US20190314497A1 - Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds - Google Patents
Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds Download PDFInfo
- Publication number
- US20190314497A1 US20190314497A1 US16/394,097 US201916394097A US2019314497A1 US 20190314497 A1 US20190314497 A1 US 20190314497A1 US 201916394097 A US201916394097 A US 201916394097A US 2019314497 A1 US2019314497 A1 US 2019314497A1
- Authority
- US
- United States
- Prior art keywords
- viral
- composition
- infection
- virus
- compositions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000009385 viral infection Effects 0.000 title claims abstract description 24
- 208000036142 Viral infection Diseases 0.000 title claims abstract description 19
- 230000000840 anti-viral effect Effects 0.000 title claims description 23
- 150000001875 compounds Chemical class 0.000 title description 7
- 230000015788 innate immune response Effects 0.000 title description 4
- 230000004936 stimulating effect Effects 0.000 claims description 76
- 241000700605 Viruses Species 0.000 claims description 61
- 125000003729 nucleotide group Chemical class 0.000 claims description 50
- 239000002773 nucleotide Substances 0.000 claims description 45
- 210000004072 lung Anatomy 0.000 claims description 32
- 229940046166 oligodeoxynucleotide Drugs 0.000 claims description 17
- 239000002911 sialidase inhibitor Substances 0.000 claims description 8
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 claims description 7
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 claims description 7
- 230000002401 inhibitory effect Effects 0.000 claims description 6
- 239000000137 peptide hydrolase inhibitor Substances 0.000 claims description 6
- 239000002777 nucleoside Chemical class 0.000 claims description 4
- 150000003833 nucleoside derivatives Chemical class 0.000 claims description 4
- UIRLPEMNFBJPIT-UHFFFAOYSA-N odn 2395 Chemical group O=C1NC(=O)C(C)=CN1C1OC(COP(O)(O)=O)C(OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)O)C1 UIRLPEMNFBJPIT-UHFFFAOYSA-N 0.000 claims description 4
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 claims description 3
- 238000002663 nebulization Methods 0.000 claims description 2
- 239000000556 agonist Substances 0.000 claims 2
- 108091034117 Oligonucleotide Proteins 0.000 description 75
- 108700028865 Pam2CSK4 acetate and ODN M362 combination Proteins 0.000 description 58
- 238000011282 treatment Methods 0.000 description 50
- 239000003443 antiviral agent Substances 0.000 description 41
- 238000003304 gavage Methods 0.000 description 38
- 208000015181 infectious disease Diseases 0.000 description 38
- 108010028921 Lipopeptides Proteins 0.000 description 33
- 239000000443 aerosol Substances 0.000 description 33
- PGZUMBJQJWIWGJ-ONAKXNSWSA-N oseltamivir phosphate Chemical compound OP(O)(O)=O.CCOC(=O)C1=C[C@@H](OC(CC)CC)[C@H](NC(C)=O)[C@@H](N)C1 PGZUMBJQJWIWGJ-ONAKXNSWSA-N 0.000 description 29
- 229940061367 tamiflu Drugs 0.000 description 29
- 229960000329 ribavirin Drugs 0.000 description 25
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 25
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 24
- 230000000694 effects Effects 0.000 description 21
- 238000009472 formulation Methods 0.000 description 20
- VSZGPKBBMSAYNT-RRFJBIMHSA-N oseltamivir Chemical compound CCOC(=O)C1=C[C@@H](OC(CC)CC)[C@H](NC(C)=O)[C@@H](N)C1 VSZGPKBBMSAYNT-RRFJBIMHSA-N 0.000 description 18
- 241000699670 Mus sp. Species 0.000 description 16
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 16
- -1 cysteine or short 2 Chemical class 0.000 description 16
- 206010022000 influenza Diseases 0.000 description 16
- 102000039446 nucleic acids Human genes 0.000 description 16
- 108020004707 nucleic acids Proteins 0.000 description 16
- 230000003612 virological effect Effects 0.000 description 16
- 241000144282 Sigmodon Species 0.000 description 15
- 244000052769 pathogen Species 0.000 description 15
- 239000000843 powder Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000006199 nebulizer Substances 0.000 description 14
- 108020004414 DNA Proteins 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 230000001717 pathogenic effect Effects 0.000 description 12
- 230000004083 survival effect Effects 0.000 description 12
- 230000007123 defense Effects 0.000 description 11
- 150000007523 nucleic acids Chemical class 0.000 description 11
- 229960003752 oseltamivir Drugs 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 10
- 206010061603 Respiratory syncytial virus infection Diseases 0.000 description 10
- 102000040430 polynucleotide Human genes 0.000 description 10
- 108091033319 polynucleotide Proteins 0.000 description 10
- 239000002157 polynucleotide Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 9
- 102000053602 DNA Human genes 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 229940046168 CpG oligodeoxynucleotide Drugs 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 210000002345 respiratory system Anatomy 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 229960004397 cyclophosphamide Drugs 0.000 description 7
- 208000037797 influenza A Diseases 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 230000000241 respiratory effect Effects 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 6
- 108700038250 PAM2-CSK4 Proteins 0.000 description 6
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 6
- 229960003805 amantadine Drugs 0.000 description 6
- 230000037396 body weight Effects 0.000 description 6
- 239000002775 capsule Substances 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000011284 combination treatment Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 231100000518 lethal Toxicity 0.000 description 6
- 230000001665 lethal effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 239000003380 propellant Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- LJUIOEFZFQRWJG-GHYFRYPYSA-N (2s)-6-amino-2-[[(2s)-6-amino-2-[[(2s)-6-amino-2-[[(2s)-6-amino-2-[[(2s)-2-[[(2r)-2-amino-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanylpropanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]hexanoyl]amino]hexanoyl]amino]hexanoic acid Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)CSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O LJUIOEFZFQRWJG-GHYFRYPYSA-N 0.000 description 5
- UBCHPRBFMUDMNC-UHFFFAOYSA-N 1-(1-adamantyl)ethanamine Chemical compound C1C(C2)CC3CC2CC1(C(N)C)C3 UBCHPRBFMUDMNC-UHFFFAOYSA-N 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 108010084333 N-palmitoyl-S-(2,3-bis(palmitoyloxy)propyl)cysteinyl-seryl-lysyl-lysyl-lysyl-lysine Proteins 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 102000005348 Neuraminidase Human genes 0.000 description 5
- 108010006232 Neuraminidase Proteins 0.000 description 5
- LJUIOEFZFQRWJG-KKIBDXJDSA-N S-[2,3-bis(palmitoyloxy)propyl]-Cys-Ser-Lys-Lys-Lys-Lys Chemical group CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)CSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O LJUIOEFZFQRWJG-KKIBDXJDSA-N 0.000 description 5
- COYHRQWNJDJCNA-NUJDXYNKSA-N Thr-Thr-Thr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O COYHRQWNJDJCNA-NUJDXYNKSA-N 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 230000003110 anti-inflammatory effect Effects 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 241001493065 dsRNA viruses Species 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 230000002147 killing effect Effects 0.000 description 5
- 229940071648 metered dose inhaler Drugs 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 230000002685 pulmonary effect Effects 0.000 description 5
- 229960000888 rimantadine Drugs 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 230000003637 steroidlike Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- MELKZHAKCJIPSL-JYHYCRSOSA-N 2-[[(2s)-2-[[(2r)-3-[2,3-di(hexadecanoyloxy)propylsulfanyl]-2-(hexadecanoylamino)propanoyl]amino]propanoyl]amino]acetic acid Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@H](C(=O)N[C@@H](C)C(=O)NCC(O)=O)CSCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC MELKZHAKCJIPSL-JYHYCRSOSA-N 0.000 description 4
- 241000711573 Coronaviridae Species 0.000 description 4
- 241000450599 DNA viruses Species 0.000 description 4
- 102000015728 Mucins Human genes 0.000 description 4
- 108010063954 Mucins Proteins 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 206010035664 Pneumonia Diseases 0.000 description 4
- 108020004682 Single-Stranded DNA Proteins 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 4
- 229940121363 anti-inflammatory agent Drugs 0.000 description 4
- 239000002260 anti-inflammatory agent Substances 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 230000001010 compromised effect Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000002757 inflammatory effect Effects 0.000 description 4
- 229960002194 oseltamivir phosphate Drugs 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000029812 viral genome replication Effects 0.000 description 4
- PZFZLRNAOHUQPH-GOOVXGPGSA-N (2r)-3-[2,3-di(hexadecanoyloxy)propylsulfanyl]-2-(hexadecanoylamino)propanoic acid Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@H](C(O)=O)CSCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PZFZLRNAOHUQPH-GOOVXGPGSA-N 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 102000014150 Interferons Human genes 0.000 description 3
- 108010050904 Interferons Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 241000144290 Sigmodon hispidus Species 0.000 description 3
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940121357 antivirals Drugs 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000003416 augmentation Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000011260 co-administration Methods 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 229960000289 fluticasone propionate Drugs 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 229960001028 zanamivir Drugs 0.000 description 3
- ARAIBEBZBOPLMB-UFGQHTETSA-N zanamivir Chemical compound CC(=O)N[C@@H]1[C@@H](N=C(N)N)C=C(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO ARAIBEBZBOPLMB-UFGQHTETSA-N 0.000 description 3
- PZFZLRNAOHUQPH-DJBVYZKNSA-N (2r)-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-2-(hexadecanoylamino)propanoic acid Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@H](C(O)=O)CSC[C@H](OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PZFZLRNAOHUQPH-DJBVYZKNSA-N 0.000 description 2
- LXPAYSRLFXJBQQ-NXCWWGNDSA-N (2s)-2-[[(2s)-4-amino-2-[[(2s)-2-[[(2s)-2-[[(2r)-3-[2,3-di(hexadecanoyloxy)propylsulfanyl]-2-(hexadecanoylamino)propanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-4-oxobutanoyl]amino]propanoic acid Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(O)=O)CSCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC LXPAYSRLFXJBQQ-NXCWWGNDSA-N 0.000 description 2
- IWKXBHQELWQLHF-CAPFRKAQSA-N (ne)-n-[(2-amino-3-propan-2-ylsulfonylbenzimidazol-5-yl)-phenylmethylidene]hydroxylamine Chemical compound C1=C2N(S(=O)(=O)C(C)C)C(N)=NC2=CC=C1C(=N\O)\C1=CC=CC=C1 IWKXBHQELWQLHF-CAPFRKAQSA-N 0.000 description 2
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 2
- 108010002375 2,3-bis(palmitoyloxy)-2-propyl-1-palmitoylcysteine Proteins 0.000 description 2
- 108010091916 2,3-bis(palmitoyloxy)-2-propyl-N-palmitoyl-cysteinyl-seryl-seryl-asparaginyl-alanine Proteins 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 241000701242 Adenoviridae Species 0.000 description 2
- 206010006448 Bronchiolitis Diseases 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- BXZVVICBKDXVGW-NKWVEPMBSA-N Didanosine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(NC=NC2=O)=C2N=C1 BXZVVICBKDXVGW-NKWVEPMBSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 201000011001 Ebola Hemorrhagic Fever Diseases 0.000 description 2
- 206010014950 Eosinophilia Diseases 0.000 description 2
- 241000711950 Filoviridae Species 0.000 description 2
- 241000710781 Flaviviridae Species 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical group NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000700739 Hepadnaviridae Species 0.000 description 2
- 208000005176 Hepatitis C Diseases 0.000 description 2
- 241000700586 Herpesviridae Species 0.000 description 2
- 241000711920 Human orthopneumovirus Species 0.000 description 2
- 206010061598 Immunodeficiency Diseases 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 206010054949 Metaplasia Diseases 0.000 description 2
- 208000025370 Middle East respiratory syndrome Diseases 0.000 description 2
- 108010021107 N-palmitoyl-5,6-dipalmitoylcysteinyl-alanyl-glycine Proteins 0.000 description 2
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 2
- 241000711502 Paramyxovirinae Species 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 241000709664 Picornaviridae Species 0.000 description 2
- 241000711904 Pneumoviridae Species 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 241000725643 Respiratory syncytial virus Species 0.000 description 2
- 241000712907 Retroviridae Species 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 241000315672 SARS coronavirus Species 0.000 description 2
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 2
- XNKLLVCARDGLGL-JGVFFNPUSA-N Stavudine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1C=C[C@@H](CO)O1 XNKLLVCARDGLGL-JGVFFNPUSA-N 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 2
- 241000710924 Togaviridae Species 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 2
- 241000710772 Yellow fever virus Species 0.000 description 2
- WREGKURFCTUGRC-POYBYMJQSA-N Zalcitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)CC1 WREGKURFCTUGRC-POYBYMJQSA-N 0.000 description 2
- 229960004150 aciclovir Drugs 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004721 adaptive immunity Effects 0.000 description 2
- 108700010877 adenoviridae proteins Proteins 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000001028 anti-proliverative effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- CNBGNNVCVSKAQZ-UHFFFAOYSA-N benzydamine Chemical compound C12=CC=CC=C2C(OCCCN(C)C)=NN1CC1=CC=CC=C1 CNBGNNVCVSKAQZ-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 229960002656 didanosine Drugs 0.000 description 2
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical group OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 229960005293 etodolac Drugs 0.000 description 2
- XFBVBWWRPKNWHW-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=N[C]3C(CC)=CC=CC3=C21 XFBVBWWRPKNWHW-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- WMWTYOKRWGGJOA-CENSZEJFSA-N fluticasone propionate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(OC(=O)CC)[C@@]2(C)C[C@@H]1O WMWTYOKRWGGJOA-CENSZEJFSA-N 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 210000004969 inflammatory cell Anatomy 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 229960001627 lamivudine Drugs 0.000 description 2
- JTEGQNOMFQHVDC-NKWVEPMBSA-N lamivudine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)SC1 JTEGQNOMFQHVDC-NKWVEPMBSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000006193 liquid solution Substances 0.000 description 2
- 230000015689 metaplastic ossification Effects 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 244000000010 microbial pathogen Species 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 229940051875 mucins Drugs 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- 229960004270 nabumetone Drugs 0.000 description 2
- 208000004235 neutropenia Diseases 0.000 description 2
- 244000039328 opportunistic pathogen Species 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- CPJSUEIXXCENMM-UHFFFAOYSA-N phenacetin Chemical compound CCOC1=CC=C(NC(C)=O)C=C1 CPJSUEIXXCENMM-UHFFFAOYSA-N 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 229960002702 piroxicam Drugs 0.000 description 2
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000001932 seasonal effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 210000002955 secretory cell Anatomy 0.000 description 2
- JJICLMJFIKGAAU-UHFFFAOYSA-M sodium;2-amino-9-(1,3-dihydroxypropan-2-yloxymethyl)purin-6-olate Chemical compound [Na+].NC1=NC([O-])=C2N=CN(COC(CO)CO)C2=N1 JJICLMJFIKGAAU-UHFFFAOYSA-M 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229960001203 stavudine Drugs 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 241000712461 unidentified influenza virus Species 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 229960003636 vidarabine Drugs 0.000 description 2
- 229940051021 yellow-fever virus Drugs 0.000 description 2
- 229960000523 zalcitabine Drugs 0.000 description 2
- 229960002555 zidovudine Drugs 0.000 description 2
- HBOMLICNUCNMMY-XLPZGREQSA-N zidovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-XLPZGREQSA-N 0.000 description 2
- IZUAHLHTQJCCLJ-UHFFFAOYSA-N (2-chloro-1,1,2,2-tetrafluoroethyl) hypochlorite Chemical compound FC(F)(Cl)C(F)(F)OCl IZUAHLHTQJCCLJ-UHFFFAOYSA-N 0.000 description 1
- RJMIEHBSYVWVIN-LLVKDONJSA-N (2r)-2-[4-(3-oxo-1h-isoindol-2-yl)phenyl]propanoic acid Chemical compound C1=CC([C@H](C(O)=O)C)=CC=C1N1C(=O)C2=CC=CC=C2C1 RJMIEHBSYVWVIN-LLVKDONJSA-N 0.000 description 1
- XTYSXGHMTNTKFH-BDEHJDMKSA-N (2s)-1-[(2s,4r)-4-benzyl-2-hydroxy-5-[[(1s,2r)-2-hydroxy-2,3-dihydro-1h-inden-1-yl]amino]-5-oxopentyl]-n-tert-butyl-4-(pyridin-3-ylmethyl)piperazine-2-carboxamide;hydrate Chemical compound O.C([C@H](N(CC1)C[C@@H](O)C[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H]2C3=CC=CC=C3C[C@H]2O)C(=O)NC(C)(C)C)N1CC1=CC=CN=C1 XTYSXGHMTNTKFH-BDEHJDMKSA-N 0.000 description 1
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 1
- GUHPRPJDBZHYCJ-SECBINFHSA-N (2s)-2-(5-benzoylthiophen-2-yl)propanoic acid Chemical compound S1C([C@H](C(O)=O)C)=CC=C1C(=O)C1=CC=CC=C1 GUHPRPJDBZHYCJ-SECBINFHSA-N 0.000 description 1
- MDKGKXOCJGEUJW-VIFPVBQESA-N (2s)-2-[4-(thiophene-2-carbonyl)phenyl]propanoic acid Chemical compound C1=CC([C@@H](C(O)=O)C)=CC=C1C(=O)C1=CC=CS1 MDKGKXOCJGEUJW-VIFPVBQESA-N 0.000 description 1
- DEXMLDCINRCPNE-VHJYOLMMSA-N (2s)-2-[[(2r)-3-[2,3-di(hexadecanoyloxy)propylsulfanyl]-2-(hexadecanoylamino)propanoyl]amino]-3-hydroxypropanoic acid Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@H](C(=O)N[C@@H](CO)C(O)=O)CSCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC DEXMLDCINRCPNE-VHJYOLMMSA-N 0.000 description 1
- KCHIOGFOPPOUJC-UHFFFAOYSA-N (methylpyridazine piperidine ethyloxyphenyl)ethylacetate Chemical compound C1=CC(C(=O)OCC)=CC=C1OCCC1CCN(C=2N=NC(C)=CC=2)CC1 KCHIOGFOPPOUJC-UHFFFAOYSA-N 0.000 description 1
- YFMFNYKEUDLDTL-UHFFFAOYSA-N 1,1,1,2,3,3,3-heptafluoropropane Chemical compound FC(F)(F)C(F)C(F)(F)F YFMFNYKEUDLDTL-UHFFFAOYSA-N 0.000 description 1
- YRCRRHNVYVFNTM-UHFFFAOYSA-N 1,1-dihydroxy-3-ethoxy-2-butanone Chemical compound CCOC(C)C(=O)C(O)O YRCRRHNVYVFNTM-UHFFFAOYSA-N 0.000 description 1
- UKYQQGVXUPSJCX-UHFFFAOYSA-N 1-(1-adamantyl)-2-methylpropan-2-amine;hydrochloride Chemical compound Cl.C1C(C2)CC3CC2CC1(CC(C)(N)C)C3 UKYQQGVXUPSJCX-UHFFFAOYSA-N 0.000 description 1
- ZHXUEUKVDMWSKV-UHFFFAOYSA-N 1-(3,5-ditert-butyl-4-hydroxyphenyl)hex-5-yn-1-one Chemical compound CC(C)(C)C1=CC(C(=O)CCCC#C)=CC(C(C)(C)C)=C1O ZHXUEUKVDMWSKV-UHFFFAOYSA-N 0.000 description 1
- IPVFGAYTKQKGBM-BYPJNBLXSA-N 1-[(2r,3s,4r,5r)-3-fluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-iodopyrimidine-2,4-dione Chemical compound F[C@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 IPVFGAYTKQKGBM-BYPJNBLXSA-N 0.000 description 1
- XWPQCMLTRJWFKB-UHFFFAOYSA-N 1-[(4-chlorophenoxy)methyl]-3,4-dihydroisoquinoline;hydrochloride Chemical compound Cl.C1=CC(Cl)=CC=C1OCC1=NCCC2=CC=CC=C12 XWPQCMLTRJWFKB-UHFFFAOYSA-N 0.000 description 1
- LFFGEYHTAJZONR-UHFFFAOYSA-N 1-[(4-methoxyphenoxy)methyl]-3,4-dihydroisoquinoline;hydrochloride Chemical compound Cl.C1=CC(OC)=CC=C1OCC1=NCCC2=CC=CC=C12 LFFGEYHTAJZONR-UHFFFAOYSA-N 0.000 description 1
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 description 1
- 108010041642 2,3-bis-(palmitoyloxy)-2-propyl-N-palmitoyl-cysteinylserine Proteins 0.000 description 1
- OKQHSIGMOWQUIK-UHFFFAOYSA-N 2-[(2-aminopurin-9-yl)methoxy]ethanol Chemical compound NC1=NC=C2N=CN(COCCO)C2=N1 OKQHSIGMOWQUIK-UHFFFAOYSA-N 0.000 description 1
- JIEKMACRVQTPRC-UHFFFAOYSA-N 2-[4-(4-chlorophenyl)-2-phenyl-5-thiazolyl]acetic acid Chemical compound OC(=O)CC=1SC(C=2C=CC=CC=2)=NC=1C1=CC=C(Cl)C=C1 JIEKMACRVQTPRC-UHFFFAOYSA-N 0.000 description 1
- GWFOVSGRNGAGDL-FSDSQADBSA-N 2-amino-9-[(1r,2r,3s)-2,3-bis(hydroxymethyl)cyclobutyl]-3h-purin-6-one Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1C[C@H](CO)[C@H]1CO GWFOVSGRNGAGDL-FSDSQADBSA-N 0.000 description 1
- QDGWHHFJDHIIOS-UHFFFAOYSA-N 2-chloro-1-(6-diethoxyphosphorylhexoxy)-4-methoxybenzene Chemical compound CCOP(=O)(OCC)CCCCCCOC1=CC=C(OC)C=C1Cl QDGWHHFJDHIIOS-UHFFFAOYSA-N 0.000 description 1
- SQVNITZYWXMWOG-UHFFFAOYSA-N 2-cyclohexyl-1-(2-methylquinolin-4-yl)-3-(1,3-thiazol-2-yl)guanidine Chemical compound C=12C=CC=CC2=NC(C)=CC=1NC(=NC1CCCCC1)NC1=NC=CS1 SQVNITZYWXMWOG-UHFFFAOYSA-N 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- YTRMTPPVNRALON-UHFFFAOYSA-N 2-phenyl-4-quinolinecarboxylic acid Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=CC=C1 YTRMTPPVNRALON-UHFFFAOYSA-N 0.000 description 1
- FFKUDWZICMJVPA-UHFFFAOYSA-N 2-phosphonooxybenzoic acid Chemical compound OC(=O)C1=CC=CC=C1OP(O)(O)=O FFKUDWZICMJVPA-UHFFFAOYSA-N 0.000 description 1
- GIMSJJHKKXRFGV-BYPJNBLXSA-N 4-amino-1-[(2r,3s,4r,5r)-3-fluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-iodopyrimidin-2-one Chemical compound C1=C(I)C(N)=NC(=O)N1[C@H]1[C@@H](F)[C@H](O)[C@@H](CO)O1 GIMSJJHKKXRFGV-BYPJNBLXSA-N 0.000 description 1
- KCURWTAZOZXKSJ-JBMRGDGGSA-N 4-amino-1-[(2r,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one;hydron;chloride Chemical compound Cl.O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 KCURWTAZOZXKSJ-JBMRGDGGSA-N 0.000 description 1
- SYCHUQUJURZQMO-UHFFFAOYSA-N 4-hydroxy-2-methyl-1,1-dioxo-n-(1,3-thiazol-2-yl)-1$l^{6},2-benzothiazine-3-carboxamide Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=CS1 SYCHUQUJURZQMO-UHFFFAOYSA-N 0.000 description 1
- PJJGZPJJTHBVMX-UHFFFAOYSA-N 5,7-Dihydroxyisoflavone Chemical compound C=1C(O)=CC(O)=C(C2=O)C=1OC=C2C1=CC=CC=C1 PJJGZPJJTHBVMX-UHFFFAOYSA-N 0.000 description 1
- DVEQCIBLXRSYPH-UHFFFAOYSA-N 5-butyl-1-cyclohexylbarbituric acid Chemical compound O=C1C(CCCC)C(=O)NC(=O)N1C1CCCCC1 DVEQCIBLXRSYPH-UHFFFAOYSA-N 0.000 description 1
- BFPYUXIFGJJYHU-AYSLTRBKSA-N 6-[(e)-1-phenylprop-1-enyl]-1-propan-2-ylsulfonylbenzimidazol-2-amine Chemical compound C=1C=C2N=C(N)N(S(=O)(=O)C(C)C)C2=CC=1C(=C/C)/C1=CC=CC=C1 BFPYUXIFGJJYHU-AYSLTRBKSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N 6-methyloxane-2,3,4,5-tetrol Chemical compound CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- UXCAQJAQSWSNPQ-XLPZGREQSA-N Alovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](F)C1 UXCAQJAQSWSNPQ-XLPZGREQSA-N 0.000 description 1
- 206010001889 Alveolitis Diseases 0.000 description 1
- RLFWWDJHLFCNIJ-UHFFFAOYSA-N Aminoantipyrine Natural products CN1C(C)=C(N)C(=O)N1C1=CC=CC=C1 RLFWWDJHLFCNIJ-UHFFFAOYSA-N 0.000 description 1
- 108700042778 Antimicrobial Peptides Proteins 0.000 description 1
- 102000044503 Antimicrobial Peptides Human genes 0.000 description 1
- 241000712892 Arenaviridae Species 0.000 description 1
- 108010031480 Artificial Receptors Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 208000037874 Asthma exacerbation Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- KUVIULQEHSCUHY-XYWKZLDCSA-N Beclometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O KUVIULQEHSCUHY-XYWKZLDCSA-N 0.000 description 1
- 102000006734 Beta-Globulins Human genes 0.000 description 1
- 108010087504 Beta-Globulins Proteins 0.000 description 1
- 241000701021 Betaherpesvirinae Species 0.000 description 1
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 1
- QAGYKUNXZHXKMR-UHFFFAOYSA-N CPD000469186 Natural products CC1=C(O)C=CC=C1C(=O)NC(C(O)CN1C(CC2CCCCC2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-UHFFFAOYSA-N 0.000 description 1
- 241000714198 Caliciviridae Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 241000700628 Chordopoxvirinae Species 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- VWFCHDSQECPREK-LURJTMIESA-N Cidofovir Chemical compound NC=1C=CN(C[C@@H](CO)OCP(O)(O)=O)C(=O)N=1 VWFCHDSQECPREK-LURJTMIESA-N 0.000 description 1
- FKLJPTJMIBLJAV-UHFFFAOYSA-N Compound IV Chemical compound O1N=C(C)C=C1CCCCCCCOC1=CC=C(C=2OCCN=2)C=C1 FKLJPTJMIBLJAV-UHFFFAOYSA-N 0.000 description 1
- YXQDRIRSAHTJKM-IMJSIDKUSA-N Cys-Ser Chemical compound SC[C@H](N)C(=O)N[C@@H](CO)C(O)=O YXQDRIRSAHTJKM-IMJSIDKUSA-N 0.000 description 1
- NXQCSPVUPLUTJH-WHFBIAKZSA-N Cys-Ser-Gly Chemical compound SC[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O NXQCSPVUPLUTJH-WHFBIAKZSA-N 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- 102000000541 Defensins Human genes 0.000 description 1
- 108010002069 Defensins Proteins 0.000 description 1
- 208000001490 Dengue Diseases 0.000 description 1
- 206010012310 Dengue fever Diseases 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 241001269524 Dura Species 0.000 description 1
- XPOQHMRABVBWPR-UHFFFAOYSA-N Efavirenz Natural products O1C(=O)NC2=CC=C(Cl)C=C2C1(C(F)(F)F)C#CC1CC1 XPOQHMRABVBWPR-UHFFFAOYSA-N 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- RHAXSHUQNIEUEY-UHFFFAOYSA-N Epirizole Chemical compound COC1=CC(C)=NN1C1=NC(C)=CC(OC)=N1 RHAXSHUQNIEUEY-UHFFFAOYSA-N 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- RBBWCVQDXDFISW-UHFFFAOYSA-N Feprazone Chemical compound O=C1C(CC=C(C)C)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 RBBWCVQDXDFISW-UHFFFAOYSA-N 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000701046 Gammaherpesvirinae Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Chemical group 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 206010061192 Haemorrhagic fever Diseases 0.000 description 1
- 241000342334 Human metapneumovirus Species 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000002979 Influenza in Birds Diseases 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical group C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- SBDNJUWAMKYJOX-UHFFFAOYSA-N Meclofenamic Acid Chemical compound CC1=CC=C(Cl)C(NC=2C(=CC=CC=2)C(O)=O)=C1Cl SBDNJUWAMKYJOX-UHFFFAOYSA-N 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241000202889 Mycoplasma salivarium Species 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 229940123424 Neuraminidase inhibitor Drugs 0.000 description 1
- 241001292005 Nidovirales Species 0.000 description 1
- JZFPYUNJRRFVQU-UHFFFAOYSA-N Niflumic acid Chemical compound OC(=O)C1=CC=CN=C1NC1=CC=CC(C(F)(F)F)=C1 JZFPYUNJRRFVQU-UHFFFAOYSA-N 0.000 description 1
- 241000150452 Orthohantavirus Species 0.000 description 1
- 241000712464 Orthomyxoviridae Species 0.000 description 1
- 241000016377 Orthoretrovirinae Species 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 241000711504 Paramyxoviridae Species 0.000 description 1
- 241000701945 Parvoviridae Species 0.000 description 1
- 241000121250 Parvovirinae Species 0.000 description 1
- JNTOCHDNEULJHD-UHFFFAOYSA-N Penciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(CCC(CO)CO)C=N2 JNTOCHDNEULJHD-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000700625 Poxviridae Species 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 241000702247 Reoviridae Species 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- OZBDFBJXRJWNAV-UHFFFAOYSA-N Rimantadine hydrochloride Chemical compound Cl.C1C(C2)CC3CC2CC1(C(N)C)C3 OZBDFBJXRJWNAV-UHFFFAOYSA-N 0.000 description 1
- NCDNCNXCDXHOMX-UHFFFAOYSA-N Ritonavir Natural products C=1C=CC=CC=1CC(NC(=O)OCC=1SC=NC=1)C(O)CC(CC=1C=CC=CC=1)NC(=O)C(C(C)C)NC(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-UHFFFAOYSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- IRHXGOXEBNJUSN-YOXDLBRISA-N Saquinavir mesylate Chemical compound CS(O)(=O)=O.C([C@@H]([C@H](O)CN1C[C@H]2CCCC[C@H]2C[C@H]1C(=O)NC(C)(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)C=1N=C2C=CC=CC2=CC=1)C1=CC=CC=C1 IRHXGOXEBNJUSN-YOXDLBRISA-N 0.000 description 1
- 101100206155 Schizosaccharomyces pombe (strain 972 / ATCC 24843) tbp1 gene Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 description 1
- GCQYYIHYQMVWLT-HQNLTJAPSA-N Sorivudine Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(\C=C\Br)=C1 GCQYYIHYQMVWLT-HQNLTJAPSA-N 0.000 description 1
- UNZIDPIPYUMVPA-UHFFFAOYSA-M Sulpyrine Chemical compound O.[Na+].O=C1C(N(CS([O-])(=O)=O)C)=C(C)N(C)N1C1=CC=CC=C1 UNZIDPIPYUMVPA-UHFFFAOYSA-M 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 206010070863 Toxicity to various agents Diseases 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- ZCDDBUOENGJMLV-QRPNPIFTSA-N Valacyclovir hydrochloride Chemical compound Cl.N1C(N)=NC(=O)C2=C1N(COCCOC(=O)[C@@H](N)C(C)C)C=N2 ZCDDBUOENGJMLV-QRPNPIFTSA-N 0.000 description 1
- 241000700647 Variola virus Species 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 208000028227 Viral hemorrhagic fever Diseases 0.000 description 1
- UDMBCSSLTHHNCD-UHTZMRCNSA-N [(2r,3s,4s,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O UDMBCSSLTHHNCD-UHTZMRCNSA-N 0.000 description 1
- DLGSOJOOYHWROO-WQLSENKSSA-N [(z)-(1-methyl-2-oxoindol-3-ylidene)amino]thiourea Chemical compound C1=CC=C2N(C)C(=O)\C(=N/NC(N)=S)C2=C1 DLGSOJOOYHWROO-WQLSENKSSA-N 0.000 description 1
- HKPKBPALSLUFFM-UHFFFAOYSA-N [4-[3-(ethylamino)pyridin-2-yl]piperazin-1-yl]-(5-methoxy-1h-indol-2-yl)methanone;methanesulfonic acid Chemical compound CS(O)(=O)=O.CCNC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(OC)C=C3C=2)CC1 HKPKBPALSLUFFM-UHFFFAOYSA-N 0.000 description 1
- 229960004748 abacavir Drugs 0.000 description 1
- MCGSCOLBFJQGHM-SCZZXKLOSA-N abacavir Chemical compound C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1 MCGSCOLBFJQGHM-SCZZXKLOSA-N 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- XOYXESIZZFUVRD-UVSAJTFZSA-M acemannan Chemical compound CC(=O)O[C@@H]1[C@H](O)[C@@H](OC)O[C@H](CO)[C@H]1O[C@@H]1[C@@H](O)[C@@H](OC(C)=O)[C@H](O[C@@H]2[C@H]([C@@H](OC(C)=O)[C@H](O[C@@H]3[C@H]([C@@H](O)[C@H](O[C@@H]4[C@H]([C@@H](OC(C)=O)[C@H](O[C@@H]5[C@H]([C@@H](OC(C)=O)[C@H](O[C@@H]6[C@H]([C@@H](OC(C)=O)[C@H](O[C@@H]7[C@H]([C@@H](OC(C)=O)[C@H](OC)[C@@H](CO)O7)O)[C@@H](CO)O6)O)[C@H](O5)C([O-])=O)O)[C@@H](CO)O4)O)[C@@H](CO)O3)NC(C)=O)[C@@H](CO)O2)O)[C@@H](CO)O1 XOYXESIZZFUVRD-UVSAJTFZSA-M 0.000 description 1
- 229960005327 acemannan Drugs 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229940008235 acyclovir sodium Drugs 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960001997 adefovir Drugs 0.000 description 1
- WOZSCQDILHKSGG-UHFFFAOYSA-N adefovir depivoxil Chemical compound N1=CN=C2N(CCOCP(=O)(OCOC(=O)C(C)(C)C)OCOC(=O)C(C)(C)C)C=NC2=C1N WOZSCQDILHKSGG-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- BNPSSFBOAGDEEL-UHFFFAOYSA-N albuterol sulfate Chemical compound OS(O)(=O)=O.CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1.CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 BNPSSFBOAGDEEL-UHFFFAOYSA-N 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000009285 allergic inflammation Effects 0.000 description 1
- 229950004424 alovudine Drugs 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- SRBFZHDQGSBBOR-STGXQOJASA-N alpha-D-lyxopyranose Chemical compound O[C@@H]1CO[C@H](O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-STGXQOJASA-N 0.000 description 1
- 210000001132 alveolar macrophage Anatomy 0.000 description 1
- 229950004549 alvircept sudotox Drugs 0.000 description 1
- WOLHOYHSEKDWQH-UHFFFAOYSA-N amantadine hydrochloride Chemical compound [Cl-].C1C(C2)CC3CC2CC1([NH3+])C3 WOLHOYHSEKDWQH-UHFFFAOYSA-N 0.000 description 1
- 229960001280 amantadine hydrochloride Drugs 0.000 description 1
- 229960001830 amprenavir Drugs 0.000 description 1
- YMARZQAQMVYCKC-OEMFJLHTSA-N amprenavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 YMARZQAQMVYCKC-OEMFJLHTSA-N 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000000781 anti-lymphocytic effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 238000011203 antimicrobial therapy Methods 0.000 description 1
- VEQOALNAAJBPNY-UHFFFAOYSA-N antipyrine Chemical compound CN1C(C)=CC(=O)N1C1=CC=CC=C1 VEQOALNAAJBPNY-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- HXWOWBFXYUFFKS-PSJNWGMYSA-N aranotin Chemical compound C1C2=COC=C[C@H](O)[C@H]2N(C2=O)[C@]31SS[C@]21CC2=COC=C[C@H](OC(=O)C)[C@H]2N1C3=O HXWOWBFXYUFFKS-PSJNWGMYSA-N 0.000 description 1
- 229950001980 aranotin Drugs 0.000 description 1
- HXWOWBFXYUFFKS-UHFFFAOYSA-N aranotin Natural products C1C2=COC=CC(O)C2N(C2=O)C31SSC21CC2=COC=CC(OC(=O)C)C2N1C3=O HXWOWBFXYUFFKS-UHFFFAOYSA-N 0.000 description 1
- DIXRMZGIJNJUGL-UHFFFAOYSA-N arildone Chemical compound CCC(=O)C(C(=O)CC)CCCCCCOC1=CC=C(OC)C=C1Cl DIXRMZGIJNJUGL-UHFFFAOYSA-N 0.000 description 1
- 229950003470 arildone Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 206010064097 avian influenza Diseases 0.000 description 1
- WXNRAKRZUCLRBP-UHFFFAOYSA-N avridine Chemical compound CCCCCCCCCCCCCCCCCCN(CCCN(CCO)CCO)CCCCCCCCCCCCCCCCCC WXNRAKRZUCLRBP-UHFFFAOYSA-N 0.000 description 1
- 229950010555 avridine Drugs 0.000 description 1
- 229960001671 azapropazone Drugs 0.000 description 1
- WOIIIUDZSOLAIW-NSHDSACASA-N azapropazone Chemical compound C1=C(C)C=C2N3C(=O)[C@H](CC=C)C(=O)N3C(N(C)C)=NC2=C1 WOIIIUDZSOLAIW-NSHDSACASA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229950000210 beclometasone dipropionate Drugs 0.000 description 1
- 229940092705 beclomethasone Drugs 0.000 description 1
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 229960004277 benorilate Drugs 0.000 description 1
- FEJKLNWAOXSSNR-UHFFFAOYSA-N benorilate Chemical compound C1=CC(NC(=O)C)=CC=C1OC(=O)C1=CC=CC=C1OC(C)=O FEJKLNWAOXSSNR-UHFFFAOYSA-N 0.000 description 1
- 229960000333 benzydamine Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 229950003872 bucolome Drugs 0.000 description 1
- 229960004436 budesonide Drugs 0.000 description 1
- 229960000962 bufexamac Drugs 0.000 description 1
- MXJWRABVEGLYDG-UHFFFAOYSA-N bufexamac Chemical compound CCCCOC1=CC=C(CC(=O)NO)C=C1 MXJWRABVEGLYDG-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229940046731 calcineurin inhibitors Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000012754 cardiac puncture Methods 0.000 description 1
- 229960003184 carprofen Drugs 0.000 description 1
- IVUMCTKHWDRRMH-UHFFFAOYSA-N carprofen Chemical compound C1=CC(Cl)=C[C]2C3=CC=C(C(C(O)=O)C)C=C3N=C21 IVUMCTKHWDRRMH-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 102000014509 cathelicidin Human genes 0.000 description 1
- 108060001132 cathelicidin Proteins 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229960000724 cidofovir Drugs 0.000 description 1
- KSPYMJJKQMWWNB-UHFFFAOYSA-N cipamfylline Chemical compound O=C1N(CC2CC2)C(=O)C=2NC(N)=NC=2N1CC1CC1 KSPYMJJKQMWWNB-UHFFFAOYSA-N 0.000 description 1
- 229950002405 cipamfylline Drugs 0.000 description 1
- 229960003140 clofezone Drugs 0.000 description 1
- CLOMYZFHNHFSIQ-UHFFFAOYSA-N clonixin Chemical compound CC1=C(Cl)C=CC=C1NC1=NC=CC=C1C(O)=O CLOMYZFHNHFSIQ-UHFFFAOYSA-N 0.000 description 1
- 229960001209 clonixin Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 229960000860 dapsone Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229960000475 delavirdine mesylate Drugs 0.000 description 1
- WHBIGIKBNXZKFE-UHFFFAOYSA-N delavirdine mesylate Natural products CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(NS(C)(=O)=O)C=C3C=2)CC1 WHBIGIKBNXZKFE-UHFFFAOYSA-N 0.000 description 1
- MEPNHSOMXMALDZ-UHFFFAOYSA-N delavirdine mesylate Chemical compound CS(O)(=O)=O.CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(NS(C)(=O)=O)C=C3C=2)CC1 MEPNHSOMXMALDZ-UHFFFAOYSA-N 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 208000025729 dengue disease Diseases 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 229950000330 desciclovir Drugs 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 229940120889 dipyrone Drugs 0.000 description 1
- 229940042406 direct acting antivirals neuraminidase inhibitors Drugs 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- AABSNGAQFNHPMF-UHFFFAOYSA-L disodium;2-[hydroxy(oxido)phosphoryl]acetate;hydrate Chemical compound O.[Na+].[Na+].OP([O-])(=O)CC([O-])=O AABSNGAQFNHPMF-UHFFFAOYSA-L 0.000 description 1
- QGXLVXZRPRRCRP-MMGZGRSYSA-L disodium;[(2r,3s,4s,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound [Na+].[Na+].C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@@H]1O QGXLVXZRPRRCRP-MMGZGRSYSA-L 0.000 description 1
- 229950002098 disoxaril Drugs 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229960002030 edoxudine Drugs 0.000 description 1
- XACKNLSZYYIACO-DJLDLDEBSA-N edoxudine Chemical compound O=C1NC(=O)C(CC)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XACKNLSZYYIACO-DJLDLDEBSA-N 0.000 description 1
- 229960003804 efavirenz Drugs 0.000 description 1
- XPOQHMRABVBWPR-ZDUSSCGKSA-N efavirenz Chemical compound C([C@]1(C2=CC(Cl)=CC=C2NC(=O)O1)C(F)(F)F)#CC1CC1 XPOQHMRABVBWPR-ZDUSSCGKSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 150000002084 enol ethers Chemical class 0.000 description 1
- 229950000529 enviradene Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229950003801 epirizole Drugs 0.000 description 1
- 230000001667 episodic effect Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 201000001155 extrinsic allergic alveolitis Diseases 0.000 description 1
- 229960004396 famciclovir Drugs 0.000 description 1
- GGXKWVWZWMLJEH-UHFFFAOYSA-N famcyclovir Chemical compound N1=C(N)N=C2N(CCC(COC(=O)C)COC(C)=O)C=NC2=C1 GGXKWVWZWMLJEH-UHFFFAOYSA-N 0.000 description 1
- 229960001395 fenbufen Drugs 0.000 description 1
- ZPAKPRAICRBAOD-UHFFFAOYSA-N fenbufen Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=CC=C1 ZPAKPRAICRBAOD-UHFFFAOYSA-N 0.000 description 1
- 229950006236 fenclofenac Drugs 0.000 description 1
- IDKAXRLETRCXKS-UHFFFAOYSA-N fenclofenac Chemical compound OC(=O)CC1=CC=CC=C1OC1=CC=C(Cl)C=C1Cl IDKAXRLETRCXKS-UHFFFAOYSA-N 0.000 description 1
- 229960001419 fenoprofen Drugs 0.000 description 1
- 229960002679 fentiazac Drugs 0.000 description 1
- 229960000489 feprazone Drugs 0.000 description 1
- 229950003564 fiacitabine Drugs 0.000 description 1
- 229950008802 fialuridine Drugs 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 229960004369 flufenamic acid Drugs 0.000 description 1
- LPEPZBJOKDYZAD-UHFFFAOYSA-N flufenamic acid Chemical compound OC(=O)C1=CC=CC=C1NC1=CC=CC(C(F)(F)F)=C1 LPEPZBJOKDYZAD-UHFFFAOYSA-N 0.000 description 1
- 229950005288 flumizole Drugs 0.000 description 1
- OPYFPDBMMYUPME-UHFFFAOYSA-N flumizole Chemical compound C1=CC(OC)=CC=C1C1=C(C=2C=CC(OC)=CC=2)NC(C(F)(F)F)=N1 OPYFPDBMMYUPME-UHFFFAOYSA-N 0.000 description 1
- 229960000676 flunisolide Drugs 0.000 description 1
- 229960002390 flurbiprofen Drugs 0.000 description 1
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 1
- 229960002714 fluticasone Drugs 0.000 description 1
- MGNNYOODZCAHBA-GQKYHHCASA-N fluticasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(O)[C@@]2(C)C[C@@H]1O MGNNYOODZCAHBA-GQKYHHCASA-N 0.000 description 1
- 229950010605 fosarilate Drugs 0.000 description 1
- 229950006214 fosfonet sodium Drugs 0.000 description 1
- 229950010892 fosfosal Drugs 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 125000003843 furanosyl group Chemical group 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- 229960002687 ganciclovir sodium Drugs 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229960001650 glafenine Drugs 0.000 description 1
- GWOFUCIGLDBNKM-UHFFFAOYSA-N glafenine Chemical compound OCC(O)COC(=O)C1=CC=CC=C1NC1=CC=NC2=CC(Cl)=CC=C12 GWOFUCIGLDBNKM-UHFFFAOYSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 208000022098 hypersensitivity pneumonitis Diseases 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229960004716 idoxuridine Drugs 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940124589 immunosuppressive drug Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229960001936 indinavir Drugs 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 229960004187 indoprofen Drugs 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 208000037798 influenza B Diseases 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229950002252 isoxicam Drugs 0.000 description 1
- YYUAYBYLJSNDCX-UHFFFAOYSA-N isoxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC=1C=C(C)ON=1 YYUAYBYLJSNDCX-UHFFFAOYSA-N 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 229950001103 ketoxal Drugs 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 201000002364 leukopenia Diseases 0.000 description 1
- 231100001022 leukopenia Toxicity 0.000 description 1
- 229950005339 lobucavir Drugs 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229960003803 meclofenamic acid Drugs 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 229960003464 mefenamic acid Drugs 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 229960003152 metisazone Drugs 0.000 description 1
- 230000003641 microbiacidal effect Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 229960001664 mometasone Drugs 0.000 description 1
- QLIIKPVHVRXHRI-CXSFZGCWSA-N mometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CCl)(O)[C@@]1(C)C[C@@H]2O QLIIKPVHVRXHRI-CXSFZGCWSA-N 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 230000000420 mucociliary effect Effects 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 229960000884 nelfinavir Drugs 0.000 description 1
- QAGYKUNXZHXKMR-HKWSIXNMSA-N nelfinavir Chemical compound CC1=C(O)C=CC=C1C(=O)N[C@H]([C@H](O)CN1[C@@H](C[C@@H]2CCCC[C@@H]2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-HKWSIXNMSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229960000916 niflumic acid Drugs 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 229940127073 nucleoside analogue Drugs 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 229960002739 oxaprozin Drugs 0.000 description 1
- OFPXSFXSNFPTHF-UHFFFAOYSA-N oxaprozin Chemical compound O1C(CCC(=O)O)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 OFPXSFXSNFPTHF-UHFFFAOYSA-N 0.000 description 1
- 229960000649 oxyphenbutazone Drugs 0.000 description 1
- CNDQSXOVEQXJOE-UHFFFAOYSA-N oxyphenbutazone hydrate Chemical compound O.O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=C(O)C=C1 CNDQSXOVEQXJOE-UHFFFAOYSA-N 0.000 description 1
- 229960000402 palivizumab Drugs 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 108010089193 pattern recognition receptors Proteins 0.000 description 1
- 102000007863 pattern recognition receptors Human genes 0.000 description 1
- 229960001179 penciclovir Drugs 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 229960003893 phenacetin Drugs 0.000 description 1
- 229960005222 phenazone Drugs 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 229960002895 phenylbutazone Drugs 0.000 description 1
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 description 1
- 150000004713 phosphodiesters Chemical group 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical compound NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 description 1
- 229950011136 pirodavir Drugs 0.000 description 1
- 229960000851 pirprofen Drugs 0.000 description 1
- PIDSZXPFGCURGN-UHFFFAOYSA-N pirprofen Chemical compound ClC1=CC(C(C(O)=O)C)=CC=C1N1CC=CC1 PIDSZXPFGCURGN-UHFFFAOYSA-N 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229960002466 proquazone Drugs 0.000 description 1
- JTIGKVIOEQASGT-UHFFFAOYSA-N proquazone Chemical compound N=1C(=O)N(C(C)C)C2=CC(C)=CC=C2C=1C1=CC=CC=C1 JTIGKVIOEQASGT-UHFFFAOYSA-N 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000002213 purine nucleotide Substances 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 125000003132 pyranosyl group Chemical group 0.000 description 1
- 239000002719 pyrimidine nucleotide Substances 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- MIXMJCQRHVAJIO-TZHJZOAOSA-N qk4dys664x Chemical compound O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O.C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O MIXMJCQRHVAJIO-TZHJZOAOSA-N 0.000 description 1
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 1
- YREYEVIYCVEVJK-UHFFFAOYSA-N rabeprazole Chemical compound COCCCOC1=CC=NC(CS(=O)C=2NC3=CC=CC=C3N=2)=C1C YREYEVIYCVEVJK-UHFFFAOYSA-N 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 229960004376 rimantadine hydrochloride Drugs 0.000 description 1
- 229960000311 ritonavir Drugs 0.000 description 1
- NCDNCNXCDXHOMX-XGKFQTDJSA-N ritonavir Chemical compound N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-XGKFQTDJSA-N 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229960003542 saquinavir mesylate Drugs 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 210000004739 secretory vesicle Anatomy 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229960004025 sodium salicylate Drugs 0.000 description 1
- RMLUKZWYIKEASN-UHFFFAOYSA-M sodium;2-amino-9-(2-hydroxyethoxymethyl)purin-6-olate Chemical compound [Na+].O=C1[N-]C(N)=NC2=C1N=CN2COCCO RMLUKZWYIKEASN-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 229950009279 sorivudine Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229950005175 sudoxicam Drugs 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 239000012134 supernatant fraction Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229960004492 suprofen Drugs 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 229950003441 tebufelone Drugs 0.000 description 1
- 229960003676 tenidap Drugs 0.000 description 1
- LXIKEPCNDFVJKC-QXMHVHEDSA-N tenidap Chemical compound C12=CC(Cl)=CC=C2N(C(=O)N)C(=O)\C1=C(/O)C1=CC=CS1 LXIKEPCNDFVJKC-QXMHVHEDSA-N 0.000 description 1
- 229960002871 tenoxicam Drugs 0.000 description 1
- WZWYJBNHTWCXIM-UHFFFAOYSA-N tenoxicam Chemical compound O=C1C=2SC=CC=2S(=O)(=O)N(C)C1=C(O)NC1=CC=CC=N1 WZWYJBNHTWCXIM-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 229960001312 tiaprofenic acid Drugs 0.000 description 1
- 229950010302 tiaramide Drugs 0.000 description 1
- HTJXMOGUGMSZOG-UHFFFAOYSA-N tiaramide Chemical compound C1CN(CCO)CCN1C(=O)CN1C(=O)SC2=CC=C(Cl)C=C21 HTJXMOGUGMSZOG-UHFFFAOYSA-N 0.000 description 1
- 229950002145 tilomisole Drugs 0.000 description 1
- PUYFLGQZLHVTHX-UHFFFAOYSA-N tilomisole Chemical compound OC(=O)CC=1SC2=NC3=CC=CC=C3N2C=1C1=CC=C(Cl)C=C1 PUYFLGQZLHVTHX-UHFFFAOYSA-N 0.000 description 1
- MPMFCABZENCRHV-UHFFFAOYSA-N tilorone Chemical compound C1=C(OCCN(CC)CC)C=C2C(=O)C3=CC(OCCN(CC)CC)=CC=C3C2=C1 MPMFCABZENCRHV-UHFFFAOYSA-N 0.000 description 1
- 229950006828 timegadine Drugs 0.000 description 1
- 229950010298 tinoridine Drugs 0.000 description 1
- PFENFDGYVLAFBR-UHFFFAOYSA-N tinoridine Chemical compound C1CC=2C(C(=O)OCC)=C(N)SC=2CN1CC1=CC=CC=C1 PFENFDGYVLAFBR-UHFFFAOYSA-N 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 229960003962 trifluridine Drugs 0.000 description 1
- VSQQQLOSPVPRAZ-RRKCRQDMSA-N trifluridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(F)(F)F)=C1 VSQQQLOSPVPRAZ-RRKCRQDMSA-N 0.000 description 1
- YFNGWGVTFYSJHE-UHFFFAOYSA-K trisodium;phosphonoformate Chemical compound [Na+].[Na+].[Na+].OP(O)(=O)C([O-])=O.OP(O)(=O)C([O-])=O.OP(O)(=O)C([O-])=O YFNGWGVTFYSJHE-UHFFFAOYSA-K 0.000 description 1
- 210000001944 turbinate Anatomy 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229940064636 valacyclovir hydrochloride Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229940070384 ventolin Drugs 0.000 description 1
- 229940087652 vioxx Drugs 0.000 description 1
- 230000009447 viral pathogenesis Effects 0.000 description 1
- 210000000605 viral structure Anatomy 0.000 description 1
- 229950007412 viroxime Drugs 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229950007096 zinviroxime Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/235—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
- A61K31/24—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group having an amino or nitro group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/7056—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/05—Dipeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/06—Tripeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/07—Tetrapeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
- A61K9/0078—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55561—CpG containing adjuvants; Oligonucleotide containing adjuvants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates generally to the fields of virology, immunology, and antimicrobial pharmacotherapy. More particularly the compositions and methods of the invention related to increasing the resistance of an individual to viral infection.
- the susceptibility of the lungs to infection arises from the architectural requirements of gas exchange.
- humans continuously expose about 80 m 2 lung surface area to the external environment. Lungs are exposed not only to air, but also the particles, droplets, and pathogens that are suspended in the air.
- the lungs Unlike cutaneous surfaces that are wrapped in impermeable skin or the gastrointestinal tract with a thick adsorbent blanket of mucus, the lungs present a large environmental interface with a minimal barrier defense. A more substantial barrier is precluded by the demand for unimpeded gaseous diffusion.
- the airway and alveolar epithelia supplement the baseline lung defenses by undergoing remarkable local structural and functional changes when pathogenic stimuli are encountered.
- airway secretory cells rapidly increase their height and fill their apical cytoplasm with secretory granules, a process termed inflammatory metaplasia (Evans et al., 2004; Williams et al., 2006).
- the alveolar epithelia activate their plasmalemmal systems and secretory machinery, thereby engaging leukocytes in lung protection (Evans et al., 2005).
- microbial interactions with respiratory epithelial pattern recognition receptors causes numerous microbicidal products to be expressed into the airway lining fluid, including defensins, cathelicidins, lysozyme, and reactive oxygen species (Rogan et al., 2006; Forteza et al., 2005; Akinbi et al., 2000; Bals 15 and Hiemstra, 2004; Bals and Hiemstra, 2006). It is of note that pneumonia (bacterial or viral) is the leading cause of death from infection worldwide.
- compositions and methods for treating viral infections are directed to compositions and methods for treating viral infections.
- the viral infection is a viral infection of the lungs.
- Other embodiments are directed to delivery devices containing an anti-viral composition(s).
- the delivery devices contain a formulation with activity against a broad spectrum of viruses.
- a delivery device can contain a formulation comprising one or more anti-viral drugs that target a specific family of viruses.
- the combination treatments described herein are mechanism independent and that administration of a lipopeptide(s) and immune stimulatory oligonucleotide(s) can be co-administered or combined with a variety of antivirals having a variety of therapeutic mechanisms and targets.
- lipopeptide/oligonucleotide compositions and treatments can be effectively combined with wide variety of antivirals and are not limited to any particular antiviral.
- compositions that increase resistance of a subject to viruses when administered to the subject. Additional embodiments are directed to methods of using such compositions to attenuate viral infection in the subject.
- embodiments include, but are not limited to compositions, formulations, and methods for the enhancement of a mammalian (e.g., a human) subject's biological defenses against viral infection.
- compositions are administered or deposited in an effective amount in the lungs of a subject.
- the compositions and methods provide a rapid and temporal increase in resistance to infection and/or augmentation of biological defenses against viral infection. Attenuation of viral infection can be by inhibiting, treating, or preventing virus infection or replication or survival.
- the subject is a human patient.
- aspects described here increase resistance to infection and enhance the defenses of the lung and respiratory tract of a subject.
- a subject administered a composition described herein is afforded a therapeutic, prophylactic, or therapeutic and prophylactic response to a potentially infecting virus.
- a co-formulation comprises one or more (a) lipopeptide(s), (b) immune stimulatory oligonucleotide(s), or (c) antiviral drug(s).
- the anti-viral compositions contain an effective amount of at least one, two, or three of the following: (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s).
- one or more lipopeptides can be included in a formulation.
- one or more stimulatory oligonucleotides can be included in a formulation.
- one or more anti-viral drugs can be included in a formulation.
- the term stimulatory oligonucleotide and immune stimulatory oligonucleotide are used interchangeably to refer to an immune stimulatory oligonucleotide.
- the lipopeptide and stimulatory oligonucleotide are co-formulated or administered simultaneously, i.e. lipopeptide/stimulatory oligonucleotide co-administration.
- the lipopeptide/stimulatory oligonucleotide co-administration is administered in conjunction with administration of an additional antiviral drug or therapy.
- administering refers to administration of two or more active agents in a manner that will allow them to be present together in-vivo for period of time. Accordingly, while the term “coadministration” includes simultaneous administration of two or more active agents, and administration from a single formulation, it is to be understood that it is not limited thereto.
- a lipopeptide is selected from diacyl and triacyl lipopeptides.
- a lipopeptide is FSL-1; Pam3Cys (tripalmitoyl-S-glyceryl cysteine); S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-N-palmitoyl-(R)-cysteine; (S-[2,3-bis(palmitoyloxy)-(2-R,S)-propyl]-Npalmitoyl-(R)-Cys-(S)-Ser-(Lys)4-hydroxytrihydrochloride; Pam3Cys-Ser-Ser-Asn-Ala; PaM3Cys-Ser-(Lys)4; Pam3Cys-Ala-Gly; Pam3Cys-Ser-Gly; Pam3Cys-Ser; PaM3Cys-OMe; Pam3Cys-
- a stimulatory oligonucleotide is a type A, B, or C oligodeoxynucleotide (ODN).
- ODN oligodeoxynucleotide
- the stimulatory oligonucleotide is a type C ODN.
- the ODN is ODN2395 (tcgtcgttttcggcgcgcgccg (SEQ ID NO:1) or ODNM362 (tcgtcgttcgaacgacgttgat (SEQ ID NO:2) or ODN10101 (tcgtcgttttcgcgcgcgccccg (SEQ ID NO:3).
- an antiviral drug is a drug that effects the biology of a virus and attenuates or inhibits attachment, entry, replication, shedding, latency or a combination thereof.
- the antiviral drug can be a viral mimetic, a nucleotide analog, a sialidase inhibitor, or a protease inhibitor.
- the anti-viral drug is a neuraminidase inhibitor or nucleotide analog.
- the anti-viral drug is amantadine, rimantadine, ribavirin, zanamivir, or oseltamivir.
- the antiviral drug is a small molecule, or an antibody or antibody fragment.
- the lipopeptide is PAM2CSK4;
- the stimulatory oligonucleotide is ODN2395 (tcgtcgttttcggcgcgcgccg (SEQ ID NO:1) or ODNM362 (tcgtcgtcgttcgaacgacgttgat (SEQ ID NO:2) or ODN10101 (tcgtcgttttcgcgcgcgcgccg (SEQ ID NO:3);
- the antiviral drug is amantadine, rimantadine, ribavirin, zanamivir, or oseltamivir.
- the anti-viral compositions contain about 0.1, 0.5, 1, 5, or 10% to about 1, 5, 10, or 20% by weight of at least one of (a) lipopeptide(s), (b) stimulatory oligonucleotide(s), or (c) antiviral drug(s).
- a formulation can comprise a lipopeptide in an amount that is at least, less than or about 0.1, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55% by weight or volume (or any range derivable therein).
- a formulation can comprise a stimulatory oligonucleotide in an amount that is at least, less than or about 0.1, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55% by weight or volume (or any range derivable therein).
- a formulation can comprise an anti-viral drug in an amount that is at least, less than or about 0.1, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55% by weight or volume (or any range derivable therein).
- the antiviral compositions contain at least one of (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s). In another embodiment, the anti-viral compositions contain at least two (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s). In still another embodiment the anti-viral compositions contain a (a) lipopeptide, (b) stimulatory oligonucleotide, and (c) antiviral drug(s).
- the weight ratio of (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s) relative to each other in the anti-viral compositions includes or is at least or at most 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 parts lipopeptide (or any range derivable therein) to, to at least, or to at most 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 parts stimulatory oligonucleotide (or any range derivable therein) to, to at least or to at most 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 parts anti-viral drug (or any range derivable therein).
- a formulation can comprise about 4 parts lipopeptide, about 1 part stimulatory oligonucleotide. In additional embodiments, there is also about or at least about, or at most about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 parts antiviral drug (or any range derivable therein).
- a composition can comprise, comprise at least or comprise at most 0, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 10 g of lipopeptide (or any range derivable therein) per 1.
- Certain embodiments are directed to methods of treating, inhibiting, or attenuating a viral infection in a subject who has or is at risk for developing such an infection.
- the methods comprising administering an effective amount of an anti-viral composition described herein.
- a lipopeptide and stimulatory oligonucleotide can be administered via the respiratory system and an anti-viral drug can be administered orally or intravascularly.
- compositions capable of being administered to the respiratory tract 1, 2, 3, 4, or more times a day, week, or month (or any combination derivable therein).
- compositions are administered in a nebulized formulation.
- the (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s) can be administered in an amount, selected independently for each component, from about, about at least or about at most 0.1, 1, 5, 10, 50 ⁇ g or mg/kg to about, about at least or about at most 5, 10, 50, 100 ⁇ g or mg/kg of the subject's body weight, including all values and ranges there between.
- compositions described herein can be administered via the respiratory tract.
- Methods of the invention include the administration of a composition by inhalation or other methods of administration to the upper and/or lower respiratory tract.
- the anti-viral composition is administered in a nebulized or aerosolized formulation.
- the composition is aerosolized or nebulized or in a form that can be inhaled by or instilled in a subject.
- the composition can be administered by inhalation or inspiration.
- the anti-viral composition including (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s), can be administered in an amount of from about, or at least or at most about, 0.01, 0.05.
- a subject can be administered about, or at least or at most about 0.01, 0.05.
- compositions are administered before; after; during; before and after; before and during; during and after; before, after, and during exposure or suspected exposure or heightened risk of exposure to the virus.
- the subject can be exposed to a bioweapon or to an opportunistic pathogen.
- the subject is immunocompromised, such as an infant, a cancer patient, or an AIDS patient.
- the subject is located in an area having or at risk of having a viral outbreak.
- Certain embodiments include a pharmaceutical composition comprising or consisting essentially of PAM2CSK4, ODNM362, and optionally an antiviral agent, that is formulated for aerosolized or nebulized delivery.
- the antiviral agent is ribavirin or oseltamivir.
- Methods include treating a patient for a virus infection comprising administering to the patient effective amounts of PAM2CSK4 and ODNM362, and optionally administering an antiviral agent, wherein the PAM2CSK4 and ODNM362 are administered to the patient as an aerosol or with a nebulizer.
- treatment of the virus infection does not include an active agent other than a lipopeptide, a stimulatory oligonucleotide (such as a Class C ODN, including ODNM362), and an antiviral drug.
- a stimulatory oligonucleotide such as a Class C ODN, including ODNM362
- an antiviral drug such as a Class C ODN, including ODNM362
- the compositions or methods specifically exclude an antigen or immunogen targeting a specific virus or group viruses.
- the virus is an Adenoviridae, Coronaviridae, Filoviridae, Flaviviridae, Hepadnaviridae, Herpesviridae, Orthomyxoviridae, Paramyxovirinae, Pneumovirinae, Picornaviridae, Poxyiridae, Retroviridae, or Togaviridae virus.
- a virus is Parainfluenza, Influenza (seasonal, swine, avian, etc.), Marburg, Ebola, Severe acute respiratory syndrome coronavirus, Yellow fever virus, Human respiratory syncytial virus, Hantavirus, measles, MERS, rhinovirus, human metapneumovirus, or Vaccinia virus.
- the virus is influenza, RSV, or parainfluenza virus.
- the virus can be a Severe acute respiratory syndrome coronovirus (SARS-COV) or Middle Eastern Respiratory Syndrome coronavirus (MERS-COV).
- an effective amount means the concentration or quantity or level of the active compound(s) of the present invention that can attain a particular medical end, such as control or destruction of virally-infected cells or viruses, without producing unacceptable toxic symptoms.
- the term “effective amount” also refers to the quantity of an active compound(s) that is sufficient to yield a desired therapeutic response without undue adverse side effects (such as toxicity, irritation, or allergic response) commensurate with a reasonable benefit/risk ratio when used in the manner of this invention.
- the specific “effective amount” can vary with such factors as the particular condition being treated, the physical condition of the patient, the type of mammal being treated, the duration of the treatment, the nature of concurrent therapy (if any), and the specific formulations employed.
- the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
- FIG. 1 Effect of PUL-042 on percent survival compared to untreated control mice following lethal challenge of influenza infection.
- the x-axis indicates the day on which PUL-042 and/or oseltamivir was administered relative to influenza infection.
- FIG. 2 Effect of timing of multiple doses of combination treatment with PUL-042 and oseltamivir on survival of a lethal influenza challenge.
- the x-axis indicates the day of initiation of treatment and timing of subsequent treatments relative to the influenza challenge.
- * Statistically significant difference from untreated controls. ** Combined results of treatments starting at D3 or D4, Ave. 49.8%, P ⁇ 0.001. *** Combination D1 and D4, while a strong result, was performed only once and statistical significance was not determined.
- FIG. 3 Effect of PUL-042 combination treatment with ribavirin on survival of a lethal influenza challenge. Initiating treatment on D1 after infection increased the percent survival to 95% compared to untreated controls.
- FIG. 4 Effect of PUL-042 on percent survival following lethal challenge of three influenza viruses. Fifteen outbred NIH Swiss-Webster mice were used in each group. The x-axis indicates the day on which PUL-042 and/or oseltamivir was administered relative to infection challenge.
- FIG. 5 Prior aerosolized PUL-042 treatment fully protects mice against lethal SARS-COV infection ( ⁇ 24 hrs; challenge dose: 5 ⁇ LD 50 ).
- FIG. 6 Prior aerosolized PUL-042 treatment reduces pulmonary yields of infectious SARS-COV ( ⁇ 24 hrs; challenge dose: 5 ⁇ LD50; 3 dpi).
- FIG. 7 Prior treatment with aerosolized PUL-042 significantly reduced the viral loads in MERS-COV-challenged mice (3 dpi).
- the immune system is the system of specialized cells and organs that protect an organism from outside biological influences. When the immune system is functioning properly, it protects the body against microbial infections, and destroys cancer cells and foreign substances. If the immune system weakens, its ability to defend the body also weakens, allowing pathogens to grow in the body.
- the immune system is often divided into: (a) an innate immunity comprised of components that provide an immediate “first-line” of defense to continuously ward off pathogens and (b) an adaptive (acquired) immunity comprising the production of antibodies and production or stimulation of T-cells specifically designed to target particular pathogens.
- an adaptive immunity comprising the production of antibodies and production or stimulation of T-cells specifically designed to target particular pathogens.
- adaptive immunity the body can develop over time a specific immunity to particular pathogen(s). This response takes days to develop, and so is not effective at preventing an initial invasion, but it will normally prevent any subsequent infection, and also aids in clearing up longer-lasting infections.
- inflammatory metaplasia In response to certain inflammatory stimuli, the secretory cells of the airway epithelium of mice and humans rapidly undergo a remarkable change in structure termed inflammatory metaplasia. Most of the structural changes can be ascribed to increased production of secreted, gel-forming mucins, while additional macromolecules with functions in mucin secretion, microbial killing or inflammatory signaling are also upregulated. The physiologic function of this response is thought to be augmentation of local defenses against microbial and helminthic pathogens, although that hypothesis has received only limited formal testing.
- compositions and methods of the present invention may be used in the context of a number of therapeutic or prophylactic applications.
- second therapy e.g., vaccination or antimicrobial therapy
- a plurality of components are formulated in a composition for administration to a subject in need of such.
- composition described to a subject will follow general protocols for the administration via the respiratory system, and the general protocols for the administration of a particular secondary therapy will also be followed, taking into account the toxicity, if any, of the treatment. It is expected that the treatment cycles would be repeated as necessary. It also is contemplated that various standard therapies, as well as vaccination, may be applied in combination with the described therapies.
- compositions can comprise one or more of (a) lipopeptide, (b) stimulatory oligonucleotide, and/or (c) anti-viral drug(s), in various combinations. Combination being in the form of co-formulation or alternatively co-administration of components.
- Lipopeptides include synthetic triacylated and diacylated lipopeptides.
- the peptide component can include single amino acids such as cysteine or short 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid peptides.
- the peptide can include one or more amino terminal serine and 1, 2, 3, 4, or more carboxy terminal asparagine, glycine, alanine, lysine residues or combinations thereof.
- lipopeptide is FSL-1 (a synthetic lipoprotein derived from Mycoplasma salivarium 1), Pam3Cys (tripalmitoyl-S-glyceryl cysteine)S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-N-palmitoyl-(R)-cysteine, where “Pam3” is “tripalmitoyl-Sglyceryl”) (Aliprantis et al., 1999), derivatives of Pam3Cys (S-[2,3-bis(palmitoyloxy)-(2-R,S)-propyl]-Npalmitoyl-(R)-Cys-(S)-Ser-(Lys)4-hydroxytrihydrochloride; Pam3 Cys-Ser-Ser-Asn-Ala; PaM3 Cys-Ser-(Lys)4; Pam3 Cys-Ala-Gly; Pam3 Cys-Ser
- Stimulatory oligonucleotides include nucleic acids comprising the sequence 5′-CG-3′ (a “CpG nucleic acid”), in certain aspects C is unmethylated.
- a stimulatory oligonucleotide may be, for example, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), single-stranded RNA (ssRNA) or double-stranded RNA (dsRNA).
- ssDNA single-stranded DNA
- dsDNA double-stranded DNA
- ssRNA single-stranded RNA
- dsRNA double-stranded RNA
- a stimulatory oligonucleotide may comprise at least one nucleoside comprising an L-sugar.
- the L-sugar may be deoxyribose, ribose, pentose, deoxypentose, hexose, deoxyhexose, glucose, galactose, arabinose, xylose, lyxose, or a sugar “analog” cyclopentyl group.
- the L-sugar may be in pyranosyl or furanosyl form.
- Stimulatory oligonucleotides generally do not provide for, nor is there any requirement that they provide for, expression of any amino acid sequence encoded by the polynucleotide, and thus the sequence of a stimulatory oligonucleotide may be, and generally is, non-coding.
- Stimulatory oligonucleotide may comprise a linear double or single-stranded molecule, a circular molecule, or can comprise both linear and circular segments.
- Stimulatory oligonucleotide may be single-stranded, or may be completely or partially double-stranded.
- a stimulatory oligonucleotide for use in a subject method is an oligonucleotide, e.g., consists of a sequence of from about 5 nucleotides to about 200 nucleotides, from about 10 nucleotides to about 100 nucleotides, from about 12 nucleotides to about 50 nucleotides, from about 15 nucleotides to about 25 nucleotides, from 20 nucleotides 15 to about 30 nucleotides, from about 5 nucleotides to about 15 nucleotides, from about 5 nucleotides to about 10 nucleotides, or from about 5 nucleotides to about 7 nucleotides in length.
- a stimulatory oligonucleotide that is less than about 15 nucleotides, less than about 12 nucleotides, less than about 10 nucleotides, or less than about 8 nucleotides in length is associated with a larger molecule.
- a stimulatory oligonucleotide used in a subject composition comprises at least one unmethylated CpG motif.
- the relative position of any CpG sequence in a polynucleotide in certain mammalian species is 5′-CG-3′(i.e., the C is in the 5′ position with respect to the G in the 3′ position).
- a stimulatory oligonucleotide comprises a central palindromic core sequence comprising at least one CpG sequence, where the central palindromic core sequence contains a phosphodiester backbone, and where the central palindromic core sequence is flanked on one or both sides by phosphorothioate backbone-containing polyguanosine sequences.
- a stimulatory oligonucleotide comprises one or more TCG sequences at or near the 5′ end of the nucleic acid; and at least two additional CG dinucleotides.
- the at least two additional CG dinucleotides are spaced three nucleotides, two nucleotides, or one nucleotide apart.
- the at least two additional CG dinucleotides are contiguous with one another.
- Exemplary consensus CpG motifs useful in the invention include, but are not necessarily limited to: 5′-Purine-Purine-(C)-(G)-Pyrimidine-Pyrimidine-3′, in which the stimulatory oligonucleotide comprises a CpG motif flanked by at least two purine nucleotides (e.g., GG, GA, AG, AA, II, etc.,) and at least two pyrimidine nucleotides (CC, TT, CT, TC, UU, etc.); 5′-Purine-TCG-Pyrimidine-Pyrimidine-3′; 5′-TCG-N—N-3′; where N is any base; 5′-Nx(CG)nNy, where N is any base, where x and y are independently any integer from 0 to 200, e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-15, 16-20, 21-25, 25-30, 30-50, 50-75, 75-100, 100-
- N is any base
- x and y are independently any integer from 0 to 200, e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-15, 16-20, 21-25, 25-30, 30-50, 50-75, 75-100, 100-150, or 150-200
- n is any integer that is 1 or greater, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or greater.
- a stimulatory oligonucleotide comprises a sequence of the formula: 5′-Nm(TCG)n-Np-3′, where N is any nucleotide, where m is zero to 5, and where n is any integer that is 1 or greater, where p is four or greater, and where the sequence N—N—N—N comprises at least two CG dinucleotides that are either contiguous with each other or are separated by one nucleotide, two nucleotides, or three nucleotides
- a nucleic acid TLR9 ligand comprises a sequence of the formula: 5′Nm(TCG)n-Np-3′, where N is any nucleotide, where m is zero, one, two, or three, where n is any integer that is 1 or greater, and where p is one, two, three, or four
- Stimulatory oligonucleotides useful in the invention include, but are not necessarily limited to, polynucleotides comprising one or more of the following nucleotide sequences:
- AGCGCT AGCGCC, AGCGTT, AGCGTC, AACGCT, AACGCC, AACGTT, AACGTC, GGCGCT, GGCGCC, GGCGTT, GGCGTC, GACGCT, GACGCC, GACGTT, GACGTC, GTCGTC, GTCGCT, GTCGTT, GTCGCC, ATCGTC, ATCGCT, ATCGTT, ATCGCC, TCGTCG, or TCGTCGTCG.
- Additional stimulatory oligonucleotides useful in the invention include, but are not necessarily limited to, polynucleotides comprising one or more of the following nucleotide sequences: TCGXXXX, TCGAXXX, XTCGXXX, XTCGAXX, TCGTCGA, TCGACGT, TCGAACG, TCGAGAT, TCGACTC, TCGAGCG, TCGATTT, TCGCTTT, TCGGTTT, TCGTTTT, TCGTCGT, ATCGATT, TTCGTTT, TTCGATT, ACGTTCG, AACGTTC, TGACGTT, TGTCGTT, TCGXXX, TCGAXX, TCGTCG, AACGTT, ATCGAT, GTCGTT, GACGTT, TCGXX, TCGAX, TCGAT, TCGTT, TCGTC, TCGA, TCGT, TCGX, and TCG (where “X” is any nucleotide).
- Stimulatory oligonucleotides useful in the invention include, but are not necessarily limited to, polynucleotides comprising the following octameric nucleotide sequences:
- AGCGCTCG AGCGCCCG, AGCGTTCG, AGCGTCCG, AACGCTCG, AACGCCCG, AACGTTCG, AACGTCCG, GGCGCTCG, GGCGCCCG, GGCGTTCG, GGCGTCCG, GACGCTCG, GACGCCCG, GACGTTCG, and GACGTCCG.
- a stimulatory oligonucleotide useful in carrying out a subject method can comprise one or more of any of the above CpG motifs.
- a stimulatory oligonucleotide useful in the invention can comprise a single instance or multiple instances (e.g., 2, 3, 4, 5 or more) of the same CpG motif.
- a stimulatory oligonucleotide can comprise multiple CpG motifs (e.g., 2, 3, 4, 5 or more) where at least two of the multiple CpG motifs have different consensus sequences, or where all CpG motifs in the stimulatory oligonucleotides have different consensus sequences.
- a stimulatory oligonucleotide useful in the invention may or may not include palindromic regions. If present, a palindrome may extend only to a CpG motif, if present, in the core hexamer or octamer sequence, or may encompass more of the hexamer or octamer sequence as well as flanking nucleotide sequences.
- a stimulatory oligonucleotide is multimeric.
- a multimeric stimulatory oligonucleotide comprises two, three, four, five, six, seven, eight, nine, ten, or more individual (monomeric) stimulatory oligonucleotides, as described above, linked via noncovalent bonds, linked via covalent bonds, and either linked directly to one another, or linked via one or more spacers. Suitable spacers include nucleic acid and non-nucleic acid molecules, as long as they are biocompatible.
- multimeric stimulatory oligonucleotide comprises a linear array of monomeric stimulatory oligonucleotides.
- a multimeric stimulatory oligonucleotide is a branched, or dendrimeric, array of monomeric stimulatory oligonucleotides.
- a stimulatory oligonucleotide suitable for use in a subject composition can be modified in a variety of ways.
- a stimulatory oligonucleotide can comprise backbone phosphate group modifications (e.g., methylphosphonate, phosphorothioate, phosphoroamidate and phosphorodithioate intemucleotide linkages), which modifications can, for example, enhance their stability in vivo, making them particularly useful in therapeutic applications.
- a particularly useful phosphate group modification is the conversion to the phosphorothioate or phosphorodithioate forms of a stimulatory oligonucleotide.
- Phosphorothioates and phosphorodithioates are more resistant to degradation in vivo than their unmodified oligonucleotide counterparts, increasing the half-lives of the stimulatory oligonucleotides and making them more available to the subject being treated.
- modified stimulatory oligonucleotides encompassed by the present invention include stimulatory oligonucleotides having modifications at the 5′ end, the 3′ end, or both the 5′ and 3′ ends.
- the 5′ and/or 3′ end can be covalently or non-covalently associated with a molecule (either nucleic acid, non-nucleic acid, or both) to, for example, increase the bio-availability of the stimulatory oligonucleotide, increase the efficiency of uptake where desirable, facilitate delivery to cells of interest, and the like.
- CpG-ODN CpG nucleic acid
- CpG polynucleotide CpG oligonucleotide
- CpG oligonucleotide refers to a polynucleotide that comprises at least one 5′-CG-3′ moiety, and in many embodiments comprises an unmethylated 5′-CG-3′ moiety.
- a CpG nucleic acid is a single-or double-stranded DNA or RNA polynucleotide having at least six nucleotide bases that may comprise, or consist of, a modified nucleotide or a sequence of modified nucleosides.
- the 5′-CG-3′ moiety of the CpG nucleic acid is part of a palindromic nucleotide sequence. In some embodiments, the 5′-CG-3′ moiety of the CpG nucleic acid is part of a non-palindromic nucleotide sequence.
- an anti-viral drug(s) may be used in combination with or as a component of an anti-viral composition (co-formulated with other components) described herein.
- Anti-viral drugs are a class of medication used specifically for treating viral infections and they should be distinguished from viricides, which actively deactivate virus particles outside the body. Most of the antivirals now available are designed to help deal with HIV, herpes viruses, the hepatitis B and C viruses, and influenza A and B viruses.
- Anti-viral agents useful in embodiments include, but are not limited to, immunoglobulins, amantadine, interferons, nucleotide analogues, sialidase inhibitors and protease inhibitors.
- the antiviral drug is one that inhibits the virus directly, instead of destroying or killing the virus.
- an antiviral drug is not an immunoglobulin or agent that involves the immune system.
- One anti-viral strategy is to interfere with the ability of a virus to infiltrate a target cell.
- This stage of viral replication can be inhibited by using agents that mimic the virus associated protein (VAP) and bind to the cellular receptors; or by using agents which mimic the cellular receptor and bind to the VAP.
- VAP virus associated protein
- Two such “entryblockers” or “viral mimetics” are amantadine and rimantadine.
- amantadine, rimantadine, or compounds with similar mechanisms of action can be used in composition described herein.
- amantadine and rimantadine can be formulated as a treatment for influenza.
- a second approach to anti-viral therapy is to target the processes that synthesize virus components after a virus invades a cell.
- One way of doing this is to develop nucleotide or nucleoside analogues that look like the building blocks of RNA or DNA, but deactivate the enzymes that synthesize the RNA or DNA once the analog is incorporated.
- Nucleotide analogs include, but are not limited to ribivirin, vidarabine, acyclovir, gangcyclovir, zidovudine, didanosine, zalcitabine, stavudine, and lamivudine.
- a number of anti-proliferative compounds are known to inhibit both cancers and viruses, thus other anti-proliferative compounds can be used as an anti-viral therapy.
- sialidases also referred to as neuraminidases.
- Sialidases hydrolyse alpha-(2/3)-, alpha-(2/6)-, alpha-(2/8)-glycosidic linkages of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrates.
- Sialidases act as pathogenic factors in virus infections.
- sialidase inhibitors can be used to attenuate the ability of a virus to infect a subject.
- HIV Some viruses have a protease that cuts viral protein chains apart so they can be assembled into their final configuration. HIV includes a protease, and so considerable research has been performed to find “protease inhibitors” to attack HIV at that phase of its life cycle. Protease inhibitors became available in the 1990s and have proven effective.
- the final stage in the life cycle of a virus is the release of mature viruses from the host cell.
- Two drugs nerveaminidase inhibitors, also referred to as sialidase inhibitors
- zanamivir RELENZATM
- TAMIFLUTM oseltamivir
- Anti-viral drugs include, but are not limited to abacavir; acemannan; acyclovir; acyclovir sodium; adefovir; alovudine; alvircept sudotox; amantadine hydrochloride; amprenavir; aranotin; arildone; atevirdine mesylate; avridine; cidofovir; cipamfylline; cytarabine hydrochloride; delavirdine mesylate; desciclovir; didanosine; disoxaril; edoxudine; efavirenz; enviradene; envlroxlme; famciclovir; famotine hydrochloride; fiacitabine; fialuridine; fosarilate; trisodium phosphonoformate; fosfonet sodium; ganciclovir; ganciclovir sodium; idoxuridine; indinavir;
- the antiviral drug is ribivirin or high dose ribivirin.
- Ribavirin is an anti-viral drug that is active against a number of DNA and RNA viruses. It is a member of the nucleoside antimetabolite drugs that interfere with duplication of viral genetic material. Though not effective against all viruses, ribavirin has wide range of activity, including important activities against influenzas, flaviviruses, and agents of many viral hemorrhagic fevers.
- the oral form of ribavirin is used in the treatment of hepatitis C, in combination with pegylated interferon drugs.
- the aerosol form has been used in the past to treat respiratory syncytial virus-related diseases in children. However, its efficacy has been called into question by multiple studies, and most institutions no longer use it.
- an anti-inflammatory agent may be used in combination with a composition described herein.
- Steroidal anti-inflammatories for use herein include, but are not limited to fluticasone, beclomethasone, any pharmaceutically acceptable derivative thereof, and any combination thereof.
- a pharmaceutically acceptable derivative includes any salt, ester, enol ether, enol ester, acid, base, solvate or hydrate thereof. Such derivatives may be prepared by those of skill in the art using known methods for such derivatization.
- Fluticasone propionate is a synthetic corticosteroid. Fluticasone propionate is a white to off-white powder and is practically insoluble in water, freely soluble in dimethyl sulfoxide and dimethylformamide, and slightly soluble in methanol and 95% ethanol.
- the formulations of the present invention may comprise a steroidal anti-inflammatory (e.g., fluticasone propionate).
- Beclomethasone In certain aspects the steroidal anti-inflammatory can be beclomethasone dipropionate or its monohydrate.
- the compound may be a white powder and is very slightly soluble in water (Physicians' Desk Reference), very soluble in chloroform, and freely soluble in acetone and in alcohol.
- Providing steroidal anti-inflammatories according to the present invention may enhance the compositions and methods of the invention by, for example, attenuating any unwanted inflammation.
- examples of other steroidal anti-inflammatories for use herein include, but are not limited to, betamethasone, triamcinolone, dexamethasone, prednisone, mometasone, flunisolide and budesonide.
- the non-steroidal anti-inflammatory agent may include aspirin, sodium salicylate, acetaminophen, phenacetin, ibuprofen, ketoprofen, indomethacin, flurbiprofen, diclofenac, naproxen, piroxicam, tebufelone, etodolac, nabumetone, tenidap, alcofenac, antipyrine, amimopyrine, dipyrone, ammopyrone, phenylbutazone, clofezone, oxyphenbutazone, prexazone, apazone, benzydamine, bucolome, cinchopen, clonixin, ditrazol, epirizole, fenoprofen, floctafeninl, flufenamic acid, glaphenine, indoprofen, meclofenamic acid, mefenamic acid, nif
- compositions described herein may be comprised in a kit.
- reagents for production and/or delivery of a therapeutic composition described herein are included in a kit.
- the kit is portable and may be carried on a person much like an asthma inhaler is carried.
- the kit may further include a pathogen detector.
- the kit may also contain a gas or mechanical propellant for compositions of the invention.
- kits may be packaged either in an aqueous, powdered, or lyophilized form.
- the container means of the kits will generally include at least one inhaler, canister, vial, test tube, flask, bottle, syringe or other container means, into which a component(s) may be placed, and preferably, suitably aliquoted. Where there is more than one component in the kit (second agent, etc.), the kit also will generally contain a second, third or other additional container into which the additional components may be separately placed.
- various combinations of components may be comprised in a vial, canister, or inhaler.
- a container of the invention can include a canister or inhaler that can be worn on a belt or easily carried in a pocket, backpack or other storage container.
- the kits of the present invention also will typically include a container for the described compositions or their variations, and any other reagent containers in close confinement for commercial sale.
- Such containers may include injection or blow molded plastic containers into which the desired vials are retained.
- the liquid solution is an aqueous solution
- a sterile aqueous solution being particularly preferred, but not required.
- the components of the kit may be provided as dried powder(s).
- the powder may be reconstituted by the addition of a suitable solvent or administered in a powdered form. It is envisioned that a solvent may also be provided in another container.
- kits will also include instructions for employing the kit components as well the use of any other reagent not included in the kit. Instructions may include variations that can be implemented.
- kits of the invention are embodiments of kits of the invention.
- Such kits are not limited to the particular items identified above and may include any reagent used directly or indirectly in the detection of pathogenic microorganisms or administration of a composition described herein.
- the inventors have used the mouse as model for microbial infection of the lung. Not be held to any particular mechanism or theory, it is believed that the increase in resistance to infection is due to activation of local defenses or innate immunity.
- the effects of single and repetitive exposure of a subject to a composition of the invention have been determined and no obvious gross pathology, such as premature death, weight loss, or behavioral changes have been observed.
- compositions and related methods result in at least some killing or inhibition of the invading pathogens even before cellular entry.
- some pathogens do enter cells in the lungs either by escaping extracellular killing or because the compositions are administered after pathogen exposure (preemptively) instead of before pathogen exposure (preventatively)
- the compositions and related methods promote intracellular killing resulting from the enhanced or augmented local responses in the lungs.
- a composition described in this application would simplify countermeasure stockpiling and deployment. Also, the compositions and methods of the invention would eliminate the difficulty of rapidly identifying a specific pathogen during a bioweapon attack or other exposure or potential exposure event. In addition, the economic advantages of producing and purchasing an agent with applicability in multiple civilian and biodefense settings are significant. Augmenting local epithelial mechanisms is particularly attractive in subjects who often have neutropenia or impaired adaptive immune function, e.g., immune compromised subjects. The methods typically act locally rather than systemically, and provide broad effects against multiple pathogens. The effects are rapid and are attractive in a biodefense, medical, and epidemic setting. Augmentation of innate defense capabilities of the lungs in normal hosts would be valuable during influenza or emergent respiratory viral epidemics for which adaptive immune vaccines are not available. Similarly, protection of caregivers during an epidemic would facilitate care of the sick while limiting spread.
- Resistance to infection can be stimulated to provide transient protection during prolonged periods of neutropenia.
- Other cancer patients such as those receiving fludarabine or anti-lymphocyte antibodies, or those receiving calcineurin inhibitors and steroids after hematopoietic stem cell transplantation, have impaired adaptive immunity. These patients might also benefit from episodic stimulation of immunity to protect against epidemic viruses. Community outbreaks of seasonal respiratory viruses such as influenza, parainfluenza, and RSV can cause fatal pneumonia in these compromised patients, and infection with many of these viruses can be rapidly identified from nasal washings.
- Class A bioterrorism agents that can be transmitted by aerosol include smallpox virus, and hemorrhagic fever viruses.
- Class B and class C bioterrorism agents also can be effectively delivered by the respiratory route. These organisms comprise a variety of viral classes. Because of the potential difficulty in initially identifying a specific agent, the complexity of locally stockpiling adaptive immune vaccines and antibiotics directed at specific agents, and the remarkable virulence of organisms despite appropriate treatment, stimulation of innate defense capabilities and increasing the resistance of the lungs to infection can prevent or preempt or attenuate infection with an agent delivered by the respiratory route. Such an effect could have great public health value.
- microbes that are considered pathogenic or potentially pathogenic under certain conditions (i.e., opportunistic pathogens/microbes).
- the pathogenicity is determined relative to infection via the lungs.
- the microbe is a virus.
- viruses and viral strains that are considered pathogenic or potentially pathogenic under certain conditions.
- Viruses can be placed in one of the seven following groups: Group I: double-stranded DNA viruses, Group II: single-stranded DNA viruses, Group III: double-stranded RNA viruses, Group IV: positive-sense single-stranded RNA viruses, Group V: negative-sense single-stranded RNA viruses, Group VI: reverse transcribing Diploid single-stranded RNA viruses, Group VII: reverse transcribing Circular double-stranded DNA viruses.
- Viruses include the family Adenoviridae, Arenaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Hepadnaviridae, Herpesviridae (Alphahelpesvirinae, Betaherpesvirinae, Gammaherpesvirinae), Nidovirales, Papillomaviridae, Paramyxoviridae (Paramyxovirinae, Pneumovirinae), Parvoviridae (Parvovirinae, Picornaviridae), Poxviridae (Chordopoxvirinae), Reoviridae, Retroviridae (Orthoretrovirinae), and/or Togaviridae.
- viruses include, but are not limited to various strains of influenza, such as avian flu (e.g., H5N1).
- avian flu e.g., H5N1
- Particular virus from which a subject may be protected include, but is not limited to Cytomegalovirus, Respiratory syncytial virus and the like.
- pathogenic viruses include, but are not limited to Influenza A, H5N1, Marburg, Ebola, Dengue, Severe acute respiratory syndrome coronavirus, Yellow fever virus, Human respiratory syncytial virus, Vaccinia virus and the like.
- compositions disclosed herein may be administered via the respiratory system of a subject.
- the compositions are deposited in the lung by methods and devices known in the art.
- Therapeutic compositions described herein may be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
- Dispersions may also be prepared in glycerol, liquid polyethylene glycols and mixtures thereof, and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical forms suitable for inhalation include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile inhalable solutions or dispersions.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- Sterile compositions are prepared by incorporating the active components in the required amount in the appropriate solvent with various other ingredients enumerated above, as required, followed by, for example, filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- some methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the component(s) and/or active ingredient(s) plus any additional desired ingredient from a previously sterile-filtered solution.
- Pulmonary/respiratory drug delivery can be implemented by different approaches, including liquid nebulizers, aerosol-based metered dose inhalers (MDI's), sprayers, dry powder dispersion devices and the like.
- liquid nebulizers including aerosol-based metered dose inhalers (MDI's), sprayers, dry powder dispersion devices and the like.
- MDI's aerosol-based metered dose inhalers
- sprayers dry powder dispersion devices and the like.
- dry powder dispersion devices are well known to those of skill in the art, as indicated by U.S. Pat. Nos. 6,797,258, 6,794,357, 6,737,045, and 6,488,953, all of which are incorporated by reference.
- at least one pharmaceutical composition can be delivered by any of a variety of inhalation or nasal devices known in the art for administration of a therapeutic agent by inhalation. Other devices suitable for directing pulmonary or nasal administration are also known in the art.
- At least one pharmaceutical composition is delivered in a particle size effective for reaching the lower airways of the lung or sinuses.
- Some specific examples of commercially available inhalation devices suitable for the practice of this invention are TurbohalerTM (Astra), Rotahaler®) (Glaxo), Diskus® (Glaxo), SpirosTM inhaler (Dura), devices marketed by Inhale Therapeutics, AERxTM (Aradigm), the Ultravent® nebulizer (Mallinckrodt), the Acorn II® nebulizer (Marquest Medical Products), the Ventolin® metered dose inhaler (Glaxo), the Spinhaler® powder inhaler (Fisons), Aerotech II® or the like.
- a pharmaceutical composition in an aerosol can be used for the administration of a pharmaceutical composition in an aerosol.
- aerosols may comprise either solutions (both aqueous and non-aqueous) or solid particles.
- Metered dose inhalers typically use a propellant gas and require actuation during inspiration. See, e.g., WO 98/35888 and WO 94/16970.
- Dry powder inhalers use breath-actuation of a mixed powder. See U.S. Pat. Nos. 5,458,135 and 4,668,218; PCT publications WO 97/25086, WO 94/08552 and WO 94/06498; and European application EP 0237507, each of which is incorporated herein by reference in their entirety.
- Nebulizers produce aerosols from solutions, while metered dose inhalers, dry powder inhalers, and the like generate small particle aerosols.
- Suitable formulations for administration include, but are not limited to nasal spray or nasal drops, and may include aqueous or oily solutions of a composition described herein.
- a spray comprising a pharmaceutical composition described herein can be produced by forcing a suspension or solution of a composition through a nozzle under pressure.
- the nozzle size and configuration, the applied pressure, and the liquid feed rate can be chosen to achieve the desired output and particle size.
- An electrospray can be produced, for example, by an electric field in connection with a capillary or nozzle feed.
- a pharmaceutical composition described herein can be administered by a nebulizer such as a jet nebulizer or an ultrasonic nebulizer.
- a nebulizer such as a jet nebulizer or an ultrasonic nebulizer.
- a compressed air source is used to create a high-velocity air jet through an orifice.
- a low-pressure region is created, which draws a composition through a capillary tube connected to a liquid reservoir.
- the liquid stream from the capillary tube is sheared into unstable filaments and droplets as it exits the tube, creating the aerosol.
- a range of configurations, flow rates, and baffle types can be employed to achieve the desired performance characteristics from a given jet nebulizer.
- ultrasonic nebulizer high-frequency electrical energy is used to create vibrational, mechanical energy, typically employing a piezoelectric transducer. This energy is transmitted to the composition creating an aerosol.
- a propellant, a composition, and any excipients or other additives are contained in a canister as a mixture with a compressed gas. Actuation of the metering valve releases the mixture as an aerosol.
- Pharmaceutical compositions for use with a metered-dose inhaler device will generally include a finely divided powder containing a composition of the invention as a suspension in a non-aqueous medium, for example, suspended in a propellant with the aid of a surfactant.
- the propellant can be any conventional material employed for this purpose such as chlorofluorocarbon, a hydrochlorofluorocarbon, a hydrofluorocarbon, or a hydrocarbon including trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethanol and 1,1,1,2-tetrafluoroethane, HFA-134a (hydrofluroalkane-134a), HFA-227 (hydrofluroalkane-227), or the like.
- chlorofluorocarbon a hydrochlorofluorocarbon
- a hydrofluorocarbon or a hydrocarbon including trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethanol and 1,1,1,2-tetrafluoroethane, HFA-134a (hydrofluroalkane-134a), HFA-227 (hydrofluroalkane-227), or the like.
- carrier includes any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like.
- carrier includes any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like.
- the use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- phrases “pharmaceutically acceptable” refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a subject.
- the preparation of an aqueous composition that contains a polypeptide or peptide as an active ingredient is well understood in the art.
- mice are divided into groups and infected. Treats start at +48 h (day 2). Groups included the following:
- Group 1 Untreated, infected control, no treatments.
- Group 2 Water by gavage at +48, +72 and +96 h (no infection)
- Group 3 Tamiflu by gavage at 4 mg/kg/day given at +48, +72 and +96 h
- Group 7 Aerosol PUL042 plus Tamiflu by gavage at +48 and +96 h with Tamiflu by gavage at +72 h.
- Group 8 Aerosol PUL042/Tamiflu combination at +48 h.
- Influenza A/HK/8/68 H3N2; Mouse Lung Pool 1-17-2012.
- Stock titer 7.64 log 10 TCID 50 /mL.
- mice from each group is randomized into 1 of 2 treatment boxes and exposed to influenza virus aerosol for 20 min.
- Virus and drug exposures are generated from an Aerotech II nebulizer flowing at 10 L/min of room air generated from an Aridyne 2000 compressor.
- mice are placed into a sealed plastic box.
- a selected group of mice is administered aerosol of PUL042 for 15 min. After exposure, mice are returned to their pre-assigned groups.
- Oseltamivir phosphate is obtained from Tamiflu capsules.
- powder from 1 capsule (163 mg/capsule; 45% oseltamivir carboxylate equivalent) is suspended in 1 mL of sterile water, vortexed, and sonicated in a water bath at room temperature for 1-5 min.
- the solution is equivalent to 75 mg oseltamivir carboxlyate/mL.
- Tamiflu is diluted and administered by gavage (oral) using 100 ⁇ L of 0.8 mg Oseltamivir carboxylate/mL (dilute: 0.424 mL of 75 mg Osel/mL+39.576 mL H 2 O) for a dose of 4 mg/kg/day in 100 ⁇ L.
- Oseltamivir phosphate is obtained from Tamiflu capsules.
- powder from 5 or 6 capsules (167 ⁇ 1 mg/capsule; 45.0% oseltamivir carboxylate equivalent) is suspended in 5 or 6 mL of either PUL042 (combination) or in sterile water (Tamiflu-only) and vortexed vigorously.
- the suspension is centrifuged at full speed in the clinical centrifuge for 15 min and the supernatant fraction is removed and place in the nebulizer.
- the solution is equivalent to 75 mg oseltamivir carboxlyate/mL.
- the estimated deposition is 1.7 mg/kg in the lungs and 3.4 mg/kg in the stomach.
- Group 1 is treated with oral water; Groups 4, 5, 6, and 7 are treated with aerosolized PUL042; Groups 3, 6, and 7 are treated with Oral Tamiflu; Groups 8 and 9 are treated with a combination of PUL042 and Tamiflu; Group 10 is treated with aerosolized Tamiflu.
- Group 1 is treated with oral water; Groups 3, 6, and 7 are treated with oral Tamiflu; and Groups 9 and 10 are treated with aerosolized Tamiflu.
- Group 1 is treated with oral water; Groups 5 and 7 are treated with aerosolized PUL042; Groups 3, 6, and 7 are treated with Oral Tamiflu; Group 9 is treated with combination PUL042 and Tamiflu; and Group 10 is treated with aerosolized Tamiflu.
- mice in each group are observed daily for overt illness, morbidity, and mortality. Mice are weighed on Days 0, 4 through 11; and days 14 to 21, if necessary.
- RSV is a major cause of pneumonia and bronchiolitis in infants, the elderly, and immunocompromised transplant patients, and is a major cause of respiratory infection leading to asthma exacerbations.
- an immune-suppressed model has been described in which cotton rats (CR) treated with cyclophosphamide exhibit characteristics of persistent RSV infection. These conditions are physiologically relevant to studies targeting immune-suppressed populations at risk for RSV infections.
- CR genes have been cloned encoding cytokines, chemokines, and lymphocyte cell surface markers. Analysis of these genes can inform mechanisms of viral pathogenesis and clearance in the presence or absence of therapeutic treatments.
- the studies use an established animal model for RSV infection, the cotton rat, to evaluate the ability of addition of PUL-042 to ribavirin treatment to inhibit viral infection and replication in the nasopharyngeal compartment and compare this to the activity in the lung, which is more representative of later stage or more severe viral disease.
- Cotton rats are the optimal model for these studies because they are 100-fold more permissive than mice to RSV infections in both the upper and lower airways, and infected animals develop pathology similar to that seen in humans.
- the predictive quality of the CR model for therapeutics in treating RSV infections advanced clinical trials of RSVIg, Respigam and palivizumab, and an effective protocol for Ribavirin treatment is well established in the cotton rat.
- Sigmoden hispidis cotton rats are ⁇ 75-150 g body weight as determined by the age at start of the experiment. Animal body weight and sex distribution is as similar as possible across all groups at the start. Body weights are recorded at end of the experiment. RSV/A/Tracy, 1.22 ⁇ 10 5 PFU is given to CR lightly anesthesized with isoflurane.
- PUL-042 or ribavirin treatment CR are placed into a sealed plastic box. PUL-042 and ribavirin exposures are generated from a Pari LC Sprint nebulizer flowing at 10 L/min of room air generated from a compressor.
- RNA is extracted from lung and nasopharyngeal tissues and the kinetics of RSV genome replication is measured by RT-qPCR. This total lung RNA may also be used to evaluate expression of cotton rat genes associated with pathogenesis of RSV disease.
- Intact lung tissue from the formalin-fixed lobes is prepared for histology. Sections are stained with hematoxylin-eosin and coded for blinded scoring of histopathology by veterinary pathologists. Sections are scored from 0 to 4 based on the extent and severity of alveolitis, alveolar eosinophilia, bronchiolitis, bronchiolar eosinophilia, peribronchiolar mononuclear inflammatory cell infiltrates, and perivascular mononuclear inflammatory cell infiltrates.
- PUL-042 and ribavirin are at the concentrations (nebulized in 5 mL water as ribavirin at 100 mg/mL; PUL-042 at 17 ⁇ g/mL ODN+11.6 ⁇ g/mL PAM2) applied in prior mouse influenza A experiments. All experiments are repeated once for confirmation of results.
- the RSV infection in CR is not lethal.
- Demonstration of an effect of PUL-042 and ribavirin for RSV requires measurement of viral load during the course of infection and clearance, and evaluation of histopathology during the course of RSV disease in the same animals.
- the effect of two doses of PUL-042 and ribavirin initiated on day 1 post-infection, followed by a second treatment on Day 2, or Day 3, or Day 4 and those initiated on day 2 post-infection, followed by treatment on Day 3 or Day 4 is evaluated.
- animals are euthanized for analysis on Day 4.
- ribavirin is evaluated alone administered on Day 1 and Day 2 with evaluation of Day 4 titers. Because the day of maximal proliferation is Day 4, and RSV is cleared in these animals by Day 7, any treatment occurring after Day 4 may not be distinguishable from the result in untreated animals.
- the optimal time course and dosing schedule can be repeated in cotton rats undergoing cyclophosphamide (CY) treatment and the effect of PUL-042 alone or combined with ribavirin is measured.
- CY cyclophosphamide
- intraperitoneal dosing of CY maintains a state of leukopenia in cotton rats without affecting mortality.
- RSV infection in CY-treated CR is persistent as shown by prolonged high titers in lung tissue at 12 days post-infection.
- CR are given CY intraperitoneal (i.p.) injections of 50 mg/kg three times per week for 3 weeks before RSV infection, and continues until the end of the time course for each animal.
- CBC complete blood counts
- titers are measured in the CY-immune suppressed animals at day 10 to confirm persistent RSV infection and to determine what effect PUL-042 has on virus replication later in infection. Serum cytokines levels are also measured in the blood samples.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Emergency Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Otolaryngology (AREA)
- Pulmonology (AREA)
- Dispersion Chemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Molecular Biology (AREA)
- Virology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application is a continuation from U.S. application Ser. No. 14/860,205 filed Sep. 21, 2015, which claims priority to U.S. Provisional Applications 62/053,013 filed Sep. 19, 2014 and 62/053,610 filed Sep. 22, 2014; each of which is incorporated herein by reference.
- This invention was made with government support under grant number 1R43HL118926-01A1, 1DP2HL123229-01, and 1R01HL117976-01A1 awarded by the National Heart Lung and Blood Institute or the National Institutes of Health. The government has certain rights in the invention.
- The present invention relates generally to the fields of virology, immunology, and antimicrobial pharmacotherapy. More particularly the compositions and methods of the invention related to increasing the resistance of an individual to viral infection.
- The susceptibility of the lungs to infection arises from the architectural requirements of gas exchange. To support ventilation, humans continuously expose about 80 m2 lung surface area to the external environment. Lungs are exposed not only to air, but also the particles, droplets, and pathogens that are suspended in the air. Unlike cutaneous surfaces that are wrapped in impermeable skin or the gastrointestinal tract with a thick adsorbent blanket of mucus, the lungs present a large environmental interface with a minimal barrier defense. A more substantial barrier is precluded by the demand for unimpeded gaseous diffusion.
- Despite their structural vulnerability, the lungs generally defend themselves successfully against infection through a variety of mechanical, humoral, and cellular mechanisms (Knowles et al., 2002; Martin and Frevert, 2005; Rogan, et al., 2006; Travis, et al., 2001); (Mizgerd, 2008; Bals and Hiemstra, 2004; Bartlett et al., 2008; Hiemstra, 2007; Hippenstiel et al., 2006; Schutte and McCray, 2002). Most inhaled microbial pathogens fail to penetrate to the alveoli due to impaction against the airway walls, where they are entrapped by mucus and then expelled via the mucociliary escalator system (Knowles et al., 2002). For those pathogens that escape this fate, the constitutive presence of antimicrobial peptides in the airway lining fluid limits their growth (Rogan, et al., 2006; Travis, et al., 2001). Alveolar macrophages that reside in the most distal airspaces are able to ingest these organisms, thereby clearing the lungs from a potential infection.
- Though often regarded as passive gas exchange barriers, the airway and alveolar epithelia supplement the baseline lung defenses by undergoing remarkable local structural and functional changes when pathogenic stimuli are encountered. In response to viral, fungal, or allergic inflammation, airway secretory cells rapidly increase their height and fill their apical cytoplasm with secretory granules, a process termed inflammatory metaplasia (Evans et al., 2004; Williams et al., 2006). In the presence of pathogens, the alveolar epithelia activate their plasmalemmal systems and secretory machinery, thereby engaging leukocytes in lung protection (Evans et al., 2005). Perhaps most importantly, microbial interactions with respiratory epithelial pattern recognition receptors causes numerous microbicidal products to be expressed into the airway lining fluid, including defensins, cathelicidins, lysozyme, and reactive oxygen species (Rogan et al., 2006; Forteza et al., 2005; Akinbi et al., 2000; Bals 15 and Hiemstra, 2004; Bals and Hiemstra, 2006). It is of note that pneumonia (bacterial or viral) is the leading cause of death from infection worldwide.
- There is a need for additional methods and compositions for inhibiting and/or treating viral infections.
- Certain embodiments are directed to compositions and methods for treating viral infections. In certain aspects the viral infection is a viral infection of the lungs. Other embodiments are directed to delivery devices containing an anti-viral composition(s). In certain aspects the delivery devices contain a formulation with activity against a broad spectrum of viruses. In a further aspect a delivery device can contain a formulation comprising one or more anti-viral drugs that target a specific family of viruses. Studies have shown that the combination treatments described herein are mechanism independent and that administration of a lipopeptide(s) and immune stimulatory oligonucleotide(s) can be co-administered or combined with a variety of antivirals having a variety of therapeutic mechanisms and targets. Thus, lipopeptide/oligonucleotide compositions and treatments can be effectively combined with wide variety of antivirals and are not limited to any particular antiviral.
- Certain embodiments are directed to compositions that increase resistance of a subject to viruses when administered to the subject. Additional embodiments are directed to methods of using such compositions to attenuate viral infection in the subject. Thus, embodiments include, but are not limited to compositions, formulations, and methods for the enhancement of a mammalian (e.g., a human) subject's biological defenses against viral infection. In certain aspects compositions are administered or deposited in an effective amount in the lungs of a subject. In certain aspects the compositions and methods provide a rapid and temporal increase in resistance to infection and/or augmentation of biological defenses against viral infection. Attenuation of viral infection can be by inhibiting, treating, or preventing virus infection or replication or survival. In specific embodiments the subject is a human patient.
- Aspects described here increase resistance to infection and enhance the defenses of the lung and respiratory tract of a subject. A subject administered a composition described herein is afforded a therapeutic, prophylactic, or therapeutic and prophylactic response to a potentially infecting virus.
- Certain embodiments are directed to formulations or co-formulations of active components to provide for an anti-viral effect. In certain aspects a co-formulation comprises one or more (a) lipopeptide(s), (b) immune stimulatory oligonucleotide(s), or (c) antiviral drug(s). In certain aspects the anti-viral compositions contain an effective amount of at least one, two, or three of the following: (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s). In certain aspects one or more lipopeptides can be included in a formulation. In a further aspect one or more stimulatory oligonucleotides can be included in a formulation. In still a further aspect one or more anti-viral drugs can be included in a formulation. The term stimulatory oligonucleotide and immune stimulatory oligonucleotide are used interchangeably to refer to an immune stimulatory oligonucleotide. In certain aspects the lipopeptide and stimulatory oligonucleotide are co-formulated or administered simultaneously, i.e. lipopeptide/stimulatory oligonucleotide co-administration. In a further aspect the lipopeptide/stimulatory oligonucleotide co-administration is administered in conjunction with administration of an additional antiviral drug or therapy. “Administered in conjunction” or “coadministration” as used herein refers to administration of two or more active agents in a manner that will allow them to be present together in-vivo for period of time. Accordingly, while the term “coadministration” includes simultaneous administration of two or more active agents, and administration from a single formulation, it is to be understood that it is not limited thereto.
- In certain aspects a lipopeptide is selected from diacyl and triacyl lipopeptides. In certain aspects a lipopeptide is FSL-1; Pam3Cys (tripalmitoyl-S-glyceryl cysteine); S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-N-palmitoyl-(R)-cysteine; (S-[2,3-bis(palmitoyloxy)-(2-R,S)-propyl]-Npalmitoyl-(R)-Cys-(S)-Ser-(Lys)4-hydroxytrihydrochloride; Pam3Cys-Ser-Ser-Asn-Ala; PaM3Cys-Ser-(Lys)4; Pam3Cys-Ala-Gly; Pam3Cys-Ser-Gly; Pam3Cys-Ser; PaM3Cys-OMe; Pam3Cys-OH; PamCAG (palmitoyl-Cys((RS)-2,3-di(palmitoyloxy)-propyl)-Ala-Gly-OH); or Pam2CSK4 (PaM2CSK4, dipalmitoyl-S-glyceryl cysteine-serine-(lysine)4), Pam2Cys-Ser-(Lys)4). In certain aspects the lipopeptide is PAM2CSK4.
- In certain aspects a stimulatory oligonucleotide is a type A, B, or C oligodeoxynucleotide (ODN). In certain aspects the stimulatory oligonucleotide is a type C ODN. In a further aspect the ODN is ODN2395 (tcgtcgttttcggcgcgcgccg (SEQ ID NO:1) or ODNM362 (tcgtcgtcgttcgaacgacgttgat (SEQ ID NO:2) or ODN10101 (tcgtcgttttcgcgcgcgccg (SEQ ID NO:3).
- In certain aspects an antiviral drug is a drug that effects the biology of a virus and attenuates or inhibits attachment, entry, replication, shedding, latency or a combination thereof. In a further aspect the antiviral drug can be a viral mimetic, a nucleotide analog, a sialidase inhibitor, or a protease inhibitor. In certain aspects the anti-viral drug is a neuraminidase inhibitor or nucleotide analog. In a particular aspect the anti-viral drug is amantadine, rimantadine, ribavirin, zanamivir, or oseltamivir. In certain aspects the antiviral drug is a small molecule, or an antibody or antibody fragment.
- In certain embodiments the lipopeptide is PAM2CSK4; the stimulatory oligonucleotide is ODN2395 (tcgtcgttttcggcgcgcgccg (SEQ ID NO:1) or ODNM362 (tcgtcgtcgttcgaacgacgttgat (SEQ ID NO:2) or ODN10101 (tcgtcgttttcgcgcgcgccg (SEQ ID NO:3); and the antiviral drug is amantadine, rimantadine, ribavirin, zanamivir, or oseltamivir.
- In one embodiment, the anti-viral compositions contain about 0.1, 0.5, 1, 5, or 10% to about 1, 5, 10, or 20% by weight of at least one of (a) lipopeptide(s), (b) stimulatory oligonucleotide(s), or (c) antiviral drug(s).
- In certain aspects a formulation can comprise a lipopeptide in an amount that is at least, less than or about 0.1, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55% by weight or volume (or any range derivable therein).
- In certain aspects a formulation can comprise a stimulatory oligonucleotide in an amount that is at least, less than or about 0.1, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55% by weight or volume (or any range derivable therein).
- In certain aspects a formulation can comprise an anti-viral drug in an amount that is at least, less than or about 0.1, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55% by weight or volume (or any range derivable therein).
- In one embodiment, the antiviral compositions contain at least one of (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s). In another embodiment, the anti-viral compositions contain at least two (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s). In still another embodiment the anti-viral compositions contain a (a) lipopeptide, (b) stimulatory oligonucleotide, and (c) antiviral drug(s).
- In one embodiment, the weight ratio of (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s) relative to each other in the anti-viral compositions includes or is at least or at most 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 parts lipopeptide (or any range derivable therein) to, to at least, or to at most 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 parts stimulatory oligonucleotide (or any range derivable therein) to, to at least or to at most 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 parts anti-viral drug (or any range derivable therein). In certain aspects a formulation can comprise about 4 parts lipopeptide, about 1 part stimulatory oligonucleotide. In additional embodiments, there is also about or at least about, or at most about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 parts antiviral drug (or any range derivable therein).
- In certain embodiments a composition can comprise, comprise at least or comprise at most 0, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 10 g of lipopeptide (or any range derivable therein) per 1. 5, or 10 mL; 0, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 10 g of stimulatory oligonucleotide (or any range derivable therein) per 1, 5, or 10 mL; and/or 0, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 10, 50 up to 100 g of antiviral drug(s) (or any range derivable therein) per 1, 5, or 10 mL.
- Certain embodiments are directed to methods of treating, inhibiting, or attenuating a viral infection in a subject who has or is at risk for developing such an infection. The methods comprising administering an effective amount of an anti-viral composition described herein.
- In certain embodiments a lipopeptide and stimulatory oligonucleotide can be administered via the respiratory system and an anti-viral drug can be administered orally or intravascularly.
- Certain embodiments are directed to compositions capable of being administered to the
1, 2, 3, 4, or more times a day, week, or month (or any combination derivable therein).respiratory tract - In other aspects a composition is administered in a nebulized formulation. The (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s) can be administered in an amount, selected independently for each component, from about, about at least or about at most 0.1, 1, 5, 10, 50 μg or mg/kg to about, about at least or about at most 5, 10, 50, 100 μg or mg/kg of the subject's body weight, including all values and ranges there between.
- Compositions described herein can be administered via the respiratory tract. Methods of the invention include the administration of a composition by inhalation or other methods of administration to the upper and/or lower respiratory tract. In certain aspects, the anti-viral composition is administered in a nebulized or aerosolized formulation. In a further aspect the composition is aerosolized or nebulized or in a form that can be inhaled by or instilled in a subject. The composition can be administered by inhalation or inspiration. The anti-viral composition, including (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s), can be administered in an amount of from about, or at least or at most about, 0.01, 0.05. 0.1, 25 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 μg or mg/kg (or any range derivable therein) to about, or at least or at most about, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 200 μg or mg/kg (or any range derivable therein) of the subject's body weight. In other aspects, a subject can be administered about, or at least or at most about 0.01, 0.05. 0.1, 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 200 μg or mg (or any range derivable therein) of (a) lipopeptide, (b) stimulatory oligonucleotide, or (c) antiviral drug(s) individually or in combination (total amount). The subject can be at risk of exposure to or exposed to a virus. Still further embodiments include methods where the composition is administered before; after; during; before and after; before and during; during and after; before, after, and during exposure or suspected exposure or heightened risk of exposure to the virus. The subject can be exposed to a bioweapon or to an opportunistic pathogen. In particular aspects the subject is immunocompromised, such as an infant, a cancer patient, or an AIDS patient. In certain aspects the subject is located in an area having or at risk of having a viral outbreak.
- Certain embodiments include a pharmaceutical composition comprising or consisting essentially of PAM2CSK4, ODNM362, and optionally an antiviral agent, that is formulated for aerosolized or nebulized delivery. In certain embodiments the antiviral agent is ribavirin or oseltamivir. Methods include treating a patient for a virus infection comprising administering to the patient effective amounts of PAM2CSK4 and ODNM362, and optionally administering an antiviral agent, wherein the PAM2CSK4 and ODNM362 are administered to the patient as an aerosol or with a nebulizer. In certain embodiments, treatment of the virus infection does not include an active agent other than a lipopeptide, a stimulatory oligonucleotide (such as a Class C ODN, including ODNM362), and an antiviral drug. In certain aspects the compositions or methods specifically exclude an antigen or immunogen targeting a specific virus or group viruses.
- In certain aspects the virus is an Adenoviridae, Coronaviridae, Filoviridae, Flaviviridae, Hepadnaviridae, Herpesviridae, Orthomyxoviridae, Paramyxovirinae, Pneumovirinae, Picornaviridae, Poxyiridae, Retroviridae, or Togaviridae virus. In a further aspect a virus is Parainfluenza, Influenza (seasonal, swine, avian, etc.), Marburg, Ebola, Severe acute respiratory syndrome coronavirus, Yellow fever virus, Human respiratory syncytial virus, Hantavirus, measles, MERS, rhinovirus, human metapneumovirus, or Vaccinia virus. In other aspects the virus is influenza, RSV, or parainfluenza virus. In a further aspect the virus can be a Severe acute respiratory syndrome coronovirus (SARS-COV) or Middle Eastern Respiratory Syndrome coronavirus (MERS-COV).
- The terms “attenuating,” “inhibiting,” “reducing,” or “prevention,” or any variation of these terms, when used in the claims and/or the specification includes any measurable decrease or complete inhibition to achieve a desired result, e.g., reduction in post-exposure viral survival, load, or growth.
- As used herein, “an effective amount” means the concentration or quantity or level of the active compound(s) of the present invention that can attain a particular medical end, such as control or destruction of virally-infected cells or viruses, without producing unacceptable toxic symptoms. The term “effective amount” also refers to the quantity of an active compound(s) that is sufficient to yield a desired therapeutic response without undue adverse side effects (such as toxicity, irritation, or allergic response) commensurate with a reasonable benefit/risk ratio when used in the manner of this invention. The specific “effective amount” can vary with such factors as the particular condition being treated, the physical condition of the patient, the type of mammal being treated, the duration of the treatment, the nature of concurrent therapy (if any), and the specific formulations employed.
- Other embodiments of the invention are discussed throughout this application. Any embodiment discussed with respect to one aspect of the invention applies to other aspects of the invention as well and vice versa. Each embodiment described herein is understood to be embodiments of the invention that are applicable to all aspects of the invention. It is contemplated that any embodiment discussed herein can be implemented with respect to any method or composition of the invention, and vice versa. Furthermore, compositions and kits of the invention can be used to achieve methods of the invention.
- The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.”
- Throughout this application, the term “about” is used to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value.
- The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.”
- As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
- Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
- The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of the specification embodiments presented herein.
-
FIG. 1 . Effect of PUL-042 on percent survival compared to untreated control mice following lethal challenge of influenza infection. The x-axis indicates the day on which PUL-042 and/or oseltamivir was administered relative to influenza infection. -
FIG. 2 . Effect of timing of multiple doses of combination treatment with PUL-042 and oseltamivir on survival of a lethal influenza challenge. The x-axis indicates the day of initiation of treatment and timing of subsequent treatments relative to the influenza challenge. * Statistically significant difference from untreated controls. ** Combined results of treatments starting at D3 or D4, Ave.=49.8%, P<0.001. *** Combination D1 and D4, while a strong result, was performed only once and statistical significance was not determined. -
FIG. 3 . Effect of PUL-042 combination treatment with ribavirin on survival of a lethal influenza challenge. Initiating treatment on D1 after infection increased the percent survival to 95% compared to untreated controls. -
FIG. 4 . Effect of PUL-042 on percent survival following lethal challenge of three influenza viruses. Fifteen outbred NIH Swiss-Webster mice were used in each group. The x-axis indicates the day on which PUL-042 and/or oseltamivir was administered relative to infection challenge. -
FIG. 5 . Prior aerosolized PUL-042 treatment fully protects mice against lethal SARS-COV infection (−24 hrs; challenge dose: 5×LD50). -
FIG. 6 . Prior aerosolized PUL-042 treatment reduces pulmonary yields of infectious SARS-COV (−24 hrs; challenge dose: 5×LD50; 3 dpi). -
FIG. 7 . Prior treatment with aerosolized PUL-042 significantly reduced the viral loads in MERS-COV-challenged mice (3 dpi). - The immune system is the system of specialized cells and organs that protect an organism from outside biological influences. When the immune system is functioning properly, it protects the body against microbial infections, and destroys cancer cells and foreign substances. If the immune system weakens, its ability to defend the body also weakens, allowing pathogens to grow in the body.
- The immune system is often divided into: (a) an innate immunity comprised of components that provide an immediate “first-line” of defense to continuously ward off pathogens and (b) an adaptive (acquired) immunity comprising the production of antibodies and production or stimulation of T-cells specifically designed to target particular pathogens. Using adaptive immunity the body can develop over time a specific immunity to particular pathogen(s). This response takes days to develop, and so is not effective at preventing an initial invasion, but it will normally prevent any subsequent infection, and also aids in clearing up longer-lasting infections.
- In response to certain inflammatory stimuli, the secretory cells of the airway epithelium of mice and humans rapidly undergo a remarkable change in structure termed inflammatory metaplasia. Most of the structural changes can be ascribed to increased production of secreted, gel-forming mucins, while additional macromolecules with functions in mucin secretion, microbial killing or inflammatory signaling are also upregulated. The physiologic function of this response is thought to be augmentation of local defenses against microbial and helminthic pathogens, although that hypothesis has received only limited formal testing. Paradoxically, excessive production and secretion of gel-forming mucins is a major cause of airflow obstruction in common inflammatory diseases of the airways such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD). The stimulation of innate immunity without the production or with the reduced production of mucin provides an additional method of attenuating infection of the respiratory tract by preventing and/or treating a viral infection of a subject.
- The compositions and methods of the present invention may be used in the context of a number of therapeutic or prophylactic applications. In order to increase the effectiveness of a treatment with the compositions described or to augment the protection of another therapy (second therapy), e.g., vaccination or antimicrobial therapy, it may be desirable to combine these compositions and methods with other agents and methods effective in the treatment, reduction of risk of infection, or prevention of diseases and pathologic conditions, for example, anti-viral treatments. In certain aspects a plurality of components are formulated in a composition for administration to a subject in need of such.
- Administration of a composition described to a subject will follow general protocols for the administration via the respiratory system, and the general protocols for the administration of a particular secondary therapy will also be followed, taking into account the toxicity, if any, of the treatment. It is expected that the treatment cycles would be repeated as necessary. It also is contemplated that various standard therapies, as well as vaccination, may be applied in combination with the described therapies.
- In certain embodiments a composition can comprise one or more of (a) lipopeptide, (b) stimulatory oligonucleotide, and/or (c) anti-viral drug(s), in various combinations. Combination being in the form of co-formulation or alternatively co-administration of components.
- A. Lipopeptides
- Lipopeptides include synthetic triacylated and diacylated lipopeptides. The peptide component can include single amino acids such as cysteine or short 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid peptides. In certain aspects the peptide can include one or more amino terminal serine and 1, 2, 3, 4, or more carboxy terminal asparagine, glycine, alanine, lysine residues or combinations thereof. A nonlimiting example of lipopeptide is FSL-1 (a synthetic lipoprotein derived from Mycoplasma salivarium 1), Pam3Cys (tripalmitoyl-S-glyceryl cysteine)S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-N-palmitoyl-(R)-cysteine, where “Pam3” is “tripalmitoyl-Sglyceryl”) (Aliprantis et al., 1999), derivatives of Pam3Cys (S-[2,3-bis(palmitoyloxy)-(2-R,S)-propyl]-Npalmitoyl-(R)-Cys-(S)-Ser-(Lys)4-hydroxytrihydrochloride; Pam3 Cys-Ser-Ser-Asn-Ala; PaM3 Cys-Ser-(Lys)4; Pam3 Cys-Ala-Gly; Pam3 Cys-Ser-Gly; Pam3 Cys-Ser; PaM3Cys-OMe; Pam3Cys-OH; PamCAG, palmitoyl-Cys((RS)-2,3-di(palmitoyloxy)-propyl)-Ala-Gly-OH; Pam2CSK4 (PaM2CSK4, dipalmitoyl-S-glyceryl cysteine-serine-(lysine)4), Pam2Cys-Ser-(Lys)4); and the like. Synthetic lipopeptides have been described in the literature. See, e.g., Kellner et al. (1992); Seifer et al. (1990); Lee et al. (2003).
- B. Stimulatory Oligonucleotide
- Stimulatory oligonucleotides include nucleic acids comprising the
sequence 5′-CG-3′ (a “CpG nucleic acid”), in certain aspects C is unmethylated. The terms “polynucleotide,” and “nucleic acid,” as used interchangeably herein in the context of stimulatory oligonucleotides molecules, refer to a polynucleotide of any length, and encompasses, inter alia, single- and double-stranded oligonucleotides (including deoxyribonucleotides, ribonucleotides, or both), modified oligonucleotides, and oligonucleosides, alone or as part of a larger nucleic acid construct, or as part of a conjugate with a non-nucleic acid molecule such as a polypeptide. Thus a stimulatory oligonucleotide may be, for example, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), single-stranded RNA (ssRNA) or double-stranded RNA (dsRNA). - A stimulatory oligonucleotide may comprise at least one nucleoside comprising an L-sugar. The L-sugar may be deoxyribose, ribose, pentose, deoxypentose, hexose, deoxyhexose, glucose, galactose, arabinose, xylose, lyxose, or a sugar “analog” cyclopentyl group. The L-sugar may be in pyranosyl or furanosyl form.
- Stimulatory oligonucleotides generally do not provide for, nor is there any requirement that they provide for, expression of any amino acid sequence encoded by the polynucleotide, and thus the sequence of a stimulatory oligonucleotide may be, and generally is, non-coding. Stimulatory oligonucleotide may comprise a linear double or single-stranded molecule, a circular molecule, or can comprise both linear and circular segments. Stimulatory oligonucleotide may be single-stranded, or may be completely or partially double-stranded.
- In some embodiments, a stimulatory oligonucleotide for use in a subject method is an oligonucleotide, e.g., consists of a sequence of from about 5 nucleotides to about 200 nucleotides, from about 10 nucleotides to about 100 nucleotides, from about 12 nucleotides to about 50 nucleotides, from about 15 nucleotides to about 25 nucleotides, from 20 nucleotides 15 to about 30 nucleotides, from about 5 nucleotides to about 15 nucleotides, from about 5 nucleotides to about 10 nucleotides, or from about 5 nucleotides to about 7 nucleotides in length. In some embodiments, a stimulatory oligonucleotide that is less than about 15 nucleotides, less than about 12 nucleotides, less than about 10 nucleotides, or less than about 8 nucleotides in length is associated with a larger molecule.
- In general, a stimulatory oligonucleotide used in a subject composition comprises at least one unmethylated CpG motif. The relative position of any CpG sequence in a polynucleotide in certain mammalian species (e.g., rodents) is 5′-CG-3′(i.e., the C is in the 5′ position with respect to the G in the 3′ position).
- In some embodiments, a stimulatory oligonucleotide comprises a central palindromic core sequence comprising at least one CpG sequence, where the central palindromic core sequence contains a phosphodiester backbone, and where the central palindromic core sequence is flanked on one or both sides by phosphorothioate backbone-containing polyguanosine sequences.
- In other embodiments, a stimulatory oligonucleotide comprises one or more TCG sequences at or near the 5′ end of the nucleic acid; and at least two additional CG dinucleotides. In some of these embodiments, the at least two additional CG dinucleotides are spaced three nucleotides, two nucleotides, or one nucleotide apart. In some of these embodiments, the at least two additional CG dinucleotides are contiguous with one another. In some of these embodiments, the stimulatory oligonucleotide comprises (TCG)n, where n=1 to 3, at the 5′ end of the nucleic acid. In other embodiments, the stimulatory oligonucleotide comprises (TCG)n, where n=1 to 3, and where the (TCG)n sequence is flanked by one nucleotide, two nucleotides, three nucleotides, four nucleotides, or five nucleotides, on the 5′ end of the (TCG)n sequence.
- Exemplary consensus CpG motifs useful in the invention include, but are not necessarily limited to: 5′-Purine-Purine-(C)-(G)-Pyrimidine-Pyrimidine-3′, in which the stimulatory oligonucleotide comprises a CpG motif flanked by at least two purine nucleotides (e.g., GG, GA, AG, AA, II, etc.,) and at least two pyrimidine nucleotides (CC, TT, CT, TC, UU, etc.); 5′-Purine-TCG-Pyrimidine-Pyrimidine-3′; 5′-TCG-N—N-3′; where N is any base; 5′-Nx(CG)nNy, where N is any base, where x and y are independently any integer from 0 to 200, e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-15, 16-20, 21-25, 25-30, 30-50, 50-75, 75-100, 100-150, or 150-200; and n is any integer that is 1 or greater, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or greater. 5′-Nx(TCG)nNy, where N is any base, where x and y are independently any integer from 0 to 200, e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-15, 16-20, 21-25, 25-30, 30-50, 50-75, 75-100, 100-150, or 150-200; and n is any integer that is 1 or greater, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or greater. 5′-(TCG)n-3′, where n is any integer that is 1 or greater, e.g., to provide a TCG-based TLR9 ligand (e.g., where n=3, the polynucleotide comprises the
sequence 5′TCGNNTCGNNTCG-3′; SEQ ID NO:4); 5 Nm-(TCG)n-Np-3′, where N is any nucleotide, where m is zero, one, two, or three, where n is any integer that is 1 or greater, and where p is one, two, three, or four; 5 Nm-(TCG)n-Np-3′, where N is any nucleotide, where m is zero to 5, and where n is any integer that is 1 or greater, where p is four or greater, and where the sequence N—N—N—N comprises at least two CG dinucleotides that are either contiguous with each other or are separated by one nucleotide, two nucleotides, or three nucleotides; and 5′Purine-Purine-CG-Pyrimidine-TCG-3′. - Where a stimulatory oligonucleotide comprises a sequence of the formula: 5′-Nm(TCG)n-Np-3′, where N is any nucleotide, where m is zero to 5, and where n is any integer that is 1 or greater, where p is four or greater, and where the sequence N—N—N—N comprises at least two CG dinucleotides that are either contiguous with each other or are separated by one nucleotide, two nucleotides, or three nucleotides, exemplary stimulatory oligonucleotide useful in the invention include, but are not necessarily limited to: (1) a sequence of the formula in which n=2, and Np is NNCGNNCG; (2) a sequence of the formula in which n=2, and Np is AACGTTCG; (3) a sequence of the formula in which n=2, and Np is TTCGAACG; (4) a sequence of the formula in which n=2, and Np is TACGTACG; (5) a sequence of the formula in which n=2, and Np is A TCGA TCG; (6) a sequence of the formula in which n=2, and Np is CGCGCGCG; (7) a sequence of the formula in which n=2, and Np is GCCGGCCG; (8) a sequence of the formula in which n=2, and Np is CCCGGGCG; (9) a sequence of the formula in which n=2, and Np is GGCGCCCG; (1 0) a sequence of the formula in which n=2, and Np is CCCGTTCG; (11) a sequence ofthe formula in which n=2, and Np is GGCGTTCG; (12) a sequence of the formula in which n=2, and Np is TTCGCCCG; (13) a sequence of the 30 formula in which n=2, and Np is TTCGGGCG; (14) a sequence of the formula in which n=2, and Np is AACGCCCG; (15) a sequence of the formula in which n=2, and Np is AACGGGCG; (16) a sequence of the formula in which n=2, and Np is CCCGAACG; and (17) a sequence of the formula in which n=2, and Np is GGCGAACG; and where, in any of 1-17, m=zero, one, two, or three.
- Where a nucleic acid TLR9 ligand comprises a sequence of the formula: 5′Nm(TCG)n-Np-3′, where N is any nucleotide, where m is zero, one, two, or three, where n is any integer that is 1 or greater, and where p is one, two, three, or four, exemplary TLR9 ligands useful in the invention include, but are not necessarily limited to: (1) a sequence of the formula where m=zero, n=1, and Np is T-T-T; (2) a sequence of the formula where m=zero, n=1, and Np is T-T-T-T; (3) a sequence of the formula where m=zero, n=1, and Np is C—C—CC; (4) a sequence of the formula where m=zero, n=1, and Np is A-A-A-A; (5) a sequence of the formula where m=zero, n=1, and Np is A-G-A-T; (6) a sequence of the formula where Nm is T, n=1, and Np is T-T-T; (7) a sequence of the formula where Nm is A, n=1, and Np is T-T-T; (8) a sequence of the formula where Nm is C, n=1, and Np is T-T-T; (9) a sequence of the formula where Nm is G, n=1, and Np is T-T-T; (10) a sequence of the formula where Nm is T, n=1, and Np is A-T-T; (11) a sequence of the formula where Nm is A, n=1, and Np is 15 A-T-T; and (12) a sequence of the formula where Nm is C, n=1, and Np is A-T-T.
- Stimulatory oligonucleotides useful in the invention include, but are not necessarily limited to, polynucleotides comprising one or more of the following nucleotide sequences:
-
AGCGCT, AGCGCC, AGCGTT, AGCGTC, AACGCT, AACGCC, AACGTT, AACGTC, GGCGCT, GGCGCC, GGCGTT, GGCGTC, GACGCT, GACGCC, GACGTT, GACGTC, GTCGTC, GTCGCT, GTCGTT, GTCGCC, ATCGTC, ATCGCT, ATCGTT, ATCGCC, TCGTCG, or TCGTCGTCG. - Additional stimulatory oligonucleotides useful in the invention include, but are not necessarily limited to, polynucleotides comprising one or more of the following nucleotide sequences: TCGXXXX, TCGAXXX, XTCGXXX, XTCGAXX, TCGTCGA, TCGACGT, TCGAACG, TCGAGAT, TCGACTC, TCGAGCG, TCGATTT, TCGCTTT, TCGGTTT, TCGTTTT, TCGTCGT, ATCGATT, TTCGTTT, TTCGATT, ACGTTCG, AACGTTC, TGACGTT, TGTCGTT, TCGXXX, TCGAXX, TCGTCG, AACGTT, ATCGAT, GTCGTT, GACGTT, TCGXX, TCGAX, TCGAT, TCGTT, TCGTC, TCGA, TCGT, TCGX, and TCG (where “X” is any nucleotide).
- Stimulatory oligonucleotides useful in the invention include, but are not necessarily limited to, polynucleotides comprising the following octameric nucleotide sequences:
-
AGCGCTCG, AGCGCCCG, AGCGTTCG, AGCGTCCG, AACGCTCG, AACGCCCG, AACGTTCG, AACGTCCG, GGCGCTCG, GGCGCCCG, GGCGTTCG, GGCGTCCG, GACGCTCG, GACGCCCG, GACGTTCG, and GACGTCCG. - A stimulatory oligonucleotide useful in carrying out a subject method can comprise one or more of any of the above CpG motifs. For example, a stimulatory oligonucleotide useful in the invention can comprise a single instance or multiple instances (e.g., 2, 3, 4, 5 or more) of the same CpG motif. Alternatively, a stimulatory oligonucleotide can comprise multiple CpG motifs (e.g., 2, 3, 4, 5 or more) where at least two of the multiple CpG motifs have different consensus sequences, or where all CpG motifs in the stimulatory oligonucleotides have different consensus sequences.
- A stimulatory oligonucleotide useful in the invention may or may not include palindromic regions. If present, a palindrome may extend only to a CpG motif, if present, in the core hexamer or octamer sequence, or may encompass more of the hexamer or octamer sequence as well as flanking nucleotide sequences.
- In some embodiments, a stimulatory oligonucleotide is multimeric. A multimeric stimulatory oligonucleotide comprises two, three, four, five, six, seven, eight, nine, ten, or more individual (monomeric) stimulatory oligonucleotides, as described above, linked via noncovalent bonds, linked via covalent bonds, and either linked directly to one another, or linked via one or more spacers. Suitable spacers include nucleic acid and non-nucleic acid molecules, as long as they are biocompatible. In some embodiments, multimeric stimulatory oligonucleotide comprises a linear array of monomeric stimulatory oligonucleotides. In other embodiments, a multimeric stimulatory oligonucleotide is a branched, or dendrimeric, array of monomeric stimulatory oligonucleotides.
- Stimulatory oligonucleotide modifications. A stimulatory oligonucleotide suitable for use in a subject composition can be modified in a variety of ways. For example, a stimulatory oligonucleotide can comprise backbone phosphate group modifications (e.g., methylphosphonate, phosphorothioate, phosphoroamidate and phosphorodithioate intemucleotide linkages), which modifications can, for example, enhance their stability in vivo, making them particularly useful in therapeutic applications. A particularly useful phosphate group modification is the conversion to the phosphorothioate or phosphorodithioate forms of a stimulatory oligonucleotide. Phosphorothioates and phosphorodithioates are more resistant to degradation in vivo than their unmodified oligonucleotide counterparts, increasing the half-lives of the stimulatory oligonucleotides and making them more available to the subject being treated.
- Other modified stimulatory oligonucleotides encompassed by the present invention include stimulatory oligonucleotides having modifications at the 5′ end, the 3′ end, or both the 5′ and 3′ ends. For example, the 5′ and/or 3′ end can be covalently or non-covalently associated with a molecule (either nucleic acid, non-nucleic acid, or both) to, for example, increase the bio-availability of the stimulatory oligonucleotide, increase the efficiency of uptake where desirable, facilitate delivery to cells of interest, and the like.
- The terms “CpG-ODN,” “CpG nucleic acid,” “CpG polynucleotide,” and “CpG oligonucleotide,” used interchangeably herein, refer to a polynucleotide that comprises at least one 5′-CG-3′ moiety, and in many embodiments comprises an unmethylated 5′-CG-3′ moiety. In general, a CpG nucleic acid is a single-or double-stranded DNA or RNA polynucleotide having at least six nucleotide bases that may comprise, or consist of, a modified nucleotide or a sequence of modified nucleosides. In some embodiments, the 5′-CG-3′ moiety of the CpG nucleic acid is part of a palindromic nucleotide sequence. In some embodiments, the 5′-CG-3′ moiety of the CpG nucleic acid is part of a non-palindromic nucleotide sequence.
- C. Anti-Viral Drugs.
- In certain aspects an anti-viral drug(s) may be used in combination with or as a component of an anti-viral composition (co-formulated with other components) described herein. Anti-viral drugs are a class of medication used specifically for treating viral infections and they should be distinguished from viricides, which actively deactivate virus particles outside the body. Most of the antivirals now available are designed to help deal with HIV, herpes viruses, the hepatitis B and C viruses, and influenza A and B viruses. Anti-viral agents useful in embodiments include, but are not limited to, immunoglobulins, amantadine, interferons, nucleotide analogues, sialidase inhibitors and protease inhibitors. It is contemplated that one or more of these may be included in embodiments or they may be excluded from embodiments. In certain embodiments, the antiviral drug is one that inhibits the virus directly, instead of destroying or killing the virus. In other embodiments, an antiviral drug is not an immunoglobulin or agent that involves the immune system.
- One anti-viral strategy is to interfere with the ability of a virus to infiltrate a target cell. This stage of viral replication can be inhibited by using agents that mimic the virus associated protein (VAP) and bind to the cellular receptors; or by using agents which mimic the cellular receptor and bind to the VAP. This includes anti-VAP antibodies, receptor anti-idiotypic antibodies, extraneous receptor and synthetic receptor mimics (viral mimetics). Two such “entryblockers” or “viral mimetics” are amantadine and rimantadine. In certain aspects amantadine, rimantadine, or compounds with similar mechanisms of action can be used in composition described herein. In a further aspect amantadine and rimantadine can be formulated as a treatment for influenza.
- A second approach to anti-viral therapy is to target the processes that synthesize virus components after a virus invades a cell. One way of doing this is to develop nucleotide or nucleoside analogues that look like the building blocks of RNA or DNA, but deactivate the enzymes that synthesize the RNA or DNA once the analog is incorporated. Nucleotide analogs include, but are not limited to ribivirin, vidarabine, acyclovir, gangcyclovir, zidovudine, didanosine, zalcitabine, stavudine, and lamivudine. A number of anti-proliferative compounds are known to inhibit both cancers and viruses, thus other anti-proliferative compounds can be used as an anti-viral therapy.
- Another approach is to inhibit sialidases (also referred to as neuraminidases). Sialidases hydrolyse alpha-(2/3)-, alpha-(2/6)-, alpha-(2/8)-glycosidic linkages of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrates. Sialidases act as pathogenic factors in virus infections. Thus, sialidase inhibitors can be used to attenuate the ability of a virus to infect a subject.
- Some viruses have a protease that cuts viral protein chains apart so they can be assembled into their final configuration. HIV includes a protease, and so considerable research has been performed to find “protease inhibitors” to attack HIV at that phase of its life cycle. Protease inhibitors became available in the 1990s and have proven effective.
- The final stage in the life cycle of a virus is the release of mature viruses from the host cell. Two drugs (neuraminidase inhibitors, also referred to as sialidase inhibitors) named zanamivir (RELENZA™) and oseltamivir (TAMIFLU™) that have been introduced to treat influenza prevent the release of viral particles by blocking a molecule named neuraminidase that is found on the surface of flu viruses, and also seems to be constant across a wide range of flu strains.
- Anti-viral drugs include, but are not limited to abacavir; acemannan; acyclovir; acyclovir sodium; adefovir; alovudine; alvircept sudotox; amantadine hydrochloride; amprenavir; aranotin; arildone; atevirdine mesylate; avridine; cidofovir; cipamfylline; cytarabine hydrochloride; delavirdine mesylate; desciclovir; didanosine; disoxaril; edoxudine; efavirenz; enviradene; envlroxlme; famciclovir; famotine hydrochloride; fiacitabine; fialuridine; fosarilate; trisodium phosphonoformate; fosfonet sodium; ganciclovir; ganciclovir sodium; idoxuridine; indinavir; kethoxal; lamivudine; lobucavir; memotine hydrochloride; methisazone; nelfinavir; nevlrapme; penciclovir; pirodavir; ribavirin; rimantadine hydrochloride; ritonavir; saquinavir mesylate; somantadine hydrochloride; sorivudine; statolon; stavudine; tilorone hydrochloride; trifluridine; valacyclovir hydrochloride; vidarabine; vidarabine phosphate; vidarabine sodium phosphate; viroxime; zalcitabine; zidovudine; zinviroxime, interferon, cyclovir, alpha-interferon, and/or beta globulin.
- In certain embodiments the antiviral drug is ribivirin or high dose ribivirin. Ribavirin is an anti-viral drug that is active against a number of DNA and RNA viruses. It is a member of the nucleoside antimetabolite drugs that interfere with duplication of viral genetic material. Though not effective against all viruses, ribavirin has wide range of activity, including important activities against influenzas, flaviviruses, and agents of many viral hemorrhagic fevers.
- Typically, the oral form of ribavirin is used in the treatment of hepatitis C, in combination with pegylated interferon drugs. The aerosol form has been used in the past to treat respiratory syncytial virus-related diseases in children. However, its efficacy has been called into question by multiple studies, and most institutions no longer use it.
- D. Other Agents
- In certain aspects of the invention an anti-inflammatory agent may be used in combination with a composition described herein.
- Steroidal anti-inflammatories for use herein include, but are not limited to fluticasone, beclomethasone, any pharmaceutically acceptable derivative thereof, and any combination thereof. As used herein, a pharmaceutically acceptable derivative includes any salt, ester, enol ether, enol ester, acid, base, solvate or hydrate thereof. Such derivatives may be prepared by those of skill in the art using known methods for such derivatization.
- Fluticasone—Fluticasone propionate is a synthetic corticosteroid. Fluticasone propionate is a white to off-white powder and is practically insoluble in water, freely soluble in dimethyl sulfoxide and dimethylformamide, and slightly soluble in methanol and 95% ethanol. In an embodiment, the formulations of the present invention may comprise a steroidal anti-inflammatory (e.g., fluticasone propionate).
- Beclomethasone—In certain aspects the steroidal anti-inflammatory can be beclomethasone dipropionate or its monohydrate. The compound may be a white powder and is very slightly soluble in water (Physicians' Desk Reference), very soluble in chloroform, and freely soluble in acetone and in alcohol.
- Providing steroidal anti-inflammatories according to the present invention may enhance the compositions and methods of the invention by, for example, attenuating any unwanted inflammation. Examples of other steroidal anti-inflammatories for use herein include, but are not limited to, betamethasone, triamcinolone, dexamethasone, prednisone, mometasone, flunisolide and budesonide.
- In accordance with yet another aspect of the invention, the non-steroidal anti-inflammatory agent may include aspirin, sodium salicylate, acetaminophen, phenacetin, ibuprofen, ketoprofen, indomethacin, flurbiprofen, diclofenac, naproxen, piroxicam, tebufelone, etodolac, nabumetone, tenidap, alcofenac, antipyrine, amimopyrine, dipyrone, ammopyrone, phenylbutazone, clofezone, oxyphenbutazone, prexazone, apazone, benzydamine, bucolome, cinchopen, clonixin, ditrazol, epirizole, fenoprofen, floctafeninl, flufenamic acid, glaphenine, indoprofen, meclofenamic acid, mefenamic acid, niflumic acid, salidifamides, sulindac, suprofen, tolmetin, nabumetone, tiaramide, proquazone, bufexamac, flumizole, tinoridine, timegadine, dapsone, diflunisal, benorylate, fosfosal, fenclofenac, etodolac, fentiazac, tilomisole, carprofen, fenbufen, oxaprozin, tiaprofenic acid, pirprofen, feprazone, piroxicam, sudoxicam, isoxicam, celecoxib, Vioxx®, and/or tenoxicam.
- Any of the compositions described herein may be comprised in a kit. In a nonlimiting example, reagents for production and/or delivery of a therapeutic composition described herein are included in a kit. In certain aspects the kit is portable and may be carried on a person much like an asthma inhaler is carried. The kit may further include a pathogen detector. The kit may also contain a gas or mechanical propellant for compositions of the invention.
- The components of the kits may be packaged either in an aqueous, powdered, or lyophilized form. The container means of the kits will generally include at least one inhaler, canister, vial, test tube, flask, bottle, syringe or other container means, into which a component(s) may be placed, and preferably, suitably aliquoted. Where there is more than one component in the kit (second agent, etc.), the kit also will generally contain a second, third or other additional container into which the additional components may be separately placed. However, various combinations of components may be comprised in a vial, canister, or inhaler. A container of the invention can include a canister or inhaler that can be worn on a belt or easily carried in a pocket, backpack or other storage container. The kits of the present invention also will typically include a container for the described compositions or their variations, and any other reagent containers in close confinement for commercial sale. Such containers may include injection or blow molded plastic containers into which the desired vials are retained.
- When the components of the kit are provided in one and/or more liquid solutions, e.g., the liquid solution is an aqueous solution, with a sterile aqueous solution being particularly preferred, but not required. However, the components of the kit may be provided as dried powder(s). When reagents and/or components are provided as a dry powder, the powder may be reconstituted by the addition of a suitable solvent or administered in a powdered form. It is envisioned that a solvent may also be provided in another container.
- A kit will also include instructions for employing the kit components as well the use of any other reagent not included in the kit. Instructions may include variations that can be implemented.
- It is contemplated that such reagents are embodiments of kits of the invention. Such kits, however, are not limited to the particular items identified above and may include any reagent used directly or indirectly in the detection of pathogenic microorganisms or administration of a composition described herein.
- The inventors have used the mouse as model for microbial infection of the lung. Not be held to any particular mechanism or theory, it is believed that the increase in resistance to infection is due to activation of local defenses or innate immunity. The effects of single and repetitive exposure of a subject to a composition of the invention have been determined and no obvious gross pathology, such as premature death, weight loss, or behavioral changes have been observed.
- One non-limiting benefit of the present invention is that it can be delivered and have effect quickly and easily. Also, the compositions can be produced economically in large quantities and easily stored, as well as easily transported by a person outside of a hospital setting. Typically, the administration of the inventive compositions and the methods of the invention result in at least some killing or inhibition of the invading pathogens even before cellular entry. In the case that some pathogens do enter cells in the lungs either by escaping extracellular killing or because the compositions are administered after pathogen exposure (preemptively) instead of before pathogen exposure (preventatively), it is contemplated that the compositions and related methods promote intracellular killing resulting from the enhanced or augmented local responses in the lungs.
- A composition described in this application would simplify countermeasure stockpiling and deployment. Also, the compositions and methods of the invention would eliminate the difficulty of rapidly identifying a specific pathogen during a bioweapon attack or other exposure or potential exposure event. In addition, the economic advantages of producing and purchasing an agent with applicability in multiple civilian and biodefense settings are significant. Augmenting local epithelial mechanisms is particularly attractive in subjects who often have neutropenia or impaired adaptive immune function, e.g., immune compromised subjects. The methods typically act locally rather than systemically, and provide broad effects against multiple pathogens. The effects are rapid and are attractive in a biodefense, medical, and epidemic setting. Augmentation of innate defense capabilities of the lungs in normal hosts would be valuable during influenza or emergent respiratory viral epidemics for which adaptive immune vaccines are not available. Similarly, protection of caregivers during an epidemic would facilitate care of the sick while limiting spread.
- Many people in the community live with chronically compromised defenses against infection, such as patients with diabetes and patients taking immunosuppressive drugs for autoimmune diseases or to prevent transplant rejection. These people will benefit from a treatment or an increased resistance to infection during epidemics or times where potential for exposure to viruses is elevated. Even more strikingly, cancer patients undergoing chemotherapy who have transient but severely compromised immune defenses might benefit from transient protection. Pneumonia is a common occurrence in these patients, and is the leading cause of infectious death.
- Resistance to infection can be stimulated to provide transient protection during prolonged periods of neutropenia. Other cancer patients, such as those receiving fludarabine or anti-lymphocyte antibodies, or those receiving calcineurin inhibitors and steroids after hematopoietic stem cell transplantation, have impaired adaptive immunity. These patients might also benefit from episodic stimulation of immunity to protect against epidemic viruses. Community outbreaks of seasonal respiratory viruses such as influenza, parainfluenza, and RSV can cause fatal pneumonia in these compromised patients, and infection with many of these viruses can be rapidly identified from nasal washings.
- Class A bioterrorism agents that can be transmitted by aerosol include smallpox virus, and hemorrhagic fever viruses. Class B and class C bioterrorism agents also can be effectively delivered by the respiratory route. These organisms comprise a variety of viral classes. Because of the potential difficulty in initially identifying a specific agent, the complexity of locally stockpiling adaptive immune vaccines and antibiotics directed at specific agents, and the remarkable virulence of organisms despite appropriate treatment, stimulation of innate defense capabilities and increasing the resistance of the lungs to infection can prevent or preempt or attenuate infection with an agent delivered by the respiratory route. Such an effect could have great public health value.
- There are numerous microbes that are considered pathogenic or potentially pathogenic under certain conditions (i.e., opportunistic pathogens/microbes). In certain aspects, the pathogenicity is determined relative to infection via the lungs. In certain aspects the microbe is a virus. There are numerous viruses and viral strains that are considered pathogenic or potentially pathogenic under certain conditions.
- Viruses can be placed in one of the seven following groups: Group I: double-stranded DNA viruses, Group II: single-stranded DNA viruses, Group III: double-stranded RNA viruses, Group IV: positive-sense single-stranded RNA viruses, Group V: negative-sense single-stranded RNA viruses, Group VI: reverse transcribing Diploid single-stranded RNA viruses, Group VII: reverse transcribing Circular double-stranded DNA viruses. Viruses include the family Adenoviridae, Arenaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Hepadnaviridae, Herpesviridae (Alphahelpesvirinae, Betaherpesvirinae, Gammaherpesvirinae), Nidovirales, Papillomaviridae, Paramyxoviridae (Paramyxovirinae, Pneumovirinae), Parvoviridae (Parvovirinae, Picornaviridae), Poxviridae (Chordopoxvirinae), Reoviridae, Retroviridae (Orthoretrovirinae), and/or Togaviridae. These viruses include, but are not limited to various strains of influenza, such as avian flu (e.g., H5N1). Particular virus from which a subject may be protected include, but is not limited to Cytomegalovirus, Respiratory syncytial virus and the like.
- Examples of pathogenic viruses include, but are not limited to Influenza A, H5N1, Marburg, Ebola, Dengue, Severe acute respiratory syndrome coronavirus, Yellow fever virus, Human respiratory syncytial virus, Vaccinia virus and the like.
- The pharmaceutical compositions disclosed herein may be administered via the respiratory system of a subject. In certain aspects the compositions are deposited in the lung by methods and devices known in the art. Therapeutic compositions described herein may be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions may also be prepared in glycerol, liquid polyethylene glycols and mixtures thereof, and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. The pharmaceutical forms suitable for inhalation include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile inhalable solutions or dispersions. In all cases the form is typically sterile and capable of inhalation directly or through some intermediary process or device. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- Some variation in dosage will necessarily occur depending on the condition of the subject being treated and the particular circumstances involving exposure or potential exposure. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, general safety, and purity standards as required by FDA Office of Biologics standards or other similar organizations.
- Sterile compositions are prepared by incorporating the active components in the required amount in the appropriate solvent with various other ingredients enumerated above, as required, followed by, for example, filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile compositions, some methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the component(s) and/or active ingredient(s) plus any additional desired ingredient from a previously sterile-filtered solution.
- Pulmonary/respiratory drug delivery can be implemented by different approaches, including liquid nebulizers, aerosol-based metered dose inhalers (MDI's), sprayers, dry powder dispersion devices and the like. Such methods and compositions are well known to those of skill in the art, as indicated by U.S. Pat. Nos. 6,797,258, 6,794,357, 6,737,045, and 6,488,953, all of which are incorporated by reference. According to the invention, at least one pharmaceutical composition can be delivered by any of a variety of inhalation or nasal devices known in the art for administration of a therapeutic agent by inhalation. Other devices suitable for directing pulmonary or nasal administration are also known in the art. Typically, for pulmonary administration, at least one pharmaceutical composition is delivered in a particle size effective for reaching the lower airways of the lung or sinuses. Some specific examples of commercially available inhalation devices suitable for the practice of this invention are Turbohaler™ (Astra), Rotahaler®) (Glaxo), Diskus® (Glaxo), Spiros™ inhaler (Dura), devices marketed by Inhale Therapeutics, AERx™ (Aradigm), the Ultravent® nebulizer (Mallinckrodt), the Acorn II® nebulizer (Marquest Medical Products), the Ventolin® metered dose inhaler (Glaxo), the Spinhaler® powder inhaler (Fisons), Aerotech II® or the like.
- All such inhalation devices can be used for the administration of a pharmaceutical composition in an aerosol. Such aerosols may comprise either solutions (both aqueous and non-aqueous) or solid particles. Metered dose inhalers typically use a propellant gas and require actuation during inspiration. See, e.g., WO 98/35888 and WO 94/16970. Dry powder inhalers use breath-actuation of a mixed powder. See U.S. Pat. Nos. 5,458,135 and 4,668,218; PCT publications WO 97/25086, WO 94/08552 and WO 94/06498; and European application EP 0237507, each of which is incorporated herein by reference in their entirety. Nebulizers produce aerosols from solutions, while metered dose inhalers, dry powder inhalers, and the like generate small particle aerosols. Suitable formulations for administration include, but are not limited to nasal spray or nasal drops, and may include aqueous or oily solutions of a composition described herein.
- A spray comprising a pharmaceutical composition described herein can be produced by forcing a suspension or solution of a composition through a nozzle under pressure. The nozzle size and configuration, the applied pressure, and the liquid feed rate can be chosen to achieve the desired output and particle size. An electrospray can be produced, for example, by an electric field in connection with a capillary or nozzle feed.
- A pharmaceutical composition described herein can be administered by a nebulizer such as a jet nebulizer or an ultrasonic nebulizer. Typically, in a jet nebulizer, a compressed air source is used to create a high-velocity air jet through an orifice. As the gas expands beyond the nozzle, a low-pressure region is created, which draws a composition through a capillary tube connected to a liquid reservoir. The liquid stream from the capillary tube is sheared into unstable filaments and droplets as it exits the tube, creating the aerosol. A range of configurations, flow rates, and baffle types can be employed to achieve the desired performance characteristics from a given jet nebulizer.
- In an ultrasonic nebulizer, high-frequency electrical energy is used to create vibrational, mechanical energy, typically employing a piezoelectric transducer. This energy is transmitted to the composition creating an aerosol.
- In a metered dose inhaler (MDI) or in other device that us propellant, a propellant, a composition, and any excipients or other additives are contained in a canister as a mixture with a compressed gas. Actuation of the metering valve releases the mixture as an aerosol. Pharmaceutical compositions for use with a metered-dose inhaler device will generally include a finely divided powder containing a composition of the invention as a suspension in a non-aqueous medium, for example, suspended in a propellant with the aid of a surfactant. The propellant can be any conventional material employed for this purpose such as chlorofluorocarbon, a hydrochlorofluorocarbon, a hydrofluorocarbon, or a hydrocarbon including trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethanol and 1,1,1,2-tetrafluoroethane, HFA-134a (hydrofluroalkane-134a), HFA-227 (hydrofluroalkane-227), or the like.
- As used herein, “carrier” includes any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- The phrase “pharmaceutically acceptable” refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a subject. The preparation of an aqueous composition that contains a polypeptide or peptide as an active ingredient is well understood in the art.
- The following examples as well as the figures are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples or figures represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
- Studies were designed and performed to compare the effect of timing and frequency of aerosolized PUL042 (Pam2CSK4+ODN-M362) and oral or aerosolized Tamiflu (Oseltamivir phosphate) as combination treatments to inhibit pulmonary influenza A/HK/8/68 (H3N2) virus (FluA) infection in mice. Survival and body weights were followed up to 21 days. Similar studies were also conducted using the antiviral ribavirin (RBV). (See
FIG. 1 ,FIG. 2 ,FIG. 3 , andFIG. 4 ). Similar studies have been conducted with coronavirus such as MERS-COV and SARS-COV (SeeFIG. 5 ,FIG. 6 , andFIG. 7 ). - Mice:
- NIH Swiss-Webster, female, 6-8 weeks of age, approximately 20 g. On
day 0hour 0 mice are divided into groups and infected. Treats start at +48 h (day 2). Groups included the following: - Group 1: Untreated, infected control, no treatments.
- Group 2: Water by gavage at +48, +72 and +96 h (no infection)
- Group 3: Tamiflu by gavage at 4 mg/kg/day given at +48, +72 and +96 h
- Group 4: Aerosol PUL042 at +48 h.
- Group 5: Aerosol PUL042 at +48 and +96 h.
- Group 6: Aerosol PUL042 plus Tamiflu by gavage at +48 h followed by Tamiflu by gavage at +72 and +96 h.
- Group 7: Aerosol PUL042 plus Tamiflu by gavage at +48 and +96 h with Tamiflu by gavage at +72 h.
- Group 8: Aerosol PUL042/Tamiflu combination at +48 h.
- Group 9: Aerosol PUL042/Tamiflu combination at +48 and +96 h with aerosol Tamiflu at +72 h.
- Group 10: aerosol Tamiflu at +48, +72 and +96 h
- PUL-042:
- 16 μM Pam2CSK4+4 μM ODN-M362 formulated and supplied by Pulmotect for each aerosol exposure. Five (5) mL for 15 min aerosol treatments are needed (total for 3 exposures=20 mL of PUL042).
- Virus:
- Influenza A/HK/8/68 (H3N2; Mouse Lung Pool 1-17-2012). Stock titer=7.64 log10 TCID50/mL. Dilute virus 1:500 in 0.05% gelatin-MEM [1:500=20.0 μL to 10 mL of 0.05% gelatin-MEM];
use 9 mL in reservoir of nebulizer. Titer is determined in pre- and post-nebulization reservoir solutions. Estimated virus/mouse when exposed to aerosol for 20 min with Aerotech II nebulizer flowing at 10 L/min air ˜105 TCID50. - Virus Infection:
- Half of the mice from each group is randomized into 1 of 2 treatment boxes and exposed to influenza virus aerosol for 20 min. Virus and drug exposures are generated from an Aerotech II nebulizer flowing at 10 L/min of room air generated from an Aridyne 2000 compressor.
- PUL042 Treatments:
- Mice are placed into a sealed plastic box. For PUL042 treatment, a selected group of mice is administered aerosol of PUL042 for 15 min. After exposure, mice are returned to their pre-assigned groups.
- Oral Tamiflu (Oseltamivir Phosphate) Gavage Treatments:
- Oseltamivir phosphate is obtained from Tamiflu capsules. For gavage, powder from 1 capsule (163 mg/capsule; 45% oseltamivir carboxylate equivalent) is suspended in 1 mL of sterile water, vortexed, and sonicated in a water bath at room temperature for 1-5 min. The solution is equivalent to 75 mg oseltamivir carboxlyate/mL. For each treatment, Tamiflu is diluted and administered by gavage (oral) using 100 μL of 0.8 mg Oseltamivir carboxylate/mL (dilute: 0.424 mL of 75 mg Osel/mL+39.576 mL H2O) for a dose of 4 mg/kg/day in 100 μL.
- Aerosols of PUL042 and/or Tamiflu:
- Oseltamivir phosphate is obtained from Tamiflu capsules. For each day's aerosol, powder from 5 or 6 capsules (167±1 mg/capsule; 45.0% oseltamivir carboxylate equivalent) is suspended in 5 or 6 mL of either PUL042 (combination) or in sterile water (Tamiflu-only) and vortexed vigorously. The suspension is centrifuged at full speed in the clinical centrifuge for 15 min and the supernatant fraction is removed and place in the nebulizer. The solution is equivalent to 75 mg oseltamivir carboxlyate/mL. The estimated deposition is 1.7 mg/kg in the lungs and 3.4 mg/kg in the stomach.
- Procedures:
- On
Day 0, all Groups are exposed to a 20 min aerosol calculated to deposit approximately 105 TCID50 of FluA/HK per mouse (approximately 85-100% mortality). Mice are returned to their appropriate groups and weighed. - On Day +2 (+48 h),
Group 1 is treated with oral water; 4, 5, 6, and 7 are treated with aerosolized PUL042;Groups 3, 6, and 7 are treated with Oral Tamiflu;Groups 8 and 9 are treated with a combination of PUL042 and Tamiflu;Groups Group 10 is treated with aerosolized Tamiflu. - On Day +3 (+72 h),
Group 1 is treated with oral water; 3, 6, and 7 are treated with oral Tamiflu; andGroups 9 and 10 are treated with aerosolized Tamiflu.Groups - On Day +4 (+96 h),
Group 1 is treated with oral water; 5 and 7 are treated with aerosolized PUL042;Groups 3, 6, and 7 are treated with Oral Tamiflu;Groups Group 9 is treated with combination PUL042 and Tamiflu; andGroup 10 is treated with aerosolized Tamiflu. - Mice in each group are observed daily for overt illness, morbidity, and mortality. Mice are weighed on
0, 4 through 11; and days 14 to 21, if necessary.Days -
-
Duration Oral Dose Drug FluA Aerosol Aerosol (mg/kg/day) Treatment Challenge End- Group1 Dose: (min) q.d. (day) Day 0points 1 0 None 0 None Yes Body 2 214 + 266 ng/kg/ 15 — +2, 3, 4 No weights; 3 day2 15 4 +2, 3, 4 Yes Survival 4 15 — +2 Yes 5 15 — +2, 4 Yes 6 15 4 +2, 3, 4 Yes 7 15 4 +2, 3, 4 Yes 8 214 + 266 ng/kg/ 15 — +2 Yes 9 day2; 15 — +2, 3, 4 Yes 10 L: 1.7 15 — +2, 3, 4 Yes S: 3.4 mg/kg/d3 1Mice, 15/group; 2Estimated deposited dosage of Pam2CSK4 + ODN-M362, 16 μM Pam2 + 4 μM ODN; 3Estimated deposited dosage (mg/kg/day) of aerosolized Oseltamivir (75 mg/mL) in lungs (L) and stomach (S). Abbreviations: Rx = treatment; Combo, combination PUL042 aerosol + oral or aerosolized Tamiflu; FluA = influenza A/HK/8/68 (H3N2) virus. -
-
Total Rx Group Day 0 Day 1Day 2Day 3Day 4 (days) 1 Virus — — — — None 2 Virus — Water-g Water-g Water- g 3 3 Virus — O-g O-g O-g 3 4 Virus — P — — 1 5 Virus — P — P 2 6 Virus — P + O-g O-g O-g 3 7 Virus — P + O-g O-g P + O-g 3 8 Virus — P + O-aer — — 1 9 Virus — P + O-aer O-aer P + O- aer 3 10 Virus — O-aer O-aer O-aer 3 P + O-g or P + O-aer = Combo Rx, PUL042 aerosol + Oral or aerosolized Tamiflu; O-g = Tamiflu Oral only; O-aer, Tamiflu Aerosol only. Abbreviations: H, water; O, Oseltamivir as Tamiflu; P, PUL042; g, gavage; a, aerosol; D, day of treatment - RSV is a major cause of pneumonia and bronchiolitis in infants, the elderly, and immunocompromised transplant patients, and is a major cause of respiratory infection leading to asthma exacerbations. Further, an immune-suppressed model has been described in which cotton rats (CR) treated with cyclophosphamide exhibit characteristics of persistent RSV infection. These conditions are physiologically relevant to studies targeting immune-suppressed populations at risk for RSV infections. In addition, more than 200 CR genes have been cloned encoding cytokines, chemokines, and lymphocyte cell surface markers. Analysis of these genes can inform mechanisms of viral pathogenesis and clearance in the presence or absence of therapeutic treatments.
- Using aerosolized forms of both drugs given alone or in combination, the comparative effects of a single dose versus two doses, and of treatment begun early after infection, or relatively late in the course of infection is evaluated.
- The studies use an established animal model for RSV infection, the cotton rat, to evaluate the ability of addition of PUL-042 to ribavirin treatment to inhibit viral infection and replication in the nasopharyngeal compartment and compare this to the activity in the lung, which is more representative of later stage or more severe viral disease.
- Cotton rats are the optimal model for these studies because they are 100-fold more permissive than mice to RSV infections in both the upper and lower airways, and infected animals develop pathology similar to that seen in humans. The predictive quality of the CR model for therapeutics in treating RSV infections advanced clinical trials of RSVIg, Respigam and palivizumab, and an effective protocol for Ribavirin treatment is well established in the cotton rat.
- RSV Inoculation and PUL-042 Drug Delivery:
- Sigmoden hispidis cotton rats (CR) are ˜75-150 g body weight as determined by the age at start of the experiment. Animal body weight and sex distribution is as similar as possible across all groups at the start. Body weights are recorded at end of the experiment. RSV/A/Tracy, 1.22×105 PFU is given to CR lightly anesthesized with isoflurane. For PUL-042 or ribavirin treatment, CR are placed into a sealed plastic box. PUL-042 and ribavirin exposures are generated from a Pari LC Sprint nebulizer flowing at 10 L/min of room air generated from a compressor.
- Lung and Nasal Tissue Homogenates and Histopathology:
- Following CO2 euthanasia, for the same animal, one lung lobe is clamped off for organ homogenate and the remaining lobes are perfused with 10% neutral buffered formalin, and inflated for paraffin embedding. To evaluate the upper airways, one nasal turbinate is prepared for histopathology and the other is used to prepare tissue homogenates. Plaque assays are performed on the lung and nasal homogenates. Total RNA is extracted from lung and nasopharyngeal tissues and the kinetics of RSV genome replication is measured by RT-qPCR. This total lung RNA may also be used to evaluate expression of cotton rat genes associated with pathogenesis of RSV disease.
- Histopathology:
- Intact lung tissue from the formalin-fixed lobes is prepared for histology. Sections are stained with hematoxylin-eosin and coded for blinded scoring of histopathology by veterinary pathologists. Sections are scored from 0 to 4 based on the extent and severity of alveolitis, alveolar eosinophilia, bronchiolitis, bronchiolar eosinophilia, peribronchiolar mononuclear inflammatory cell infiltrates, and perivascular mononuclear inflammatory cell infiltrates.
- In these experiments, PUL-042 and ribavirin are at the concentrations (nebulized in 5 mL water as ribavirin at 100 mg/mL; PUL-042 at 17 μg/mL ODN+11.6 μg/mL PAM2) applied in prior mouse influenza A experiments. All experiments are repeated once for confirmation of results.
- Evaluate the Optimal Start of Treatment and Interval of Treatment.
- In prior experience with PUL-042 combined with ribavirin against influenza A, it was found that two sequential combination treatments on
1 and 2 post-infection resulted in a 92% increased survival rate, whereas ribavirin alone on those two days provided only minimal improvement in survival rate, at 15%, compared to 0% of untreated. The greatest efficacy of PUL-042 as a monotherapy was found when the drug was administered ondays Day 1 post-infection (approximately 40% survival) with the benefit dropping rapidly if treatment was further delayed. - Dose Schedules of PUL-042=/− Ribavirin in RSV-infected cotton rats.
-
Viral Titer Group RSV PUL-042 RBV Combination Evaluation Control 1 Infected UT UT UT D 4 Control 2Infected UT UT UT D 5 Control 3Infected D −1 UT UT D 4 Control 4Infected D 1 + D 2UT UT D 4 Control 5Infected UT D 1 + D 2UT D 4 Treatment 1Infected UT UT D 1 + D 2 D 4Treatment 2Infected UT UT D 1 + D 3 D 4Treatment 3Infected UT UT D 1 + D 4 D 5Treatment 4Infected UT UT D 2 + D 3 D 4Treatment 5Infected UT UT D 2 + D 4 D 5UT = Untreated; D −1 = 24 h before infection; D 1 =Day 1 post-infection - The RSV infection in CR is not lethal. Demonstration of an effect of PUL-042 and ribavirin for RSV requires measurement of viral load during the course of infection and clearance, and evaluation of histopathology during the course of RSV disease in the same animals. The effect of two doses of PUL-042 and ribavirin initiated on
day 1 post-infection, followed by a second treatment onDay 2, orDay 3, orDay 4 and those initiated onday 2 post-infection, followed by treatment onDay 3 orDay 4 is evaluated. For treatment schedules ending beforeDay 4, animals are euthanized for analysis onDay 4. In addition to untreated controls for evaluation on 4 and 5, ribavirin is evaluated alone administered ondays Day 1 andDay 2 with evaluation ofDay 4 titers. Because the day of maximal proliferation isDay 4, and RSV is cleared in these animals byDay 7, any treatment occurring afterDay 4 may not be distinguishable from the result in untreated animals. - Simulation of Treatment in an Immune-Suppressed Patient Population.
- The optimal time course and dosing schedule can be repeated in cotton rats undergoing cyclophosphamide (CY) treatment and the effect of PUL-042 alone or combined with ribavirin is measured. As previously described, intraperitoneal dosing of CY maintains a state of leukopenia in cotton rats without affecting mortality. RSV infection in CY-treated CR is persistent as shown by prolonged high titers in lung tissue at 12 days post-infection. CR are given CY intraperitoneal (i.p.) injections of 50 mg/kg three times per week for 3 weeks before RSV infection, and continues until the end of the time course for each animal. Immunosuppression is confirmed by complete blood counts (CBC) in blood collected at necropsy by cardiac puncture from CY-treated and untreated control animals. In addition to the
day 4 time point for measuring virus titers, titers are measured in the CY-immune suppressed animals atday 10 to confirm persistent RSV infection and to determine what effect PUL-042 has on virus replication later in infection. Serum cytokines levels are also measured in the blood samples.
Claims (18)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/394,097 US20190314497A1 (en) | 2014-09-19 | 2019-04-25 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
| US17/399,821 US20220096627A1 (en) | 2014-09-19 | 2021-08-11 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
| US18/194,864 US20240358824A1 (en) | 2014-09-19 | 2023-04-03 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462053013P | 2014-09-19 | 2014-09-19 | |
| US201462053610P | 2014-09-22 | 2014-09-22 | |
| US14/860,205 US10286065B2 (en) | 2014-09-19 | 2015-09-21 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
| US16/394,097 US20190314497A1 (en) | 2014-09-19 | 2019-04-25 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/860,205 Continuation US10286065B2 (en) | 2014-09-19 | 2015-09-21 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/399,821 Continuation US20220096627A1 (en) | 2014-09-19 | 2021-08-11 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190314497A1 true US20190314497A1 (en) | 2019-10-17 |
Family
ID=55524757
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/860,205 Active US10286065B2 (en) | 2014-09-19 | 2015-09-21 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
| US16/394,097 Abandoned US20190314497A1 (en) | 2014-09-19 | 2019-04-25 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
| US17/399,821 Abandoned US20220096627A1 (en) | 2014-09-19 | 2021-08-11 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
| US18/194,864 Abandoned US20240358824A1 (en) | 2014-09-19 | 2023-04-03 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/860,205 Active US10286065B2 (en) | 2014-09-19 | 2015-09-21 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/399,821 Abandoned US20220096627A1 (en) | 2014-09-19 | 2021-08-11 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
| US18/194,864 Abandoned US20240358824A1 (en) | 2014-09-19 | 2023-04-03 | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
Country Status (2)
| Country | Link |
|---|---|
| US (4) | US10286065B2 (en) |
| WO (1) | WO2016044839A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022026170A1 (en) * | 2020-07-31 | 2022-02-03 | Signpath Pharma, Inc. | Suppression of cytokine release and cytokine storm |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11364304B2 (en) | 2016-08-25 | 2022-06-21 | Northwestern University | Crosslinked micellar spherical nucleic acids |
| BR112019009469A2 (en) * | 2016-11-09 | 2019-07-30 | Pulmotect Inc | methods and compositions for adaptive immune modulation |
| CA3085377A1 (en) | 2017-12-21 | 2019-06-27 | Ena Therapeutics Pty Ltd | Optimised compounds |
| WO2020210373A1 (en) * | 2019-04-09 | 2020-10-15 | Tremeau Pharmaceuticals, Inc. | Treatment of viral hemorrhagic fevers with etoricoxib |
| US20220388950A1 (en) | 2019-06-26 | 2022-12-08 | Axelia Oncology Pty Ltd | Novel molecules |
| CN111518163B (en) * | 2020-04-08 | 2022-04-12 | 大连百奥泰科技有限公司 | Application of a class of lipopeptide compounds in the fight against novel coronavirus |
| US20230158259A1 (en) * | 2020-04-24 | 2023-05-25 | Topelia Aust Limited | Products of manufacture and methods for treating, ameliorating or preventing microbial infections |
| AU2021278377A1 (en) * | 2020-05-26 | 2022-12-15 | Ena Respiratory Pty Ltd | Treatment of coronavirus |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120082700A1 (en) * | 2009-03-25 | 2012-04-05 | Burton Dickey | Compositions for stimulation of mammalian innate immune resistance to pathogens |
Family Cites Families (195)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR7461M (en) | 1968-06-19 | 1970-01-05 | ||
| EP0014815A3 (en) | 1978-12-20 | 1980-10-29 | Ciba-Geigy Ag | Peptide derivatives, process for their preparation and intermediates, and pharmaceutical compositions containing one of these compounds |
| FI75578C (en) | 1979-07-25 | 1988-07-11 | Ciba Geigy Ag | Analogous procedure for the preparation of pharmacologically acting lipophilic a phosphatidylmuramyl peptides. |
| US4406889A (en) | 1980-02-15 | 1983-09-27 | Ciba-Geigy Corporation | Derivatives of aldohexoses, intermediates, processes for their manufacture, preparations containing such compounds, and their use |
| GR78246B (en) | 1981-01-23 | 1984-09-26 | Ciba Geigy Ag | |
| ATE67769T1 (en) | 1983-01-25 | 1991-10-15 | Ciba Geigy Ag | NEW PEPTIDE DERIVATIVES. |
| IL73534A (en) | 1983-11-18 | 1990-12-23 | Riker Laboratories Inc | 1h-imidazo(4,5-c)quinoline-4-amines,their preparation and pharmaceutical compositions containing certain such compounds |
| SE448277B (en) | 1985-04-12 | 1987-02-09 | Draco Ab | INDICATOR DEVICE WITH A DOSAGE DEVICE FOR MEDICINAL PRODUCTS |
| US6024964A (en) | 1985-06-24 | 2000-02-15 | Hoechst Aktiengesellschaft | Membrane anchor/active compound conjugate, its preparation and its uses |
| US5238944A (en) | 1988-12-15 | 1993-08-24 | Riker Laboratories, Inc. | Topical formulations and transdermal delivery systems containing 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine |
| US4929624A (en) | 1989-03-23 | 1990-05-29 | Minnesota Mining And Manufacturing Company | Olefinic 1H-imidazo(4,5-c)quinolin-4-amines |
| US5389640A (en) | 1991-03-01 | 1995-02-14 | Minnesota Mining And Manufacturing Company | 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
| DE4119856A1 (en) | 1991-06-17 | 1992-12-24 | Hoechst Ag | N-ACYL-S- (2-HYDROXYALKYL) -CYSTEINS, THE PRODUCTION AND USE THEREOF AS INTERMEDIATE PRODUCTS FOR THE PRODUCTION OF SYNTHETIC IMMUNE ADJUVANTS AND SYNTHETIC VACCINANTS |
| DK0592540T3 (en) | 1991-07-02 | 2000-06-26 | Inhale Inc | Method and apparatus for dispensing aerosolized drugs |
| US5268376A (en) | 1991-09-04 | 1993-12-07 | Minnesota Mining And Manufacturing Company | 1-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
| US5266575A (en) | 1991-11-06 | 1993-11-30 | Minnesota Mining And Manufacturing Company | 2-ethyl 1H-imidazo[4,5-ciquinolin-4-amines |
| US6582728B1 (en) | 1992-07-08 | 2003-06-24 | Inhale Therapeutic Systems, Inc. | Spray drying of macromolecules to produce inhaleable dry powders |
| AU4829593A (en) | 1992-09-23 | 1994-04-12 | Fisons Plc | Inhalation device |
| SK51695A3 (en) | 1992-10-19 | 1995-11-08 | Dura Pharma Inc | Dry powder medicament inhaler |
| DE69414369T2 (en) | 1993-01-19 | 1999-05-27 | Glaxo Group Ltd., Greenford, Middlesex | AEROSOL DISPENSER AND METHOD FOR THE PRODUCTION THEREOF |
| US5395937A (en) | 1993-01-29 | 1995-03-07 | Minnesota Mining And Manufacturing Company | Process for preparing quinoline amines |
| EP0622375A1 (en) | 1993-02-20 | 1994-11-02 | Hoechst Aktiengesellschaft | Chrysospermines, peptide drugs from Apiocrea chrysosperma having pharmacological activity, process for their production, and their use |
| US6288042B1 (en) | 1993-04-23 | 2001-09-11 | Aronex Pharmaceuticals, Inc. | Anti-viral guanosine-rich tetrad forming oligonucleotides |
| US6794357B1 (en) | 1993-06-24 | 2004-09-21 | Astrazeneca Ab | Compositions for inhalation |
| DK0708772T3 (en) | 1993-07-15 | 2000-09-18 | Minnesota Mining & Mfg | Imidazo [4,5-c] pyridin-4-amines |
| US5352784A (en) | 1993-07-15 | 1994-10-04 | Minnesota Mining And Manufacturing Company | Fused cycloalkylimidazopyridines |
| DK0741741T3 (en) | 1994-01-26 | 2002-12-23 | Novartis Ag | Modified oligonucleotides |
| CA2183577C (en) | 1994-03-07 | 2007-10-30 | John S. Patton | Methods and compositions for pulmonary delivery of insulin |
| US6727230B1 (en) | 1994-03-25 | 2004-04-27 | Coley Pharmaceutical Group, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
| US6429199B1 (en) | 1994-07-15 | 2002-08-06 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
| US20030026782A1 (en) | 1995-02-07 | 2003-02-06 | Arthur M. Krieg | Immunomodulatory oligonucleotides |
| US6207646B1 (en) | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
| US6239116B1 (en) | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
| AP9801285A0 (en) | 1996-01-03 | 1998-09-30 | Glaxo Group Ltd | Inhalation device. |
| US6294177B1 (en) | 1996-09-11 | 2001-09-25 | Nabi | Staphylococcus aureus antigen-containing whole cell vaccine |
| DE19642014B4 (en) | 1996-10-11 | 2005-08-04 | Pactec Verpackungsmaschinen-Fabrik Theegarten Gmbh & Co. Kg | Device for packing small-sized articles in the fold wrapping |
| KR100518903B1 (en) | 1996-10-25 | 2005-10-06 | 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 | Immune response modifier compounds for treatment of the th2 mediated and related diseases |
| EP0855184A1 (en) | 1997-01-23 | 1998-07-29 | Grayson B. Dr. Lipford | Pharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination |
| US5921447A (en) | 1997-02-13 | 1999-07-13 | Glaxo Wellcome Inc. | Flow-through metered aerosol dispensing apparatus and method of use thereof |
| JP2001513776A (en) | 1997-02-28 | 2001-09-04 | ユニバーシティ オブ アイオワ リサーチ ファウンデーション | Use of nucleic acids containing unmethylated CpG dinucleotides in the treatment of LPS-related disorders |
| US6406705B1 (en) | 1997-03-10 | 2002-06-18 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
| EP1002090A2 (en) | 1997-05-06 | 2000-05-24 | Human Genome Sciences, Inc. | $i(ENTEROCOCCUS FAECALIS) POLYNUCLEOTIDES AND POLYPEPTIDES |
| WO1998052581A1 (en) | 1997-05-20 | 1998-11-26 | Ottawa Civic Hospital Loeb Research Institute | Vectors and methods for immunization or therapeutic protocols |
| AU7821398A (en) * | 1997-06-06 | 1998-12-21 | Baylor College Of Medicine | The mast cell secretory machine as a target for anti-allergy drug development |
| DK1003850T3 (en) | 1997-06-06 | 2009-09-07 | Univ California | Inhibitors of DNA immunostimulatory sequence activity |
| US6517839B1 (en) | 1997-07-18 | 2003-02-11 | The Regents Of The University Of California | Methods for inducing interleukin-12 and a type1/Th1 T-cell response |
| CA2323929C (en) | 1998-04-03 | 2004-03-09 | University Of Iowa Research Foundation | Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines |
| WO1999058118A2 (en) | 1998-05-14 | 1999-11-18 | Cpg Immunopharmaceuticals Gmbh | METHODS FOR REGULATING HEMATOPOIESIS USING CpG-OLIGONUCLEOTIDES |
| US6110929A (en) | 1998-07-28 | 2000-08-29 | 3M Innovative Properties Company | Oxazolo, thiazolo and selenazolo [4,5-c]-quinolin-4-amines and analogs thereof |
| GB9826192D0 (en) | 1998-12-01 | 1999-01-20 | Controlled Theraputics Scotlan | Oral transmucosal delivery |
| GB9905538D0 (en) | 1999-03-10 | 1999-05-05 | Glaxo Group Ltd | A device |
| US6977245B2 (en) | 1999-04-12 | 2005-12-20 | The United States Of America As Represented By The Department Of Health And Human Services | Oligodeoxynucleotide and its use to induce an immune response |
| US6331539B1 (en) | 1999-06-10 | 2001-12-18 | 3M Innovative Properties Company | Sulfonamide and sulfamide substituted imidazoquinolines |
| US6451810B1 (en) | 1999-06-10 | 2002-09-17 | 3M Innovative Properties Company | Amide substituted imidazoquinolines |
| US6756382B2 (en) | 1999-06-10 | 2004-06-29 | 3M Innovative Properties Company | Amide substituted imidazoquinolines |
| EP1221955B9 (en) | 1999-09-25 | 2005-11-30 | University Of Iowa Research Foundation | Immunostimulatory nucleic acids |
| US6949520B1 (en) | 1999-09-27 | 2005-09-27 | Coley Pharmaceutical Group, Inc. | Methods related to immunostimulatory nucleic acid-induced interferon |
| EP1322655B1 (en) | 2000-01-14 | 2007-11-14 | The Government of the United States of America, as represented by the Secretary of the Department of Health and Human Services | Oligodeoxynucleotide and its use to induce an immune response |
| EP1252307B1 (en) | 2000-01-26 | 2008-01-02 | Idera Pharmaceuticals, Inc. | MODULATION OF OLIGONUCLEOTIDE CpG-MEDIATED IMMUNE STIMULATION BY POSITIONAL MODIFICATION OF NUCLEOSIDES |
| AU2001231245A1 (en) | 2000-01-31 | 2001-08-07 | The Regents Of The University Of California | Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen |
| US7585847B2 (en) | 2000-02-03 | 2009-09-08 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids for the treatment of asthma and allergy |
| US7157437B2 (en) | 2000-03-10 | 2007-01-02 | Dynavax Technologies Corporation | Methods of ameliorating symptoms of herpes infection using immunomodulatory polynucleotide sequences |
| US20010046967A1 (en) | 2000-03-10 | 2001-11-29 | Gary Van Nest | Methods of preventing and treating respiratory viral infection using immunomodulatory polynucleotide |
| US6534062B2 (en) | 2000-03-28 | 2003-03-18 | The Regents Of The University Of California | Methods for increasing a cytotoxic T lymphocyte response in vivo |
| ES2238044T3 (en) | 2000-05-01 | 2005-08-16 | Hybridon, Inc. | MODULATION OF IMMUNOLOGICAL STIMULATION MEDIATED BY THE CPG OLIGONUCLEOTIDE BY POSITIONAL MODIFICATION OF NUCLEOSIDS. |
| JP2003535907A (en) | 2000-06-22 | 2003-12-02 | ユニバーシティ オブ アイオワ リサーチ ファウンデーション | Method for promoting antibody-induced cell lysis and treating cancer |
| US6943240B2 (en) | 2000-09-15 | 2005-09-13 | Coley Pharmaceuticals Gmbh | Nucleic acids for high throughput screening of CpG-based immuno-agonist/antagonist |
| US6677347B2 (en) | 2000-12-08 | 2004-01-13 | 3M Innovative Properties Company | Sulfonamido ether substituted imidazoquinolines |
| US6667312B2 (en) | 2000-12-08 | 2003-12-23 | 3M Innovative Properties Company | Thioether substituted imidazoquinolines |
| WO2002069369A2 (en) | 2000-12-08 | 2002-09-06 | Coley Pharmaceutical Gmbh | Cpg-like nucleic acids and methods of use thereof |
| UA74852C2 (en) | 2000-12-08 | 2006-02-15 | 3M Innovative Properties Co | Urea-substituted imidazoquinoline ethers |
| US20050287612A1 (en) | 2000-12-29 | 2005-12-29 | John Bertin | CARD-4 molecules and uses thereof |
| US7105495B2 (en) | 2001-04-30 | 2006-09-12 | Idera Pharmaceuticals, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
| US7176296B2 (en) | 2001-04-30 | 2007-02-13 | Idera Pharmaceuticals, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
| US7785610B2 (en) | 2001-06-21 | 2010-08-31 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same—III |
| WO2003000922A2 (en) | 2001-06-21 | 2003-01-03 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same |
| AU2002360243A1 (en) | 2001-07-26 | 2003-05-06 | Tanox, Inc. | Agents that activate or inhibit toll-like receptor 9 |
| DE60229422D1 (en) | 2001-08-17 | 2008-11-27 | Coley Pharm Gmbh | COMBINATION MOTIF IMMUNOSTIMULATING OLIGONUCLEOTIDES WITH IMPROVED EFFECT |
| US7514414B2 (en) | 2001-09-24 | 2009-04-07 | The United States Of America As Represented By The Department Of Health And Human Services | Suppressors of CpG oligonucleotides and methods of use |
| CA2462203A1 (en) | 2001-10-12 | 2003-11-20 | University Of Iowa Research Foundation | Methods and products for enhancing immune responses using imidazoquinoline compounds |
| US7276489B2 (en) | 2002-10-24 | 2007-10-02 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
| US8466116B2 (en) | 2001-12-20 | 2013-06-18 | The Unites States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of CpG oligodeoxynucleotides to induce epithelial cell growth |
| CA2476405C (en) | 2002-02-13 | 2011-10-11 | Immunology Laboratories, Inc. | Compositions and methods for treatment of microbial infections |
| NZ573064A (en) | 2002-04-04 | 2011-02-25 | Coley Pharm Gmbh | Immunostimulatory G,U-containing oligoribonucleotides |
| EP1497424A1 (en) | 2002-04-22 | 2005-01-19 | Bioniche Life Sciences Inc. | Oligonucleotide compositions and their use for the modulation of immune responses |
| KR100456681B1 (en) | 2002-05-22 | 2004-11-10 | 주식회사 대웅 | Immnune-stimulating and controlling Composition comprising bacterial chromosomal DNA fragments and detoxified lipopolysaccharides |
| CA2388049A1 (en) | 2002-05-30 | 2003-11-30 | Immunotech S.A. | Immunostimulatory oligonucleotides and uses thereof |
| WO2003103586A2 (en) | 2002-06-05 | 2003-12-18 | Coley Pharmaceutical Group, Inc. | Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory cpg nucleic acids |
| US7605138B2 (en) | 2002-07-03 | 2009-10-20 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| US7569553B2 (en) | 2002-07-03 | 2009-08-04 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| US7576066B2 (en) | 2002-07-03 | 2009-08-18 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| US20040053880A1 (en) | 2002-07-03 | 2004-03-18 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| US7807803B2 (en) | 2002-07-03 | 2010-10-05 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| KR20050052467A (en) | 2002-08-12 | 2005-06-02 | 다이나박스 테크놀로지 코퍼레이션 | Immunomodulatory compositions, methods of making, and methods of use thereof |
| KR101088615B1 (en) | 2002-08-15 | 2011-11-30 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Immunostimulatory Compositions and Methods to Stimulate Immune Responses |
| AR040996A1 (en) | 2002-08-19 | 2005-04-27 | Coley Pharm Group Inc | IMMUNE STIMULATING NUCLEIC ACIDS |
| WO2004024919A1 (en) | 2002-09-13 | 2004-03-25 | Replicor, Inc. | Non-sequence complementary antiviral oligonucleotides |
| DK2241325T3 (en) | 2002-10-29 | 2012-04-10 | Coley Pharm Group Inc | Use of CPG oligonucleotides to treat Hepatitis Cvirus infection |
| AU2003287332A1 (en) | 2002-11-01 | 2004-06-07 | The Regents Of The University Of California | Methods of treating pulmonary fibrotic disorders |
| US7491395B2 (en) | 2002-11-20 | 2009-02-17 | Bestewil Holding B.V. | Compositions comprising antigen-complexes, method of making same as well as methods of using the antigen-complexes for vaccination |
| ES2350576T3 (en) | 2002-11-21 | 2011-01-25 | Bayhill Therapeutics, Inc. | METHODS AND COMPOSITIONS OF IMMUNOMODULATING NUCLEIC ACIDS TO PREVENT AND TREAT DISEASES. |
| WO2004053104A2 (en) | 2002-12-11 | 2004-06-24 | Coley Pharmaceutical Group, Inc. | 5’ cpg nucleic acids and methods of use |
| MXPA05006740A (en) | 2002-12-20 | 2005-10-05 | 3M Innovative Properties Co | Aryl / hetaryl substituted imidazoquinolines. |
| US8158768B2 (en) | 2002-12-23 | 2012-04-17 | Dynavax Technologies Corporation | Immunostimulatory sequence oligonucleotides and methods of using the same |
| EP2572715A1 (en) | 2002-12-30 | 2013-03-27 | 3M Innovative Properties Company | Immunostimulatory Combinations |
| AU2004209985B2 (en) | 2003-02-03 | 2008-09-18 | Cerebus Biologicals, Inc. | Methods for treating, preventing and detecting Helicobacter infection |
| US7375180B2 (en) | 2003-02-13 | 2008-05-20 | 3M Innovative Properties Company | Methods and compositions related to IRM compounds and Toll-like receptor 8 |
| US7485432B2 (en) | 2003-02-27 | 2009-02-03 | 3M Innovative Properties Company | Selective modulation of TLR-mediated biological activity |
| US20040235770A1 (en) | 2003-04-02 | 2004-11-25 | Coley Pharmaceutical Group, Ltd. | Immunostimulatory nucleic acid oil-in-water formulations and related methods of use |
| US20050107297A1 (en) | 2003-05-12 | 2005-05-19 | Holmes Christopher P. | Novel poly(ethylene glycol) modified compounds and uses thereof |
| AR044466A1 (en) | 2003-06-06 | 2005-09-14 | 3M Innovative Properties Co | PROCESS FOR THE PREPARATION OF IMIDAZO [4,5-C] PIRIDIN-4-AMINAS |
| AU2004252505B2 (en) | 2003-06-11 | 2010-10-28 | Idera Pharmaceuticals, Inc. | Stabilized immunomodulatory oligonucleotides |
| KR20060016817A (en) | 2003-06-20 | 2006-02-22 | 콜리 파마슈티칼 게엠베하 | Small molecule toll-like receptor (TLL) antagonists |
| US20050013812A1 (en) | 2003-07-14 | 2005-01-20 | Dow Steven W. | Vaccines using pattern recognition receptor-ligand:lipid complexes |
| EP2363141A1 (en) | 2003-07-15 | 2011-09-07 | Idera Pharmaceuticals, Inc. | Compsition comprising two oligonucleotides linked directly at their 3'ends wherein at leat one oligonucleotide has an accessible 5'end and the compound further comprising IL-2 used for synergistically stimulating an immune response in a patient. |
| EP1650218B1 (en) | 2003-07-25 | 2011-03-23 | Changchun Huapu Biotechnology Co., Ltd. | The artificial cpg single strand deoxidation oligonucleotide and its antiviral uses |
| JP2007502288A (en) | 2003-08-12 | 2007-02-08 | スリーエム イノベイティブ プロパティズ カンパニー | Oxime-substituted imidazo-containing compounds |
| CA2537763A1 (en) | 2003-09-05 | 2005-03-17 | 3M Innovative Properties Company | Treatment for cd5+ b cell lymphoma |
| US20050163764A1 (en) | 2003-09-22 | 2005-07-28 | Yale University | Treatment with agonists of toll-like receptors |
| CA2536139A1 (en) | 2003-09-25 | 2005-04-07 | Coley Pharmaceutical Group, Inc. | Nucleic acid-lipophilic conjugates |
| US7544697B2 (en) | 2003-10-03 | 2009-06-09 | Coley Pharmaceutical Group, Inc. | Pyrazolopyridines and analogs thereof |
| US20090075980A1 (en) | 2003-10-03 | 2009-03-19 | Coley Pharmaceutical Group, Inc. | Pyrazolopyridines and Analogs Thereof |
| ATE472336T1 (en) | 2003-10-22 | 2010-07-15 | Id Biomedical Corp Quebec | COMPOSITIONS AND METHODS FOR ACTIVATE YOUR OWN AND ALLERGIC IMMUNITY |
| US7202234B2 (en) | 2003-10-24 | 2007-04-10 | Eisai Co., Ltd. | Compounds and methods for treating Toll-like receptor 2-related diseases and conditions |
| US20050215501A1 (en) | 2003-10-24 | 2005-09-29 | Coley Pharmaceutical Group, Inc. | Methods and products for enhancing epitope spreading |
| EP1728863A3 (en) | 2003-10-30 | 2006-12-20 | Coley Pharmaceutical GmbH | C-class oligonucleotide analogs with enhanced immunostimulatory potency |
| US20050239733A1 (en) | 2003-10-31 | 2005-10-27 | Coley Pharmaceutical Gmbh | Sequence requirements for inhibitory oligonucleotides |
| US20050100983A1 (en) | 2003-11-06 | 2005-05-12 | Coley Pharmaceutical Gmbh | Cell-free methods for identifying compounds that affect toll-like receptor 9 (TLR9) signaling |
| JP2007511527A (en) | 2003-11-14 | 2007-05-10 | スリーエム イノベイティブ プロパティズ カンパニー | Oxime-substituted imidazo ring compounds |
| CA2545825A1 (en) | 2003-11-14 | 2005-06-02 | 3M Innovative Properties Company | Hydroxylamine substituted imidazo ring compounds |
| CA2549173A1 (en) | 2003-12-08 | 2005-07-07 | Hybridon, Inc. | Modulation of immunostimulatory properties by small oligonucleotide-based compounds |
| US20050244505A1 (en) | 2003-12-11 | 2005-11-03 | Higbee Russell G | Immunotherapy compositions, method of making and method of use thereof |
| US20050175630A1 (en) | 2003-12-23 | 2005-08-11 | Eyal Raz | Immunogenic compositions and methods of use thereof |
| EP1550458A1 (en) | 2003-12-23 | 2005-07-06 | Vectron Therapeutics AG | Synergistic liposomal adjuvants |
| EP1699398A4 (en) | 2003-12-30 | 2007-10-17 | 3M Innovative Properties Co | Enhancement of immune responses |
| KR100558851B1 (en) | 2004-01-08 | 2006-03-10 | 학교법인연세대학교 | CJ oligodeoxynucleotide variants with increased immunomodulatory capacity |
| US20050256073A1 (en) | 2004-02-19 | 2005-11-17 | Coley Pharmaceutical Group, Inc. | Immunostimulatory viral RNA oligonucleotides |
| JP2007523173A (en) | 2004-02-20 | 2007-08-16 | イデラ ファーマシューティカルズ インコーポレイテッド | Strong mucosal immune response induced by modified immunomodulatory oligonucleotides |
| WO2005111057A2 (en) | 2004-04-02 | 2005-11-24 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids for inducing il-10 responses |
| EP1753453A2 (en) | 2004-06-08 | 2007-02-21 | Coley Pharmaceutical GmbH | Abasic oligonucleotide as carrier platform for antigen and immunostimulatory agonist and antagonist |
| US7498425B2 (en) | 2004-06-15 | 2009-03-03 | Idera Pharmaceuticals, Inc. | Immunostimulatory oligonucleotide multimers |
| ES2645158T3 (en) | 2004-06-15 | 2017-12-04 | Idera Pharmaceuticals, Inc. | Immunostimulatory oligonucleotide multimers |
| US7425548B2 (en) | 2004-07-09 | 2008-09-16 | Variety Chidren's Hospital | Materials and methods for immune system stimulation |
| CA2572427A1 (en) | 2004-07-18 | 2006-01-18 | Heather L. Davis | Immuno stimulating complex and oligonucleotide formulations for inducing enhanced interferon-gamma responses |
| WO2006134423A2 (en) | 2004-07-18 | 2006-12-21 | Coley Pharmaceutical Group, Ltd. | Methods and compositions for inducing innate immune responses |
| WO2006029223A2 (en) | 2004-09-08 | 2006-03-16 | Children's Medical Center Corporation | Method for stimulating the immune response of newborns |
| MY159370A (en) | 2004-10-20 | 2016-12-30 | Coley Pharm Group Inc | Semi-soft-class immunostimulatory oligonucleotides |
| AU2005311888A1 (en) | 2004-12-01 | 2006-06-08 | Celgene Corporation | Compositions comprising immunomodulatory compounds and the use thereof for the treatment of immunodeficiency disorders |
| US9809824B2 (en) | 2004-12-13 | 2017-11-07 | The United States Of America, Represented By The Secretary, Department Of Health And Human Services | CpG oligonucleotide prodrugs, compositions thereof and associated therapeutic methods |
| US7943609B2 (en) | 2004-12-30 | 2011-05-17 | 3M Innovative Proprerties Company | Chiral fused [1,2]imidazo[4,5-C] ring compounds |
| WO2006074045A2 (en) | 2004-12-30 | 2006-07-13 | 3M Innovative Properties Company | Immune response modifier formulations and methods |
| EP1844201B1 (en) | 2005-02-04 | 2016-08-24 | 3M Innovative Properties Company | Aqueous gel formulations containing immune response modifiers |
| ES2475728T3 (en) | 2005-02-09 | 2014-07-11 | 3M Innovative Properties Company | Thiazoloquinolines and alkoxy substituted thiazolonaphthyridines |
| US7968563B2 (en) | 2005-02-11 | 2011-06-28 | 3M Innovative Properties Company | Oxime and hydroxylamine substituted imidazo[4,5-c] ring compounds and methods |
| JP2008531502A (en) | 2005-02-22 | 2008-08-14 | ザ レジェンツ オブ ザ ユニバーシティ オブ カリフォルニア | How to treat gastrointestinal inflammation |
| US8158794B2 (en) | 2005-02-23 | 2012-04-17 | 3M Innovative Properties Company | Hydroxyalkyl substituted imidazoquinoline compounds and methods |
| US8846710B2 (en) | 2005-02-23 | 2014-09-30 | 3M Innovative Properties Company | Method of preferentially inducing the biosynthesis of interferon |
| EP1851224A2 (en) | 2005-02-23 | 2007-11-07 | 3M Innovative Properties Company | Hydroxyalkyl substituted imidazoquinolines |
| CA2598639A1 (en) | 2005-02-23 | 2006-08-31 | Coley Pharmaceutical Group, Inc. | Hydroxyalkyl substituted imidazonaphthyridines |
| CA2598992A1 (en) | 2005-02-24 | 2006-08-31 | Coley Pharmaceutical Group, Inc. | Immunostimulatory oligonucleotides |
| AU2006232375A1 (en) | 2005-04-01 | 2006-10-12 | Coley Pharmaceutical Group, Inc. | 1-substituted pyrazolo (3,4-c) ring compounds as modulators of cytokine biosynthesis for the treatment of viral infections and neoplastic diseases |
| AU2006232377A1 (en) | 2005-04-01 | 2006-10-12 | Coley Pharmaceutical Group, Inc. | Pyrazolopyridine-1,4-diamines and analogs thereof |
| JP2008538119A (en) | 2005-04-01 | 2008-10-09 | コーリー ファーマシューティカル グループ,インコーポレーテッド | Pyrazolo [3,4-c] quinolines, pyrazolo [3,4-c] naphthyridines, analogs thereof, and methods |
| US20060229271A1 (en) | 2005-04-08 | 2006-10-12 | Coley Pharmaceutical Group, Inc. | Methods for treating infectious disease exacerbated asthma |
| AR056327A1 (en) | 2005-04-25 | 2007-10-03 | Genelabs Tech Inc | NUCLEOSID COMPOUNDS FOR THE TREATMENT OF VIRAL INFECTIONS |
| WO2006116458A2 (en) | 2005-04-26 | 2006-11-02 | Coley Pharmaceutical Gmbh | Modified oligoribonucleotide analogs with enhances immunostimulatory activity |
| JP2008546658A (en) | 2005-06-16 | 2008-12-25 | ウニヴァシテイト ゲント | Vaccine for immunization against Helicobacter |
| WO2006138478A2 (en) | 2005-06-17 | 2006-12-28 | The Trustees Of The University Of Pennylvania | Stimulation of toll-like receptors on t cells |
| CN101268101A (en) | 2005-07-07 | 2008-09-17 | 科利制药集团公司 | Anti-CTLA-4 antibody and CpG-motif-containing synthetic oligodeoxynucleotide combination therapy for cancer treatment |
| CA2620582C (en) | 2005-08-31 | 2015-11-10 | Dennis M. Klinman | Methods of altering an immune response induced by cpg oligodeoxynucleotides |
| ZA200803029B (en) | 2005-09-09 | 2009-02-25 | Coley Pharm Group Inc | Amide and carbamate derivatives of alkyl substituted /V-[4-(4-amino-1H-imidazo[4,5-c] quinolin-1-yl)butyl] methane-sulfonamides and methods |
| WO2007031322A1 (en) | 2005-09-14 | 2007-03-22 | Gunther Hartmann | Compositions comprising immunostimulatory rna oligonucleotides and methods for producing said rna oligonucleotides |
| KR20080047463A (en) | 2005-09-16 | 2008-05-28 | 콜리 파마슈티칼 게엠베하 | Modulation of Immunostimulatory Properties of Short Interfering Ribonucleic Acid (SIRNA) by Nucleotide Modification |
| JP2010503608A (en) | 2005-09-16 | 2010-02-04 | コーリー ファーマシューティカル ゲーエムベーハー | Immunostimulatory single-stranded ribonucleic acid with a phosphodiester backbone |
| US8426375B2 (en) | 2005-10-12 | 2013-04-23 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response |
| US8399423B2 (en) | 2005-10-12 | 2013-03-19 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response |
| AU2006304205C1 (en) | 2005-10-12 | 2012-11-15 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response |
| BRPI0618857B1 (en) | 2005-11-25 | 2022-07-19 | Zoetis Belgium S.A | ISOLATED RNA OLIGONUCLEOTIDE, AND METHOD TO NEGATIVELY REGULATE IMMUNOSUPPRESSANT CD4+ REGULATORY CELLS |
| MX2008008279A (en) | 2005-12-20 | 2009-03-04 | Idera Pharmaceuticals Inc | Immunostimulatory activity of palindromic immune modulatory oligonucleotides (imo tm) contiaining different lengths of palindromic segments. |
| AU2006336242A1 (en) | 2005-12-20 | 2007-07-26 | Idera Pharmaceuticals, Inc. | Novel synthetic agonists of toll-like receptors containing CG dinucleotide modifications |
| DK1991678T4 (en) | 2006-02-15 | 2020-10-19 | Rechtsanwalt Thomas Beck | COMPOSITIONS AND PROCEDURES FOR OLIGONUCLEOTIDE FORMULATIONS |
| KR101221589B1 (en) | 2006-04-07 | 2013-01-15 | 이데라 파마슈티칼즈, 인코포레이티드 | Stabilized immune modulatory rna (simra) compounds for tlr7 and tlr8 |
| US20090176696A1 (en) | 2006-04-18 | 2009-07-09 | The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth | Methods And Compositions For Modulating An Immune Response |
| WO2008008432A2 (en) | 2006-07-12 | 2008-01-17 | Coley Pharmaceutical Group, Inc. | Substituted chiral fused( 1,2) imidazo (4,5-c) ring compounds and methods |
| WO2008085549A2 (en) | 2006-07-28 | 2008-07-17 | Board Of Regents Of The University Of Texas System | Compositions and methods for stimulation of lung innate immunity |
| US20080124366A1 (en) | 2006-08-06 | 2008-05-29 | Ohlfest John R | Methods and Compositions for Treating Tumors |
| US8377898B2 (en) | 2006-10-12 | 2013-02-19 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response |
| US20080241139A1 (en) | 2006-10-31 | 2008-10-02 | Regents Of The University Of Colorado | Adjuvant combinations comprising a microbial tlr agonist, a cd40 or 4-1bb agonist, and optionally an antigen and the use thereof for inducing a synergistic enhancement in cellular immunity |
| US20090142362A1 (en) | 2006-11-06 | 2009-06-04 | Avant Immunotherapeutics, Inc. | Peptide-based vaccine compositions to endogenous cholesteryl ester transfer protein (CETP) |
| EP2079305A4 (en) | 2006-12-12 | 2010-01-27 | Idera Pharmaceuticals Inc | Synthetic agonists of tlr9 |
| WO2008131074A1 (en) | 2007-04-19 | 2008-10-30 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Use of toll-like receptor-9 agonists, toll-like receptor-4 antagonists, and/or nuclear oligomerization domain-2 agonists for the treatment or prevention of toll-like receptor-4-associated disorders |
| RU2468819C2 (en) | 2007-08-01 | 2012-12-10 | Идера Фармасьютикалз, Инк. | New synthetic tlr9 agonists |
| EP2190440A1 (en) | 2007-08-13 | 2010-06-02 | Pfizer Inc. | Combination motif immune stimulatory oligonucleotides with improved activity |
| EP2179061B1 (en) | 2007-08-15 | 2012-10-03 | Idera Pharmaceuticals, Inc. | Toll like receptor modulators |
| US9872867B2 (en) | 2008-06-06 | 2018-01-23 | Tanya Kuritz | Methods and compositions for modulation of innate immunity |
-
2015
- 2015-09-21 WO PCT/US2015/051233 patent/WO2016044839A2/en not_active Ceased
- 2015-09-21 US US14/860,205 patent/US10286065B2/en active Active
-
2019
- 2019-04-25 US US16/394,097 patent/US20190314497A1/en not_active Abandoned
-
2021
- 2021-08-11 US US17/399,821 patent/US20220096627A1/en not_active Abandoned
-
2023
- 2023-04-03 US US18/194,864 patent/US20240358824A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120082700A1 (en) * | 2009-03-25 | 2012-04-05 | Burton Dickey | Compositions for stimulation of mammalian innate immune resistance to pathogens |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022026170A1 (en) * | 2020-07-31 | 2022-02-03 | Signpath Pharma, Inc. | Suppression of cytokine release and cytokine storm |
Also Published As
| Publication number | Publication date |
|---|---|
| US20240358824A1 (en) | 2024-10-31 |
| WO2016044839A2 (en) | 2016-03-24 |
| US10286065B2 (en) | 2019-05-14 |
| US20220096627A1 (en) | 2022-03-31 |
| US20160082103A1 (en) | 2016-03-24 |
| WO2016044839A3 (en) | 2016-09-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240358824A1 (en) | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds | |
| US20250152703A1 (en) | Compositions for stimulation of mammalian innate immune resistance to pathogens | |
| US20210353650A1 (en) | Pharmaceutical formulation containing remdesivir and its active metabolites for dry powder inhalation | |
| JP2021516219A (en) | Drugs for the prevention or treatment of rhinovirus infections | |
| WO2015027848A1 (en) | Method of administering formulation comprising peramivir and/or derivative thereof | |
| US20210332995A1 (en) | Products of manufacture for the treatment, prevention and amelioration of microbial infections | |
| Asefy et al. | Novel and promising approaches in COVID-19 treatment | |
| AU2015201861B2 (en) | Compositions for stimulation of mammalian innate immune resistance to pathogens | |
| WO2024096743A1 (en) | Sars-cov-2 binding antibody | |
| WO2015027847A2 (en) | Administration method for preparation containing oseltamivir carboxylate guanidino analogues and/or ethyl esters thereof | |
| HK1217176B (en) | Compositions for stimulation of mammalian innate immune resistance to pathogens |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: PULMOTECT, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCOTT, BRENTON;MARKESICH, DIANE;SIGNING DATES FROM 20151204 TO 20151206;REEL/FRAME:048991/0413 Owner name: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DICKEY, BURTON;EVANS, SCOTT;TUVIM, MICHAEL;SIGNING DATES FROM 20151030 TO 20151103;REEL/FRAME:048991/0611 Owner name: BAYLOR COLLEGE OF MEDICINE, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GILBERT, BRIAN;REEL/FRAME:048991/0967 Effective date: 20151019 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |