US20190309058A1 - Highly galactosylated anti-tnf-alpha antibodies and uses thereof - Google Patents
Highly galactosylated anti-tnf-alpha antibodies and uses thereof Download PDFInfo
- Publication number
- US20190309058A1 US20190309058A1 US16/192,273 US201816192273A US2019309058A1 US 20190309058 A1 US20190309058 A1 US 20190309058A1 US 201816192273 A US201816192273 A US 201816192273A US 2019309058 A1 US2019309058 A1 US 2019309058A1
- Authority
- US
- United States
- Prior art keywords
- antibodies
- population
- antibody
- tnf
- alpha
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 claims abstract description 127
- 210000002919 epithelial cell Anatomy 0.000 claims description 134
- 210000005075 mammary gland Anatomy 0.000 claims description 98
- 241000283707 Capra Species 0.000 claims description 95
- 230000000694 effects Effects 0.000 claims description 73
- 230000009261 transgenic effect Effects 0.000 claims description 70
- 230000004540 complement-dependent cytotoxicity Effects 0.000 claims description 51
- 230000033581 fucosylation Effects 0.000 claims description 49
- 230000001965 increasing effect Effects 0.000 claims description 48
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 claims description 45
- 238000006206 glycosylation reaction Methods 0.000 claims description 29
- 230000013595 glycosylation Effects 0.000 claims description 27
- 150000001720 carbohydrates Chemical class 0.000 claims description 21
- 241000283690 Bos taurus Species 0.000 claims description 19
- 241000699666 Mus <mouse, genus> Species 0.000 claims description 16
- 241000283973 Oryctolagus cuniculus Species 0.000 claims description 15
- 241001494479 Pecora Species 0.000 claims description 15
- 230000000295 complement effect Effects 0.000 claims description 15
- 241000282898 Sus scrofa Species 0.000 claims description 14
- 241000700159 Rattus Species 0.000 claims description 13
- 235000002198 Annona diversifolia Nutrition 0.000 claims description 11
- 241000282836 Camelus dromedarius Species 0.000 claims description 11
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 claims description 9
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 3
- 241000282842 Lama glama Species 0.000 claims 2
- 229960002964 adalimumab Drugs 0.000 abstract description 160
- 238000000034 method Methods 0.000 abstract description 64
- 238000004519 manufacturing process Methods 0.000 abstract description 27
- 210000004027 cell Anatomy 0.000 description 86
- 230000027455 binding Effects 0.000 description 72
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 68
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 68
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 67
- 229940048921 humira Drugs 0.000 description 53
- 241001465754 Metazoa Species 0.000 description 42
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 39
- 235000013336 milk Nutrition 0.000 description 39
- 239000008267 milk Substances 0.000 description 39
- 210000004080 milk Anatomy 0.000 description 39
- 229920001542 oligosaccharide Polymers 0.000 description 39
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 37
- 108090000623 proteins and genes Proteins 0.000 description 35
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 33
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 31
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 31
- 150000007523 nucleic acids Chemical class 0.000 description 28
- 229930182830 galactose Natural products 0.000 description 27
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 26
- 230000006651 lactation Effects 0.000 description 25
- 108020004707 nucleic acids Proteins 0.000 description 23
- 102000039446 nucleic acids Human genes 0.000 description 23
- 235000018102 proteins Nutrition 0.000 description 23
- 102000004169 proteins and genes Human genes 0.000 description 23
- 150000004676 glycans Chemical group 0.000 description 22
- 235000014633 carbohydrates Nutrition 0.000 description 19
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 17
- 230000009089 cytolysis Effects 0.000 description 17
- 210000000822 natural killer cell Anatomy 0.000 description 17
- 150000002482 oligosaccharides Chemical class 0.000 description 17
- 239000008194 pharmaceutical composition Substances 0.000 description 17
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 description 16
- 101710177940 IgG receptor FcRn large subunit p51 Proteins 0.000 description 16
- 239000000427 antigen Substances 0.000 description 15
- 108091007433 antigens Proteins 0.000 description 15
- 102000036639 antigens Human genes 0.000 description 15
- 238000004113 cell culture Methods 0.000 description 15
- 230000001225 therapeutic effect Effects 0.000 description 15
- 208000023275 Autoimmune disease Diseases 0.000 description 14
- 108700019146 Transgenes Proteins 0.000 description 14
- 239000003814 drug Substances 0.000 description 14
- -1 galactose monosaccharide Chemical class 0.000 description 14
- 239000012634 fragment Substances 0.000 description 13
- 241000124008 Mammalia Species 0.000 description 12
- 210000000287 oocyte Anatomy 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 108091028043 Nucleic acid sequence Proteins 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 11
- 238000001727 in vivo Methods 0.000 description 11
- 238000006386 neutralization reaction Methods 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- 239000013598 vector Substances 0.000 description 11
- 241000283073 Equus caballus Species 0.000 description 10
- 230000003110 anti-inflammatory effect Effects 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 10
- 239000003937 drug carrier Substances 0.000 description 10
- 230000009450 sialylation Effects 0.000 description 10
- 244000303258 Annona diversifolia Species 0.000 description 9
- 241000283726 Bison Species 0.000 description 9
- 108010076119 Caseins Proteins 0.000 description 9
- 208000027866 inflammatory disease Diseases 0.000 description 9
- 239000000725 suspension Substances 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 102000011632 Caseins Human genes 0.000 description 8
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 8
- 229940088597 hormone Drugs 0.000 description 8
- 239000005556 hormone Substances 0.000 description 8
- 230000005764 inhibitory process Effects 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- 108010087819 Fc receptors Proteins 0.000 description 7
- 102000009109 Fc receptors Human genes 0.000 description 7
- 206010061218 Inflammation Diseases 0.000 description 7
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 7
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 7
- 238000010367 cloning Methods 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000004054 inflammatory process Effects 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 206010039073 rheumatoid arthritis Diseases 0.000 description 7
- 108091026890 Coding region Proteins 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 6
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 6
- 102000003838 Sialyltransferases Human genes 0.000 description 6
- 108090000141 Sialyltransferases Proteins 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000012636 effector Substances 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 5
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 5
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 5
- 102100040247 Tumor necrosis factor Human genes 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000012875 competitive assay Methods 0.000 description 5
- 210000002257 embryonic structure Anatomy 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 150000002256 galaktoses Chemical class 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 229960004641 rituximab Drugs 0.000 description 5
- 210000002784 stomach Anatomy 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- 206010009900 Colitis ulcerative Diseases 0.000 description 4
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 4
- 208000011231 Crohn disease Diseases 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 description 4
- SQVRNKJHWKZAKO-PFQGKNLYSA-N N-acetyl-beta-neuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-PFQGKNLYSA-N 0.000 description 4
- 201000004681 Psoriasis Diseases 0.000 description 4
- 201000006704 Ulcerative Colitis Diseases 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 238000000684 flow cytometry Methods 0.000 description 4
- 229960001743 golimumab Drugs 0.000 description 4
- 229960000598 infliximab Drugs 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 229940116176 remicade Drugs 0.000 description 4
- 229940068638 simponi Drugs 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 235000021247 β-casein Nutrition 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 3
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 3
- 102000014171 Milk Proteins Human genes 0.000 description 3
- 108010011756 Milk Proteins Proteins 0.000 description 3
- SUHQNCLNRUAGOO-UHFFFAOYSA-N N-glycoloyl-neuraminic acid Natural products OCC(O)C(O)C(O)C(NC(=O)CO)C(O)CC(=O)C(O)=O SUHQNCLNRUAGOO-UHFFFAOYSA-N 0.000 description 3
- FDJKUWYYUZCUJX-UHFFFAOYSA-N N-glycolyl-beta-neuraminic acid Natural products OCC(O)C(O)C1OC(O)(C(O)=O)CC(O)C1NC(=O)CO FDJKUWYYUZCUJX-UHFFFAOYSA-N 0.000 description 3
- FDJKUWYYUZCUJX-KVNVFURPSA-N N-glycolylneuraminic acid Chemical compound OC[C@H](O)[C@H](O)[C@@H]1O[C@](O)(C(O)=O)C[C@H](O)[C@H]1NC(=O)CO FDJKUWYYUZCUJX-KVNVFURPSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 201000002661 Spondylitis Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000001363 autoimmune Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000006037 cell lysis Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000002759 chromosomal effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000008482 dysregulation Effects 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 102000057041 human TNF Human genes 0.000 description 3
- 208000026278 immune system disease Diseases 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 150000002704 mannoses Chemical class 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 235000021239 milk protein Nutrition 0.000 description 3
- 229950006780 n-acetylglucosamine Drugs 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 201000000306 sarcoidosis Diseases 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 208000009137 Behcet syndrome Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 2
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 2
- 208000015943 Coeliac disease Diseases 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- 108010008165 Etanercept Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 2
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 2
- 208000003456 Juvenile Arthritis Diseases 0.000 description 2
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- DINOPBPYOCMGGD-VEDJBHDQSA-N Man(a1-2)Man(a1-2)Man(a1-3)[Man(a1-2)Man(a1-3)[Man(a1-2)Man(a1-6)]Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc Chemical compound O[C@@H]1[C@@H](NC(=O)C)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO[C@@H]3[C@H]([C@@H](O[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O)O3)O)O2)O)[C@@H](CO)O1 DINOPBPYOCMGGD-VEDJBHDQSA-N 0.000 description 2
- 101710160107 Outer membrane protein A Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 102000004357 Transferases Human genes 0.000 description 2
- 108090000992 Transferases Proteins 0.000 description 2
- 206010047115 Vasculitis Diseases 0.000 description 2
- 101710087237 Whey acidic protein Proteins 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 238000001516 cell proliferation assay Methods 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 208000037976 chronic inflammation Diseases 0.000 description 2
- 230000006020 chronic inflammation Effects 0.000 description 2
- 230000024203 complement activation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004163 cytometry Methods 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 210000001198 duodenum Anatomy 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 235000020251 goat milk Nutrition 0.000 description 2
- 208000006454 hepatitis Diseases 0.000 description 2
- 231100000283 hepatitis Toxicity 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 210000004216 mammary stem cell Anatomy 0.000 description 2
- 125000000311 mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000031864 metaphase Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 206010028417 myasthenia gravis Diseases 0.000 description 2
- 238000004305 normal phase HPLC Methods 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000008925 spontaneous activity Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000012250 transgenic expression Methods 0.000 description 2
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 102000009366 Alpha-s1 casein Human genes 0.000 description 1
- 108050000244 Alpha-s1 casein Proteins 0.000 description 1
- 108050001786 Alpha-s2 casein Proteins 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 206010008748 Chorea Diseases 0.000 description 1
- 108010034753 Complement Membrane Attack Complex Proteins 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 206010014950 Eosinophilia Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 206010016825 Flushing Diseases 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108700023372 Glycosyltransferases Proteins 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 238000012450 HuMAb Mouse Methods 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 208000005615 Interstitial Cystitis Diseases 0.000 description 1
- 102000004407 Lactalbumin Human genes 0.000 description 1
- 108090000942 Lactalbumin Proteins 0.000 description 1
- 102000008192 Lactoglobulins Human genes 0.000 description 1
- 108010060630 Lactoglobulins Proteins 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 208000005777 Lupus Nephritis Diseases 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 208000009525 Myocarditis Diseases 0.000 description 1
- OSKIPPQETUTOMW-YHLOVPAPSA-N N-[(2R,3R,4R,5S,6R)-5-[(2S,3R,4R,5S,6R)-3-Acetamido-5-[(2R,3S,4S,5R,6R)-4-[(2R,3S,4S,5S,6R)-3-[(2S,3S,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2S,3S,4S,5R,6R)-6-[[(2S,3S,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxymethyl]-3,5-dihydroxy-4-[(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxymethyl]-3,5-dihydroxyoxan-2-yl]oxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,4-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound O[C@@H]1[C@@H](NC(=O)C)[C@H](O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O[C@@H]2[C@H]([C@@H](O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO[C@@H]3[C@H]([C@@H](O[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O)O3)O)O2)O)[C@@H](CO)O1 OSKIPPQETUTOMW-YHLOVPAPSA-N 0.000 description 1
- SQVRNKJHWKZAKO-LUWBGTNYSA-N N-acetylneuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)CC(O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-LUWBGTNYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 206010033645 Pancreatitis Diseases 0.000 description 1
- 208000029082 Pelvic Inflammatory Disease Diseases 0.000 description 1
- 208000031845 Pernicious anaemia Diseases 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 229920000037 Polyproline Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 101000718529 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) Alpha-galactosidase Proteins 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 208000027522 Sydenham chorea Diseases 0.000 description 1
- 208000001106 Takayasu Arteritis Diseases 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 108010090473 UDP-N-acetylglucosamine-peptide beta-N-acetylglucosaminyltransferase Proteins 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 238000012452 Xenomouse strains Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- NNISLDGFPWIBDF-MPRBLYSKSA-N alpha-D-Gal-(1->3)-beta-D-Gal-(1->4)-D-GlcNAc Chemical compound O[C@@H]1[C@@H](NC(=O)C)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@@H](CO)O1 NNISLDGFPWIBDF-MPRBLYSKSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 201000005000 autoimmune gastritis Diseases 0.000 description 1
- 208000010928 autoimmune thyroid disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WWOGFSBVRNWZBV-KVMLNOKXSA-N beta-D-Galp-(1->4)-beta-D-GlcpNAc-(1->2)-alpha-D-Manp-(1->3)-[beta-D-Galp-(1->4)-beta-D-GlcpNAc-(1->2)-alpha-D-Manp-(1->6)]-beta-D-Man-(1->4)-beta-D-GlcpNAc-(1->4)-[alpha-L-Fucp-(1->6)]-beta-D-GlcpNAc Chemical group O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1OC[C@@H]1[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O[C@H]3[C@H]([C@@H](O[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O[C@H]4[C@@H]([C@@H](O)[C@H](O[C@H]5[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O5)O)[C@@H](CO)O4)NC(C)=O)[C@H](O)[C@@H](CO[C@@H]4[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O4)O[C@H]4[C@@H]([C@@H](O)[C@H](O[C@H]5[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O5)O)[C@@H](CO)O4)NC(C)=O)O3)O)[C@@H](CO)O2)NC(C)=O)[C@H](O)[C@@H](NC(C)=O)[C@H](O)O1 WWOGFSBVRNWZBV-KVMLNOKXSA-N 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000005889 cellular cytotoxicity Effects 0.000 description 1
- 229960003115 certolizumab pegol Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 201000001352 cholecystitis Diseases 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 208000013507 chronic prostatitis Diseases 0.000 description 1
- 229940090100 cimzia Drugs 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 206010009887 colitis Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 210000001755 duct epithelial cell Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229940073621 enbrel Drugs 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000004920 epithelial cell of skin Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000012173 estrus Effects 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 102000045442 glycosyltransferase activity proteins Human genes 0.000 description 1
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 210000003405 ileum Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004073 interleukin-2 production Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 208000002551 irritable bowel syndrome Diseases 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 210000001630 jejunum Anatomy 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- JMUPMJGUKXYCMF-IWDIICGPSA-N n-[(2s,3r,4r,5s,6r)-2-[(2s,3s,4s,5s,6r)-2-[[(2r,3r,4s,5s,6s)-6-[(2r,3s,4r,5r,6s)-5-acetamido-6-[(2r,3s,4r,5r)-5-acetamido-1,2,4-trihydroxy-6-oxohexan-3-yl]oxy-4-hydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-4-[(2r,3s,4s,5s,6r)-3-[(2s,3r,4r,5s,6r)-3-acetamido-4-h Chemical compound O[C@@H]1[C@@H](NC(C)=O)[C@H](O[C@@H]([C@H](O)[C@H](C=O)NC(=O)C)[C@H](O)CO)O[C@H](CO)[C@H]1O[C@H]1[C@@H](O)[C@@H](O[C@@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O[C@H]2[C@@H]([C@@H](O)[C@H](O[C@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)[C@@H](CO)O2)NC(C)=O)[C@H](O)[C@@H](CO[C@@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O[C@H]2[C@@H]([C@@H](O)[C@H](O[C@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)[C@@H](CO)O2)NC(C)=O)O1 JMUPMJGUKXYCMF-IWDIICGPSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000023837 negative regulation of proteolysis Effects 0.000 description 1
- 229940060155 neuac Drugs 0.000 description 1
- CERZMXAJYMMUDR-UHFFFAOYSA-N neuraminic acid Natural products NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO CERZMXAJYMMUDR-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 208000015124 ovarian disease Diseases 0.000 description 1
- 230000032696 parturition Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000012510 peptide mapping method Methods 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 108010026466 polyproline Proteins 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical class CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 201000007094 prostatitis Diseases 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 201000008158 rapidly progressive glomerulonephritis Diseases 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 210000005000 reproductive tract Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 125000005629 sialic acid group Chemical group 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 235000021249 α-casein Nutrition 0.000 description 1
- 235000021241 α-lactalbumin Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/241—Tumor Necrosis Factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39508—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum from milk, i.e. lactoglobulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/04—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from milk
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/283—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against Fc-receptors, e.g. CD16, CD32, CD64
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/10—Immunoglobulins specific features characterized by their source of isolation or production
- C07K2317/12—Immunoglobulins specific features characterized by their source of isolation or production isolated from milk
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/40—Immunoglobulins specific features characterized by post-translational modification
- C07K2317/41—Glycosylation, sialylation, or fucosylation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/732—Antibody-dependent cellular cytotoxicity [ADCC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/734—Complement-dependent cytotoxicity [CDC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the present invention relates in part to anti-TNF-alpha antibodies.
- TNF-alpha is a pro-inflammatory cytokine, which plays a protective role against infection and injury in normal immune responses.
- chronically elevated levels of TNF-alpha have been associated with pathogenesis of many autoimmune and inflammatory diseases.
- a number of TNF-alpha binding therapeutics have been approved for treatment of autoimmune and inflammatory diseases including rheumatoid arthritis, psoriasis, Crohn's disease, ankylating spondylitis and ulcerative colitis.
- Available therapeutic TNF-alpha binders include antibodies such as infliximab/Remicade (Centocor) a mouse-human chimeric monoclonal anti TNF-antibody, adalimumab/Humira (Abbott) a fully human anti-TNF antibody, and golimumab/Simponi (Centocor) a fully human anti-TNF antibody.
- Therapeutic TNF-alpha binders that are antibody-based include Etanercept/Enbrel (Amgen) a fusion protein of the extracellular domain of TNF-receptor fused to the Fc region of Ig1, and certolizumab pegol/Cimzia (UCB) a Pegylated Fab′ fragment of humanized monoclonal anti-TNF antibody.
- Amgen Etanercept/Enbrel
- URB certolizumab pegol/Cimzia
- the therapeutic efficacy of the antibodies and antibody-based TNF-alpha binders varies based on the targeted pathology. In addition, many of the anti-TNF-alpha therapeutics show undesired side effects. Anti-TNF alpha antibodies with improved therapeutic properties are desired therefore.
- the disclosure relates to highly galactosylated anti-TNF-alpha antibodies and compositions thereof. In one aspect, the disclosure relates to populations of anti-TNF-alpha antibodies with a high level of galactosylation, and compositions thereof. In one aspect, the disclosure relates to methods of production and use of highly galactosylated anti-TNF-alpha antibodies and populations of anti-TNF-alpha antibodies with a high level of galactosylation.
- the disclosure provides an anti-TNF-alpha antibody, wherein the antibody is highly galactosylated. In some embodiments, the antibody is highly fucosylated. In some embodiments, the antibody comprises mono-galactosylated N-glycans. In some embodiments, the antibody comprises bi-galactosylated N-glycans. In some embodiments, the heavy chain of the antibody comprises SEQ ID NO:1, and the light chain of the antibody comprises SEQ ID NO:2. In some embodiments, the antibody is adalimumab. In some embodiments, the antibody is produced in mammary epithelial cells of a non-human mammal. In some embodiments, the antibody is produced in a transgenic non-human mammal. In some embodiments, the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama. In some embodiments, the non-human mammal is a goat.
- compositions of any of the antibodies disclosed herein wherein the composition further comprises milk.
- the composition further comprises a pharmaceutically-acceptable carrier.
- the disclosure provides a composition, comprising a population of antibodies, wherein the antibody is an anti-TNF-alpha antibody, and wherein the level of galactosylation of the antibodies in the population is at least 60%. In some embodiments, the level of galactosylation of the antibodies in the population is at least 70%. In some embodiments, the level of galactosylation of the antibodies in the population is at least 80%. In some embodiments, the level of fucosylation of the antibodies in the population is at least 50%.
- the level of fucosylation of the antibodies in the population is at least 60%. In some embodiments of any of the compositions provided herein, the population comprises antibodies that comprise mono-galactosylated N-glycans. In some embodiments of any of the compositions provided herein, the population comprises antibodies that comprise bi-galactosylated N-glycans. In some embodiments of any of the compositions provided herein, the ratio of the level of galactosylation of the antibodies in the population to the level of fucosylation of the antibodies in the population is between 1.0 and 1.4.
- the antibodies in the population comprise bi-galactosylated N-glycans and at least 25% of the antibodies in the population comprise mono-galactosylated N-glycans.
- the heavy chain of the antibody comprises SEQ ID NO:1
- the light chain of the antibody comprises SEQ ID NO:2.
- the antibody is adalimumab.
- the antibody is produced in mammary epithelial cells of a non-human mammal.
- the antibody is produced in a transgenic non-human mammal.
- the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama.
- the non-human mammal is a goat.
- the composition further comprises milk.
- the composition further comprises a pharmaceutically-acceptable carrier.
- the population of antibodies has an increased level of complement dependent cytotoxicity (CDC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells.
- CDC complement dependent cytotoxicity
- the population of antibodies has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells.
- ADCC antibody-dependent cellular cytotoxicity
- the population of antibodies has an increased ability to suppress TNF-alpha activity in a subject when compared to a population of antibodies not produced in mammary gland epithelial cells.
- the population of antibodies has an increased ability to bind soluble TNF-alpha when compared to a population of antibodies not produced in mammary gland epithelial cells.
- the population of antibodies has an increased ability to bind transmembrane TNF-alpha when compared to a population of antibodies not produced in mammary gland epithelial cells.
- the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 50% or lower when compared to the level of galactosylation of the antibodies produced in mammary gland epithelial cells. In some embodiments of any of the compositions provided herein, the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 30% or lower when compared to the level of galactosylation of the antibodies produced in mammary gland epithelial cells.
- the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 10% or lower when compared to the level of galactosylation of the antibodies produced in mammary gland epithelial cells.
- the disclosure provides a method for producing a population of antibodies, comprising: expressing the population of antibodies in mammary gland epithelial cells of a non-human mammal such that a population of antibodies is produced, wherein the antibody is an anti-TNF-alpha antibody, wherein the level of galactosylation of the antibodies in the population is at least 60%.
- the mammary gland epithelial cells are in culture and are transfected with a nucleic acid that comprises a sequence that encodes the antibody.
- the mammary gland epithelial cells are in a non-human mammal engineered to express a nucleic acid that comprises a sequence that encodes the antibody in its mammary gland.
- the nucleic acid comprises SEQ ID NO:3 and SEQ ID NO:4.
- the mammary gland epithelial cells are goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama mammary gland epithelial cells. In some embodiments, the mammary gland epithelial cells are goat mammary gland epithelial cells.
- the disclosure provides mammary gland epithelial cells that produce any of the antibodies, population of antibodies, or compositions disclosed herein.
- the disclosure provides a transgenic non-human mammal comprising any of the mammary gland epithelial cells disclosed herein.
- the disclosure provides a method comprising administering any of the antibodies, population of antibodies, or compositions disclosed herein to a subject in need thereof.
- the subject has an inflammatory disorder or autoimmune disorder.
- the inflammatory disorder or autoimmune disorder is rheumatoid arthritis, psoriasis, Crohn's disease, juvenile idiopathic arthritis, ankylozing spondylitis, ulcerative colitis, chronic inflammation, hepatitis, Behcet's disease, Wegener's granulomatosis, or sarcoidosis.
- the disclosure provides a monoclonal anti-TNF antibody composition
- a monoclonal anti-TNF antibody composition comprising monoclonal anti-TNF antibodies having glycan structures on the Fc glycosylation sites (Asn297, EU numbering), wherein said glycan structures have a galactose content of more than 60%.
- the disclosure relates to an anti-TNF-alpha antibody, wherein the antibody contains an oligomannose.
- the heavy chain of the antibody comprises SEQ ID NO:1
- the light chain of the antibody comprises SEQ ID NO:2.
- the antibody is adalimumab.
- the antibody is produced in mammary epithelial cells of a non-human mammal. In some embodiments, the antibody is produced in a transgenic non-human mammal. In certain embodiments, the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama. In certain embodiments, the non-human mammal is a goat.
- an anti-TNF-alpha antibody that contains an oligomannose further comprising milk.
- the disclosure relates to a composition
- a composition comprising an anti-TNF-alpha antibody that contains an oligomannose, further comprising a pharmaceutically-acceptable carrier.
- the disclosure relates to a composition, comprising: a population of antibodies, wherein the antibody is an anti-TNF-alpha antibody, and wherein the at least 30% of the antibodies contain at least one oligomannose.
- the antibodies exhibit a high mannose glycosylation pattern.
- at least one chain of the milk-derived antibodies contains an oligomannose and is non-fucosylated.
- the major carbohydrate of the milk-derived antibodies is non-fucosylated.
- the heavy chain of the antibody within the composition comprises SEQ ID NO:1, and the light chain of the antibody comprises SEQ ID NO:2.
- the antibody is adalimumab.
- the antibody is produced in mammary epithelial cells of a non-human mammal.
- the antibody is produced in a transgenic non-human mammal.
- the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama.
- the non-human mammal is a goat.
- the composition further comprises milk. In some embodiments, the composition further comprises a pharmaceutically-acceptable carrier.
- the population of antibodies within the composition has an increased level of complement dependent cytotoxicity (CDC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells.
- CDC complement dependent cytotoxicity
- the population of antibodies within the composition has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells.
- ADCC antibody-dependent cellular cytotoxicity
- the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- an antibody contains an oligomannose
- the oligomannose is Man5. In some embodiments wherein an antibody contains an oligomannose, the oligomannose is Man6. In some embodiments wherein an antibody contains an oligomannose, the oligomannose is Man7. In some embodiments wherein a composition comprises an antibody that contains an oligomannose, the oligomannose is Man5. In some embodiments wherein a composition comprises an antibody that contains an oligomannose, the oligomannose is Man6. In some embodiments wherein a composition comprises an antibody that contains an oligomannose, the oligomannose is Man7.
- FIG. 1 shows a representative oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies from goat #1.
- FIG. 2 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies from goat #1 at day 7 of lactation.
- FIG. 3 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies from goat #1 at day 17 of lactation.
- FIG. 4 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies from goat #1 at day 32 of lactation.
- FIGS. 5A and 5B show a summary of the percentages of N-glycan oligosaccharides of populations of a highly galactosylated adalimumab antibodies from goat #1 at various days of lactation.
- FIG. 6 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies from goat #2 at day 3 of hormone induced lactation.
- FIG. 7 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies from goat #2 at day 11 of hormone induced lactation.
- FIG. 8 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies from goat #2 at day 21 of hormone induced lactation.
- FIGS. 9A and 9B show a summary of the percentages of N-glycan oligosaccharides of populations of a highly galactosylated adalimumab antibodies from goat #2 at various days of hormone induced lactation.
- FIG. 10 shows that a transgenically produced adalimumab antibody binds soluble TNF-alpha.
- FIG. 11 shows that a transgenically produced adalimumab antibody binds to CD16 expressed on NK cells as shown by a competition assay with the anti-CD16 antibody 3G8.
- FIG. 12 shows that a transgenically produced adalimumab antibody binds both soluble TNF-alpha and Jurkat expressing CD16 cells while an aglycosylated version of the transgenically produced adalimumab antibody does not.
- FIGS. 13A-13D show a summary of predominant glycan forms present in populations of transgenically produced adalimumab antibodies from nine different goats #1-9.
- FIGS. 14A and 14B show a summary of the percentages of N-glycan oligosaccharides of populations of transgenically produced adalimumab antibodies from goat #10 and goat #1 during hormone induced lactation.
- FIGS. 15A and 15B show a summary of N-glycan oligosaccharides of populations of transgenically produced adalimumab antibodies from eight different goats, goats #2-9.
- FIG. 16 shows antigenic recognition of transgenically produced adalimumab (“TG-adalimumab”) and Humira antibodies on membrane TNF- ⁇ transfected Jurkat cells clone 2B3.
- the results shown are expressed as MFI and derived from an average of 3 experiments. Mean+/ ⁇ SEM.
- FIG. 17 shows binding of anti-TNF- ⁇ antibodies on CD16 expressed by NK cells in a competition assay.
- the mean fluorescence values (MFI) observed are expressed as the percent binding, where 100% is an arbitrary value corresponding to maximum 3G8 binding observed without the tested antibodies and 0% corresponds to the MFI in the absence of the antibody 3G8. Mean of 3 experiments+/ ⁇ SEM.
- FIG. 18 shows binding of anti-TNF- ⁇ antibodies on FcRn expressed by FcRn-transfected Jurkat cells in a competition assay with Alexa 488 coupled-Rituximab antibody.
- the mean fluorescence values (MFI) observed are expressed as the percent binding (100% is an arbitrary value corresponding to maximum Rituximab-A488 binding alone), as a function of attested antibody concentration. Mean of 3 experiments+/ ⁇ SEM.
- FIG. 19 shows CDC activity of the anti TNF- ⁇ antibodies on membrane TNF- ⁇ transfected Jurkat cells clone 2B3 (mean of 4 assays). Results are expressed as percent of lysis of mbTNF- ⁇ Jurkat cells as a function of antibody concentration. Mean+/ ⁇ SEM.
- FIG. 20 shows neutralization of TNF- ⁇ -mediated cytotoxicity in L929 cells by anti-TNF- ⁇ antibodies. Results are expressed as percent of neutralization as a function of antibody concentration. Mean of 4 assays+/ ⁇ SEM.
- FIG. 21 shows percent lysis (in arbitrary units) mediated by transgenically produced adalimumab compared to Humira.
- FIG. 22 presents an inhibition curve showing CD16 binding activity of transgenically produced adalimumab from nine different goats compared to Humira.
- FIG. 23 presents IC50 values associated with CD16 binding activity of transgenically produced adalimumab from nine different goats and Humira as assessed by a competitive assay using NK cells.
- FIG. 24 shows CDC activity of transgenically produced adalimumab from nine different goats compared to Humira.
- FIG. 25 shows EC50 values (ng/ml) associated with CDC activity of transgenically produced adalimumab from nine different goats compared to Humira.
- the disclosure provides anti-TNF-alpha antibodies wherein the antibody is highly galactosylated.
- Anti-TNF-alpha antibodies bind TNF-alpha and have been used as a therapeutic in a variety of diseases characterized by dysregulation of TNF-alpha, including inflammatory disorders.
- the anti-TNF-alpha antibody that is highly galactosylated is infliximab/Remicade (Centocor), adalimumab/Humira (Abbott), or golimumab/Simponi (Centocor).
- the anti-TNF-alpha antibody that is highly galactosylated is adalimumab.
- the anti-TNF-alpha antibody that is highly galactosylated includes a heavy chain which comprises SEQ ID NO:1. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated includes a light chain which comprises SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated includes a heavy chain which comprises SEQ ID NO:1 and a light chain which comprises SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated includes a heavy chain which consists of SEQ ID NO:1.
- the anti-TNF-alpha antibody that is highly galactosylated includes a light chain that consists of SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated includes a heavy chain which consists of SEQ ID NO:1 and a light chain that consists of SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated is adalimumab.
- the heavy chain of adalimumab is provided in SEQ ID NO:1:
- the light chain of adalimumab is provided in SEQ ID NO:2:
- sequences are based on the sequences of adalimumab published in U.S. Pat. No. 6,090,382. In some embodiments, the sequences of adalimumab are those as published in U.S. Pat. No. 6,090,382.
- the disclosure also includes antibodies that are based on the sequence of adalimumab but that include mutations that provide the antibodies with additional beneficial desired properties related to bioavailability, stability etc.
- the disclosure provides highly galactosylated anti-TNF-alpha antibodies that can be used in anti-inflammatory treatment.
- the anti-TNF-alpha antibody that is highly galactosylated is infliximab/Remicade (Centocor), adalimumab/Humira (Abbott), or golimumab/Simponi (Centocor).
- the anti-TNF-alpha antibody is adalimumab.
- the anti-TNF-alpha antibodies can be used in the treatment of inflammatory disorders and the treatment of autoimmune diseases.
- the highly galactosylated anti-TNF-alpha antibodies are surprisingly effective in their anti-inflammatory activity because of their enhanced ADCC and CDC activities (as compared to non-highly galactosylated antibodies).
- the highly galactosylated antibodies anti-TNF-alpha disclosed herein may include additional modifications to further increase their anti-inflammatory activity.
- Anti-inflammatory activity of intravenous administered Ig can result from a subset of the IgG molecules that have terminal alpha-2,6-sialic acid linkages on their Fc-linked glycans.
- the anti-inflammatory activity of a population of the intravenous administered Ig was increased by introducing a terminal alpha-2,6-sialic acid linkage on all Fc-linked glycans (See e.g., Anthony et al., Identification of a receptor required for the anti-inflammatory activity of IVIG, PNAS 105: 19571-19578, 2008).
- the disclosure provides highly galactosylated anti-TNF-alpha antibodies that also have 2,6 sialylated Fc glycans.
- the sialylation of the galactosylated anti-TNF alpha antibodies is believed to synergistically increase the anti-inflammatory action of the highly galactosylated anti-TNF-alpha antibodies.
- the highly galactosylated anti-TNF-alpha antibodies disclosed herein are generated by producing the antibody in a transgenic mammal or mammary epithelial cells.
- highly galactosylated anti-TNF-alpha antibodies generated by in a transgenic mammal or mammary epithelial cells are not fully sialylated.
- the sialylation levels of such antibodies can be increased for instance by subjecting the antibodies to sialyl transferases.
- the antibodies can be subjected to sialyl transferases in vitro or in vivo.
- Highly galactosylated anti-TNF-alpha antibodies can be sialylated in vitro by subjecting the purified or partially antibody to a sialyl transferase and the appropriate saccharide based substrate.
- Highly galactosylated anti-TNF-alpha antibodies can be sialylated in vivo by producing a sialyl transferase in the mammary gland or mammary epithelial cells.
- the disclosure provides methods for the production in the mammary gland of transgenic animals and mammary epithelial cells of highly galactosylated anti-TNF-alpha antibodies, with increased levels of alpha-2,6-sialylation.
- the methods provided herein allow for the production in the mammary gland of transgenic animals and mammary epithelial cells of highly galactosylated anti-TNF-alpha antibodies with increased anti-inflammatory properties.
- the disclosure provides transgenic animals (and mammary epithelial cells) that are transgenic for the production in the mammary gland of anti-TNF-alpha antibodies and that are transgenic for the production of sialyl transferase.
- the therapeutic antibodies produced by such animals and cells are expected to be highly galactosylated and have increased levels of terminal alpha-2,6-sialic acid linkages on their Fc-linked glycans.
- the transgenic animals (and mammary epithelial cells) are transgenic for the production in the mammary gland of an exogenous anti-TNF-alpha antibody and are transgenic for the production of sialyl transferase.
- the anti-TNF-alpha antibody is adalimumab.
- the disclosure provides methods of treating inflammation or autoimmune disease in a subject comprising administering to a subject the highly galactosylated anti-TNF-alpha antibodies that have increased levels of terminal alpha-2,6-sialic acid linkages on their Fc-linked glycans.
- the disclosure provides anti-TNF-alpha antibodies wherein the antibody is highly galactosylated. In some embodiments, the disclosure provides anti-TNF-alpha antibodies, wherein the antibody is highly fucosylated. In some embodiments, the disclosure provides anti-TNF-alpha antibodies, wherein the antibody is highly galactosylated and highly fucosylated. In some embodiments, the disclosure provides anti-TNF-alpha antibodies, wherein the antibody is highly galactosylated and highly fucosylated and has terminal sialic acid moieties on the Fc glycans. In some embodiments, the highly galactosylated antibody comprises one or more mono-galactosylated N-glycans. In some embodiments, the highly galactosylated antibody comprises bi-galactosylated N-glycans.
- the disclosure provides a monoclonal anti-TNF antibody composition
- a monoclonal anti-TNF antibody composition comprising monoclonal antibodies having on the Fc glycosylation sites (Asn 297, EU numbering) glycan structures, wherein said glycan structures have a galactose content more than 60%.
- the anti-TNF monoclonal antibodies are purified.
- the “EU numbering system” or “EU index” is generally used when referring to a residue in an immunoglobulin heavy chain constant region (e.g., the EU index reported in Kabat et al., Sequences of Proteins of Immunological Interest, 5th ed., Public Health Service, National Institutes of Health, Bethesda, Md. (1991) expressly incorporated herein by reference).
- the typical glycosylated residue position in an antibody is the asparagine at position 297 according to the EU numbering system (“Asn297”).
- anti-TNF monoclonal antibodies disclosed herein may be partially or completely purified.
- Antibodies can be glycosylated with an N-glycan at the Fc-gamma glycosylation site in the heavy chain (Asn297) of the Fc region.
- antibodies include two heavy chains and each antibody therefore can have two Fc-gamma N-glycans.
- a variety of glycosylation patterns have been observed at the Fc gamma glycosylation site and the oligosaccharides found at this site include galactose, N-acetylglucosamine (GlcNac), mannose, sialic acid, N-acetylneuraminic acid (NeuAc or NANA), N-glycolylneuraminic (NGNA) and fucose.
- N-glycans found at the Fc gamma glycosylation site generally have a common core structure consisting of an unbranched chain of a first N-acetylglucosamine (GlcNAc), which is attached to the asparagine of the antibody, a second GlcNAc that is attached to the first GlcNac and a first mannose that is attached to the second GlcNac.
- GlcNAc N-acetylglucosamine
- Two additional mannoses are attached to the first mannose of the GlcNAc-GlcNAc-mannose chain to complete the core structure and providing two “arms” for additional glycosylation.
- fucose residues may be attached to the N-linked first GlcNAc.
- the two arm core structure is also referred to as the “antenna”.
- the most common type of glycosylation of the “arms” of the N-glycan motifs found in plasma antibodies is of the complex type, i.e., consisting of more than one type of monosaccharide.
- GlcNAc transferases attach GlcNAc residues to the mannoses of the glycan core, which can be further extended by galactose, sialic acid and fucose residues. This glycosylation motif is called “complex” structure.
- a second glycosylation motif found on the “arms” of the N-glycan core structure is a “high-mannose” motif, which is characterized by additional mannoses (attached either as branched or unbranded chains).
- a third glycosylation motif is a hybrid structures in which one of the arms is mannose substituted while the other arm is complex.
- a “galactosylated” antibody refers to any antibody that has at least one galactose monosaccharide in one of its N-glycans.
- Galactosylated antibodies include antibodies where the two N-glycans each have complex type motifs on each of the arms of the N-glycan motifs, antibodies where the two N-glycans have a complex type motif on only one of the arms of the N-glycan motifs, antibodies that have one N-glycan with complex type motifs on each of the arms of the N-glycan, and antibodies that have one N-glycan with a complex type motif on only one of the arms of the N-glycan motifs.
- Antibodies that include at least one galactose monosaccharide include antibodies with N-glycans such as G1 (one galactose), G1F (one galactose, one fucose), G2 (two galactoses) and G2F (two galactoses, one fucose).
- N-glycans such as G1 (one galactose), G1F (one galactose, one fucose), G2 (two galactoses) and G2F (two galactoses, one fucose).
- the N-glycan that includes at least one galactose monosaccharide can be sialylated or not sialylated.
- the N-glycans may also contain additional galactose residues, such as alpha-Gal, in one or more arms of the complex glycan motif, potentially resulting in an N-glycan with four galactose moieties.
- a “highly galactosylated” antibody refers to an antibody that includes at least two galactose monosaccharides in the N-glycan motifs.
- Highly galactosylated antibodies include antibodies where the two N-glycans each have complex type motifs on each of the arms of the N-glycan motifs, antibodies where the two N-glycans have a complex type motif on only one of the arms of the N-glycan motifs, and antibodies that have one N-glycan with a complex type motif on each of the arms of the N-glycan.
- highly galactosylated antibodies include antibodies in which both N-glycans each include one galactose in the glycan motif (e.g., G1 or G1F), antibodies that include at least one N-glycan with two galactoses in the glycan motif (e.g., G2 or G2F), and antibodies with 3 or 4 galactoses in the glycan motif (e.g., (i) one N-glycan with a G1 glycan motif and one N-glycan with a G2 or G2F glycan motif or (ii) two N-glycan with G2 or G2F).
- glycan motif e.g., G1 or G1F
- antibodies that include at least one N-glycan with two galactoses in the glycan motif e.g., G2 or G2F
- antibodies with 3 or 4 galactoses in the glycan motif e.g., (i) one N-
- the highly galactosylated antibody includes at least three galactose monosaccharides in the glycan motifs. In some embodiments, the highly galactosylated antibody includes at least four galactose monosaccharides in the glycan motifs.
- the glycosylation exhibits a high mannose glycosylation pattern.
- a “high mannose glycosylation pattern” is intended to refer to an antibody that contains at least one oligomannose or a composition of antibodies wherein at least 30% of the antibodies contain at least one oligomannose.
- at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the carbohydrates of the antibodies are oligomannose.
- at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the carbohydrates of the antibodies are non-fucosylated oligomannose.
- less than 50%, 40%, 30%, 20%, 10%, 5% or fewer of the carbohydrates of the antibodies are fucose-containing.
- the antibodies are low in fucose and high in oligomannose. Therefore, in further embodiments at least 30%, 40%, 50%, 60%, 70%, 80% or 90% or more of the carbohydrates of the antibodies are oligomannose and less than 50%, 40%, 30%, 20%, 10% or 5% of the carbohydrates of the antibodies are fucose-containing. Therefore, in yet a further embodiment at least 30%, 40%, 50%, 60%, 70%, 80% or 90% or more of the carbohydrates of the antibodies are non-fucosylated oligomannose and less than 50%, 40%, 30%, 20%, 10% or 5% of the carbohydrates of the antibodies are fucose-containing.
- mannose-containing oligosaccharides range from Man5 to Man9, with the number indicating the number of mannose residues.
- mannose-containing oligosaccharides can include Man5, Man6, Man7, Man8 and Man9.
- transgenically produced adalimumab exhibits a high Man6 content, as revealed by goats 2, 4 and 5 described herein.
- the major carbohydrate in transgenically produced adalimumab is Man5.
- at least 10%, 15%, or more of the carbohydrates in transgenically produced adalimumab are Man5.
- at least 20% of the carbohydrates in transgenically produced adalimumab are Man5.
- the major carbohydrate in transgenically produced adalimumab is Man6. In some embodiments, at least 10%, 15%, or more of the carbohydrates in transgenically produced adalimumab are Man6. Advantageously, at least 20% of the carbohydrates in transgenically produced adalimumab are Man6 In other embodiments, the major carbohydrate in transgenically produced adalimumab is Man7. In some embodiments, at least 10%, 15%, or more of the carbohydrates in transgenically produced adalimumab are Man7. Advantageously, at least 20% of the carbohydrates in transgenically produced adalimumab are Man7.
- the glycosylation pattern of the N-glycans can be determined by a variety of methods known in the art. For example, methods of analyzing carbohydrates on proteins have been described in U.S. Patent Applications US 2006/0057638 and US 2006/0127950. The methods of analyzing carbohydrates on proteins are incorporated herein by reference.
- the highly galactosylated antibody is produced in mammary epithelial cells of a non-human mammal.
- the antibody is produced in a transgenic non-human mammal.
- the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama.
- the non-human mammal is a goat.
- the highly glycosylated antibody is produced in cells other than in mammary epithelial cells of a non-human mammal.
- the antibody is produced in cells other than in mammary epithelial cells of a non-human mammal and modified after production to increase the number of galactose groups on the N-glycan (e.g., through the action of enzymes such as transferases).
- the disclosure provides compositions comprising highly galactosylated antibodies.
- the composition comprising highly galactosylated antibodies further comprises milk.
- the composition comprising highly galactosylated antibodies further comprises a pharmaceutically-acceptable carrier.
- the disclosure provides compositions comprising monoclonal anti-TNF antibody compositions having on the Fc glycosylation sites (Asn 297, EU numbering) glycan structures, wherein said glycan structures of the monoclonal antibodies have a galactose content more than 60%.
- the composition comprising monoclonal anti-TNF antibody compositions further comprises milk.
- the composition comprising monoclonal anti-TNF antibody compositions further comprises a pharmaceutically-acceptable carrier.
- the disclosure provides a composition comprising a population of antibodies, wherein the antibody is an anti-TNF-alpha antibody, and wherein the level of galactosylation of the antibodies in the population is at least 60%. In some embodiments, the level of galactosylation of the antibodies in the population is at least 70%. In some embodiments, the level of galactosylation of the antibodies in the population is at least 80%. In some embodiments, the level of fucosylation of the antibodies in the population is at least 50%. In some embodiments, the level of fucosylation of the antibodies in the population is at least 60%. In some embodiments, the population comprises antibodies that comprise mono-galactosylated N-glycans.
- the population comprises antibodies that comprise bi-galactosylated N-glycans.
- the ratio of the level of galactosylation of the antibodies in the population to the level of fucosylation of the antibodies in the population is between 1.0 and 1.4.
- at least 35% of the antibodies in the population comprise bi-galactosylated N-glycans and at least 25% of the antibodies in the population comprise mono-galactosylated N-glycans.
- the level of sialylation in the antibodies is at least 50%.
- the level of sialylation in the antibodies is at least 70%.
- the level of sialylation in the antibodies is at least 90%.
- the antibodies are fully sialylated.
- the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation is infliximab/Remicade (Centocor), adalimumab/Humira (Abbott), or golimumab/Simponi (Centocor).
- the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation is adalimumab.
- the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a heavy chain which comprises SEQ ID NO:1.
- the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a light chain which comprises SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a heavy chain which comprises SEQ ID NO:1 and a light chain which comprises SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a heavy chain which consists of SEQ ID NO:1.
- the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a light chain that consists of SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a heavy chain which consists of SEQ ID NO:1 and a light chain that consists of SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation is adalimumab.
- N-glycans The biosynthesis of N-glycans is not regulated by a template, as is the case with proteins, but is mainly dependent on the expression and activity of specific glycosyltransferases in a cell. Therefore, a glycoprotein, such as an antibody Fc domain, normally exists as a heterogeneous population of glycoforms which carry different glycans on the same protein backbone.
- a population of anti-TNF-alpha antibodies that is highly galactosylated is a population of antibodies wherein the level of galactosylation of the antibodies in the population is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100% of galactosylation. In some embodiments of the population of antibodies that is highly galactosylated, the level of galactosylation of the antibodies in the population is at least 60%.
- the level of galactosylation as used herein is determined by the following formula:
- ⁇ l 1 n ⁇ ( ( number ⁇ ⁇ of ⁇ ⁇ Gal ) ( number ⁇ ⁇ of ⁇ ⁇ A ) * ( % ⁇ ⁇ relative ⁇ ⁇ Area ) )
- the level of galactosylation of antibodies in a population of antibodies can be determined, for instance, by releasing the N-glycans from the antibodies, resolving the N-glycans on a chromatogram, identifying the oligosaccharide motif of the N-glycan that corresponds to a specific peak, determining the peak intensity and applying the data to the formula provided above.
- Anti-TNF-alpha antibodies that are galactosylated include antibodies that are mono-galactosylated N-glycans and bi-galactosylated N-glycans.
- the population comprises antibodies that comprise mono-galactosylated N-glycans, which may or may not be sialylated.
- at least 1%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100% of the antibody N-glycans comprise mono-galactosylated N-glycans.
- at least 25% of the antibodies comprise mono-galactosylated N-glycans.
- the population comprises antibodies that comprise bi-galactosylated N-glycans, which may or may not be sialylated.
- at least 1%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100% of the antibody N-glycans comprise bi-galactosylated N-glycans.
- at least 35% of the antibodies comprise bi-galactosylated N-glycans.
- the population comprises antibodies that comprise mono-galactosylated N-glycans, which may or may not be sialylated, and antibodies that comprise bi-galactosylated N-glycans, which may or may not be sialylated.
- At least 1%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 99% of the antibody N-glycans comprise mono-galactosylated N-glycans, and at least 1%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 99% of the antibody N-glycans comprise bi-galactosylated N-glycans.
- At least 25% of the antibody N-glycans comprise mono-galactosylated N-glycans and at least 35% of the antibodies comprise bi-galactosylated N-glycans.
- the population comprises antibodies that are highly fucosylated.
- a population of antibodies that is highly fucosylated is a population of antibodies wherein the level of fucosylation of the antibody N-glycans in the population is at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100% of fucosylation.
- the level of fucosylation of the antibody N-glycans is at least 50%.
- the level of fucosylation as used herein is determined by the following formula:
- ⁇ i 1 n ⁇ ( number ⁇ ⁇ of ⁇ ⁇ Fucose ) * ( % ⁇ ⁇ relative ⁇ ⁇ Area )
- Antibodies that are fucosylated include antibodies that have at least one fucose monosaccharide in one of its N-glycans. Antibodies that are fucosylated include antibodies that have a fucose monosaccharide in each of its N-glycans.
- the population of anti-TNF-alpha antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 60% and the level of fucosylation of the antibodies in the population is at least 50%. In some embodiments, the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 50%, and the level of fucosylation of the antibody N-glycans in the population is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100%.
- the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 60%, and the level of fucosylation of the antibody N-glycans in the population is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100%.
- the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 70%, and the level of fucosylation of the antibody N-glycans in the population is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100%.
- the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 80%, and the level of fucosylation of the antibody N-glycans in the population is at least 60%, at least 70%, at least 80%, at least 90%, up to 100%. In some embodiments, the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 90%, and the level of fucosylation of the antibody N-glycans in the population is at least 60%, at least 70%, at least 80%, at least 90%, up to 100%.
- the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is up to 100% and the level of fucosylation of the antibody N-glycans in the population is at least 60%, at least 70%, at least 80%, at least 90%, up to 100%.
- the disclosure relates to a composition
- a composition comprising a population of anti-TNF-alpha antibodies with a specific ratio of the percentage of antibody N-glycans in the population that are galactosylated at the Fc-gamma-glycosylation site to the percentage of antibody N-glycans in the population that are fucosylated at the Fc-gamma-glycosylation site.
- the disclosure relates to a composition comprising a population of antibodies wherein the ratio of the level of galactosylation of the antibody N-glycans in the population to the level of fucosylation of the antibody N-glycans in the population is between 0.5 and 2.5, between 0.6 and 2.0, between 0.7 and 1.8, between 0.8 and 1.6, or between 1.0 and 1.4. In some embodiments, the disclosure relates to a composition comprising a population of antibodies wherein the ratio of the level of galactosylation of the antibody N-glycans in the population to the level of fucosylation of the antibody N-glycans in the population is between 1.0 and 1.4, for example 1.2.
- the antibodies and populations of antibodies disclosed herein are highly sialylated.
- sialylation refers to 2,6 alpha sialylation on the terminal galactose residues of the Fc glycans.
- in a population of highly sialylated antibodies at least 50% of the terminal galactose moieties are sialylated.
- in a population of highly sialylated antibodies at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and up to 100% of the terminal galactose moieties are sialylated.
- the disclosure provides populations of antibodies that are at least 60% galactosylated and in which at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and up to 100% of the terminal galactose moieties are sialylated. In some embodiments, the disclosure provides populations of antibodies that are at least 70% galactosylated and in which at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and up to 100% of the terminal galactose moieties are sialylated.
- the disclosure provides populations of antibodies that are at least 80% galactosylated and in which at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and up to 100% of the terminal galactose moieties are sialylated. In some embodiments, the disclosure provides populations of antibodies that are at least 90% galactosylated and in which at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and up to 100% of the terminal galactose moieties are sialylated.
- the population of anti-TNF-alpha antibodies with a high level of galactosylation is produced in mammary epithelial cells of a non-human mammal. In some embodiments, the population of anti-TNF-alpha antibodies is produced in a transgenic non-human mammal. In some embodiments, the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama. In some embodiments, the non-human mammal is a goat.
- the population of anti-TNF-alpha antibodies with a high level of galactosylation is produced in cells other than mammary epithelial cells of a non-human mammal.
- the population of anti-TNF-alpha antibodies is modified after production in cells other than mammary epithelial cells of a non-human mammal to increase the number of galactose groups in the population of antibodies (e.g., through the action of enzymes such as transferases).
- the disclosure provides compositions comprising populations of anti-TNF-alpha antibodies with a high level of galactosylation.
- the composition comprising anti-TNF-alpha antibodies with a high level of galactosylation further comprises milk.
- the composition comprising anti-TNF-alpha antibodies with a high level of galactosylation further comprises a pharmaceutically-acceptable carrier.
- compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation (e.g., at least 70%), wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased level of galactosylation when compared to the population of antibodies not produced in mammary gland epithelial cells.
- the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- antibodies “produced in cell culture” when compared to antibodies produced in mammary epithelial cells refers to antibodies produced in standard production cell lines (e.g., CHO cells) but excluding mammary epithelial cells.
- the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 90% or lower, 80% or lower, 70% or lower, 60% or lower, 50% or lower, 40% or lower, 30% or lower, 20% or lower, 10% or lower when compared to the level of galactosylation of the antibodies produced in mammary epithelial cells of a non-human mammal.
- the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 50% or lower when compared to the level of galactosylation of the antibodies produced in mammary epithelial cells of a non-human mammal. In some embodiments, the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 30% or lower when compared to the level of galactosylation of the antibodies produced in mammary epithelial cells of a non-human mammal.
- the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 10% or lower when compared to the level of galactosylation of the antibodies produced in mammary epithelial cells of a non-human mammal.
- compositions comprising populations of anti-TNF-alpha antibodies with high levels of fucosylation (e.g., at least 60%), wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased level of fucosylation when compared to the population of antibodies not produced in mammary gland epithelial cells.
- the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- the level of fucosylation of the antibodies not produced in mammary gland epithelial cells is 90% or lower, 80% or lower, 70% or lower, 60% or lower, 50% or lower, 40% or lower, 30% or lower, 20% or lower, 10% or lower when compared to the level of fucosylation of the antibodies produced in mammary epithelial cells of a non-human mammal. In some embodiments, the level of fucosylation of the antibodies not produced in mammary gland epithelial cells is 50% or lower when compared to the level of fucosylation of the antibodies produced in mammary epithelial cells of a non-human mammal.
- the level of fucosylation of the antibodies not produced in mammary gland epithelial cells is 30% or lower when compared to the level of fucosylation of the antibodies produced in mammary epithelial cells of a non-human mammal. In some embodiments, the level of fucosylation of the antibodies not produced in mammary gland epithelial cells is 10% or lower when compared to the level of fucosylation of the antibodies produced in mammary epithelial cells of a non-human mammal.
- compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation and fucosylation, wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased level of galactosylation and fucosylation when compared to the population of antibodies not produced in mammary gland epithelial cells.
- the term “antibody” refers to a glycoprotein comprising at least two heavy (H) chains and two light (L) chains.
- Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region.
- the heavy chain constant region is comprised of three domains, CH1, CH2 and CH3.
- Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or VL) and a light chain constant region.
- the light chain constant region is comprised of one domain, CL.
- VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR).
- CDR complementarity determining regions
- FR framework regions
- Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- the variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.
- the antigen is TNF-alpha, either in soluble form, in transmembrane form, or both.
- the constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (C1q) of the classical complement system. Formation of a mature functional antibody molecule can be accomplished when two proteins are expressed in stoichiometric quantities and self-assemble with the proper configuration.
- antibodies is also meant to encompass antigen-binding fragments thereof.
- Methods for making antibodies and antigen-binding fragments are well known in the art (see, e.g., Sambrook et al, “Molecular Cloning: A Laboratory Manual” (2nd Ed.), Cold Spring Harbor Laboratory Press (1989); Lewin, “Genes IV”, Oxford University Press, New York, (1990), and Roitt et al., “Immunology” (2nd Ed.), Gower Medical Publishing, London, New York (1989), WO2006/040153, WO2006/122786, and WO2003/002609).
- an “antigen-binding fragment” of an antibody refers to one or more portions of an antibody that retain the ability to specifically bind to an antigen, e.g., TNF-alpha. It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody.
- binding fragments encompassed within the term “antigen-binding fragment” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546) which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR).
- a Fab fragment a monovalent fragment consisting of the VL, VH, CL and CH1 domains
- a F(ab′)2 fragment a bivalent fragment comprising two Fab fragments linked by
- the two domains of the Fv fragment, V and VH are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883).
- single chain Fv single chain Fv
- Such single chain antibodies are also intended to be encompassed within the term “antigen-binding portion” of an antibody.
- the antibodies are of the isotype IgG, IgA or IgD.
- the antibodies are selected from the group consisting of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD, IgE or has immunoglobulin constant and/or variable domain of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD or IgE.
- the antibodies are bispecific or multispecific antibodies.
- the antibodies of the present disclosure can be modified to be in the form of a bispecific antibody, or a multispecific antibody.
- bispecific antibody is intended to include any agent, e.g., a protein, peptide, or protein or peptide complex, which has two different binding specificities which bind to, or interact with (a) a cell surface antigen and (b) an Fc receptor on the surface of an effector cell.
- multispecific antibody is intended to include any agent, e.g., a protein, peptide, or protein or peptide complex, which has more than two different binding specificities which bind to, or interact with (a) a cell surface antigen, (b) an Fc receptor on the surface of an effector cell, and (c) at least one other component.
- the disclosure includes, but is not limited to, bispecific, trispecific, tetraspecific, and other multispecific antibodies which are directed to cell surface antigens, and to Fc receptors on effector cells.
- bispecific antibodies further includes diabodies.
- Diabodies are bivalent, bispecific antibodies in which the VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen-binding sites (see e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poijak, R. J., et al. (1994) Structure 2:1121-1123).
- antibodies also encompasses different types of antibodies, e.g., recombinant antibodies, monoclonal antibodies, humanized antibodies or chimeric antibodies, or a mixture of these.
- the antibodies are recombinant antibodies.
- the term “recombinant antibody”, as used herein, is intended to include antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from an animal that is transgenic for another species' immunoglobulin genes, antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a recombinant, combinatorial antibody library, or antibodies prepared, expressed, created or isolated by any other means that involves splicing of immunoglobulin gene sequences to other DNA sequences.
- the antibodies can be chimeric or humanized antibodies.
- the term “chimeric antibody” refers to an antibody that combines parts of a non-human (e.g., mouse, rat, rabbit) antibody with parts of a human antibody.
- the term “humanized antibody” refers to an antibody that retains only the antigen-binding CDRs from the parent antibody in association with human framework regions (see, Waldmann, 1991, Science 252:1657). Such chimeric or humanized antibodies retaining binding specificity of the murine antibody are expected to have reduced immunogenicity when administered in vivo for diagnostic, prophylactic or therapeutic applications according to the disclosure.
- the antibodies are human antibodies.
- the term “human antibody”, as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences.
- the human antibodies of the disclosure may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo).
- Human antibodies are generated using transgenic mice carrying parts of the human immune system rather than the mouse system. Fully human monoclonal antibodies also can be prepared by immunizing mice transgenic for large portions of human immunoglobulin heavy and light chain loci. See, e.g., U.S. Pat. Nos.
- mice have been genetically modified such that there is a functional deletion in the production of endogenous (e.g., murine) antibodies.
- the animals are further modified to contain all or a portion of the human germ-line immunoglobulin gene locus such that immunization of these animals results in the production of fully human antibodies to the antigen of interest.
- monoclonal antibodies are prepared according to standard hybridoma technology. These monoclonal antibodies have human immunoglobulin amino acid sequences and therefore will not provoke human anti-mouse antibody (HAMA) responses when administered to humans.
- the human antibodies like any of the antibodies provided herein can be monoclonal antibodies.
- the antibody is a full-length antibody. In some embodiments the full-length antibody comprises a heavy chain and a light chain. In some embodiments, the antibody is an anti-TNF-alpha antibody. In some embodiments, the heavy chain comprises SEQ ID NO: 1 and the light chain comprises SEQ ID NO: 2. In some embodiments, the antibody is adalimumab.
- compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation have high complement dependent cytotoxicity (CDC) activity.
- compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation have high antibody-dependent cellular cytotoxicity (ADCC) activity.
- compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation have high complement dependent cytotoxicity (CDC) activity and have high antibody-dependent cellular cytotoxicity (ADCC) activity.
- the population of anti-TNF-alpha antibodies with high levels of galactosylation has an increased level of complement dependent cytotoxicity (CDC) activity when compared to a population of antibodies that have low levels of galactosylation.
- CDC complement dependent cytotoxicity
- the population of antibodies with high levels of galactosylation and the population of antibodies that have low levels of galactosylation are directed to the same antigen epitope.
- the population of antibodies that is highly galactosylated and the population of antibodies that have low levels of galactosylation are encoded by the same nucleic acid.
- the nucleic acid encodes the antibody adalimumab.
- a population of antibodies that has low levels of galactosylation refers to a population of antibodies wherein the level of galactosylation of the antibodies in the population is less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, down to 0%.
- the CDC activity of a population of antibodies with high levels of galactosylation is at least 1.1 times higher, at least 1.2 times higher, at least 1.3 times higher, at least 1.4 times higher, at least 1.5 times higher, at least 1.6 times higher, at least 1.7 times higher, at least 1.8 times higher, at least 1.9 times higher, at least 2 times higher, at least 3 times higher, at least 5 times higher, at least 10 times higher, up to at least 100 times higher or more when compared to a population of antibodies that have low levels of galactosylation.
- the population of antibodies that are highly galactosylated are highly fucosylated (have high levels of fucosylation). In some embodiments, the population of antibodies that are highly galactosylated and highly fucosylated has an increased level of complement dependent cytotoxicity (CDC) activity when compared to a population of antibodies that are low galactose and low fucose (have low levels of galactosylation and fucosylation). In some embodiments, the population of antibodies that is highly galactosylated and highly fucosylated and the population of antibodies that is low galactose and low fucose are directed to the same antigen epitope.
- CDC complement dependent cytotoxicity
- the population of antibodies that is highly galactosylated and highly fucosylated and the population of antibodies that is low galactose and low fucose are encoded by the same nucleic acid.
- the nucleic acid encodes the antibody adalimumab.
- a population of antibodies that are low fucose or that have low levels of fucosylation refers to a population of antibodies wherein the level of fucosylation of the antibodies in the population is less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, down to 0%.
- the CDC activity of a population of antibodies that is highly galactosylated and highly fucosylated is at least 1.1 times higher, at least 1.2 times higher, at least 1.3 times higher, at least 1.4 times higher, at least 1.5 times higher, at least 1.6 times higher, at least 1.7 times higher, at least 1.8 times higher, at least 1.9 times higher, at least 2 times higher, at least 3 times higher, at least 5 times higher, at least 10 times higher, up to at least 100 times higher or more when compared to a population of antibodies that is low galactose and low fucose.
- the population of antibodies that is highly galactosylated and is produced in mammary gland epithelial cells has an increased level of complement dependent cytotoxicity (CDC) activity when compared to a population of antibodies that is not produced in mammary gland epithelial cells.
- the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- the population of antibodies that is highly galactosylated produced in mammary gland epithelial cells and the population of antibodies that is not produced in mammary gland epithelial cells may be encoded by the same nucleic acid.
- the nucleic acid encodes the antibody adalimumab.
- the CDC activity of a population of antibodies that is highly galactosylated and is produced in mammary gland epithelial cells is at least 1.1 times higher, at least 1.2 times higher, at least 1.3 times higher, at least 1.4 times higher, at least 1.5 times higher, at least 1.6 times higher, at least 1.7 times higher, at least 1.8 times higher, at least 1.9 times higher, at least 2 times higher, at least 3 times higher, at least 5 times higher, at least 10 times higher, up to at least 100 times higher or more when compared to a population of antibodies that is not produced in mammary gland epithelial cells.
- compositions of the populations of antibodies disclosed herein have a high (complement dependent cytotoxicity) CDC activity.
- Antibodies can act as a therapeutic through various mechanisms, one of which is through CDC activity.
- Some therapeutic antibodies that bind to target cellular receptors can also bind proteins of the complement pathway. Binding of the complement proteins results in a complement cascade (through C1-complex activation) that eventually results in the formation of a “membrane attack complex” causing cell lysis and death of the cell to which the therapeutic antibody is bound (See e.g., Reff M. E. Blood 1994, 83: 435).
- a population of antibodies that has an increased level of complement dependent cytotoxicity (CDC) activity is a population of antibodies that induces a larger amount of cell lysis as compared to a population of antibodies that has does not have an increased level of complement dependent cytotoxicity (CDC) activity.
- Methods for determining the level of CDC are known in the art and are often based on determining the amount of cell lysis. Commercial kits for determining CDC activity can be purchased for instance from Genscript (Piscataway, N.J.).
- the population of anti-TNF-alpha antibodies with high levels of galactosylation has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity when compared to a population of antibodies that have low levels of galactosylation.
- the disclosure provides compositions comprising populations of anti-TNF-alpha antibodies with a high level of galactosylation wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells.
- ADCC antibody-dependent cellular cytotoxicity
- the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- the population of anti-TNF-alpha antibodies with high levels of galactosylation e.g., at least 70%
- ADCC antibody-dependent cellular cytotoxicity
- the population of antibodies that are highly galactosylated has an increased level of antibody-dependent cellular cytotoxicity (ADCC) when compared to a population of antibodies that are low galactose.
- ADCC activity of a population of antibodies that is highly galactosylated is at least 1.1 times higher, 1.2 times higher, 1.3 times higher, 1.4 times higher, 1.5 times higher, 1.6 times higher, 1.7 times higher, 1.8 times higher, 1.9 times higher, 2 times higher, 3 times higher, 5 times higher, 10 times higher, 100 times higher or more when compared to a population of antibodies that are low galactose.
- the population of antibodies that are highly galactosylated and is produced in mammary gland epithelial cells has an increased level of antibody-dependent cellular cytotoxicity (ADCC) when compared to a population of antibodies that is not produced in mammary gland epithelial cells.
- ADCC antibody-dependent cellular cytotoxicity
- the ADCC activity of a population of antibodies that is highly galactosylated and produced in mammary gland epithelial cells is at least 1.1 times higher, 1.2 times higher, 1.3 times higher, 1.4 times higher, 1.5 times higher, 1.6 times higher, 1.7 times higher, 1.8 times higher, 1.9 times higher, 2 times higher, 3 times higher, 5 times higher, 10 times higher, 100 times higher or more when compared to a population of antibodies that is not produced in mammary gland epithelial cells.
- the population of antibodies that is highly galactosylated and is produced in mammary gland epithelial cells has an increased level of antibody-dependent cellular cytotoxicity (ADCC) when compared to a population of antibodies that is not produced in mammary gland epithelial cells.
- ADCC antibody-dependent cellular cytotoxicity
- the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- compositions of the populations of antibodies disclosed herein have a high ADCC activity.
- Antibodies can act as a therapeutic through various mechanisms, one of which is through ADCC activity.
- Therapeutic antibodies that bind to cellular receptors on a target cell, and that include the Fc glycosylation site can also bind the Fc-receptor resulting in the anchoring of cells expressing the Fc-receptor to the target cell.
- the affinity of binding of the Fc regions of antibodies generally is dependent on the nature of the glycosylation of the Fc glycosylation site.
- the Fc receptor is found on a number of immune cells including natural killer cells, macrophages, neutrophils, and mast cells.
- a population of antibodies that has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity is a population of antibodies that shows increased binding to cells expressing CD16 as compared to a population of antibodies that does not have an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity.
- ADCC antibody-dependent cellular cytotoxicity
- a population of antibodies that has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity is a population of antibodies that shows increased induction of IL-2 production (e.g., in natural killer cells) as compared to a population of antibodies that has does not have an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity.
- ADCC antibody-dependent cellular cytotoxicity
- Commercial kits for determining ADCC activity can be purchased for instance from Genscript (Piscataway, N.J.) and Promega (Madison, Wis.).
- determining ADCC activity is performed by evaluating the ability to bind CD16.
- the population of anti-TNF-alpha antibodies with high levels of galactosylation has an increased ability to suppress TNF-alpha activity in a subject when compared to a population of antibodies that have low levels of galactosylation.
- the disclosure provides compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation, wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased ability to suppress TNF-alpha activity in a subject when compared to a population of antibodies not produced in mammary gland epithelial cells.
- compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation, wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased ability to bind soluble TNF-alpha when compared to a population of antibodies not produced in mammary gland epithelial cells.
- compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation, wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased ability to bind transmembrane TNF-alpha when compared to a population of antibodies not produced in mammary gland epithelial cells.
- the population of antibodies that are highly galactosylated has an increased ability to suppress TNF-alpha activity, bind soluble TNF-alpha and/or bind transmembrane TNF-alpha when compared to a population of antibodies that are low galactose.
- the increased ability to suppress TNF-alpha activity, bind soluble TNF-alpha and/or bind transmembrane TNF-alpha of a population of antibodies that is highly galactosylated is at least 1.1 times higher, 1.2 times higher, 1.3 times higher, 1.4 times higher, 1.5 times higher, 1.6 times higher, 1.7 times higher, 1.8 times higher, 1.9 times higher, 2 times higher, 3 times higher, 5 times higher, 10 times higher, 100 times higher or more when compared to a population of antibodies that are low galactose.
- the population of antibodies that are highly galactosylated and is produced in mammary gland epithelial cells has an increased ability to suppress TNF-alpha activity, bind soluble TNF-alpha and/or bind transmembrane TNF-alpha when compared to a population of antibodies that is not produced in mammary gland epithelial cells.
- the increased ability to suppress TNF-alpha activity, bind soluble TNF-alpha and/or bind transmembrane TNF-alpha of a population of antibodies that is highly galactosylated and produced in mammary gland epithelial cells is at least 1.1 times higher, 1.2 times higher, 1.3 times higher, 1.4 times higher, 1.5 times higher, 1.6 times higher, 1.7 times higher, 1.8 times higher, 1.9 times higher, 2 times higher, 3 times higher, 5 times higher, 10 times higher, 100 times higher or more when compared to a population of antibodies that is not produced in mammary gland epithelial cells.
- the population of antibodies that is highly galactosylated and is produced in mammary gland epithelial cells has increased ability to suppress TNF-alpha activity, bind soluble TNF-alpha and/or bind transmembrane TNF-alpha when compared to a population of antibodies that is not produced in mammary gland epithelial cells.
- the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- the populations of anti-TNF-alpha antibodies produced in mammary gland epithelial cells are superior to non-mammary gland epithelial cells produced antibodies in suppressing TNF-alpha activity in a subject.
- Determining the level of TNF-alpha activity in a subject can be evaluated for instance, by administering the population of antibodies to a subject suffering from a disease characterized by increased TNF-alpha activity (e.g., rheumatoid arthritis) or an established model for such a disease. (See e.g., Horiuchi et al., Rheumatology et al. 49:1215).
- the populations of anti-TNF-alpha antibodies produced in mammary gland epithelial cells are superior to non-mammary gland epithelial cells produced antibodies in binding soluble TNF-alpha. In some embodiments, the populations of anti-TNF-alpha antibodies produced in mammary gland epithelial cells are superior to non-mammary gland epithelial cells produced antibodies in binding transmembrane TNF-alpha. Assays for determining the level of binding to soluble TNF-alpha or transmembrane TNF-alpha are well-established (See e.g., Horiuchi et al., Rheumatology et al. 49:1215).
- the disclosure provides mammary gland epithelial cells that produce highly galactosylated anti-TNF-alpha antibodies or populations of anti-TNF-alpha antibodies with a high level of galactosylation.
- the disclosure provides a transgenic non-human mammal that produces highly galactosylated anti-TNF-alpha antibody or populations of anti-TNF-alpha antibodies with a high level of galactosylation
- the disclosure relates to mammalian mammary epithelial cells that produce glycosylated antibodies.
- Methods are provided herein for producing glycosylated antibodies in mammalian mammary epithelial cells. This can be accomplished in cell culture by culturing mammary epithelial cell (in vitro or ex vivo). This can also be accomplished in a transgenic animal (in vivo).
- the mammalian mammary gland epithelial cells are in a transgenic animal.
- the mammalian mammary gland epithelial cells have been engineered to express recombinant antibodies in the milk of a transgenic animal, such as a mouse or goat.
- the expression of the gene(s) encoding the recombinant protein can be, for example, under the control of the goat ⁇ -casein regulatory elements.
- Expression of recombinant proteins, e.g., antibodies, in both mice and goat milk has been established previously (see, e.g., US Patent Application US-2008-0118501-A1).
- the expression is optimized for individual mammary duct epithelial cells that produce milk proteins.
- Transgenic animals capable of producing recombinant antibodies can be generated according to methods known in the art (see, e.g., U.S. Pat. No. 5,945,577 and US Patent Application US-2008-0118501-A1).
- Animals suitable for transgenic expression include, but are not limited to goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama.
- Suitable animals also include bovine, caprine, ovine and porcine, which relate to various species of cows, goats, sheep and pigs (or swine), respectively.
- Suitable animals also include ungulates.
- ungulate is of or relating to a hoofed typically herbivorous quadruped mammal, including, without limitation, sheep, swine, goats, cattle and horses. Suitable animals also include dairy animals, such as goats and cattle, or mice. In some embodiments, the animal suitable for transgenic expression is a goat.
- transgenic animals are generated by generation of primary cells comprising a construct of interest followed by nuclear transfer of primary cell nucleus into enucleated oocytes.
- Primary cells comprising a construct of interest are produced by injecting or transfecting primary cells with a single construct comprising the coding sequence of an antibody of interest, e.g., the heavy and light chains of adalimumab, or by co-transfecting or co-injecting primary cells with separate constructs comprising the coding sequences of the heavy and light chains of an antibody, e.g., adalimumab.
- These cells are then expanded and characterized to assess transgene copy number, transgene structural integrity and chromosomal integration site.
- nuclear transfer refers to a method of cloning wherein the nucleus from a donor cell is transplanted into an enucleated oocyte.
- Coding sequences for antibodies to be expressed in mammalian mammary epithelial cells can be obtained by screening libraries of genomic material or reverse-translated messenger RNA derived from the animal of choice (such as humans, cattle or mice), from sequence databases such as NCBI, Genbank, or by obtaining the sequences of antibodies using methods known in the art, e.g. peptide mapping.
- the sequences can be cloned into an appropriate plasmid vector and amplified in a suitable host organism, like E. coli .
- a “vector” may be any of a number of nucleic acids into which a desired sequence may be inserted by restriction and ligation for transport between different genetic environments or for expression in a host cell.
- Vectors are typically composed of DNA although RNA vectors are also available. Vectors include, but are not limited to, plasmids and phagemids.
- a cloning vector is one which is able to replicate in a host cell, and which is further characterized by one or more endonuclease restriction sites at which the vector may be cut in a determinable fashion and into which a desired DNA sequence may be ligated such that the new recombinant vector retains its ability to replicate in the host cell.
- An expression vector is one into which a desired DNA sequence may be inserted by restriction and ligation such that it is operably joined to regulatory sequences and may be expressed as an RNA transcript.
- Vectors may further contain one or more marker sequences suitable for use in the identification of cells which have or have not been transformed or transfected with the vector.
- Markers include, for example, genes encoding proteins which increase or decrease either resistance or sensitivity to antibiotics or other compounds, genes which encode enzymes whose activities are detectable by standard assays known in the art (e.g., ⁇ -galactosidase or alkaline phosphatase), and genes which visibly affect the phenotype of transformed or transfected cells, hosts, colonies or plaques.
- the coding sequence of antibodies or the heavy and light chains of antibodies of interest can be operatively linked to a control sequence which enables the coding sequence to be expressed in the milk of a transgenic non-human mammal.
- the DNA construct can be excised, purified from the remains of the vector and introduced into expression vectors that can be used to produce transgenic animals.
- the transgenic animals will have the desired transgenic protein integrated into their genome.
- a DNA sequence which is suitable for directing production to the milk of transgenic animals can carry a 5′-promoter region derived from a naturally-derived milk protein. This promoter is consequently under the control of hormonal and tissue-specific factors and is most active in lactating mammary tissue. In some embodiments the promoter used is a milk-specific promoter.
- a “milk-specific promoter” is a promoter that naturally directs expression of a gene in a cell that secretes a protein into milk (e.g., a mammary epithelial cell) and includes, for example, the casein promoters, e.g., ⁇ -casein promoter (e.g., alpha S-1 casein promoter and alpha S2-casein promoter), ⁇ -casein promoter (e.g., the goat beta casein gene promoter (DiTullio, B IOTECHNOLOGY 10:74-77, 1992), ⁇ -casein promoter, K-casein promoter, whey acidic protein (WAP) promoter (Gorton et al., B IOTECHNOLOGY 5: 1183-1187, 1987), ⁇ -lactoglobulin promoter (Clark et al., B IOTECHNOLOGY 7: 487-492, 1989) and ⁇ -lactalbumin promoter (Soulier
- promoters that are specifically activated in mammary tissue, such as, for example, the long terminal repeat (LTR) promoter of the mouse mammary tumor virus (MMTV).
- LTR long terminal repeat
- MMTV mouse mammary tumor virus
- the promoter is a caprine beta casein promoter.
- the promoter can be operably linked to a DNA sequence directing the production of a protein leader sequence which directs the secretion of the transgenic protein across the mammary epithelium into the milk.
- a coding sequence and regulatory sequences e.g., a promoter
- a “leader sequence” or “signal sequence” is a nucleic acid sequence that encodes a protein secretory signal, and, when operably linked to a downstream nucleic acid molecule encoding a transgenic protein directs secretion.
- the leader sequence may be the native human leader sequence, an artificially-derived leader, or may be obtained from the same gene as the promoter used to direct transcription of the transgene coding sequence, or from another protein that is normally secreted from a cell, such as a mammalian mammary epithelial cell.
- a 3′-sequence which can be derived from a naturally secreted milk protein, can be added to improve stability of mRNA.
- the heavy and light chain constructs can be transfected into primary goat skin epithelial cells, which are expanded and fully characterized to assess transgene copy number, transgene structural integrity and chromosomal integration site.
- nuclear transfer refers to a method of cloning wherein the nucleus from a donor cell is transplanted into an enucleated oocyte.
- Cloning will result in a multiplicity of transgenic animals—each capable of producing an antibody or other gene construct of interest.
- the production methods include the use of the cloned animals and the offspring of those animals.
- Cloning also encompasses the nuclear transfer of fetuses, nuclear transfer, tissue and organ transplantation and the creation of chimeric offspring.
- One step of the cloning process comprises transferring the genome of a cell, e.g., a primary cell that contains the transgene of interest into an enucleated oocyte.
- transgene refers to any piece of a nucleic acid molecule that is inserted by artifice into a cell, or an ancestor thereof, and becomes part of the genome of an animal which develops from that cell.
- a transgene may include a gene which is partly or entirely exogenous (i.e., foreign) to the transgenic animal, or may represent a gene having identity to an endogenous gene of the animal.
- Suitable mammalian sources for oocytes include goats, sheep, cows, pigs, rabbits, guinea pigs, mice, hamsters, rats, non-human primates, etc.
- oocytes are obtained from ungulates, and most preferably goats or cattle.
- oocytes may preferably be matured in vivo before these cells may be used as recipient cells for nuclear transfer, and before they were fertilized by the sperm cell to develop into an embryo.
- Metaphase II stage oocytes which have been matured in vivo, have been successfully used in nuclear transfer techniques. Essentially, mature metaphase II oocytes are collected surgically from either non-super ovulated or super ovulated animals several hours past the onset of estrus or past the injection of human chorionic gonadotropin (hCG) or similar hormone.
- hCG human chorionic gonadotropin
- the transgenic animals e.g., goats
- mammary epithelial cells are generated through microinjection.
- Microinjection in goats is described for instance in U.S. Pat. No. 7,928,064. Briefly, fertilized goat eggs are collected from the PBS oviductal flushings on a stereomicroscope, and washed in medium containing 10% fetal bovine serum (FBS). In cases where the pronuclei were visible, the embryos can be immediately microinjected. If pronuclei are not visible, the embryos can be placed media for short term culture until the pronuclei became visible (Selgrath, et al., Theriogenology, 1990. p. 1195-1205).
- FBS fetal bovine serum
- One-cell goat embryos are placed in a microdrop of medium under oil on a glass depression slide. Fertilized eggs having two visible pronuclei and can be immobilized on a flame-polished holding micropipet on an upright microscope with a fixed stage.
- a pronucleus can be microinjected with the appropriate antibody encoding construct in injection buffer using a fine glass microneedle (Selgrath, et al., Theriogenology, 1990. p. 1195-1205). After microinjection, surviving embryos are placed in a culture and incubated until the recipient animals are prepared for embryo transfer (Selgrath, et al., Theriogenology, 1990. p. 1195-1205).
- the disclosure provides mammary gland epithelial cells that produce the antibodies or populations of antibodies disclosed herein.
- the antibody comprises a nucleic acid comprising SEQ ID NO: 3 and a nucleic acid comprising SEQ ID NO: 4.
- the nucleic acid comprising SEQ ID NO: 3 and the nucleic acid comprising SEQ ID NO: 4 are connected. “Connected” is used herein to mean the nucleic acids are physically linked, e.g., within the same vector or within approximately the same genomic location.
- the mammary epithelial cells above are in a transgenic non-human mammal.
- the transgenic non-human mammal is a goat.
- a nucleic acid sequence encoding the heavy chain of adalimumab is provided in SEQ ID NO:3:
- a nucleic acid sequence encoding the light chain of adalimumab is provided in SEQ ID NO:4:
- the disclosure provides a method for the production of a transgenic antibody, and populations thereof, the process comprising expressing in the milk of a transgenic non-human mammal a transgenic antibody encoded by a nucleic acid construct.
- the method for producing the antibodies of the disclosure comprises:
- the anti-TNF-alpha antibody is adalimumab.
- the transgene DNA construct comprises SEQ ID NO:3 and/or SEQ ID NO:4.
- the non-human transgenic mammal is a goat.
- the disclosure provides a method of:
- the anti-TNF-alpha antibody comprises a heavy chain comprising SEQ ID NO:1 and a light chain comprising SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody is adalimumab.
- lactation One of the tools used to predict the quantity and quality of the recombinant protein expressed in the mammary gland is through the induction of lactation (Ebert K M, 1994). Induced lactation allows for the expression and analysis of protein from the early stage of transgenic production rather than from the first natural lactation resulting from pregnancy, which is at least a year later. Induction of lactation can be done either hormonally or manually.
- compositions of glycosylated antibodies provided herein further comprise milk.
- the methods provided herein include a step of isolating a population of antibodies from the milk of a transgenic animal. Methods for isolating antibodies from the milk of transgenic animal are known in the art and are described for instance in Pollock et al., Journal of Immunological Methods, Volume 231, Issues 1-2, 10 Dec. 1999, Pages 147-157.
- the methods provided herein include a step of purifying glycosylated antibodies with a desired amount of galactosylation.
- the disclosure provides methods comprising administering highly galactosylated antibodies, compositions of highly galactosylated antibodies, populations of antibodies with a high level of galactosylated antibodies or compositions comprising populations of antibodies with a high level of galactosylated antibodies, to a subject in need thereof.
- the subject has an inflammatory disorder or autoimmune disorder.
- the inflammatory disorder or autoimmune disorder is rheumatoid arthritis, psoriasis, Crohn's disease, juvenile idiopathic arthritis, ankylozing spondylitis, ulcerative colitis, chronic inflammation, hepatitis, Behcet's disease, Wegener's granulomatosis, or sarcoidosis.
- the disclosure provides methods for administering any one of antibodies or compositions described herein to a subject in need thereof.
- the subject has an immune disorder or disorder associated with inflammation.
- Immune disorders and disorders associated with inflammation include but are not limited, to adult respiratory distress syndrome, arteriosclerosis, asthma, atherosclerosis, cholecystitis, cirrhosis, Crohn's disease, diabetes mellitus, emphysema, hypereosinophilia, inflammation, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, rheumatoid arthritis, scleroderma, colitis, systemic lupus erythematosus, lupus nephritis, diabetes mellitus, inflammatory bowel disease, celiac disease, an autoimmune thyroid disease, Addison's disease, Sjogren's
- a subject in need of treatments is a subject with a disease characterized by a dysregulation of TNF levels.
- Disease characterized by a dysregulation of TNF levels include Alzheimer, cancer and depression.
- compositions which comprise an amount of an antibody or population of antibodies and a pharmaceutically acceptable vehicle, diluent or carrier.
- the compositions comprise milk.
- the disclosure provides a method of treating a subject, comprising administering to a subject a composition provided in an amount effective to treat a disease the subject has or is at risk of having is provided.
- the subject is a human.
- the subject is a non-human animal, e.g., a dog, cat, horse, cow, pig, sheep, goat or primate.
- therapeutically effective or “an amount effective to treat” denotes the amount of antibody or of a composition needed to inhibit or reverse a disease condition (e.g., to treat the inflammation). Determining a therapeutically effective amount specifically depends on such factors as toxicity and efficacy of the medicament. These factors will differ depending on other factors such as potency, relative bioavailability, patient body weight, severity of adverse side-effects and preferred mode of administration. Toxicity may be determined using methods well known in the art. Efficacy may be determined utilizing the same guidance. Efficacy, for example, can be measured by a decrease in inflammation. A pharmaceutically effective amount, therefore, is an amount that is deemed by the clinician to be toxicologically tolerable, yet efficacious.
- Dosage may be adjusted appropriately to achieve desired drug (e.g., anti-TNF-alpha antibodies) levels, local or systemic, depending upon the mode of administration. In the event that the response in a subject is insufficient at such doses, even higher doses (or effective higher doses by a different, more localized delivery route) may be employed to the extent that patient tolerance permits. Multiple doses per day are contemplated to achieve appropriate systemic levels of antibodies. Appropriate systemic levels can be determined by, for example, measurement of the patient's peak or sustained plasma level of the drug. “Dose” and “dosage” are used interchangeably herein.
- the amount of antibody or pharmaceutical composition administered to a subject is 50 to 500 mg/kg, 100 to 400 mg/kg, or 200 to 300 mg/kg per week. In one embodiment the amount of antibody or pharmaceutical composition administered to a subject is 250 mg/kg per week. In some embodiments, an initial dose of 400 mg/kg is administered a subject the first week, followed by administration of 250 mg/kg to the subject in subsequent weeks. In some embodiments the administration rate is less than 10 mg/min. In some embodiments, administration of the antibody or pharmaceutical composition to a subject occurs at least one hour prior to treatment with another therapeutic agent. In some embodiments, a pre-treatment is administered prior to administration of the antibody or pharmaceutical composition.
- compositions provided are employed for in vivo applications.
- the compositions used may be in the dosage form of solid, semi-solid or liquid such as, e.g., tablets, pills, powders, capsules, gels, ointments, liquids, suspensions, or the like.
- the compositions are administered in unit dosage forms suitable for single administration of precise dosage amounts.
- the compositions may also include, depending on the formulation desired, pharmaceutically acceptable carriers or diluents, which are defined as aqueous-based vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. The diluent is selected so as not to affect the biological activity of the human recombinant protein of interest.
- diluents examples include distilled water, physiological saline, Ringer's solution, dextrose solution, and Hank's solution. The same diluents may be used to reconstitute a lyophilized recombinant protein of interest.
- the pharmaceutical composition may also include other medicinal agents, pharmaceutical agents, carriers, adjuvants, nontoxic, non-therapeutic, non-immunogenic stabilizers, etc. Effective amounts of such diluent or carrier are amounts which are effective to obtain a pharmaceutically acceptable formulation in terms of solubility of components, biological activity, etc.
- the compositions provided herein are sterile.
- Administration during in vivo treatment may be by any number of routes, including oral, parenteral, intramuscular, intranasal, sublingual, intratracheal, inhalation, ocular, vaginal, and rectal.
- Intracapsular, intravenous, and intraperitoneal routes of administration may also be employed.
- the route of administration varies depending on the disorder to be treated.
- the compositions or antibodies herein may be administered to a subject via oral, parenteral or topical administration.
- the compositions or antibodies herein are administered by intravenous infusion.
- compositions when it is desirable to deliver them systemically, may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
- Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
- the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- compositions for parenteral administration include aqueous solutions of the active compositions in water soluble form.
- suspensions of the active compositions may be prepared as appropriate oily injection suspensions.
- Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
- Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
- the suspension may also contain suitable stabilizers or agents which increase the solubility of the compositions to allow for the preparation of highly concentrated solutions.
- the active compositions may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate).
- binding agents e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose
- fillers e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate
- lubricants e.g., magnesium stearate, talc or silica
- disintegrants e.g., potato starch
- Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use.
- Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid).
- suspending agents e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats
- emulsifying agents e.g., lecithin or acacia
- non-aqueous vehicles e.g., almond oil, oily esters, ethy
- the preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.
- the component or components may be chemically modified so that oral delivery of the antibodies is efficacious.
- the chemical modification contemplated is the attachment of at least one molecule to the antibodies, where said molecule permits (a) inhibition of proteolysis; and (b) uptake into the blood stream from the stomach or intestine.
- Also desired is the increase in overall stability of the antibodies and increase in circulation time in the body.
- Examples of such molecules include: polyethylene glycol, copolymers of ethylene glycol and propylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone and polyproline.
- One skilled in the art has available formulations which will not dissolve in the stomach, yet will release the material in the duodenum or elsewhere in the intestine. Preferably, the release will avoid the deleterious effects of the stomach environment, either by protection of the antibody or by release of the biologically active material beyond the stomach environment, such as in the intestine.
- compositions may take the form of tablets or lozenges formulated in conventional manner.
- compositions for use according to the present disclosure may be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide
- compositions can be delivered to the lungs of a mammal while inhaling and traverses across the lung epithelial lining to the blood stream.
- Contemplated for use in the practice of this disclosure are a wide range of mechanical devices designed for pulmonary delivery of therapeutic products, including but not limited to nebulizers, metered dose inhalers, and powder inhalers, all of which are familiar to those skilled in the art.
- Nasal delivery of a pharmaceutical composition disclosed herein is also contemplated.
- Nasal delivery allows the passage of a pharmaceutical composition of the present disclosure to the blood stream directly after administering the therapeutic product to the nose, without the necessity for deposition of the product in the lung.
- Formulations for nasal delivery include those with dextran or cyclodextran.
- compositions may also be formulated in rectal or vaginal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
- compositions also may comprise suitable solid or gel phase carriers or excipients.
- suitable solid or gel phase carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
- Suitable liquid or solid pharmaceutical preparation forms are, for example, aqueous or saline solutions for inhalation, microencapsulated, encochleated, coated onto microscopic gold particles, contained in liposomes, nebulized, aerosols, pellets for implantation into the skin, or dried onto a sharp object to be scratched into the skin.
- the pharmaceutical compositions also include granules, powders, tablets, coated tablets, (micro)capsules, suppositories, syrups, emulsions, suspensions, creams, drops or preparations with protracted release of active compositions, in whose preparation excipients and additives and/or auxiliaries such as disintegrants, binders, coating agents, swelling agents, lubricants, flavorings, sweeteners or solubilizers are customarily used as described above.
- the pharmaceutical compositions are suitable for use in a variety of drug delivery systems. For a brief review of methods for drug delivery, see Langer, Science 249:1527-1533, 1990, which is incorporated herein by reference.
- the antibodies and optionally other therapeutics may be administered per se (neat) or in the form of a pharmaceutically acceptable salt.
- the salts should be pharmaceutically acceptable, but non-pharmaceutically acceptable salts may conveniently be used to prepare pharmaceutically acceptable salts thereof.
- Such salts include, but are not limited to, those prepared from the following acids: hydrochloric, hydrobromic, sulphuric, nitric, phosphoric, maleic, acetic, salicylic, p-toluene sulphonic, tartaric, citric, methane sulphonic, formic, malonic, succinic, naphthalene-2-sulphonic, and benzene sulphonic.
- such salts can be prepared as alkaline metal or alkaline earth salts, such as sodium, potassium or calcium salts of the carboxylic acid group.
- Suitable buffering agents include: acetic acid and a salt (1-2% w/v); citric acid and a salt (1-3% w/v); boric acid and a salt (0.5-2.5% w/v); and phosphoric acid and a salt (0.8-2% w/v).
- Suitable preservatives include benzalkonium chloride (0.003-0.03% w/v); chlorobutanol (0.3-0.9% w/v); parabens (0.01-0.25% w/v) and thimerosal (0.004-0.02% w/v).
- compositions of the disclosure contain an effective amount of the antibodies and optionally therapeutic agents included in a pharmaceutically-acceptable carrier.
- pharmaceutically-acceptable carrier means one or more compatible solid or liquid filler, diluents or encapsulating substances which are suitable for administration to a human or other vertebrate animal.
- carrier denotes an organic or inorganic ingredient, natural or synthetic, with which the active ingredient is combined to facilitate the application.
- the components of the pharmaceutical compositions also are capable of being commingled with the compositions of the present disclosure, and with each other, in a manner such that there is no interaction which would substantially impair the desired pharmaceutical efficiency.
- the therapeutic agent(s), including specifically but not limited to the antibodies, may be provided in particles.
- Particles as used herein means nano or microparticles (or in some instances larger) which can consist in whole or in part of the antibody or other therapeutic agents administered with the antibody.
- the particle may include, in addition to the therapeutic agent(s), any of those materials routinely used in the art of pharmacy and medicine, including, but not limited to, erodible, nonerodible, biodegradable, or nonbiodegradable material or combinations thereof.
- the particles may be microcapsules which contain the antibody in a solution or in a semi-solid state. The particles may be of virtually any shape.
- the disclosure provides methods for production of highly galactosylated anti-TNF-alpha antibodies and populations with high levels of galactosylated antibodies.
- the disclosure provides a method for producing a population of antibodies, comprising: expressing the population of antibodies in mammary gland epithelial cells of a non-human mammal such that a population of antibodies is produced, wherein the antibody is an anti-TNF-alpha antibody, and wherein the level of galactosylation of the antibodies in the population is at least 70%.
- the anti-TNF-alpha antibody is adalimumab.
- the mammary gland epithelial cells are in culture and are transfected with a nucleic acid that comprises a sequence that encodes the antibody.
- the nucleic acid comprise SEQ ID NO:3 and SEQ ID NO:4.
- the mammary gland epithelial cells are in a non-human mammal engineered to express a nucleic acid that comprises a sequence that encodes the antibody in its mammary gland.
- the mammary gland epithelial cells are goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama mammary gland epithelial cells.
- the mammary gland epithelial cells are goat mammary gland epithelial cells.
- the disclosure provides mammary gland epithelial cells that express the highly galactosylated anti-TNF-alpha antibodies or populations with high levels of galactosylated antibodies disclosed herein.
- the disclosure provides a transgenic non-human mammal comprising mammary gland epithelial cells that express the highly galactosylated anti-TNF-alpha antibodies or populations with high levels of galactosylated antibodies disclosed herein.
- the disclosure provides a method for the production of a glycosylated antibody or population of glycosylated antibodies, the process comprising expressing in the milk of a transgenic non-human mammal a glycosylated antibody encoded by a nucleic acid construct.
- the mammalian mammary epithelial cells are of a non-human mammal engineered to express the antibody in its milk.
- the mammalian mammary epithelial cells are mammalian mammary epithelial cells in culture.
- the method comprises: producing a population of glycosylated antibodies in mammary gland epithelial cells such that the population of glycosylated antibodies produced comprises a specific percentage of galactosylation (e.g., at least 70%, at least 80%, at least 90%, or higher).
- the antibody is an anti-TNF-alpha antibody.
- the glycosylated antibodies comprise a heavy chain comprising SEQ ID NO:1 and a light chain comprising SEQ ID NO:2. In some embodiments, this method is performed in vitro. In other embodiments, this method is performed in vivo, e.g., in the mammary gland of a transgenic goat.
- the methods above further comprise steps for inducing lactation.
- the methods further comprise additional isolation and/or purification steps.
- the methods further comprise steps for comparing the glycosylation pattern of the antibodies obtained with antibodies produced in cell culture, e.g. non-mammary cell culture.
- the methods further comprise steps for comparing the glycosylation pattern of the antibodies obtained to antibodies produced by non-mammary epithelial cells.
- Such cells can be cells of a cell culture.
- the glycosylation pattern is the amount of galactose present on an antibody or population of antibodies.
- the method further comprises comparing the percentage of galactosylation present in the population of glycosylated antibodies to the percentage of galactosylation present in a population of glycosylated antibodies produced in cell culture, e.g. non-mammary cell culture.
- Experimental techniques for assessing the glycosylation pattern of the antibodies can be any of those known to those of ordinary skill in the art or as provided herein, such as below in the Examples. Such methods include, e.g., liquid chromatography mass spectrometry, tandem mass spectrometry, and Western blot analysis.
- the antibodies can be obtained, in some embodiments, by collecting the antibodies from the milk of a transgenic animal produced as provided herein or from an offspring of said transgenic animal.
- the antibodies produced by the transgenic mammal is produced at a level of at least 1 gram per liter of milk produced.
- the method according to the invention allows the production of more than 4 grams per liter of milk produced, advantageously more than 5, 10, 15, 20, 25, 30, 35, grams per liter, advantageously up to 70 grams per liter.
- Transgenic goats were generated that include the nucleic acid sequence encoding the adalimumab antibody in their genome.
- the goats producing adalimumab were generated using traditional micoinjection techniques (See e.g., U.S. Pat. No. 7,928,064).
- the cDNA encoding the heavy and light chain (SEQ ID NO:3 and SEQ ID NO:4) was synthesized based on the published amino acid sequence (U.S. Pat. No. 6,090,382). These DNA sequences were ligated with the beta casein expression vector to yield constructs BC2601 HC and BC2602 LC.
- the nucleic acid sequence encoding adalimumab is under the control of a promoter facilitating the expression of adalimumab in the mammary gland of the goats.
- the prokaryotic sequences were removed and the DNA microinjected into pre-implantation embryos of the goat. These embryos were then transferred to pseudo pregnant females. The progeny that resulted were screened for the presence of the transgenes. Those that carried both chains were identified as transgenic founders.
- the founder animals were bred. Following pregnancy and parturition they were milked. The time course was in days starting lactation after parturation (e.g., day 3, day 7, day 11). The adalimumab antibody was purified from the milk at each time point and characterized as described herein.
- transgenically produced adalimumab or deglycosylated adalimumab was added at various concentrations (0 to 10 ⁇ g/ml) for 20 min in PBS/1% BSA. After washing, the binding of transgenically produced adalimumab to coated TNF- ⁇ was evaluated by the addition of a goat anti-human IgG (H+L) coupled to peroxidase, followed by substrate (H 2 O 2 and tetramethylbenzidine). After 20 min of incubation, the reaction was stopped with 50 ⁇ l of diluted H 2 SO 4 and the OD was read at 450 nm. The results for transgenically produced adalimumab are shown in FIG. 10 .
- NK cells Natural killer cells
- the NK cells were purified by negative depletion (Miltenyi) from the peripheral blood of healthy donors.
- the NK cells were then incubated with variable concentrations (0 to 83 ⁇ g/ml) of transgenically produced adalimumab and the anti-CD16 antibody 3G8 conjugated to a fluorochrome (3G8-PE), at a fixed concentration.
- 3G8-PE fluorochrome
- the mean fluorescence values (MFI) observed were expressed as the percent binding, where a value of 100% corresponds the value observed without the tested transgenically produced adalimumab that thus corresponds to maximum 3G8 binding.
- a value of 0% corresponds to the MFI in the absence of the antibody 3G8.
- IC50 the antibody concentration required to induce inhibition of 3G8 binding by 50% of Imax, were calculated using PRISM software. The results are shown in FIG. 11 .
- Jurkat-CD16 cells were incubated with 10 ⁇ g/ml of transgenically produced adalimumab or the deglycosylated version thereof for 20 min at 4° C. After washing, 100 ⁇ l of TNF- ⁇ was added to the cell pellet at a final concentration of 1 ⁇ g/ml, 20 min at 4° C. After subsequent washing, the cells were incubated with 5 ⁇ g/ml of a biotinylated goat anti-human TNF- ⁇ antibody, 20 min at 4° C. After another round of washing, the binding of TNF- ⁇ was visualized by the addition of streptavidin coupled to PE-fluorochrome for 20 min at 4° C. Samples were analyzed by flux cytometry. The results are shown in FIG. 12 .
- glycosylation pattern of the adalimumab antibodies produced in the milk of transgenic goats was determined by releasing the N-glycans from antibody and running the released oligosaccharides on a column (“oligosaccharide signature”).
- FIGS. 1-4 and 6-8 show the N-glycan oligosaccharides released from the transgenically produced adalimumab antibody from goat #1 ( FIGS. 1-4 ) and goat #2 ( FIGS. 6-8 ).
- the monosaccharide groups are depicted as follows:
- FIG. 1 shows a representative chromatogram of N-glycan oligosaccharides released from the transgenic adalimumab antibody produced in the milk of goat #1.
- the chromatogram shows that of the fourteen major N-glycan oligosaccharides produced, twelve have at least one galactose in the N-glycan chain, with four oligosaccharides having two galactoses. Only two of the oligosaccharides are purely oligomannose (See peak 1 and peak 3).
- FIG. 1 also shows that of the fourteen major oligosaccharides produced, nine are fucosylated All of the fucosylated oligosaccharides are also galactosylated.
- FIGS. 2-4 show chromatograms of N-glycan oligosaccharides released from the transgenic adalimumab antibody produced in the milk of goat #1 as harvested after 7 days of lactation ( FIG. 2 ), 17 days of lactation ( FIG. 3 ), and 32 days of lactation ( FIG. 4 ).
- FIG. 5 also shows a tabulation of the overall percentage of mono-galactosylation, percentage of bi-galactosylation, percentage of total galactosylation (mono-galactosylation+bi-galactosylation), percentage of galactosylation as calculated according to the formula provided above, percentage of fucosylation as calculated according to the formula provided above, the ratio of galactosylation to fucosylation and the percentage of glycan structures with at least one sialic acid (% sialylation).
- Table 1 The results are also summarized in Table 1 below:
- FIGS. 6-8 show chromatograms of N-glycan oligosaccharides released from the transgenically produced adalimumab antibody in the milk of goat #2 as harvested after 3 days of lactation ( FIG. 6 ), 11 days of lactation ( FIG. 7 ), and 21 days of hormone induced lactation ( FIG. 8 ).
- FIG. 9 also shows a tabulation of the overall percentage of mono-galactosylation, percentage of bi-galactosylation, percentage of total galactosylation (mono-galactosylation+bi-galactosylation), percentage of galactosylation as calculated according to the formula provided above, percentage of fucosylation as calculated according to the formula provided above, the ratio of galactosylation to fucosylation and the percentage of glycan structures with at least one sialic acid (% sialylation).
- the results are also summarized below:
- FIG. 10 shows that transgenically produced adalimumab can bind soluble TNF-alpha coated in 96-well plates. Transgenically produced adalimumab that was aglycosylated was able to bind soluble TNF-alpha as well (data not shown).
- FIG. 11 shows that transgenically produced adalimumab binds CD16 expressed by natural killer (NK) cells.
- the binding was shown in a competition experiment with the anti-CD16 binding antibody 3G8.
- the binding of a transgenically produced adalimumab to CD16 is stronger than the binding of a poorly galactosylated antibody to CD16 (data not shown).
- the transgenically produced adalimumab is therefore expected to have a higher ADCC activity.
- FIG. 12 shows that a transgenically produced adalimumab antibody binds both soluble TNF-alpha and Jurkat expressing CD16 cells while an aglycosylated version of the transgenically produced adalimumab antibody does not.
- the transgenically produced adalimumab antibody therefore is expected to show ADCC activity while the aglycosylated antibody does not.
- Adalimumab was transgenically produced in multiple different goats during natural lactation.
- the glycan profiles for transgenically produced adalimumab were examined.
- FIG. 13 provides a summary of percentages of different glycan forms present in populations of transgenically produced adalimumab antibody from the nine different goats listed in Table 3.
- FIG. 14 shows a summary of the percentages of N-glycan oligosaccharides of populations of transgenically produced adalimumab antibodies from goat #10 and goat #1 during hormone induced lactation.
- FIG. 15 shows a summary of N-glycan oligosaccharides of populations of transgenically produced adalimumab antibodies from eight different goats, goats #2-9.
- the data presented in FIG. 15 is summarized in Tables 4-11.
- Biological features of transgenically produced adalimumab from goat milk were compared to Adalimumab (Humira). Relative Kd, CD16-binding and FcRn binding were investigated. Furthermore, Complement Dependent Cytotoxicity (CDC) and neutralisation of TNF- ⁇ mediated cellular cytotoxicity were evaluated on membrane TNF- ⁇ transfected Jurkat cells.
- CDC Complement Dependent Cytotoxicity
- Transgenically produced adalimumab binding to FcRn was higher than that of Humira, despite having the same Fc portion.
- CDC activity showed an advantage with transgenically produced adalimumab compared to Humira antibody (196 vs 399 ng/ml).
- TNF- ⁇ transfected Jurkat cells were incubated with 100 ⁇ l of anti-TNF Alexa-488 coupled antibodies at different concentrations (0 to 100 ⁇ l/ml, final concentration) at 4° C. for 30 minutes. After washing, a goat anti-human Fc gamma coupled to phycoerythrin (100 ⁇ l of a dilution of 1:100) was added at 4° C. for 30 minutes. The cells were washed and mean of fluorescence intensity (MFI) studied by flow cytometry. Arbitrary Kd was calculated using PRISM software.
- MFI fluorescence intensity
- NK cells were isolated from peripheral blood mononuclear cells (PBMC) using the NK Cell Isolation Kit from Myltenyi then incubated with variable concentrations (0 to 83 ⁇ g/ml) of the tested antibodies simultaneously with the mouse anti-CD16 mAb 3G8-PE used at a fixed concentration. After washing, the binding of 3G8-PE to CD16 expressed by NK cell was evaluated by flow cytometry.
- PBMC peripheral blood mononuclear cells
- variable concentrations (0 to 83 ⁇ g/ml) of the tested antibodies simultaneously with the mouse anti-CD16 mAb 3G8-PE used at a fixed concentration.
- MFI mean fluorescence values
- RTX-Alexa Alexa 488
- MFI mean fluorescence values
- Membrane TNF- ⁇ transfected Jurkat cells (mbTNF- ⁇ Jurkat) were incubated with increasing concentrations of anti-TNF antibodies (0 to 5000 ng/ml) in the presence of baby rabbit serum as a source of complement (dilution to 1/10). After 2 hours of incubation at 37° C., the quantity of LDH released in the supernatant by the lysed target cells was measured (Roche Applied Sciences Cytotoxicity Detection Kit).
- TNF- ⁇ (20 ng/ml) pretreated with serial dilutions of tested antibodies (0-1000 ng/ml) was incubated for 18 h with L929 cells in the presence of actinomycin D (2 ⁇ g/ml) at 37° C. for 16 h. Then 20 ⁇ l/well of Cell titer 96® aqueous One solution Cell Proliferation Assay (MTS) was added for a further 1 h to determine the number of surviving cells by colorimetric assay. The plates were read at 490 nm and results (OD) were expressed as a function of antibody concentrations. The neutralizing titer expressed as the reciprocal of the antibody concentration that neutralizes 50% of TNF- ⁇ activity was calculated using PRISM software.
- TNF- ⁇ Tumor Necrosis Factor alpha
- Binding of anti-TNF antibodies to membrane TNF- ⁇ transfected Jurkat cells clone 2B3 is expressed as the mean of fluorescence intensity (MFI) for each antibody concentration tested (0-10 ⁇ g/ml).
- MFI fluorescence intensity
- Arbitrary Kd as described below does not represent the real affinity value (nM), but gives an order of comparable magnitude for the affinity of the studied antibodies.
- IC50 values represent the antibody concentration required to induce 50% of inhibition of 3G8 binding on CD16 receptor expressed by NK cells.
- Transgenically produced adalimumab (“TG-Humira”)
- Humira antibody bind to CD16 receptor with an IC50 value of 25.7 ⁇ g/ml and 56.7 ⁇ g/ml respectively.
- IC50 value 25.7 ⁇ g/ml and 56.7 ⁇ g/ml respectively.
- FIG. 19 shows that transgenically produced adalimumab (TG-Humira; maximal lysis: 34%) and Humira (maximal lysis: 33%) antibodies induce a comparable lysis of mbTNF- ⁇ Jurkat by CDC activity).
- Analysis of EC50 values in this system showed a small advantage of transgenically produced adalimumab compared to benchmark Humira antibody (195.8 vs 399.3 ng/ml)
- TNF- ⁇ -mediated cytotoxicity in L929 cells treated with 20 ng/ml of human TNF- ⁇ was effectively neutralized by both transgenically produced adalimumab (TG-humira) and Humira mAbs in a comparable dose dependent manner.
- FIG. 21 shows that transgenically produced adalimumab demonstrated higher ADCC activity than Humira at three different concentrations: 0.5 ng/ml, 50 ng/ml and 5000 ng/ml.
- NK effector cells were isolated from the peripheral blood samples from healthy donors using a negative depletion kit (Miltenyi Biotec).
- Jurkat cells transfected with mTNF were plated in 96 well plates and incubated at 4° C. with increasing concentrations of anti-TNF antibodies (0.5; 50 and 5000 ng/ml). After 2 hours, the isolated NK cells were added and incubated for another 4 hours at 37° C. Lysis of target cells induced by the tested anti-TNF antibodies was measured chromogenically by quantifying the intracellular enzyme lactate dehydrogenase (LDH) released into the supernatant by the lysed target cells (Roche). The percent lysis was calculated according to the following formula:
- FIG. 22 presents an inhibition curve showing that transgenically produced adalimumab from nine different goats all bound to CD16 to a greater extent than Humira in NK cells.
- FIG. 23 presents IC50 values from CD16 competitive binding assays. IC50 values were 1.5-5 ⁇ lower for transgenically produced adalimumab than for Humira.
- FIG. 24 presents a dose response curve showing that transgenically produced adalimumab from eight out of nine goats tested had greater CDC activity than Humira.
- FIG. 25 presents the EC50 values in ng/ml for the CDC activity assay.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Rheumatology (AREA)
- Dermatology (AREA)
- Endocrinology (AREA)
- Pain & Pain Management (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
In one aspect, the disclosure relates to highly galactosylated anti-TNF-alpha antibodies and compositions thereof. In one aspect, the disclosure relates to populations of anti-TNF-alpha antibodies with a high level of galactosylation, and compositions thereof. In one aspect, the disclosure relates to methods of production and use of highly galactosylated anti-TNF-alpha antibodies and populations of anti-TNF-alpha antibodies with a high level of galactosylation. In some embodiments, the anti-TNF-alpha antibody is adalimumab.
Description
- This application is a continuation of U.S. application Ser. No. 14/767,117, filed Aug. 11, 2015 which is a national stage filing under 35 U.S.C. § 371 of International Patent Application No. PCT/IB2014/000692, filed Feb. 13, 2014, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/764,475, entitled “Highly Galactosylated Anti-TNF-α Antibodies and Uses Thereof,” filed on Feb. 13, 2013, the contents of each of which are incorporated by reference herein in their entirety.
- The present invention relates in part to anti-TNF-alpha antibodies.
- TNF-alpha is a pro-inflammatory cytokine, which plays a protective role against infection and injury in normal immune responses. However, chronically elevated levels of TNF-alpha have been associated with pathogenesis of many autoimmune and inflammatory diseases. A number of TNF-alpha binding therapeutics have been approved for treatment of autoimmune and inflammatory diseases including rheumatoid arthritis, psoriasis, Crohn's disease, ankylating spondylitis and ulcerative colitis. Available therapeutic TNF-alpha binders include antibodies such as infliximab/Remicade (Centocor) a mouse-human chimeric monoclonal anti TNF-antibody, adalimumab/Humira (Abbott) a fully human anti-TNF antibody, and golimumab/Simponi (Centocor) a fully human anti-TNF antibody. Therapeutic TNF-alpha binders that are antibody-based include Etanercept/Enbrel (Amgen) a fusion protein of the extracellular domain of TNF-receptor fused to the Fc region of Ig1, and certolizumab pegol/Cimzia (UCB) a Pegylated Fab′ fragment of humanized monoclonal anti-TNF antibody. The therapeutic efficacy of the antibodies and antibody-based TNF-alpha binders varies based on the targeted pathology. In addition, many of the anti-TNF-alpha therapeutics show undesired side effects. Anti-TNF alpha antibodies with improved therapeutic properties are desired therefore.
- In one aspect, the disclosure relates to highly galactosylated anti-TNF-alpha antibodies and compositions thereof. In one aspect, the disclosure relates to populations of anti-TNF-alpha antibodies with a high level of galactosylation, and compositions thereof. In one aspect, the disclosure relates to methods of production and use of highly galactosylated anti-TNF-alpha antibodies and populations of anti-TNF-alpha antibodies with a high level of galactosylation.
- In one aspect the disclosure provides an anti-TNF-alpha antibody, wherein the antibody is highly galactosylated. In some embodiments, the antibody is highly fucosylated. In some embodiments, the antibody comprises mono-galactosylated N-glycans. In some embodiments, the antibody comprises bi-galactosylated N-glycans. In some embodiments, the heavy chain of the antibody comprises SEQ ID NO:1, and the light chain of the antibody comprises SEQ ID NO:2. In some embodiments, the antibody is adalimumab. In some embodiments, the antibody is produced in mammary epithelial cells of a non-human mammal. In some embodiments, the antibody is produced in a transgenic non-human mammal. In some embodiments, the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama. In some embodiments, the non-human mammal is a goat.
- In one aspect the disclosure provides compositions of any of the antibodies disclosed herein, wherein the composition further comprises milk. In some embodiments, the composition further comprises a pharmaceutically-acceptable carrier.
- In one aspect the disclosure provides a composition, comprising a population of antibodies, wherein the antibody is an anti-TNF-alpha antibody, and wherein the level of galactosylation of the antibodies in the population is at least 60%. In some embodiments, the level of galactosylation of the antibodies in the population is at least 70%. In some embodiments, the level of galactosylation of the antibodies in the population is at least 80%. In some embodiments, the level of fucosylation of the antibodies in the population is at least 50%.
- In some embodiments, the level of fucosylation of the antibodies in the population is at least 60%. In some embodiments of any of the compositions provided herein, the population comprises antibodies that comprise mono-galactosylated N-glycans. In some embodiments of any of the compositions provided herein, the population comprises antibodies that comprise bi-galactosylated N-glycans. In some embodiments of any of the compositions provided herein, the ratio of the level of galactosylation of the antibodies in the population to the level of fucosylation of the antibodies in the population is between 1.0 and 1.4. In some embodiments of any of the compositions provided herein, at least 35% of the antibodies in the population comprise bi-galactosylated N-glycans and at least 25% of the antibodies in the population comprise mono-galactosylated N-glycans. In some embodiments of any of the compositions provided herein, the heavy chain of the antibody comprises SEQ ID NO:1, and the light chain of the antibody comprises SEQ ID NO:2. In some embodiments of any of the compositions provided herein, the antibody is adalimumab. In some embodiments of any of the compositions provided herein, the antibody is produced in mammary epithelial cells of a non-human mammal. In some embodiments of any of the compositions provided herein, the antibody is produced in a transgenic non-human mammal. In some embodiments, the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama. In some embodiments, the non-human mammal is a goat. In some embodiments, the composition further comprises milk. In some embodiments, the composition further comprises a pharmaceutically-acceptable carrier.
- In some embodiments of any of the compositions provided herein, the population of antibodies has an increased level of complement dependent cytotoxicity (CDC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells.
- In some embodiments of any of the compositions provided herein, the population of antibodies has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells.
- In some embodiments of any of the compositions provided herein, the population of antibodies has an increased ability to suppress TNF-alpha activity in a subject when compared to a population of antibodies not produced in mammary gland epithelial cells.
- In some embodiments of any of the compositions provided herein, the population of antibodies has an increased ability to bind soluble TNF-alpha when compared to a population of antibodies not produced in mammary gland epithelial cells.
- In some embodiments of any of the compositions provided herein, the population of antibodies has an increased ability to bind transmembrane TNF-alpha when compared to a population of antibodies not produced in mammary gland epithelial cells.
- In some embodiments of any of the compositions provided herein, the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- In some embodiments of any of the compositions provided herein, the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 50% or lower when compared to the level of galactosylation of the antibodies produced in mammary gland epithelial cells. In some embodiments of any of the compositions provided herein, the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 30% or lower when compared to the level of galactosylation of the antibodies produced in mammary gland epithelial cells. In some embodiments of any of the compositions provided herein, the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 10% or lower when compared to the level of galactosylation of the antibodies produced in mammary gland epithelial cells.
- In one aspect, the disclosure provides a method for producing a population of antibodies, comprising: expressing the population of antibodies in mammary gland epithelial cells of a non-human mammal such that a population of antibodies is produced, wherein the antibody is an anti-TNF-alpha antibody, wherein the level of galactosylation of the antibodies in the population is at least 60%. In some embodiments, the mammary gland epithelial cells are in culture and are transfected with a nucleic acid that comprises a sequence that encodes the antibody. In some embodiments, the mammary gland epithelial cells are in a non-human mammal engineered to express a nucleic acid that comprises a sequence that encodes the antibody in its mammary gland. In some embodiments, the nucleic acid comprises SEQ ID NO:3 and SEQ ID NO:4. In some embodiments, the mammary gland epithelial cells are goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama mammary gland epithelial cells. In some embodiments, the mammary gland epithelial cells are goat mammary gland epithelial cells.
- In one aspect, the disclosure provides mammary gland epithelial cells that produce any of the antibodies, population of antibodies, or compositions disclosed herein.
- In one aspect, the disclosure provides a transgenic non-human mammal comprising any of the mammary gland epithelial cells disclosed herein.
- In one aspect, the disclosure provides a method comprising administering any of the antibodies, population of antibodies, or compositions disclosed herein to a subject in need thereof. In some embodiments, the subject has an inflammatory disorder or autoimmune disorder. In some embodiments, the inflammatory disorder or autoimmune disorder is rheumatoid arthritis, psoriasis, Crohn's disease, juvenile idiopathic arthritis, ankylozing spondylitis, ulcerative colitis, chronic inflammation, hepatitis, Behcet's disease, Wegener's granulomatosis, or sarcoidosis.
- In one aspect, the disclosure provides a monoclonal anti-TNF antibody composition comprising monoclonal anti-TNF antibodies having glycan structures on the Fc glycosylation sites (Asn297, EU numbering), wherein said glycan structures have a galactose content of more than 60%.
- In one aspect, the disclosure relates to an anti-TNF-alpha antibody, wherein the antibody contains an oligomannose. In some embodiments, the heavy chain of the antibody comprises SEQ ID NO:1, and the light chain of the antibody comprises SEQ ID NO:2. In some embodiments, the antibody is adalimumab.
- In some embodiments, the antibody is produced in mammary epithelial cells of a non-human mammal. In some embodiments, the antibody is produced in a transgenic non-human mammal. In certain embodiments, the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama. In certain embodiments, the non-human mammal is a goat.
- In some embodiments, an anti-TNF-alpha antibody that contains an oligomannose further comprising milk.
- In one aspect, the disclosure relates to a composition comprising an anti-TNF-alpha antibody that contains an oligomannose, further comprising a pharmaceutically-acceptable carrier.
- In one aspect, the disclosure relates to a composition, comprising: a population of antibodies, wherein the antibody is an anti-TNF-alpha antibody, and wherein the at least 30% of the antibodies contain at least one oligomannose. In some embodiments, the antibodies exhibit a high mannose glycosylation pattern. In some embodiments, at least one chain of the milk-derived antibodies contains an oligomannose and is non-fucosylated. In some embodiments, the major carbohydrate of the milk-derived antibodies is non-fucosylated.
- In some embodiments, the heavy chain of the antibody within the composition comprises SEQ ID NO:1, and the light chain of the antibody comprises SEQ ID NO:2. In some embodiments, the antibody is adalimumab. In some embodiments, the antibody is produced in mammary epithelial cells of a non-human mammal. In some embodiments, the antibody is produced in a transgenic non-human mammal. In some embodiments, the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama. In certain embodiments, the non-human mammal is a goat.
- In some embodiments, the composition further comprises milk. In some embodiments, the composition further comprises a pharmaceutically-acceptable carrier.
- In some embodiments, the population of antibodies within the composition has an increased level of complement dependent cytotoxicity (CDC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells.
- In some embodiments, the population of antibodies within the composition has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells. In some embodiments, the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- In some embodiments wherein an antibody contains an oligomannose, the oligomannose is Man5. In some embodiments wherein an antibody contains an oligomannose, the oligomannose is Man6. In some embodiments wherein an antibody contains an oligomannose, the oligomannose is Man7. In some embodiments wherein a composition comprises an antibody that contains an oligomannose, the oligomannose is Man5. In some embodiments wherein a composition comprises an antibody that contains an oligomannose, the oligomannose is Man6. In some embodiments wherein a composition comprises an antibody that contains an oligomannose, the oligomannose is Man7.
- The drawings are first described. It is to be understood that the drawings are exemplary and not required for enablement of the invention.
-
FIG. 1 shows a representative oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies fromgoat # 1. -
FIG. 2 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies fromgoat # 1 atday 7 of lactation. -
FIG. 3 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies fromgoat # 1 atday 17 of lactation. -
FIG. 4 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies fromgoat # 1 atday 32 of lactation. -
FIGS. 5A and 5B show a summary of the percentages of N-glycan oligosaccharides of populations of a highly galactosylated adalimumab antibodies fromgoat # 1 at various days of lactation. -
FIG. 6 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies fromgoat # 2 atday 3 of hormone induced lactation. -
FIG. 7 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies fromgoat # 2 atday 11 of hormone induced lactation. -
FIG. 8 shows an oligosaccharide signature of N-glycans of a population of highly galactosylated adalimumab antibodies fromgoat # 2 atday 21 of hormone induced lactation. -
FIGS. 9A and 9B show a summary of the percentages of N-glycan oligosaccharides of populations of a highly galactosylated adalimumab antibodies fromgoat # 2 at various days of hormone induced lactation. -
FIG. 10 shows that a transgenically produced adalimumab antibody binds soluble TNF-alpha. -
FIG. 11 shows that a transgenically produced adalimumab antibody binds to CD16 expressed on NK cells as shown by a competition assay with the anti-CD16 antibody 3G8. -
FIG. 12 shows that a transgenically produced adalimumab antibody binds both soluble TNF-alpha and Jurkat expressing CD16 cells while an aglycosylated version of the transgenically produced adalimumab antibody does not. -
FIGS. 13A-13D show a summary of predominant glycan forms present in populations of transgenically produced adalimumab antibodies from nine different goats #1-9. -
FIGS. 14A and 14B show a summary of the percentages of N-glycan oligosaccharides of populations of transgenically produced adalimumab antibodies fromgoat # 10 andgoat # 1 during hormone induced lactation. -
FIGS. 15A and 15B show a summary of N-glycan oligosaccharides of populations of transgenically produced adalimumab antibodies from eight different goats, goats #2-9. -
FIG. 16 shows antigenic recognition of transgenically produced adalimumab (“TG-adalimumab”) and Humira antibodies on membrane TNF-α transfected Jurkat cells clone 2B3. The results shown are expressed as MFI and derived from an average of 3 experiments. Mean+/−SEM. -
FIG. 17 shows binding of anti-TNF-α antibodies on CD16 expressed by NK cells in a competition assay. The mean fluorescence values (MFI) observed are expressed as the percent binding, where 100% is an arbitrary value corresponding to maximum 3G8 binding observed without the tested antibodies and 0% corresponds to the MFI in the absence of the antibody 3G8. Mean of 3 experiments+/−SEM. -
FIG. 18 shows binding of anti-TNF-α antibodies on FcRn expressed by FcRn-transfected Jurkat cells in a competition assay with Alexa 488 coupled-Rituximab antibody. The mean fluorescence values (MFI) observed are expressed as the percent binding (100% is an arbitrary value corresponding to maximum Rituximab-A488 binding alone), as a function of attested antibody concentration. Mean of 3 experiments+/−SEM. -
FIG. 19 shows CDC activity of the anti TNF-α antibodies on membrane TNF-α transfected Jurkat cells clone 2B3 (mean of 4 assays). Results are expressed as percent of lysis of mbTNF-α Jurkat cells as a function of antibody concentration. Mean+/−SEM. -
FIG. 20 shows neutralization of TNF-α-mediated cytotoxicity in L929 cells by anti-TNF-α antibodies. Results are expressed as percent of neutralization as a function of antibody concentration. Mean of 4 assays+/−SEM. -
FIG. 21 shows percent lysis (in arbitrary units) mediated by transgenically produced adalimumab compared to Humira. -
FIG. 22 presents an inhibition curve showing CD16 binding activity of transgenically produced adalimumab from nine different goats compared to Humira. -
FIG. 23 presents IC50 values associated with CD16 binding activity of transgenically produced adalimumab from nine different goats and Humira as assessed by a competitive assay using NK cells. -
FIG. 24 shows CDC activity of transgenically produced adalimumab from nine different goats compared to Humira. -
FIG. 25 shows EC50 values (ng/ml) associated with CDC activity of transgenically produced adalimumab from nine different goats compared to Humira. - In one aspect, the disclosure provides anti-TNF-alpha antibodies wherein the antibody is highly galactosylated. Anti-TNF-alpha antibodies bind TNF-alpha and have been used as a therapeutic in a variety of diseases characterized by dysregulation of TNF-alpha, including inflammatory disorders. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated is infliximab/Remicade (Centocor), adalimumab/Humira (Abbott), or golimumab/Simponi (Centocor). In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated is adalimumab.
- In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated includes a heavy chain which comprises SEQ ID NO:1. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated includes a light chain which comprises SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated includes a heavy chain which comprises SEQ ID NO:1 and a light chain which comprises SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated includes a heavy chain which consists of SEQ ID NO:1. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated includes a light chain that consists of SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated includes a heavy chain which consists of SEQ ID NO:1 and a light chain that consists of SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated is adalimumab.
- The heavy chain of adalimumab is provided in SEQ ID NO:1:
-
MEFGLSWLFLVAILKGVQCEVQLVESGGGLVQPGRSLRLSCAASGFTFDD YAMHWVRQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYL QMNSLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVTVSSASTKGPSVFP LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS GLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCP PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGK - The light chain of adalimumab is provided in SEQ ID NO:2:
-
MDMRVPAQLLGLLLLWLRGARCDIQMTQSPSSLSASVGDRVTITCRASQG IRNYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSL QPEDVATYYCQRYNRAPYTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST LTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC - The sequences are based on the sequences of adalimumab published in U.S. Pat. No. 6,090,382. In some embodiments, the sequences of adalimumab are those as published in U.S. Pat. No. 6,090,382.
- It should further be appreciated that in some embodiments, the disclosure also includes antibodies that are based on the sequence of adalimumab but that include mutations that provide the antibodies with additional beneficial desired properties related to bioavailability, stability etc.
- In one aspect, the disclosure provides highly galactosylated anti-TNF-alpha antibodies that can be used in anti-inflammatory treatment. In some embodiments, the anti-TNF-alpha antibody that is highly galactosylated is infliximab/Remicade (Centocor), adalimumab/Humira (Abbott), or golimumab/Simponi (Centocor). In some embodiments, the anti-TNF-alpha antibody is adalimumab. In some embodiments, the anti-TNF-alpha antibodies can be used in the treatment of inflammatory disorders and the treatment of autoimmune diseases. As shown herein, the highly galactosylated anti-TNF-alpha antibodies are surprisingly effective in their anti-inflammatory activity because of their enhanced ADCC and CDC activities (as compared to non-highly galactosylated antibodies). However, it should appreciated that the highly galactosylated antibodies anti-TNF-alpha disclosed herein may include additional modifications to further increase their anti-inflammatory activity.
- Anti-inflammatory activity of intravenous administered Ig can result from a subset of the IgG molecules that have terminal alpha-2,6-sialic acid linkages on their Fc-linked glycans. The anti-inflammatory activity of a population of the intravenous administered Ig was increased by introducing a terminal alpha-2,6-sialic acid linkage on all Fc-linked glycans (See e.g., Anthony et al., Identification of a receptor required for the anti-inflammatory activity of IVIG, PNAS 105: 19571-19578, 2008).
- In one aspect, the disclosure provides highly galactosylated anti-TNF-alpha antibodies that also have 2,6 sialylated Fc glycans. The sialylation of the galactosylated anti-TNF alpha antibodies is believed to synergistically increase the anti-inflammatory action of the highly galactosylated anti-TNF-alpha antibodies.
- In one aspect, the highly galactosylated anti-TNF-alpha antibodies disclosed herein are generated by producing the antibody in a transgenic mammal or mammary epithelial cells. As shown herein, highly galactosylated anti-TNF-alpha antibodies generated by in a transgenic mammal or mammary epithelial cells are not fully sialylated. The sialylation levels of such antibodies can be increased for instance by subjecting the antibodies to sialyl transferases. The antibodies can be subjected to sialyl transferases in vitro or in vivo. Highly galactosylated anti-TNF-alpha antibodies can be sialylated in vitro by subjecting the purified or partially antibody to a sialyl transferase and the appropriate saccharide based substrate. Highly galactosylated anti-TNF-alpha antibodies can be sialylated in vivo by producing a sialyl transferase in the mammary gland or mammary epithelial cells.
- In one aspect, the disclosure provides methods for the production in the mammary gland of transgenic animals and mammary epithelial cells of highly galactosylated anti-TNF-alpha antibodies, with increased levels of alpha-2,6-sialylation. Thus, the methods provided herein allow for the production in the mammary gland of transgenic animals and mammary epithelial cells of highly galactosylated anti-TNF-alpha antibodies with increased anti-inflammatory properties. It should be appreciated that the methods provided herein to increase the anti-inflammatory properties of highly galactosylated anti-TNF-alpha antibodies can be applied to any anti-TNF-alpha antibody, thereby providing anti-inflammatory highly galactosylated anti-TNF-alpha antibodies with synergistic mode of actions.
- In one aspect, the disclosure provides transgenic animals (and mammary epithelial cells) that are transgenic for the production in the mammary gland of anti-TNF-alpha antibodies and that are transgenic for the production of sialyl transferase. The therapeutic antibodies produced by such animals and cells are expected to be highly galactosylated and have increased levels of terminal alpha-2,6-sialic acid linkages on their Fc-linked glycans. In some embodiments, the transgenic animals (and mammary epithelial cells) are transgenic for the production in the mammary gland of an exogenous anti-TNF-alpha antibody and are transgenic for the production of sialyl transferase. In some embodiments, the anti-TNF-alpha antibody is adalimumab.
- In one aspect, the disclosure provides methods of treating inflammation or autoimmune disease in a subject comprising administering to a subject the highly galactosylated anti-TNF-alpha antibodies that have increased levels of terminal alpha-2,6-sialic acid linkages on their Fc-linked glycans.
- In one aspect, the disclosure provides anti-TNF-alpha antibodies wherein the antibody is highly galactosylated. In some embodiments, the disclosure provides anti-TNF-alpha antibodies, wherein the antibody is highly fucosylated. In some embodiments, the disclosure provides anti-TNF-alpha antibodies, wherein the antibody is highly galactosylated and highly fucosylated. In some embodiments, the disclosure provides anti-TNF-alpha antibodies, wherein the antibody is highly galactosylated and highly fucosylated and has terminal sialic acid moieties on the Fc glycans. In some embodiments, the highly galactosylated antibody comprises one or more mono-galactosylated N-glycans. In some embodiments, the highly galactosylated antibody comprises bi-galactosylated N-glycans.
- In one aspect, the disclosure provides a monoclonal anti-TNF antibody composition comprising monoclonal antibodies having on the Fc glycosylation sites (Asn 297, EU numbering) glycan structures, wherein said glycan structures have a galactose content more than 60%. In one embodiment the anti-TNF monoclonal antibodies are purified. The “EU numbering system” or “EU index” is generally used when referring to a residue in an immunoglobulin heavy chain constant region (e.g., the EU index reported in Kabat et al., Sequences of Proteins of Immunological Interest, 5th ed., Public Health Service, National Institutes of Health, Bethesda, Md. (1991) expressly incorporated herein by reference). The typical glycosylated residue position in an antibody is the asparagine at position 297 according to the EU numbering system (“Asn297”).
- It should be appreciated that any of the anti-TNF monoclonal antibodies disclosed herein may be partially or completely purified.
- Antibodies can be glycosylated with an N-glycan at the Fc-gamma glycosylation site in the heavy chain (Asn297) of the Fc region. Generally, antibodies include two heavy chains and each antibody therefore can have two Fc-gamma N-glycans. A variety of glycosylation patterns have been observed at the Fc gamma glycosylation site and the oligosaccharides found at this site include galactose, N-acetylglucosamine (GlcNac), mannose, sialic acid, N-acetylneuraminic acid (NeuAc or NANA), N-glycolylneuraminic (NGNA) and fucose. N-glycans found at the Fc gamma glycosylation site generally have a common core structure consisting of an unbranched chain of a first N-acetylglucosamine (GlcNAc), which is attached to the asparagine of the antibody, a second GlcNAc that is attached to the first GlcNac and a first mannose that is attached to the second GlcNac. Two additional mannoses are attached to the first mannose of the GlcNAc-GlcNAc-mannose chain to complete the core structure and providing two “arms” for additional glycosylation. In addition, fucose residues may be attached to the N-linked first GlcNAc.
- The two arm core structure is also referred to as the “antenna”. The most common type of glycosylation of the “arms” of the N-glycan motifs found in plasma antibodies is of the complex type, i.e., consisting of more than one type of monosaccharide. In the biosynthetic route to this N-glycan motif, several GlcNAc transferases attach GlcNAc residues to the mannoses of the glycan core, which can be further extended by galactose, sialic acid and fucose residues. This glycosylation motif is called “complex” structure.
- A second glycosylation motif found on the “arms” of the N-glycan core structure is a “high-mannose” motif, which is characterized by additional mannoses (attached either as branched or unbranded chains).
- A third glycosylation motif is a hybrid structures in which one of the arms is mannose substituted while the other arm is complex.
- A “galactosylated” antibody, as used herein, refers to any antibody that has at least one galactose monosaccharide in one of its N-glycans. Galactosylated antibodies include antibodies where the two N-glycans each have complex type motifs on each of the arms of the N-glycan motifs, antibodies where the two N-glycans have a complex type motif on only one of the arms of the N-glycan motifs, antibodies that have one N-glycan with complex type motifs on each of the arms of the N-glycan, and antibodies that have one N-glycan with a complex type motif on only one of the arms of the N-glycan motifs. Antibodies that include at least one galactose monosaccharide include antibodies with N-glycans such as G1 (one galactose), G1F (one galactose, one fucose), G2 (two galactoses) and G2F (two galactoses, one fucose). In addition, the N-glycan that includes at least one galactose monosaccharide can be sialylated or not sialylated. It should further be appreciated that the N-glycans may also contain additional galactose residues, such as alpha-Gal, in one or more arms of the complex glycan motif, potentially resulting in an N-glycan with four galactose moieties.
- A “highly galactosylated” antibody, as used herein, refers to an antibody that includes at least two galactose monosaccharides in the N-glycan motifs. Highly galactosylated antibodies include antibodies where the two N-glycans each have complex type motifs on each of the arms of the N-glycan motifs, antibodies where the two N-glycans have a complex type motif on only one of the arms of the N-glycan motifs, and antibodies that have one N-glycan with a complex type motif on each of the arms of the N-glycan. Thus, highly galactosylated antibodies include antibodies in which both N-glycans each include one galactose in the glycan motif (e.g., G1 or G1F), antibodies that include at least one N-glycan with two galactoses in the glycan motif (e.g., G2 or G2F), and antibodies with 3 or 4 galactoses in the glycan motif (e.g., (i) one N-glycan with a G1 glycan motif and one N-glycan with a G2 or G2F glycan motif or (ii) two N-glycan with G2 or G2F). In some embodiments, the highly galactosylated antibody includes at least three galactose monosaccharides in the glycan motifs. In some embodiments, the highly galactosylated antibody includes at least four galactose monosaccharides in the glycan motifs.
- In some embodiments the glycosylation exhibits a high mannose glycosylation pattern. As used herein, a “high mannose glycosylation pattern” is intended to refer to an antibody that contains at least one oligomannose or a composition of antibodies wherein at least 30% of the antibodies contain at least one oligomannose. In some embodiments at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the carbohydrates of the antibodies are oligomannose. In some embodiments at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or more of the carbohydrates of the antibodies are non-fucosylated oligomannose. In other embodiments less than 50%, 40%, 30%, 20%, 10%, 5% or fewer of the carbohydrates of the antibodies are fucose-containing. In still other embodiments the antibodies are low in fucose and high in oligomannose. Therefore, in further embodiments at least 30%, 40%, 50%, 60%, 70%, 80% or 90% or more of the carbohydrates of the antibodies are oligomannose and less than 50%, 40%, 30%, 20%, 10% or 5% of the carbohydrates of the antibodies are fucose-containing. Therefore, in yet a further embodiment at least 30%, 40%, 50%, 60%, 70%, 80% or 90% or more of the carbohydrates of the antibodies are non-fucosylated oligomannose and less than 50%, 40%, 30%, 20%, 10% or 5% of the carbohydrates of the antibodies are fucose-containing.
- In some aspects, the mannose-containing oligosaccharides range from Man5 to Man9, with the number indicating the number of mannose residues. For example, mannose-containing oligosaccharides can include Man5, Man6, Man7, Man8 and Man9. In certain embodiments, transgenically produced adalimumab exhibits a high Man6 content, as revealed by
2, 4 and 5 described herein. In some embodiments, the major carbohydrate in transgenically produced adalimumab is Man5. In some embodiments, at least 10%, 15%, or more of the carbohydrates in transgenically produced adalimumab are Man5. Advantageously, at least 20% of the carbohydrates in transgenically produced adalimumab are Man5. In other embodiments, the major carbohydrate in transgenically produced adalimumab is Man6. In some embodiments, at least 10%, 15%, or more of the carbohydrates in transgenically produced adalimumab are Man6. Advantageously, at least 20% of the carbohydrates in transgenically produced adalimumab are Man6 In other embodiments, the major carbohydrate in transgenically produced adalimumab is Man7. In some embodiments, at least 10%, 15%, or more of the carbohydrates in transgenically produced adalimumab are Man7. Advantageously, at least 20% of the carbohydrates in transgenically produced adalimumab are Man7.goats - The glycosylation pattern of the N-glycans can be determined by a variety of methods known in the art. For example, methods of analyzing carbohydrates on proteins have been described in U.S. Patent Applications US 2006/0057638 and US 2006/0127950. The methods of analyzing carbohydrates on proteins are incorporated herein by reference.
- In some embodiments, the highly galactosylated antibody is produced in mammary epithelial cells of a non-human mammal. In some embodiments, the antibody is produced in a transgenic non-human mammal. In some embodiments, the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama. In some embodiments, the non-human mammal is a goat.
- In some embodiments, the highly glycosylated antibody is produced in cells other than in mammary epithelial cells of a non-human mammal. In some embodiments, the antibody is produced in cells other than in mammary epithelial cells of a non-human mammal and modified after production to increase the number of galactose groups on the N-glycan (e.g., through the action of enzymes such as transferases).
- In one aspect, the disclosure provides compositions comprising highly galactosylated antibodies. In some embodiments, the composition comprising highly galactosylated antibodies further comprises milk. In some embodiments, the composition comprising highly galactosylated antibodies further comprises a pharmaceutically-acceptable carrier.
- In one aspect, the disclosure provides compositions comprising monoclonal anti-TNF antibody compositions having on the Fc glycosylation sites (Asn 297, EU numbering) glycan structures, wherein said glycan structures of the monoclonal antibodies have a galactose content more than 60%. In some embodiments, the composition comprising monoclonal anti-TNF antibody compositions further comprises milk. In some embodiments, the composition comprising monoclonal anti-TNF antibody compositions further comprises a pharmaceutically-acceptable carrier.
- In one aspect, the disclosure provides a composition comprising a population of antibodies, wherein the antibody is an anti-TNF-alpha antibody, and wherein the level of galactosylation of the antibodies in the population is at least 60%. In some embodiments, the level of galactosylation of the antibodies in the population is at least 70%. In some embodiments, the level of galactosylation of the antibodies in the population is at least 80%. In some embodiments, the level of fucosylation of the antibodies in the population is at least 50%. In some embodiments, the level of fucosylation of the antibodies in the population is at least 60%. In some embodiments, the population comprises antibodies that comprise mono-galactosylated N-glycans. In some embodiments, the population comprises antibodies that comprise bi-galactosylated N-glycans. In some embodiments, the ratio of the level of galactosylation of the antibodies in the population to the level of fucosylation of the antibodies in the population is between 1.0 and 1.4. In some embodiments, at least 35% of the antibodies in the population comprise bi-galactosylated N-glycans and at least 25% of the antibodies in the population comprise mono-galactosylated N-glycans. In some embodiments, the level of sialylation in the antibodies is at least 50%. In some embodiments, the level of sialylation in the antibodies is at least 70%. In some embodiments, the level of sialylation in the antibodies is at least 90%. In some embodiments, the antibodies are fully sialylated.
- In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation is infliximab/Remicade (Centocor), adalimumab/Humira (Abbott), or golimumab/Simponi (Centocor). In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation is adalimumab. In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a heavy chain which comprises SEQ ID NO:1. In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a light chain which comprises SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a heavy chain which comprises SEQ ID NO:1 and a light chain which comprises SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a heavy chain which consists of SEQ ID NO:1. In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a light chain that consists of SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation comprises a heavy chain which consists of SEQ ID NO:1 and a light chain that consists of SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody of the populations of antibodies with a high level of galactosylation is adalimumab.
- The biosynthesis of N-glycans is not regulated by a template, as is the case with proteins, but is mainly dependent on the expression and activity of specific glycosyltransferases in a cell. Therefore, a glycoprotein, such as an antibody Fc domain, normally exists as a heterogeneous population of glycoforms which carry different glycans on the same protein backbone.
- A population of anti-TNF-alpha antibodies that is highly galactosylated is a population of antibodies wherein the level of galactosylation of the antibodies in the population is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100% of galactosylation. In some embodiments of the population of antibodies that is highly galactosylated, the level of galactosylation of the antibodies in the population is at least 60%.
- The level of galactosylation as used herein is determined by the following formula:
-
- wherein:
-
- n represents the number of analyzed N-glycan peaks of a chromatogram, such as a Normal-Phase High Performance Liquid Chromatography (NP HPLC) spectrum
- “number of Gal” represents the number of Galactose motifs on the antennae of the glycan corresponding to the peak, and
- “number of A” corresponds to the number of N-acetylglucosamine motifs on the antennae of the glycan form corresponding to the peak (excluding the two N-acetylglucosamine motifs of the core structure), and
- “% relative Area” corresponds to % of the Area under the corresponding peak
- The level of galactosylation of antibodies in a population of antibodies can be determined, for instance, by releasing the N-glycans from the antibodies, resolving the N-glycans on a chromatogram, identifying the oligosaccharide motif of the N-glycan that corresponds to a specific peak, determining the peak intensity and applying the data to the formula provided above.
- Anti-TNF-alpha antibodies that are galactosylated include antibodies that are mono-galactosylated N-glycans and bi-galactosylated N-glycans.
- In some embodiments of the population of antibodies that are highly galactosylated, the population comprises antibodies that comprise mono-galactosylated N-glycans, which may or may not be sialylated. In some embodiments of the population of antibodies that is highly galactosylated, at least 1%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100% of the antibody N-glycans comprise mono-galactosylated N-glycans. In some embodiments of the population of antibodies that is highly galactosylated, at least 25% of the antibodies comprise mono-galactosylated N-glycans.
- In some embodiments of the population of antibodies that are highly galactosylated, the population comprises antibodies that comprise bi-galactosylated N-glycans, which may or may not be sialylated. In some embodiments of the population of antibodies that is highly galactosylated, at least 1%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100% of the antibody N-glycans comprise bi-galactosylated N-glycans. In some embodiments of the population of antibodies that is highly galactosylated, at least 35% of the antibodies comprise bi-galactosylated N-glycans.
- In some embodiments of the population of antibodies that is highly galactosylated, the population comprises antibodies that comprise mono-galactosylated N-glycans, which may or may not be sialylated, and antibodies that comprise bi-galactosylated N-glycans, which may or may not be sialylated. In some embodiments of the population of antibodies that is highly galactosylated, at least 1%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 99% of the antibody N-glycans comprise mono-galactosylated N-glycans, and at least 1%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 99% of the antibody N-glycans comprise bi-galactosylated N-glycans. In some embodiments of the population of antibody N-glycans that is highly galactosylated, at least 25% of the antibody N-glycans comprise mono-galactosylated N-glycans and at least 35% of the antibodies comprise bi-galactosylated N-glycans.
- In some embodiments of the population of antibodies that is highly galactosylated, the population comprises antibodies that are highly fucosylated. A population of antibodies that is highly fucosylated is a population of antibodies wherein the level of fucosylation of the antibody N-glycans in the population is at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100% of fucosylation. In some embodiments in the population of antibodies that is highly galactosylated, the level of fucosylation of the antibody N-glycans is at least 50%.
- The level of fucosylation as used herein is determined by the following formula:
-
- wherein:
-
- n represents the number of analyzed N-glycan peaks of a chromatogram, such as a Normal-Phase High Performance Liquid Chromatography (NP HPLC) spectrum, and
- “number of Fucose” represents the number of Fucose motifs on the glycan corresponding to the peak, and
- “% relative Area” corresponds to % of the Area under the corresponding peak containing the Fucose motif.
- Antibodies that are fucosylated include antibodies that have at least one fucose monosaccharide in one of its N-glycans. Antibodies that are fucosylated include antibodies that have a fucose monosaccharide in each of its N-glycans.
- In some embodiments, the population of anti-TNF-alpha antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 60% and the level of fucosylation of the antibodies in the population is at least 50%. In some embodiments, the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 50%, and the level of fucosylation of the antibody N-glycans in the population is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100%. In some embodiments, the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 60%, and the level of fucosylation of the antibody N-glycans in the population is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100%. In some embodiments, the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 70%, and the level of fucosylation of the antibody N-glycans in the population is at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, up to 100%. In some embodiments, the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 80%, and the level of fucosylation of the antibody N-glycans in the population is at least 60%, at least 70%, at least 80%, at least 90%, up to 100%. In some embodiments, the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is at least 90%, and the level of fucosylation of the antibody N-glycans in the population is at least 60%, at least 70%, at least 80%, at least 90%, up to 100%. In some embodiments, the population of antibodies disclosed herein relates to a population wherein the level of galactosylation of the antibody N-glycans in the population is up to 100% and the level of fucosylation of the antibody N-glycans in the population is at least 60%, at least 70%, at least 80%, at least 90%, up to 100%.
- In one aspect, the disclosure relates to a composition comprising a population of anti-TNF-alpha antibodies with a specific ratio of the percentage of antibody N-glycans in the population that are galactosylated at the Fc-gamma-glycosylation site to the percentage of antibody N-glycans in the population that are fucosylated at the Fc-gamma-glycosylation site. In some embodiments, the disclosure relates to a composition comprising a population of antibodies wherein the ratio of the level of galactosylation of the antibody N-glycans in the population to the level of fucosylation of the antibody N-glycans in the population is between 0.5 and 2.5, between 0.6 and 2.0, between 0.7 and 1.8, between 0.8 and 1.6, or between 1.0 and 1.4. In some embodiments, the disclosure relates to a composition comprising a population of antibodies wherein the ratio of the level of galactosylation of the antibody N-glycans in the population to the level of fucosylation of the antibody N-glycans in the population is between 1.0 and 1.4, for example 1.2.
- In some embodiments, the antibodies and populations of antibodies disclosed herein are highly sialylated. In some embodiments, sialylation refers to 2,6 alpha sialylation on the terminal galactose residues of the Fc glycans. In some embodiments, in a population of highly sialylated antibodies at least 50% of the terminal galactose moieties are sialylated. In some embodiments, in a population of highly sialylated antibodies at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and up to 100% of the terminal galactose moieties are sialylated. In some embodiments, the disclosure provides populations of antibodies that are at least 60% galactosylated and in which at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and up to 100% of the terminal galactose moieties are sialylated. In some embodiments, the disclosure provides populations of antibodies that are at least 70% galactosylated and in which at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and up to 100% of the terminal galactose moieties are sialylated. In some embodiments, the disclosure provides populations of antibodies that are at least 80% galactosylated and in which at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and up to 100% of the terminal galactose moieties are sialylated. In some embodiments, the disclosure provides populations of antibodies that are at least 90% galactosylated and in which at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and up to 100% of the terminal galactose moieties are sialylated.
- In some embodiments, the population of anti-TNF-alpha antibodies with a high level of galactosylation is produced in mammary epithelial cells of a non-human mammal. In some embodiments, the population of anti-TNF-alpha antibodies is produced in a transgenic non-human mammal. In some embodiments, the non-human mammal is a goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama. In some embodiments, the non-human mammal is a goat.
- In some embodiments, the population of anti-TNF-alpha antibodies with a high level of galactosylation is produced in cells other than mammary epithelial cells of a non-human mammal. In some embodiments, the population of anti-TNF-alpha antibodies is modified after production in cells other than mammary epithelial cells of a non-human mammal to increase the number of galactose groups in the population of antibodies (e.g., through the action of enzymes such as transferases).
- In one aspect, the disclosure provides compositions comprising populations of anti-TNF-alpha antibodies with a high level of galactosylation. In some embodiments, the composition comprising anti-TNF-alpha antibodies with a high level of galactosylation further comprises milk. In some embodiments, the composition comprising anti-TNF-alpha antibodies with a high level of galactosylation further comprises a pharmaceutically-acceptable carrier.
- In one aspect, the disclosure provides compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation (e.g., at least 70%), wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased level of galactosylation when compared to the population of antibodies not produced in mammary gland epithelial cells. In some embodiments, the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture. As used herein, antibodies “produced in cell culture” when compared to antibodies produced in mammary epithelial cells, refers to antibodies produced in standard production cell lines (e.g., CHO cells) but excluding mammary epithelial cells. In some embodiments, the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 90% or lower, 80% or lower, 70% or lower, 60% or lower, 50% or lower, 40% or lower, 30% or lower, 20% or lower, 10% or lower when compared to the level of galactosylation of the antibodies produced in mammary epithelial cells of a non-human mammal. In some embodiments, the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 50% or lower when compared to the level of galactosylation of the antibodies produced in mammary epithelial cells of a non-human mammal. In some embodiments, the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 30% or lower when compared to the level of galactosylation of the antibodies produced in mammary epithelial cells of a non-human mammal. In some embodiments, the level of galactosylation of the antibodies not produced in mammary gland epithelial cells is 10% or lower when compared to the level of galactosylation of the antibodies produced in mammary epithelial cells of a non-human mammal.
- In one aspect, the disclosure provides compositions comprising populations of anti-TNF-alpha antibodies with high levels of fucosylation (e.g., at least 60%), wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased level of fucosylation when compared to the population of antibodies not produced in mammary gland epithelial cells. In some embodiments, the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture. In some embodiments, the level of fucosylation of the antibodies not produced in mammary gland epithelial cells is 90% or lower, 80% or lower, 70% or lower, 60% or lower, 50% or lower, 40% or lower, 30% or lower, 20% or lower, 10% or lower when compared to the level of fucosylation of the antibodies produced in mammary epithelial cells of a non-human mammal. In some embodiments, the level of fucosylation of the antibodies not produced in mammary gland epithelial cells is 50% or lower when compared to the level of fucosylation of the antibodies produced in mammary epithelial cells of a non-human mammal. In some embodiments, the level of fucosylation of the antibodies not produced in mammary gland epithelial cells is 30% or lower when compared to the level of fucosylation of the antibodies produced in mammary epithelial cells of a non-human mammal. In some embodiments, the level of fucosylation of the antibodies not produced in mammary gland epithelial cells is 10% or lower when compared to the level of fucosylation of the antibodies produced in mammary epithelial cells of a non-human mammal.
- In one aspect, the disclosure provides compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation and fucosylation, wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased level of galactosylation and fucosylation when compared to the population of antibodies not produced in mammary gland epithelial cells.
- In some embodiments, the term “antibody” refers to a glycoprotein comprising at least two heavy (H) chains and two light (L) chains. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. In some embodiments, the antigen is TNF-alpha, either in soluble form, in transmembrane form, or both. The constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (C1q) of the classical complement system. Formation of a mature functional antibody molecule can be accomplished when two proteins are expressed in stoichiometric quantities and self-assemble with the proper configuration.
- The term “antibodies” is also meant to encompass antigen-binding fragments thereof. Methods for making antibodies and antigen-binding fragments are well known in the art (see, e.g., Sambrook et al, “Molecular Cloning: A Laboratory Manual” (2nd Ed.), Cold Spring Harbor Laboratory Press (1989); Lewin, “Genes IV”, Oxford University Press, New York, (1990), and Roitt et al., “Immunology” (2nd Ed.), Gower Medical Publishing, London, New York (1989), WO2006/040153, WO2006/122786, and WO2003/002609). As used herein, an “antigen-binding fragment” of an antibody refers to one or more portions of an antibody that retain the ability to specifically bind to an antigen, e.g., TNF-alpha. It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Examples of binding fragments encompassed within the term “antigen-binding fragment” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546) which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, V and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Such single chain antibodies are also intended to be encompassed within the term “antigen-binding portion” of an antibody. These antibody fragments are obtained using conventional procedures, such as proteolytic fragmentation procedures, as described in J. Goding, Monoclonal Antibodies: Principles and Practice, pp 98-118 (N.Y. Academic Press 1983), which is hereby incorporated by reference as well as by other techniques known to those with skill in the art. The fragments are screened for utility in the same manner as are intact antibodies.
- In some embodiments the antibodies are of the isotype IgG, IgA or IgD. In further embodiments, the antibodies are selected from the group consisting of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD, IgE or has immunoglobulin constant and/or variable domain of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD or IgE. In other embodiments, the antibodies are bispecific or multispecific antibodies. According to an alternative embodiment, the antibodies of the present disclosure can be modified to be in the form of a bispecific antibody, or a multispecific antibody. The term “bispecific antibody” is intended to include any agent, e.g., a protein, peptide, or protein or peptide complex, which has two different binding specificities which bind to, or interact with (a) a cell surface antigen and (b) an Fc receptor on the surface of an effector cell. The term “multispecific antibody” is intended to include any agent, e.g., a protein, peptide, or protein or peptide complex, which has more than two different binding specificities which bind to, or interact with (a) a cell surface antigen, (b) an Fc receptor on the surface of an effector cell, and (c) at least one other component. Accordingly, the disclosure includes, but is not limited to, bispecific, trispecific, tetraspecific, and other multispecific antibodies which are directed to cell surface antigens, and to Fc receptors on effector cells. The term “bispecific antibodies” further includes diabodies. Diabodies are bivalent, bispecific antibodies in which the VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen-binding sites (see e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poijak, R. J., et al. (1994) Structure 2:1121-1123).
- The term “antibodies” also encompasses different types of antibodies, e.g., recombinant antibodies, monoclonal antibodies, humanized antibodies or chimeric antibodies, or a mixture of these.
- In some embodiments, the antibodies are recombinant antibodies. The term “recombinant antibody”, as used herein, is intended to include antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from an animal that is transgenic for another species' immunoglobulin genes, antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a recombinant, combinatorial antibody library, or antibodies prepared, expressed, created or isolated by any other means that involves splicing of immunoglobulin gene sequences to other DNA sequences.
- In yet other embodiments, the antibodies can be chimeric or humanized antibodies. As used herein, the term “chimeric antibody” refers to an antibody that combines parts of a non-human (e.g., mouse, rat, rabbit) antibody with parts of a human antibody. As used herein, the term “humanized antibody” refers to an antibody that retains only the antigen-binding CDRs from the parent antibody in association with human framework regions (see, Waldmann, 1991, Science 252:1657). Such chimeric or humanized antibodies retaining binding specificity of the murine antibody are expected to have reduced immunogenicity when administered in vivo for diagnostic, prophylactic or therapeutic applications according to the disclosure.
- In certain embodiments, the antibodies are human antibodies. The term “human antibody”, as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human antibodies of the disclosure may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo). Human antibodies are generated using transgenic mice carrying parts of the human immune system rather than the mouse system. Fully human monoclonal antibodies also can be prepared by immunizing mice transgenic for large portions of human immunoglobulin heavy and light chain loci. See, e.g., U.S. Pat. Nos. 5,591,669, 5,598,369, 5,545,806, 5,545,807, 6,150,584, and references cited therein, the contents of which are incorporated herein by reference. These animals have been genetically modified such that there is a functional deletion in the production of endogenous (e.g., murine) antibodies. The animals are further modified to contain all or a portion of the human germ-line immunoglobulin gene locus such that immunization of these animals results in the production of fully human antibodies to the antigen of interest. Following immunization of these mice (e.g., XenoMouse (Abgenix), HuMAb mice (Medarex/GenPharm)), monoclonal antibodies are prepared according to standard hybridoma technology. These monoclonal antibodies have human immunoglobulin amino acid sequences and therefore will not provoke human anti-mouse antibody (HAMA) responses when administered to humans. The human antibodies, like any of the antibodies provided herein can be monoclonal antibodies.
- In some embodiments, the antibody is a full-length antibody. In some embodiments the full-length antibody comprises a heavy chain and a light chain. In some embodiments, the antibody is an anti-TNF-alpha antibody. In some embodiments, the heavy chain comprises SEQ ID NO: 1 and the light chain comprises SEQ ID NO: 2. In some embodiments, the antibody is adalimumab.
- In one aspect, the compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation (e.g., at least 70%) have high complement dependent cytotoxicity (CDC) activity. In one aspect, the compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation have high antibody-dependent cellular cytotoxicity (ADCC) activity. In some embodiments, the compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation have high complement dependent cytotoxicity (CDC) activity and have high antibody-dependent cellular cytotoxicity (ADCC) activity.
- In some embodiments, the population of anti-TNF-alpha antibodies with high levels of galactosylation has an increased level of complement dependent cytotoxicity (CDC) activity when compared to a population of antibodies that have low levels of galactosylation. In some embodiments, the population of antibodies with high levels of galactosylation and the population of antibodies that have low levels of galactosylation are directed to the same antigen epitope. In some embodiments, the population of antibodies that is highly galactosylated and the population of antibodies that have low levels of galactosylation are encoded by the same nucleic acid. In some embodiments, the nucleic acid encodes the antibody adalimumab.
- A population of antibodies that has low levels of galactosylation (is “low galactose”), as used herein, refers to a population of antibodies wherein the level of galactosylation of the antibodies in the population is less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, down to 0%.
- In some embodiments, the CDC activity of a population of antibodies with high levels of galactosylation is at least 1.1 times higher, at least 1.2 times higher, at least 1.3 times higher, at least 1.4 times higher, at least 1.5 times higher, at least 1.6 times higher, at least 1.7 times higher, at least 1.8 times higher, at least 1.9 times higher, at least 2 times higher, at least 3 times higher, at least 5 times higher, at least 10 times higher, up to at least 100 times higher or more when compared to a population of antibodies that have low levels of galactosylation.
- In some embodiments, the population of antibodies that are highly galactosylated are highly fucosylated (have high levels of fucosylation). In some embodiments, the population of antibodies that are highly galactosylated and highly fucosylated has an increased level of complement dependent cytotoxicity (CDC) activity when compared to a population of antibodies that are low galactose and low fucose (have low levels of galactosylation and fucosylation). In some embodiments, the population of antibodies that is highly galactosylated and highly fucosylated and the population of antibodies that is low galactose and low fucose are directed to the same antigen epitope. In some embodiments, the population of antibodies that is highly galactosylated and highly fucosylated and the population of antibodies that is low galactose and low fucose are encoded by the same nucleic acid. In some embodiments, the nucleic acid encodes the antibody adalimumab.
- A population of antibodies that are low fucose or that have low levels of fucosylation, as used herein, refers to a population of antibodies wherein the level of fucosylation of the antibodies in the population is less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, down to 0%.
- In some embodiments, the CDC activity of a population of antibodies that is highly galactosylated and highly fucosylated is at least 1.1 times higher, at least 1.2 times higher, at least 1.3 times higher, at least 1.4 times higher, at least 1.5 times higher, at least 1.6 times higher, at least 1.7 times higher, at least 1.8 times higher, at least 1.9 times higher, at least 2 times higher, at least 3 times higher, at least 5 times higher, at least 10 times higher, up to at least 100 times higher or more when compared to a population of antibodies that is low galactose and low fucose.
- In some embodiments, the population of antibodies that is highly galactosylated and is produced in mammary gland epithelial cells has an increased level of complement dependent cytotoxicity (CDC) activity when compared to a population of antibodies that is not produced in mammary gland epithelial cells. In some embodiments, the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture. In some embodiments, the population of antibodies that is highly galactosylated produced in mammary gland epithelial cells and the population of antibodies that is not produced in mammary gland epithelial cells may be encoded by the same nucleic acid. In some embodiments, the nucleic acid encodes the antibody adalimumab.
- In some embodiments, the CDC activity of a population of antibodies that is highly galactosylated and is produced in mammary gland epithelial cells is at least 1.1 times higher, at least 1.2 times higher, at least 1.3 times higher, at least 1.4 times higher, at least 1.5 times higher, at least 1.6 times higher, at least 1.7 times higher, at least 1.8 times higher, at least 1.9 times higher, at least 2 times higher, at least 3 times higher, at least 5 times higher, at least 10 times higher, up to at least 100 times higher or more when compared to a population of antibodies that is not produced in mammary gland epithelial cells.
- In one aspect, the compositions of the populations of antibodies disclosed herein have a high (complement dependent cytotoxicity) CDC activity. Antibodies can act as a therapeutic through various mechanisms, one of which is through CDC activity. Some therapeutic antibodies that bind to target cellular receptors can also bind proteins of the complement pathway. Binding of the complement proteins results in a complement cascade (through C1-complex activation) that eventually results in the formation of a “membrane attack complex” causing cell lysis and death of the cell to which the therapeutic antibody is bound (See e.g., Reff M. E. Blood 1994, 83: 435).
- In some embodiments a population of antibodies that has an increased level of complement dependent cytotoxicity (CDC) activity, is a population of antibodies that induces a larger amount of cell lysis as compared to a population of antibodies that has does not have an increased level of complement dependent cytotoxicity (CDC) activity. Methods for determining the level of CDC are known in the art and are often based on determining the amount of cell lysis. Commercial kits for determining CDC activity can be purchased for instance from Genscript (Piscataway, N.J.).
- In one aspect, the population of anti-TNF-alpha antibodies with high levels of galactosylation (e.g., at least 70%), has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity when compared to a population of antibodies that have low levels of galactosylation. In some embodiments, the disclosure provides compositions comprising populations of anti-TNF-alpha antibodies with a high level of galactosylation wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells. In some embodiments, the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture. In some embodiments, the population of anti-TNF-alpha antibodies with high levels of galactosylation (e.g., at least 70%), has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity when compared to a population of antibodies that is aglycosylated.
- In some embodiments, the population of antibodies that are highly galactosylated has an increased level of antibody-dependent cellular cytotoxicity (ADCC) when compared to a population of antibodies that are low galactose. In some embodiments, the ADCC activity of a population of antibodies that is highly galactosylated is at least 1.1 times higher, 1.2 times higher, 1.3 times higher, 1.4 times higher, 1.5 times higher, 1.6 times higher, 1.7 times higher, 1.8 times higher, 1.9 times higher, 2 times higher, 3 times higher, 5 times higher, 10 times higher, 100 times higher or more when compared to a population of antibodies that are low galactose.
- In some embodiments, the population of antibodies that are highly galactosylated and is produced in mammary gland epithelial cells has an increased level of antibody-dependent cellular cytotoxicity (ADCC) when compared to a population of antibodies that is not produced in mammary gland epithelial cells. In some embodiments, the ADCC activity of a population of antibodies that is highly galactosylated and produced in mammary gland epithelial cells is at least 1.1 times higher, 1.2 times higher, 1.3 times higher, 1.4 times higher, 1.5 times higher, 1.6 times higher, 1.7 times higher, 1.8 times higher, 1.9 times higher, 2 times higher, 3 times higher, 5 times higher, 10 times higher, 100 times higher or more when compared to a population of antibodies that is not produced in mammary gland epithelial cells.
- In some embodiments, the population of antibodies that is highly galactosylated and is produced in mammary gland epithelial cells has an increased level of antibody-dependent cellular cytotoxicity (ADCC) when compared to a population of antibodies that is not produced in mammary gland epithelial cells. In some embodiments, the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- In one aspect, the compositions of the populations of antibodies disclosed herein have a high ADCC activity. Antibodies can act as a therapeutic through various mechanisms, one of which is through ADCC activity. Therapeutic antibodies that bind to cellular receptors on a target cell, and that include the Fc glycosylation site can also bind the Fc-receptor resulting in the anchoring of cells expressing the Fc-receptor to the target cell. The affinity of binding of the Fc regions of antibodies generally is dependent on the nature of the glycosylation of the Fc glycosylation site. The Fc receptor is found on a number of immune cells including natural killer cells, macrophages, neutrophils, and mast cells. Binding to the Fc receptor results in the immune cells inducing cytokines (such as IL-2) and phagocytosis to kill the target cell. In some embodiments, a population of antibodies that has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity is a population of antibodies that shows increased binding to cells expressing CD16 as compared to a population of antibodies that does not have an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity. In some embodiments a population of antibodies that has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity is a population of antibodies that shows increased induction of IL-2 production (e.g., in natural killer cells) as compared to a population of antibodies that has does not have an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity. Commercial kits for determining ADCC activity can be purchased for instance from Genscript (Piscataway, N.J.) and Promega (Madison, Wis.). In some embodiments, determining ADCC activity is performed by evaluating the ability to bind CD16.
- In one aspect, the population of anti-TNF-alpha antibodies with high levels of galactosylation (e.g., at least 70%) has an increased ability to suppress TNF-alpha activity in a subject when compared to a population of antibodies that have low levels of galactosylation. In some embodiments, the disclosure provides compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation, wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased ability to suppress TNF-alpha activity in a subject when compared to a population of antibodies not produced in mammary gland epithelial cells.
- In one aspect, the disclosure provides compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation, wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased ability to bind soluble TNF-alpha when compared to a population of antibodies not produced in mammary gland epithelial cells.
- In one aspect, the disclosure provides compositions comprising populations of anti-TNF-alpha antibodies with high levels of galactosylation, wherein the population of antibodies is produced in mammary epithelial cells of a non-human mammal, and wherein the population of antibodies has an increased ability to bind transmembrane TNF-alpha when compared to a population of antibodies not produced in mammary gland epithelial cells.
- In some embodiments, the population of antibodies that are highly galactosylated has an increased ability to suppress TNF-alpha activity, bind soluble TNF-alpha and/or bind transmembrane TNF-alpha when compared to a population of antibodies that are low galactose. In some embodiments, the increased ability to suppress TNF-alpha activity, bind soluble TNF-alpha and/or bind transmembrane TNF-alpha of a population of antibodies that is highly galactosylated is at least 1.1 times higher, 1.2 times higher, 1.3 times higher, 1.4 times higher, 1.5 times higher, 1.6 times higher, 1.7 times higher, 1.8 times higher, 1.9 times higher, 2 times higher, 3 times higher, 5 times higher, 10 times higher, 100 times higher or more when compared to a population of antibodies that are low galactose.
- In some embodiments, the population of antibodies that are highly galactosylated and is produced in mammary gland epithelial cells has an increased ability to suppress TNF-alpha activity, bind soluble TNF-alpha and/or bind transmembrane TNF-alpha when compared to a population of antibodies that is not produced in mammary gland epithelial cells. In some embodiments, the increased ability to suppress TNF-alpha activity, bind soluble TNF-alpha and/or bind transmembrane TNF-alpha of a population of antibodies that is highly galactosylated and produced in mammary gland epithelial cells is at least 1.1 times higher, 1.2 times higher, 1.3 times higher, 1.4 times higher, 1.5 times higher, 1.6 times higher, 1.7 times higher, 1.8 times higher, 1.9 times higher, 2 times higher, 3 times higher, 5 times higher, 10 times higher, 100 times higher or more when compared to a population of antibodies that is not produced in mammary gland epithelial cells.
- In some embodiments, the population of antibodies that is highly galactosylated and is produced in mammary gland epithelial cells has increased ability to suppress TNF-alpha activity, bind soluble TNF-alpha and/or bind transmembrane TNF-alpha when compared to a population of antibodies that is not produced in mammary gland epithelial cells. In some embodiments, the population of antibodies not produced in mammary gland epithelial cells is produced in cell culture.
- In some embodiments, the populations of anti-TNF-alpha antibodies produced in mammary gland epithelial cells are superior to non-mammary gland epithelial cells produced antibodies in suppressing TNF-alpha activity in a subject. Determining the level of TNF-alpha activity in a subject can be evaluated for instance, by administering the population of antibodies to a subject suffering from a disease characterized by increased TNF-alpha activity (e.g., rheumatoid arthritis) or an established model for such a disease. (See e.g., Horiuchi et al., Rheumatology et al. 49:1215).
- In some embodiments, the populations of anti-TNF-alpha antibodies produced in mammary gland epithelial cells are superior to non-mammary gland epithelial cells produced antibodies in binding soluble TNF-alpha. In some embodiments, the populations of anti-TNF-alpha antibodies produced in mammary gland epithelial cells are superior to non-mammary gland epithelial cells produced antibodies in binding transmembrane TNF-alpha. Assays for determining the level of binding to soluble TNF-alpha or transmembrane TNF-alpha are well-established (See e.g., Horiuchi et al., Rheumatology et al. 49:1215).
- In one aspect, the disclosure provides mammary gland epithelial cells that produce highly galactosylated anti-TNF-alpha antibodies or populations of anti-TNF-alpha antibodies with a high level of galactosylation.
- In one aspect, the disclosure provides a transgenic non-human mammal that produces highly galactosylated anti-TNF-alpha antibody or populations of anti-TNF-alpha antibodies with a high level of galactosylation
- In one aspect, the disclosure relates to mammalian mammary epithelial cells that produce glycosylated antibodies. Methods are provided herein for producing glycosylated antibodies in mammalian mammary epithelial cells. This can be accomplished in cell culture by culturing mammary epithelial cell (in vitro or ex vivo). This can also be accomplished in a transgenic animal (in vivo).
- In some embodiments, the mammalian mammary gland epithelial cells are in a transgenic animal. In some embodiments, the mammalian mammary gland epithelial cells have been engineered to express recombinant antibodies in the milk of a transgenic animal, such as a mouse or goat. To accomplish this, the expression of the gene(s) encoding the recombinant protein can be, for example, under the control of the goat β-casein regulatory elements. Expression of recombinant proteins, e.g., antibodies, in both mice and goat milk has been established previously (see, e.g., US Patent Application US-2008-0118501-A1). In some embodiments, the expression is optimized for individual mammary duct epithelial cells that produce milk proteins.
- Transgenic animals capable of producing recombinant antibodies can be generated according to methods known in the art (see, e.g., U.S. Pat. No. 5,945,577 and US Patent Application US-2008-0118501-A1). Animals suitable for transgenic expression, include, but are not limited to goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama. Suitable animals also include bovine, caprine, ovine and porcine, which relate to various species of cows, goats, sheep and pigs (or swine), respectively. Suitable animals also include ungulates. As used herein, “ungulate” is of or relating to a hoofed typically herbivorous quadruped mammal, including, without limitation, sheep, swine, goats, cattle and horses. Suitable animals also include dairy animals, such as goats and cattle, or mice. In some embodiments, the animal suitable for transgenic expression is a goat.
- In one embodiment, transgenic animals are generated by generation of primary cells comprising a construct of interest followed by nuclear transfer of primary cell nucleus into enucleated oocytes. Primary cells comprising a construct of interest are produced by injecting or transfecting primary cells with a single construct comprising the coding sequence of an antibody of interest, e.g., the heavy and light chains of adalimumab, or by co-transfecting or co-injecting primary cells with separate constructs comprising the coding sequences of the heavy and light chains of an antibody, e.g., adalimumab. These cells are then expanded and characterized to assess transgene copy number, transgene structural integrity and chromosomal integration site. Cells with desired transgene copy number, transgene structural integrity and chromosomal integration site are then used for nuclear transfer to produce transgenic animals. As used herein, “nuclear transfer” refers to a method of cloning wherein the nucleus from a donor cell is transplanted into an enucleated oocyte.
- Coding sequences for antibodies to be expressed in mammalian mammary epithelial cells can be obtained by screening libraries of genomic material or reverse-translated messenger RNA derived from the animal of choice (such as humans, cattle or mice), from sequence databases such as NCBI, Genbank, or by obtaining the sequences of antibodies using methods known in the art, e.g. peptide mapping. The sequences can be cloned into an appropriate plasmid vector and amplified in a suitable host organism, like E. coli. As used herein, a “vector” may be any of a number of nucleic acids into which a desired sequence may be inserted by restriction and ligation for transport between different genetic environments or for expression in a host cell. Vectors are typically composed of DNA although RNA vectors are also available. Vectors include, but are not limited to, plasmids and phagemids. A cloning vector is one which is able to replicate in a host cell, and which is further characterized by one or more endonuclease restriction sites at which the vector may be cut in a determinable fashion and into which a desired DNA sequence may be ligated such that the new recombinant vector retains its ability to replicate in the host cell. An expression vector is one into which a desired DNA sequence may be inserted by restriction and ligation such that it is operably joined to regulatory sequences and may be expressed as an RNA transcript. Vectors may further contain one or more marker sequences suitable for use in the identification of cells which have or have not been transformed or transfected with the vector. Markers include, for example, genes encoding proteins which increase or decrease either resistance or sensitivity to antibiotics or other compounds, genes which encode enzymes whose activities are detectable by standard assays known in the art (e.g., β-galactosidase or alkaline phosphatase), and genes which visibly affect the phenotype of transformed or transfected cells, hosts, colonies or plaques.
- The coding sequence of antibodies or the heavy and light chains of antibodies of interest can be operatively linked to a control sequence which enables the coding sequence to be expressed in the milk of a transgenic non-human mammal. After amplification of the vector, the DNA construct can be excised, purified from the remains of the vector and introduced into expression vectors that can be used to produce transgenic animals. The transgenic animals will have the desired transgenic protein integrated into their genome.
- A DNA sequence which is suitable for directing production to the milk of transgenic animals can carry a 5′-promoter region derived from a naturally-derived milk protein. This promoter is consequently under the control of hormonal and tissue-specific factors and is most active in lactating mammary tissue. In some embodiments the promoter used is a milk-specific promoter. As used herein, a “milk-specific promoter” is a promoter that naturally directs expression of a gene in a cell that secretes a protein into milk (e.g., a mammary epithelial cell) and includes, for example, the casein promoters, e.g., α-casein promoter (e.g., alpha S-1 casein promoter and alpha S2-casein promoter), β-casein promoter (e.g., the goat beta casein gene promoter (DiTullio, B
IOTECHNOLOGY 10:74-77, 1992), γ-casein promoter, K-casein promoter, whey acidic protein (WAP) promoter (Gorton et al., BIOTECHNOLOGY 5: 1183-1187, 1987), β-lactoglobulin promoter (Clark et al., BIOTECHNOLOGY 7: 487-492, 1989) and α-lactalbumin promoter (Soulier et al., FEBS LETTS . 297:13, 1992). Also included in this definition are promoters that are specifically activated in mammary tissue, such as, for example, the long terminal repeat (LTR) promoter of the mouse mammary tumor virus (MMTV). In some embodiments the promoter is a caprine beta casein promoter. - The promoter can be operably linked to a DNA sequence directing the production of a protein leader sequence which directs the secretion of the transgenic protein across the mammary epithelium into the milk. As used herein, a coding sequence and regulatory sequences (e.g., a promoter) are said to be “operably joined” or “operably linked” when they are linked in such a way as to place the expression or transcription of the coding sequence under the influence or control of the regulatory sequences. As used herein, a “leader sequence” or “signal sequence” is a nucleic acid sequence that encodes a protein secretory signal, and, when operably linked to a downstream nucleic acid molecule encoding a transgenic protein directs secretion. The leader sequence may be the native human leader sequence, an artificially-derived leader, or may be obtained from the same gene as the promoter used to direct transcription of the transgene coding sequence, or from another protein that is normally secreted from a cell, such as a mammalian mammary epithelial cell. In some embodiments a 3′-sequence, which can be derived from a naturally secreted milk protein, can be added to improve stability of mRNA.
- In some embodiments, to produce primary cell lines containing a construct (e.g., encoding an adalimumab antibody) for use in producing transgenic goats by nuclear transfer, the heavy and light chain constructs can be transfected into primary goat skin epithelial cells, which are expanded and fully characterized to assess transgene copy number, transgene structural integrity and chromosomal integration site. As used herein, “nuclear transfer” refers to a method of cloning wherein the nucleus from a donor cell is transplanted into an enucleated oocyte.
- Cloning will result in a multiplicity of transgenic animals—each capable of producing an antibody or other gene construct of interest. The production methods include the use of the cloned animals and the offspring of those animals. Cloning also encompasses the nuclear transfer of fetuses, nuclear transfer, tissue and organ transplantation and the creation of chimeric offspring. One step of the cloning process comprises transferring the genome of a cell, e.g., a primary cell that contains the transgene of interest into an enucleated oocyte. As used herein, “transgene” refers to any piece of a nucleic acid molecule that is inserted by artifice into a cell, or an ancestor thereof, and becomes part of the genome of an animal which develops from that cell. Such a transgene may include a gene which is partly or entirely exogenous (i.e., foreign) to the transgenic animal, or may represent a gene having identity to an endogenous gene of the animal. Suitable mammalian sources for oocytes include goats, sheep, cows, pigs, rabbits, guinea pigs, mice, hamsters, rats, non-human primates, etc. Preferably, oocytes are obtained from ungulates, and most preferably goats or cattle. Methods for isolation of oocytes are well known in the art. Essentially, the process comprises isolating oocytes from the ovaries or reproductive tract of a mammal, e.g., a goat. A readily available source of ungulate oocytes is from hormonally-induced female animals. For the successful use of techniques such as genetic engineering, nuclear transfer and cloning, oocytes may preferably be matured in vivo before these cells may be used as recipient cells for nuclear transfer, and before they were fertilized by the sperm cell to develop into an embryo. Metaphase II stage oocytes, which have been matured in vivo, have been successfully used in nuclear transfer techniques. Essentially, mature metaphase II oocytes are collected surgically from either non-super ovulated or super ovulated animals several hours past the onset of estrus or past the injection of human chorionic gonadotropin (hCG) or similar hormone.
- In some embodiments, the transgenic animals (e.g., goats) and mammary epithelial cells are generated through microinjection. Microinjection in goats is described for instance in U.S. Pat. No. 7,928,064. Briefly, fertilized goat eggs are collected from the PBS oviductal flushings on a stereomicroscope, and washed in medium containing 10% fetal bovine serum (FBS). In cases where the pronuclei were visible, the embryos can be immediately microinjected. If pronuclei are not visible, the embryos can be placed media for short term culture until the pronuclei became visible (Selgrath, et al., Theriogenology, 1990. p. 1195-1205). One-cell goat embryos are placed in a microdrop of medium under oil on a glass depression slide. Fertilized eggs having two visible pronuclei and can be immobilized on a flame-polished holding micropipet on an upright microscope with a fixed stage. A pronucleus can be microinjected with the appropriate antibody encoding construct in injection buffer using a fine glass microneedle (Selgrath, et al., Theriogenology, 1990. p. 1195-1205). After microinjection, surviving embryos are placed in a culture and incubated until the recipient animals are prepared for embryo transfer (Selgrath, et al., Theriogenology, 1990. p. 1195-1205).
- Thus, in one aspect the disclosure provides mammary gland epithelial cells that produce the antibodies or populations of antibodies disclosed herein. In some embodiments, the antibody comprises a nucleic acid comprising SEQ ID NO: 3 and a nucleic acid comprising SEQ ID NO: 4. In some embodiments, the nucleic acid comprising SEQ ID NO: 3 and the nucleic acid comprising SEQ ID NO: 4 are connected. “Connected” is used herein to mean the nucleic acids are physically linked, e.g., within the same vector or within approximately the same genomic location. In some embodiments, the mammary epithelial cells above are in a transgenic non-human mammal. In some embodiments, the transgenic non-human mammal is a goat.
- A nucleic acid sequence encoding the heavy chain of adalimumab is provided in SEQ ID NO:3:
-
ATGGAATTCGGCCTGAGCTGGCTGTTCCTGGTGGCCATCCTGAAGGGCGT GCAGTGCGAGGTGCAGCTGGTGGAGTCTGGCGGAGGACTGGTGCAGCCCG GCAGAAGCCTGAGACTGAGCTGCGCCGCCAGCGGCTTCACCTTCGACGAC TACGCCATGCACTGGGTCCGCCAGGCCCCTGGAAAGGGCCTGGAATGGGT GTCCGCCATCACCTGGAACAGCGGCCACATCGACTACGCCGACAGCGTGG AGGGCAGGTTCACCATCAGCAGGGACAACGCCAAGAACAGCCTGTACCTG CAGATGAACAGCCTGAGGGCCGAGGACACCGCCGTGTACTACTGCGCCAA GGTGTCCTACCTGAGCACCGCCAGCAGCCTGGATTACTGGGGCCAGGGCA CCCTGGTGACCGTGTCCAGCGCCAGCACCAAGGGCCCTAGCGTGTTCCCT CTGGCCCCCAGCAGCAAGTCTACCTCTGGCGGCACAGCCGCTCTGGGCTG CCTGGTGAAGGACTACTTCCCCGAGCCCGTGACAGTGTCCTGGAACTCTG GCGCCCTGACCAGCGGCGTGCACACATTCCCTGCCGTGCTGCAGAGCAGC GGCCTGTACAGCCTGAGCAGCGTGGTGACAGTGCCTAGCAGCTCTCTGGG CACCCAGACCTACATCTGCAACGTGAACCACAAGCCCAGCAACACCAAGG TGGACAAGAAGGTGGAGCCCAAGAGCTGCGACAAGACCCACACCTGTCCC CCTTGTCCTGCCCCTGAGCTGCTGGGCGGACCCAGCGTGTTCCTGTTCCC CCCAAAGCCCAAGGACACCCTGATGATCAGCAGGACCCCCGAAGTGACCT GCGTGGTGGTGGACGTGTCCCACGAGGACCCTGAAGTGAAGTTCAATTGG TACGTGGACGGCGTGGAGGTGCACAATGCCAAGACCAAGCCCAGAGAGGA ACAGTACAACAGCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACC AGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTCTCCAACAAGGCC CTGCCTGCCCCCATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCCAG AGAACCCCAGGTGTACACCCTGCCCCCTAGCAGGGACGAGCTGACCAAGA ACCAGGTGTCCCTGACCTGTCTGGTGAAGGGCTTCTACCCCAGCGATATC GCCGTGGAGTGGGAGTCTAACGGCCAGCCTGAGAACAACTACAAGACCAC CCCCCCTGTGCTGGACAGCGACGGCAGCTTCTTCCTGTACTCCAAACTGA CCGTGGACAAGAGCAGATGGCAGCAGGGCAACGTGTTCAGCTGCAGCGTG ATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGAGCCTGAG CCCCGGCAAGTAATGA - A nucleic acid sequence encoding the light chain of adalimumab is provided in SEQ ID NO:4:
-
ATGGACATGAGAGTGCCCGCTCAGCTGCTGGGACTGCTGCTGCTGTGGCT GAGAGGCGCCAGATGCGACATCCAGATGACCCAGAGCCCTTCTAGCCTGA GCGCCAGCGTGGGCGACAGAGTGACCATCACCTGTAGGGCCAGCCAGGGC ATCAGGAACTACCTGGCCTGGTATCAGCAGAAGCCCGGCAAGGCCCCCAA GCTGCTGATCTACGCCGCCAGCACCCTGCAGAGCGGCGTGCCCAGCAGAT TCAGCGGCAGCGGCTCCGGCACCGACTTCACCCTGACCATCAGCAGCCTG CAGCCTGAGGACGTGGCCACCTACTACTGCCAGAGGTACAACAGGGCCCC CTACACCTTCGGACAGGGCACCAAGGTGGAGATCAAGAGGACCGTGGCCG CTCCCAGCGTGTTCATCTTCCCACCCAGCGACGAGCAGCTGAAGTCTGGC ACCGCCTCCGTGGTCTGCCTGCTGAACAACTTCTACCCCCGCGAGGCCAA GGTGCAGTGGAAGGTGGACAACGCCCTGCAGTCCGGCAACAGCCAGGAAA GCGTCACCGAGCAGGACAGCAAGGACTCCACCTACTCCCTGTCCAGCACC CTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGA AGTGACCCACCAGGGCCTGAGCAGCCCTGTGACCAAGAGCTTCAACAGGG GCGAGTGCTAATGA - In another aspect the disclosure provides a method for the production of a transgenic antibody, and populations thereof, the process comprising expressing in the milk of a transgenic non-human mammal a transgenic antibody encoded by a nucleic acid construct. In some embodiments, the method for producing the antibodies of the disclosure comprises:
- (a) transfecting non-human mammalian cells with a transgene DNA construct encoding an anti-TNF-alpha antibody;
- (b) selecting cells in which said anti-TNF-alpha transgene DNA construct has been inserted into the genome of the cells; and
- (c) performing a first nuclear transfer procedure to generate a non-human transgenic mammal heterozygous for the anti-TNF-alpha antibody and that can express it in its milk.
- In some embodiments, the anti-TNF-alpha antibody is adalimumab.
- In some embodiments, the transgene DNA construct comprises SEQ ID NO:3 and/or SEQ ID NO:4. In some embodiments, the non-human transgenic mammal is a goat.
- In another aspect, the disclosure provides a method of:
- (a) providing a non-human transgenic mammal engineered to express an anti-TNF-alpha antibody,
- (b) expressing the anti-TNF-alpha antibody in the milk of the non-human transgenic mammal; and
- (c) isolating the anti-TNF-alpha antibody expressed in the milk.
- In some embodiments, the anti-TNF-alpha antibody comprises a heavy chain comprising SEQ ID NO:1 and a light chain comprising SEQ ID NO:2. In some embodiments, the anti-TNF-alpha antibody is adalimumab.
- One of the tools used to predict the quantity and quality of the recombinant protein expressed in the mammary gland is through the induction of lactation (Ebert K M, 1994). Induced lactation allows for the expression and analysis of protein from the early stage of transgenic production rather than from the first natural lactation resulting from pregnancy, which is at least a year later. Induction of lactation can be done either hormonally or manually.
- In some embodiments, the compositions of glycosylated antibodies provided herein further comprise milk. In some embodiments, the methods provided herein include a step of isolating a population of antibodies from the milk of a transgenic animal. Methods for isolating antibodies from the milk of transgenic animal are known in the art and are described for instance in Pollock et al., Journal of Immunological Methods, Volume 231, Issues 1-2, 10 Dec. 1999, Pages 147-157. In some embodiments, the methods provided herein include a step of purifying glycosylated antibodies with a desired amount of galactosylation.
- In one aspect, the disclosure provides methods comprising administering highly galactosylated antibodies, compositions of highly galactosylated antibodies, populations of antibodies with a high level of galactosylated antibodies or compositions comprising populations of antibodies with a high level of galactosylated antibodies, to a subject in need thereof. In some embodiment, the subject has an inflammatory disorder or autoimmune disorder. In some embodiment, the inflammatory disorder or autoimmune disorder is rheumatoid arthritis, psoriasis, Crohn's disease, juvenile idiopathic arthritis, ankylozing spondylitis, ulcerative colitis, chronic inflammation, hepatitis, Behcet's disease, Wegener's granulomatosis, or sarcoidosis.
- In one aspect, the disclosure provides methods for administering any one of antibodies or compositions described herein to a subject in need thereof. In some embodiments, the subject has an immune disorder or disorder associated with inflammation. Immune disorders and disorders associated with inflammation include but are not limited, to adult respiratory distress syndrome, arteriosclerosis, asthma, atherosclerosis, cholecystitis, cirrhosis, Crohn's disease, diabetes mellitus, emphysema, hypereosinophilia, inflammation, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, rheumatoid arthritis, scleroderma, colitis, systemic lupus erythematosus, lupus nephritis, diabetes mellitus, inflammatory bowel disease, celiac disease, an autoimmune thyroid disease, Addison's disease, Sjogren's syndrome, Sydenham's chorea, Takayasu's arteritis, Wegener's granulomatosis, autoimmune gastritis, autoimmune hepatitis, cutaneous autoimmune diseases, autoimmune dilated cardiomyopathy, multiple sclerosis, myocarditis, myasthenia gravis, pernicious anemia, polymyalgia, psoriasis, rapidly progressive glomerulonephritis, rheumatoid arthritis, ulcerative colitis, vasculitis, autoimmune diseases of the muscle, autoimmune diseases of the testis, autoimmune diseases of the ovary and autoimmune diseases of the eye, acne vulgari, asthma, autoimmune diseases, celiac disease, chronic prostatitis, glomerulonephritis, hypersensitivities, inflammatory bowel diseases, pelvic inflammatory disease, peperfusion injury, rheumatoid arthritis, sarcoidosis, transplant rejection, vasculitis, and interstitial cystitis.
- In one aspect, the disclosure provides methods for administering any one of antibodies or compositions described herein to a subject in need thereof. In some embodiments, a subject in need of treatments is a subject with a disease characterized by a dysregulation of TNF levels. Disease characterized by a dysregulation of TNF levels, in addition to the inflammatory and immune disorders discussed above, include Alzheimer, cancer and depression.
- In one aspect, the disclosure provides pharmaceutical compositions which comprise an amount of an antibody or population of antibodies and a pharmaceutically acceptable vehicle, diluent or carrier. In some embodiments, the compositions comprise milk.
- In one aspect, the disclosure provides a method of treating a subject, comprising administering to a subject a composition provided in an amount effective to treat a disease the subject has or is at risk of having is provided. In one embodiment the subject is a human. In another embodiment the subject is a non-human animal, e.g., a dog, cat, horse, cow, pig, sheep, goat or primate.
- According to embodiments that involve administering to a subject in need of treatment a therapeutically effective amount of the antibodies as provided herein, “therapeutically effective” or “an amount effective to treat” denotes the amount of antibody or of a composition needed to inhibit or reverse a disease condition (e.g., to treat the inflammation). Determining a therapeutically effective amount specifically depends on such factors as toxicity and efficacy of the medicament. These factors will differ depending on other factors such as potency, relative bioavailability, patient body weight, severity of adverse side-effects and preferred mode of administration. Toxicity may be determined using methods well known in the art. Efficacy may be determined utilizing the same guidance. Efficacy, for example, can be measured by a decrease in inflammation. A pharmaceutically effective amount, therefore, is an amount that is deemed by the clinician to be toxicologically tolerable, yet efficacious.
- Dosage may be adjusted appropriately to achieve desired drug (e.g., anti-TNF-alpha antibodies) levels, local or systemic, depending upon the mode of administration. In the event that the response in a subject is insufficient at such doses, even higher doses (or effective higher doses by a different, more localized delivery route) may be employed to the extent that patient tolerance permits. Multiple doses per day are contemplated to achieve appropriate systemic levels of antibodies. Appropriate systemic levels can be determined by, for example, measurement of the patient's peak or sustained plasma level of the drug. “Dose” and “dosage” are used interchangeably herein.
- In some embodiments, the amount of antibody or pharmaceutical composition administered to a subject is 50 to 500 mg/kg, 100 to 400 mg/kg, or 200 to 300 mg/kg per week. In one embodiment the amount of antibody or pharmaceutical composition administered to a subject is 250 mg/kg per week. In some embodiments, an initial dose of 400 mg/kg is administered a subject the first week, followed by administration of 250 mg/kg to the subject in subsequent weeks. In some embodiments the administration rate is less than 10 mg/min. In some embodiments, administration of the antibody or pharmaceutical composition to a subject occurs at least one hour prior to treatment with another therapeutic agent. In some embodiments, a pre-treatment is administered prior to administration of the antibody or pharmaceutical composition.
- In some embodiments the compositions provided are employed for in vivo applications. Depending on the intended mode of administration in vivo the compositions used may be in the dosage form of solid, semi-solid or liquid such as, e.g., tablets, pills, powders, capsules, gels, ointments, liquids, suspensions, or the like. Preferably, the compositions are administered in unit dosage forms suitable for single administration of precise dosage amounts. The compositions may also include, depending on the formulation desired, pharmaceutically acceptable carriers or diluents, which are defined as aqueous-based vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. The diluent is selected so as not to affect the biological activity of the human recombinant protein of interest. Examples of such diluents are distilled water, physiological saline, Ringer's solution, dextrose solution, and Hank's solution. The same diluents may be used to reconstitute a lyophilized recombinant protein of interest. In addition, the pharmaceutical composition may also include other medicinal agents, pharmaceutical agents, carriers, adjuvants, nontoxic, non-therapeutic, non-immunogenic stabilizers, etc. Effective amounts of such diluent or carrier are amounts which are effective to obtain a pharmaceutically acceptable formulation in terms of solubility of components, biological activity, etc. In some embodiments the compositions provided herein are sterile.
- Administration during in vivo treatment may be by any number of routes, including oral, parenteral, intramuscular, intranasal, sublingual, intratracheal, inhalation, ocular, vaginal, and rectal. Intracapsular, intravenous, and intraperitoneal routes of administration may also be employed. The skilled artisan recognizes that the route of administration varies depending on the disorder to be treated. For example, the compositions or antibodies herein may be administered to a subject via oral, parenteral or topical administration. In one embodiment, the compositions or antibodies herein are administered by intravenous infusion.
- The compositions, when it is desirable to deliver them systemically, may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compositions in water soluble form. Additionally, suspensions of the active compositions may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compositions to allow for the preparation of highly concentrated solutions. Alternatively, the active compositions may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate. The component or components may be chemically modified so that oral delivery of the antibodies is efficacious. Generally, the chemical modification contemplated is the attachment of at least one molecule to the antibodies, where said molecule permits (a) inhibition of proteolysis; and (b) uptake into the blood stream from the stomach or intestine. Also desired is the increase in overall stability of the antibodies and increase in circulation time in the body. Examples of such molecules include: polyethylene glycol, copolymers of ethylene glycol and propylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone and polyproline. Abuchowski and Davis, 1981, “Soluble Polymer-Enzyme Adducts” In: Enzymes as Drugs, Hocenberg and Roberts, eds., Wiley-Interscience, New York, N.Y., pp. 367-383; Newmark, et al., 1982, J. Appl. Biochem. 4:185-189. Other polymers that could be used are poly-1,3-dioxolane and poly-1,3,6-tioxocane. Preferred for pharmaceutical usage, as indicated above, are polyethylene glycol molecules. For oral compositions, the location of release may be the stomach, the small intestine (the duodenum, the jejunum, or the ileum), or the large intestine. One skilled in the art has available formulations which will not dissolve in the stomach, yet will release the material in the duodenum or elsewhere in the intestine. Preferably, the release will avoid the deleterious effects of the stomach environment, either by protection of the antibody or by release of the biologically active material beyond the stomach environment, such as in the intestine.
- For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.
- For administration by inhalation, the compositions for use according to the present disclosure may be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compositions and a suitable powder base such as lactose or starch.
- Also contemplated herein is pulmonary delivery. The compositions can be delivered to the lungs of a mammal while inhaling and traverses across the lung epithelial lining to the blood stream. Contemplated for use in the practice of this disclosure are a wide range of mechanical devices designed for pulmonary delivery of therapeutic products, including but not limited to nebulizers, metered dose inhalers, and powder inhalers, all of which are familiar to those skilled in the art.
- Nasal delivery of a pharmaceutical composition disclosed herein is also contemplated. Nasal delivery allows the passage of a pharmaceutical composition of the present disclosure to the blood stream directly after administering the therapeutic product to the nose, without the necessity for deposition of the product in the lung. Formulations for nasal delivery include those with dextran or cyclodextran.
- The compositions may also be formulated in rectal or vaginal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
- The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
- Suitable liquid or solid pharmaceutical preparation forms are, for example, aqueous or saline solutions for inhalation, microencapsulated, encochleated, coated onto microscopic gold particles, contained in liposomes, nebulized, aerosols, pellets for implantation into the skin, or dried onto a sharp object to be scratched into the skin. The pharmaceutical compositions also include granules, powders, tablets, coated tablets, (micro)capsules, suppositories, syrups, emulsions, suspensions, creams, drops or preparations with protracted release of active compositions, in whose preparation excipients and additives and/or auxiliaries such as disintegrants, binders, coating agents, swelling agents, lubricants, flavorings, sweeteners or solubilizers are customarily used as described above. The pharmaceutical compositions are suitable for use in a variety of drug delivery systems. For a brief review of methods for drug delivery, see Langer, Science 249:1527-1533, 1990, which is incorporated herein by reference.
- The antibodies and optionally other therapeutics may be administered per se (neat) or in the form of a pharmaceutically acceptable salt. When used in medicine the salts should be pharmaceutically acceptable, but non-pharmaceutically acceptable salts may conveniently be used to prepare pharmaceutically acceptable salts thereof. Such salts include, but are not limited to, those prepared from the following acids: hydrochloric, hydrobromic, sulphuric, nitric, phosphoric, maleic, acetic, salicylic, p-toluene sulphonic, tartaric, citric, methane sulphonic, formic, malonic, succinic, naphthalene-2-sulphonic, and benzene sulphonic. Also, such salts can be prepared as alkaline metal or alkaline earth salts, such as sodium, potassium or calcium salts of the carboxylic acid group.
- Suitable buffering agents include: acetic acid and a salt (1-2% w/v); citric acid and a salt (1-3% w/v); boric acid and a salt (0.5-2.5% w/v); and phosphoric acid and a salt (0.8-2% w/v). Suitable preservatives include benzalkonium chloride (0.003-0.03% w/v); chlorobutanol (0.3-0.9% w/v); parabens (0.01-0.25% w/v) and thimerosal (0.004-0.02% w/v).
- The pharmaceutical compositions of the disclosure contain an effective amount of the antibodies and optionally therapeutic agents included in a pharmaceutically-acceptable carrier. The term pharmaceutically-acceptable carrier means one or more compatible solid or liquid filler, diluents or encapsulating substances which are suitable for administration to a human or other vertebrate animal. The term carrier denotes an organic or inorganic ingredient, natural or synthetic, with which the active ingredient is combined to facilitate the application. The components of the pharmaceutical compositions also are capable of being commingled with the compositions of the present disclosure, and with each other, in a manner such that there is no interaction which would substantially impair the desired pharmaceutical efficiency.
- The therapeutic agent(s), including specifically but not limited to the antibodies, may be provided in particles. Particles as used herein means nano or microparticles (or in some instances larger) which can consist in whole or in part of the antibody or other therapeutic agents administered with the antibody. The particle may include, in addition to the therapeutic agent(s), any of those materials routinely used in the art of pharmacy and medicine, including, but not limited to, erodible, nonerodible, biodegradable, or nonbiodegradable material or combinations thereof. The particles may be microcapsules which contain the antibody in a solution or in a semi-solid state. The particles may be of virtually any shape.
- In one aspect, the disclosure provides methods for production of highly galactosylated anti-TNF-alpha antibodies and populations with high levels of galactosylated antibodies.
- In one aspect, the disclosure provides a method for producing a population of antibodies, comprising: expressing the population of antibodies in mammary gland epithelial cells of a non-human mammal such that a population of antibodies is produced, wherein the antibody is an anti-TNF-alpha antibody, and wherein the level of galactosylation of the antibodies in the population is at least 70%. In some embodiments, the anti-TNF-alpha antibody is adalimumab. In some embodiments, the mammary gland epithelial cells are in culture and are transfected with a nucleic acid that comprises a sequence that encodes the antibody. In some embodiments, the nucleic acid comprise SEQ ID NO:3 and SEQ ID NO:4. In some embodiments, the mammary gland epithelial cells are in a non-human mammal engineered to express a nucleic acid that comprises a sequence that encodes the antibody in its mammary gland. In some embodiments, the mammary gland epithelial cells are goat, sheep, bison, camel, cow, pig, rabbit, buffalo, horse, rat, mouse or llama mammary gland epithelial cells. In some embodiments, the mammary gland epithelial cells are goat mammary gland epithelial cells.
- In one aspect the disclosure provides mammary gland epithelial cells that express the highly galactosylated anti-TNF-alpha antibodies or populations with high levels of galactosylated antibodies disclosed herein.
- In one aspect the disclosure provides a transgenic non-human mammal comprising mammary gland epithelial cells that express the highly galactosylated anti-TNF-alpha antibodies or populations with high levels of galactosylated antibodies disclosed herein.
- In one aspect the disclosure provides a method for the production of a glycosylated antibody or population of glycosylated antibodies, the process comprising expressing in the milk of a transgenic non-human mammal a glycosylated antibody encoded by a nucleic acid construct. In one embodiment the mammalian mammary epithelial cells are of a non-human mammal engineered to express the antibody in its milk. In yet another embodiment the mammalian mammary epithelial cells are mammalian mammary epithelial cells in culture.
- In another embodiment the method comprises:
- (a) providing a non-human transgenic mammal engineered to express an antibody,
- (b) expressing the antibody in the milk of the non-human transgenic mammal;
- (c) isolating the antibodies expressed in the milk; and
- (d) detecting the presence galactose on the isolated antibodies.
- In yet another embodiment the method, comprises: producing a population of glycosylated antibodies in mammary gland epithelial cells such that the population of glycosylated antibodies produced comprises a specific percentage of galactosylation (e.g., at least 70%, at least 80%, at least 90%, or higher). In some embodiment, the antibody is an anti-TNF-alpha antibody. In some embodiments, the glycosylated antibodies comprise a heavy chain comprising SEQ ID NO:1 and a light chain comprising SEQ ID NO:2. In some embodiments, this method is performed in vitro. In other embodiments, this method is performed in vivo, e.g., in the mammary gland of a transgenic goat.
- In some embodiments the methods above further comprise steps for inducing lactation. In still other embodiments the methods further comprise additional isolation and/or purification steps. In yet other embodiments the methods further comprise steps for comparing the glycosylation pattern of the antibodies obtained with antibodies produced in cell culture, e.g. non-mammary cell culture. In further embodiments, the methods further comprise steps for comparing the glycosylation pattern of the antibodies obtained to antibodies produced by non-mammary epithelial cells. Such cells can be cells of a cell culture. In some embodiments, the glycosylation pattern is the amount of galactose present on an antibody or population of antibodies. In some embodiments, the method further comprises comparing the percentage of galactosylation present in the population of glycosylated antibodies to the percentage of galactosylation present in a population of glycosylated antibodies produced in cell culture, e.g. non-mammary cell culture. Experimental techniques for assessing the glycosylation pattern of the antibodies can be any of those known to those of ordinary skill in the art or as provided herein, such as below in the Examples. Such methods include, e.g., liquid chromatography mass spectrometry, tandem mass spectrometry, and Western blot analysis.
- The antibodies can be obtained, in some embodiments, by collecting the antibodies from the milk of a transgenic animal produced as provided herein or from an offspring of said transgenic animal. In some embodiments the antibodies produced by the transgenic mammal is produced at a level of at least 1 gram per liter of milk produced. Advantageously, the method according to the invention allows the production of more than 4 grams per liter of milk produced, advantageously more than 5, 10, 15, 20, 25, 30, 35, grams per liter, advantageously up to 70 grams per liter.
- Unless otherwise defined herein, scientific and technical terms used in connection with the present disclosure shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. The methods and techniques of the present disclosure are generally performed according to conventional methods well-known in the art. Generally, nomenclatures used in connection with, and techniques of biochemistry, enzymology, molecular and cellular biology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well-known and commonly used in the art. The methods and techniques of the present disclosure are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated.
- The present invention is further illustrated by the following Examples, which in no way should be construed as further limiting. The entire contents of all of the references (including literature references, issued patents, published patent applications, and co pending patent applications) cited throughout this application are hereby expressly incorporated by reference.
- Generation of Transgenic Goats that Produce Adalimumab
- Transgenic goats were generated that include the nucleic acid sequence encoding the adalimumab antibody in their genome. The goats producing adalimumab were generated using traditional micoinjection techniques (See e.g., U.S. Pat. No. 7,928,064). The cDNA encoding the heavy and light chain (SEQ ID NO:3 and SEQ ID NO:4) was synthesized based on the published amino acid sequence (U.S. Pat. No. 6,090,382). These DNA sequences were ligated with the beta casein expression vector to yield constructs BC2601 HC and BC2602 LC. In these plasmids, the nucleic acid sequence encoding adalimumab is under the control of a promoter facilitating the expression of adalimumab in the mammary gland of the goats. The prokaryotic sequences were removed and the DNA microinjected into pre-implantation embryos of the goat. These embryos were then transferred to pseudo pregnant females. The progeny that resulted were screened for the presence of the transgenes. Those that carried both chains were identified as transgenic founders.
- When age appropriate, the founder animals were bred. Following pregnancy and parturition they were milked. The time course was in days starting lactation after parturation (e.g.,
day 3,day 7, day 11). The adalimumab antibody was purified from the milk at each time point and characterized as described herein. - 5 μg/ml of TNF-α was coated overnight at 4° C. in a 96 well plate in 100 μl of PBS per well. After blocking of nonspecific sites (incubation with 200 μl PBS/1% BSA, 1 h RT), transgenically produced adalimumab or deglycosylated adalimumab was added at various concentrations (0 to 10 μg/ml) for 20 min in PBS/1% BSA. After washing, the binding of transgenically produced adalimumab to coated TNF-α was evaluated by the addition of a goat anti-human IgG (H+L) coupled to peroxidase, followed by substrate (H2O2 and tetramethylbenzidine). After 20 min of incubation, the reaction was stopped with 50 μl of diluted H2SO4 and the OD was read at 450 nm. The results for transgenically produced adalimumab are shown in
FIG. 10 . - To evaluate the binding of transgenically produced adalimumab to CD16, a displacement study with the anti-CD16 binding antibody 3G8, (Santa Cruz Biotech) was performed. The displacement test allowed for the determination of the binding of the transgenically produced adalimumab to the CD16 receptor expressed at NK surface membrane.
- Natural killer cells (NK cells) were purified by negative depletion (Miltenyi) from the peripheral blood of healthy donors. The NK cells were then incubated with variable concentrations (0 to 83 μg/ml) of transgenically produced adalimumab and the anti-CD16 antibody 3G8 conjugated to a fluorochrome (3G8-PE), at a fixed concentration. After washing, the binding of 3G8-PE to the CD16 receptor on the NK cells was evaluated by flow cytometry. The mean fluorescence values (MFI) observed were expressed as the percent binding, where a value of 100% corresponds the value observed without the tested transgenically produced adalimumab that thus corresponds to maximum 3G8 binding. A value of 0% corresponds to the MFI in the absence of the antibody 3G8. IC50, the antibody concentration required to induce inhibition of 3G8 binding by 50% of Imax, were calculated using PRISM software. The results are shown in
FIG. 11 . - Binding of Soluble TNF-α with Transgenically Produced Adalimumab on CD16 Expressed by Jurkat Cells Via the Fc Fragment of Transgenically Produced Adalimumab
- Jurkat-CD16 cells were incubated with 10 μg/ml of transgenically produced adalimumab or the deglycosylated version thereof for 20 min at 4° C. After washing, 100 μl of TNF-α was added to the cell pellet at a final concentration of 1 μg/ml, 20 min at 4° C. After subsequent washing, the cells were incubated with 5 μg/ml of a biotinylated goat anti-human TNF-α antibody, 20 min at 4° C. After another round of washing, the binding of TNF-α was visualized by the addition of streptavidin coupled to PE-fluorochrome for 20 min at 4° C. Samples were analyzed by flux cytometry. The results are shown in
FIG. 12 . - The glycosylation pattern of the adalimumab antibodies produced in the milk of transgenic goats was determined by releasing the N-glycans from antibody and running the released oligosaccharides on a column (“oligosaccharide signature”).
-
FIGS. 1-4 and 6-8 show the N-glycan oligosaccharides released from the transgenically produced adalimumab antibody from goat #1 (FIGS. 1-4 ) and goat #2 (FIGS. 6-8 ). The monosaccharide groups are depicted as follows: -
- Black square: N-AcetylGlucosamine (GlcNac)
- Triangle: Fucose
- Grey Circle: Mannose
- White Circle: Galactose
- Grey Diamond: N-GlycolylNeuraminic Acid (NGNA): a sialic acid
- White Diamond: N-AcetylNeuraminic Acid (NANA): a sialic acid
-
FIG. 1 shows a representative chromatogram of N-glycan oligosaccharides released from the transgenic adalimumab antibody produced in the milk ofgoat # 1. The chromatogram shows that of the fourteen major N-glycan oligosaccharides produced, twelve have at least one galactose in the N-glycan chain, with four oligosaccharides having two galactoses. Only two of the oligosaccharides are purely oligomannose (Seepeak 1 and peak 3).FIG. 1 also shows that of the fourteen major oligosaccharides produced, nine are fucosylated All of the fucosylated oligosaccharides are also galactosylated. -
FIGS. 2-4 show chromatograms of N-glycan oligosaccharides released from the transgenic adalimumab antibody produced in the milk ofgoat # 1 as harvested after 7 days of lactation (FIG. 2 ), 17 days of lactation (FIG. 3 ), and 32 days of lactation (FIG. 4 ). - The relative percentages of all N-glycan oligosaccharides isolated from the adalimumab antibody produced in the milk of
goat # 1 are depicted inFIG. 5 .FIG. 5 also shows a tabulation of the overall percentage of mono-galactosylation, percentage of bi-galactosylation, percentage of total galactosylation (mono-galactosylation+bi-galactosylation), percentage of galactosylation as calculated according to the formula provided above, percentage of fucosylation as calculated according to the formula provided above, the ratio of galactosylation to fucosylation and the percentage of glycan structures with at least one sialic acid (% sialylation). The results are also summarized in Table 1 below: -
TABLE 1 N-glycan oligosaccharides isolated from adalimumab antibodies from goat # 1day 7day 17day 32average mono-Gal (%): 30.8 42.9 44.1 39.2 bi-Gal (%): 53.1 46.0 47.0 48.7 mono-Gal + bi-Gal (%) 83.9 88.9 91.1 88.0 Gal* (%) 82.9 88.2 89.8 87.0 Fuc* (%) 63.5 74.9 81.9 73.4 Ratio Gal/Fuc 1.30 1.17 1.10 1.18 Silaylation (%) 50.4 59.3 62.7 57.5 *calculated according to formulas in specification -
FIGS. 6-8 show chromatograms of N-glycan oligosaccharides released from the transgenically produced adalimumab antibody in the milk ofgoat # 2 as harvested after 3 days of lactation (FIG. 6 ), 11 days of lactation (FIG. 7 ), and 21 days of hormone induced lactation (FIG. 8 ). - The relative percentages of all N-glycan oligosaccharides isolated from the adalimumab antibody produced in the milk of
goat # 2 are depicted inFIG. 9 .FIG. 9 also shows a tabulation of the overall percentage of mono-galactosylation, percentage of bi-galactosylation, percentage of total galactosylation (mono-galactosylation+bi-galactosylation), percentage of galactosylation as calculated according to the formula provided above, percentage of fucosylation as calculated according to the formula provided above, the ratio of galactosylation to fucosylation and the percentage of glycan structures with at least one sialic acid (% sialylation). The results are also summarized below: -
TABLE 2 N-glycan oligosaccharides isolated from adalimumab antibodies from goat # 2day 3day 11day 21average mono-Gal (%): 27.3 25.7 27.5 26.8 bi-Gal (%): 39.0 43.0 31.4 37.8 mono-Gal + bi-Gal (%) 66.3 68.7 58.9 64.6 Gal* (%) 64.6 67.9 57.8 63.4 Fuc* (%) 51.6 54.0 46.0 50.5 Gal/Fuc 1.25 1.25 1.25 1.25 Sialylation (%) 40.8 42.6 39.1 40.8 *calculated according to formulas in specification -
FIG. 10 shows that transgenically produced adalimumab can bind soluble TNF-alpha coated in 96-well plates. Transgenically produced adalimumab that was aglycosylated was able to bind soluble TNF-alpha as well (data not shown). -
FIG. 11 shows that transgenically produced adalimumab binds CD16 expressed by natural killer (NK) cells. The binding was shown in a competition experiment with the anti-CD16 binding antibody 3G8. The binding of a transgenically produced adalimumab to CD16 is stronger than the binding of a poorly galactosylated antibody to CD16 (data not shown). The transgenically produced adalimumab is therefore expected to have a higher ADCC activity. -
FIG. 12 shows that a transgenically produced adalimumab antibody binds both soluble TNF-alpha and Jurkat expressing CD16 cells while an aglycosylated version of the transgenically produced adalimumab antibody does not. The transgenically produced adalimumab antibody therefore is expected to show ADCC activity while the aglycosylated antibody does not. -
-
TABLE 3 Summary of adalimumab production data Est. #Days Average Milk mg/mL % Total Goat Lactation Volume (mL) in WM Agg #mg Purified 1 32 245 29 20 400 (more TBD) 8 36 350 14* 20 1496 9 36 382 35** 25 3929 3 36*** 634 5 14 502 4 29*** 1458 4 12 390 5 29*** 1663 4 8 341 6 36*** 1899 4 12 374 7 29*** 1676 5 8 395 2 36 260 34** 3 3719 *Concentration started at 20 mg/mL and dropped to 10 mg/mL. **Values could be higher if protein A column was overloaded. ***Lactation volume was still high when dried off. - Adalimumab was transgenically produced in multiple different goats during natural lactation. The glycan profiles for transgenically produced adalimumab were examined.
FIG. 13 provides a summary of percentages of different glycan forms present in populations of transgenically produced adalimumab antibody from the nine different goats listed in Table 3. -
FIG. 14 shows a summary of the percentages of N-glycan oligosaccharides of populations of transgenically produced adalimumab antibodies fromgoat # 10 andgoat # 1 during hormone induced lactation. -
FIG. 15 shows a summary of N-glycan oligosaccharides of populations of transgenically produced adalimumab antibodies from eight different goats, goats #2-9. The data presented inFIG. 15 is summarized in Tables 4-11. -
TABLE 4 N-glycan oligosaccharides isolated from adalimumab antibodies from goat # 2day 29mono-Gal (%) 6.9 bi-Gal (%) 11.9 mono-Gal + bi-Gal (%) 18.8 Gal* (%) 16.9 Fuc* (%) 13.2 Ratio Gal/Fuc 1.28 -
TABLE 5 N-glycan oligosaccharides isolated from adalimumab antibodies from goat # 4day 29mono-Gal (%) 23.2 bi-Gal (%) 11.3 mono-Gal + bi-Gal (%) 34.5 Gal* (%) 24.1 Fuc* (%) 30.4 Ratio Gal/Fuc 0.79 -
TABLE 6 N-glycan oligosaccharides isolated from adalimumab antibodies from goat # 7day 29mono-Gal (%) 28.1 bi-Gal (%) 14.3 mono-Gal + bi-Gal (%) 42.4 Gal* (%) 30.7 Fuc* (%) 47 Ratio Gal/Fuc 0.65 -
TABLE 7 N-glycan oligosaccharides isolated from adalimumab antibodies from goat # 6day 29mono-Gal (%) 31.9 bi-Gal (%) 14.3 mono-Gal + bi-Gal (%) 47 Gal* (%) 34.2 Fuc* (%) 49.6 Ratio Gal/Fuc 0.69 -
TABLE 8 N-glycan oligosaccharides isolated from adalimumab antibodies from goat # 3day 29mono-Gal (%) 29.4 bi-Gal (%) 23.6 mono-Gal + bi-Gal (%) 53 Gal* (%) 46.1 Fuc* (%) 52.8 Ratio Gal/Fuc 0.87 -
TABLE 9 N-glycan oligosaccharides isolated from adalimumab antibodies from goat # 9day 29mono-Gal (%) 37.7 bi-Gal (%) 44 mono-Gal + bi-Gal (%) 81.7 Gal* (%) 81.7 Fuc* (%) 78.2 Ratio Gal/Fuc 1.04 -
TABLE 10 N-glycan oligosaccharides isolated from adalimumab antibodies from goat # 5day 29mono-Gal (%) 26.2 bi-Gal (%) 11.8 mono-Gal + bi-Gal (%) 38.0 Gal* (%) 27.6 Fuc* (%) 39.4 Ratio Gal/Fuc 0.70 -
TABLE 11 N-glycan oligosaccharides isolated from adalimumab antibodies from goat # 8day 29mono-Gal (%) 18.6 bi-Gal (%) 65.4 mono-Gal + bi-Gal (%) 84 Gal* (%) 80.4 Fuc* (%) 74.0 Ratio Gal/Fuc 1.09 - Biological features of transgenically produced adalimumab from goat milk were compared to Adalimumab (Humira). Relative Kd, CD16-binding and FcRn binding were investigated. Furthermore, Complement Dependent Cytotoxicity (CDC) and neutralisation of TNF-α mediated cellular cytotoxicity were evaluated on membrane TNF-α transfected Jurkat cells.
- Arbitrary Kd (concentration giving 50% of the plateau value) obtained by flux cytometry showed no difference (p=0.54) between Humira (0.09 μg/ml) and transgenically produced adalimumab (0.11 μg/ml). Transgenically produced adalimumab bound to CD16 receptor with an IC50 value of 25.7 μg/ml versus 56.67 μg/ml for Humira. Thus, binding of transgenically produced adalimumab to CD16 was 2.2 fold higher than that of Humira.
- Transgenically produced adalimumab binding to FcRn was higher than that of Humira, despite having the same Fc portion. CDC activity showed an advantage with transgenically produced adalimumab compared to Humira antibody (196 vs 399 ng/ml). Transgenically produced adalimumab and Humira both neutralized similarly TNF-α induced L929 apoptosis (EC50=110 ng/ml and 98 ng/ml respectively).
- Reagents
-
- Anti TNF-α reagent:
- Antibody:
- Transgenically produced adalimumab
- Humira (Adalimumab, Abbott)
- Antibody:
- Anti CD160: purification no. 829 10 049, used as negative control
- baby rabbit serum (Cederlane)
- Actinomycin D (Sigma)
- Human TNF-α (Miltenyi Biotec)
-
Cell titer 96® aqueous One solution Cell Proliferation Assay (Promega)
- Anti TNF-α reagent:
- Cells
-
- Membrane TNF-α transfected Jurkat cells clone 2B3 were obtained by cloning (used for Relative Kd assay and CDC)
- Murine fibroblast L929 cells
- 2×105 TNF-α transfected Jurkat cells were incubated with 100 μl of anti-TNF Alexa-488 coupled antibodies at different concentrations (0 to 100 μl/ml, final concentration) at 4° C. for 30 minutes. After washing, a goat anti-human Fc gamma coupled to phycoerythrin (100 μl of a dilution of 1:100) was added at 4° C. for 30 minutes. The cells were washed and mean of fluorescence intensity (MFI) studied by flow cytometry. Arbitrary Kd was calculated using PRISM software.
- Binding to CD16 was studied by a competitive assay using the mouse phycoerythrin-labelled anti-CD16 3G8 (3G8-PE) and NK cells. Briefly, NK cells were isolated from peripheral blood mononuclear cells (PBMC) using the NK Cell Isolation Kit from Myltenyi then incubated with variable concentrations (0 to 83 μg/ml) of the tested antibodies simultaneously with the mouse anti-CD16 mAb 3G8-PE used at a fixed concentration. After washing, the binding of 3G8-PE to CD16 expressed by NK cell was evaluated by flow cytometry. The mean fluorescence values (MFI) observed are expressed in percent, 100% being the value obtained with the 3G8-PE alone and 0% the value in the absence of the 3G8-PE. IC50 values (antibody concentration required to induce 50% inhibition of 3G8 binding) were calculated using PRISM software.
- Binding to FcRn was studied by a competitive assay using the anti-CD20 Rituxan labeled by Alexa 488 (RTX-Alexa) and transfected FcRn Jurkat cells. Briefly, transfected FcRn Jurkat cells were incubated with variable concentrations (0 to 1000 μg/ml) of the tested mAbs simultaneously with a fixed concentration RTX-Alexa (50 μg/ml) at pH=6. After washing at pH=6, binding of RTX-Alexa to FcRn expressed by transfected FcRn Jurkat cells was evaluated by flow cytometry. The mean fluorescence values (MFI) observed are expressed in percent, 100% being the value obtained with the RTX-Alexa alone and 0% the value in the absence of the RTX-Alexa. IC50 values (antibody concentration required to induce 50% of inhibition of RTX-Alexa binding) were calculated using PRISM software.
- Membrane TNF-α transfected Jurkat cells (mbTNF-α Jurkat) were incubated with increasing concentrations of anti-TNF antibodies (0 to 5000 ng/ml) in the presence of baby rabbit serum as a source of complement (dilution to 1/10). After 2 hours of incubation at 37° C., the quantity of LDH released in the supernatant by the lysed target cells was measured (Roche Applied Sciences Cytotoxicity Detection Kit). The percent lysis corresponding to the complement-dependent cytotoxicity (CDC) mediated by the studied antibodies was calculated according to the following formula: % lysis=(ER−SA), where ER=effective response (LDH release), SA=spontaneous activity obtained when target cell were incubated in the presence of complement but without antibody. Percent lysis is expressed as a function of antibody concentrations. Emax (percentage of maximum lysis) and EC50 (quantity of antibody that induces 50% of maximum lysis) were calculated using PRISM software.
- Neutralization of sTNF-α
- Neutralization of human TNF was assessed in the murine fibroblast L929 bioassay using a range of concentrations of the anti-TNFs and a fixed concentration of TNF (100 pg/mL). Briefly, TNF-α (20 ng/ml) pretreated with serial dilutions of tested antibodies (0-1000 ng/ml) was incubated for 18 h with L929 cells in the presence of actinomycin D (2 μg/ml) at 37° C. for 16 h. Then 20 μl/well of
Cell titer 96® aqueous One solution Cell Proliferation Assay (MTS) was added for a further 1 h to determine the number of surviving cells by colorimetric assay. The plates were read at 490 nm and results (OD) were expressed as a function of antibody concentrations. The neutralizing titer expressed as the reciprocal of the antibody concentration that neutralizes 50% of TNF-α activity was calculated using PRISM software. - TNF-α: Tumor Necrosis Factor alpha
- LDH: Lactate dehydrogenase
- SR: Spontaneous release
- The mean of three assays is presented in
FIG. 16 and the corresponding data are presented in Table 13. Binding of anti-TNF antibodies to membrane TNF-α transfected Jurkat cells clone 2B3 is expressed as the mean of fluorescence intensity (MFI) for each antibody concentration tested (0-10 μg/ml). Arbitrary Kd as described below does not represent the real affinity value (nM), but gives an order of comparable magnitude for the affinity of the studied antibodies. - Results in Table 12a show that the Bmax values (plateau) and arbitrary Kd (concentration giving 50% of the plateau value) are similar for transgenically produced adalimumab (Bmax: MFI=12.46; Kd=0.11 μg/ml) and Humira (Bmax: MFI=10.72; Kd=0.09 μg/ml) as shown with the statistical analysis (p=0.54) performed with individual EC50 values (Table 12b).
-
TABLE 12a Bmax, relative Kd values and original data corresponding to FIG. 16 Transgenically produced Humira adalimumab (Abbott) Anti CD160 Bmax (MFI) 12.46 10.72 na Kd (μg/ml) 0.1194 0.09874 na -
TABLE 12b Individual EC50 values and P value (student test) Transgenically produced Humira adalimumab (Abbott) EC50-1 1 5.57142857 EC50-2 1 0.09640719 EC50-3 1 0.81034483 p student 0.536862306 -
TABLE 13 Data corresponding to FIG. 16 m Ab (μg/ml) Transgenically produced adalimumab Humira (Abbott) 0 0.502 1.36 0.816 0.502 1.36 0.816 0.01 0.81 1.81 1.69 0.87 1.69 1.63 0.1 2.50 5.80 6.99 3.34 5.66 6.57 0.2 3.33 9.45 9.86 4.30 8.74 8.41 0.3 3.84 12.90 10.30 4.66 11.50 8.76 0.4 5.23 14.50 10.60 4.65 11.80 9.19 0.5 5.14 15.50 10.40 4.86 13.10 9.15 1 6.05 17.20 11.20 5.10 14.10 9.32 2 5.80 17.80 11.30 5.40 15.00 9.76 5 5.56 18.40 11.60 5.78 15.70 9.85 10 6.30 18.00 12.10 6.33 16.60 9.89 - IC50 values, indicated in Table 14, represent the antibody concentration required to induce 50% of inhibition of 3G8 binding on CD16 receptor expressed by NK cells. Transgenically produced adalimumab (“TG-Humira”), and Humira antibody bind to CD16 receptor with an IC50 value of 25.7 μg/ml and 56.7 μg/ml respectively. Thus, binding of transgenically produced adalimumab to CD16 is almost 2 fold higher than that of Humira.
-
TABLE 14 IC50 (antibody concentration required to induce 50% of inhibition of 3G8 binding), corresponding to FIG. 17, after modeling of the curve by the PRISM software. Transgenically Humira produced (Abbott) adalimumab IC50 (μg/ml) 57 26 -
TABLE 15 Data corresponding to FIG. 17 Log C μg/ml Humira (Abbott) Transgenically produced adalimumab 0.01 100 100 100 100 100 100 0.11 96.95 89.81 96.44 96.06 95.59 101.36 0.41 99.24 89.81 102.59 94.49 88.97 98.98 0.72 97.71 85.35 102.27 88.19 75.74 93.54 1.02 90.08 71.34 99.68 78.35 57.06 82.65 1.32 83.21 55.92 91.91 62.76 41.03 71.43 1.62 71.3 39.94 83.5 45.67 28.31 56.12 1.92 56.95 28.22 67.96 34.65 19.34 42.52 - Binding of anti-TNF-α antibodies to FcRn expressed by FcRn-transfected Jurkat cells was tested in a competition assay with Alexa 488 coupled-Rituximab antibody. Results showed in
FIG. 18 (corresponding data Table 17) indicate that all the tested antibodies bound to the FcRn receptor. Binding of transgenically produced adalimumab to FcRn appeared higher than that of Humira. -
TABLE 16 IC50 (antibody concentration required to induce 50% of inhibition of Rituximab binding), corresponding to FIG. 18, after modeling of the curve by the PRISM software. Transgenically produced Humira RITUXAN adalimumab (Abbott) IC50 (μg/ml) 233 195 366 -
TABLE 17 Data corresponding to FIG. 18 Ac ng/ml (Log) Transgenically produced adalimumab Humira (Abbott) −1 96.6 93.75 92.4 107.4 101.25 114 0.602 112.7 84.75 96 118.3 86.25 132 0.903 117.8 81 94.7 135.5 85.5 138.2 1.204 113.2 73.65 90.2 125.4 85.5 144 1.505 111.1 66.675 89.5 123.6 78.75 144.3 1.806 99.9 64.125 83.7 114.1 65.625 125.3 2.097 94.3 51.825 72.8 95 58.425 104 2.398 67.4 33.9 53.1 75 45.525 89.2 2.699 39.8 22.875 35.4 50.6 32.925 64.1 - The mean of two assays is presented in
FIG. 19 and the corresponding data are shown in Table 18. The CDC activity is expressed as the percent of lysis for each antibody concentration tested (0-5000 ng/ml).FIG. 19 shows that transgenically produced adalimumab (TG-Humira; maximal lysis: 34%) and Humira (maximal lysis: 33%) antibodies induce a comparable lysis of mbTNF-α Jurkat by CDC activity). Analysis of EC50 values in this system (Table 19) showed a small advantage of transgenically produced adalimumab compared to benchmark Humira antibody (195.8 vs 399.3 ng/ml) -
TABLE 18 Original data from each of the three experiments performed with the antibodies tested and used for designing FIG. 19 with PRISM software. Ac ng/ml (Log) Transgenically produced adalimumab Humira (Abbott) −1 0 0 0 0 0 0 0 0 1.6 0 6 0 10 0 2 0 10 1.9 0 10 0 21 0 2 0 19 2.2 6 20 9 30 1 10 3 23 2.5 11 30 13 35 6 23 8 24 2.8 18 43 16 35 13 25 11 31 3.1 19 37 20 38 14 30 16 39 3.4 23 42 17 44 13 38 21 45 3.7 25 48 23 48 16 36 22 48 -
TABLE 19 Emax (maximal lysis) and EC50 (antibody concentration required to induce 50% of maximal lysis), corresponding to FIG. 19, after sigmoid modeling of the curve by the PRISM software. Transgenically produced Humira adalimumab (Abbott) anti-CD160 Emax (% of lysis) 34.31 33.14 2.839 EC50 (ng/ml) 195.8 399.3 na - As shown in
FIG. 20 , TNF-α-mediated cytotoxicity in L929 cells treated with 20 ng/ml of human TNF-α was effectively neutralized by both transgenically produced adalimumab (TG-humira) and Humira mAbs in a comparable dose dependent manner. The 50% values, corresponding to the antibody concentration required to achieve 50% of the Humira plateau value, were 97.7 ng/ml for Humira and 109.7 ng/ml for transgenically produced adalimumab. -
TABLE 20 Maximal neutralization and 50% value (antibody concentration required to achieve 50% of the Humira plateau value), corresponding to FIG. 20, after sigmoid modeling of the curve by the PRISM software. Transgenically produced Humira adalimumab (Abbott) % neutralization max 66.2 54.6 50% of Humira 109.65 97.72 neutralization (ng/ml) -
TABLE 21 Original data from each of the three experiments performed with the antibodies tested and used for designing FIG. 20 with PRISM software. % TNF neutralization Ac ng/ml (Log) Transgenically produced adalimumab Humira (Abbott) 1 0 2.17 2.58 0 0 1.24 0.47 0 1.4 0 0.71 1.84 0 0.25 0.73 0.7 0 1.7 0 1.56 2.01 0 0.17 0.45 1.22 5.71 1.9 0.17 7.08 5.87 19.93 0.88 5.7 11.69 19.25 2 4.35 32.77 13.15 47.85 6.98 21.39 42.07 55.18 2.2 31.78 63.85 54.7 56.47 42.01 58.88 40.68 59.71 2.3 49.64 76.17 63.88 55.87 52.04 59.01 43.6 60.98 2.8 54.62 88.3 46.78 75.94 60.47 68.4 39.53 60.68 - Neutralisation of TNF induced L929 apoptosis was comparable between transgenically produced adalimumab and Humira (Abott). CDC activity, binding to CD16 and FcRn was improved and increased CDC and CD16 binding were observed for transgenically produced adalimumab.
- ADCC activity of transgenically produced adalimumab was compared to ADCC activity of Humira.
FIG. 21 shows that transgenically produced adalimumab demonstrated higher ADCC activity than Humira at three different concentrations: 0.5 ng/ml, 50 ng/ml and 5000 ng/ml. -
- Antibodies: -Humira (Abbott)
- Transgenically produced adalimumab
- Cells: -mTNF-transfected Jurkat cells (clone 2F8)
- NK effector cells isolated from a healthy donors
- Antibodies: -Humira (Abbott)
- NK effector cells were isolated from the peripheral blood samples from healthy donors using a negative depletion kit (Miltenyi Biotec). Jurkat cells transfected with mTNF were plated in 96 well plates and incubated at 4° C. with increasing concentrations of anti-TNF antibodies (0.5; 50 and 5000 ng/ml). After 2 hours, the isolated NK cells were added and incubated for another 4 hours at 37° C. Lysis of target cells induced by the tested anti-TNF antibodies was measured chromogenically by quantifying the intracellular enzyme lactate dehydrogenase (LDH) released into the supernatant by the lysed target cells (Roche). The percent lysis was calculated according to the following formula:
-
% lysis=[(ER−SR)/(100−SR)]−[(NC−SR)/(100−SR)] - Where ER and SR represent experimental and spontaneous LDH release, respectively, and NC represents natural cytotoxicity. Final results are expressed in arbitrary units with 100% as the value obtained with Humira (Abbott) at a concentration of 5000 ng/ml. As presented in
FIG. 21 transgenically produced adalimumab induced more ADCC than Humira (Abbott). - CD16 binding activity of transgenically produced adalimumab was measured by a competitive assay using NK cells and compared to Humira.
FIG. 22 presents an inhibition curve showing that transgenically produced adalimumab from nine different goats all bound to CD16 to a greater extent than Humira in NK cells.FIG. 23 presents IC50 values from CD16 competitive binding assays. IC50 values were 1.5-5×lower for transgenically produced adalimumab than for Humira. - CDC activity of transgenically produced adalimumab was compared to that of Humira.
FIG. 24 presents a dose response curve showing that transgenically produced adalimumab from eight out of nine goats tested had greater CDC activity than Humira.FIG. 25 presents the EC50 values in ng/ml for the CDC activity assay. - All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, each feature disclosed is only an example of a generic series of equivalent or similar features.
- From the above description, one skilled in the art can easily ascertain the essential characteristics of the present invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, other embodiments are also within the claims.
Claims (21)
1-77. (canceled)
78. A composition, comprising a population of antibodies,
wherein the antibodies in the population of antibodies are anti-TNF-alpha antibodies produced in mammary gland epithelial cells of a transgenic non-human mammal;
wherein the level of galactosylation of the antibodies in the population of antibodies comprises at least 5% mono-galactosylated N-glycans or at least 10% bigalactosylated N-glycans;
wherein the level of fucosylation of the antibodies in the population of antibodies is at least 30%; and
wherein the antibodies in the population of antibodies comprise a heavy chain (HC), which comprises a heavy chain complementary determining region 1 (HC CDR1), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain complementary determining region 3 (HC CDR3) 100% identical to HC CDR1, HC CDR2 and HC CDR3 of SEQ ID NO: 1 and a light chain (LC), which comprises a light chain complementary determining region 1 (LC CDR1), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary determining region 3 (LC CDR3) 100% identical to LC CDR1, LC CDR2 and LC CDR3 of SEQ ID NO: 2.
79. The composition of claim 78 , wherein at least 25% of the antibodies in the population comprise mono-galactosylated N-glycans and at least 35% of the antibodies in the population comprise bi-galactosylated N-glycans.
80. The composition of claim 78 , wherein the level of fucosylation of the antibodies in the population is at least 40%.
81. The composition of claim 78 , wherein the level of fucosylation of the antibodies in the population is 30.4%-78.2%.
82. The composition of claim 78 , wherein the level of fucosylation of the antibodies in the population is at least 50%.
83. The composition of claim 78 , wherein the level of fucosylation of the antibodies in the population is at least 60%.
84. The composition of claim 78 , wherein the level of fucosylation of the antibodies in the population is at least 70%.
85. The composition of claim 78 , wherein the level of fucosylation of the antibodies in the population is at least 80%.
86. The composition of claim 78 , wherein the level of fucosylation of the antibodies in the population is at least 90%.
87. The composition of claim 78 , wherein the ratio of the level of galactosylation of the antibodies in the population to the level of fucosylation of the antibodies in the population is between 1.0 and 1.4.
88. The composition of claim 78 , wherein the population of antibodies has an increased level of complement dependent cytotoxicity (CDC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells.
89. The composition of claim 78 , wherein the population of antibodies has an increased level of antibody-dependent cellular cytotoxicity (ADCC) activity when compared to a population of antibodies not produced in mammary gland epithelial cells.
90. The composition of claim 78 , wherein the transgenic non-human mammal is a goat, sheep, camel, cow, pig, rabbit, rat, mouse or llama.
91. The composition of claim 90 , wherein the transgenic non-human mammal is a goat.
92. A composition, comprising: a population of antibodies,
wherein the antibodies in the population of antibodies are anti-TNF-alpha antibodies produced in mammary gland epithelial cells of a transgenic non-human mammal;
wherein at least 30% of the antibodies in the population of antibodies contain at least one oligomannose;
wherein the level of fucosylation of the antibodies in the population of antibodies is at least 30%; and
wherein the antibodies in the population of antibodies comprise a heavy chain (HC), which comprises a heavy chain complementary determining region 1 (HC CDR1), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain complementary determining region 3 (HC CDR3) 100% identical to HC CDR1, HC CDR2 and HC CDR3 of SEQ ID NO: 1 and a light chain (LC), which comprises a light chain complementary determining region 1 (LC CDR1), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary determining region 3 (LC CDR3) 100% identical to LC CDR1, LC CDR2 and LC CDR3 of SEQ ID NO: 2.
93. The composition of claim 92 , wherein the antibodies in the population of antibodies exhibit a high mannose glycosylation pattern.
94. The composition of claim 93 , wherein at least one chain of the antibodies in the population of antibodies contains an oligomannose and is non-fucosylated.
95. The composition of claim 92 , wherein the major carbohydrate of the antibodies in the population of antibodies is non-fucosylated.
96. The composition of claim 92 , wherein the transgenic non-human mammal is a goat, sheep, camel, cow, pig, rabbit, rat, mouse or llama.
97. The composition of claim 96 , wherein the transgenic non-human mammal is a goat.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/192,273 US20190309058A1 (en) | 2013-02-13 | 2018-11-15 | Highly galactosylated anti-tnf-alpha antibodies and uses thereof |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361764475P | 2013-02-13 | 2013-02-13 | |
| PCT/IB2014/000692 WO2014125374A2 (en) | 2013-02-13 | 2014-02-13 | Highly galactosylated anti-tnf-alpha antibodies and uses thereof |
| US201514767117A | 2015-08-11 | 2015-08-11 | |
| US16/192,273 US20190309058A1 (en) | 2013-02-13 | 2018-11-15 | Highly galactosylated anti-tnf-alpha antibodies and uses thereof |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2014/000692 Continuation WO2014125374A2 (en) | 2013-02-13 | 2014-02-13 | Highly galactosylated anti-tnf-alpha antibodies and uses thereof |
| US14/767,117 Continuation US10174110B2 (en) | 2013-02-13 | 2014-02-13 | Highly galactosylated anti-TNF-α antibodies and uses thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190309058A1 true US20190309058A1 (en) | 2019-10-10 |
Family
ID=50980321
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/767,117 Expired - Fee Related US10174110B2 (en) | 2013-02-13 | 2014-02-13 | Highly galactosylated anti-TNF-α antibodies and uses thereof |
| US16/192,273 Abandoned US20190309058A1 (en) | 2013-02-13 | 2018-11-15 | Highly galactosylated anti-tnf-alpha antibodies and uses thereof |
| US16/192,214 Abandoned US20190309057A1 (en) | 2013-02-13 | 2018-11-15 | Highly galactosylated anti-tnf-alpha antibodies and uses thereof |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/767,117 Expired - Fee Related US10174110B2 (en) | 2013-02-13 | 2014-02-13 | Highly galactosylated anti-TNF-α antibodies and uses thereof |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/192,214 Abandoned US20190309057A1 (en) | 2013-02-13 | 2018-11-15 | Highly galactosylated anti-tnf-alpha antibodies and uses thereof |
Country Status (14)
| Country | Link |
|---|---|
| US (3) | US10174110B2 (en) |
| EP (3) | EP3594231A1 (en) |
| JP (2) | JP2016508515A (en) |
| KR (1) | KR20160002713A (en) |
| CN (1) | CN105308068A (en) |
| AR (1) | AR094780A1 (en) |
| AU (1) | AU2014217561B2 (en) |
| BR (1) | BR112015019341A2 (en) |
| CA (1) | CA2900909A1 (en) |
| ES (1) | ES2755181T3 (en) |
| IL (1) | IL240443A0 (en) |
| MX (1) | MX2015010427A (en) |
| TW (1) | TW201506041A (en) |
| WO (1) | WO2014125374A2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11553712B2 (en) | 2010-12-30 | 2023-01-17 | Laboratoire Français Du Fractionnement Et Des Biotechnologies | Glycols as pathogen inactivating agents |
| WO2024124177A3 (en) * | 2022-12-09 | 2024-07-18 | Xentria, Inc. | Methods of treating sarcoidosis with a tnf-α antibody and associated compositions and methods |
| US12247076B2 (en) | 2015-07-06 | 2025-03-11 | Laboratoire Français Du Fractionnement Et Des Biotechnologies | Use of modified Fc fragments in immunotherapy |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8164343B2 (en) | 2003-09-05 | 2012-04-24 | Midtronics, Inc. | Method and apparatus for measuring a parameter of a vehicle electrical system |
| US9062106B2 (en) | 2011-04-27 | 2015-06-23 | Abbvie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
| US9067990B2 (en) | 2013-03-14 | 2015-06-30 | Abbvie, Inc. | Protein purification using displacement chromatography |
| US9334319B2 (en) | 2012-04-20 | 2016-05-10 | Abbvie Inc. | Low acidic species compositions |
| US9181572B2 (en) | 2012-04-20 | 2015-11-10 | Abbvie, Inc. | Methods to modulate lysine variant distribution |
| US9512214B2 (en) | 2012-09-02 | 2016-12-06 | Abbvie, Inc. | Methods to control protein heterogeneity |
| CN105263319A (en) | 2013-02-13 | 2016-01-20 | 法国化学与生物科技实验室 | Proteins with modified glycosylation and methods of production thereof |
| BR112015019343A2 (en) * | 2013-02-13 | 2017-08-22 | Lab Francais Du Fractionnement | ANTI-HER2 ANTIBODY, COMPOSITION, METHOD FOR PRODUCING A POPULATION OF ANTIBODIES, MAMMARY GLAND EPITHELIAL CELLS, AND, TRANSGENIC NON-HUMAN MAMMAL |
| KR20160002713A (en) | 2013-02-13 | 2016-01-08 | 라보라토이레 프란카이즈 듀 프락티온네먼트 에트 데스 바이오테크놀로지스 | Highly galactosylated anti-tnf-alpha antibodies and uses thereof |
| HK1207960A1 (en) | 2013-03-12 | 2016-02-19 | Abbvie Inc. | Human antibodies that bind human tnf-alpha and methods of preparing the same |
| US9499614B2 (en) | 2013-03-14 | 2016-11-22 | Abbvie Inc. | Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides |
| US9017687B1 (en) | 2013-10-18 | 2015-04-28 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
| CA2916566A1 (en) | 2013-07-05 | 2015-01-08 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Affinity chromatography matrix |
| ES2880709T3 (en) * | 2013-08-26 | 2021-11-25 | Biontech Res And Development Inc | Nucleic acids encoding human antibodies against Sialyl-Lewis A |
| US9598667B2 (en) | 2013-10-04 | 2017-03-21 | Abbvie Inc. | Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins |
| US9085618B2 (en) | 2013-10-18 | 2015-07-21 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
| US9181337B2 (en) | 2013-10-18 | 2015-11-10 | Abbvie, Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
| WO2015073884A2 (en) | 2013-11-15 | 2015-05-21 | Abbvie, Inc. | Glycoengineered binding protein compositions |
| FR3022462B1 (en) * | 2014-06-18 | 2018-04-27 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | ORAL COMPOSITION OF ANTI-TNFALPHA ANTIBODY |
| EP3172333B1 (en) | 2014-07-21 | 2020-05-13 | Glykos Finland Oy | Production of glycoproteins with mammalian-like n-glycans in filamentous fungi |
| FR3034419B1 (en) | 2015-04-02 | 2017-12-15 | Lab Francais Du Fractionnement | PROCESS FOR PURIFYING RECOMBINANT THERAPEUTIC PROTEIN FROM TRANSGENIC MILK |
| EP3257866A1 (en) * | 2016-06-17 | 2017-12-20 | Academisch Medisch Centrum | Modified anti-tnf antibody and use thereof in the treatment of ibd |
| FR3054444A1 (en) | 2016-07-29 | 2018-02-02 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | ORAL COMPOSITION OF ANTI-TNF ALPHA ANTIBODY |
| EP3581203A1 (en) * | 2018-06-11 | 2019-12-18 | Laboratoire Français du Fractionnement et des Biotechnologies | Antibodies with increased activity in the digestive tract |
| CN116903738A (en) * | 2022-08-02 | 2023-10-20 | 北京绿竹生物技术股份有限公司 | Low mannose type anti-human tumor necrosis factor-alpha monoclonal antibody and application thereof |
| AR133647A1 (en) | 2023-08-25 | 2025-10-22 | Proteologix Us Inc | ANTI-IL-13 MULTISPECIFIC ANTIBODY CONSTRUCTS AND THEIR USES |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6090382A (en) * | 1996-02-09 | 2000-07-18 | Basf Aktiengesellschaft | Human antibodies that bind human TNFα |
| WO2007048077A2 (en) * | 2005-10-21 | 2007-04-26 | Gtc Biotherapeutics, Inc. | Antibodies with enhanced antibody-dependent cellular cytoxicity activity, methods of their production and use |
Family Cites Families (181)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4399216A (en) | 1980-02-25 | 1983-08-16 | The Trustees Of Columbia University | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
| GB8308235D0 (en) | 1983-03-25 | 1983-05-05 | Celltech Ltd | Polypeptides |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| DE122007000007I2 (en) | 1986-04-09 | 2010-12-30 | Genzyme Corp | Genetically transformed animals secreting a desired protein in milk |
| US6727405B1 (en) | 1986-04-09 | 2004-04-27 | Genzyme Corporation | Transgenic animals secreting desired proteins into milk |
| GB8615942D0 (en) | 1986-06-30 | 1986-08-06 | Animal & Food Research Council | Peptide production |
| US5366894A (en) | 1986-06-30 | 1994-11-22 | Pharmaceutical Proteins Limited | Peptide production |
| WO1988001648A1 (en) | 1986-08-28 | 1988-03-10 | Immunex Corporation | Expression of heterologous proteins by transgenic lactating mammals |
| US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
| EP0279582A3 (en) | 1987-02-17 | 1989-10-18 | Pharming B.V. | Dna sequences to target proteins to the mammary gland for efficient secretion |
| US4873316A (en) | 1987-06-23 | 1989-10-10 | Biogen, Inc. | Isolation of exogenous recombinant proteins from the milk of transgenic mammals |
| US5750172A (en) | 1987-06-23 | 1998-05-12 | Pharming B.V. | Transgenic non human mammal milk |
| US5202238A (en) | 1987-10-27 | 1993-04-13 | Oncogen | Production of chimeric antibodies by homologous recombination |
| AU4128089A (en) | 1988-09-15 | 1990-03-22 | Rorer International (Overseas) Inc. | Monoclonal antibodies specific to human epidermal growth factor receptor and therapeutic methods employing same |
| GB8823869D0 (en) | 1988-10-12 | 1988-11-16 | Medical Res Council | Production of antibodies |
| GB8826446D0 (en) | 1988-11-11 | 1988-12-14 | Agricultural & Food Res | Peptide production |
| US5175384A (en) | 1988-12-05 | 1992-12-29 | Genpharm International | Transgenic mice depleted in mature t-cells and methods for making transgenic mice |
| EP0737746A3 (en) | 1989-12-01 | 1996-10-23 | Pharming B.V. | Production of recombinant polypeptides by bovine species and transgenic methods |
| US5633076A (en) | 1989-12-01 | 1997-05-27 | Pharming Bv | Method of producing a transgenic bovine or transgenic bovine embryo |
| US6150584A (en) | 1990-01-12 | 2000-11-21 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
| DE4000939A1 (en) | 1990-01-15 | 1991-07-18 | Brem Gottfried Prof Dr Dr | METHOD FOR OBTAINING ANTIBODIES |
| WO1993012227A1 (en) | 1991-12-17 | 1993-06-24 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| CA2089661C (en) | 1990-08-29 | 2007-04-03 | Nils Lonberg | Transgenic non-human animals capable of producing heterologous antibodies |
| US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
| DE4028800A1 (en) | 1990-09-11 | 1992-03-12 | Behringwerke Ag | GENETIC SIALYLATION OF GLYCOPROTEINS |
| US5648253A (en) | 1990-12-20 | 1997-07-15 | Tsi Corporation | Inhibitor-resistant urokinase |
| EP0591219B1 (en) | 1991-01-11 | 2001-12-19 | American Red Cross | Expression of active human protein c in mammary tissue of transgenic animals |
| US5831141A (en) | 1991-01-11 | 1998-11-03 | United States Of America As Represented By The Department Of Health And Human Services | Expression of a heterologous polypeptide in mammary tissue of transgenic non-human mammals using a long whey acidic protein promoter |
| US5965789A (en) | 1991-01-11 | 1999-10-12 | American Red Cross | Engineering protein posttranslational modification by PACE/furin in transgenic non-human mammals |
| EP0597010A4 (en) | 1991-07-31 | 1996-12-27 | Rhone Poulenc Rorer Int | Transgenic protein production. |
| US6448469B1 (en) | 1991-10-02 | 2002-09-10 | Genzyme Corporation | Production of membrane proteins in the milk of transgenic nonhuman mammals |
| US5714350A (en) | 1992-03-09 | 1998-02-03 | Protein Design Labs, Inc. | Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region |
| WO1994019935A1 (en) | 1993-03-09 | 1994-09-15 | Genzyme Corporation | Isolation of components of interest from milk |
| DE4326665C2 (en) | 1993-08-09 | 1995-07-13 | Biotest Pharma Gmbh | Process for sterile filtration of milk |
| US5827690A (en) | 1993-12-20 | 1998-10-27 | Genzyme Transgenics Corporatiion | Transgenic production of antibodies in milk |
| US5639940A (en) | 1994-03-03 | 1997-06-17 | Pharmaceutical Proteins Ltd. | Production of fibrinogen in transgenic animals |
| WO1995024494A1 (en) | 1994-03-09 | 1995-09-14 | Abbott Laboratories | Humanized milk |
| US6204431B1 (en) | 1994-03-09 | 2001-03-20 | Abbott Laboratories | Transgenic non-human mammals expressing heterologous glycosyltransferase DNA sequences produce oligosaccharides and glycoproteins in their milk |
| CA2184688A1 (en) | 1994-03-09 | 1995-09-14 | Pedro Antonio Prieto | Transgenic animals producing oligosaccharides and glycoconjugates |
| US5750176A (en) | 1994-03-09 | 1998-05-12 | Abbott Laboratories | Transgenic non-human mammal milk comprising 2'-fucosyl-lactose |
| EP0690452A3 (en) | 1994-06-28 | 1999-01-07 | Advanced Micro Devices, Inc. | Electrically erasable memory and method of erasure |
| US5780009A (en) | 1995-01-20 | 1998-07-14 | Nexia Biotechnologies, Inc. | Direct gene transfer into the ruminant mammary gland |
| US5843705A (en) | 1995-02-21 | 1998-12-01 | Genzyme Transgenic Corporation | Transgenically produced antithrombin III |
| US6118045A (en) | 1995-08-02 | 2000-09-12 | Pharming B.V. | Lysosomal proteins produced in the milk of transgenic animals |
| GB9517780D0 (en) | 1995-08-31 | 1995-11-01 | Roslin Inst Edinburgh | Biological manipulation |
| NZ512006A (en) | 1996-02-09 | 2005-05-27 | Abbott Biotech Ltd | Medical treatment with human TNF-alpha antibodies |
| US6268487B1 (en) | 1996-05-13 | 2001-07-31 | Genzyme Transgenics Corporation | Purification of biologically active peptides from milk |
| EP0849275A1 (en) | 1996-09-26 | 1998-06-24 | Rijksuniversiteit te Leiden | Mannosylated peptides |
| EP0941310A1 (en) | 1996-10-11 | 1999-09-15 | THE TEXAS A&M UNIVERSITY SYSTEM | Methods for the generation of primordial germ cells and transgenic animal species |
| US6063905A (en) | 1997-01-07 | 2000-05-16 | Board Of Regents, The University Of Texas System | Recombinant human IGA-J. chain dimer |
| US5945577A (en) | 1997-01-10 | 1999-08-31 | University Of Massachusetts As Represented By Its Amherst Campus | Cloning using donor nuclei from proliferating somatic cells |
| AU6184298A (en) | 1997-02-25 | 1998-09-09 | Genzyme Transgenics Corporation | Transgenically produced non-secreted proteins |
| CA2286366C (en) | 1997-04-03 | 2008-10-07 | Universite Laval | Transgenic expression in genital tract and sexual accessory glands |
| AU738888B2 (en) | 1997-05-29 | 2001-09-27 | Agresearch Limited | Processes for production of immunoglobulin A in milk |
| US6210736B1 (en) | 1997-06-17 | 2001-04-03 | Genzyme Transgenics Corporation | Transgenically produced prolactin |
| CA2306796A1 (en) | 1997-10-20 | 1999-04-29 | Genzyme Transgenics Corporation | Novel modified msp-1 nucleic acid sequences and methods for increasing mrna levels and protein expression in cell systems |
| DK1071700T3 (en) | 1998-04-20 | 2010-06-07 | Glycart Biotechnology Ag | Glycosylation modification of antibodies to enhance antibody-dependent cellular cytotoxicity |
| EP1088084B1 (en) | 1998-06-15 | 2006-09-13 | GTC Biotherapeutics, Inc. | Erythropoietin analog-human serum albumin fusion protein |
| US20050181482A1 (en) | 2004-02-12 | 2005-08-18 | Meade Harry M. | Method for the production of an erythropoietin analog-human IgG fusion proteins in transgenic mammal milk |
| US20030005468A1 (en) | 1998-06-19 | 2003-01-02 | Meade Harry M. | Methods and vectors for improving nucleic acid expression |
| US20040117863A1 (en) | 1998-09-18 | 2004-06-17 | Edge Michael D. | Transgenically produced fusion proteins |
| US6580017B1 (en) | 1998-11-02 | 2003-06-17 | Genzyme Transgenics Corporation | Methods of reconstructed goat embryo transfer |
| US20030177513A1 (en) | 1998-11-02 | 2003-09-18 | Yann Echelard | Transgenic and cloned mammals |
| EP1818397A1 (en) | 1998-11-02 | 2007-08-15 | Trustees Of Tufts College | Methods for cloning animals |
| CA2351943A1 (en) | 1998-11-19 | 2000-06-02 | Ppl Therapeutics (Scotland) Limited | Stabilisation of milk from transgenic animals |
| US7208576B2 (en) | 1999-01-06 | 2007-04-24 | Merrimack Pharmaceuticals, Inc. | Non-glycosylated human alpha-fetoprotein, methods of production, and uses thereof |
| CA2362565A1 (en) | 1999-02-22 | 2000-08-31 | Eric F. Bernstein | Compositions and methods for prevention of photoaging |
| EP1194570A1 (en) | 1999-06-23 | 2002-04-10 | PPL Therapeutics (Scotland) Limited | Fusion proteins incorporating lysozyme |
| EP1220606A4 (en) | 1999-10-14 | 2004-04-14 | Gtc Biotherapeutics Inc | METHOD FOR PRODUCING A TARGET MOLECULE IN A TRANSGENIC ANIMAL AND PURIFYING THE ABOVE TARGET MOLECULE |
| US7414170B2 (en) | 1999-11-19 | 2008-08-19 | Kirin Beer Kabushiki Kaisha | Transgenic bovines capable of human antibody production |
| US7067713B2 (en) | 2000-01-31 | 2006-06-27 | Pharming Intellectual Property B.V. | C1 Inhibitor produced in the milk of transgenic non-human mammals |
| US20060272036A1 (en) | 2000-02-03 | 2006-11-30 | Lennart Hammarstrom | Ruminant mhc class-i-like fc receptors |
| FR2807767B1 (en) | 2000-04-12 | 2005-01-14 | Lab Francais Du Fractionnement | MONOCLONAL ANTIBODIES ANTI-D |
| IL152429A0 (en) | 2000-05-05 | 2003-05-29 | Gtc Bioterapeutics Inc | Transgenically produced decorin |
| CA2412219A1 (en) | 2000-06-19 | 2001-12-27 | Genzyme Transgenics Corp. | Transgenically produced platelet derived growth factor |
| AU7684201A (en) | 2000-06-28 | 2002-01-08 | Glycofi Inc | Methods for producing modified glycoproteins |
| US6924412B1 (en) | 2000-07-21 | 2005-08-02 | Arriwan Holding B.V. | Means and methods for raising antibody concentration in compartments of the body of a non-human animal |
| WO2002012441A2 (en) | 2000-08-10 | 2002-02-14 | Genzyme Transgenics Corporation | Cryopreservation of sperm |
| WO2002030954A1 (en) | 2000-10-06 | 2002-04-18 | Kyowa Hakko Kogyo Co., Ltd. | Method of purifying antibody |
| US20040226052A1 (en) | 2000-10-13 | 2004-11-11 | Meade Harry M. | Methods of producing a target molecule in a transgenic animal and purification of the target molecule |
| KR20100031769A (en) | 2000-12-28 | 2010-03-24 | 알투스 파마슈티컬스 인코포레이티드 | Crystals of whole antibodies and fragments thereof and methods for making and using them |
| EP1401857A4 (en) | 2001-06-13 | 2004-07-21 | Taurus Hsa Llc | Purification of human serum albumin |
| JP4303105B2 (en) | 2001-06-28 | 2009-07-29 | ドマンティス リミテッド | Dual specific ligands and their use |
| NZ571596A (en) | 2001-08-03 | 2010-11-26 | Glycart Biotechnology Ag | Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity |
| US7651686B2 (en) | 2001-10-09 | 2010-01-26 | Mayo Foundation For Medical Education And Research | Enhancement of immune responses by 4-1bb-binding agents |
| EP2305313B1 (en) | 2001-10-10 | 2014-03-26 | ratiopharm GmbH | Remodelling and glycoconjugation of interferon-alpha (IFNa) |
| US7053202B2 (en) | 2001-10-19 | 2006-05-30 | Millennium Pharmaceuticals, Inc. | Immunoglobulin DNA cassette molecules, monobody constructs, methods of production, and methods of use therefor |
| DK1443961T3 (en) | 2001-10-25 | 2009-08-24 | Genentech Inc | Glycoprotein compositions |
| US20060253913A1 (en) | 2001-12-21 | 2006-11-09 | Yue-Jin Huang | Production of hSA-linked butyrylcholinesterases in transgenic mammals |
| US20040133931A1 (en) | 2003-01-08 | 2004-07-08 | Gavin William G. | Method and system for fusion and activation following nuclear transfer in reconstructed embryos |
| EP1463802A1 (en) | 2002-01-11 | 2004-10-06 | GTC Biotherapeutics, Inc. | Method and system for fusion and activation following nuclear transfer in reconstructed embryos |
| US20040132101A1 (en) | 2002-09-27 | 2004-07-08 | Xencor | Optimized Fc variants and methods for their generation |
| JP2005528095A (en) | 2002-04-01 | 2005-09-22 | ジーティーシー バイオセラピューティックス インコーポレイテッド | Methods for selecting cell lines for use in nuclear transfer in mammalian species |
| EP1494696A4 (en) | 2002-04-01 | 2006-01-25 | Gtc Biotherapeutics Inc | TREATMENT OF LUNG DISEASES |
| AU2003249247A1 (en) | 2002-07-15 | 2004-02-02 | Mayo Foundation For Medical Education And Research | Treatment and prophylaxis with 4-1bb-binding agents |
| CA2501415A1 (en) | 2002-08-01 | 2004-02-12 | Gtc Biotherapeutics, Inc. | Method of selecting cells for somatic cell nuclear transfer |
| WO2004026427A2 (en) | 2002-09-17 | 2004-04-01 | Gtc Biotherapeutics, Inc. | Isolation of immunoglobulin molecules that lack inter-heavy chain disulfide bonds |
| WO2004045540A2 (en) | 2002-11-18 | 2004-06-03 | Taurus Hsa Llc | Method for continuous, automated blending of solutions from acids and bases |
| US7087719B2 (en) | 2002-11-19 | 2006-08-08 | Gtc Biotherapeutics, Inc. | Method for the crystallization of human serum albumin |
| US20040101939A1 (en) | 2002-11-22 | 2004-05-27 | Santora Ling C. | Method for reducing or preventing modification of a polypeptide in solution |
| WO2004050847A2 (en) | 2002-11-27 | 2004-06-17 | Gtc Biotherapeutics, Inc. | Modified antibodies stably produced in milk and methods of producing same |
| JP2006508676A (en) | 2002-12-10 | 2006-03-16 | ジーティーシー バイオセラピューティックス インコーポレイテッド | Methods and systems utilizing somatic cell nuclear transfer embryos as cell donors for additional nuclear transfer |
| WO2004063351A2 (en) | 2003-01-09 | 2004-07-29 | Macrogenics, Inc. | IDENTIFICATION AND ENGINEERING OF ANTIBODIES WITH VARIANT Fc REGIONS AND METHODS OF USING SAME |
| CN1759189A (en) | 2003-02-24 | 2006-04-12 | Gtc生物治疗学公司 | Methods of tangential flow filtration and an apparatus therefor |
| JP2007503206A (en) | 2003-08-22 | 2007-02-22 | バイオジェン・アイデック・エムエイ・インコーポレイテッド | Improved antibody with altered effector function and method for producing the antibody |
| US7550263B2 (en) | 2003-09-05 | 2009-06-23 | Gtc Biotherapeutics, Inc. | Method for the production of fusion proteins in transgenic mammal milk |
| EP1678298A2 (en) | 2003-09-15 | 2006-07-12 | GTC Biotherapeutics, Inc. | Expression of dominant negative transmembrane receptors in the milk of transgenic animals |
| FR2861080B1 (en) | 2003-10-20 | 2006-02-17 | Lab Francais Du Fractionnement | ANTIBODIES HAVING AN OPTIMIZED FUCOSE AND GALACTOSE RATE |
| EA025962B1 (en) | 2003-11-05 | 2017-02-28 | Роше Гликарт Аг | ANTIBODIES HAVING INCREASED Fc RECEPTOR BINDING AFFINITY AND EFFECTOR FUNCTION |
| US20050169908A1 (en) | 2004-01-23 | 2005-08-04 | Kazunori Murakami | Use of aerosolized antithrombin to treat acute lung injury |
| US20050186608A1 (en) | 2004-02-19 | 2005-08-25 | Olsen Byron V. | Method for the production of transgenic proteins useful in the treatment of obesity and diabetes |
| US20050192226A1 (en) | 2004-02-20 | 2005-09-01 | Perenlei Enkhbaatar | Method of preventing fibrin clots in pulmonary tissue through the use of aerosolized anticoagulants |
| US20050197496A1 (en) | 2004-03-04 | 2005-09-08 | Gtc Biotherapeutics, Inc. | Methods of protein fractionation using high performance tangential flow filtration |
| US7667089B2 (en) | 2004-04-09 | 2010-02-23 | National Chung Hsing University | Transgenic mammal secreting B-domain deleted human FVII in its milk |
| US20060057638A1 (en) | 2004-04-15 | 2006-03-16 | Massachusetts Institute Of Technology | Methods and products related to the improved analysis of carbohydrates |
| US20060127950A1 (en) | 2004-04-15 | 2006-06-15 | Massachusetts Institute Of Technology | Methods and products related to the improved analysis of carbohydrates |
| US20050245444A1 (en) | 2004-04-30 | 2005-11-03 | Yann Echelard | Method of using recombinant human antithrombin for neurocognitive disorders |
| CA2573842A1 (en) | 2004-07-21 | 2006-02-09 | Glycofi, Inc. | Immunoglobulins comprising predominantly a gal2glcnac2man3glcnac2 glycoform |
| KR20070084170A (en) | 2004-10-13 | 2007-08-24 | 아블린쓰 엔.브이. | Single domain camelid anti-amyloid beta antibodies and polypeptides comprising them for the treatment and diagnosis of degenerative neurological diseases such as Alzheimer's disease |
| US20060123500A1 (en) | 2004-12-07 | 2006-06-08 | Gtc Biotherapeutics, Inc. | Methods of prescreening cells for nuclear transfer procedures |
| US20060121004A1 (en) | 2004-12-07 | 2006-06-08 | Yann Echelard | Methods of reducing the incidence of rejection in tissue transplantation through the use of recombinant human antithrombin |
| US20060130159A1 (en) | 2004-12-09 | 2006-06-15 | Nick Masiello | Method of purifying recombinant MSP 1-42 derived from Plasmodium falciparum |
| US20060168671A1 (en) | 2005-01-21 | 2006-07-27 | Gavin William G | Injection of caprine sperm factor (cSF), phospholipase C zeta (PLCzeta) and adenophostin A as alternative methods of activation during nuclear transfer in the caprine species |
| US20080019905A9 (en) | 2005-02-18 | 2008-01-24 | Strome Scott E | Method of using an anti-CD137 antibody as an agent for radioimmunotherapy or radioimmunodetection |
| US20060182744A1 (en) | 2005-02-15 | 2006-08-17 | Strome Scott E | Anti-CD137 antibody as an agent in the treatment of cancer and glycosylation variants thereof |
| EP2399935A3 (en) | 2005-02-15 | 2012-02-22 | GTC Biotherapeutics, Inc. | An anti-CD137 antibody as an agent in the treatment of cancer and glycosylation variants thereof |
| EP1850872A4 (en) | 2005-02-15 | 2008-10-15 | Gtc Biotherapeutics Inc | METHOD OF USING ANTI-CD137 ANTIBODY AS RADIO-IMMUNOTHERAPY AGENT OR RADIO-IMMUNODETECTION |
| HUE045710T2 (en) | 2005-05-18 | 2020-01-28 | Ablynx Nv | Improved nanobodies tm against tumor necrosis factor-alpha |
| US20060286548A1 (en) | 2005-06-16 | 2006-12-21 | Gregory Liposky | Method of making recombinant human antibodies for use in biosensor technology |
| DK1896071T3 (en) | 2005-06-30 | 2015-05-26 | Janssen Biotech Inc | Methods and compositions with increased therapeutic activity |
| RU2478709C2 (en) * | 2005-07-21 | 2013-04-10 | Эбботт Лэборетриз | GENE SET EXPRESSION INCLUDING sORF CONSTRUCTS AND METHODS FOR IMMUNOGLOBULIN EXPRESSION |
| WO2007014244A2 (en) | 2005-07-25 | 2007-02-01 | Gtc Biotherapeutics, Inc. | Method of purifying recombinant human antithrombin to enhance the viral and prion safety profile |
| US20090226464A1 (en) | 2005-09-09 | 2009-09-10 | Tillman Gerngross | Immunoglobulins comprising predominantly a glcnacman3glcnac2 glycoform |
| ATE536373T1 (en) | 2005-10-21 | 2011-12-15 | Genzyme Corp | ANTIBODIES-BASED THERAPEUTIC PRODUCTS WITH INCREASED ADCC ACTIVITY |
| ATE517923T1 (en) | 2005-12-12 | 2011-08-15 | Hoffmann La Roche | ANTIBODIES AGAINST AMYLOID BETA WITH GLYCOSYLATION IN THE VARIABLE REGION |
| US7531632B2 (en) | 2006-02-16 | 2009-05-12 | Gtc Biotherapeutics, Inc. | Clarification of transgenic milk using depth filtration |
| US8007790B2 (en) | 2006-04-03 | 2011-08-30 | Stowers Institute For Medical Research | Methods for treating polycystic kidney disease (PKD) or other cyst forming diseases |
| CN101460522B (en) | 2006-04-11 | 2014-07-23 | 弗·哈夫曼-拉罗切有限公司 | Glycosylated antibodies |
| US7846724B2 (en) | 2006-04-11 | 2010-12-07 | Hoffmann-La Roche Inc. | Method for selecting CHO cell for production of glycosylated antibodies |
| US8173860B2 (en) | 2006-04-21 | 2012-05-08 | Gtc Biotherapeutics, Inc. | Non-human transgenic mammal expressing a human FcRn on its mammary gland cells and expressing a transgenic protein-human Fc-domain fusion |
| FR2901707B1 (en) | 2006-05-31 | 2017-09-29 | Lab Francais Du Fractionnement | RECOMBINANT OR TRANSGENIC FACTOR VII COMPOSITION, EACH FACTOR VII MOLECULE HAVING TWO N-GLYCOSYLATION SITES WITH DEFINED GLYCANNIC PATTERNS |
| US20100173323A1 (en) | 2006-06-09 | 2010-07-08 | University Of Maryland, Baltimore | Glycosylation engineered antibody therapy |
| FR2904558B1 (en) | 2006-08-01 | 2008-10-17 | Lab Francais Du Fractionnement | "RECOMBINANT OR TRANSGENIC FACTOR VII COMPOSITION, MAJORITYALLY HAVING BIANTENNAE, BISIALYLATED AND NON-FUCOSYLATED GLYCANNIC FORMS" |
| ZA200901912B (en) | 2006-09-10 | 2010-06-30 | Glycotope Gmbh | Use of human cells of myeloid leukaemia origin for expression of antibodies |
| EP2073842B2 (en) | 2006-09-10 | 2023-10-18 | Glycotope GmbH | Use of human cells of myeloid leukaemia origin for expression of antibodies |
| WO2008063982A2 (en) | 2006-11-13 | 2008-05-29 | Procell Corp | High mannose glycoprotein epitopes |
| WO2008083150A2 (en) | 2006-12-28 | 2008-07-10 | Centocor Ortho Biotech Inc. | Methods and vectors for generating asialylated immunoglobulins |
| US8450068B2 (en) | 2007-02-16 | 2013-05-28 | University Of Virginia Patent Foundation | IgE antibodies to chimeric or humanized IgG therapeutic monoclonal antibodies as a screening test for anaphylaxis |
| EP1985633A1 (en) | 2007-04-26 | 2008-10-29 | LFB Biotechnologies | Kit of parts for the treatment of cancer or infectious diseases |
| EP2162472B1 (en) | 2007-05-30 | 2013-02-27 | Postech Academy-Industry- Foundation | Immunoglobulin fusion proteins |
| MX2009013371A (en) | 2007-06-13 | 2010-01-25 | Sterrenbeld Biotechnologie North America Inc | Process for producing exogenous protein in the milk of transgenic mammals. |
| CA2734139C (en) * | 2007-10-02 | 2019-12-24 | Avaxia Biologics, Inc. | Antibody therapy for use in the digestive tract |
| WO2009083246A1 (en) * | 2007-12-31 | 2009-07-09 | Bayer Schering Pharma Aktiengesellschaft | Antibodies to tnf alpha |
| EP2230900A4 (en) | 2008-01-07 | 2013-01-09 | Synageva Biopharma Corp | Glycosylation in avians |
| EP2279003A4 (en) | 2008-05-01 | 2013-04-03 | Gtc Biotherapeutics Inc | ANTI-CD137 ANTIBODIES AS AN AGENT IN THE TREATMENT OF INFLAMMATORY CONDITIONS |
| US20100081172A1 (en) | 2008-09-26 | 2010-04-01 | Eureka Therapeutics, Inc. | N-Glycans and Uses Thereof |
| US20100178292A1 (en) | 2009-01-12 | 2010-07-15 | The Board Of Trustees Of The Leland Stanford Junior University | Cryptic glycan markers and applications thereof |
| US20110082083A1 (en) | 2009-04-10 | 2011-04-07 | Gtc Biotherapeutics, Inc. | Formulations of liquid stable antithrombin |
| EP2435075A2 (en) | 2009-05-28 | 2012-04-04 | Glaxo Group Limited | Antigen-binding proteins |
| WO2012090067A1 (en) | 2010-12-30 | 2012-07-05 | Lfb Biotechnologies | Glycols as pathogen inactivating agents |
| JPWO2012105699A1 (en) | 2011-02-03 | 2014-07-03 | 株式会社イーベック | Production of antibodies with high complement-dependent biological activity |
| AU2012278836B2 (en) | 2011-07-07 | 2016-03-10 | Lfb Usa, Inc. | Formulations that stabilize proteins |
| JP6433786B2 (en) | 2011-08-10 | 2018-12-05 | ラボラトワール フランセ デュ フラクショヌマン エ デ ビオテクノロジーLaboratoire Francais du Fractionnement et des Biotechnologies | Highly galactosylated antibody |
| KR101454316B1 (en) | 2011-08-17 | 2014-10-27 | 한화케미칼 주식회사 | Method for Preparing Active Form of TNFR-Fc Fusion Protein |
| US20130302274A1 (en) | 2011-11-25 | 2013-11-14 | Roche Glycart Ag | Combination therapy |
| BR112014014751A8 (en) | 2011-12-19 | 2017-07-04 | Lfb Usa Inc | composition comprising alpha-1-antitrypsin, mammary gland epithelial cells, transgenic non-human mammal, and method for reducing lung elastase activity |
| TW201400499A (en) | 2012-03-12 | 2014-01-01 | Revo Biolog Inc | The use of antithrombin in the treatment of pre-eclampsia |
| WO2013188870A2 (en) | 2012-06-15 | 2013-12-19 | Beth Israel Deaconess Medical Center, Inc. | IgA CD4i ANTIBODIES AND METHODS OF TREATMENT USING SAME |
| AU2013296240B2 (en) | 2012-08-03 | 2018-05-17 | Lfb Usa, Inc. | The use of antithrombin in extracorporeal membrane oxygenation |
| WO2014040024A1 (en) | 2012-09-10 | 2014-03-13 | Revo Biologics, Inc. | The use of antibodies in treating hiv infection and suppressing hiv transmission |
| BR112015019343A2 (en) | 2013-02-13 | 2017-08-22 | Lab Francais Du Fractionnement | ANTI-HER2 ANTIBODY, COMPOSITION, METHOD FOR PRODUCING A POPULATION OF ANTIBODIES, MAMMARY GLAND EPITHELIAL CELLS, AND, TRANSGENIC NON-HUMAN MAMMAL |
| CN105358577A (en) | 2013-02-13 | 2016-02-24 | 法国化学与生物科技实验室 | Cetuximab with modified glycosylation and uses thereof |
| CN105263319A (en) | 2013-02-13 | 2016-01-20 | 法国化学与生物科技实验室 | Proteins with modified glycosylation and methods of production thereof |
| KR20160002713A (en) | 2013-02-13 | 2016-01-08 | 라보라토이레 프란카이즈 듀 프락티온네먼트 에트 데스 바이오테크놀로지스 | Highly galactosylated anti-tnf-alpha antibodies and uses thereof |
| FR3005576B1 (en) | 2013-05-15 | 2015-06-19 | Lab Francais Du Fractionnement | PROCESS FOR INACTIVATING A PRION PROTEIN |
| CA2916566A1 (en) | 2013-07-05 | 2015-01-08 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Affinity chromatography matrix |
| FR3015484A1 (en) | 2013-12-20 | 2015-06-26 | Lab Francais Du Fractionnement | RECOMBINANT PROTEINS HAVING H-FACTOR ACTIVITY |
| BR112016014804A2 (en) | 2013-12-24 | 2017-08-08 | Lfb Usa Inc | METHOD FOR PRODUCING HEPARIN, TRANSGENIC NON-HUMAN MAMMAL, MAMMARY EPITHELIAL CELLS, HEPARIN AND COMPOSITION |
| AU2015270152A1 (en) | 2014-06-02 | 2016-12-08 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Production of Fc fragments |
| FR3022462B1 (en) | 2014-06-18 | 2018-04-27 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | ORAL COMPOSITION OF ANTI-TNFALPHA ANTIBODY |
| US20160158676A1 (en) | 2014-12-01 | 2016-06-09 | Laboratoire Français Du Fractionnement Et Des Biotechnologies | Method and apparatus for manipulating components of a filtration system |
-
2014
- 2014-02-13 KR KR1020157025005A patent/KR20160002713A/en not_active Withdrawn
- 2014-02-13 JP JP2015557532A patent/JP2016508515A/en active Pending
- 2014-02-13 CA CA2900909A patent/CA2900909A1/en not_active Abandoned
- 2014-02-13 ES ES14731999T patent/ES2755181T3/en active Active
- 2014-02-13 WO PCT/IB2014/000692 patent/WO2014125374A2/en not_active Ceased
- 2014-02-13 CN CN201480020371.4A patent/CN105308068A/en active Pending
- 2014-02-13 TW TW103104775A patent/TW201506041A/en unknown
- 2014-02-13 EP EP19194946.0A patent/EP3594231A1/en not_active Withdrawn
- 2014-02-13 BR BR112015019341A patent/BR112015019341A2/en not_active Application Discontinuation
- 2014-02-13 MX MX2015010427A patent/MX2015010427A/en unknown
- 2014-02-13 EP EP14731999.0A patent/EP2956480B1/en active Active
- 2014-02-13 US US14/767,117 patent/US10174110B2/en not_active Expired - Fee Related
- 2014-02-13 AR ARP140100459A patent/AR094780A1/en unknown
- 2014-02-13 EP EP19194945.2A patent/EP3594230A1/en not_active Withdrawn
- 2014-02-13 AU AU2014217561A patent/AU2014217561B2/en not_active Ceased
-
2015
- 2015-08-09 IL IL240443A patent/IL240443A0/en unknown
-
2018
- 2018-11-15 US US16/192,273 patent/US20190309058A1/en not_active Abandoned
- 2018-11-15 US US16/192,214 patent/US20190309057A1/en not_active Abandoned
-
2019
- 2019-12-27 JP JP2019238907A patent/JP2020073550A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6090382A (en) * | 1996-02-09 | 2000-07-18 | Basf Aktiengesellschaft | Human antibodies that bind human TNFα |
| WO2007048077A2 (en) * | 2005-10-21 | 2007-04-26 | Gtc Biotherapeutics, Inc. | Antibodies with enhanced antibody-dependent cellular cytoxicity activity, methods of their production and use |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11553712B2 (en) | 2010-12-30 | 2023-01-17 | Laboratoire Français Du Fractionnement Et Des Biotechnologies | Glycols as pathogen inactivating agents |
| US12247076B2 (en) | 2015-07-06 | 2025-03-11 | Laboratoire Français Du Fractionnement Et Des Biotechnologies | Use of modified Fc fragments in immunotherapy |
| WO2024124177A3 (en) * | 2022-12-09 | 2024-07-18 | Xentria, Inc. | Methods of treating sarcoidosis with a tnf-α antibody and associated compositions and methods |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2014125374A3 (en) | 2014-12-31 |
| JP2016508515A (en) | 2016-03-22 |
| US20150368334A1 (en) | 2015-12-24 |
| US10174110B2 (en) | 2019-01-08 |
| TW201506041A (en) | 2015-02-16 |
| JP2020073550A (en) | 2020-05-14 |
| CA2900909A1 (en) | 2014-08-21 |
| AU2014217561B2 (en) | 2018-11-15 |
| KR20160002713A (en) | 2016-01-08 |
| MX2015010427A (en) | 2016-03-17 |
| BR112015019341A2 (en) | 2017-08-22 |
| AU2014217561A1 (en) | 2015-08-27 |
| EP2956480A2 (en) | 2015-12-23 |
| EP3594231A1 (en) | 2020-01-15 |
| US20190309057A1 (en) | 2019-10-10 |
| EP3594230A1 (en) | 2020-01-15 |
| EP2956480B1 (en) | 2019-09-04 |
| ES2755181T3 (en) | 2020-04-21 |
| WO2014125374A2 (en) | 2014-08-21 |
| CN105308068A (en) | 2016-02-03 |
| IL240443A0 (en) | 2015-09-24 |
| AR094780A1 (en) | 2015-08-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10174110B2 (en) | Highly galactosylated anti-TNF-α antibodies and uses thereof | |
| JP2020125286A (en) | Highly galactosylated anti-her2 antibodies and uses thereof | |
| JP5788432B2 (en) | Anti-D monoclonal antibody | |
| EP2956484B1 (en) | Cetuximab with modified glycosylation and uses thereof | |
| TR201807750T4 (en) | Anti-TIM-3 antibody. | |
| JP2006507839A (en) | Modified antibody stably produced in milk and method for producing the same | |
| KR20170040132A (en) | Production of fc fragments | |
| JP4368800B2 (en) | Cytokine production-inducing antibody |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| AS | Assignment |
Owner name: LABORATOIRE FRANCAIS DU FRACTIONNEMENT ET DES BIOT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEADE, HARRY M.;CHEN, LI-HOW;REEL/FRAME:051009/0528 Effective date: 20170215 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |