkylORa;
- R10 is H, C1-3alkyl, C1-3haloalkyl, cyano, nitro, CO2Ra, C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —S(═O)Rb, —S(═O)2Rb or S(═O)2NRaRa;
- R11 is H or C1-4alkyl;
- Ra is independently, at each instance, H or Rb; and
- Rb is independently, at each instance, phenyl, benzyl or C1-6alkyl, the phenyl, benzyl and C1-6 alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4alkyl, C1-3 haloalkyl, —OC1-4alkyl, —NH2, —NHC1-4alkyl, —N(C1-4 alkyl)C1-4 alkyl.
- In a preferred embodiment, X1 is C(R9). In a further preferred embodiment, X1 is C(R9) and X2 is N. In a further embodiment, X1 is C(R9) and X2 is C(R10).
- In a preferred embodiment, R1 is phenyl substituted by 0 or 1 R2 substituents, and the phenyl is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl. In one specific embodiment, R1 is unsubstituted phenyl. In a further specific embodiment, R1 is phenyl substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is selected from 2-methylphenyl, 2-chlorophenyl, 2-trifluoromethylphenyl, 2-fluorophenyl and 2-methoxyphenyl.
- In a further preferred embodiment, R1 is phenoxy.
- In a further preferred embodiment, R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In a further specific embodiment, R1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl and C1-4haloalkyl.
- In one specific embodiment, R1 is an unsubstituted unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S.
- In a further specific embodiment, R1 is selected from pyridyl and pyrimidinyl.
- In one embodiment, R3 is selected from halo, C1-4haloalkyl, cyano, nitro, —C(O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl.
- In one preferred embodiment, R3 is H.
- In another preferred embodiment, R3 is selected from F, Cl, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl.
- In one embodiment, R5 is, independently, in each instance, H, halo, C1-6alkyl, C1-4 haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4 alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl; or both R5 groups together form a C3-6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4alkyl.
- In one preferred embodiment, R5 is H.
- In another preferred embodiment, one R5 is S-methyl, the other is H.
- In another preferred embodiment, at least one R5 is halo, C1-6alkyl, C1-4haloalkyl, or C1-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(C1-4 alkyl)C1-4 alkyl.
- In a preferred embodiment, R6 is H.
- In another preferred embodiment, R6 is F, Cl, cyano or nitro.
- In a preferred embodiment, R7 is H.
- In another preferred embodiment, R7 is F, Cl, cyano or nitro.
- In a preferred embodiment, R8 is selected from H, CF3, C1-3alkyl, Br, Cl and F.
- In one specific embodiment, R8 is H.
- In another specific embodiment, R8 is selected from CF3, C1-3alkyl, Br, Cl and F.
- In a preferred embodiment, R9 is H.
- In another embodiment, R9 is selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRaC2-6 alkylORa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6 alkylNRaRa, —NRaC2-6 alkylORa.
- In one embodiment, R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C1-4haloalkyl, cyano, nitro, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRa, —C(═NRa)NRaRa, —ORa, —OC(═O)Ra, —OC(═O)NRaRa, —OC(═O)N(Ra)S(═O)2Ra, —OC2-6alkylNRaRa, —OC2-6alkylORa, —SRa, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O) ORa, —S(═O)2N(Ra)C(═O)NRaRa, —NRaRa, —N(Ra)C(═O)Ra, —N(Ra)C(═O)ORa, —N(Ra)C(═O)NRaRa, —N(Ra)C(═NRa)NRaRa, —N(Ra)S(═O)2Ra, —N(Ra)S(═O)2NRaRa, —NRaC2-6alkylNRaRa and —NRaC2-6alkylORa.
- In one preferred embodiment, R10 is H.
- In another preferred embodiment, R10 is cyano, nitro, CO2Ra, C(═O)NRaRa, —C(═NRa)NRaRa, —S(═O)2N(Ra)C(═O)Ra, —S(═O)2N(Ra)C(═O)ORa, —S(═O)2N(Ra)C(═O)NRaRa, S(═O)Rb, S(═O)2Rb or S(═O)2NRaRa.
- In one preferred embodiment, R11 is H.
- In an exemplary preferred embodiment, the PI3K inhibitor is a compound of Formula (IX):
- which is (S)—N-(1-(7-fluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine, or a pharmaceutically-acceptable salt thereof. In an exemplary embodiment, the PI3K-δ inhibitor or PI3K-δ inhibitor is (S)—N-(1-(7-fluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine or a pharmaceutically-acceptable salt thereof.
- In an exemplary embodiment, the PI3K inhibitor is a PI3K-δ inhibitor which is a compound of Formula (X):
- which is (S)—N-(1-(6-fluoro-3-(pyridin-2-yl)quinoxalin-2-yl)ethyl)-9H-purin-6-amine, or a pharmaceutically-acceptable salt thereof.
- In an exemplary embodiment, the PI3K inhibitor is a PI3K-δ inhibitor, which is a compound of Formula (XI):
- which is (S)—N-(1-(2-(3,5-difluorophenyl)-8-fluoroquinolin-3-yl)ethyl)-9H-purin-6-amine, or a pharmaceutically-acceptable salt thereof.
- In an exemplary embodiment, the PI3K inhibitor or PI3K-δ inhibitor is (S)—N-(1-(2-(3,5-difluorophenyl)-8-fluoroquinolin-3-yl)ethyl)-9H-purin-6-amine or a pharmaceutically-acceptable salt thereof.
- In an exemplary embodiment, the PI3K inhibitor is a PI3K-δ inhibitor which is a compound of Formula (XII):
- which is (S)-3-(1-((9H-purin-6-yl)amino)ethyl)-2-(pyridin-2-yl)quinoline-8-carbonitrile, or a pharmaceutically-acceptable salt thereof.
- In an exemplary embodiment, the PI3K inhibitor or PI3K-δ inhibitor is (S)-3-(1-((9H-purin-6-yl)amino)ethyl)-2-(pyridin-2-yl)quinoline-8-carbonitrile or a pharmaceutically-acceptable salt thereof.
- In an exemplary embodiment, the PI3K inhibitor is a PI3K-δ inhibitor which is a compound of Formula (XIII):
- which is (S)—N-(1-(5,7-difluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine, or a pharmaceutically-acceptable salt thereof.
- In an exemplary embodiment, the PI3K inhibitor or PI3K-δ inhibitor is (S)—N-(1-(5,7-difluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine or a pharmaceutically-acceptable salt thereof.
- In an exemplary embodiment, the PI3K inhibitor is a compound selected from the structures disclosed in U.S. Pat. Nos. 7,932,260 and 8,207,153. In an exemplary embodiment, the PI3K inhibitor is a compound of Formula (XIV):
- wherein
- X and Y, independently, are N or CH;
- Z is N—R7 or O;
- R1 are the same and are hydrogen, halo, or C1-3alkyl;
- R2 and R3, independently, are hydrogen, halo, or C1-3alkyl;
- R4 is hydrogen, halo, ORa, CN, C2-6alkynyl, C(═O)Ra, C(═O)NRaRb, C3-6heterocycloalkyl, alkyleneC3-6heterocycloalkyl, OC1-3alkyleneORa, OC1-3alkyleneNRaRb, OC1-3alkyleneC3-6 cycloalkyl, OC3-6heterocycloalkyl, OC1-3alkyleneC≡CH, or OC1-3alkyleneC(═O)NRaRb;
- R5 is CH2CF3, phenyl, CH2C≡CH, C1-3alkyleneORc, C1-4alkyleneNRaRb, or C1-4 alkyleneNHC(═O)ORa,
- R6 is hydrogen, halo, or NRaRb;
- R7 is hydrogen or R5 and R7 are taken together with the atoms to which they are attached to form a five- or six-membered saturated ring;
- R8 is C1-3alkyl, halo, CF3, or CH2C3-6heterocycloalkyl;
- n is 0, 1, or 2;
- Ra is hydrogen, C1-4alkyl, or CH2C6H5;
- Rb is hydrogen or C1-3alkyl; and
- Rc is hydrogen, C1-3alkyl, or halo,
- wherein when the R1 groups are different from hydrogen, R2 and R4 are the same; or a pharmaceutically acceptable salt, or prodrug, or solvate (e.g., hydrate) thereof.
- In a preferred embodiment, the PI3K inhibitor is an enantiomer of Formula (XIV), as shown in Formula (XV):
- wherein X, Y, Z, R1 through R8, Ra, Rb, Rc, and n are as defined above for Formula (XIV).
- In various embodiments exhibiting increased potency relative to other compounds, R8 is C1-3alkyl, F, Cl, or CF3. Alternatively, in such embodiments, n is 0 (such that there is no R8 substituent).
- In further embodiments exhibiting increased potency, X is N and Y is CH. Alternatively, X and Y may also both be CH.
- In preferred embodiments, Z is NR7, and the bicyclic ring system containing X and Y is:
- In further embodiments exhibiting increased potency, R6 is hydrogen, halo, or NH2. Preferably, R6 is hydrogen.
- In preferred embodiments exhibiting such increased potency, n is 0 or 1; R8 (if n is 1) is C1-3alkyl, F, Cl, or CF3; R6 is hydrogen; X is N and Y is CH or X and Y are both CH; Z is NH; R1 are the same and are hydrogen, halo, or C1-3alkyl; and R2 and R3, independently, are hydrogen, halo, or C1-3alkyl. Preferably, R1, R2, and R3 are hydrogen.
- Unexpectedly, potency against PI3K-δ is conserved when R1 is the same. In structural formulae (XIV) and (XV), R2 and R4 may differ provided that R1 is H. When R1 is H, free rotation is unexpectedly permitted about the bond connecting the phenyl ring substituent to the quinazoline ring, and the compounds advantageously do not exhibit atropisomerism (i.e., multiple diastereomer formation is avoided). Alternatively, R2 and R4 can be the same such that the compounds advantageously do not exhibit atropisomerism.
- As used with respect to Formula (XIV) and Formula (XV), the term “alkyl” is defined as straight chained and branched hydrocarbon groups containing the indicated number of carbon atoms, e.g., methyl, ethyl, and straight chain and branched propyl and butyl groups. The terms “C1-3alkylene” and “C1-4alkylene” are defined as hydrocarbon groups containing the indicated number of carbon atoms and one less hydrogen than the corresponding alkyl group. The term “C2-6 alkynyl” is defined as a hydrocarbon group containing the indicated number of carbon atoms and a carbon-carbon triple bond. The term “C3-6 cycloalkyl” is defined as a cyclic hydrocarbon group containing the indicated number of carbon atoms. The term “C2-6 heterocycloalkyl” is defined similarly as cycloalkyl except the ring contains one or two heteroatoms selected from the group consisting of O, NRa, and S. The term “halo” is defined as fluoro, bromo, chloro, and iodo.
- In other preferred embodiments, R1 is hydrogen, fluoro, chloro, methyl, or
- and R2 is hydrogen, methyl, chloro, or fluoro; R3 is hydrogen or fluoro; R6 is NH2, hydrogen, or fluoro; R7 is hydrogen or R5 and R7 are taken together to form
- R8 is methyl, trifluoromethyl, chloro, or fluoro; R4 is hydrogen, fluoro, chloro, OH, OCH3, OCH2C≡CH, O(CH2)2N(CH3)2, C(═O)CH3, C≡CH, CN, C(═O)NH2, OCH2C(═O)NH2, O(CH2)2OCH3, O(CH2)2N(CH3)2,
- and R5 is methyl, ethyl, propyl, phenyl, CH2OH, CH2OCH2C6H5, CH2CF3, CH2OC(CH3)3, CH2C≡CH, (CH2)3N(C2H5)2, (CH2)3NH2, (CH2)4NH2, (CH2)3NHC(═O)OCH2C6H5, or (CH2)4NHC(═O)OCH2C6H5; Rc is hydrogen, methyl, fluoro, or bromo; and n is 0 or 1.
- In a preferred embodiment, the PI3K inhibitor is a PI3K-δ inhibitor of Formula (XVI):
- which is (S)-2-(1-((9H-purin-6-yl)amino)propyl)-5-fluoro-3-phenylquinazolin-4(3H)-one (other names: 4(3H)-quinazolinone, 5-fluoro-3-phenyl-2-[(1S)-1-(9H-purin-6-ylamino)propyl], and 5-fluoro-3-phenyl-2-{(1S)-1-[(7H-purin-6-yl)amino]propyl}quinazolin-4(3H)-one) or a pharmaceutically-acceptable salt thereof.
- In a preferred embodiment, the PI3K inhibitor or PI3K-δ inhibitor is (S)-2-(1-((9H-purin-6-yl)amino)propyl)-5-fluoro-3-phenylquinazolin-4(3H)-one or a pharmaceutically-acceptable salt thereof.
- In an embodiment, the PI3K inhibitor or PI3K-δ inhibitor is 4(3H)-quinazolinone, 5-fluoro-3-phenyl-2-[(1S)-1-(9H-purin-6-ylamino)propyl]-5-fluoro-3-phenyl-2-{(1S)-1-[(7H-purin-6-yl)amino]propyl}quinazolin-4(3H)-one or or a pharmaceutically-acceptable salt thereof
- Other PI3K inhibitors suitable for use in the described combination with a BTK inhibitor also include, but are not limited to, those described in, for example, U.S. Pat. No. 8,193,182 and U.S. Published Application Nos. 2013/0267521; 2013/0053362; 2013/0029984; 2013/0029982; 2012/0184568; and 2012/0059000.
- The BTK inhibitor may be any BTK inhibitor known in the art. In particular, it is one of the BTK inhibitors described in more detail in the following paragraphs. Preferably, it is a compound of Formula XVII or a pharmaceutically acceptable salt thereof. In one specific embodiment, it is a compound of Formula XVIII or a pharmaceutically acceptable salt thereof.
- In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XVII):
- or a pharmaceutically acceptable salt thereof,
wherein: - X is CH, N, O or S;
- Y is C(R6), N, O or S;
- Z is CH, N or bond;
- A is CH or N;
- B1 is N or C(R7);
- B2 is N or C(R8);
- B3 is N or C(R9);
- B4 is N or C(R10);
- R1 is R11C(═O), R12S(═O), R13S(═O)2 or (1-6C)alkyl optionally substituted with R14;
- R2 is H, (C1-3)alkyl or (C3-7)cycloalkyl;
- R3 is H, (C1-6)alkyl or (C3-7)cycloalkyl); or
- R2 and R3 form, together with the N and C atom they are attached to, a (3-7C)heterocycloalkyl optionally substituted with one or more fluorine, hydroxyl, (1-3C)alkyl, (1-3C)alkoxy or oxo;
- R4 is H or (C1-3)alkyl;
- R5 is H, halogen, cyano, (C1-4)alkyl, (C1-3)alkoxy, (C3-6)cycloalkyl, any alkyl group of which is optionally substituted with one or more halogen; or R5 is (C6-10)aryl or (C2-6)heterocycloalkyl;
- R6 is H or (C1-3)alkyl; or
- R5 and R6 together may form a (C3-7)cycloalkenyl or (C2-6)heterocycloalkenyl, each optionally substituted with (C1-3)alkyl or one or more halogens;
- R7 is H, halogen, CF3, (C1-3)alkyl or (C1-3)alkoxy;
- R8 is H, halogen, CF3, (C1-3)alkyl or (C1-3)alkoxy; or
- R7 and R8 together with the carbon atoms they are attached to, form (C6-10)aryl or (C1-9)heteroaryl;
- R9 is H, halogen, (C1-3)alkyl or (C1-3)alkoxy;
- R10 is H, halogen, (C1-3)alkyl or (C1-3)alkoxy;
- R11 is independently selected from the group consisting of (C1-6)alkyl, (C2-6)alkenyl and (C2-6)alkynyl, where each alkyl, alkenyl or alkynyl is optionally substituted with one or more substituents selected from the group consisting of hydroxyl, (C1-4)alkyl, (C3-7)cycloalkyl, [(C1-4)alkyl]amino, di[(C1-4)alkyl]amino, (C1-3)alkoxy, (C3-7)cycloalkoxy, (C6-10)aryl and (C3-7)heterocycloalkyl; or R11 is (C1-3)alkyl-C(O)—S—(C1-3)alkyl; or
- R11 is (C1-5)heteroaryl optionally substituted with one or more substituents selected from the group consisting of halogen or cyano;
- R12 and R13 are independently selected from the group consisting of (C2-6)alkenyl or (C2-6)alkynyl, both optionally substituted with one or more substituents selected from the group consisting of hydroxyl, (C1-4)alkyl, (C3-7)cycloalkyl, [(C1-4)alkyl]amino, di[(C1-4)alkyl]amino, (C1-3)alkoxy, (C3-7)cycloalkoxy, (C6-10)aryl and (C3-7)heterocycloalkyl; or a (C1-5)heteroaryl optionally substituted with one or more substituents selected from the group consisting of halogen and cyano; and
- R14 is independently selected from the group consisting of halogen, cyano, (C2-6)alkenyl and (C2-6)alkynyl, both optionally substituted with one or more substituents selected from the group consisting of hydroxyl, (C1-4)alkyl, (C3-7)cycloalkyl, (C1-4)alkylamino, di[(C1-4)alkyl]amino, (C1-3)alkoxy, (C3-7)cycloalkoxy, (C6-10)aryl, (C1-5)heteroaryl and (C3-7)heterocycloalkyl;
- with the proviso that:
- 0 to 2 atoms of X, Y, Z can simultaneously be a heteroatom;
- when one atom selected from X, Y is O or S, then Z is a bond and the other atom selected from X, Y can not be O or S;
- when Z is C or N then Y is C(R6) or N and X is C or N;
- 0 to 2 atoms of B1, B2, B3 and B4 are N;
- with the terms used having the following meanings:
- (C1-2)alkyl means an alkyl group having 1 to 2 carbon atoms, being methyl or ethyl,
- (C1-3)alkyl means a branched or unbranched alkyl group having 1-3 carbon atoms, being methyl, ethyl, propyl or isopropyl;
- (C1-4)alkyl means a branched or unbranched alkyl group having 1-4 carbon atoms, being methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, (C1-3)alkyl groups being preferred;
- (C1-5)alkyl means a branched or unbranched alkyl group having 1-5 carbon atoms, for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl and isopentyl, (C1-4)alkyl groups being preferred. (C1-6)alkyl means a branched or unbranched alkyl group having 1-6 carbon atoms, for example methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, n-pentyl and n-hexyl. (C1-5)alkyl groups are preferred, (C1-4)alkyl being most preferred;
- (C1-2)alkoxy means an alkoxy group having 1-2 carbon atoms, the alkyl moiety having the same meaning as previously defined;
- (C1-3)alkoxy means an alkoxy group having 1-3 carbon atoms, the alkyl moiety having the same meaning as previously defined. (C1-2)alkoxy groups are preferred;
- (C1-4)alkoxy means an alkoxy group having 1-4 carbon atoms, the alkyl moiety having the same meaning as previously defined. (C1-3)alkoxy groups are preferred, (C1-2)alkoxy groups being most preferred;
- (C2-4)alkenyl means a branched or unbranched alkenyl group having 2-4 carbon atoms, such as ethenyl, 2-propenyl, isobutenyl or 2-butenyl;
- (C2-6)alkenyl means a branched or unbranched alkenyl group having 2-6 carbon atoms, such as ethenyl, 2-butenyl, and n-pentenyl, (C2-4)alkenyl groups being most preferred;
- (C2-4)alkynyl means a branched or unbranched alkynyl group having 2-4 carbon atoms, such as ethynyl, 2-propynyl or 2-butynyl;
- (C2-6)alkynyl means a branched or unbranched alkynyl group having 2-6 carbon atoms, such as ethynyl, propynyl, n-butynyl, n-pentynyl, isopentynyl, isohexynyl or n-hexynyl. (C2-4)alkynyl groups are preferred; (C3-6)cycloalkyl means a cycloalkyl group having 3-6 carbon atoms, being cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl;
- (C3-7)cycloalkyl means a cycloalkyl group having 3-7 carbon atoms, being cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl;
- (C2-6)heterocycloalkyl means a heterocycloalkyl group having 2-6 carbon atoms, preferably 3-5 carbon atoms, and one or two heteroatoms selected from N, O and/or S, which may be attached via a heteroatom if feasible, or a carbon atom; preferred heteroatoms are N or O; also preferred are piperidine, morpholine, pyrrolidine and piperazine; with the most preferred (C2-6)heterocycloalkyl being pyrrolidine; the heterocycloalkyl group may be attached via a heteroatom if feasible;
- (C3-7)heterocycloalkyl means a heterocycloalkyl group having 3-7 carbon atoms, preferably 3-5 carbon atoms, and one or two heteroatoms selected from N, O and/or S. Preferred heteroatoms are N or O; preferred (C3-7) heterocycloalkyl groups are azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl or morpholinyl; more preferred (C3-7)heterocycloalkyl groups are piperidine, morpholine and pyrrolidine; and the heterocycloalkyl group may be attached via a heteroatom if feasible;
- (C3-7)cycloalkoxy means a cycloalkyl group having 3-7 carbon atoms, with the same meaning as previously defined, attached via a ring carbon atom to an exocyclic oxygen atom;
- (C6-10)aryl means an aromatic hydrocarbon group having 6-10 carbon atoms, such as phenyl, naphthyl, tetrahydronaphthyl or indenyl; the preferred (C6-10)aryl group is phenyl;
- (C1-5)heteroaryl means a substituted or unsubstituted aromatic group having 1-5 carbon atoms and 1-4 heteroatoms selected from N, O and/or S; the (C1-5)heteroaryl may optionally be substituted; preferred (C1-5)heteroaryl groups are tetrazolyl, imidazolyl, thiadiazolyl, pyridyl, pyrimidyl, triazinyl, thienyl or furyl, a more preferred (C1-5)heteroaryl is pyrimidyl;
- (C1-9)heteroaryl means a substituted or unsubstituted aromatic group having 1-9 carbon atoms and 1-4 heteroatoms selected from N, O and/or S; the (C1-9)heteroaryl may optionally be substituted; preferred (C1-9)heteroaryl groups are quinoline, isoquinoline and indole;
- [(C1-4)alkyl]amino means an amino group, monosubstituted with an alkyl group containing 1-4 carbon atoms having the same meaning as previously defined; preferred [(C1-4)alkyl]amino group is methylamino;
- di[(C1-4)alkyl]amino means an amino group, disubstituted with alkyl group(s), each containing 1-4 carbon atoms and having the same meaning as previously defined; preferred di[(C1-4)alkyl]amino group is dimethylamino;
- halogen means fluorine, chlorine, bromine or iodine;
- (C1-3)alkyl-C(O)—S—(C1-3)alkyl means an alkyl-carbonyl-thio-alkyl group, each of the alkyl groups having 1 to 3 carbon atoms with the same meaning as previously defined;
- (C3-7)cycloalkenyl means a cycloalkenyl group having 3-7 carbon atoms, preferably 5-7 carbon atoms; preferred (C3-7)cycloalkenyl groups are cyclopentenyl or cyclohexenyl; cyclohexenyl groups are most preferred;
- (C2-6)heterocycloalkenyl means a heterocycloalkenyl group having 2-6 carbon atoms, preferably 3-5 carbon atoms; and 1 heteroatom selected from N, O and/or S; preferred (C2-6)heterocycloalkenyl groups are oxycyclohexenyl and azacyclohexenyl group.
In the above definitions with multifunctional groups, the attachment point is at the last group. - When, in the definition of a substituent, is indicated that “all of the alkyl groups” of said substituent are optionally substituted, this also includes the alkyl moiety of an alkoxy group.
A circle in a ring of Formula (XVII) indicates that the ring is aromatic.
Depending on the ring formed, the nitrogen, if present in X or Y, may carry a hydrogen. - In an exemplary embodiment of Formula (XVII), B1 is C(R7); B2 is C(R8); B3 is C(R9); B4 is C(R10); R7, R9, and R10 are each H; and R8 is hydrogen or methyl.
- In an exemplary embodiment of Formula (XVII), the ring containing X, Y and Z is selected from the group consisting of pyridyl, pyrimidyl, pyridazyl, triazinyl, thiazolyl, oxazolyl and isoxazolyl.
- In an exemplary embodiment of Formula (XVII), the ring containing X, Y and Z is selected from the group consisting of pyridyl, pyrimidyl and pyridazyl.
- In an exemplary embodiment of Formula (XVII), the ring containing X, Y and Z is selected from the group consisting of pyridyl and pyrimidyl.
- In an exemplary embodiment of Formula (XVII), the ring containing X, Y and Z is pyridyl.
- In an exemplary embodiment of Formula (XVII), R5 is selected from the group consisting of hydrogen, fluorine, methyl, methoxy and trifluoromethyl.
- In an exemplary embodiment of Formula (XVII), R5 is hydrogen.
- In an exemplary embodiment of Formula (XVII), R2 and R3 together form a heterocycloalkyl ring selected from the group consisting of azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl and morpholinyl, optionally substituted with one or more of fluoro, hydroxyl, (C1-3)alkyl and (C1-3)alkoxy.
- In an exemplary embodiment of Formula (XVII), R2 and R3 together form a heterocycloalkyl ring selected from the group consisting of azetidinyl, pyrrolidinyl and piperidinyl.
- In an exemplary embodiment of Formula (XVII), R2 and R3 together form a pyrrolidinyl ring.
- In an exemplary embodiment of Formula (XVII), R1 is independently selected from the group consisting of (C1-6)alkyl, (C2-6)alkenyl or (C2-6)alkynyl, each optionally substituted with one or more substituents selected from the group consisting of hydroxyl, (C1-4)alkyl, (C3-7)cycloalkyl, [(C1-4)alkyl]amino, di[(C1-4)alkyl]amino, (C1-3)alkoxy, (C3-7)cycloalkoxy, (C6-10)aryl and (C3-7)heterocycloalkyl.
- In an exemplary embodiment of Formula (XVII), B1, B2, B3 and B4 are CH; X is N; Y and Z are CH; R5 is CH3; A is N; R2, R3 and R4 are H; and R1 is CO—CH3.
- In an exemplary embodiment of Formula (XVII), B1, B2, B3 and B4 are CH; X and Y are N; Z is CH; R5 is CH3; A is N; R2, R3 and R4 are H; and R1 is CO—CH3.
- In an exemplary embodiment of Formula (XVII), B1, B2, B3 and B4 are CH; X and Y are N; Z is CH; R5 is CH3; A is CH; R2 and R3 together form a piperidinyl ring; R4 is H; and R1 is CO-ethenyl.
- In an exemplary embodiment of Formula (XVII), B1, B2, B3 and B4 are CH; X, Y and Z are CH; R5 is H; A is CH; R2 and R3 together form a pyrrolidinyl ring; R4 is H; and R1 is CO-propynyl.
- In an exemplary embodiment of Formula (XVII), B1, B2, B3 and B4 are CH; X, Y and Z are CH; R5 is CH3; A is CH; R2 and R3 together form a piperidinyl ring; R4 is H; and R1 is CO-propynyl.
- In an exemplary embodiment of Formula (XVII), B1, B2, B3 and B4 are CH; X and Y are N; Z is CH; R5 is H; A is CH; R2 and R3 together form a morpholinyl ring; R4 is H; and R1 is CO-ethenyl.
- In an exemplary embodiment of Formula (XVII), B1, B2, B3 and B4 are CH; X and Y are N; Z is CH; R5 is CH3; A is CH; R2 and R3 together form a morpholinyl ring; R4 is H; and R1 is CO-propynyl.
- In an exemplary preferred embodiment, the BTK inhibitor is a compound of Formula (XVIII):
- which is (S)-4-(8-amino-3-(1-(but-2-ynoyl)pyrrolidin-2-yl)imidazo[1,5-a]pyrazin-1-yl)-N-(pyridin-2-yl)benzamide, or a pharmaceutically-acceptable salt thereof. The preparation of this compound is described at Example 6 of International Patent Application Publication No. WO 2013/010868. The preparation of this compound and related structures are described in the Examples of International Patent Application Publication No. WO 2013/010868.
- In an exemplary embodiment, the BTK inhibitor is (S)-4-(8-amino-3-(1-(but-2-ynoyl)pyrrolidin-2-yl)imidazo[1,5-a]pyrazin-1-yl)-N-(pyridin-2-yl)benzamide or pharmaceutically-acceptable salt thereof.
- In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XIX) or a pharmaceutically-acceptable salt of a compound of Formula (XIX):
- In Formula (XIX) the substituents are defined as:
- X is CH, N, O or S;
- Y is C(R6), N, O or S;
- Z is CH, N or bond;
- A is CH or N;
- B1 is N or C(R7);
- B2 is N or C(R8);
- B3 is N or C(R9);
- B4 is N or C(R10);
- R1 is R11C(O), R12S(O), R13SO2 or (C1-6)alkyl optionally substituted with R14;
- R2 is H, (C1-3)alkyl or (C3-7)cycloalkyl;
- R3 is H, (C1-6)alkyl or (C3-7)cycloalkyl); or
- R2 and R3 form, together with the N and C atom they are attached to, a (C3-7)heterocycloalkyl optionally substituted with one or more fluorine, hydroxyl, (C1-3)alkyl, (C1-3)alkoxy or oxo;
- R4 is H or (C1-3)alkyl;
- R5 is H, halogen, cyano, (C1-4)alkyl, (C1-3)alkoxy, (C3-6)cycloalkyl; all alkyl groups of R5 are optionally substituted with one or more halogen; or R5 is (C6-10)aryl or (C2-6)heterocycloalkyl;
- R6 is H or (C1-3)alkyl; or R5 and R6 together may form a (C3-7)cycloalkenyl, or (C2-6)heterocycloalkenyl; each optionally substituted with (C1-3)alkyl, or one or more halogen;
- R7 is H, halogen, CF3, (C1-3)alkyl or (C1-3)alkoxy;
- R8 is H, halogen, CF3, (C1-3)alkyl or (C1-3)alkoxy; or
- R7 and R8 together with the carbon atoms they are attached to, form (6-10C)aryl or (1-5C)heteroaryl;
- R9 is H, halogen, (C1-3)alkyl or (C1-3)alkoxy;
- R10 is H, halogen, (C1-3)alkyl or (C1-3)alkoxy;
- R11 is independently selected from a group consisting of (C1-6)alkyl, (C2-6)alkenyl and (C2-6) alkynyl each alkyl, alkenyl or alkynyl optionally substituted with one or more groups selected from hydroxyl, (C1-4)alkyl, (C3-7)cycloalkyl, [(C1-4)alkyl]amino, di[(C1-4) alkyl]amino, (C1-3)alkoxy, (C3-7)cycloalkoxy, (C6-10)aryl or (C3-7)heterocycloalkyl, or R11 is (C1-3)alkyl-C(O)—S—(C1-3)alkyl; or
- R11 is (C1-5)heteroaryl optionally substituted with one or more groups selected from halogen or cyano.
- R12 and R13 are independently selected from a group consisting of (C2-6)alkenyl or (C2-6)alkynyl both optionally substituted with one or more groups selected from hydroxyl, (C1-4)alkyl, (C3-7)cycloalkyl, [(C1-4)alkyl]amino, di[(C1-4)alkyl]amino, (C1-3)alkoxy, (C3-7)cycloalkoxy, (C6-10) aryl, or (C3-7)heterocycloalkyl; or
- (C1-5)heteroaryl optionally substituted with one or more groups selected from halogen or cyano;
- R14 is independently selected from a group consisting of halogen, cyano or (C2-6)alkenyl or (C2-6) alkynyl both optionally substituted with one or more groups selected from hydroxyl, (C1-4) alkyl, (C3-7)cycloalkyl, [(C1-4)alkyl]amino, di[(C1-4)alkyl]amino, (C1-3)alkoxy, (C3-7) cycloalkoxy, (C6-10)aryl, (C1-5)heteroaryl or (C3-7)heterocycloalkyl;
- with the proviso that
- 0 to 2 atoms of X, Y, Z can simultaneously be a heteroatom;
- when one atom selected from X, Y is O or S, then Z is a bond and the other atom selected from X, Y can not be O or S;
- when Z is C or N then Y is C(R6) or N and X is C or N;
- 0 to 2 atoms of B1, B2, B3 and B4 are N;
with the terms used having the following meanings:
- (C1-3)alkyl means a branched or unbranched alkyl group having 1-3 carbon atoms, being methyl, ethyl, propyl or isopropyl;
- (C1-4)alkyl means a branched or unbranched alkyl group having 1-4 carbon atoms, being methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, (C1-3)alkyl groups being preferred;
- (C1-6)alkyl means a branched or unbranched alkyl group having 1-6 carbon atoms, for example methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, n-pentyl and n-hexyl, (C1-5)alkyl groups are preferred, (C1-4)alkyl being most preferred;
- (C1-2)alkoxy means an alkoxy group having 1-2 carbon atoms, the alkyl moiety having the same meaning as previously defined;
- (C1-3)alkoxy means an alkoxy group having 1-3 carbon atoms, the alkyl moiety having the same meaning as previously defined, with (C1-2)alkoxy groups preferred;
- (C2-3)alkenyl means an alkenyl group having 2-3 carbon atoms, such as ethenyl or 2-propenyl;
- (C2-4)alkenyl means a branched or unbranched alkenyl group having 2-4 carbon atoms, such as ethenyl, 2-propenyl, isobutenyl or 2-butenyl;
- (C2-6)alkenyl means a branched or unbranched alkenyl group having 2-6 carbon atoms, such as ethenyl, 2-butenyl, and n-pentenyl, with (C2-4)alkenyl groups preferred, and (C2-3)alkenyl groups even more preferred;
- (C2-4)alkynyl means a branched or unbranched alkynyl group having 2-4 carbon atoms, such as ethynyl, 2-propynyl or 2-butynyl;
- (C2-3)alkynyl means an alkynyl group having 2-3 carbon atoms, such as ethynyl or 2-propynyl;
- (C2-6)alkynyl means a branched or unbranched alkynyl group having 2-6 carbon atoms, such as ethynyl, propynyl, n-butynyl, n-pentynyl, isopentynyl, isohexynyl or n-hexynyl, with (C2-4) alkynyl groups preferred, and (2-3C)alkynyl groups more preferred;
- (C3-6)cycloalkyl means a cycloalkyl group having 3-6 carbon atoms, being cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl;
- (C3-7)cycloalkyl means a cycloalkyl group having 3-7 carbon atoms, being cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl;
- (C2-6)heterocycloalkyl means a heterocycloalkyl group having 2-6 carbon atoms, preferably 3-5 carbon atoms, and one or two heteroatoms selected from N, O and/or S, which may be attached via a heteroatom if feasible, or a carbon atom; preferred heteroatoms are N or O; preferred groups are piperidine, morpholine, pyrrolidine and piperazine; a most preferred (C2-6)heterocycloalkyl is pyrrolidine; and the heterocycloalkyl group may be attached via a heteroatom if feasible;
- (C3-7)heterocycloalkyl means a heterocycloalkyl group having 3-7 carbon atoms, preferably 3-5 carbon atoms, and one or two heteroatoms selected from N, O and/or S; preferred heteroatoms are N or O; preferred (C3-7) heterocycloalkyl groups are azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl or morpholinyl; more preferred (C3-7)heterocycloalkyl groups are piperidine, morpholine and pyrrolidine; even more preferred are piperidine and pyrrolidine; and the heterocycloalkyl group may be attached via a heteroatom if feasible;
- (C3-7)cycloalkoxy means a cycloalkyl group having 3-7 carbon atoms, with the same meaning as previously defined, attached via a ring carbon atom to an exocyclic oxygen atom;
- (C6-10)aryl means an aromatic hydrocarbon group having 6-10 carbon atoms, such as phenyl, naphthyl, tetrahydronaphthyl or indenyl; the preferred (C6-10)aryl group is phenyl;
- (C1-5)heteroaryl means a substituted or unsubstituted aromatic group having 1-5 carbon atoms and 1-4 heteroatoms selected from N, O and/or S, wherein the (C1-5)heteroaryl may optionally be substituted; preferred (C1-5)heteroaryl groups are tetrazolyl, imidazolyl, thiadiazolyl, pyridyl, pyrimidyl, triazinyl, thienyl or furyl, and the more preferred (C1-5) heteroaryl is pyrimidyl;
- [(C1-4)alkyl]amino means an amino group, monosubstituted with an alkyl group containing 1-4 carbon atoms having the same meaning as previously defined; the preferred [(C1-4) alkyl]amino group is methylamino;
- di[(C1-4)alkyl]amino means an amino group, disubstituted with alkyl group(s), each containing 1-4 carbon atoms and having the same meaning as previously defined; the preferred di[(C1-4) alkyl]amino group is dimethylamino;
- halogen means fluorine, chlorine, bromine or iodine;
- (C1-3)alkyl-C(O)—S—(C1-3)alkyl means an alkyl-carbonyl-thio-alkyl group, each of the alkyl groups having 1 to 3 carbon atoms with the same meaning as previously defined;
- (C3-7)cycloalkenyl means a cycloalkenyl group having 3-7 carbon atoms, preferably 5-7 carbon atoms; preferred (C3-7)cycloalkenyl groups are cyclopentenyl or cyclohexenyl; and cyclohexenyl groups are most preferred;
- (C2-6)heterocycloalkenyl means a heterocycloalkenyl group having 2-6 carbon atoms, preferably 3-5 carbon atoms; and 1 heteroatom selected from N, O and/or S; the preferred (C2-6) heterocycloalkenyl groups are oxycyclohexenyl and azacyclohexenyl groups.
In the above definitions with multifunctional groups, the attachment point is at the last group. - When, in the definition of a substituent, is indicated that “all of the alkyl groups” of said substituent are optionally substituted, this also includes the alkyl moiety of an alkoxy group.
A circle in a ring of Formula (XIX) indicates that the ring is aromatic.
Depending on the ring formed, the nitrogen, if present in X or Y, may carry a hydrogen. - In one embodiment the invention provides a compound according to Formula XIX, wherein B1 is C(R7); B2 is C(R8); B3 is C(R9) and B4 is C(R10).
- In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XX):
- or a pharmaceutically acceptable salt thereof,
wherein: - La is CH2, 0, NH or S;
- Ar is a substituted or unsubstituted aryl, or a substituted or unsubstituted heteroaryl;
- Y is an optionally substituted group selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl;
- Z is C(═O), OC(═O), NRC(═O), C(═S), S(═O)x, OS(═O) or NRS(═O)x, where x is 1 or 2;
- R7 and R8 are each independently H; or R7 and R8 taken together form a bond;
- R6 is H; and
- R is H or C1-C6alkyl.
- In an exemplary embodiment, the BTK inhibitor is ibrutinib or a pharmaceutically-acceptable salt thereof. In an exemplary embodiment, the BTK inhibitor is (R)-1-(3-(4-amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one. In an exemplary embodiment, the BTK inhibitor is 1-[(3R)-3-[4-amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl]piperidin-1-yl]prop-2-en-1-one. In an exemplary embodiment, the BTK inhibitor is (S)-1-(3-(4-amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one. In an exemplary embodiment, the BTK inhibitor has the structure of Formula (XX-A), or an enantiomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, cocrystal, or prodrug thereof.
- In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XXI):
- or a pharmaceutically acceptable salt thereof,
wherein: - La is CH2, O, NH or S;
- Ar is a substituted or unsubstituted aryl, or a substituted or unsubstituted heteroaryl;
- Y is an optionally substituted group selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl;
- Z is C(═O), OC(═O), NRC(═O), C(═S), S(═O), OS(═O)x or NRS(═O)x, where x is 1 or 2;
- R7 and R8 are each H; or R7 and R8 taken together form a bond;
- R6 is H; and
- R is H or C1-C6alkyl.
- In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XXII):
- or a pharmaceutically acceptable salt thereof,
wherein: - La is CH2, O, NH or S;
- Ar is a substituted or unsubstituted aryl, or a substituted or unsubstituted heteroaryl;
- Y is an optionally substituted group selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl;
- Z is C(═O), OC(═O), NRC(═O), C(═S), S(═O), OS(═O) or NRS(═O), where x is 1 or 2;
- R7 and R8 are each H; or R7 and R8 taken together form a bond;
- R6 is H; and
- R is H or C1-C6alkyl.
- In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XXIII):
- or a pharmaceutically acceptable salt thereof,
wherein: - La is CH2, O, NH or S;
- Ar is a substituted or unsubstituted aryl, or a substituted or unsubstituted heteroaryl;
- Y is an optionally substituted group selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl;
- Z is C(═O), OC(═O), NRC(═O), C(═S), S(═O)x, OS(═O)x or NRS(═O)x, where x is 1 or 2;
- R7 and R8 are each H; or R7 and R8 taken together form a bond;
- R6 is H; and
- R is H or C1-C6alkyl.
- In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XXIV):
- or a pharmaceutically acceptable salt thereof,
wherein: - Q1 is aryl1, heteroaryl1, cycloalkyl, heterocyclyl, cycloalkenyl, or heterocycloalkenyl, any of which is optionally substituted by one to five independent G1 substituents;
- R1 is alkyl, cycloalkyl, bicycloalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, heterocyclyl, or heterobicycloalkyl, any of which is optionally substituted by one or more independent G11 substituents;
- G1 and G41 are each independently halo, oxo, —CF3, —OCF3, —OR2, —NR2R3(R3a)j1, —C(O)R2, —CO2R2, —CONR2R3, —NO2, —CN, —S(O)j1R2, —SO2NR2R3, NR2(C═O)R3, NR2(C═O)OR3, NR2(C═O)NR2R3, NR2S(O)j1R3, —(C═S)OR2, —(C═O)SR2, —NR2(C═NR3)NR2aR3a, —NR2(C═NR3)OR2a, —NR2(C═NR3)SR3a, —O(C═O)OR2, —O(C═O)NR2R3, —O(C═O)SR2, —S(C═O)OR2, —S(C═O)NR2R3, C0-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxyC2-10alkenyl, C1-10alkoxyC2-10alkynyl, C1-10alkylthioC1-10alkyl, C1-10alkylthioC2-10alkenyl, C1-10alkylthioC2-10alkynyl, cycloC3-8alkyl, cycloC3-8alkenyl, cycloC3-8alkylC1-10alkyl, cycloC3-8alkenylC1-10alkyl, cycloC3-8alkylC2-10alkenyl, cycloC3-8alkenylC2-10alkenyl, cycloC3-8alkylC2-10alkynyl, cycloC3-8alkenylC2-10alkynyl, heterocyclyl-C0-10alkyl, heterocyclyl-C2-10alkenyl, or heterocyclyl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, oxo, —CF3, —OCF3, —OR222, —NR222R333(R333a)j1a, —C(O)R222, —CO2R222, —CONR222R333, —NO2, —CN, —S(O)j1aR222, —SO2NR222R333, NR222(C═O)R333, NR222(C═O)OR333, NR222(C═O)NR222R333, NR222S(O)j1aR333, —(C═S)OR222, —(C═O)SR222, —NR222(C═NR333)NR222aR333a, —NR222(C═NR333)OR222a, —NR222(C═NR333)SR333a, —O(C═O)OR222, —O(C═O)NR222R333, —O(C═O)SR222, —S(C═O)OR222, or —S(C═O)NR222R333 substituents; or —(X1)n—(Y1)m—R4; or aryl-C0-10alkyl, aryl-C2-10alkenyl, or aryl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, —CF3, —OCF3, —OR222, —NR222R333(R333a)j2a, —C(O)R222, —CO2R222, —CONR222R333, —NO2, —CN, —S(O)j2aR222, —SO2NR222R333, NR222(C═O)R333, NR222(C═O)OR333, NR222(C═O)NR222R333, NR222S(O)j2aR333, —(C═S)OR222, —(C═O)SR222, NR222(C═NR333)NR222aR333a, —NR222(C═NR333)OR222a, —NR222(C═NR333)SR333a, —O(C═O)OR222, —O(C═O)NR222R333, —O(C═O)SR222, —S(C═O)OR222, or —S(C═O)NR222R333 substituents; or hetaryl-C0-10alkyl, hetaryl-C2-10alkenyl, or hetaryl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, —CF3, —OCF3, —OR222, —NR222, R333(R333a)j3a, —C(O)R222, —CO2R222, —CONR222R333, —NO2, —CN, —S(O)j3aR222, —SO2NR222R333, NR222(C═O)R333, NR222(C═O)OR333, NR222(C═O)NR222R333, NR222S(O)j3aR333, —(C═S)OR222, —(C═O)SR222, —NR222(C═NR333)NR222aR333a, —NR222(C═NR333)OR222a, —NR222(C═NR333)SR333a, —O(C═O)OR222, —O(C═O)NR222R333, —O(C═O)SR222, —S(C═O)OR222, or —S(C═O)NR222R333 substituents;
- G11 is halo, oxo, —CF3, —OCF3, —OR21, —NR21R31(R3a1)j4, —C(O)R21, —CO2R21, —CONR21R31, —NO2, —CN, —S(O)j4R21, —SO2NR21R31, NR21(C═O)OR31, NR21(C═O)OR31, NR21(C═O)NR21R31, NR21S(O)j4R31, —(C═S)OR21, —(C═O)SR21, —NR21(C═NR31)NR2a1R3a1, —NR21(C═NR31)OR2a1, —NR21(C═NR31)SR3a1, —O(C═O)OR21, —O(C═O)NR21R31, —O(C═O)SR21, —S(C═O)OR21, —S(C═O)NR21R31, —P(O)OR21OR31, C0-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxyC1-10alkyl, C1-10alkoxyC2-10alkenyl, C1-10alkoxyC2-10alkynyl, C1-10alkylthioC1-10alkyl, C1-10alkylthioC2-10alkenyl, C1-10alkylthioC2-10alkynyl, cycloC3-8alkyl, cycloC3-8alkenyl, cycloC3-8alkylC1-10alkyl, cycloC3-8alkenylC1-10alkyl, cycloC3-8alkylC2-10alkenyl, cycloC3-8alkenylC2-10alkenyl, cycloC3-8alkylC2-10alkynyl, cycloC3-8alkenylC2-10alkynyl, heterocyclyl-C0-10alkyl, heterocyclyl-C2-10alkenyl, or heterocyclyl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, oxo, —CF3, —OCF3, —OR2221, —NR2221R3331(R333a1)j4a, —COR2221, —CO2R2221, —CONR2221R3331, —NO2, —CN, —S(O)j4aR2221, —SO2NR2221R3331, NR2221(C═O)R3331, NR2221(C═O)OR3331, NR2221(C═O)NR2221R3331, NR2221S(O)j4aR3331, —(C═S)OR2221, —(C═O)SR2221, —NR2221(C═NR3331)NR222a1R333a1, —NR2221(C═NR3331)OR222a1, —NR2221(C═NR3331)SR333a1, —O(C═O)OR2221, —O(C═O)NR2221R3331, —O(C═O)SR2221, —S(C═O)OR2221, —P(O)OR2221OR3331, or —S(C═O)NR2221R3331 substituents; or aryl-C0-10alkyl, aryl-C2-10alkenyl, or aryl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, —CF3, —OCF3, —OR2221, —NR2221R3331(R333a1)j5a, —C(O)R2221, —CO2R2221, —CONR2221R3331, —NO2, —CN, —S(O)j5aR2221, —SO2NR2221R3331, NR2221(C═O)R3331, NR2221(C═O)OR3331, NR2221(C═O)NR2221R3331, NR2221S(O)j5aR3331, —(C═S)OR2221, —(C═O)SR2221, —NR2221(C═NR3331)NR222a1R333a1, —NR2221(C═NR3331)OR222a1, —NR2221(C═NR3331)SR333a1, —O(C═O)OR2221, —O(C═O)NR2221R3331, —O(C═O)SR2221, —S(C═O)OR2221, —P(O)OR2221R3331, or —S(C═O)NR2221R3331 substituents; or hetaryl-C0-10alkyl, hetaryl-C2-10alkenyl, or hetaryl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, —CF3, —OCF3, —OR2221, —NR2221R3331(R333a1)j6a, —C(O)R2221, —CO2R2221, —CONR2221R3331, —NO2, —CN, —S(O)j6aR2221, —SO2NR2221R3331, NR2221(C═O)R3331, NR2221(C═O)OR3331, NR2221(C═O)NR2221R3331, NR2221S(O)j6aR3331, —(C═S)OR2221, —(C═O)SR2221, —NR2221(C═NR3331)NR222a1R333a1, —NR2221(C═NR3331)OR222a1, —NR2221(C═NR3331)SR333a1, —O(C═O)OR2221, —O(C═O)NR2221R3331, —O(C═O)SR2221, —S(C═O)OR2221, —P(O)OR2221OR3331, or —S(C═O)NR2221R3331 substituents; or G11 is taken together with the carbon to which it is attached to form a double bond which is substituted with R5 and G111;
- R2, R2a, R3, R3a, R222, R222a, R333, R333a, R21, R2a1, R31, R3a1, R2221, R222a1, R3331, and R333a1 are each independently equal to C0-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxyC1-10alkyl, C1-10alkoxyC2-10alkenyl, C1-10alkoxyC2-10alkynyl, C1-10alkylthioC2-10alkenyl, C1-10alkylthioC2-10alkynyl, cycloC3-8alkyl, cycloC3-8alkenyl, cycloC3-8alkylC1-10alkyl, cycloC3-8alkenylC1-10alkyl, cycloC3-8alkylC2-10alkenyl, cycloC3-8alkenylC2-10alkenyl, cycloC3-8alkylC2-10alkynyl, cycloC3-8alkenylC2-10alkynyl, heterocyclyl-C0-10alkyl, heterocyclyl-C2-10alkenyl, or heterocyclyl-C2-10alkynyl, any of which is optionally substituted by one or more G111 substituents; or aryl-C0-10alkyl, aryl-C2-10alkenyl, or aryl-C2-10alkynyl, hetaryl-C0-10alkyl, hetaryl-C2-10alkenyl, or hetaryl-C2-10alkynyl, any of which is optionally substituted by one or more G111 substituents; or in the case of —NR2R3(R3a)j1 or —NR222R333(R333a)j1a or —NR222R333(R333a)j2a or —NR2221R3331 (R333a1)j3a or —NR2221R3331(R333a1)j4a or —NR2221R3331(R333a1)j5a or —NR2221R3331(R333a1)j6a, R2 and R3 or R222 and R3333 or R2221 and R3331 taken together with the nitrogen atom to which they are attached form a 3-10 membered saturated ring, unsaturated ring, heterocyclic saturated ring, or heterocyclic unsaturated ring, wherein said ring is optionally substituted by one or more G111 substituents;
- X1 and Y1 are each independently —O—, —NR7—, —S(O)j7—, —CR5R6—, —N(C(O)OR7)—, —N(C(O)R7)—, —N(SO2R7)—, —CH2O—, —CH2S—, —CH2N(R7)—, —CH(NR7)—, —CH2N(C(O)R7)—, —CH2N(C(O)OR7)—, —CH2N(SO2R7)—, —CH(NHR7)—, —CH(NHC(O)R7)—, —CH(NHSO2R7)—, —CH(NHC(O)OR7)—, —CH(OC(O)R7)—, —CH(OC(O)NHR7)—, —CH═CH—, —C.ident.C—, —C(═NOR7)—, —C(O)—, —CH(OR7)—, —C(O)N(R7)—, —N(R7)C(O)—, —N(R7)S(O)—, —N(R7)S(O)2— —OC(O)N(R7)—, —N(R7)C(O)N(R7)—, —NR7C(O)O—, —S(O)N(R7)—, —S(O)2N(R7)—, —N(C(O)R7)S(O)—, —N(C(O)R7)S(O)2—, —N(R7)S(O)N(R7)—, —N(R7)S(O)2N(R7)—, —C(O)N(R7)C(O)—, —S(O)N(R7)C(O)—, —S(O)2N(R7)C(O)—, —OS(O)N(R7)—, —OS(O)2N(R7)—, —N(R7)S(O)O—, —N(R7)S(O)2O—, —N(R7)S(O)C(O)—, —N(R7)S(O)2C(O)—, —SON(C(O)R7)—, —SO2N(C(O)R7)—, —N(R7)SON(R7)—, —N(R7)SO2N(R7)—, —C(O)O—, —N(R7)P(OR8)O—, —N(R7)P(OR8)—, —N(R7)P(O)(OR8)O—, —N(R7)P(O)(OR8)—, —N(C(O)R7)P(OR8)O—, —N(C(O)R7)P(OR8)—, —N(C(O)R7)P(O)(OR8)O—, —N(C(O)R7)P(OR8)—, —CH(R7)S(O)—, —CH(R7)S(O)2—, —CH(R7)N(C(O)OR7)—, —CH(R7)N(C(O)R7)—, —CH(R7)N(SO2R7)—, —CH(R7)O—, —CH(R7)S—, —CH(R7)N(R7)—, —CH(R7)N(C(O)R7)—, —CH(R7)N(C(O)OR7)—, —CH(R7)N(SO2R7)—, —CH(R7)C(═NOR7)—, —CH(R7)C(O)—, —CH(R7)CH(OR7)—, —CH(R7)C(O)N(R7)—, —CH(R7)N(R7)C(O)—, —CH(R7)N(R7)S(O)—, —CH(R7)N(R7)S(O)2—, —CH(R7)OC(O)N(R7)—, —CH(R7)N(R7)C(O)N(R7)—, —CH(R7)NR7C(O)O—, —CH(R7)S(O)N(R7)—, —CH(R7)S(O)2N(R7)—, —CH(R7)N(C(O)R7)S(O)—, —CH(R7)N(C(O)R7)S(O)—, —CH(R7)N(R7)S(O)N(R7)—, —CH(R7)N(R7)S(O)2N(R7)—, —CH(R7)C(O)N(R7)C(O)—, —CH(R7)S(O)N(R7)C(O)—, —CH(R7)S(O)2N(R7)C(O)—, —CH(R7)OS(O)N(R7)—, —CH(R7)OS(O)2N(R7)—, —CH(R7)N(R7)S(O)O—, —CH(R7)N(R7)S(O)2O—, —CH(R7)N(R7)S(O)C(O)—, —CH(R7)N(R7)S(O)2C(O)—, —CH(R7)SON(C(O)R7)—, —CH(R7)SO2N(C(O)R7)—, —CH(R7)N(R7)SON(R7)—, —CH(R7)N(R7)SO2N(R7)—, —CH(R7)C(O)O—, —CH(R7)N(R7)P(OR8)O—, —CH(R7)N(R7)P(OR8)—, —CH(R7)N(R7)P(O)(OR8)O—, —CH(R7)N(R7)P(O)(OR8)—, —CH(R7)N(C(O)R7)P(OR8)O—, —CH(R7)N(C(O)R7)P(OR8)—, —CH(R7)N(C(O)R7)P(O)(OR8)O—, or —CH(R7)N(C(O)R7)P(OR8)—;
- or X1 and Y1 are each independently represented by one of the following structural formulas:
- R10, taken together with the phosphinamide or phosphonamide, is a 5-, 6-, or 7-membered aryl, heteroaryl or heterocyclyl ring system;
- R5, R6, and G111 are each independently a C0-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxyC1-10alkyl, C1-10alkoxyC2-10alkenyl, C1-10alkoxyC2-10alkynyl, C1-10alkylthioC1-10alkyl, C1-10alkylthioC2-10alkenyl, C1-10alkylthioC2-10alkynyl, cycloC3-8alkyl, cycloC3-8alkenyl, cycloC3-8alkylC1-10alkyl, cycloC3-8alkenylC1-10alkyl, cycloC3-8alkylC2-10alkenyl, cycloC3-8alkenylC2-10alkenyl, cycloC3-8alkylC2-10alkynyl, cycloC3-8alkenylC2-10alkynyl, heterocyclyl-C0-10alkyl, heterocyclyl-C2-10alkenyl, or heterocyclyl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, —CF3, —OCF3, —OR77, —NR77R87, —C(O)R77, —CO2R77, —CONR77R87, —NO2, —CN, —S(O)j5aR77, —SO2NR77R87, NR77(C═O)R87, NR77(C═O)OR87, NR77(C═O)NR78R87, NR77S(O)j5aR87, —(C═S)OR77, —(C═O)SR77, —NR77(C═NR87)NR78R88, —NR77(C═NR87)OR78, —NR77(C═NR87)SR78, —O(C═O)OR77, —O(C═O)NR77R87, —O(C═O)SR77, —S(C═O)OR77, —P(O)OR77OR87, or —S(C═O)NR77R87 substituents; or aryl-C0-10alkyl, aryl-C2-10alkenyl, or aryl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, —CF3, —OCF3, —OR77, —NR77R87, —C(O)R77, —CO2R77, —CONR77R87, —NO2, —CN, —S(O)j5aR77, —SO2NR77R87, NR77(C═O)R87, NR77(C═O)OR87, NR77(C═O)NR78R87, NR77S(O)j5aR87, —(C═S)OR77, —(C═O)SR77, —NR77(C═NR87)NR78R88, —NR77(C═NR87)OR78, —NR77(C═NR87)SR78, —O(C═O)OR77, —O(C═O)NR77R87, —O(C═O)SR77, —S(C═O)OR77, —P(O)OR77R87, or —S(C═O)NR77R87 substituents; or hetaryl-C0-10alkyl, hetaryl-C2-10alkenyl, or hetaryl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, —CF3, —OCF3, —OR77, —NR77R87, —C(O)R77, —CO2R77, —CONR77R87, —NO2, —CN, —S(O)j5aR77, —SO2NR77R87, NR77(C═O)R87, NR77(C═O)OR87, NR77(C═O)NR78R87, NR77S(O)j5aR87, —(C═S)OR77, —(C═O)SR77, —NR77(C═NR87)NR78R88, —NR77(C═NR87)OR78, —NR77(C═NR87)SR78, —O(C═O)OR77, —O(C═O)NR77R87, —O(C═O)SR77, —S(C═O)OR77, —P(O)OR77OR87, or —S(C═O)NR77R87 substituents; or R5 with R6 taken together with the respective carbon atom to which they are attached, form a 3-10 membered saturated or unsaturated ring, wherein said ring is optionally substituted with R69; or R5 with R6 taken together with the respective carbon atom to which they are attached, form a 3-10 membered saturated or unsaturated heterocyclic ring, wherein said ring is optionally substituted with R69;
- R7 and R8 are each independently H, acyl, alkyl, alkenyl, aryl, heteroaryl, heterocyclyl or cycloalkyl, any of which is optionally substituted by one or more substituents;
- R4 is H, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, cycloalkenyl, or heterocycloalkenyl, any of which is optionally substituted by one or more G41 substituents;
- R69 is equal to halo, —ORa, —SH, —NR78R88, —CO2R78, —CONR78R88, —NO2, —CN, —S(O)j8R78, —SO2NR78R88, C2-10alkenyl, C2-10alkynyl, C1-10alkoxyC1-10alkyl, C1-10alkoxyC2-10alkenyl, C1-10alkoxyC2-10alkynyl, C1-10alkylthioC2-10alkenyl, C1-10alkylthioC2-10alkynyl, cycloC3-8alkyl, cycloC3-8alkenyl, cycloC3-8alkylCrioalkyl, cycloC3-8alkenylC1-10alkyl, cycloC3-8alkylC2-10alkenyl, cycloC3-8alkenylC2-10alkenyl, cycloC3-8alkylC2-10alkynyl, cycloC3-8alkenylC2-10alkynyl, heterocyclyl-C0-10alkyl, heterocyclyl-C2-10alkenyl, or heterocyclyl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, cyano, nitro, —OR778, —SO2NR778R888, or —NR778R888 substituents; or aryl-C0-10alkyl, aryl-C2-10alkenyl, or aryl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, cyano, nitro, —OR778, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, haloC1-10alkyl, haloC2-10alkenyl, haloC2-10alkynyl, —COOH, C1-4alkoxycarbonyl, —CONR778R888, —SO2NR778R888, or —NR778R888 substituents; or hetaryl-C0-10alkyl, hetaryl-C2-10alkenyl, or hetaryl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, cyano, nitro, —OR778, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, haloC1-10alkyl, haloC2-10alkenyl, haloC2-10alkynyl, —COOH, C1-4alkoxycarbonyl, —CONR778R888, —SO2NR778R888, or —NR778R888 substituents; or mono(C1-6alkyl)aminoC1-6alkyl, di(C1-6alkyl)aminoC1-6alkyl, mono(aryl)aminoC1-6alkyl, di(aryl)aminoC1-6alkyl, or —N(C1-6alkyl)-C1-6alkyl-aryl, any of which is optionally substituted with one or more independent halo, cyano, nitro, —OR778, C2-10alkenyl, C2-10alkynyl, haloC1-10alkyl, haloC2-10alkenyl, haloC2-10alkynyl, —COOH, C1-4alkoxycarbonyl, —CONR778R888 SO2NR778R888, or —NR778R888 substituents; or in the case of —NR78R88, R78 and R88 taken together with the nitrogen atom to which they are attached form a 3-10 membered saturated ring, unsaturated ring, heterocyclic saturated ring, or heterocyclic unsaturated ring, wherein said ring is optionally substituted with one or more independent halo, cyano, hydroxy, nitro, C1-10alkoxy, —SO2NR778R888, or —NR778R888 substituents;
- R77, R78, R87, R88, R778, and R888 are each independently C0-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxyC1-10alkyl, C1-10alkoxyC2-10alkenyl, C1-10alkoxyC2-10alkynyl, C1-10alkylthioC1-10alkyl, C1-10alkylthioC2-10alkenyl, C1-10alkylthioC2-10alkynyl, cycloC3-8alkyl, cycloC3-8alkenyl, cycloC3-8alkylC1-10alkyl, cycloC3-8alkenylC1-10alkyl, cycloC3-8alkylC2-10alkenyl, cycloC3-8alkenylC2-10alkenyl, cycloC3-8alkylC2-10alkynyl, cycloC3-8alkenylC2-10alkynyl, heterocyclyl-C0-10alkyl, heterocyclyl-C2-10alkenyl, heterocyclyl-C2-10alkynyl, C1-10alkylcarbonyl, C2-10alkenylcarbonyl, C2-10alkynylcarbonyl, C1-10alkoxycarbonyl, C1-10alkoxycarbonylC1-10alkyl, monoC1-6alkylaminocarbonyl, diC1-6alkylaminocarbonyl, mono(aryl)aminocarbonyl, di(aryl)aminocarbonyl, or C1-10alkyl(aryl)aminocarbonyl, any of which is optionally substituted with one or more independent halo, cyano, hydroxy, nitro, C1-10alkoxy, —SO2N(C0-4alkyl)(C0-4alkyl), or —N(C0-4alkyl)(C0-4alkyl) substituents; or aryl-C0-10alkyl, aryl-C2-10alkenyl, or aryl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, cyano, nitro, —O(C0-4alkyl), C2-10alkenyl, C2-10alkynyl haloC2-10alkenyl, haloC2-10alkynyl, —COOH, C1-4alkoxycarbonyl, —CON(C0-4alkyl)(C0-10alkyl), —SO2N(C0-4alkyl)(C0-4alkyl), or —N(C0-4alkyl)(C0-4alkyl) substituents; or hetaryl-C0-10alkyl, hetaryl-C2-10alkenyl, or hetaryl-C2-10alkynyl, any of which is optionally substituted with one or more independent halo, cyano, nitro, —O(C0-4alkyl), C2-10alkenyl, C2-10alkynyl, haloC2-10alkenyl, haloC2-10alkynyl, —COOH, C1-4alkoxycarbonyl, —CON(C0-4alkyl)(C0-4alkyl), —SO2N(C0-4alkyl)(C0-4alkyl), or —N(C0-4alkyl)(C0-4alkyl) substituents; or mono(C1-6alkyl)aminoC1-6alkyl, di(C1-6alkyl)aminoC1-6alkyl, mono(aryl)aminoC1-6alkyl, di(aryl)aminoC1-6alkyl, or —N(C1-6alkyl)-C1-6alkyl-aryl, any of which is optionally substituted with one or more independent halo, cyano, nitro, —O(C0-4alkyl), C1-10alkyl, C2-10alkenyl, C2-10alkynyl, haloC2-10alkenyl, haloC2-10alkynyl, —COOH, C1-4alkoxycarbonyl, —CON(C0-4alkyl)(C0-4alkyl), —SO2N(C0-4alkyl)(C0-4alkyl), or —N(C0-4alkyl)(C0-4alkyl) substituents; and
- n, m, j1, j1a, j2a, j3a, j4, j4a, j5a, j6a, j7, and j8 are each independently equal to 0, 1, or 2.
- In an exemplary embodiment, the BTK inhibitor is a compound selected from the structures disclosed in U.S. Pat. Nos. 8,450,335 and 8,609,679, and U.S. Patent Application Publication Nos. 2010/0029610 A1, 2012/0077832 A1, 2013/0065879 A1, 2013/0072469 A1, and 2013/0165462 A1. In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XXV) or Formula (XXVI):
- or a pharmaceutically acceptable salt thereof, wherein:
- Ring A is an optionally substituted group selected from phenyl, a 3-7 membered saturated or partially unsaturated carbocyclic ring, an 8-10 membered bicyclic saturated, partially unsaturated or aryl ring, a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10 membered bicyclic heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
- Ring B is an optionally substituted group selected from phenyl, a 3-7 membered saturated or partially unsaturated carbocyclic ring, an 8-10 membered bicyclic saturated, partially unsaturated or aryl ring, a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10 membered bicyclic heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
- R1 is a warhead group;
- Ry is hydrogen, halogen, —CN, —CF3, C1-4 aliphatic, C1-4haloaliphatic, —OR, —C(O)R, or —C(O)N(R)2,
- each R group is independently hydrogen or an optionally substituted group selected from C1-6 aliphatic, phenyl, a 4-7 membered heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
- W1 and W2 are each independently a covalent bond or a bivalent C1-3 alkylene chain wherein one methylene unit of W1 or W2 is optionally replaced by —NR2—, —N(R2)C(O)—, —C(O)N(R2)—, —N(R2)SO2—, —SO2N(R2)—, —O—, —C(O)—, —OC(O)—, —C(O)O—, —S—, —SO— or —SO2—,
- R2 is hydrogen, optionally substituted C1-6 aliphatic, or —C(O)R, or:
- R2 and a substituent on Ring A are taken together with their intervening atoms to form a 4-6 membered saturated, partially unsaturated, or aromatic fused ring, or:
- R2 and Ry are taken together with their intervening atoms to form a 4-7 membered partially unsaturated or aromatic fused ring;
- m and p are independently 0-4; and
- Rx and Rv are independently selected from —R, halogen, —OR, —O(CH2)qOR, —CN, —NO2, —SO2R, —SO2N(R)2, —SOR, —C(O)R, —CO2R, —C(O)N(R)2, —NRC(O)R, —NRC(O)NR2, —NRSO2R, or —N(R)2, wherein q is 1-4; or:
- Rx and R1 when concurrently present on Ring B are taken together with their intervening atoms to form a 5-7 membered saturated, partially unsaturated, or aryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein said ring is substituted with a warhead group and 0-3 groups independently selected from oxo, halogen, —CN, or C1-6 aliphatic; or
- Rv and R1 when concurrently present on Ring A are taken together with their intervening atoms to form a 5-7 membered saturated, partially unsaturated, or aryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein said ring is substituted with a warhead group and 0-3 groups independently selected from oxo, halogen, —CN, or C1-6 aliphatic.
- In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XXV) or Formula (XXVI), wherein:
- Ring A is an optionally substituted group selected from phenyl, a 3-7 membered saturated or partially unsaturated carbocyclic ring, an 8-10 membered bicyclic saturated, partially unsaturated or aryl ring, a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10 membered bicyclic heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
Ring B is an optionally substituted group selected from phenyl, a 3-7 membered saturated or partially unsaturated carbocyclic ring, an 8-10 membered bicyclic saturated, partially unsaturated or aryl ring, a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10 membered bicyclic heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
R1 is -L-Y, wherein:
L is a covalent bond or a bivalent C1-8 saturated or unsaturated, straight or branched, hydrocarbon chain, wherein one, two, or three methylene units of L are optionally and independently replaced by cyclopropylene, —NR—, —N(R)C(O)—, —C(O)N(R)—, —N(R)SO2—, —SO2N(R)—, —O—, —C(O)—, —OC(O)—, —C(O)O—, —S—, —SO—, —SO2—, —C(═S)—, —C(═NR)—, —N═N—, or —C(═N2)—;
Y is hydrogen, C1-6 aliphatic optionally substituted with oxo, halogen, or CN, or a 3-10 membered monocyclic or bicyclic, saturated, partially unsaturated, or aryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, and wherein said ring is substituted with at 1-4 groups independently selected from -Q-Z, oxo, NO2, halogen, CN, or C1-6 aliphatic, wherein:
Q is a covalent bond or a bivalent C1-6 saturated or unsaturated, straight or branched, hydrocarbon chain, wherein one or two methylene units of Q are optionally and independently replaced by —NR—, —S—, —O—, —C(O)—, —SO—, or —SO2—; and
Z is hydrogen or C1-6 aliphatic optionally substituted with oxo, halogen, or CN;
Ry is hydrogen, halogen, —CN, —CF3, C1-4 aliphatic, C1-4 haloaliphatic, —OR, —C(O)R, or —C(O)N(R)2;
each R group is independently hydrogen or an optionally substituted group selected from C1-6 aliphatic, phenyl, a 4-7 membered heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
W1 and W2 are each independently a covalent bond or a bivalent C1-3 alkylene chain wherein one methylene unit of W1 or W2 is optionally replaced by —NR2—, —N(R2)C(O)—, —C(O)N(R2)—, —N(R2)SO2—, —SO2N(R2)—, —O—, —C(O)—, —OC(O)—, —C(O)O—, —S—, —SO— or —SO2—;
R2 is hydrogen, optionally substituted C1-6 aliphatic, or —C(O)R, or:
R2 and a substituent on Ring A are taken together with their intervening atoms to form a 4-6 membered partially unsaturated or aromatic fused ring; or
R2 and Ry are taken together with their intervening atoms to form a 4-6 membered saturated, partially unsaturated, or aromatic fused ring;
m and p are independently 0-4; and
Rx and Rv are independently selected from —R, halogen, —OR, —O(CH2)qOR, —CN, —NO2, —SO2R, —SO2N(R)2, —SOR, —C(O)R, —CO2R, —C(O)N(R)2, —NRC(O)R, —NRC(O)NR2, —NRSO2R, or —N(R)2, or:
Rx and R1 when concurrently present on Ring B are taken together with their intervening atoms to form a 5-7 membered saturated, partially unsaturated, or aryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein said ring is substituted with a warhead group and 0-3 groups independently selected from oxo, halogen, —CN, or C1-6 aliphatic; or
Rv and R1 when concurrently present on Ring A are taken together with their intervening atoms to form a 5-7 membered saturated, partially unsaturated, or aryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein said ring is substituted with a warhead group and 0-3 groups independently selected from oxo, halogen, —CN, or C1-6 aliphatic.
As defined generally above, Ring A is an optionally substituted group selected from phenyl, a 3-7 membered saturated or partially unsaturated carbocyclic ring, an 8-10 membered bicyclic saturated, partially unsaturated or aryl ring, a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, a 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10 membered bicyclic heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, Ring A is an optionally substituted phenyl group. In some embodiments, Ring A is an optionally substituted naphthyl ring or an optionally substituted bicyclic 8-10 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain other embodiments, Ring A is an optionally substituted 3-7 membered carbocyclic ring. In yet other embodiments, Ring A is an optionally substituted 4-7 membered heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
In certain embodiments, Ring A is substituted as defined herein. In some embodiments, Ring A is substituted with one, two, or three groups independently selected from halogen, Ro, or —(CH2)0-4ORo, or —O(CH2)0-4Ro, wherein each Ro is an alkyl or aryl group. Exemplary substituents on Ring A include Br, I, Cl, methyl, —CF3, —C≡CH, —OCH2phenyl, —OCH2(fluorophenyl), or —OCH2pyridyl. - In an exemplary embodiment, the BTK inhibitor is CC-292. In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XXVII):
- which is N-(3-((5-fluoro-2-((4-(2-methoxyethoxy)phenyl)amino)pyrimidin-4-yl)amino)phenyl)acrylamide, or a pharmaceutically acceptable salt thereof, in an exemplary embodiment a hydrochloride salt or besylate salt thereof. The preparation of this compound is described in U.S. Patent Application Publication No. 2010/0029610 A1 at Example 20. The preparation of the hydrochloride salt or besylate salt of this compound is described in U.S. Patent Application Publication No. 2012/0077832 A1.
- In an exemplary embodiment, the BTK inhibitor is N-(3-((5-fluoro-2-((4-(2-methoxyethoxy)phenyl)amino)pyrimidin-4-yl)amino)phenyl)acrylamide or a pharmaceutically acceptable salt thereof, or a hydrochloride salt thereof. The preparation of this compound is described in U.S. Patent Application Publication No. 2012/0077832 A1.
- In an exemplary embodiment, the BTK inhibitor is (N-(3-(5-fluoro-2-(4-(2-methoxyethoxy)phenylamino)pyrimidin-4-ylamino)phenyl)acrylamide), or a pharmaceutically acceptable salt thereof, or a besylate salt thereof. The preparation of this compound is described in U.S. Patent Application Publication No. 2010/0029610 A1 at Example 20. The preparation of its besylate salt is described in U.S. Patent Application Publication No. 2012/0077832 A1.
- In an exemplary embodiment, the BTK inhibitor is a compound of Formula (XXVIII):
- or a pharmaceutically acceptable salt thereof. In an exemplary embodiment, the BTK inhibitor is the hydrochloride salt of a compound of Formula (XXVIII). The preparation of this compound is described in International Patent Application Publication No. WO 2013/081016 A1. In an exemplary embodiment, the BTK inhibitor is 6-amino-9-(1-(but-2-ynoyl)pyrrolidin-3-yl)-7-(4-phenoxyphenyl)-7,9-dihydro-8H-purin-8-one or a pharmaceutically acceptable salt thereof, or a hydrochloride salt thereof.
- In an exemplary embodiment, the BTK inhibitor is 6-amino-9-[(3R)-1-(2-butynoyl)-3-pyrrolidinyl]-7-(4-phenoxyphenyl)-7,9-dihydro-8H-purin-8-one or a pharmaceutically acceptable salt thereof, or a hydrochloride salt thereof. The preparation of this compound is described in International Patent Application Publication No. WO 2013/081016 A1.
- In an exemplary embodiment, the BTK inhibitor is 6-amino-9-[(3S)-1-(2-butynoyl)-3-pyrrolidinyl]-7-(4-phenoxyphenyl)-7,9-dihydro-8H-purin-8-one or a pharmaceutically acceptable salt thereof, or a hydrochloride salt thereof. The preparation of this compound is described in International Patent Application Publication No. WO 2013/081016 A1.
- BTK inhibitors suitable for use in the described combination with a PI3K inhibitor, the PI3K inhibitor in selected embodiments being selected from the group consisting of a PI3K-γ inhibitor, a PI3K-δ inhibitor, and a PI3K-γ,8 inhibitor also include, but are not limited to, those described in, for example, International Patent Application Publication Nos. WO 2013/010868; WO 2012/158843; WO 2012/135944; WO 2012/135937; U.S. Patent Application Publication No. 2011/0177011; and U.S. Pat. Nos. 8,501,751; 8,476,284; 8,008,309; 7,960,396; 7,825,118; 7,732,454; 7,514,444; 7,459,554; 7,405,295; and 7,393,848.
- In one embodiment, the invention provides a pharmaceutical composition comprising a combination of a PI3K inhibitor and a BTK inhibitor. In selected embodiments, the PI3K inhibitor is selected from the group consisting of a PI3K-γ inhibitor, a PI3K-δ inhibitor, and a PI3K-γ,δ inhibitor. Said pharmaceutical composition typically also comprises at least one pharmaceutically acceptable excipient.
- Said pharmaceutical composition is in one embodiment for use in the treatment of the diseases and conditions described below. In particular, it is for use in the treatment of hyperproliferative disorders.
- In selected embodiments, the invention provides a pharmaceutical composition comprising a combination of a PI3K inhibitor and a BTK inhibitor for treating solid tumor cancers, lymphomas and leukemia. In selected embodiments, the PI3K inhibitor is selected from the group consisting of a PI3K-γ inhibitor, a PI3K-δ inhibitor, and a PI3K-γ,δ inhibitor.
- In selected embodiments, the invention provides a pharmaceutical composition comprising a combination of a PI3K inhibitor, including a PI3K inhibitor selected from the group consisting of a PI3K-γ, a PI3K-δ inhibitor, and a PI3K-γ,δ inhibitor, and a BTK inhibitor for the treatment of disorders such as hyperproliferative disorder including but not limited to cancer such as acute myeloid leukemia, thymus, brain, lung, squamous cell, skin, eye, retinoblastoma, intraocular melanoma, oral cavity and oropharyngeal, bladder, gastric, stomach, pancreatic, bladder, breast, cervical, head, neck, renal, kidney, liver, ovarian, prostate, colorectal, esophageal, testicular, gynecological, thyroid, CNS, PNS, AIDS-related (e.g., lymphoma and Kaposi's sarcoma) or viral-induced cancer. In some embodiments, said pharmaceutical composition is for the treatment of a non-cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e.g., psoriasis), restenosis, or prostate (e.g., benign prostatic hypertrophy (BPH)).
- The invention further provides a pharmaceutical composition comprising a combination of a PI3K inhibitor and a BTK inhibitor for the prevention of blastocyte implantation in a mammal.
- The invention also provides a pharmaceutical composition comprising a combination of a PI3K inhibitor and a BTK inhibitor for treating a disease related to vasculogenesis or angiogenesis in a mammal which can manifest as tumor angiogenesis, chronic inflammatory disease such as rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, skin diseases such as psoriasis, eczema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi's sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer.
- The pharmaceutical compositions are typically formulated to provide a therapeutically effective amount of a combination of a PI3K inhibitor, including a PI3K inhibitor selected from the group consisting of a PI3K-γ inhibitor, a PI3K-δ inhibitor, and a PI3K-γ,δ inhibitor, and BTK inhibitor as the active ingredients, or a pharmaceutically acceptable salt, ester, prodrug, solvate, or hydrate thereof. Where desired, the pharmaceutical compositions contain a pharmaceutically acceptable salt and/or coordination complex thereof, and one or more pharmaceutically acceptable excipients, carriers, including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants.
- The pharmaceutical compositions are administered as a combination of a PI3K inhibitor, including a PI3K inhibitor selected from the group consisting of a PI3K-γ inhibitor, a PI3K-δ inhibitor, and a PI3K-γ,δ inhibitor, and a BTK inhibitor. Where desired, other agent(s) may be mixed into a preparation or both components may be formulated into separate preparations for use in combination separately or at the same time. A kit containing both components formulated into separate preparations for said use in also provided by the invention.
- The weight ratio of the PI3K inhibitor to the BTK inhibitor in the combination is typically with the range from 0.01 to 100, preferably from 2.5:1 to 1:2.5, and more preferably about 1:1.
- In selected embodiments, the concentration of each of the PI3K and BTK inhibitors provided in the pharmaceutical compositions of the invention is independently less than, for example, 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.09%, 0.08%, 0.07%, 0.06%, 0.05%, 0.04%, 0.03%, 0.02%, 0.01%, 0.009%, 0.008%, 0.007%, 0.006%, 0.005%, 0.004%, 0.003%, 0.002%, 0.001%, 0.0009%, 0.0008%, 0.0007%, 0.0006%, 0.0005%, 0.0004%, 0.0003%, 0.0002% or 0.0001% w/w, w/v or v/v of each of the BTK or PI3K inhibitors.
- In selected embodiments, the concentration of each of the PI3K and BTK inhibitors provided in the pharmaceutical compositions of the invention is independently greater than 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 19.75%, 19.50%, 19.25% 19%, 18.75%, 18.50%, 18.25% 18%, 17.75%, 17.50%, 17.25% 17%, 16.75%, 16.50%, 16.25% 16%, 15.75%, 15.50%, 15.25% 15%, 14.75%, 14.50%, 14.25% 14%, 13.75%, 13.50%, 13.25% 13%, 12.75%, 12.50%, 12.25% 12%, 11.75%, 11.50%, 11.25% 11%, 10.75%, 10.50%, 10.25% 10%, 9.75%, 9.50%, 9.25% 9%, 8.75%, 8.50%, 8.25% 8%, 7.75%, 7.50%, 7.25% 7%, 6.75%, 6.50%, 6.25% 6%, 5.75%, 5.50%, 5.25% 5%, 4.75%, 4.50%, 4.25%, 4%, 3.75%, 3.50%, 3.25%, 3%, 2.75%, 2.50%, 2.25%, 2%, 1.75%, 1.50%, 125%, 1%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.09%, 0.08%, 0.07%, 0.06%, 0.05%, 0.04%, 0.03%, 0.02%, 0.01%, 0.009%, 0.008%, 0.007%, 0.006%, 0.005%, 0.004%, 0.003%, 0.002%, 0.001%, 0.0009%, 0.0008%, 0.0007%, 0.0006%, 0.0005%, 0.0004%, 0.0003%, 0.0002% or 0.0001% w/w, w/v, or v/v of each of the BTK or PI3K inhibitors.
- In selected embodiments, the concentration of each of the PI3K and BTK inhibitors of the invention is independently in the range from about 0.0001% to about 50%, about 0.001% to about 40%, about 0.01% to about 30%, about 0.02% to about 29%, about 0.03% to about 28%, about 0.04% to about 27%, about 0.05% to about 26%, about 0.06% to about 25%, about 0.07% to about 24%, about 0.08% to about 23%, about 0.09% to about 22%, about 0.1% to about 21%, about 0.2% to about 20%, about 0.3% to about 19%, about 0.4% to about 18%, about 0.5% to about 17%, about 0.6% to about 16%, about 0.7% to about 15%, about 0.8% to about 14%, about 0.9% to about 12% or about 1% to about 10% w/w, w/v or v/v. v/v of each of the BTK or PI3K inhibitors.
- In selected embodiments, the concentration of each of the PI3K and BTK inhibitors of the invention is independently in the range from about 0.001% to about 10%, about 0.01% to about 5%, about 0.02% to about 4.5%, about 0.03% to about 4%, about 0.04% to about 3.5%, about 0.05% to about 3%, about 0.06% to about 2.5%, about 0.07% to about 2%, about 0.08% to about 1.5%, about 0.09% to about 1%, about 0.1% to about 0.9% w/w, w/v or v/v of each of the BTK or PI3K inhibitors.
- In selected embodiments, the amount of each of the PI3K and BTK inhibitors of the invention is independently equal to or less than 10 g, 9.5 g, 9.0 g, 8.5 g, 8.0 g, 7.5 g, 7.0 g, 6.5 g, 6.0 g, 5.5 g, 5.0 g, 4.5 g, 4.0 g, 3.5 g, 3.0 g, 2.5 g, 2.0 g, 1.5 g, 1.0 g, 0.95 g, 0.9 g, 0.85 g, 0.8 g, 0.75 g, 0.7 g, 0.65 g, 0.6 g, 0.55 g, 0.5 g, 0.45 g, 0.4 g, 0.35 g, 0.3 g, 0.25 g, 0.2 g, 0.15 g, 0.1 g, 0.09 g, 0.08 g, 0.07 g, 0.06 g, 0.05 g, 0.04 g, 0.03 g, 0.02 g, 0.01 g, 0.009 g, 0.008 g, 0.007 g, 0.006 g, 0.005 g, 0.004 g, 0.003 g, 0.002 g, 0.001 g, 0.0009 g, 0.0008 g, 0.0007 g, 0.0006 g, 0.0005 g, 0.0004 g, 0.0003 g, 0.0002 g or 0.0001 g.
- In selected embodiments, the amount of each of the PI3K and BTK inhibitors of the invention is independently more than 0.0001 g, 0.0002 g, 0.0003 g, 0.0004 g, 0.0005 g, 0.0006 g, 0.0007 g, 0.0008 g, 0.0009 g, 0.001 g, 0.0015 g, 0.002 g, 0.0025 g, 0.003 g, 0.0035 g, 0.004 g, 0.0045 g, 0.005 g, 0.0055 g, 0.006 g, 0.0065 g, 0.007 g, 0.0075 g, 0.008 g, 0.0085 g, 0.009 g, 0.0095 g, 0.01 g, 0.015 g, 0.02 g, 0.025 g, 0.03 g, 0.035 g, 0.04 g, 0.045 g, 0.05 g, 0.055 g, 0.06 g, 0.065 g, 0.07 g, 0.075 g, 0.08 g, 0.085 g, 0.09 g, 0.095 g, 0.1 g, 0.15 g, 0.2 g, 0.25 g, 0.3 g, 0.35 g, 0.4 g, 0.45 g, 0.5 g, 0.55 g, 0.6 g, 0.65 g, 0.7 g, 0.75 g, 0.8 g, 0.85 g, 0.9 g, 0.95 g, 1 g, 1.5 g, 2 g, 2.5, 3 g, 3.5, 4 g, 4.5 g, 5 g, 5.5 g, 6 g, 6.5 g, 7 g, 7.5 g, 8 g, 8.5 g, 9 g, 9.5 g or 10 g.
- Each of the PI3K and BTK inhibitors according to the invention is effective over a wide dosage range. For example, in the treatment of adult humans, dosages independently range from 0.01 to 1000 mg, from 0.5 to 100 mg, from 1 to 50 mg per day, and from 5 to 40 mg per day are examples of dosages that may be used. The exact dosage will depend upon the route of administration, the form in which the compound is administered, the gender and age of the subject to be treated, the body weight of the subject to be treated, and the preference and experience of the attending physician.
- Efficacy of the compounds and combinations of compounds described herein in treating, preventing and/or managing the indicated diseases or disorders can be tested using various animal models known in the art. Efficacy in treating, preventing and/or managing asthma can be assessed using the ova induced asthma model described, for example, in Lee et al., J. Allergy Clin. Immunol. 118(2):403-9 (2006). Efficacy in treating, preventing and/or managing arthritis (e.g., rheumatoid or psoriatic arthritis) can be assessed using the autoimmune animal models described in, for example, Williams et al., Chem Biol, 17(2):123-34 (2010), WO 2009/088986, WO 2009/088880, and WO 2011/008302. Efficacy in treating, preventing and/or managing psoriasis can be assessed using transgenic or knockout mouse model with targeted mutations in epidermis, vasculature or immune cells, mouse model resulting from spontaneous mutations, and immuno-deficient mouse model with xenotransplantation of human skin or immune cells, all of which are described, for example, in Boehncke et al., Clinics in Dermatology, 25: 596-605 (2007). Efficacy in treating, preventing and/or managing fibrosis or fibrotic conditions can be assessed using the unilateral ureteral obstruction model of renal fibrosis, which is described, for example, in Chevalier et al., Kidney International 75:1145-1152 (2009); the bleomycin induced model of pulmonary fibrosis described in, for example, Moore et al., Am. J. Physiol. Lung. Cell. Mol. Physiol. 294:L152-L160 (2008); a variety of liver/biliary fibrosis models described in, for example, Chuang et al., Clin. Liver Dis.12:333-347 (2008) and Omenetti et al., Laboratory Investigation 87:499-514 (2007) (biliary duct-ligated model); or any of a number of myelofibrosis mouse models such as described in Varicchio et al., Expert Rev. Hematol. 2(3):315-334 (2009). Efficacy in treating, preventing and/or managing scleroderma can be assessed using a mouse model induced by repeated local injections of bleomycin described, for example, in Yamamoto et al., J. Invest. Dermatol. 112: 456-462 (1999). Efficacy in treating, preventing and/or managing dermatomyositis can be assessed using a myositis mouse model induced by immunization with rabbit myosin as described, for example, in Phyanagi et al., Arthritis & Rheumatism, 60(10): 3118-3127 (2009). Efficacy in treating, preventing and/or managing lupus can be assessed using various animal models described, for example, in Ghoreishi et al., Lupus, 19: 1029-1035 (2009); Ohl et al., Journal of Biomedicine and Biotechnology, Article ID 432595 (2011); Xia et al., Rheumatology, 50:2187-2196 (2011); Pau et al., PLoS ONE, 7(5):e36761 (2012); Mustafa et al., Toxicology, 290:156-168 (2011); Ichikawa et al., Arthritis and Rheumatism, 62(2): 493-503 (2012); Ouyang et al., J. Mol. Med. (2012); Rankin et al., Journal of Immunology, 188:1656-1667 (2012). Efficacy in treating, preventing and/or managing Sjögren's syndrome can be assessed using various mouse models described, for example, in Chiorini et al., J. Autoimmunity, 33: 190-196 (2009).
- To explore the role of PI3K signaling in diffuse large B-cell lymphoma (“DLBCL”), several DLBCL cell lines of varying molecular profiles may be utilized. In an exemplary embodiment, a cellular growth inhibition assay used five cell lines, including four GCB (SU-DHL-4, SU-DHL-6, OCI-LY-8 and WSU-DLCL-2) and one ABC (Ri-1) subtype. In an exemplary embodiment, a cellular growth inhibition assay used five cell lines that were OCI-LY-3, OCI-LY-7, Pfeiffer, Toledo and U2932. In an exemplary embodiment, evidence of PI3K pathway inhibition is measured by reduction in phospho (p)-AKT. In an exemplary embodiment, the kinetics of pathway modulation was characterized by examination of phosphorylation of AKT, PRAS40 and S6 following a time-course of treatment by a PI3K-inhibitor in selected cell lines. In one embodiment, upon B-cell receptor stimulation via antibody-induced crosslinking, some cell lines exhibited enhanced AKT phosphorylation.
- In an exemplary embodiment, the combination effect of a PI3K inhibitor with a BTK inhibitor was observed in a cellular growth inhibition assay in the SU-DHL-4 cell line and in the OCI-LY-8 cell line with BCR crosslinking.
- In one embodiment, provided herein is a method of treating, preventing and/or managing asthma. As used herein, “asthma” encompasses airway constriction regardless of the cause. Common triggers of asthma include, but are not limited to, exposure to an environmental stimulants (e.g., allergens), cold air, warm air, perfume, moist air, exercise or exertion, and emotional stress. Also provided herein is a method of treating, preventing and/or managing one or more symptoms associated with asthma. Examples of the symptoms include, but are not limited to, severe coughing, airway constriction and mucus production.
- Described below are non-limiting exemplary pharmaceutical compositions and methods for preparing the same.
- In selected embodiments, the invention provides a pharmaceutical composition for oral administration containing the combination of a PI3K and BTK inhibitor, and a pharmaceutical excipient suitable for oral administration.
- In selected embodiments, the invention provides a solid pharmaceutical composition for oral administration containing: (i) an effective amount of each of a PI3K and BTK inhibitor in combination and (ii) a pharmaceutical excipient suitable for oral administration. In selected embodiments, the composition further contains (iii) an effective amount of a fourth compound.
- In selected embodiments, the pharmaceutical composition may be a liquid pharmaceutical composition suitable for oral consumption. Pharmaceutical compositions of the invention suitable for oral administration can be presented as discrete dosage forms, such as capsules, cachets, or tablets, or liquids or aerosol sprays each containing a predetermined amount of an active ingredient as a powder or in granules, a solution, or a suspension in an aqueous or non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil liquid emulsion. Such dosage forms can be prepared by any of the methods of pharmacy, but all methods include the step of bringing the active ingredient(s) into association with the carrier, which constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient(s) with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation. For example, a tablet can be prepared by compression or molding, optionally with one or more accessory ingredients. Compressed tablets can be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as powder or granules, optionally mixed with an excipient such as, but not limited to, a binder, a lubricant, an inert diluent, and/or a surface active or dispersing agent. Molded tablets can be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- The invention further encompasses anhydrous pharmaceutical compositions and dosage forms since water can facilitate the degradation of some compounds. For example, water may be added (e.g., 5%) in the pharmaceutical arts as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time. Anhydrous pharmaceutical compositions and dosage forms of the invention can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions. Pharmaceutical compositions and dosage forms of the invention which contain lactose can be made anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected. An anhydrous pharmaceutical composition may be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions may be packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastic or the like, unit dose containers, blister packs, and strip packs.
- Each of the PI3K and BTK inhibitors active ingredients can be combined in an intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier can take a wide variety of forms depending on the form of preparation desired for administration. In preparing the compositions for an oral dosage form, any of the usual pharmaceutical media can be employed as carriers, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, and the like in the case of oral liquid preparations (such as suspensions, solutions, and elixirs) or aerosols; or carriers such as starches, sugars, micro-crystalline cellulose, diluents, granulating agents, lubricants, binders, and disintegrating agents can be used in the case of oral solid preparations, in some embodiments without employing the use of lactose. For example, suitable carriers include powders, capsules, and tablets, with the solid oral preparations. If desired, tablets can be coated by standard aqueous or nonaqueous techniques.
- Binders suitable for use in pharmaceutical compositions and dosage forms include, but are not limited to, corn starch, potato starch, or other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone, methyl cellulose, pre-gelatinized starch, hydroxypropyl methyl cellulose, microcrystalline cellulose, and mixtures thereof.
- Examples of suitable fillers for use in the pharmaceutical compositions and dosage forms disclosed herein include, but are not limited to, talc, calcium carbonate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof.
- Disintegrants may be used in the compositions of the invention to provide tablets that disintegrate when exposed to an aqueous environment. Too much of a disintegrant may produce tablets which disintegrate in the bottle. Too little may be insufficient for disintegration to occur, thus altering the rate and extent of release of the active ingredients from the dosage form. Thus, a sufficient amount of disintegrant that is neither too little nor too much to detrimentally alter the release of the active ingredient(s) may be used to form the dosage forms of the compounds disclosed herein. The amount of disintegrant used may vary based upon the type of formulation and mode of administration, and may be readily discernible to those of ordinary skill in the art. About 0.5 to about 15 weight percent of disintegrant, or about 1 to about 5 weight percent of disintegrant, may be used in the pharmaceutical composition. Disintegrants that can be used to form pharmaceutical compositions and dosage forms of the invention include, but are not limited to, agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, other starches, clays, other algins, other celluloses, gums or mixtures thereof.
- Lubricants which can be used to form pharmaceutical compositions and dosage forms of the invention include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate, ethyl laureate, agar, or mixtures thereof. Additional lubricants include, for example, a silica gel, a coagulated aerosol of synthetic silica, or mixtures thereof. A lubricant can optionally be added, in an amount of less than about 1 weight percent of the pharmaceutical composition.
- When aqueous suspensions and/or elixirs are desired for oral administration, the essential active ingredient therein may be combined with various sweetening or flavoring agents, coloring matter or dyes and, if so desired, emulsifying and/or suspending agents, together with such diluents as water, ethanol, propylene glycol, glycerin and various combinations thereof.
- The tablets can be uncoated or coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate can be employed. Formulations for oral use can also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example, peanut oil, liquid paraffin or olive oil.
- Surfactants which can be used to form pharmaceutical compositions and dosage forms of the invention include, but are not limited to, hydrophilic surfactants, lipophilic surfactants, and mixtures thereof. That is, a mixture of hydrophilic surfactants may be employed, a mixture of lipophilic surfactants may be employed, or a mixture of at least one hydrophilic surfactant and at least one lipophilic surfactant may be employed.
- A suitable hydrophilic surfactant may generally have an HLB value of at least 10, while suitable lipophilic surfactants may generally have an HLB value of or less than about 10. An empirical parameter used to characterize the relative hydrophilicity and hydrophobicity of non-ionic amphiphilic compounds is the hydrophilic-lipophilic balance (“HLB” value). Surfactants with lower HLB values are more lipophilic or hydrophobic, and have greater solubility in oils, while surfactants with higher HLB values are more hydrophilic, and have greater solubility in aqueous solutions. Hydrophilic surfactants are generally considered to be those compounds having an HLB value greater than about 10, as well as anionic, cationic, or zwitterionic compounds for which the HLB scale is not generally applicable. Similarly, lipophilic (i.e., hydrophobic) surfactants are compounds having an HLB value equal to or less than about 10. However, HLB value of a surfactant is merely a rough guide generally used to enable formulation of industrial, pharmaceutical and cosmetic emulsions.
- Hydrophilic surfactants may be either ionic or non-ionic. Suitable ionic surfactants include, but are not limited to, alkylammonium salts; fusidic acid salts; fatty acid derivatives of amino acids, oligopeptides, and polypeptides; glyceride derivatives of amino acids, oligopeptides, and polypeptides; lecithins and hydrogenated lecithins; lysolecithins and hydrogenated lysolecithins; phospholipids and derivatives thereof; lysophospholipids and derivatives thereof; carnitine fatty acid ester salts; salts of alkylsulfates; fatty acid salts; sodium docusate; acylactylates; mono- and di-acetylated tartaric acid esters of mono- and di-glycerides; succinylated mono- and di-glycerides; citric acid esters of mono- and di-glycerides; and mixtures thereof.
- Within the aforementioned group, ionic surfactants include, by way of example: lecithins, lysolecithin, phospholipids, lysophospholipids and derivatives thereof; carnitine fatty acid ester salts; salts of alkylsulfates; fatty acid salts; sodium docusate; acylactylates; mono- and di-acetylated tartaric acid esters of mono- and di-glycerides; succinylated mono- and di-glycerides; citric acid esters of mono- and di-glycerides; and mixtures thereof.
- Ionic surfactants may be the ionized forms of lecithin, lysolecithin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidic acid, lysophosphatidylserine, PEG-phosphatidylethanolamine, PVP-phosphatidylethanolamine, lactylic esters of fatty acids, stearoyl-2-lactylate, stearoyl lactylate, succinylated monoglycerides, mono/diacetylated tartaric acid esters of mono/diglycerides, citric acid esters of mono/diglycerides, cholylsarcosine, caproate, caprylate, caprate, laurate, myristate, palmitate, oleate, ricinoleate, linoleate, linolenate, stearate, lauryl sulfate, teracecyl sulfate, docusate, lauroyl carnitines, palmitoyl carnitines, myristoyl carnitines, and salts and mixtures thereof.
- Hydrophilic non-ionic surfactants may include, but not limited to, alkylglucosides; alkylmaltosides; alkylthioglucosides; lauryl macrogolglycerides; polyoxyalkylene alkyl ethers such as polyethylene glycol alkyl ethers; polyoxyalkylene alkylphenols such as polyethylene glycol alkyl phenols; polyoxyalkylene alkyl phenol fatty acid esters such as polyethylene glycol fatty acids monoesters and polyethylene glycol fatty acids diesters; polyethylene glycol glycerol fatty acid esters; polyglycerol fatty acid esters; polyoxyalkylene sorbitan fatty acid esters such as polyethylene glycol sorbitan fatty acid esters; hydrophilic transesterification products of a polyol with at least one member of the group consisting of glycerides, vegetable oils, hydrogenated vegetable oils, fatty acids, and sterols; polyoxyethylene sterols, derivatives, and analogues thereof; polyoxyethylated vitamins and derivatives thereof; polyoxyethylene-polyoxypropylene block copolymers; and mixtures thereof; polyethylene glycol sorbitan fatty acid esters and hydrophilic transesterification products of a polyol with at least one member of the group consisting of triglycerides, vegetable oils, and hydrogenated vegetable oils. The polyol may be glycerol, ethylene glycol, polyethylene glycol, sorbitol, propylene glycol, pentaerythritol, or a saccharide.
- Other hydrophilic-non-ionic surfactants include, without limitation, PEG-10 laurate, PEG-12 laurate, PEG-20 laurate, PEG-32 laurate, PEG-32 dilaurate, PEG-12 oleate, PEG-15 oleate, PEG-20 oleate, PEG-20 dioleate, PEG-32 oleate, PEG-200 oleate, PEG-400 oleate, PEG-15 stearate, PEG-32 distearate, PEG-40 stearate, PEG-100 stearate, PEG-20 dilaurate, PEG-25 glyceryl trioleate, PEG-32 dioleate, PEG-20 glyceryl laurate, PEG-30 glyceryl laurate, PEG-20 glyceryl stearate, PEG-20 glyceryl oleate, PEG-30 glyceryl oleate, PEG-30 glyceryl laurate, PEG-40 glyceryl laurate, PEG-40 palm kernel oil, PEG-50 hydrogenated castor oil, PEG-40 castor oil, PEG-35 castor oil, PEG-60 castor oil, PEG-40 hydrogenated castor oil, PEG-60 hydrogenated castor oil, PEG-60 corn oil, PEG-6 caprate/caprylate glycerides, PEG-8 caprate/caprylate glycerides, polyglyceryl-10 laurate, PEG-30 cholesterol, PEG-25 phytosterol, PEG-30 soya sterol, PEG-20 trioleate, PEG-40 sorbitan oleate, PEG-80 sorbitan laurate, polysorbate 20, polysorbate 80, POE-9 lauryl ether, POE-23 lauryl ether, POE-10 oleyl ether, POE-20 oleyl ether, POE-20 stearyl ether, tocopheryl PEG-100 succinate, PEG-24 cholesterol, polyglyceryl-10oleate, Tween 40, Tween 60, sucrose monostearate, sucrose monolaurate, sucrose monopalmitate, PEG 10-100 nonyl phenol series, PEG 15-100 octyl phenol series, and poloxamers.
- Suitable lipophilic surfactants include, by way of example only: fatty alcohols; glycerol fatty acid esters; acetylated glycerol fatty acid esters; lower alcohol fatty acids esters; propylene glycol fatty acid esters; sorbitan fatty acid esters; polyethylene glycol sorbitan fatty acid esters; sterols and sterol derivatives; polyoxyethylated sterols and sterol derivatives; polyethylene glycol alkyl ethers; sugar esters; sugar ethers; lactic acid derivatives of mono- and di-glycerides; hydrophobic transesterification products of a polyol with at least one member of the group consisting of glycerides, vegetable oils, hydrogenated vegetable oils, fatty acids and sterols; oil-soluble vitamins/vitamin derivatives; and mixtures thereof. Within this group, preferred lipophilic surfactants include glycerol fatty acid esters, propylene glycol fatty acid esters, and mixtures thereof, or are hydrophobic transesterification products of a polyol with at least one member of the group consisting of vegetable oils, hydrogenated vegetable oils, and triglycerides.
- In an exemplary embodiment, the composition may include a solubilizer to ensure good solubilization and/or dissolution of the compound of the present invention and to minimize precipitation of the compound of the present invention. This can be especially important for compositions for non-oral use—e.g., compositions for injection. A solubilizer may also be added to increase the solubility of the hydrophilic drug and/or other components, such as surfactants, or to maintain the composition as a stable or homogeneous solution or dispersion.
- Examples of suitable solubilizers include, but are not limited to, the following: alcohols and polyols, such as ethanol, isopropanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, butanediols and isomers thereof, glycerol, pentaerythritol, sorbitol, mannitol, transcutol, dimethyl isosorbide, polyethylene glycol, polypropylene glycol, polyvinylalcohol, hydroxypropyl methylcellulose and other cellulose derivatives, cyclodextrins and cyclodextrin derivatives; ethers of polyethylene glycols having an average molecular weight of about 200 to about 6000, such as tetrahydrofurfuryl alcohol PEG ether (glycofurol) or methoxy PEG; amides and other nitrogen-containing compounds such as 2-pyrrolidone, 2-piperidone, ε-caprolactam, N-alkylpyrrolidone, N-hydroxyalkylpyrrolidone, N-alkylpiperidone, N-alkylcaprolactam, dimethylacetamide and polyvinylpyrrolidone; esters such as ethyl propionate, tributylcitrate, acetyl triethylcitrate, acetyl tributyl citrate, triethylcitrate, ethyl oleate, ethyl caprylate, ethyl butyrate, triacetin, propylene glycol monoacetate, propylene glycol diacetate, .epsilon.-caprolactone and isomers thereof, 6-valerolactone and isomers thereof, β-butyrolactone and isomers thereof; and other solubilizers known in the art, such as dimethyl acetamide, dimethyl isosorbide, N-methyl pyrrolidones, monooctanoin, diethylene glycol monoethyl ether, and water.
- Mixtures of solubilizers may also be used. Examples include, but not limited to, triacetin, triethylcitrate, ethyl oleate, ethyl caprylate, dimethylacetamide, N-methylpyrrolidone, N-hydroxyethylpyrrolidone, polyvinylpyrrolidone, hydroxypropyl methylcellulose, hydroxypropyl cyclodextrins, ethanol, polyethylene glycol 200-100, glycofurol, transcutol, propylene glycol, and dimethyl isosorbide. Particularly preferred solubilizers include sorbitol, glycerol, triacetin, ethyl alcohol, PEG-400, glycofurol and propylene glycol.
- The amount of solubilizer that can be included is not particularly limited. The amount of a given solubilizer may be limited to a bioacceptable amount, which may be readily determined by one of skill in the art. In some circumstances, it may be advantageous to include amounts of solubilizers far in excess of bioacceptable amounts, for example to maximize the concentration of the drug, with excess solubilizer removed prior to providing the composition to a patient using conventional techniques, such as distillation or evaporation. Thus, if present, the solubilizer can be in a weight ratio of 10%, 25%, 50%, 100%, or up to about 200% by weight, based on the combined weight of the drug, and other excipients. If desired, very small amounts of solubilizer may also be used, such as 5%, 2%, 1% or even less. Typically, the solubilizer may be present in an amount of about 1% to about 100%, more typically about 5% to about 25% by weight.
- The composition can further include one or more pharmaceutically acceptable additives and excipients. Such additives and excipients include, without limitation, detackifiers, anti-foaming agents, buffering agents, polymers, antioxidants, preservatives, chelating agents, viscomodulators, tonicifiers, flavorants, colorants, odorants, opacifiers, suspending agents, binders, fillers, plasticizers, lubricants, and mixtures thereof.
- In addition, an acid or a base may be incorporated into the composition to facilitate processing, to enhance stability, or for other reasons. Examples of pharmaceutically acceptable bases include amino acids, amino acid esters, ammonium hydroxide, potassium hydroxide, sodium hydroxide, sodium hydrogen carbonate, aluminum hydroxide, calcium carbonate, magnesium hydroxide, magnesium aluminum silicate, synthetic aluminum silicate, synthetic hydrocalcite, magnesium aluminum hydroxide, diisopropylethylamine, ethanolamine, ethylenediamine, triethanolamine, triethylamine, triisopropanolamine, trimethylamine, tris(hydroxymethyl)aminomethane (TRIS) and the like. Also suitable are bases that are salts of a pharmaceutically acceptable acid, such as acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acid, amino acids, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, fatty acids, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluenesulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic acid, toluenesulfonic acid, uric acid, and the like. Salts of polyprotic acids, such as sodium phosphate, disodium hydrogen phosphate, and sodium dihydrogen phosphate can also be used. When the base is a salt, the cation can be any convenient and pharmaceutically acceptable cation, such as ammonium, alkali metals and alkaline earth metals. Example may include, but not limited to, sodium, potassium, lithium, magnesium, calcium and ammonium.
- Suitable acids are pharmaceutically acceptable organic or inorganic acids. Examples of suitable inorganic acids include hydrochloric acid, hydrobromic acid, hydriodic acid, sulfuric acid, nitric acid, boric acid, phosphoric acid, and the like. Examples of suitable organic acids include acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acids, amino acids, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, fatty acids, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, methanesulfonic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluenesulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic acid, toluenesulfonic acid and uric acid.
- In selected embodiments, the invention provides a pharmaceutical composition for injection containing the combination of the PI3K and BTK inhibitors and a pharmaceutical excipient suitable for injection. Components and amounts of agents in the compositions are as described herein.
- The forms in which the compositions of the present invention may be incorporated for administration by injection include aqueous or oil suspensions, or emulsions, with sesame oil, corn oil, cottonseed oil, or peanut oil, as well as elixirs, mannitol, dextrose, or a sterile aqueous solution, and similar pharmaceutical vehicles.
- Aqueous solutions in saline are also conventionally used for injection. Ethanol, glycerol, propylene glycol and liquid polyethylene glycol (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils may also be employed. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, for the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid and thimerosal.
- Sterile injectable solutions are prepared by incorporating the combination of the PI3K and BTK inhibitors in the required amounts in the appropriate solvent with various other ingredients as enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, certain desirable methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- In some embodiments, the invention provides a pharmaceutical composition for transdermal delivery containing the combination of the PI3K and BTK inhibitors and a pharmaceutical excipient suitable for transdermal delivery.
- Compositions of the present invention can be formulated into preparations in solid, semi-solid, or liquid forms suitable for local or topical administration, such as gels, water soluble jellies, creams, lotions, suspensions, foams, powders, slurries, ointments, solutions, oils, pastes, suppositories, sprays, emulsions, saline solutions, dimethylsulfoxide (DMSO)-based solutions. In general, carriers with higher densities are capable of providing an area with a prolonged exposure to the active ingredients. In contrast, a solution formulation may provide more immediate exposure of the active ingredient to the chosen area.
- The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients, which are compounds that allow increased penetration of, or assist in the delivery of, therapeutic molecules across the stratum corneum permeability barrier of the skin. There are many of these penetration-enhancing molecules known to those trained in the art of topical formulation. Examples of such carriers and excipients include, but are not limited to, humectants (e.g., urea), glycols (e.g., propylene glycol), alcohols (e.g., ethanol), fatty acids (e.g., oleic acid), surfactants (e.g., isopropyl myristate and sodium lauryl sulfate), pyrrolidones, glycerol monolaurate, sulfoxides, terpenes (e.g., menthol), amines, amides, alkanes, alkanols, water, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
- Another exemplary formulation for use in the methods of the present invention employs transdermal delivery devices (“patches”). Such transdermal patches may be used to provide continuous or discontinuous infusion of the combination of the PI3K and BTK inhibitors in controlled amounts, either with or without another agent.
- The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. Nos. 5,023,252; 4,992,445 and 5,001,139. Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
- Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra. Preferably the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a face mask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices that deliver the formulation in an appropriate manner.
- Pharmaceutical compositions may also be prepared from compositions described herein and one or more pharmaceutically acceptable excipients suitable for sublingual, buccal, rectal, intraosseous, intraocular, intranasal, epidural, or intraspinal administration. Preparations for such pharmaceutical compositions are well-known in the art. See, e.g., Anderson, Philip O.; Knoben, James E.; Troutman, William G, eds., Handbook of Clinical Drug Data, Tenth Edition, McGraw-Hill, 2002; and Pratt and Taylor, eds., Principles of Drug Action, Third Edition, Churchill Livingston, N.Y., 1990.
- Administration of the combination of the PI3K and BTK inhibitors or pharmaceutical composition of these compounds can be effected by any method that enables delivery of the compounds to the site of action. These methods include oral routes, intraduodenal routes, parenteral injection (including intravenous, intraarterial, subcutaneous, intramuscular, intravascular, intraperitoneal or infusion), topical (e.g., transdermal application), rectal administration, via local delivery by catheter or stent or through inhalation. The combination of compounds can also be administered intraadiposally or intrathecally.
- The compositions of the invention may also be delivered via an impregnated or coated device such as a stent, for example, or an artery-inserted cylindrical polymer. Such a method of administration may, for example, aid in the prevention or amelioration of restenosis following procedures such as balloon angioplasty. Without being bound by theory, compounds of the invention may slow or inhibit the migration and proliferation of smooth muscle cells in the arterial wall which contribute to restenosis. A compound of the invention may be administered, for example, by local delivery from the struts of a stent, from a stent graft, from grafts, or from the cover or sheath of a stent. In some embodiments, a compound of the invention is admixed with a matrix. Such a matrix may be a polymeric matrix, and may serve to bond the compound to the stent. Polymeric matrices suitable for such use, include, for example, lactone-based polyesters or copolyesters such as polylactide, polycaprolactonglycolide, polyorthoesters, polyanhydrides, polyaminoacids, polysaccharides, polyphosphazenes, poly(ether-ester) copolymers (e.g. PEO-PLLA); polydimethylsiloxane, poly(ethylene-vinylacetate), acrylate-based polymers or copolymers (e.g., polyhydroxyethyl methylmethacrylate, polyvinyl pyrrolidinone), fluorinated polymers such as polytetrafluoroethylene and cellulose esters. Suitable matrices may be nondegrading or may degrade with time, releasing the compound or compounds. The combination of the PI3K and BTK inhibitors may be applied to the surface of the stent by various methods such as dip/spin coating, spray coating, dip-coating, and/or brush-coating. The compounds may be applied in a solvent and the solvent may be allowed to evaporate, thus forming a layer of compound onto the stent. Alternatively, the compound may be located in the body of the stent or graft, for example in microchannels or micropores. When implanted, the compound diffuses out of the body of the stent to contact the arterial wall. Such stents may be prepared by dipping a stent manufactured to contain such micropores or microchannels into a solution of the compound of the invention in a suitable solvent, followed by evaporation of the solvent. Excess drug on the surface of the stent may be removed via an additional brief solvent wash. In yet other embodiments, compounds of the invention may be covalently linked to a stent or graft. A covalent linker may be used which degrades in vivo, leading to the release of the compound of the invention. Any bio-labile linkage may be used for such a purpose, such as ester, amide or anhydride linkages. The combination of the PI3K and BTK inhibitors may additionally be administered intravascularly from a balloon used during angioplasty. Extravascular administration of the combination of the PI3K and BTK inhibitors via the pericard or via advential application of formulations of the invention may also be performed to decrease restenosis.
- Exemplary parenteral administration forms include solutions or suspensions of active compound in sterile aqueous solutions, for example, aqueous propylene glycol or dextrose solutions. Such dosage forms can be suitably buffered, if desired.
- The invention also provides kits. The kits include each of the PI3K and BTK inhibitors, either alone or in combination in suitable packaging, and written material that can include instructions for use, discussion of clinical studies and listing of side effects. Such kits may also include information, such as scientific literature references, package insert materials, clinical trial results, and/or summaries of these and the like, which indicate or establish the activities and/or advantages of the composition, and/or which describe dosing, administration, side effects, drug interactions, or other information useful to the health care provider. Such information may be based on the results of various studies, for example, studies using experimental animals involving in vivo models and studies based on human clinical trials. The kit may further contain another agent. In selected embodiments, the PI3K and BTK inhibitors and the agent are provided as separate compositions in separate containers within the kit. In selected embodiments, the PI3K and BTK inhibitors and the agent are provided as a single composition within a container in the kit. Suitable packaging and additional articles for use (e.g., measuring cup for liquid preparations, foil wrapping to minimize exposure to air, and the like) are known in the art and may be included in the kit. Kits described herein can be provided, marketed and/or promoted to health providers, including physicians, nurses, pharmacists, formulary officials, and the like. Kits may also, in selected embodiments, be marketed directly to the consumer.
- The amounts of the combination of the PI3K and BTK inhibitors administered will be dependent on the mammal being treated, the severity of the disorder or condition, the rate of administration, the disposition of the compounds and the discretion of the prescribing physician. However, an effective dosage of a PI3K or a BTK inhibitor is in the range of about 0.001 to about 100 mg per kg body weight per day, such as about 1 to about 35 mg/kg/day, in single or divided doses. For a 70 kg human, this would amount to about 0.05 to 7 g/day, such as about 0.05 to about 2.5 g/day. In some embodiments, an effective dosage of a BTK inhibitor disclosed herein, either alone or administered in combination with a PI3K inhibitor, is in the range of about 1 mg to about 300 mg, about 10 mg to about 250 mg, about 20 mg to about 225 mg, about 25 mg to about 200 mg, about 10 mg to about 200 mg, about 20 mg to about 150 mg, about 30 mg to about 120 mg, about 10 mg to about 90 mg, about 20 mg to about 80 mg, about 30 mg to about 70 mg, about 40 mg to about 60 mg, about 45 mg to about 55 mg, about 48 mg to about 52 mg, about 50 mg to about 150 mg, about 60 mg to about 140 mg, about 70 mg to about 130 mg, about 80 mg to about 120 mg, about 90 mg to about 110 mg, about 95 mg to about 105 mg, about 150 mg to about 250 mg, about 160 mg to about 240 mg, about 170 mg to about 230 mg, about 180 mg to about 220 mg, about 190 mg to about 210 mg, about 195 mg to about 205 mg, or about 198 to about 202 mg. In some embodiments, an effective dosage of a BTK inhibitor disclosed herein, either alone or in combination with a PI3K inhibitor, is about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, or about 250 mg. In some embodiments a BTK inhibitor disclosed herein, is administered either alone or administered in combination with a PI3K inhibitor, in a single dose, while in other embodiments a BTK inhibitor disclosed herein, is administered either alone or in combination with a PI3K inhibitor, b.i.d. (twice a day).
- In some embodiments, an effective dosage of a BTK inhibitor disclosed herein, either alone or administered in combination with a PI3K inhibitor, is in the range of about 0.01 mg/kg to about 4.3 mg/kg, about 0.15 mg/kg to about 3.6 mg/kg, about 0.3 mg/kg to about 3.2 mg/kg, about 0.35 mg/kg to about 2.85 mg/kg, about 0.15 mg/kg to about 2.85 mg/kg, about 0.3 mg to about 2.15 mg/kg, about 0.45 mg/kg to about 1.7 mg/kg, about 0.15 mg/kg to about 1.3 mg/kg, about 0.3 mg/kg to about 1.15 mg/kg, about 0.45 mg/kg to about 1 mg/kg, about 0.55 mg/kg to about 0.85 mg/kg, about 0.65 mg/kg to about 0.8 mg/kg, about 0.7 mg/kg to about 0.75 mg/kg, about 0.7 mg/kg to about 2.15 mg/kg, about 0.85 mg/kg to about 2 mg/kg, about 1 mg/kg to about 1.85 mg/kg, about 1.15 mg/kg to about 1.7 mg/kg, about 1.3 mg/kg mg to about 1.6 mg/kg, about 1.35 mg/kg to about 1.5 mg/kg, about 2.15 mg/kg to about 3.6 mg/kg, about 2.3 mg/kg to about 3.4 mg/kg, about 2.4 mg/kg to about 3.3 mg/kg, about 2.6 mg/kg to about 3.15 mg/kg, about 2.7 mg/kg to about 3 mg/kg, about 2.8 mg/kg to about 3 mg/kg, or about 2.85 mg/kg to about 2.95 mg/kg. In some embodiments, an effective dosage of a BTK inhibitor disclosed herein, either alone or administered in combination with a PI3K inhibitor, is about 0.35 mg/kg, about 0.7 mg/kg, about 1 mg/kg, about 1.4 mg/kg, about 1.8 mg/kg, about 2.1 mg/kg, about 2.5 mg/kg, about 2.85 mg/kg, about 3.2 mg/kg, or about 3.6 mg/kg. In some embodiments a BTK inhibitor disclosed herein, is administered either alone or in combination with a PI3K inhibitor, in a single dose, while in other embodiments a BTK inhibitor disclosed herein, is administered either alone or in combination with a PI3K inhibitor, b.i.d. (twice a day).
- In some embodiments, an effective dosage of a PI3K inhibitor disclosed herein, either alone or administered in combination with a BTK inhibitor, is in the range of about 1 mg to about 300 mg, about 10 mg to about 250 mg, about 20 mg to about 225 mg, about 25 mg to about 200 mg, about 1 mg to about 50 mg, about 5 mg to about 45 mg, about 10 mg to about 40 mg, about 15 mg to about 35 mg, about 20 mg to about 30 mg, about 23 mg to about 28 mg, about 50 mg to about 150 mg, about 60 mg to about 140 mg, about 70 mg to about 130 mg, about 80 mg to about 120 mg, about 90 mg to about 110 mg, or about 95 mg to about 105 mg, about 98 mg to about 102 mg, about 150 mg to about 250 mg, about 160 mg to about 240 mg, about 170 mg to about 230 mg, about 180 mg to about 220 mg, about 190 mg to about 210 mg, about 195 mg to about 205 mg, or about 198 to about 207 mg. In some embodiments, an effective dosage of a PI3K inhibitor disclosed herein, either alone or administered in combination with a BTK inhibitor, is about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 225 mg, or about 250 mg. In some embodiments the PI3K inhibitor disclosed herein, is administered either alone or in combination with a BTK inhibitor, in a single dose, while in other embodiments a PI3K inhibitor disclosed herein, is administered either alone or in combination with a BTK inhibitor, b.i.d. (twice a day).
- In some embodiments, an effective dosage of a PI3K inhibitor disclosed herein, either alone or administered in combination with a BTK inhibitor, is in the range of about 0.01 mg/kg to about 4.3 mg/kg, about 0.15 mg/kg to about 3.6 mg/kg, about 0.3 mg/kg to about 3.2 mg/kg, about 0.35 mg/kg to about 2.85 mg/kg, about 0.01 mg/kg to about 0.7 mg/kg, about 0.07 mg/kg to about 0.65 mg/kg, about 0.15 mg/kg to about 0.6 mg/kg, about 0.2 mg/kg to about 0.5 mg/kg, about 0.3 mg/kg to about 0.45 mg/kg, about 0.3 mg/kg to about 0.4 mg/kg, about 0.7 mg/kg to about 2.15 mg/kg, about 0.85 mg/kg to about 2 mg/kg, about 1 mg/kg to about 1.85 mg/kg, about 1.15 mg/kg to about 1.7 mg/kg, about 1.3 mg/kg to about 1.6 mg/kg, about 1.35 mg/kg to about 1.5 mg/kg, about 1.4 mg/kg to about 1.45 mg/kg, about 2.15 mg/kg to about 3.6 mg/kg, about 2.3 mg/kg to about 3.4 mg/kg, about 2.4 mg/kg to about 3.3 mg/kg, about 2.6 mg/kg to about 3.15 mg/kg, about 2.7 mg/kg to about 3 mg/kg, about 2.8 mg/kg to about 3 mg/kg, or about 2.85 mg/kg to about 2.95 mg/kg. In some embodiments, an effective dosage of a PI3K inhibitor disclosed herein, either alone or administered in combination with a BTK inhibitor, is about 0.4 mg/kg, about 0.7 mg/kg, about 1 mg/kg, about 1.4 mg/kg, about 1.8 mg/kg, about 2.1 mg/kg, about 2.5 mg/kg, about 2.85 mg/kg, about 3.2 mg/kg, or about 3.6 mg/kg. In some embodiments a PI3K inhibitor disclosed herein, is administered either alone or in combination with a BTK inhibitor, in a single dose, while in other embodiments a PI3K inhibitor disclosed herein, is administered either alone or in combination with a BTK inhibitor, b.i.d. (twice a day).
- In some embodiments, 10 to 200 mg BID including 50, 60, 70, 80, 90, 100 or 150 mg BID, for the BTK inhibitor, and 10 to 300 mg BID including 25, 50, 75, 100, 150 or 200 mg BID for the PI3K inhibitor. In some instances, dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect—e.g., by dividing such larger doses into several small doses for administration throughout the day.
- In selected embodiments, the combination of the PI3K and BTK inhibitors is administered in a single dose. In selected embodiments, such administration will be by injection—e.g., intravenous injection, in order to introduce the agents quickly. However, other routes may be used as appropriate. A single dose of the combination of the PI3K and BTK inhibitors may also be used for treatment of an acute condition.
- In selected embodiments, the combination of the PI3K and BTK inhibitors is administered in multiple doses. Dosing may be about once, twice, three times, four times, five times, six times, or more than six times per day. Dosing may be about once a month, once every two weeks, once a week, or once every other day. In other embodiments, the combination of the PI3K and BTK inhibitors is administered about once per day to about 6 times per day. In another embodiment the administration of the combination of the PI3K and BTK inhibitors continues for less than about 7 days. In yet another embodiment the administration continues for more than about 6, 10, 14, 28 days, two months, six months, or one year. In some cases, continuous dosing is achieved and maintained as long as necessary.
- Administration of the agents of the invention may continue as long as necessary. In selected embodiments, the combination of the PI3K and BTK inhibitors is administered for more than 1, 2, 3, 4, 5, 6, 7, 14, or 28 days. In some embodiments, the combination of the PI3K and BTK inhibitors is administered for less than 28, 14, 7, 6, 5, 4, 3, 2, or 1 day. In selected embodiments, the combination of the PI3K and BTK inhibitors is administered chronically on an ongoing basis—e.g., for the treatment of chronic effects.
- An effective amount of the combination of the PI3K and BTK inhibitors may be administered in either single or multiple doses by any of the accepted modes of administration of agents having similar utilities, including rectal, buccal, intranasal and transdermal routes, by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, orally, topically, or as an inhalant.
- In selected embodiments, the invention provides a method of treating a hyperproliferative disorder in a mammal that comprises administering to said mammal a therapeutically effective amount of a PI3K inhibitor (or a PI3K-γ inhibitor, PI3K-δ inhibitor, or PI3K-γ,δ inhibitor) and BTK inhibitor, or a pharmaceutically acceptable salt or ester, prodrug, solvate or hydrate of either or both the PI3K inhibitor (or a PI3K-γ inhibitor, PI3K-δ inhibitor, or PI3K-γ,δ inhibitor) or the BTK inhibitor. In selected embodiments, the method relates to the treatment of cancer such as non-Hodgkin's lymphomas (such as diffuse large B-cell lymphoma), acute myeloid leukemia, thymus, brain, lung, squamous cell, skin, eye, retinoblastoma, intraocular melanoma, oral cavity and oropharyngeal, bladder, gastric, stomach, pancreatic, bladder, breast, cervical, head, neck, renal, kidney, liver, ovarian, prostate, colorectal, bone (e.g., metastatic bone), esophageal, testicular, gynecological, thyroid, CNS, PNS, AIDS-related (e.g. lymphoma and Kaposi's sarcoma), viral-induced cancers such as cervical carcinoma (human papillomavirus), B-cell lymphoproliferative disease and nasopharyngeal carcinoma (Epstein-Barr virus), Kaposi's Sarcoma and primary effusion lymphomas (Kaposi's sarcoma herpesvirus), hepatocellular carcinoma (hepatitis B and hepatitis C viruses), and T-cell leukemias (Human T-cell leukemia virus-1), and T-cell leukemias (Human T-cell leukemia virus-1), B cell acute lymphoblastic leukemia, Burkitt's leukemia, juvenile myelomonocytic leukemia, hairy cell leukemia, Hodgkin's disease, multiple myeloma, mast cell leukemia, or mastocytosis. In selected embodiments, the method relates to the treatment of a non-cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e.g., psoriasis), restenosis, or prostate conditions (e.g., benign prostatic hypertrophy (BPH)).
- In selected embodiments, the invention provides a method of treating an inflammatory, immune, or autoimmune disorder in a mammal that comprises administering to said mammal a therapeutically effective amount of a PI3K inhibitor (or a PI3K-γ inhibitor, PI3K-δ inhibitor, or PI3K-γ,δ inhibitor) and BTK inhibitor, or a pharmaceutically acceptable salt or ester, prodrug, solvate or hydrate of either or both the PI3K inhibitor (or a PI3K-γ inhibitor, PI3K-δ inhibitor, or PI3K-γ,δ inhibitor) or the BTK inhibitor. In selected embodiments, the invention also provides a method of treating a disease selected from the group consisting of tumor angiogenesis, chronic inflammatory disease, rheumatoid arthritis, atherosclerosis, inflammatory bowel disease, skin diseases such as psoriasis, eczema, and scleroderma, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma and melanoma, ulcerative colitis, atopic dermatitis, pouchitis, spondylarthritis, uveitis, Behcets disease, polymyalgia rheumatica, giant-cell arteritis, sarcoidosis, Kawasaki disease, juvenile idiopathic arthritis, hidratenitis suppurativa, Sjögren's syndrome, psoriatic arthritis, juvenile rheumatoid arthritis, ankylosing spondylitis, Crohn's Disease, lupus, and lupus nephritis.
- In selected embodiments, the invention provides a method of treating a solid tumor cancer with a composition including a combination of a PI3K inhibitor, including a PI3K-γ or PI3K-δ inhibitor, and a BTK inhibitor, wherein the dose is effective to inhibit signaling between the solid tumor cells and at least one microenvironment selected from the group consisting of macrophages, monocytes, mast cells, helper T cells, cytotoxic T cells, regulatory T cells, natural killer cells, myeloid-derived suppressor cells, regulatory B cells, neutrophils, dendritic cells, and fibroblasts. In selected embodiments, the invention provides a method of treating pancreatic cancer, breast cancer, ovarian cancer, melanoma, lung cancer, head and neck cancer, and colorectal cancer using a combination of a BTK inhibitor and a PI3K inhibitor, wherein the dose is effective to inhibit signaling between the solid tumor cells and at least one microenvironment selected from the group consisting of macrophages, monocytes, mast cells, helper T cells, cytotoxic T cells, regulatory T cells, natural killer cells, myeloid-derived suppressor cells, regulatory B cells, neutrophils, dendritic cells, and fibroblasts. Efficacy of the compounds and combinations of compounds described herein in treating, preventing and/or managing the indicated diseases or disorders can be tested using various models known in the art. For example, models for determining efficacy of treatments for pancreatic cancer are described in Herreros-Villanueva, et al. World J. Gastroenterol. 2012, 18, 1286-1294. Models for determining efficacy of treatments for breast cancer are described e.g. in A. Fantozzi, Breast Cancer Res. 2006, 8, 212. Models for determining efficacy of treatments for ovarian cancer are described e.g. in Mullany et al., Endocrinology 2012, 153, 1585-92; and Fong et al., J. Ovarian Res. 2009, 2, 12. Models for determining efficacy of treatments for melanoma are described e.g. in Damsky et al., Pigment Cell & Melanoma Res. 2010, 23, 853-859. Models for determining efficacy of treatments for lung cancer are described e.g. in Meuwissen et al., Genes & Development, 2005, 19, 643-664. Models for determining efficacy of treatments for lung cancer are described e.g. in Kim, Clin. Exp. Otorhinolaryngol. 2009, 2, 55-60; and Sano, Head Neck Oncol. 2009, 1, 32. Models for determining efficacy of treatments for colorectal cancer, including the CT26 model, are described below in the examples.
- Efficacy of the compounds and combinations of compounds described herein in treating, preventing and/or managing other indicated diseases or disorders described here can also be tested using various models known in the art. Efficacy in treating, preventing and/or managing asthma can be assessed using the ova induced asthma model described, for example, in Lee et al., J. Allergy Clin. Immunol. 2006, 118, 403-9. Efficacy in treating, preventing and/or managing arthritis (e.g., rheumatoid or psoriatic arthritis) can be assessed using the autoimmune animal models described in, for example, Williams et al., Chem. Biol. 2010, 17, 123-34, WO 2009/088986, WO 2009/088880, and WO 2011/008302. Efficacy in treating, preventing and/or managing psoriasis can be assessed using transgenic or knockout mouse model with targeted mutations in epidermis, vasculature or immune cells, mouse model resulting from spontaneous mutations, and immuno-deficient mouse model with xenotransplantation of human skin or immune cells, all of which are described, for example, in Boehncke et al., Clinics in Dermatology, 2007, 25, 596-605. Efficacy in treating, preventing and/or managing fibrosis or fibrotic conditions can be assessed using the unilateral ureteral obstruction model of renal fibrosis, which is described, for example, in Chevalier et al.,
Kidney International 2009, 75, 1145-1152; the bleomycin induced model of pulmonary fibrosis described in, for example, Moore et al., Am. J. Physiol. Lung. Cell. Mol. Physiol. 2008, 294, L152-L160; a variety of liver/biliary fibrosis models described in, for example, Chuang et al., Clin. Liver Dis. 2008, 12, 333-347 and Omenetti et al., Laboratory Investigation, 2007, 87, 499-514 (biliary duct-ligated model); or any of a number of myelofibrosis mouse models such as described in Varicchio et al., Expert Rev. Hematol. 2009, 2, 315-334. Efficacy in treating, preventing and/or managing scleroderma can be assessed using a mouse model induced by repeated local injections of bleomycin described, for example, in Yamamoto et al., J. Invest. Dermatol. 1999, 112, 456-462. Efficacy in treating, preventing and/or managing dermatomyositis can be assessed using a myositis mouse model induced by immunization with rabbit myosin as described, for example, in Phyanagi et al., Arthritis & Rheumatism, 2009, 60(10), 3118-3127. Efficacy in treating, preventing and/or managing lupus can be assessed using various animal models described, for example, in Ghoreishi et al., Lupus, 2009, 19, 1029-1035; Ohl et al., J. Biomed. & Biotechnol., Article ID 432595 (2011); Xia et al., Rheumatology, 2011, 50, 2187-2196; Pau et al., PLoS ONE, 2012, 7(5), e36761; Mustafa et al., Toxicology, 2011, 90, 156-168; Ichikawa et al., Arthritis & Rheumatism, 2012, 62(2), 493-503; Rankin et al., J. Immunology, 2012, 188, 1656-1667. Efficacy in treating, preventing and/or managing Sjögren's syndrome can be assessed using various mouse models described, for example, in Chiorini et al., J. Autoimmunity, 2009, 33, 190-196. - In selected embodiments, the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof. In a preferred embodiment, the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, wherein the BTK inhibitor is Formula (XVIII), or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof. In a preferred embodiment, the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, wherein the BTK inhibitor is Formula (XVIII), or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof, further comprising the step of administering a therapeutically effective dose of an anticoagulent or antiplatelet agent.
- In a preferred embodiment, the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, wherein the BTK inhibitor is Formula (XVIII), or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof, further comprising the step of administering a therapeutically effective dose of an anticoagulent or antiplatelet agent, wherein the anticoagulent or antiplatelet agent is selected from the group consisting of clopidogrel, prasugrel, ticagrelor, ticlopidine, warfarin, acenocoumarol, dicumarol, phenprocoumon, heparain, low molecular weight heparin, fondaparinux, and idraparinux.
- In selected embodiments, the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, wherein the BTK inhibitor is Formula (XVIII), and wherein the cancer is selected from the group consisting of bladder cancer, squamous cell carcinoma including head and neck cancer, pancreatic ductal adenocarcinoma (PDA), pancreatic cancer, colon carcinoma, mammary carcinoma, breast cancer, fibrosarcoma, mesothelioma, renal cell carcinoma, lung carcinoma, thyoma, prostate cancer, colorectal cancer, ovarian cancer, acute myeloid leukemia, thymus cancer, brain cancer, squamous cell cancer, skin cancer, eye cancer, retinoblastoma, melanoma, intraocular melanoma, oral cavity and oropharyngeal cancers, gastric cancer, stomach cancer, cervical cancer, head, neck, renal cancer, kidney cancer, liver cancer, ovarian cancer, prostate cancer, colorectal cancer, esophageal cancer, testicular cancer, gynecological cancer, thyroid cancer, aquired immune deficiency syndrome (AIDS)-related cancers (e.g., lymphoma and Kaposi's sarcoma), viral-induced cancer, glioblastoma, esophogeal tumors, hematological neoplasms, non-small-cell lung cancer, chronic myelocytic leukemia, diffuse large B-cell lymphoma, esophagus tumor, follicle center lymphoma, head and neck tumor, hepatitis C virus infection, hepatocellular carcinoma, Hodgkin's disease, metastatic colon cancer, multiple myeloma, non-Hodgkin's lymphoma, indolent non-Hogkin's lymphoma, ovary tumor, pancreas tumor, renal cell carcinoma, small-cell lung cancer, stage IV melanoma, chronic lymphocytic leukemia, B-cell acute lymphoblastic leukemia (ALL), mature B-cell ALL, follicular lymphoma, mantle cell lymphoma, and Burkitt's lymphoma.
- In selected embodiments, the invention provides a method of treating a cancer in a human with a history of thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof. In selected embodiments, the invention provides a method of treating a cancer in a human sensitive to platelet-mediated thrombosis, method of treating a cancer in a human with a history of thrombosis, comprising the step of administering a therapeutically effective dose of a BTK inhibitor, wherein the BTK inhibitor is a compound of Formula (XVIII) or a pharmaceutically-acceptable salt, cocrystal, hydrate, solvate, or prodrug thereof.
- In selected embodiments, the BTK inhibitor and the anticoagulent or the antiplatelet agent are administered sequentially. In selected embodiments, the BTK inhibitor and the anticoagulent or the antiplatelet agent are administered concomittently. In selected embodiments, the BTK inhibitor is administered before the anticoagulent or the antiplatelet agent. In selected embodiments, the BTK inhibitor is administered after the anticoagulent or the antiplatelet agent.
- Preferred anti-platelet and anticoagulent agents for use in the methods of the present invention include, but are not limited to, cyclooxygenase inhibitors (e.g., aspirin), adenosine diphosphate (ADP) receptor inhibitors (e.g., clopidogrel and ticlopidine), phosphodiesterase inhibitors (e.g., cilostazol), glycoprotein IIb/IIIa inhibitors (e.g., abciximab, eptifibatide, and tirofiban), adenosine reuptake inhibitors (e.g., dipyridamole), and acetylsalicylic acid (aspirin). In other embodiments, examples of anti-platelet agents for use in the methods of the present invention include anagrelide, aspirin/extended-release dipyridamole, cilostazol, clopidogrel, dipyridamole, prasugrel, ticagrelor, ticlopidine, vorapaxar, tirofiban HCl, eptifibatide, abciximab, argatroban, bivalirudin, dalteparin, desirudin, enoxaparin, fondaparinux, heparin, lepirudin, apixaban, dabigatran etexilate mesylate, rivaroxaban, and warfarin.
- Non-limiting, exemplary embodiments of combinations of the PI3K inhibitors and BTK inhibitors described above are given in the following numbered
paragraphs 1 to 50. The disclosure encompassed herein should in no way be construed as being limited to these examples, but rather should be construed to encompass any and all variations which become evident as a result of the teachings provided herein. - In an embodiment, the PI3K inhibitor and BTK inhibitor are provided in a PI3K inhibitor to BTK inhibitor ratio (by mass) selected from the group consisting of 0.01 to 1, 0.05 to 1, 0.1 to 1, 0.5 to 1, 1 to 1, 2 to 1, 5 to 1, 10 to 1, 20 to 1, and 100 to 1.
- While preferred embodiments of the invention are shown and described herein, including the above embodiments, such embodiments are provided by way of example only and are not intended to otherwise limit the scope of the invention. Various alternatives to the described embodiments of the invention may be employed in practicing the invention.
- The embodiments encompassed herein are now described with reference to the following examples. These examples are provided for the purpose of illustration only and the disclosure encompassed herein should in no way be construed as being limited to these examples, but rather should be construed to encompass any and all variations which become evident as a result of the teachings provided herein.
- Ficoll purified mantle cell lymphoma (MCL) cells (2×105) isolated from bone marrow or peripheral blood were treated with each drug alone and with six equimolar concentrations of a BTK inhibitor (Formula XVIII) and a PI3K-δ inhibitor (Formula IX) ranging from 0.01 nM to 10 μM on 96-well plates in triplicate. Plated cells were then cultured in HS-5 conditioned media at 37° C. with 5% CO2. After 72 hours of culture, cell viability was determined using an (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay (Cell Titer 96, Promega). Viability data were used to generate cell viability curves for each drug alone and in combination for each sample. The potential synergy of the combination of the BTK inhibitor of Formula XVIII and the PI3K-δ inhibitor of Formula IX at a given equimolar concentration was determined using the median effect model as described in Chou and Talalay, Adv Enzyme Regul. 1984, 22, 27-55. The statistical modeling was run in R using a script that utilizes the median effect model as described in Lee et al., J. Biopharm. Stat. 2007, 17, 461-80. A value of 1, less than 1, and greater than 1 using R defines an additive interaction, synergistic and antagonistic, respectively. The Lee et al. method calculates a 95% confidence interval for each data point. For each viability curve, to be considered synergistic, a data point must have an interaction index below 1 and the upper confidence interval must also be below 1. In order to summarize and demonstrate collective synergy results, an interaction dot blot was generated for the primary patient samples.
- A similar approach was utilized to study diffuse large B cell lymphoma (DLBCL) (TMD8) and MCL (MINO) cell lines. Cells were treated with each drug alone and with six equimolar concentrations of the BTK inhibitor of Formula XVIII and the PI3K-δ inhibitor of Formula IX ranging from 0.003 nM to 1.0 μM (for TMD8) or 0.03 nM to 10 μM (for MINO) on 96-well plates in triplicate. Plated cells were then cultured in standard conditioned media plus FBS at 37° C. with 5% CO2. After 72 hours of culture, viability was determined using an MTS assay (Cell Titer 96, Promega). Viability data were used to generate cell viability curves for each drug alone and in combination for each sample. The results of the experiments described in this example are shown in
FIG. 1 ,FIG. 2 ,FIG. 3 , andFIG. 4 . - Combination experiments were performed to determine the synergistic, additive, or antagonistic behavior of drug combinations using the Chou/Talalay method/algorithm by defining combination indexes for drug combinations. Information about experimental design for evaluation of synergy is described in e.g. Chou and Talalay, Adv. Enzyme Regul. 1984, 22, 27-55 and more generally in e.g. Greco et al., Pharmacol. Rev. 1995, 47, 331-385. The study was performed using the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX). Single agent activities were first determined in the various cell lines and subsequently, the combination indexes were established using equimolar ratios taking the single agent drug EC50s into consideration. For individual agents that displayed no single agent activity, equimolar ratios were used at fixed concentrations to establish combination indexes. The readout from 72 hour proliferation assays using Cell TiterGlo (ATP content of remaining cells) determined the fraction of cells that were effected as compared to untreated cells (Fa=fraction affected=(1−((cells+inhibitor)background signal)/((cells+DMSO) background signal)).
- The combination index obtained was ranked according to Table 1.
-
TABLE 1 Combination Index (CI) Ranking Scheme Range of CI Description <0.1 Very strong synergism 0.1-0.3 Strong synergism 0.3-0.7 Synergism 0.7-0.85 Moderate synergism 0.85-0.9 Slight synergism 0.9-1.1 Nearly additive 1.1-1.2 Slight antagonism 1.2-1.45 Moderate antagonism 1.45-3.3 Antagonism 3.3-10 Strong antagonism >10 Very strong antagonism - The detailed results of the cell line studies for the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) are given in
FIG. 5 toFIG. 37 . The results of the cell line studies are summarized in Table 2. -
TABLE 2 Summary of results of the combination of a BTK inhibitor with a PI3K-δ inhibitor (S = synergistic, A = additive, X = no effect). Cell Line Indication ED25 ED50 ED75 ED90 Raji Burkitt's S S S S Ramos Burkitt's X X X X Daudi Burkitt's S S S S Mino MCL S S S S Pfeiffer iNHL S S S S DOHH iNHL S S S S REC-1 iNHL S S A A U937 Myeloid S S S S K562 CML X X X X SU-DHL-1 ABC S A X X SU-DHL-2 ABC S S S S HBL-1 ABC S S S S TMD8 ABC S S S S LY19 GCB X X X X LY7 GCB S S S S LY1 GCB X X X X SU-DHL-6 GCB S S S S SupB15 B-ALL S S S S CCRF B-ALL S A/S X X - An orthotopic pancreatic cancer model was used to investigate the therapeutic efficacy of the combination of the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) through treatment of the solid tumor microenvironment. Mice were dosed orally with 15 mg/kg of Formula (XVIII), 15 mg/kg of Formula (IX), or a combination of 15 mg/kg of both drugs.
- Cell line derived from KrasG12D; Trp53R172H; Pdx1-Cre (KPC) mice were orthotopically implanted into the head of the pancreas after 35 passages. Based on the mice background from where the cell lines were generated, 1×106 cells were injected in C57BL/6 mice. Throughout the experiment, animals were provided with food and water ad libitum and subjected to a 12-h dark/light cycle. Animal studies were performed in accordance with the U.S. Public Health Service “Guidelines for the Care and Use of Laboratory Animals” (IACUC). After euthanization, pancreatic tumors were dissected out, weighed and single cell suspensions were prepared for flow cytometry analysis.
- Results of the experiments are shown in
FIG. 38 , which illustrates tumor growth suppression in the orthotopic pancreatic cancer model. The statistical p-value (presumption against null hypothesis) is shown for each tested single agent and for the combination against the vehicle. The results show that all three treatments provide statistically significant reductions in tumor volume in the pancreatic cancer model. - Additional results of the experiments relating to treatment of the tumor microenvironment are shown in
FIG. 39 toFIG. 41 .FIG. 39 shows the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K inhibitor of Formula (IX), or a combination of both drugs on myeloid tumor-associated macrophages (TAMs) in pancreatic tumor-bearing mice.FIG. 40 illustrates the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K inhibitor of Formula (IX), or a combination of both inhibitors on myeloid-derived suppressor cells (MDSCs) in pancreatic tumor-bearing mice.FIG. 41 illustrates the effects of oral dosing with 15 mg/kg of the BTK inhibitor of Formula (XVIII), 15 mg/kg of the PI3K inhibitor of Formula (IX), or a combination of both inhibitors on regulatory T cells (Tregs) in pancreatic tumor-bearing mice. The results shown inFIG. 39 toFIG. 41 demonstrate that administration of the BTK inhibitor of Formula (XVIII) and the combination of the BTK inhibitor of Formula (XVIII) and the PI3K inhibitor of Formula (IX) reduce immunosuppressive tumor associated myeloid cells and Tregs in pancreatic tumor-bearing mice. Overall, BTK inhibition with Formula (XVIII) or a combination of Formula (XVIII) and Formula (IX) significantly reduced tumor burden in an aggressive orthotopic PDA model, decreased immature myeloid infiltrate, reduced the number of tumor associated macrophages, and reduced the number of immunosuppressive Tregs, demonstrating a strong effect on the tumor microenvironment. - The ID8 syngeneic orthotropic ovarian cancer murine model was used to investigate the therapeutic efficacy of the BTK inhibitor of Formula (XVIII) through treatment of the solid tumor microenvironment. Human ovarian cancer models, including the ID8 syngeneic orthotropic ovarian cancer model and other animal models, are described in Fong and Kakar, J. Ovarian Res. 2009, 2, 12; Greenaway et al., Gynecol. Oncol. 2008, 108, 385-94; Urzua et al., Tumour Biol. 2005, 26, 236-44; Janat-Amsbury et al., Anticancer Res. 2006, 26, 3223-28; Janat-Amsbury et al., Anticancer Res. 2006, 26, 2785-89. Animals were treated with vehicle or Formula (XVIII), 15 mg/kg/BID given orally. The results of the study are shown in
FIG. 42 ,FIG. 43 ,FIG. 44 ,FIG. 45 ,FIG. 46 ,FIG. 47 ,FIG. 48 , andFIG. 49 . -
FIG. 42 andFIG. 43 demonstrate that the BTK inhibitor of Formula (XVIII) impairs ID8 ovarian cancer growth in the ID8 syngeneic murine model.FIG. 44 shows that tumor response to treatment with the BTK inhibitor of Formula (XVIII) correlates with a significant reduction in immunosuppressive tumor-associated lymphocytes in tumor-bearing mice.FIG. 45 shows treatment with the BTK inhibitor of Formula (XVIII) impairs ID8 ovarian cancer growth (through reduction in tumor volume) in the syngeneic murine model.FIG. 46 andFIG. 47 show that the tumor response induced by treatment with the BTK inhibitor of Formula (XVIII) correlates with a significant reduction in immunosuppressive B cells in tumor-bearing mice.FIG. 48 andFIG. 49 show that the tumor response induced by treatment with the BTK inhibitor of Formula (XVIII) correlates with a significant reduction in immunosuppressive tumor associated Tregs and an increase in CD8+ T cells. - The results shown in
FIG. 42 toFIG. 49 illustrate the surprising efficacy of the BTK inhibitor of Formula (XVIII) in modulating tumor microenvironment in a model predictive of efficacy as a treatment for ovarian cancer in humans. - A study was performed to observe potential reduction in tumor burden through modulation of tumor infiltrating MDSCs and TAMs using the BTK inhibitor of Formula (XVIII) and/or gemcitabine (“Gem”). In this study, KPC derived mouse pancreatic cancer cells (KrasG12D; Trp53R172H; Pdx1-Cre) were injected into the pancreases. Animals were treated with (1) vehicle; (2) Formula (XVIII), 15 mg/kg/BID given orally; (3) gemcitabine 15 mg/kg intravenous (IV) administered every 4 days for 3 injections; or (4) Formula (XVIII), 15 mg/kg/BID given orally with together with gemcitabine, 15 mg/kg IV administered every 4 days for 3 injections.
- Single cell suspensions from tumor samples. Mouse tumor tissue was collected and stored in PBS/0.1% soybean trypsin inhibitor prior to enzymatic dissociation. Samples were finely minced with a scissors and mouse tissue was transferred into DMEM containing 1.0 mg/ml collagenase IV (Gibco), 0.1% soybean trypsin inhibitor, and 50 U/ml DNase (Roche) and incubated at 37 C for 30 min. with constant stirring while human tissue was digested in 2.0 mg/ml collagenase IV, 1.0 mg/ml hyluronidase, 0.1% soybean trypsin inhibitor, and 50 U/ml DNase for 45 minutes. Suspensions were filtered through a 100 micron filter and washed with FACS buffer (PBS/0.5% BSA/2.0 mM EDTA) prior to staining. Two million total cells were stained with antibodies as indicated. Intracellular detection of FoxP3 was achieved following permeabilization with BD Perm Buffer III (BD Biosciences) and eBioscience Fix/Perm respectively. Following surface staining, samples were acquired on a BD Fortessa and analyzed using FlowJo (Treestar) software.
- In
FIG. 50 , the reduction in tumor size upon treatment is shown. The effects on particular cell subsets are shown in the flow cytometry data presented inFIG. 51 ,FIG. 52 ,FIG. 53 , andFIG. 54 . - The results shown in
FIG. 50 toFIG. 54 illustrate reduction in tumor burden by modulating the tumor infiltrating MDSCs and TAMs, which affects Treg and CD8+ T cell levels, through inhibition of BTK using Formula (XVIII). - Clinical studies have shown that targeting the BCR signaling pathway by inhibiting BTK produces significant clinical benefit (Byrd, et al., N. Engl. J. Med. 2013, 369(1), 32-42, Wang, et al., N. Engl. J. Med. 2013, 369(6), 507-16). However, in these studies, bleeding has been reported in up to 50% of ibrutinib-treated patients. Most bleeding events were of grade 1-2 (spontaneous bruising or petechiae) but, in 5% of patients, they were of
grade 3 or higher after trauma. These results are reflected in the prescribing information for ibrutinib, where bleeding events of any grade, including bruising and petechiae, were reported in approximately half of patients treated with ibrutinib (IMBRUVICA package insert and prescribing information, revised July 2014, U.S. Food and Drug Administration). - Constitutive or aberrant activation of the BCR signaling cascade has been implicated in the propagation and maintenance of a variety of B cell malignancies. Small molecule inhibitors of BTK, a protein early in this cascade and specifically expressed in B cells, have emerged as a new class of targeted agents. There are several BTK inhibitors, including Formula XXVII (CC-292), and Formula XX-A (PCI-32765, ibrutinib), in clinical development. Importantly, early stage clinical trials have found ibrutinib to be particularly active in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), suggesting that this class of inhibitors may play a significant role in various types of cancers (Aalipour and Advani, Br. J. Haematol. 2013, 163, 436-43). However, their effects are not limited to leukemia or lymphomas as platelets also rely on the Tec kinases family members BTK and Tec for signal transduction in response to various thrombogenic stimuli (Oda, et al.,
Blood 2000, 95(5), 1663-70; Atkinson, et al. Blood 2003, 102(10), 3592-99). In fact, both Tec and BTK play an important role in the regulation of phospholipase Cγ2 (PLCγ2) downstream of the collagen receptor glycoprotein VI (GPVI) in human platelets. In addition, BTK is activated and undergoes tyrosine phosphorylation upon challenge of the platelet thrombin receptor, which requires the engagement of OW integrin and PI3K activity (Laffargue, et al., FEBS Lett. 1999, 443(1), 66-70). It has also been implicated in GPIbα-dependent thrombus stability at sites of vascular injury (Liu, et al., Blood 2006, 108(8), 2596-603). Thus, BTK and Tec are involved in several processes important in supporting the formation of a stable hemostatic plug, which is critical for preventing significant blood loss in response to vascular injury. Hence, the effects of the BTK inhibitor of Formula (XVIII) and ibrutinib were evaluated on human platelet-mediated thrombosis by utilizing the in vivo human thrombus formation in the VWF HAI mice model described in Chen et al. Nat. Biotechnol. 2008, 26(1), 114-19. - Administration of anesthesia, insertion of venous and arterial catheters, fluorescent labeling and administration of human platelets (5×108/ml), and surgical preparation of the cremaster muscle in mice have been previously described (Chen et al. Nat Biotechnol. 2008, 26(1), 114-19). Injury to the vessel wall of arterioles (˜40-65 mm diameter) was performed using a pulsed nitrogen dye laser (440 nm, Photonic Instruments) applied through a 20× water-immersion Olympus objective (LUMPlanFl, 0.5 numerical aperature (NA)) of a Zeiss Axiotech vario microscope. Human platelet and wall interactions were visualized by fluorescence microscopy using a system equipped with a Yokogawa CSU-22 spinning disk confocal scanner, iXON EM camera, and 488 nm and 561 nm laser lines to detect BCECF-labeled and rhodamine-labeled platelets, respectively (Revolution XD, Andor Technology). The extent of thrombus formation was assessed for 2 min after injury and the area (μm2) of coverage determined (Image IQ, Andor Technology). For the Formula (XVIII), Formula (XXVII) (CC-292), and Formula (XX-A) (ibrutinib) inhibition studies, the BTK inhibitors were were added to purified human platelets for 30 min before administration.
- The in vivo throbus effects of the BTK inhibitors, Formula (XVIII), Formula (XXVII) (CC-292), and Formula (XX-A) (ibrutinib), were evaluated on human platelet-mediated thrombosis by utilizing the in vivo human thrombus formation in the VWF HAI mice model, which has been previously described (Chen et al. Nat Biotechnol. 2008, 26(1), 114-19). Purified human platelets were preincubated with various concentrations of the BTK inhibitors (0.1 μM, 0.5 μM, or 1 μM) or DMSO and then administered to VWF HAI mice, followed by laser-induced thrombus formation. The BTK inhibitor-treated human platelets were fluorescently labeled and infused continuously through a catheter inserted into the femoral artery. Their behavior in response to laser-induced vascular injury was monitored in real time using two-channel confocal intravital microscopy (Furie and Furie, J. Clin. Invest. 2005, 115(12), 2255-62). Upon induction of arteriole injury untreated platelets rapidly formed thrombi with an average thrombus size of 6,450±292 mm2 (mean±s.e.m.), as shown in
FIG. 55 andFIG. 56 . Similarly, Formula (XVIII) (1 μM) treated platelets formed a slightly smaller but not significantly different thrombi with an average thrombus size of 5733±393 mm2 (mean±s.e.m.). In contrast, a dramatic reduction in thrombus size occurred in platelets pretreated with 1 μM of Formula XX-A (ibrutinib), 2600±246 mm2 (mean±s.e.m.), resulting in a reduction in maximal thrombus size by approximately 61% compared with control (P>0.001) (FIGS. 55 and 57 ). Similar results were obtained with platelets pretreated with 500 nM of Formula (XVIII) or ibrutinib: thrombus size of 5946±283 mm2, and 2710±325 mm2 respectively. These initial results may provide some mechanic background and explanation on the reported 44% bleeding related adverse event rates in the Phase III RESONATE™ study comparing ibrutinib with ofatumumab. The results obtained for Formula XXVII (CC-292) were similar to that for Formula XX-A (ibrutinib), as shown inFIGS. 55, 56, and 57 . The effect of the BTK inhibitor concentration is shown inFIG. 58 . These results demonstrate the surprising advantage of the BTK inhibitor of Formula (XVIII), which does not interfere with thrombus formation, while the BTK inhibitors of Formula XXVII (CC-292) and Formula XX-A (ibrutinib) interfere with thrombus formation. - The objective of this study was to evaluate in vivo thrombus formation in the presence of BTK inhibitors. In vivo testing of novel antiplatelet agents requires informative biomarkers. By utilizing a genetic modified mouse von Willebrand factor (VWFR1326H) model that supports human but not mouse platelet-mediated thrombosis, we evaluated the effects of Formula (XVIII), Formula XXVII (CC-292), and Formula XX-A (ibrutinib) on thrombus formation. These results show that Formula (XVIII) had no significant effect on human platelet-mediated thrombus formation while Formula XX-A (ibrutinib) was able to limit this process, resulting in a reduction in maximal thrombus size by 61% compared with control. Formula XXVII (CC-292) showed an effect similar to Formula XX-A (ibrutinib). These results, which show reduced thrombus formation for ibrutinib at physiologically relevant concentrations, may provide some mechanistic background for the Grade ≥3 bleeding events (eg, subdural hematoma, gastrointestinal bleeding, hematuria and postprocedural hemorrhage) that have been reported in ≤6% of patients treated with Formula XX-A (ibrutinib).
- GPVI platelet aggregation was measured for Formula (XVIII) and Formula XX-A (ibrutinib). Blood was obtained from untreated humans, and platelets were purified from plasma-rich protein by centrifugation. Cells were resuspended to a final concentration of 350,000/μL in buffer containing 145 mmol/L NaCl, 10 mmol/L HEPES, 0.5 mmol/L Na2HPO4, 5 mmol/L KCl, 2 mmol/L MgCl2, 1 mmol/L CaCl2, and 0.1% glucose, at pH 7.4. Stock solutions of Convulxin (CVX) GPVI were prepared on the day of experimentation and added to
platelet suspensions 5 minutes (37° C., 1200 rpm) before the induction of aggregation. Aggregation was assessed with a Chronolog Lumi-Aggregometer (model 540 VS; Chronolog, Havertown, PA) and permitted to proceed for 6 minutes after the addition of agonist. The results are reported as maximum percent change in light transmittance from baseline with platelet buffer used as a reference. The results are shown inFIG. 59 . - In
FIG. 60 , the results of CVX-induced (250 ng/mL) human platelet aggregation results before and 15 min after administration of the BTK inhibitors to 6 healthy individuals are shown. - The results depicted in
FIG. 59 andFIG. 60 indicate that the BTK inhibitor of Formula XX-A (ibrutinib) significantly inhibits GPVI platelet aggregation, while the BTK inhibitor of Formula (XVIII) does not, further illustrating the surprising benefits of the latter compound. - Canine B cell lymphoma exists as a pathological entity that is characterized by large anaplastic, centroblastic or immunoblastic lymphocytes with high proliferative grade, significant peripheral lymphadenopathy and an aggressive clinical course. While some dogs respond initially to prednisone, most canine lymphomas progress quickly and must be treated with combination therapies, including cyclophosphamide, vincristine, doxorubicin, and prednisone (CHOP), or other cytotoxic agents. In their histopathologic features, clinical course, and high relapse rate after initial treatment, canine B cell lymphomas resemble diffuse large B cell lymphoma (DLBCL) in humans. Thus, responses of canine B cell lymphomas to experimental treatments are considered to provide proof of concept for therapeutic candidates in DLBCL.
- In this example, companion dogs with newly diagnosed or relapsed/refractory LSA were enrolled on a veterinary clinical trial of the BTK inhibitor of Formula (XVIII) (“
Arm 1”) or the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) (“Arm 2”). Enrollment has completed forArm 1 and is ongoing forArm 2. With approximately 1/3 ofArm 2 subjects treated, the preliminary results show that combined treatment with the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) may have greater efficacy than treatment with the BTK inhibitor of Formula (XVIII) alone in aggressive lymphoma. - Twenty-one dogs were treated in
Arm 1 with the BTK inhibitor of Formula (XVIII) at dosages of 2.5 mg/kg once daily to 20 mg/kg twice daily. Intra-subject dose escalation was allowed. Six of the 11 dogs that initiated at 2.5 or 5 mg/kg once daily were escalated and completed the study with dosages of 10 mg/kg twice daily. Among all the dose cohorts, 8 dogs had shrinkage of target lesions >20%; the best tumor responses were between 45-49% reduction in the sum of target lesions in two dogs. Complete responses (“CR”, disappearance of all evidence of disease per evaluator judgment; and absence of new lesions) were not observed inArm 1. - In the combination phase of the study (Arm 2), 7 dogs have been treated with 10 mg/kg the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) at 2.5 or 3.5 mg/kg, on a twice daily schedule. To date, 4 dogs had shrinkage of target lesions >20%; and the best tumor responses were between 58-65% reduction in the sum of target lesions, with one sustained CR observed. Initial reductions in the sum of target lesions were observed to deepen during the course of therapy in 4 of the 7 dogs. A summary of the results is presented in Table 5.
-
TABLE 5 Summary of the results of the canine lymphoma study. Formula Formula (XVIII) and (XVIII) Response Metric Formula (IX)a monotherapy Sum LDb decreased by ≥20% 4/7 (57.1%) 8/21 (38.1%) Sum LDb decreased by ≥30% 2/7 (28.6%) 6/21 (28.6%) (PR) CR by investigator evaluation 1/7 (14.3%) 0/21 Median time on study (all subjects) 25 days 24 days Median time to best response 21 days 7 days aArm 2 is still recruiting subjects bLD, longest diameter of up to 5 target lesion - These preliminary data suggest that in companion dogs with naturally occurring B cell lymphomas, treatment with the combination of the BTK inhibitor of Formula (XVIII) and the PI3K-δ inhibitor of Formula (IX) may provide increased biological activity (tumor shrinkage and stable disease) and may possibly lead to deeper responses than treatment with the BTK inhibitor of Formula (XVIII) alone. Although the available data represent only ⅓ of the planned
Arm 2 population, the extended response time (median time to best response) and observation of a CR among the few dogs treated to date may be evidence of synergy between Formula (XVIII) and Formula (IX) in this highly aggressive disease.
Claims (44)
1. A method of treating a hyperproliferative disorder in a subject, comprising co-administering to a subject in need thereof a therapeutically effective amount of a phosphoinositide 3-kinase (PI3K) inhibitor, or of a pharmaceutically acceptable salt thereof, in combination with a Bruton's tyrosine kinase (BTK) inhibitor, or of a pharmaceutically acceptable salt thereof, wherein the BTK inhibitor is:
2. The method of claim 1 , wherein the PI3K inhibitor is selected from the group consisting of a PI3K-γ inhibitor, a PI3K-δ inhibitor, and a PI3K-γ,δ inhibitor.
3. (canceled)
4. (canceled)
5. (canceled)
6. The method of claim 1 , wherein the combination of the PI3K inhibitor with the BTK inhibitor is administered by oral, intravenous, intramuscular, intraperitoneal, subcutaneous or transdermal means.
7. The method of claim 1 , wherein the PI3K inhibitor and/or BTK inhibitor is in the form of a pharmaceutically acceptable salt.
8. The method of claim 1 , wherein the PI3K inhibitor is administered to the subject before administration of the BTK inhibitor.
9. The method of claim 1 , wherein the PI3K inhibitor is administered concurrently with the administration of the BTK inhibitor.
10. The method of claim 1 , wherein the PI3K inhibitor is administered to the subject after administration of the BTK inhibitor.
11. (canceled)
12. (canceled)
13. (canceled)
14. (canceled)
15. (canceled)
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. The method of claim 1 wherein the amount is effective to inhibit signaling between the cells of the cancer and at least one microenvironment selected from the group consisting of macrophages, monocytes, mast cells, helper T cells, cytotoxic T cells, regulatory T cells, natural killer cells, myeloid-derived suppressor cells, regulatory B cells, neutrophils, dendritic cells, and fibroblasts.
26. (canceled)
27. (canceled)
28. The method of claim 25 , wherein the amount is further effective to increase immune system recognition and rejection of the cancer by the human.
29. (canceled)
30. (canceled)
31. (canceled)
32. A kit comprising a pharmaceutical composition comprising a PI3K inhibitor and a pharmaceutical composition comprising a BTK inhibitor, for co-administration of the PI3K inhibitor and the BTK inhibitor, either simultaneously or separately.
33. (canceled)
34. (canceled)
35. (canceled)
36. (canceled)
37. (canceled)
38. (canceled)
39. The method of claim 1 , wherein the hyperproliferative disorder is mantle cell lymphoma.
40. The method of claim 1 , wherein the hyperproliferative disorder is acute myeloid leukemia.
41. The method of claim 1 , wherein the hyperproliferative disorder is indolent non-Hodgkin's Lymphomas.
42. The method of claim 1 , wherein the hyperproliferative disorder is activated B Cell-Diffuse Large B Cell Lymphoma.
43. The method of claim 1 , wherein the hyperproliferative disorder is germinal center B-cell like diffuse large B-cell lymphoma.
44. The method of claim 1 , wherein the hyperproliferative disorder is B cell acute lymphoblastic leukemia
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/388,832 US20190358235A1 (en) | 2013-12-05 | 2019-04-18 | Therapeutic Combination of a PI3K Inhibitor and a BTK Inhibitor |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361912515P | 2013-12-05 | 2013-12-05 | |
| US201461974665P | 2014-04-03 | 2014-04-03 | |
| US201462035777P | 2014-08-11 | 2014-08-11 | |
| PCT/IB2014/003121 WO2015083008A1 (en) | 2013-12-05 | 2014-12-05 | Therapeutic combination of a pi3k inhibitor and a btk inhibitor |
| US201615101864A | 2016-06-03 | 2016-06-03 | |
| US16/388,832 US20190358235A1 (en) | 2013-12-05 | 2019-04-18 | Therapeutic Combination of a PI3K Inhibitor and a BTK Inhibitor |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/101,864 Continuation US10328080B2 (en) | 2013-12-05 | 2014-12-05 | Therapeutic combination of PI3K inhibitor and a BTK inhibitor |
| PCT/IB2014/003121 Continuation WO2015083008A1 (en) | 2013-12-05 | 2014-12-05 | Therapeutic combination of a pi3k inhibitor and a btk inhibitor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190358235A1 true US20190358235A1 (en) | 2019-11-28 |
Family
ID=52697466
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/101,864 Active US10328080B2 (en) | 2013-12-05 | 2014-12-05 | Therapeutic combination of PI3K inhibitor and a BTK inhibitor |
| US16/388,832 Abandoned US20190358235A1 (en) | 2013-12-05 | 2019-04-18 | Therapeutic Combination of a PI3K Inhibitor and a BTK Inhibitor |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/101,864 Active US10328080B2 (en) | 2013-12-05 | 2014-12-05 | Therapeutic combination of PI3K inhibitor and a BTK inhibitor |
Country Status (10)
| Country | Link |
|---|---|
| US (2) | US10328080B2 (en) |
| EP (1) | EP3076974A1 (en) |
| JP (1) | JP2016540053A (en) |
| KR (1) | KR20160093062A (en) |
| CN (1) | CN105979948A (en) |
| AU (1) | AU2014358868A1 (en) |
| BR (1) | BR112016012794A2 (en) |
| CA (1) | CA2931431A1 (en) |
| EA (1) | EA201691169A1 (en) |
| WO (1) | WO2015083008A1 (en) |
Families Citing this family (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8193182B2 (en) | 2008-01-04 | 2012-06-05 | Intellikine, Inc. | Substituted isoquinolin-1(2H)-ones, and methods of use thereof |
| JP5869222B2 (en) | 2008-01-04 | 2016-02-24 | インテリカイン, エルエルシー | Specific chemical entities, compositions and methods |
| SG10201600179RA (en) | 2011-01-10 | 2016-02-26 | Infinity Pharmaceuticals Inc | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
| ES2608967T3 (en) | 2011-03-28 | 2017-04-17 | Mei Pharma, Inc. | (Aralkylamino substituted in alpha and heteroarylalkylamino) pyrimidinyl and 1,3,5-triazinyl benzimidazoles, pharmaceutical compositions containing them, and these compounds for use in the treatment of proliferative diseases |
| US9199997B2 (en) | 2011-11-29 | 2015-12-01 | Ono Pharmaceutical Co., Ltd. | Purinone derivative hydrochloride |
| US8828998B2 (en) | 2012-06-25 | 2014-09-09 | Infinity Pharmaceuticals, Inc. | Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors |
| HUE040126T2 (en) | 2012-11-01 | 2019-02-28 | Infinity Pharmaceuticals Inc | Treatment of cancers using modulators of PI3 kinase isoform |
| MX389256B (en) | 2013-10-04 | 2025-03-20 | Infinity Pharmaceuticals Inc | HETEROCYCLIC COMPOUNDS AND THEIR USES. |
| EP3066126B1 (en) | 2013-11-07 | 2019-03-27 | F. Hoffmann-La Roche AG | Combination therapy of an anti cd20 antibody with a btk inhibitor |
| WO2015110923A2 (en) * | 2014-01-21 | 2015-07-30 | Acerta Pharma B.V. | Methods of treating chronic lymphocytic leukemia and small lymphocytic leukemia usng a btk inhibitor |
| US10272083B2 (en) | 2014-01-21 | 2019-04-30 | Acerta Pharma B.V. | Methods of treating chronic lymphocytic leukemia and small lymphocytic leukemia using a BTK inhibitor |
| WO2015143012A1 (en) | 2014-03-19 | 2015-09-24 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds for use in the treatment of pi3k-gamma mediated disorders |
| WO2015160975A2 (en) | 2014-04-16 | 2015-10-22 | Infinity Pharmaceuticals, Inc. | Combination therapies |
| HRP20211813T1 (en) | 2014-08-11 | 2022-03-04 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor and a bcl-2 inhibitor |
| US20170231995A1 (en) * | 2014-08-11 | 2017-08-17 | Acerta Pharma B.V. | BTK Inhibitors to Treat Solid Tumors Through Modulation of the Tumor Microenvironment |
| TW201609099A (en) * | 2014-08-11 | 2016-03-16 | 艾森塔製藥公司 | Methods of treating chronic lymphocytic leukemia and small lymphocytic leukemia using a BTK inhibitor |
| US20170224819A1 (en) * | 2014-08-11 | 2017-08-10 | Acerta Pharma B.V. | Therapeutic Combinations of a BTK Inhibitor, a PI3K Inhibitor, a JAK-2 Inhibitor, and/or a CDK 4/6 Inhibitor |
| WO2016087994A1 (en) * | 2014-12-05 | 2016-06-09 | Acerta Pharma B.V. | Btk inhibitors to treat solid tumors through modulation of the tumor microenvironment |
| JP6785804B2 (en) * | 2015-06-23 | 2020-11-18 | ギリアド サイエンシズ, インコーポレイテッド | Combination therapy to treat B-cell malignancies |
| SI3613745T1 (en) | 2015-07-02 | 2021-12-31 | Acerta Pharma B.V. | Solid forms and formulations of (s)-4-(8-amino-3-(1-(but-2-ynoyl)pyrrolidin-2-yl)imidazo(1,5-a)pyrazin-1-yl)-n-(pyridin-2-yl)benzamide |
| EP4585268A3 (en) | 2015-09-14 | 2025-10-15 | Twelve Therapeutics, Inc. | Solid forms of isoquinolinone derivatives, process of making, compositions comprising, and methods of using the same |
| WO2017156350A1 (en) | 2016-03-09 | 2017-09-14 | K-Gen, Inc. | Methods of cancer treatment |
| UA125216C2 (en) | 2016-06-24 | 2022-02-02 | Інфініті Фармасьютікалз, Інк. | COMBINED THERAPY |
| US20190201409A1 (en) * | 2016-09-19 | 2019-07-04 | Mei Pharma, Inc. | Combination therapy |
| WO2018102785A2 (en) * | 2016-12-03 | 2018-06-07 | Juno Therapeutics, Inc. | Methods and compositions for use of therapeutic t cells in combination with kinase inhibitors |
| CN110291080B (en) * | 2016-12-21 | 2022-07-08 | 安塞塔制药公司 | Imidazopyrazine inhibitors of Bruton's tyrosine kinase |
| CN106588937B (en) * | 2017-01-16 | 2018-09-21 | 东莞市真兴贝特医药技术有限公司 | Imidazopyrazines and its preparation method and application |
| CN117860758A (en) | 2017-05-23 | 2024-04-12 | 梅制药公司 | Combination therapy |
| US11351176B2 (en) | 2017-08-14 | 2022-06-07 | Mei Pharma, Inc. | Combination therapy |
| SG11202009137PA (en) * | 2018-03-21 | 2020-10-29 | Mei Pharma Inc | Combination therapy |
| CR20210045A (en) | 2018-07-25 | 2021-06-18 | Novartis Ag | Nlrp3 inflammasome inhibitors |
| ES3025468T3 (en) * | 2018-12-07 | 2025-06-09 | Univ Maryland | Non-atp/catalytic site p38 mitogen activated protein kinase inhibitors |
| UY38687A (en) | 2019-05-17 | 2023-05-15 | Novartis Ag | NLRP3 INFLAMMASOME INHIBITORS, COMPOSITIONS, COMBINATIONS THEREOF AND METHODS OF USE |
| CN110357852B (en) * | 2019-06-21 | 2022-06-10 | 中国药科大学 | Benzopyrimidine compounds, preparation method and application |
| CA3158321A1 (en) * | 2019-11-04 | 2021-05-14 | Astrazeneca Ab | Therapeutic combinations of acalabrutinib and capivasertib to treat b-cell malignancies |
| KR20210115375A (en) * | 2020-03-12 | 2021-09-27 | 보령제약 주식회사 | Composition comprising PI3 kinase inhibitor and BTK inhibitor |
| EP4161656A4 (en) | 2020-06-05 | 2024-06-19 | Kinnate Biopharma Inc. | INHIBITORS OF FIBROBLAST GROWTH FACTOR RECEPTOR KINASES |
| AR123241A1 (en) | 2020-08-14 | 2022-11-09 | Novartis Ag | HETEROARYL-SUBSTITUTED SPIROPIPERIDINYL DERIVATIVES AND PHARMACEUTICAL USES THEREOF |
| WO2023030437A1 (en) * | 2021-09-01 | 2023-03-09 | 江苏恒瑞医药股份有限公司 | Use of pi3k inhibitor and btk inhibitor in preparation of drug for treating lymphoma |
| JP2024540257A (en) * | 2021-11-03 | 2024-10-31 | ボリュン コーポレーション | Composition for preventing or treating peripheral T-cell lymphoma comprising a dual inhibitor of PI3K and DNA-PK |
| CN113968861B (en) * | 2021-11-05 | 2022-10-21 | 杭州医学院 | Compound with PI3K delta/BTK double-target-point activity and preparation method and application thereof |
| UY40374A (en) | 2022-08-03 | 2024-02-15 | Novartis Ag | NLRP3 INFLAMASOME INHIBITORS |
Family Cites Families (58)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5023252A (en) | 1985-12-04 | 1991-06-11 | Conrex Pharmaceutical Corporation | Transdermal and trans-membrane delivery of drugs |
| US5001139A (en) | 1987-06-12 | 1991-03-19 | American Cyanamid Company | Enchancers for the transdermal flux of nivadipine |
| US4992445A (en) | 1987-06-12 | 1991-02-12 | American Cyanamid Co. | Transdermal delivery of pharmaceuticals |
| DE60037455T2 (en) | 1999-09-17 | 2008-11-27 | Abbott Gmbh & Co. Kg | KINASEINHIBITORS AS A MEDICAMENT |
| US6921763B2 (en) | 1999-09-17 | 2005-07-26 | Abbott Laboratories | Pyrazolopyrimidines as therapeutic agents |
| US6998391B2 (en) | 2002-02-07 | 2006-02-14 | Supergen.Inc. | Method for treating diseases associated with abnormal kinase activity |
| US7405295B2 (en) | 2003-06-04 | 2008-07-29 | Cgi Pharmaceuticals, Inc. | Certain imidazo[1,2-a]pyrazin-8-ylamines and method of inhibition of Bruton's tyrosine kinase by such compounds |
| US7393848B2 (en) | 2003-06-30 | 2008-07-01 | Cgi Pharmaceuticals, Inc. | Certain heterocyclic substituted imidazo[1,2-A]pyrazin-8-ylamines and methods of inhibition of Bruton's tyrosine kinase by such compounds |
| BRPI0415395A (en) | 2003-10-15 | 2006-12-12 | Osi Pharm Inc | compound, methods for inhibiting protein kinase activity and treating a patient who has a condition that is mediated by protein kinase activity, and, |
| AP2139A (en) | 2004-04-02 | 2010-08-21 | Osi Pharm Inc | 6,6-bicyclic ring substituted heterobicyclic protein kinase inhibitors. |
| RS55551B1 (en) | 2004-05-13 | 2017-05-31 | Icos Corp | HINAZOLINONS AS HUMAN PHOSPHATIDYLINOSYTOL 3-KINASE DELTA INHIBITORS |
| PL1951724T3 (en) | 2005-11-17 | 2011-09-30 | Osi Pharmaceuticals Llc | FUSED BICYCLIC mTOR INHIBITORS |
| AR057960A1 (en) | 2005-12-02 | 2007-12-26 | Osi Pharm Inc | BICYCLE PROTEIN QUINASE INHIBITORS |
| PE20070855A1 (en) | 2005-12-02 | 2007-10-14 | Bayer Pharmaceuticals Corp | DERIVATIVES OF 4-AMINO-PYRROLOTRIAZINE SUBSTITUTE AS KINASE INHIBITORS |
| EP1996193A2 (en) | 2006-03-13 | 2008-12-03 | OSI Pharmaceuticals, Inc. | Combined treatment with an egfr kinase inhibitor and an agent that sensitizes tumor cells to the effects of egfr kinase inhibitors |
| PL2529622T3 (en) | 2006-09-22 | 2018-07-31 | Pharmacyclics Llc | Inhibitors of bruton's tyrosine kinase |
| US8193199B2 (en) | 2007-03-23 | 2012-06-05 | Amgen Inc. | Heterocyclic compounds and their uses |
| CA2681756C (en) | 2007-03-28 | 2015-02-24 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
| US20120101114A1 (en) | 2007-03-28 | 2012-04-26 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
| US20100272717A1 (en) | 2007-12-13 | 2010-10-28 | Novartis Ag | Combinations of therapeutic agents for treating cancer |
| US7894450B2 (en) | 2007-12-31 | 2011-02-22 | Nortel Network, Ltd. | Implementation of VPNs over a link state protocol controlled ethernet network |
| US8193182B2 (en) | 2008-01-04 | 2012-06-05 | Intellikine, Inc. | Substituted isoquinolin-1(2H)-ones, and methods of use thereof |
| JP5869222B2 (en) | 2008-01-04 | 2016-02-24 | インテリカイン, エルエルシー | Specific chemical entities, compositions and methods |
| RU2536584C2 (en) | 2008-06-27 | 2014-12-27 | Авила Терапьютикс, Инк. | Heteroaryl compounds and using them |
| US9095592B2 (en) | 2008-11-07 | 2015-08-04 | The Research Foundation For The State University Of New York | Bruton's tyrosine kinase as anti-cancer drug target |
| JP5656976B2 (en) | 2009-04-29 | 2015-01-21 | ローカス ファーマシューティカルズ インコーポレイテッド | Pyrrolotriazine compounds |
| MX2012009208A (en) | 2010-02-08 | 2012-09-07 | Msd Oss Bv | 8-methyl-1-phenyl-imidazol[1,5-a]pyrazine compounds. |
| UY33288A (en) | 2010-03-25 | 2011-10-31 | Glaxosmithkline Llc | INDOLINE DERIVATIVES INHIBITORS OF THE PROTEIN QUINASA R OF THE ENDOPLASMATIC RETICLE |
| EP2571357B1 (en) | 2010-05-21 | 2016-07-06 | Infinity Pharmaceuticals, Inc. | Chemical compounds, compositions and methods for kinase modulation |
| KR101537148B1 (en) | 2010-05-31 | 2015-07-15 | 오노 야꾸힝 고교 가부시키가이샤 | Purinone derivative |
| MX387728B (en) | 2010-06-03 | 2025-03-18 | Pharmacyclics Llc | THE USE OF BRUTON TYROSINE KINASE (BTK) INHIBITORS. |
| US20120053189A1 (en) | 2010-06-28 | 2012-03-01 | Pharmacyclics, Inc. | Btk inhibitors for the treatment of immune mediated conditions |
| AU2011289604C1 (en) | 2010-08-10 | 2016-04-21 | Celgene Avilomics Research, Inc. | Besylate salt of a BTK inhibitor |
| SG10201600179RA (en) | 2011-01-10 | 2016-02-26 | Infinity Pharmaceuticals Inc | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
| US20140213630A1 (en) * | 2011-03-08 | 2014-07-31 | Thomas Diacovo | Methods and pharmaceutical compositions for treating lymphoid malignancy |
| CA2760174A1 (en) | 2011-12-01 | 2013-06-01 | Pharmascience Inc. | Protein kinase inhibitors and uses thereof |
| CA2831843A1 (en) | 2011-04-04 | 2012-10-11 | Pharmascience Inc. | Protein kinase inhibitors |
| PL2710007T3 (en) | 2011-05-17 | 2020-06-01 | The Regents Of The University Of California | Kinase inhibitors |
| US20130178483A1 (en) | 2011-06-28 | 2013-07-11 | Pharmacyclics, Inc. | Methods and Compositions for Inhibition of Bone Resorption |
| JP2014520863A (en) | 2011-07-13 | 2014-08-25 | ファーマサイクリックス,インク. | Inhibitor of Bruton type tyrosine kinase |
| EP2734520B1 (en) | 2011-07-19 | 2016-09-14 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
| US20140155406A1 (en) | 2011-07-19 | 2014-06-05 | Petrus Antonius De Adrianus Man | 4-imidazopyridazin-1-yl-benzamides and 4-imidazotriazin-1-yl-benzamides btk inhibitors |
| EP2734522B1 (en) | 2011-07-19 | 2018-10-31 | Merck Sharp & Dohme B.V. | 4-imidazopyridazin-1-yl-benzamides and 4-imidazotriazin-1-yl-benzamides as btk-inhibitors |
| MX2014000648A (en) | 2011-07-19 | 2014-09-25 | Infinity Pharmaceuticals Inc | Heterocyclic compounds and uses thereof. |
| EP2548877A1 (en) | 2011-07-19 | 2013-01-23 | MSD Oss B.V. | 4-(5-Membered fused pyridinyl)benzamides as BTK-inhibitors |
| KR20140075693A (en) | 2011-08-29 | 2014-06-19 | 인피니티 파마슈티칼스, 인코포레이티드 | Heterocyclic compounds and uses thereof |
| CA3110966A1 (en) | 2011-10-19 | 2013-04-25 | Pharmacyclics Llc | Use of inhibitors of bruton's tyrosine kinase (btk) |
| US9199997B2 (en) | 2011-11-29 | 2015-12-01 | Ono Pharmaceutical Co., Ltd. | Purinone derivative hydrochloride |
| US20140212425A1 (en) | 2011-12-05 | 2014-07-31 | Immunomedics, Inc. | Therapeutic use of anti-cd22 antibodies for inducing trogocytosis |
| US8377946B1 (en) | 2011-12-30 | 2013-02-19 | Pharmacyclics, Inc. | Pyrazolo[3,4-d]pyrimidine and pyrrolo[2,3-d]pyrimidine compounds as kinase inhibitors |
| US8940742B2 (en) | 2012-04-10 | 2015-01-27 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
| US8828998B2 (en) | 2012-06-25 | 2014-09-09 | Infinity Pharmaceuticals, Inc. | Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors |
| HUE040126T2 (en) * | 2012-11-01 | 2019-02-28 | Infinity Pharmaceuticals Inc | Treatment of cancers using modulators of PI3 kinase isoform |
| TW201441234A (en) | 2013-01-23 | 2014-11-01 | Merck Sharp & Dohme | BTK inhibitors |
| KR20160006668A (en) | 2013-03-14 | 2016-01-19 | 파마싸이클릭스 엘엘씨 | Combinations of bruton's tyrosine kinase inhibitors and cyp3a4 inhibitors |
| WO2014143807A2 (en) | 2013-03-15 | 2014-09-18 | Stromatt Scott | Anti-cd37 antibody and bcr pathway antagonist combination therapy for treatment of b-cell malignancies and disorders |
| CA2908375A1 (en) | 2013-04-08 | 2014-10-16 | Pharmacyclics Llc | Ibrutinib combination therapy |
| WO2015018522A1 (en) | 2013-08-06 | 2015-02-12 | Oncoethix Sa | Bet-bromodomain inhibitor shows synergism with several anti-cancer agents in pre-clinical models of diffuse large b-cell lymphoma (dlbcl) |
-
2014
- 2014-12-05 CN CN201480074916.XA patent/CN105979948A/en active Pending
- 2014-12-05 WO PCT/IB2014/003121 patent/WO2015083008A1/en not_active Ceased
- 2014-12-05 EA EA201691169A patent/EA201691169A1/en unknown
- 2014-12-05 AU AU2014358868A patent/AU2014358868A1/en not_active Abandoned
- 2014-12-05 BR BR112016012794A patent/BR112016012794A2/en not_active IP Right Cessation
- 2014-12-05 CA CA2931431A patent/CA2931431A1/en not_active Abandoned
- 2014-12-05 KR KR1020167017741A patent/KR20160093062A/en not_active Withdrawn
- 2014-12-05 EP EP14846732.7A patent/EP3076974A1/en not_active Withdrawn
- 2014-12-05 US US15/101,864 patent/US10328080B2/en active Active
- 2014-12-05 JP JP2016557202A patent/JP2016540053A/en active Pending
-
2019
- 2019-04-18 US US16/388,832 patent/US20190358235A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| AU2014358868A1 (en) | 2016-06-09 |
| EA201691169A1 (en) | 2016-09-30 |
| CN105979948A (en) | 2016-09-28 |
| BR112016012794A2 (en) | 2017-08-08 |
| US20170266191A1 (en) | 2017-09-21 |
| KR20160093062A (en) | 2016-08-05 |
| JP2016540053A (en) | 2016-12-22 |
| WO2015083008A1 (en) | 2015-06-11 |
| CA2931431A1 (en) | 2015-06-11 |
| EP3076974A1 (en) | 2016-10-12 |
| US10328080B2 (en) | 2019-06-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20190358235A1 (en) | Therapeutic Combination of a PI3K Inhibitor and a BTK Inhibitor | |
| US11654143B2 (en) | Therapeutic combinations of a BTK inhibitor, a PI3K inhibitor, a JAK-2 inhibitor, and/or a BCL-2 inhibitor | |
| US20240216380A1 (en) | BTK Inhibitors to Treat Solid Tumors Through Modulation of the Tumor Microenvironment | |
| US9949971B2 (en) | Therapeutic combinations of a BTK inhibitor, a PI3K inhibitor and/or a JAK-2 inhibitor | |
| JP5731978B2 (en) | Heterocyclic kinase inhibitor | |
| US20200069668A1 (en) | Therapeutic Combinations of an IRAK4 Inhibitor and a BTK Inhibitor | |
| US20180250400A1 (en) | Therapeutic Combinations of a BTK Inhibitor, a PI3K Inhibitor, a JAK-2 Inhibitor, and/or a CDK4/6 Inhibitor | |
| JP2021008514A (en) | Benzoxazole kinase inhibitors and methods of use | |
| US11154554B2 (en) | Therapeutic combinations of a MEK inhibitor and a BTK inhibitor | |
| JP2016172744A (en) | Compounds, compositions and methods for kinase modulation | |
| US9937171B2 (en) | Methods of blocking the CXCR-4/SDF-1 signaling pathway with inhibitors of bruton's tyrosine kinase | |
| JP2016135768A (en) | Certain chemical entities, compositions and methods | |
| WO2016087994A1 (en) | Btk inhibitors to treat solid tumors through modulation of the tumor microenvironment | |
| US20190209591A1 (en) | Therapeutic Combinations of a Proteasome Inhibitor and a BTK Inhibitor | |
| TW201622726A (en) | Therapeutic combination of a PI3K inhibitor and a BTK inhibitor | |
| WO2015185998A2 (en) | Methods of blocking the cxcr-4/sdf-1 signaling pathway with inhibitors of bone marrow x kinase |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |