US20190194214A1 - Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors - Google Patents
Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors Download PDFInfo
- Publication number
- US20190194214A1 US20190194214A1 US16/291,323 US201916291323A US2019194214A1 US 20190194214 A1 US20190194214 A1 US 20190194214A1 US 201916291323 A US201916291323 A US 201916291323A US 2019194214 A1 US2019194214 A1 US 2019194214A1
- Authority
- US
- United States
- Prior art keywords
- formula
- compound
- compounds
- alkyl
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 91
- GNOYRJIXSUNXIH-UHFFFAOYSA-N N1=CNC2=C3C=NN=C3C=CC2=C1 Chemical class N1=CNC2=C3C=NN=C3C=CC2=C1 GNOYRJIXSUNXIH-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 230000008569 process Effects 0.000 title abstract description 30
- 238000002360 preparation method Methods 0.000 title abstract description 7
- 229940043355 kinase inhibitor Drugs 0.000 title 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 345
- 230000000694 effects Effects 0.000 claims abstract description 31
- 150000003839 salts Chemical class 0.000 claims abstract description 20
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 13
- 201000010099 disease Diseases 0.000 claims abstract description 6
- 125000000623 heterocyclic group Chemical group 0.000 claims description 44
- 125000003118 aryl group Chemical group 0.000 claims description 32
- 239000001257 hydrogen Substances 0.000 claims description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims description 27
- 125000004415 heterocyclylalkyl group Chemical group 0.000 claims description 25
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 22
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 21
- 108091000080 Phosphotransferase Proteins 0.000 claims description 20
- 102000020233 phosphotransferase Human genes 0.000 claims description 20
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 14
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 108090000461 Aurora Kinase A Proteins 0.000 claims description 10
- 102100032311 Aurora kinase A Human genes 0.000 claims description 10
- 230000022131 cell cycle Effects 0.000 claims description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 10
- 230000002401 inhibitory effect Effects 0.000 claims description 9
- 241000124008 Mammalia Species 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- 201000001441 melanoma Diseases 0.000 claims description 3
- 208000031261 Acute myeloid leukaemia Diseases 0.000 claims description 2
- 206010006187 Breast cancer Diseases 0.000 claims description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 claims description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 2
- 125000002883 imidazolyl group Chemical group 0.000 claims description 2
- 125000004076 pyridyl group Chemical group 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 3
- 206010052747 Adenocarcinoma pancreas Diseases 0.000 claims 1
- 208000026310 Breast neoplasm Diseases 0.000 claims 1
- 206010009944 Colon cancer Diseases 0.000 claims 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims 1
- 206010033128 Ovarian cancer Diseases 0.000 claims 1
- 206010061535 Ovarian neoplasm Diseases 0.000 claims 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims 1
- 206010060862 Prostate cancer Diseases 0.000 claims 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims 1
- 208000029742 colonic neoplasm Diseases 0.000 claims 1
- 201000007270 liver cancer Diseases 0.000 claims 1
- 208000014018 liver neoplasm Diseases 0.000 claims 1
- 201000005202 lung cancer Diseases 0.000 claims 1
- 208000020816 lung neoplasm Diseases 0.000 claims 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims 1
- 125000002757 morpholinyl group Chemical group 0.000 claims 1
- 201000002094 pancreatic adenocarcinoma Diseases 0.000 claims 1
- 201000002528 pancreatic cancer Diseases 0.000 claims 1
- 208000008443 pancreatic carcinoma Diseases 0.000 claims 1
- 125000004193 piperazinyl group Chemical group 0.000 claims 1
- 238000011282 treatment Methods 0.000 abstract description 21
- 206010028980 Neoplasm Diseases 0.000 abstract description 20
- 201000011510 cancer Diseases 0.000 abstract description 11
- 102000001253 Protein Kinase Human genes 0.000 abstract description 9
- 108060006633 protein kinase Proteins 0.000 abstract description 9
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 6
- 238000002560 therapeutic procedure Methods 0.000 abstract description 3
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 1195
- 238000005160 1H NMR spectroscopy Methods 0.000 description 615
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 338
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 246
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 214
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 146
- 239000000243 solution Substances 0.000 description 124
- 239000000203 mixture Substances 0.000 description 115
- 239000002904 solvent Substances 0.000 description 114
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 111
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 103
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 83
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 81
- 229910052938 sodium sulfate Inorganic materials 0.000 description 75
- 238000006243 chemical reaction Methods 0.000 description 74
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 72
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 66
- 0 *CC1=NC=C2*C3=C(C([2*])=O)N([1*])N=C3C2=N1.*CC1=NC=C2*C3=C(C2=N1)N([1*])N=C3C([2*])=O Chemical compound *CC1=NC=C2*C3=C(C([2*])=O)N([1*])N=C3C2=N1.*CC1=NC=C2*C3=C(C2=N1)N([1*])N=C3C([2*])=O 0.000 description 62
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 60
- 239000007832 Na2SO4 Substances 0.000 description 57
- 229960004132 diethyl ether Drugs 0.000 description 46
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 45
- -1 e.g. Proteins 0.000 description 45
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 42
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 41
- 239000000741 silica gel Substances 0.000 description 40
- 229910002027 silica gel Inorganic materials 0.000 description 40
- 239000012044 organic layer Substances 0.000 description 39
- 239000007787 solid Substances 0.000 description 38
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 38
- 235000019439 ethyl acetate Nutrition 0.000 description 37
- 229940093499 ethyl acetate Drugs 0.000 description 37
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 36
- 239000011347 resin Substances 0.000 description 34
- 229920005989 resin Polymers 0.000 description 34
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 33
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 33
- 239000000725 suspension Substances 0.000 description 33
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 32
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 30
- 239000011541 reaction mixture Substances 0.000 description 30
- 238000010992 reflux Methods 0.000 description 28
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 27
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- 239000012267 brine Substances 0.000 description 27
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 27
- 239000000047 product Substances 0.000 description 26
- 230000002829 reductive effect Effects 0.000 description 26
- 238000003756 stirring Methods 0.000 description 26
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 25
- 239000003112 inhibitor Substances 0.000 description 24
- 239000000758 substrate Substances 0.000 description 24
- 125000003710 aryl alkyl group Chemical group 0.000 description 23
- 239000000872 buffer Substances 0.000 description 23
- 238000004587 chromatography analysis Methods 0.000 description 23
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 23
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 22
- 229910000027 potassium carbonate Inorganic materials 0.000 description 22
- 229960000583 acetic acid Drugs 0.000 description 21
- 238000001914 filtration Methods 0.000 description 21
- 238000011534 incubation Methods 0.000 description 20
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 19
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 19
- 238000003818 flash chromatography Methods 0.000 description 19
- 230000005764 inhibitory process Effects 0.000 description 19
- 239000003921 oil Substances 0.000 description 19
- 235000019198 oils Nutrition 0.000 description 19
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 18
- 229910052786 argon Inorganic materials 0.000 description 18
- 238000003556 assay Methods 0.000 description 18
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 18
- 239000000284 extract Substances 0.000 description 18
- 235000011152 sodium sulphate Nutrition 0.000 description 18
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 17
- 150000001412 amines Chemical class 0.000 description 17
- 238000001816 cooling Methods 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 16
- 238000004128 high performance liquid chromatography Methods 0.000 description 16
- 125000000753 cycloalkyl group Chemical group 0.000 description 15
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 15
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 14
- 239000011324 bead Substances 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 14
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 13
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 13
- 239000002244 precipitate Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 12
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 12
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 12
- 239000012312 sodium hydride Substances 0.000 description 12
- 229910000104 sodium hydride Inorganic materials 0.000 description 12
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 11
- 239000000908 ammonium hydroxide Substances 0.000 description 11
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 11
- 229910001629 magnesium chloride Inorganic materials 0.000 description 11
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 10
- 108010090804 Streptavidin Proteins 0.000 description 10
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 10
- 239000002585 base Substances 0.000 description 10
- MUALRAIOVNYAIW-UHFFFAOYSA-N binap Chemical compound C1=CC=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MUALRAIOVNYAIW-UHFFFAOYSA-N 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 150000002357 guanidines Chemical class 0.000 description 10
- 125000004433 nitrogen atom Chemical group N* 0.000 description 10
- 235000011121 sodium hydroxide Nutrition 0.000 description 10
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 9
- 229920004890 Triton X-100 Polymers 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 9
- 239000000706 filtrate Substances 0.000 description 9
- 125000005842 heteroatom Chemical group 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- 108010033040 Histones Proteins 0.000 description 8
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 8
- 229910000024 caesium carbonate Inorganic materials 0.000 description 8
- WYACBZDAHNBPPB-UHFFFAOYSA-N diethyl oxalate Chemical compound CCOC(=O)C(=O)OCC WYACBZDAHNBPPB-UHFFFAOYSA-N 0.000 description 8
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 description 7
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 7
- PJLUWPNLDKJSCF-UHFFFAOYSA-N 2-ethoxycyclohex-2-en-1-one Chemical compound CCOC1=CCCCC1=O PJLUWPNLDKJSCF-UHFFFAOYSA-N 0.000 description 7
- 102000016736 Cyclin Human genes 0.000 description 7
- 108050006400 Cyclin Proteins 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 7
- 239000013058 crude material Substances 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 150000002429 hydrazines Chemical class 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 235000011118 potassium hydroxide Nutrition 0.000 description 7
- 230000002062 proliferating effect Effects 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 239000003643 water by type Substances 0.000 description 7
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 6
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 239000012300 argon atmosphere Substances 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 229910052740 iodine Chemical group 0.000 description 6
- 239000012074 organic phase Substances 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 6
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 6
- 210000004881 tumor cell Anatomy 0.000 description 6
- JRGZHRJEKVTXCX-UHFFFAOYSA-N 2-methoxy-5,5-dimethylcyclohex-2-en-1-one Chemical compound COC1=CCC(C)(C)CC1=O JRGZHRJEKVTXCX-UHFFFAOYSA-N 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 5
- 101150012716 CDK1 gene Proteins 0.000 description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 5
- 102000006947 Histones Human genes 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 5
- 239000002246 antineoplastic agent Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 101150073031 cdk2 gene Proteins 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 5
- XFLFPYFSAQLHCN-UHFFFAOYSA-N ethyl 7-oxo-2,4,5,6-tetrahydroindazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2 XFLFPYFSAQLHCN-UHFFFAOYSA-N 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 229960004198 guanidine Drugs 0.000 description 5
- 150000002431 hydrogen Chemical group 0.000 description 5
- 239000011630 iodine Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 5
- 150000003141 primary amines Chemical class 0.000 description 5
- 125000003226 pyrazolyl group Chemical group 0.000 description 5
- 239000012047 saturated solution Substances 0.000 description 5
- 125000000547 substituted alkyl group Chemical group 0.000 description 5
- 238000000967 suction filtration Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 5
- ATESHHKXEZPZJE-UHFFFAOYSA-N 2-[3-chloro-4-(4-methylpiperazin-1-yl)phenyl]guanidine Chemical compound C1CN(C)CCN1C1=CC=C(NC(N)=N)C=C1Cl ATESHHKXEZPZJE-UHFFFAOYSA-N 0.000 description 4
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 4
- KRORMGNCPYUHAR-UHFFFAOYSA-N 8-iodo-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CC2=CN=C(I)N=C2C2=C1C(C(N)=O)=NN2C KRORMGNCPYUHAR-UHFFFAOYSA-N 0.000 description 4
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 4
- 239000005695 Ammonium acetate Substances 0.000 description 4
- 108010068192 Cyclin A Proteins 0.000 description 4
- 102000003909 Cyclin E Human genes 0.000 description 4
- 108090000257 Cyclin E Proteins 0.000 description 4
- 102100025191 Cyclin-A2 Human genes 0.000 description 4
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 4
- 101100059559 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) nimX gene Proteins 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 108091054455 MAP kinase family Proteins 0.000 description 4
- 102000043136 MAP kinase family Human genes 0.000 description 4
- 102100029008 Putative HTLV-1-related endogenous sequence Human genes 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000005917 acylation reaction Methods 0.000 description 4
- 125000003282 alkyl amino group Chemical group 0.000 description 4
- 125000004414 alkyl thio group Chemical group 0.000 description 4
- 229940043376 ammonium acetate Drugs 0.000 description 4
- 235000019257 ammonium acetate Nutrition 0.000 description 4
- 229940045988 antineoplastic drug protein kinase inhibitors Drugs 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- CEAKAIYDERWAJF-UHFFFAOYSA-N ethyl 2-(3-ethoxy-2-oxocyclohex-3-en-1-yl)-2-oxoacetate Chemical compound CCOC(=O)C(=O)C1CCC=C(OCC)C1=O CEAKAIYDERWAJF-UHFFFAOYSA-N 0.000 description 4
- VYUDULDAVWUAHL-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-1-methyl-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C VYUDULDAVWUAHL-UHFFFAOYSA-N 0.000 description 4
- QHRPJYIHTSXHAP-UHFFFAOYSA-N ethyl 8-amino-1-methylpyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1=CC2=CN=C(N)N=C2C2=C1C(C(=O)OCC)=NN2C QHRPJYIHTSXHAP-UHFFFAOYSA-N 0.000 description 4
- CQYIKQCUWSULGR-UHFFFAOYSA-N ethyl 8-iodo-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1CC2=CN=C(I)N=C2C2=C1C(C(=O)OCC)=NN2C CQYIKQCUWSULGR-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 125000002346 iodo group Chemical group I* 0.000 description 4
- OWFXIOWLTKNBAP-UHFFFAOYSA-N isoamyl nitrite Chemical compound CC(C)CCON=O OWFXIOWLTKNBAP-UHFFFAOYSA-N 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 239000002480 mineral oil Substances 0.000 description 4
- 235000010446 mineral oil Nutrition 0.000 description 4
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 4
- 239000003909 protein kinase inhibitor Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 4
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 4
- 229960004793 sucrose Drugs 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 4
- 239000012085 test solution Substances 0.000 description 4
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 4
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 3
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 3
- ZOBRPBVIEUWYJR-UHFFFAOYSA-N 1-methyl-8-(phenylamino)-4,5-dihydro-1h-pyrazolo[4,3-h]quinazoline-3-carboxylic acid Chemical compound N1=C2C=3N(C)N=C(C(O)=O)C=3CCC2=CN=C1NC1=CC=CC=C1 ZOBRPBVIEUWYJR-UHFFFAOYSA-N 0.000 description 3
- WUSZGSMQYXOBRT-UHFFFAOYSA-N 2-methoxy-4,4-dimethylcyclohex-2-en-1-one Chemical compound COC1=CC(C)(C)CCC1=O WUSZGSMQYXOBRT-UHFFFAOYSA-N 0.000 description 3
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 3
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N CCC1=CC=CC=C1 Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 3
- 101150053721 Cdk5 gene Proteins 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000007995 HEPES buffer Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- XGEGHDBEHXKFPX-UHFFFAOYSA-N N-methyl urea Chemical compound CNC(N)=O XGEGHDBEHXKFPX-UHFFFAOYSA-N 0.000 description 3
- 229910019501 NaVO3 Inorganic materials 0.000 description 3
- 208000031481 Pathologic Constriction Diseases 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 3
- 201000004681 Psoriasis Diseases 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 239000004133 Sodium thiosulphate Substances 0.000 description 3
- 239000012317 TBTU Substances 0.000 description 3
- MYZFCOGEUAFZRA-UHFFFAOYSA-N [8-(cyclohexylamino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazolin-3-yl]-phenylmethanone Chemical compound C1=2CCC3=CN=C(NC4CCCCC4)N=C3C=2N(C)N=C1C(=O)C1=CC=CC=C1 MYZFCOGEUAFZRA-UHFFFAOYSA-N 0.000 description 3
- LUQGZTAOBMXRGX-UHFFFAOYSA-N [8-(cyclohexylamino)-1-methylpyrazolo[4,3-h]quinazolin-3-yl]-phenylmethanone Chemical compound C12=CC=C3C=NC(NC4CCCCC4)=NC3=C2N(C)N=C1C(=O)C1=CC=CC=C1 LUQGZTAOBMXRGX-UHFFFAOYSA-N 0.000 description 3
- BOGSOFADOWIECK-UHFFFAOYSA-N [N].C=1C=NNC=1 Chemical group [N].C=1C=NNC=1 BOGSOFADOWIECK-UHFFFAOYSA-N 0.000 description 3
- 230000010933 acylation Effects 0.000 description 3
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-O azanium;hydron;hydroxide Chemical compound [NH4+].O VHUUQVKOLVNVRT-UHFFFAOYSA-O 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 101150093523 dbf4 gene Proteins 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 235000013681 dietary sucrose Nutrition 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- RYCAZLUINFPUFW-UHFFFAOYSA-N ethyl 1,4,4-trimethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 RYCAZLUINFPUFW-UHFFFAOYSA-N 0.000 description 3
- XTQZFGZEXAFLJN-UHFFFAOYSA-N ethyl 1-methyl-8-methylsulfanyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1CC2=CN=C(SC)N=C2C2=C1C(C(=O)OCC)=NN2C XTQZFGZEXAFLJN-UHFFFAOYSA-N 0.000 description 3
- PYGISCRUAORRMV-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-1,4,4-trimethyl-7-oxo-5h-indazole-3-carboxylate Chemical compound CC1(C)CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C PYGISCRUAORRMV-UHFFFAOYSA-N 0.000 description 3
- YPPVKTDEOLASCL-UHFFFAOYSA-N ethyl 6-(hydroxymethylidene)-1,5,5-trimethyl-7-oxo-4h-indazole-3-carboxylate Chemical compound C1C(C)(C)C(=CO)C(=O)C2=C1C(C(=O)OCC)=NN2C YPPVKTDEOLASCL-UHFFFAOYSA-N 0.000 description 3
- GCEJWVFGMQABRX-UHFFFAOYSA-N ethyl 7-oxo-1-[2-oxo-2-(2-oxobutylamino)ethyl]-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2CC(=O)NCC(=O)CC GCEJWVFGMQABRX-UHFFFAOYSA-N 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012362 glacial acetic acid Substances 0.000 description 3
- 201000005787 hematologic cancer Diseases 0.000 description 3
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 3
- 125000006517 heterocyclyl carbonyl group Chemical group 0.000 description 3
- 125000000717 hydrazino group Chemical group [H]N([*])N([H])[H] 0.000 description 3
- 239000005457 ice water Substances 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- QSQNIGJZXONNPI-UHFFFAOYSA-M potassium;1,4,4-trimethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound [K+].C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC=C(CC(C)(C)C2=C3N(C)N=C2C([O-])=O)C3=N1 QSQNIGJZXONNPI-UHFFFAOYSA-M 0.000 description 3
- UHSONHWLNOHHBJ-UHFFFAOYSA-M potassium;8-(cyclopentylamino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound [K+].N1=C2C=3N(C)N=C(C([O-])=O)C=3CCC2=CN=C1NC1CCCC1 UHSONHWLNOHHBJ-UHFFFAOYSA-M 0.000 description 3
- 238000002953 preparative HPLC Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 238000001959 radiotherapy Methods 0.000 description 3
- 208000037803 restenosis Diseases 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 150000003335 secondary amines Chemical class 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 3
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 3
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 235000019345 sodium thiosulphate Nutrition 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 230000036262 stenosis Effects 0.000 description 3
- 208000037804 stenosis Diseases 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 3
- 210000001685 thyroid gland Anatomy 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 3
- JBWKIWSBJXDJDT-UHFFFAOYSA-N triphenylmethyl chloride Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 JBWKIWSBJXDJDT-UHFFFAOYSA-N 0.000 description 3
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 3
- 238000001665 trituration Methods 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 239000003039 volatile agent Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 2
- DDNWLLSEFQMWPK-FFXKMJQXSA-N (2s)-1-morpholin-4-yl-2-phenylpropan-2-amine;dihydrochloride Chemical compound Cl.Cl.C([C@](N)(C)C=1C=CC=CC=1)N1CCOCC1 DDNWLLSEFQMWPK-FFXKMJQXSA-N 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 2
- WOGUASPHMADVMU-AWEZNQCLSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-2-phenylpropanoic acid Chemical compound CC(C)(C)OC(=O)N[C@](C)(C(O)=O)C1=CC=CC=C1 WOGUASPHMADVMU-AWEZNQCLSA-N 0.000 description 2
- FQCBRONXVDSRJP-MERQFXBCSA-N (2s)-2-amino-1-morpholin-4-yl-2-phenylethanone;hydrochloride Chemical compound Cl.O=C([C@@H](N)C=1C=CC=CC=1)N1CCOCC1 FQCBRONXVDSRJP-MERQFXBCSA-N 0.000 description 2
- SRGBGSQCSFEWRU-ZOWNYOTGSA-N (2s)-2-amino-1-morpholin-4-yl-2-phenylpropan-1-one;hydrochloride Chemical compound Cl.O=C([C@](N)(C)C=1C=CC=CC=1)N1CCOCC1 SRGBGSQCSFEWRU-ZOWNYOTGSA-N 0.000 description 2
- FFWHZANQRQNJIQ-UHFFFAOYSA-N (8-benzylsulfanyl-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazolin-3-yl)-phenylmethanone Chemical compound C1=2CCC3=CN=C(SCC=4C=CC=CC=4)N=C3C=2N(C)N=C1C(=O)C1=CC=CC=C1 FFWHZANQRQNJIQ-UHFFFAOYSA-N 0.000 description 2
- LQKOHKMYTXMUTG-UHFFFAOYSA-N (8-benzylsulfonyl-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazolin-3-yl)-phenylmethanone Chemical compound C1=2CCC3=CN=C(S(=O)(=O)CC=4C=CC=CC=4)N=C3C=2N(C)N=C1C(=O)C1=CC=CC=C1 LQKOHKMYTXMUTG-UHFFFAOYSA-N 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- XETXLASQWXXIIH-UHFFFAOYSA-N 1-(2-benzylsulfanyl-8-oxo-6,7-dihydro-5h-quinazolin-7-yl)-2-phenylethane-1,2-dione Chemical compound C=1C=CC=CC=1C(=O)C(=O)C(C(C1=N2)=O)CCC1=CN=C2SCC1=CC=CC=C1 XETXLASQWXXIIH-UHFFFAOYSA-N 0.000 description 2
- UQIQMRMOGOPYGZ-UHFFFAOYSA-N 1-(4-hydrazinylpiperidin-1-yl)ethanone;hydrochloride Chemical compound Cl.CC(=O)N1CCC(NN)CC1 UQIQMRMOGOPYGZ-UHFFFAOYSA-N 0.000 description 2
- NNFOVLFUGLWWCL-UHFFFAOYSA-N 1-acetylpiperidin-4-one Chemical compound CC(=O)N1CCC(=O)CC1 NNFOVLFUGLWWCL-UHFFFAOYSA-N 0.000 description 2
- FUQBWAAUTTYPJH-UHFFFAOYSA-N 1-methyl-8-(piperidin-4-ylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC1CCNCC1 FUQBWAAUTTYPJH-UHFFFAOYSA-N 0.000 description 2
- DEYMRGZIFWARLH-UHFFFAOYSA-N 1-methyl-8-(pyridin-2-ylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC1=CC=CC=N1 DEYMRGZIFWARLH-UHFFFAOYSA-N 0.000 description 2
- VEQZWOXFCXFUCF-UHFFFAOYSA-N 1-methyl-8-[(1-methylpiperidin-4-yl)amino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CN(C)CCC1NC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 VEQZWOXFCXFUCF-UHFFFAOYSA-N 0.000 description 2
- YNKNMNRQHZEKMK-UHFFFAOYSA-N 1-methyl-8-[[4-(2-morpholin-4-ylethoxy)phenyl]methylamino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NCC(C=C1)=CC=C1OCCN1CCOCC1 YNKNMNRQHZEKMK-UHFFFAOYSA-N 0.000 description 2
- QYOQMWLXSIKXHO-UHFFFAOYSA-N 1-methyl-8-methylsulfanyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C12=NC(SC)=NC=C2CCC2=C1N(C)N=C2C(N)=O QYOQMWLXSIKXHO-UHFFFAOYSA-N 0.000 description 2
- JJDCLIXYKUZWCV-UHFFFAOYSA-N 1-methyl-8-methylsulfonyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CC2=CN=C(S(C)(=O)=O)N=C2C2=C1C(C(N)=O)=NN2C JJDCLIXYKUZWCV-UHFFFAOYSA-N 0.000 description 2
- ALOCUZOKRULSAA-UHFFFAOYSA-N 1-methylpiperidin-4-amine Chemical compound CN1CCC(N)CC1 ALOCUZOKRULSAA-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- LEDOKDXHSXCDKF-UHFFFAOYSA-N 1-tert-butyl-4-(4-nitrophenyl)piperazine Chemical compound C1CN(C(C)(C)C)CCN1C1=CC=C([N+]([O-])=O)C=C1 LEDOKDXHSXCDKF-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- ICSNLGPSRYBMBD-UHFFFAOYSA-N 2-aminopyridine Chemical compound NC1=CC=CC=N1 ICSNLGPSRYBMBD-UHFFFAOYSA-N 0.000 description 2
- DFGQVNPKYKYMSQ-UHFFFAOYSA-N 2-anilino-5,6,8,9,10,11-hexahydro-7h-[1,4]diazepino[1',2':1,5]pyrazolo[4,3-h]quinazolin-7-one Chemical compound C=12C(=O)NCCCN2N=C(C2=N3)C=1CCC2=CN=C3NC1=CC=CC=C1 DFGQVNPKYKYMSQ-UHFFFAOYSA-N 0.000 description 2
- AZYZXHAWWJMPHT-UHFFFAOYSA-N 2-benzylsulfanyl-6,7-dihydro-5h-quinazolin-8-one Chemical compound N1=C2C(=O)CCCC2=CN=C1SCC1=CC=CC=C1 AZYZXHAWWJMPHT-UHFFFAOYSA-N 0.000 description 2
- ZQHKVYFTBVJQDQ-UHFFFAOYSA-N 2-benzylsulfanyl-8-ethoxy-5,6-dihydroquinazoline Chemical compound N1=C2C(OCC)=CCCC2=CN=C1SCC1=CC=CC=C1 ZQHKVYFTBVJQDQ-UHFFFAOYSA-N 0.000 description 2
- QAVCQCQQTYJKSO-UHFFFAOYSA-N 2-chloro-11-cyclopropyl-4-methyl-5h-dipyrido[2,3-b:2',3'-f][1,4]diazepin-6-one Chemical compound C12=NC=CC=C2C(=O)NC=2C(C)=CC(Cl)=NC=2N1C1CC1 QAVCQCQQTYJKSO-UHFFFAOYSA-N 0.000 description 2
- XBBJOEVBOOBEBG-UHFFFAOYSA-N 3,3-dimethyl-7-oxabicyclo[4.1.0]heptan-5-one Chemical compound O=C1CC(C)(C)CC2OC21 XBBJOEVBOOBEBG-UHFFFAOYSA-N 0.000 description 2
- VRGCYEIGVVTZCC-UHFFFAOYSA-N 3,4,5,6-tetrachlorocyclohexa-3,5-diene-1,2-dione Chemical compound ClC1=C(Cl)C(=O)C(=O)C(Cl)=C1Cl VRGCYEIGVVTZCC-UHFFFAOYSA-N 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 2
- SXEZZXWNGLQKSV-UHFFFAOYSA-N 3-methoxy-5,5-dimethylcyclohex-2-en-1-one Chemical compound COC1=CC(=O)CC(C)(C)C1 SXEZZXWNGLQKSV-UHFFFAOYSA-N 0.000 description 2
- HAUNPYVLVAIUOO-UHFFFAOYSA-N 4,4-dimethylcyclohex-2-en-1-one Chemical compound CC1(C)CCC(=O)C=C1 HAUNPYVLVAIUOO-UHFFFAOYSA-N 0.000 description 2
- FUQGQRHDOMRUAA-UHFFFAOYSA-N 5,5-dimethyl-7-oxabicyclo[4.1.0]heptan-2-one Chemical compound CC1(C)CCC(=O)C2OC12 FUQGQRHDOMRUAA-UHFFFAOYSA-N 0.000 description 2
- CDDGRARTNILYAB-UHFFFAOYSA-N 5,5-dimethylcyclohex-2-en-1-one Chemical compound CC1(C)CC=CC(=O)C1 CDDGRARTNILYAB-UHFFFAOYSA-N 0.000 description 2
- YTQNUVLMVCPPFF-UHFFFAOYSA-N 6-(dimethylaminomethylidene)-2-ethoxycyclohex-2-en-1-one Chemical compound CCOC1=CCCC(=CN(C)C)C1=O YTQNUVLMVCPPFF-UHFFFAOYSA-N 0.000 description 2
- ABEYZUJMIYFBTH-UHFFFAOYSA-N 8-(cyclohexylamino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC1CCCCC1 ABEYZUJMIYFBTH-UHFFFAOYSA-N 0.000 description 2
- YXAVOEZVXUPEKE-UHFFFAOYSA-N 8-(cyclohexylamino)-1-methylpyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N=1C2=C3N(C)N=C(C(N)=O)C3=CC=C2C=NC=1NC1CCCCC1 YXAVOEZVXUPEKE-UHFFFAOYSA-N 0.000 description 2
- PCIRJFQKXCEEIU-UHFFFAOYSA-N 8-[(4-hydroxyphenyl)methylamino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NCC1=CC=C(O)C=C1 PCIRJFQKXCEEIU-UHFFFAOYSA-N 0.000 description 2
- HWFOUEQKCWVCBH-UHFFFAOYSA-N 8-[(4-methoxyphenyl)methylamino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=CC(OC)=CC=C1CNC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 HWFOUEQKCWVCBH-UHFFFAOYSA-N 0.000 description 2
- XOSBKKVDFISERP-UHFFFAOYSA-N 8-amino-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CC2=CN=C(N)N=C2C2=C1C(C(N)=O)=NN2C XOSBKKVDFISERP-UHFFFAOYSA-N 0.000 description 2
- XCWJWGNIBKHDIB-UHFFFAOYSA-N 8-amino-1-methylpyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=NC(N)=NC2=C3N(C)N=C(C(N)=O)C3=CC=C21 XCWJWGNIBKHDIB-UHFFFAOYSA-N 0.000 description 2
- UOZGSFYRTXKQQR-UHFFFAOYSA-N 8-anilino-n,1-dimethyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CNC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC=CC=C1 UOZGSFYRTXKQQR-UHFFFAOYSA-N 0.000 description 2
- KGHTWBCROVKZTH-GOSISDBHSA-N 8-iodo-1-methyl-n-[(1s)-2-morpholin-4-yl-1-phenylethyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C([C@@H](NC(=O)C1=NN(C=2C3=NC(I)=NC=C3CCC=21)C)C=1C=CC=CC=1)N1CCOCC1 KGHTWBCROVKZTH-GOSISDBHSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N CCC Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- KDWQLICBSFIDRM-UHFFFAOYSA-N CCC(F)(F)F Chemical compound CCC(F)(F)F KDWQLICBSFIDRM-UHFFFAOYSA-N 0.000 description 2
- YADIXAWTPSMTRY-UHFFFAOYSA-N CCC1=CC=C(N2CCN(C)CC2)C=C1 Chemical compound CCC1=CC=C(N2CCN(C)CC2)C=C1 YADIXAWTPSMTRY-UHFFFAOYSA-N 0.000 description 2
- NRGGMCIBEHEAIL-UHFFFAOYSA-N CCC1=CC=CC=N1 Chemical compound CCC1=CC=CC=N1 NRGGMCIBEHEAIL-UHFFFAOYSA-N 0.000 description 2
- IFTRQJLVEBNKJK-UHFFFAOYSA-N CCC1CCCC1 Chemical compound CCC1CCCC1 IFTRQJLVEBNKJK-UHFFFAOYSA-N 0.000 description 2
- OKXWTILSPGNEBA-UHFFFAOYSA-N CCCC1=CC=C(C(F)(F)F)C=C1 Chemical compound CCCC1=CC=C(C(F)(F)F)C=C1 OKXWTILSPGNEBA-UHFFFAOYSA-N 0.000 description 2
- KBHWKXNXTURZCD-UHFFFAOYSA-N CCCC1=CC=C(OC)C=C1 Chemical compound CCCC1=CC=C(OC)C=C1 KBHWKXNXTURZCD-UHFFFAOYSA-N 0.000 description 2
- NPWBYDTXWRWDKO-UHFFFAOYSA-N CCCC1=CC=C(OCCN2CCOCC2)C=C1 Chemical compound CCCC1=CC=C(OCCN2CCOCC2)C=C1 NPWBYDTXWRWDKO-UHFFFAOYSA-N 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N CCCC1=CC=CC=C1 Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- CPLJMYOQYRCCBY-UHFFFAOYSA-N CCCC1=CC=CO1 Chemical compound CCCC1=CC=CO1 CPLJMYOQYRCCBY-UHFFFAOYSA-N 0.000 description 2
- BTXIJTYYMLCUHI-UHFFFAOYSA-N CCCC1=CC=CS1 Chemical compound CCCC1=CC=CS1 BTXIJTYYMLCUHI-UHFFFAOYSA-N 0.000 description 2
- DJEQZVQFEPKLOY-UHFFFAOYSA-N CCCCN(C)C Chemical compound CCCCN(C)C DJEQZVQFEPKLOY-UHFFFAOYSA-N 0.000 description 2
- 108091007914 CDKs Proteins 0.000 description 2
- 101100005789 Caenorhabditis elegans cdk-4 gene Proteins 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 2
- 102000002427 Cyclin B Human genes 0.000 description 2
- 108010068150 Cyclin B Proteins 0.000 description 2
- 108010060385 Cyclin B1 Proteins 0.000 description 2
- 108010058546 Cyclin D1 Proteins 0.000 description 2
- 108010024986 Cyclin-Dependent Kinase 2 Proteins 0.000 description 2
- 108010025454 Cyclin-Dependent Kinase 5 Proteins 0.000 description 2
- 102100036239 Cyclin-dependent kinase 2 Human genes 0.000 description 2
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 2
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 description 2
- 102100032340 G2/mitotic-specific cyclin-B1 Human genes 0.000 description 2
- 206010018364 Glomerulonephritis Diseases 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 101000610640 Homo sapiens U4/U6 small nuclear ribonucleoprotein Prp3 Proteins 0.000 description 2
- 208000007766 Kaposi sarcoma Diseases 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 2
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- 229910004879 Na2S2O5 Inorganic materials 0.000 description 2
- 208000009905 Neurofibromatoses Diseases 0.000 description 2
- 235000019502 Orange oil Nutrition 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229910019020 PtO2 Inorganic materials 0.000 description 2
- 230000018199 S phase Effects 0.000 description 2
- 101001110823 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-A Proteins 0.000 description 2
- 101000712176 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-B Proteins 0.000 description 2
- 201000010208 Seminoma Diseases 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 206010052779 Transplant rejections Diseases 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 102100040374 U4/U6 small nuclear ribonucleoprotein Prp3 Human genes 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 101100273808 Xenopus laevis cdk1-b gene Proteins 0.000 description 2
- 201000006083 Xeroderma Pigmentosum Diseases 0.000 description 2
- QMCZMSKKAHWYBJ-GFCCVEGCSA-N [(2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-2-phenylethyl] methanesulfonate Chemical compound CC(C)(C)OC(=O)N[C@H](COS(C)(=O)=O)C1=CC=CC=C1 QMCZMSKKAHWYBJ-GFCCVEGCSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000004037 angiogenesis inhibitor Substances 0.000 description 2
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 125000001769 aryl amino group Chemical group 0.000 description 2
- 150000001543 aryl boronic acids Chemical class 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N beta-hydroxyethanesulfonic acid Natural products OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 125000005518 carboxamido group Chemical group 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 208000022605 chemotherapy-induced alopecia Diseases 0.000 description 2
- 239000000460 chlorine Chemical group 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 125000006310 cycloalkyl amino group Chemical group 0.000 description 2
- 125000005170 cycloalkyloxycarbonyl group Chemical group 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 2
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 2
- MPKAOSDCKDNDBZ-UHFFFAOYSA-N ethyl 1,4,4-trimethyl-7-oxo-5,6-dihydroindazole-3-carboxylate Chemical compound CC1(C)CCC(=O)C2=C1C(C(=O)OCC)=NN2C MPKAOSDCKDNDBZ-UHFFFAOYSA-N 0.000 description 2
- WQHVZQGOOAWMHE-UHFFFAOYSA-N ethyl 1,5,5-trimethyl-7-oxo-4,6-dihydroindazole-3-carboxylate Chemical compound C1C(C)(C)CC(=O)C2=C1C(C(=O)OCC)=NN2C WQHVZQGOOAWMHE-UHFFFAOYSA-N 0.000 description 2
- BOLLABVANJGXIM-UHFFFAOYSA-N ethyl 1-[(5-ethyl-1,3-oxazol-2-yl)methyl]-7-oxo-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2CC1=NC=C(CC)O1 BOLLABVANJGXIM-UHFFFAOYSA-N 0.000 description 2
- CYKSYDSDCBBLQG-UHFFFAOYSA-N ethyl 1-methyl-7-oxo-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2C CYKSYDSDCBBLQG-UHFFFAOYSA-N 0.000 description 2
- LOEPJCJUHSEZBU-UHFFFAOYSA-N ethyl 1-methyl-8-(pyridin-2-ylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC=CC=N1 LOEPJCJUHSEZBU-UHFFFAOYSA-N 0.000 description 2
- MHRYZTTWUDFNBM-UHFFFAOYSA-N ethyl 1-methyl-8-(trifluoromethylsulfonyloxy)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1CC2=CN=C(OS(=O)(=O)C(F)(F)F)N=C2C2=C1C(C(=O)OCC)=NN2C MHRYZTTWUDFNBM-UHFFFAOYSA-N 0.000 description 2
- DNTDLXBYKFWYQY-UHFFFAOYSA-N ethyl 1-methyl-8-[[1-[(2-methylpropan-2-yl)oxycarbonyl]pyrrolidin-3-yl]amino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1CCN(C(=O)OC(C)(C)C)C1 DNTDLXBYKFWYQY-UHFFFAOYSA-N 0.000 description 2
- SWSBMMZTABRCOW-UHFFFAOYSA-N ethyl 1-methyl-8-methylsulfonyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1CC2=CN=C(S(C)(=O)=O)N=C2C2=C1C(C(=O)OCC)=NN2C SWSBMMZTABRCOW-UHFFFAOYSA-N 0.000 description 2
- CZPGTSIBVXSPJV-UHFFFAOYSA-N ethyl 1-methyl-8-oxo-5,9-dihydro-4h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1CC2=CN=C(O)N=C2C2=C1C(C(=O)OCC)=NN2C CZPGTSIBVXSPJV-UHFFFAOYSA-N 0.000 description 2
- DYGALQYLRCVIKW-UHFFFAOYSA-N ethyl 1-methyl-8-phenylsulfanyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3SC1=CC=CC=C1 DYGALQYLRCVIKW-UHFFFAOYSA-N 0.000 description 2
- LIDHNIWKCABTNH-UHFFFAOYSA-N ethyl 2-(3-aminopropyl)-8-anilino-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate;hydrochloride Chemical compound Cl.N1=C2C3=NN(CCCN)C(C(=O)OCC)=C3CCC2=CN=C1NC1=CC=CC=C1 LIDHNIWKCABTNH-UHFFFAOYSA-N 0.000 description 2
- QYHWCPQDMFKXIC-UHFFFAOYSA-N ethyl 2-(3-methoxy-5,5-dimethyl-2-oxocyclohex-3-en-1-yl)-2-oxoacetate Chemical compound CCOC(=O)C(=O)C1CC(C)(C)C=C(OC)C1=O QYHWCPQDMFKXIC-UHFFFAOYSA-N 0.000 description 2
- KELJRXJJYZZYTC-UHFFFAOYSA-N ethyl 2-(3-methoxy-6,6-dimethyl-2-oxocyclohex-3-en-1-yl)-2-oxoacetate Chemical compound CCOC(=O)C(=O)C1C(=O)C(OC)=CCC1(C)C KELJRXJJYZZYTC-UHFFFAOYSA-N 0.000 description 2
- LMILCBDDCVCYCZ-UHFFFAOYSA-N ethyl 7-ethoxy-4,5-dihydro-2h-indazole-3-carboxylate Chemical compound C1CC=C(OCC)C2=C1C(C(=O)OCC)=NN2 LMILCBDDCVCYCZ-UHFFFAOYSA-N 0.000 description 2
- OSXDWDVYBDDVMH-UHFFFAOYSA-N ethyl 7-oxo-2-[2-oxo-2-(2-oxobutylamino)ethyl]-3,4,5,6-tetrahydro-1h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)N(CC(=O)NCC(=O)CC)N2 OSXDWDVYBDDVMH-UHFFFAOYSA-N 0.000 description 2
- MQLYVMQQHAAGEI-UHFFFAOYSA-N ethyl 8-(carbamoylamino)-1-methylpyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1=CC2=CN=C(NC(N)=O)N=C2C2=C1C(C(=O)OCC)=NN2C MQLYVMQQHAAGEI-UHFFFAOYSA-N 0.000 description 2
- RERZBILYXAEMJJ-UHFFFAOYSA-N ethyl 8-(cyclopentylamino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1CCCC1 RERZBILYXAEMJJ-UHFFFAOYSA-N 0.000 description 2
- LENMBZYRPFCKBQ-UHFFFAOYSA-N ethyl 8-amino-1,4,4-trimethyl-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CC1(C)CC2=CN=C(N)N=C2C2=C1C(C(=O)OCC)=NN2C LENMBZYRPFCKBQ-UHFFFAOYSA-N 0.000 description 2
- XCLOVJZYWDYYRT-UHFFFAOYSA-N ethyl 8-anilino-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC=CC=C1 XCLOVJZYWDYYRT-UHFFFAOYSA-N 0.000 description 2
- DRCIMNUQWGTKLV-UHFFFAOYSA-N ethyl 8-anilino-4,5-dihydro-2h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NNC(C2=N3)=C1CCC2=CN=C3NC1=CC=CC=C1 DRCIMNUQWGTKLV-UHFFFAOYSA-N 0.000 description 2
- KEPKCUZNLDWPLS-UHFFFAOYSA-N ethyl 8-iodo-1,4,4-trimethyl-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CC1(C)CC2=CN=C(I)N=C2C2=C1C(C(=O)OCC)=NN2C KEPKCUZNLDWPLS-UHFFFAOYSA-N 0.000 description 2
- HEQISFCDUZVSDF-UHFFFAOYSA-N ethyl 8-methoxy-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1CC2=CN=C(OC)N=C2C2=C1C(C(=O)OCC)=NN2C HEQISFCDUZVSDF-UHFFFAOYSA-N 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethyl cyclohexane Natural products CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 230000003325 follicular Effects 0.000 description 2
- 125000005844 heterocyclyloxy group Chemical group 0.000 description 2
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical group II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- LZWQNOHZMQIFBX-UHFFFAOYSA-N lithium;2-methylpropan-2-olate Chemical compound [Li+].CC(C)(C)[O-] LZWQNOHZMQIFBX-UHFFFAOYSA-N 0.000 description 2
- 239000011565 manganese chloride Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- YEWNCBNFPSRCKN-UHFFFAOYSA-N methyl 2-(4-methylpiperazino)-5-nitrobenzenecarboxylate Chemical compound COC(=O)C1=CC([N+]([O-])=O)=CC=C1N1CCN(C)CC1 YEWNCBNFPSRCKN-UHFFFAOYSA-N 0.000 description 2
- JZLONOOYIXEAHM-UHFFFAOYSA-N methyl 2-fluoro-5-nitrobenzoate Chemical compound COC(=O)C1=CC([N+]([O-])=O)=CC=C1F JZLONOOYIXEAHM-UHFFFAOYSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- GIHFHHKDKVDQIT-UHFFFAOYSA-N methylurea;sulfuric acid Chemical compound CNC(O)=N.OS(O)(=O)=O GIHFHHKDKVDQIT-UHFFFAOYSA-N 0.000 description 2
- DZTQGFMCAFGPNU-UHFFFAOYSA-N n'-(1-acetylpiperidin-4-yl)benzohydrazide Chemical compound C1CN(C(=O)C)CCC1NNC(=O)C1=CC=CC=C1 DZTQGFMCAFGPNU-UHFFFAOYSA-N 0.000 description 2
- RXZMYLDMFYNEIM-UHFFFAOYSA-N n,1,4,4-tetramethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-5h-pyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CNC(=O)C1=NN(C)C(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 RXZMYLDMFYNEIM-UHFFFAOYSA-N 0.000 description 2
- ANFLPJIRCJLNJD-UHFFFAOYSA-N n-[(1-acetylpiperidin-4-ylidene)amino]benzamide Chemical compound C1CN(C(=O)C)CCC1=NNC(=O)C1=CC=CC=C1 ANFLPJIRCJLNJD-UHFFFAOYSA-N 0.000 description 2
- FQYPEQHGKREAOR-RUZDIDTESA-N n-[(1s)-2-amino-1-phenylethyl]-1-methyl-8-[4-(4-methylpiperazin-1-yl)anilino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(=O)N[C@H](CN)C=2C=CC=CC=2)C3=N1 FQYPEQHGKREAOR-RUZDIDTESA-N 0.000 description 2
- XSYJKSNOFBESEE-UHFFFAOYSA-N n-[3-(1-methylpiperidin-4-yl)oxyphenyl]acetamide Chemical compound C1CN(C)CCC1OC1=CC=CC(NC(C)=O)=C1 XSYJKSNOFBESEE-UHFFFAOYSA-N 0.000 description 2
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 2
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 201000004931 neurofibromatosis Diseases 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000010502 orange oil Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 2
- 210000001428 peripheral nervous system Anatomy 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 208000015768 polyposis Diseases 0.000 description 2
- 238000010837 poor prognosis Methods 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 235000011056 potassium acetate Nutrition 0.000 description 2
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 2
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 2
- CIOBAZGGUWFZHY-UHFFFAOYSA-M potassium;8-amino-1,4,4-trimethyl-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound [K+].C12=NC(N)=NC=C2CC(C)(C)C2=C1N(C)N=C2C([O-])=O CIOBAZGGUWFZHY-UHFFFAOYSA-M 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 208000005069 pulmonary fibrosis Diseases 0.000 description 2
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000015424 sodium Nutrition 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 2
- 235000009518 sodium iodide Nutrition 0.000 description 2
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 208000001608 teratocarcinoma Diseases 0.000 description 2
- AXIUOFSFGLMXIT-UHFFFAOYSA-N tert-butyl n-(1-acetylpiperidin-4-yl)-n-[(2-methylpropan-2-yl)oxycarbonylamino]carbamate Chemical compound CC(=O)N1CCC(N(NC(=O)OC(C)(C)C)C(=O)OC(C)(C)C)CC1 AXIUOFSFGLMXIT-UHFFFAOYSA-N 0.000 description 2
- MJCOLONICTYDPI-UHFFFAOYSA-N tert-butyl n-(1-acetylpiperidin-4-yl)-n-[benzoyl-[(2-methylpropan-2-yl)oxycarbonyl]amino]carbamate Chemical compound C1CN(C(=O)C)CCC1N(C(=O)OC(C)(C)C)N(C(=O)OC(C)(C)C)C(=O)C1=CC=CC=C1 MJCOLONICTYDPI-UHFFFAOYSA-N 0.000 description 2
- IBDIOGYTZBKRGI-LLVKDONJSA-N tert-butyl n-[(1s)-2-hydroxy-1-phenylethyl]carbamate Chemical compound CC(C)(C)OC(=O)N[C@H](CO)C1=CC=CC=C1 IBDIOGYTZBKRGI-LLVKDONJSA-N 0.000 description 2
- ZVJKOZMUMFBMMO-OAHLLOKOSA-N tert-butyl n-[(1s)-2-morpholin-4-yl-1-phenylethyl]carbamate Chemical compound C([C@@H](NC(=O)OC(C)(C)C)C=1C=CC=CC=1)N1CCOCC1 ZVJKOZMUMFBMMO-OAHLLOKOSA-N 0.000 description 2
- ZTEVVVOAQYTYMA-AWEZNQCLSA-N tert-butyl n-[(1s)-2-morpholin-4-yl-2-oxo-1-phenylethyl]carbamate Chemical compound O=C([C@@H](NC(=O)OC(C)(C)C)C=1C=CC=CC=1)N1CCOCC1 ZTEVVVOAQYTYMA-AWEZNQCLSA-N 0.000 description 2
- QGIQPNYETXYYHV-SFHVURJKSA-N tert-butyl n-[(2s)-1-morpholin-4-yl-1-oxo-2-phenylpropan-2-yl]carbamate Chemical compound O=C([C@@](C)(NC(=O)OC(C)(C)C)C=1C=CC=CC=1)N1CCOCC1 QGIQPNYETXYYHV-SFHVURJKSA-N 0.000 description 2
- VPWFNCFRPQFWGS-UHFFFAOYSA-N tert-butyl n-[amino-[(2-methylpropan-2-yl)oxycarbonylamino]methylidene]carbamate Chemical compound CC(C)(C)OC(=O)NC(N)=NC(=O)OC(C)(C)C VPWFNCFRPQFWGS-UHFFFAOYSA-N 0.000 description 2
- GOQZIPJCBUYLIR-UHFFFAOYSA-N tert-butyl n-[n-[(2-methylpropan-2-yl)oxycarbonyl]-n'-(trifluoromethylsulfonyl)carbamimidoyl]carbamate Chemical compound CC(C)(C)OC(=O)NC(=NS(=O)(=O)C(F)(F)F)NC(=O)OC(C)(C)C GOQZIPJCBUYLIR-UHFFFAOYSA-N 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 2
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 2
- 230000005747 tumor angiogenesis Effects 0.000 description 2
- 238000000825 ultraviolet detection Methods 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- KTTLYXKIMDBYRM-BXUUEFRQSA-N (1s)-2-(4-methylpiperazin-1-yl)-1-phenylethanamine;trihydrochloride Chemical compound Cl.Cl.Cl.C1CN(C)CCN1C[C@@H](N)C1=CC=CC=C1 KTTLYXKIMDBYRM-BXUUEFRQSA-N 0.000 description 1
- XIOOOBPYJXAVGV-CURYUGHLSA-N (1s)-2-morpholin-4-yl-1-phenylethanamine;dihydrochloride Chemical compound Cl.Cl.C([C@@H](N)C=1C=CC=CC=1)N1CCOCC1 XIOOOBPYJXAVGV-CURYUGHLSA-N 0.000 description 1
- IJXJGQCXFSSHNL-MRVPVSSYSA-N (2s)-2-amino-2-phenylethanol Chemical compound OC[C@@H](N)C1=CC=CC=C1 IJXJGQCXFSSHNL-MRVPVSSYSA-N 0.000 description 1
- HTCSFFGLRQDZDE-VIFPVBQESA-N (2s)-2-azaniumyl-2-phenylpropanoate Chemical compound OC(=O)[C@](N)(C)C1=CC=CC=C1 HTCSFFGLRQDZDE-VIFPVBQESA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- DIOHEXPTUTVCNX-UHFFFAOYSA-N 1,1,1-trifluoro-n-phenyl-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)N(S(=O)(=O)C(F)(F)F)C1=CC=CC=C1 DIOHEXPTUTVCNX-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- OGYGFUAIIOPWQD-UHFFFAOYSA-N 1,3-thiazolidine Chemical compound C1CSCN1 OGYGFUAIIOPWQD-UHFFFAOYSA-N 0.000 description 1
- YJAHDBYTVJLWQB-UHFFFAOYSA-N 1,4,4-trimethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-5h-pyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC=C(CC(C)(C)C2=C3N(C)N=C2C(N)=O)C3=N1 YJAHDBYTVJLWQB-UHFFFAOYSA-N 0.000 description 1
- HPADUEWVDCBFFZ-UHFFFAOYSA-N 1-(1-benzylpiperidin-4-yl)-8-(cyclopentylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CC2=CN=C(NC3CCCC3)N=C2C2=C1C(C(=O)N)=NN2C(CC1)CCN1CC1=CC=CC=C1 HPADUEWVDCBFFZ-UHFFFAOYSA-N 0.000 description 1
- KJZUKEWYWMAJAG-UHFFFAOYSA-N 1-(4-methylpiperazine-1-carbonyl)piperidin-4-one;hydrochloride Chemical compound Cl.C1CN(C)CCN1C(=O)N1CCC(=O)CC1 KJZUKEWYWMAJAG-UHFFFAOYSA-N 0.000 description 1
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 1
- DGSSJZJBCABUMD-UHFFFAOYSA-N 1-aminobutan-2-one;hydrochloride Chemical compound Cl.CCC(=O)CN DGSSJZJBCABUMD-UHFFFAOYSA-N 0.000 description 1
- WFQDTOYDVUWQMS-UHFFFAOYSA-N 1-fluoro-4-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=C(F)C=C1 WFQDTOYDVUWQMS-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- NYMGHRXNLRQWDG-UHFFFAOYSA-N 1-methyl-8-(1,3-thiazol-2-ylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC1=NC=CS1 NYMGHRXNLRQWDG-UHFFFAOYSA-N 0.000 description 1
- XSPGHCBNMYLIBS-UHFFFAOYSA-N 1-methyl-8-(1,3-thiazol-2-ylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide;hydrochloride Chemical compound Cl.N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC1=NC=CS1 XSPGHCBNMYLIBS-UHFFFAOYSA-N 0.000 description 1
- LTPAWELMSLHJGL-UHFFFAOYSA-N 1-methyl-8-(1h-pyrazol-5-ylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC=1C=CNN=1 LTPAWELMSLHJGL-UHFFFAOYSA-N 0.000 description 1
- PMLROBFKXUCUMZ-FSRHSHDFSA-N 1-methyl-8-(4-morpholin-4-ylanilino)-n-[(1r)-1-phenylethyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide;hydrochloride Chemical compound Cl.N([C@H](C)C=1C=CC=CC=1)C(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC(C=C1)=CC=C1N1CCOCC1 PMLROBFKXUCUMZ-FSRHSHDFSA-N 0.000 description 1
- GUKSXNYGIPYUFJ-UHFFFAOYSA-N 1-methyl-8-(pyridin-2-ylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide;hydrochloride Chemical compound Cl.N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC1=CC=CC=N1 GUKSXNYGIPYUFJ-UHFFFAOYSA-N 0.000 description 1
- JDALQOURDOUMQA-UHFFFAOYSA-N 1-methyl-8-(thiophen-3-ylmethylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NCC=1C=CSC=1 JDALQOURDOUMQA-UHFFFAOYSA-N 0.000 description 1
- IXOFOAUKJQDWQG-UHFFFAOYSA-N 1-methyl-8-[(1-methylimidazol-2-yl)methylamino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CN1C=CN=C1CNC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 IXOFOAUKJQDWQG-UHFFFAOYSA-N 0.000 description 1
- QCSIVQMWTKJRIZ-UHFFFAOYSA-N 1-methyl-8-[(2-phenylacetyl)amino]pyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N=1C2=C3N(C)N=C(C(N)=O)C3=CC=C2C=NC=1NC(=O)CC1=CC=CC=C1 QCSIVQMWTKJRIZ-UHFFFAOYSA-N 0.000 description 1
- SUDAMFHKFXOTEU-GDLZYMKVSA-N 1-methyl-8-[3-(4-methylpiperazin-1-yl)anilino]-n-[(1s)-2-morpholin-4-yl-1-phenylethyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CN(C)CCN1C1=CC=CC(NC=2N=C3C=4N(C)N=C(C=4CCC3=CN=2)C(=O)N[C@H](CN2CCOCC2)C=2C=CC=CC=2)=C1 SUDAMFHKFXOTEU-GDLZYMKVSA-N 0.000 description 1
- UDGVPIGXZRYKGW-UHFFFAOYSA-N 1-methyl-8-[3-[(4-methylpiperazin-1-yl)methyl]anilino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CN(C)CCN1CC1=CC=CC(NC=2N=C3C=4N(C)N=C(C=4CCC3=CN=2)C(N)=O)=C1 UDGVPIGXZRYKGW-UHFFFAOYSA-N 0.000 description 1
- ZDMZFTNYGDYVAM-WJOKGBTCSA-N 1-methyl-8-[4-(4-methylpiperazin-1-yl)anilino]-n-[(1s)-2-[(1-methylpiperidin-4-yl)amino]-1-phenylethyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CN(C)CCC1NC[C@H](C=1C=CC=CC=1)NC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC=C(N2CCN(C)CC2)C=C1 ZDMZFTNYGDYVAM-WJOKGBTCSA-N 0.000 description 1
- BAUWRHPMUVYFOD-UHFFFAOYSA-N 1-methylpiperidin-4-ol Chemical compound CN1CCC(O)CC1 BAUWRHPMUVYFOD-UHFFFAOYSA-N 0.000 description 1
- GUKIVPNEPZZJBS-UHFFFAOYSA-N 1-tert-butylpiperazine;dihydrobromide Chemical compound Br.Br.CC(C)(C)N1CCNCC1 GUKIVPNEPZZJBS-UHFFFAOYSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- GRNOZCCBOFGDCL-UHFFFAOYSA-N 2,2,2-trichloroacetyl isocyanate Chemical compound ClC(Cl)(Cl)C(=O)N=C=O GRNOZCCBOFGDCL-UHFFFAOYSA-N 0.000 description 1
- JKTCBAGSMQIFNL-UHFFFAOYSA-N 2,3-dihydrofuran Chemical compound C1CC=CO1 JKTCBAGSMQIFNL-UHFFFAOYSA-N 0.000 description 1
- DWLMIHRZURMFAQ-UHFFFAOYSA-N 2-(3-chlorophenyl)guanidine Chemical compound NC(N)=NC1=CC=CC(Cl)=C1 DWLMIHRZURMFAQ-UHFFFAOYSA-N 0.000 description 1
- UCLTZKFBJAFGCD-UHFFFAOYSA-N 2-(chloromethyl)-5-phenyl-1,3-oxazole Chemical compound O1C(CCl)=NC=C1C1=CC=CC=C1 UCLTZKFBJAFGCD-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- LXTOLPBDJRTENC-UHFFFAOYSA-N 2-[3-(4-methylpiperazin-1-yl)phenyl]guanidine Chemical compound C1CN(C)CCN1C1=CC=CC(NC(N)=N)=C1 LXTOLPBDJRTENC-UHFFFAOYSA-N 0.000 description 1
- VIAYDFPWMKUHDL-UHFFFAOYSA-N 2-[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]guanidine Chemical compound C1CN(C)CCN1C1=CC=C(NC(N)=N)C=C1C(F)(F)F VIAYDFPWMKUHDL-UHFFFAOYSA-N 0.000 description 1
- RWOJNAKNHZUALN-UHFFFAOYSA-N 2-[4-(4-methylpiperazin-1-yl)phenyl]guanidine Chemical compound C1CN(C)CCN1C1=CC=C(NC(N)=N)C=C1 RWOJNAKNHZUALN-UHFFFAOYSA-N 0.000 description 1
- CBFCZHJMJAHXFT-UHFFFAOYSA-N 2-amino-5,6,8,9,10,11-hexahydro-7h-[1,4]diazepino[1',2':1,5]pyrazolo[4,3-h]quinazolin-7-one Chemical compound C1CCNC(=O)C2=C3CCC4=CN=C(N)N=C4C3=NN21 CBFCZHJMJAHXFT-UHFFFAOYSA-N 0.000 description 1
- FTYSCRZEVLQZQR-UHFFFAOYSA-N 2-amino-5,6,9,10-tetrahydropyrazino[1',2':1,5]pyrazolo[4,3-h]quinazolin-7(8h)-one Chemical compound C1CNC(=O)C2=C3CCC4=CN=C(N)N=C4C3=NN21 FTYSCRZEVLQZQR-UHFFFAOYSA-N 0.000 description 1
- SHLXNKUEBNJUFC-UHFFFAOYSA-N 2-anilino-5,6,9,10-tetrahydropyrazino[1',2':1,5]pyrazolo[4,3-h]quinazolin-7(8h)-one Chemical compound C=12C(=O)NCCN2N=C(C2=N3)C=1CCC2=CN=C3NC1=CC=CC=C1 SHLXNKUEBNJUFC-UHFFFAOYSA-N 0.000 description 1
- ICXSHFWYCHJILC-UHFFFAOYSA-N 2-fluoro-5-nitrobenzoic acid Chemical compound OC(=O)C1=CC([N+]([O-])=O)=CC=C1F ICXSHFWYCHJILC-UHFFFAOYSA-N 0.000 description 1
- VMZCDNSFRSVYKQ-UHFFFAOYSA-N 2-phenylacetyl chloride Chemical compound ClC(=O)CC1=CC=CC=C1 VMZCDNSFRSVYKQ-UHFFFAOYSA-N 0.000 description 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical compound C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 description 1
- ZEFDWNYMHVAHAK-UHFFFAOYSA-N 2-{[3-chloro-4-(4-methylpiperazin-1-yl)phenyl]amino}-5,6,8,9,10,11-hexahydro-7h-[1,4]diazepino[1',2':1,5]pyrazolo[4,3-h]quinazolin-7-one Chemical compound C1CN(C)CCN1C(C(=C1)Cl)=CC=C1NC1=NC=C(CCC2=C3C(=O)NCCCN3N=C22)C2=N1 ZEFDWNYMHVAHAK-UHFFFAOYSA-N 0.000 description 1
- UUMBETWWBPEGFS-UHFFFAOYSA-N 2-{[3-chloro-4-(4-methylpiperazin-1-yl)phenyl]amino}-5,6,9,10-tetrahydropyrazino[1',2':1,5]pyrazolo[4,3-h]quinazolin-7(8h)-one Chemical compound C1CN(C)CCN1C(C(=C1)Cl)=CC=C1NC1=NC=C(CCC2=C3C(=O)NCCN3N=C22)C2=N1 UUMBETWWBPEGFS-UHFFFAOYSA-N 0.000 description 1
- QLBSIBVKEMPTBP-UHFFFAOYSA-N 2-{[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]amino}-5,6,8,9,10,11-hexahydro-7h-[1,4]diazepino[1',2':1,5]pyrazolo[4,3-h]quinazolin-7-one Chemical compound C1CN(C)CCN1C(C(=C1)C(F)(F)F)=CC=C1NC1=NC=C(CCC2=C3C(=O)NCCCN3N=C22)C2=N1 QLBSIBVKEMPTBP-UHFFFAOYSA-N 0.000 description 1
- QRTVKNXKZKXDMU-UHFFFAOYSA-N 2-{[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]amino}-5,6,9,10-tetrahydropyrazino[1',2':1,5]pyrazolo[4,3-h]quinazolin-7(8h)-one Chemical compound C1CN(C)CCN1C(C(=C1)C(F)(F)F)=CC=C1NC1=NC=C(CCC2=C3C(=O)NCCN3N=C22)C2=N1 QRTVKNXKZKXDMU-UHFFFAOYSA-N 0.000 description 1
- IIZMJWIJFFALMG-UHFFFAOYSA-N 2-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-5,6,8,9,10,11-hexahydro-7h-[1,4]diazepino[1',2':1,5]pyrazolo[4,3-h]quinazolin-7-one Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC=C(CCC2=C3C(=O)NCCCN3N=C22)C2=N1 IIZMJWIJFFALMG-UHFFFAOYSA-N 0.000 description 1
- VTCOFIJKLRUSHR-UHFFFAOYSA-N 2-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-5,6,9,10-tetrahydropyrazino[1',2':1,5]pyrazolo[4,3-h]quinazolin-7(8h)-one Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC=C(CCC2=C3C(=O)NCCN3N=C22)C2=N1 VTCOFIJKLRUSHR-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- DCTROTZBSDPXSM-UHFFFAOYSA-N 3,3-dimethylbutyl methanesulfonate Chemical compound CC(C)(C)CCOS(C)(=O)=O DCTROTZBSDPXSM-UHFFFAOYSA-N 0.000 description 1
- KEMAETWBRDLVRA-UHFFFAOYSA-N 3-(1-methylpiperidin-4-yl)oxyaniline Chemical compound C1CN(C)CCC1OC1=CC=CC(N)=C1 KEMAETWBRDLVRA-UHFFFAOYSA-N 0.000 description 1
- RJGHJWKQCJAJEP-UHFFFAOYSA-N 3-(4-methylpiperazin-1-yl)aniline Chemical compound C1CN(C)CCN1C1=CC=CC(N)=C1 RJGHJWKQCJAJEP-UHFFFAOYSA-N 0.000 description 1
- ZGPHZHCPWKOKDX-UHFFFAOYSA-N 3-[(4-methylpiperazin-1-yl)methyl]aniline Chemical compound C1CN(C)CCN1CC1=CC=CC(N)=C1 ZGPHZHCPWKOKDX-UHFFFAOYSA-N 0.000 description 1
- XQVCBOLNTSUFGD-UHFFFAOYSA-N 3-chloro-4-methoxyaniline Chemical compound COC1=CC=C(N)C=C1Cl XQVCBOLNTSUFGD-UHFFFAOYSA-N 0.000 description 1
- VKKPKSPCMVBPTN-UHFFFAOYSA-N 4-(3-chloro-4-methylpiperazin-1-yl)aniline Chemical compound C1C(Cl)N(C)CCN1C1=CC=C(N)C=C1 VKKPKSPCMVBPTN-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- MOZNZNKHRXRLLF-UHFFFAOYSA-N 4-(4-methylpiperazin-1-yl)aniline Chemical compound C1CN(C)CCN1C1=CC=C(N)C=C1 MOZNZNKHRXRLLF-UHFFFAOYSA-N 0.000 description 1
- KHEUKJILBHLJGP-UHFFFAOYSA-N 4-(4-tert-butylpiperazin-1-yl)aniline Chemical compound C1CN(C(C)(C)C)CCN1C1=CC=C(N)C=C1 KHEUKJILBHLJGP-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- CARBSGVFFJSNND-UHFFFAOYSA-N 4-amino-9,9-dimethyl-3,5,13,16,17-pentazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,10-pentaen-12-one Chemical compound C1CNC(=O)C2=C3C(C)(C)CC4=CN=C(N)N=C4C3=NN21 CARBSGVFFJSNND-UHFFFAOYSA-N 0.000 description 1
- YNEJWPXAKHJHAR-UHFFFAOYSA-N 4-amino-9,9-dimethyl-3,5,13,17,18-pentazatetracyclo[8.8.0.02,7.011,17]octadeca-1(18),2,4,6,10-pentaen-12-one Chemical compound C1CCNC(=O)C2=C3C(C)(C)CC4=CN=C(N)N=C4C3=NN21 YNEJWPXAKHJHAR-UHFFFAOYSA-N 0.000 description 1
- QZLAJJMLXBJNLK-UHFFFAOYSA-N 4-anilino-9,9-dimethyl-3,5,13,16,17-pentazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,10-pentaen-12-one Chemical compound N1=C2C3=NN4CCNC(=O)C4=C3C(C)(C)CC2=CN=C1NC1=CC=CC=C1 QZLAJJMLXBJNLK-UHFFFAOYSA-N 0.000 description 1
- YWYPEBGJVVIQPC-UHFFFAOYSA-N 4-anilino-9,9-dimethyl-3,5,13,17,18-pentazatetracyclo[8.8.0.02,7.011,17]octadeca-1(18),2,4,6,10-pentaen-12-one Chemical compound N1=C2C3=NN4CCCNC(=O)C4=C3C(C)(C)CC2=CN=C1NC1=CC=CC=C1 YWYPEBGJVVIQPC-UHFFFAOYSA-N 0.000 description 1
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 1
- CIPWHHAQHMSFLG-UHFFFAOYSA-N 5-ethyl-8-iodo-n,1,4,4-tetramethyl-5h-pyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CC1(C)C(CC)C2=CN=C(I)N=C2C2=C1C(C(=O)NC)=NN2C CIPWHHAQHMSFLG-UHFFFAOYSA-N 0.000 description 1
- SEXGOLJOYUNUBS-UHFFFAOYSA-N 6,8-dimethyl-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid Chemical compound CC1=C2CCC3=C(NN=C3C2=NC(=N1)C)C(=O)O SEXGOLJOYUNUBS-UHFFFAOYSA-N 0.000 description 1
- MOCWPYBHQGWYNE-UHFFFAOYSA-N 8-(3,5-dichloroanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC1=CC(Cl)=CC(Cl)=C1 MOCWPYBHQGWYNE-UHFFFAOYSA-N 0.000 description 1
- MIBDLRCTQZQCCO-UHFFFAOYSA-N 8-(3-chloro-4-methoxyanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=C(Cl)C(OC)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 MIBDLRCTQZQCCO-UHFFFAOYSA-N 0.000 description 1
- GZYPEUQYTIZWEQ-UHFFFAOYSA-N 8-(4-acetamidoanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=CC(NC(=O)C)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 GZYPEUQYTIZWEQ-UHFFFAOYSA-N 0.000 description 1
- QQAAHQLVDAMOQG-UHFFFAOYSA-N 8-(4-hydroxyanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC1=CC=C(O)C=C1 QQAAHQLVDAMOQG-UHFFFAOYSA-N 0.000 description 1
- WQTIKZDCYUUBHC-UHFFFAOYSA-N 8-(4-imidazol-1-ylanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC(C=C1)=CC=C1N1C=CN=C1 WQTIKZDCYUUBHC-UHFFFAOYSA-N 0.000 description 1
- XCYGTFKOOGNUMR-UHFFFAOYSA-N 8-(4-methoxyanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=CC(OC)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 XCYGTFKOOGNUMR-UHFFFAOYSA-N 0.000 description 1
- QZHOILNEGBBVFS-UHFFFAOYSA-N 8-(carbamoylamino)-1-methylpyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=NC(NC(N)=O)=NC2=C3N(C)N=C(C(N)=O)C3=CC=C21 QZHOILNEGBBVFS-UHFFFAOYSA-N 0.000 description 1
- VIUFPQPXJYQVSE-UHFFFAOYSA-N 8-(cyclopentylamino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC1CCCC1 VIUFPQPXJYQVSE-UHFFFAOYSA-N 0.000 description 1
- DJKODYVCVVVDEB-UHFFFAOYSA-N 8-(cyclopentylamino)-1-methylpyrazolo[4,3-h]quinazoline-3-carboxylic acid Chemical compound N=1C2=C3N(C)N=C(C(O)=O)C3=CC=C2C=NC=1NC1CCCC1 DJKODYVCVVVDEB-UHFFFAOYSA-N 0.000 description 1
- GMMJFFFHKSLXFV-UHFFFAOYSA-N 8-(cyclopentylamino)-n-hydroxy-n,1-dimethyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CN(O)C(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1CCCC1 GMMJFFFHKSLXFV-UHFFFAOYSA-N 0.000 description 1
- IPGBCVWDDPPBHA-UHFFFAOYSA-N 8-(ethylcarbamoylamino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C12=NC(NC(=O)NCC)=NC=C2CCC2=C1N(C)N=C2C(N)=O IPGBCVWDDPPBHA-UHFFFAOYSA-N 0.000 description 1
- QDVSSKZUNJQNCH-UHFFFAOYSA-N 8-[(1-benzylpiperidin-4-yl)amino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC(CC1)CCN1CC1=CC=CC=C1 QDVSSKZUNJQNCH-UHFFFAOYSA-N 0.000 description 1
- FHEORPOQKYIPKH-UHFFFAOYSA-N 8-[(1-ethoxycarbonylpiperidin-4-yl)amino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylic acid Chemical compound C1CN(C(=O)OCC)CCC1NC1=NC=C(CCC2=C3N(C)N=C2C(O)=O)C3=N1 FHEORPOQKYIPKH-UHFFFAOYSA-N 0.000 description 1
- BAFGGLFEIYHMSM-UHFFFAOYSA-N 8-[(1-formylpiperidin-4-yl)amino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC1CCN(C=O)CC1 BAFGGLFEIYHMSM-UHFFFAOYSA-N 0.000 description 1
- IYHZLTCOJDUSTR-UHFFFAOYSA-N 8-[(3,5-dihydroxyphenyl)methylamino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NCC1=CC(O)=CC(O)=C1 IYHZLTCOJDUSTR-UHFFFAOYSA-N 0.000 description 1
- VIKKSOKALKRZDM-UHFFFAOYSA-N 8-[(3-cyanophenyl)methylamino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NCC1=CC=CC(C#N)=C1 VIKKSOKALKRZDM-UHFFFAOYSA-N 0.000 description 1
- ZUSSYTUFZXQWGO-UHFFFAOYSA-N 8-[(4-acetamidophenyl)methylamino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=CC(NC(=O)C)=CC=C1CNC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 ZUSSYTUFZXQWGO-UHFFFAOYSA-N 0.000 description 1
- YFALTIZVDLXOHL-UHFFFAOYSA-N 8-[(4-aminophenyl)methylamino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NCC1=CC=C(N)C=C1 YFALTIZVDLXOHL-UHFFFAOYSA-N 0.000 description 1
- TVSSLJHFDCVIRP-UHFFFAOYSA-N 8-[(4-bromophenyl)methylamino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NCC1=CC=C(Br)C=C1 TVSSLJHFDCVIRP-UHFFFAOYSA-N 0.000 description 1
- SHWBETQXHGRFTD-UHFFFAOYSA-N 8-[(4-fluorophenyl)methylamino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NCC1=CC=C(F)C=C1 SHWBETQXHGRFTD-UHFFFAOYSA-N 0.000 description 1
- SMCKETOUHDFNIM-UHFFFAOYSA-N 8-[3-(hydroxymethyl)-4-(4-methylpiperazin-1-yl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CN(C)CCN1C(C(=C1)CO)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 SMCKETOUHDFNIM-UHFFFAOYSA-N 0.000 description 1
- OQJKPCPEJACKBN-UHFFFAOYSA-N 8-[3-(hydroxymethyl)-4-(4-methylpiperazin-1-yl)anilino]-n,1-dimethyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CNC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC(C=C1CO)=CC=C1N1CCN(C)CC1 OQJKPCPEJACKBN-UHFFFAOYSA-N 0.000 description 1
- OAHPPNZKYVGMRY-UHFFFAOYSA-N 8-[3-(hydroxymethyl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC1=CC=CC(CO)=C1 OAHPPNZKYVGMRY-UHFFFAOYSA-N 0.000 description 1
- OVZQTXBQFGSBDK-UHFFFAOYSA-N 8-[3-bromo-4-(4-methylpiperazin-1-yl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CN(C)CCN1C(C(=C1)Br)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 OVZQTXBQFGSBDK-UHFFFAOYSA-N 0.000 description 1
- UMEXNVBPMQPMAF-UHFFFAOYSA-N 8-[3-bromo-4-(4-methylpiperazin-1-yl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide;trihydrochloride Chemical compound Cl.Cl.Cl.C1CN(C)CCN1C(C(=C1)Br)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 UMEXNVBPMQPMAF-UHFFFAOYSA-N 0.000 description 1
- WLWQVBSUMWUDAF-UHFFFAOYSA-N 8-[3-chloro-4-(4-methylpiperazin-1-yl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CN(C)CCN1C(C(=C1)Cl)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 WLWQVBSUMWUDAF-UHFFFAOYSA-N 0.000 description 1
- CVXHEWSREPNKMY-UHFFFAOYSA-N 8-[3-methoxy-5-(trifluoromethyl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound FC(F)(F)C1=CC(OC)=CC(NC=2N=C3C=4N(C)N=C(C=4CCC3=CN=2)C(N)=O)=C1 CVXHEWSREPNKMY-UHFFFAOYSA-N 0.000 description 1
- HWKOTXWDMCHSQT-UHFFFAOYSA-N 8-[4-(diethylamino)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=CC(N(CC)CC)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 HWKOTXWDMCHSQT-UHFFFAOYSA-N 0.000 description 1
- MSRKDYKSOGIARN-UHFFFAOYSA-N 8-[[4-[3-(dimethylamino)propoxy]phenyl]methylamino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=CC(OCCCN(C)C)=CC=C1CNC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 MSRKDYKSOGIARN-UHFFFAOYSA-N 0.000 description 1
- DBQKDYCKKFQJQF-UHFFFAOYSA-N 8-amino-1,4,4-trimethyl-5h-pyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C12=NC(N)=NC=C2CC(C)(C)C2=C1N(C)N=C2C(N)=O DBQKDYCKKFQJQF-UHFFFAOYSA-N 0.000 description 1
- CIMNHTPQUVXQOD-GOSISDBHSA-N 8-amino-1-methyl-n-[(1s)-2-morpholin-4-yl-1-phenylethyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C([C@@H](NC(=O)C1=NN(C=2C3=NC(N)=NC=C3CCC=21)C)C=1C=CC=CC=1)N1CCOCC1 CIMNHTPQUVXQOD-GOSISDBHSA-N 0.000 description 1
- SACXGOZZAINOPK-UHFFFAOYSA-N 8-amino-5-ethyl-n,1,4,4-tetramethyl-5h-pyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CC1(C)C(CC)C2=CN=C(N)N=C2C2=C1C(C(=O)NC)=NN2C SACXGOZZAINOPK-UHFFFAOYSA-N 0.000 description 1
- APPMJHDOPYYSMG-UHFFFAOYSA-N 8-amino-n,1,4,4-tetramethyl-5h-pyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CC1(C)CC2=CN=C(N)N=C2C2=C1C(C(=O)NC)=NN2C APPMJHDOPYYSMG-UHFFFAOYSA-N 0.000 description 1
- PYLQORVFLYNJJJ-UHFFFAOYSA-N 8-amino-n-ethyl-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CC2=CN=C(N)N=C2C2=C1C(C(=O)NCC)=NN2C PYLQORVFLYNJJJ-UHFFFAOYSA-N 0.000 description 1
- QMTMXOGCEWNXQT-UHFFFAOYSA-N 8-amino-n-methyl-4,5-dihydro-2h-pyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CC2=CN=C(N)N=C2C2=C1C(C(=O)NC)=NN2 QMTMXOGCEWNXQT-UHFFFAOYSA-N 0.000 description 1
- VRZQAXBLQMWLAF-UHFFFAOYSA-N 8-anilino-1-methyl-n-phenyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=2CCC3=CN=C(NC=4C=CC=CC=4)N=C3C=2N(C)N=C1C(=O)NC1=CC=CC=C1 VRZQAXBLQMWLAF-UHFFFAOYSA-N 0.000 description 1
- NXZVLIWBXMLTSL-UHFFFAOYSA-N 8-anilino-n-(2-hydroxyethyl)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(=O)NCCO)C=3CCC2=CN=C1NC1=CC=CC=C1 NXZVLIWBXMLTSL-UHFFFAOYSA-N 0.000 description 1
- VQKDHTSTSRSCTA-UHFFFAOYSA-N 8-benzamido-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N1=C2C=3N(C)N=C(C(N)=O)C=3CCC2=CN=C1NC(=O)C1=CC=CC=C1 VQKDHTSTSRSCTA-UHFFFAOYSA-N 0.000 description 1
- LTHMFVACGIGYCO-UHFFFAOYSA-N 8-iodo-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carbonyl fluoride Chemical compound C1CC2=CN=C(I)N=C2C2=C1C(C(F)=O)=NN2C LTHMFVACGIGYCO-UHFFFAOYSA-N 0.000 description 1
- XPUCOSSMNRCYIJ-UHFFFAOYSA-N 8-iodo-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylic acid Chemical compound C1CC2=CN=C(I)N=C2C2=C1C(C(O)=O)=NN2C XPUCOSSMNRCYIJ-UHFFFAOYSA-N 0.000 description 1
- SEEJAGRPDVHHKB-UHFFFAOYSA-N 8-iodo-n,1,4,4-tetramethyl-5h-pyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CC1(C)CC2=CN=C(I)N=C2C2=C1C(C(=O)NC)=NN2C SEEJAGRPDVHHKB-UHFFFAOYSA-N 0.000 description 1
- MQIPIPQGOCHCAQ-UHFFFAOYSA-N 9,9-dimethyl-4-[4-(4-methylpiperazin-1-yl)anilino]-3,5,13,16,17-pentazatetracyclo[8.7.0.02,7.011,16]heptadeca-1(17),2,4,6,10-pentaen-12-one Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC=C(CC(C)(C)C2=C3C(=O)NCCN3N=C22)C2=N1 MQIPIPQGOCHCAQ-UHFFFAOYSA-N 0.000 description 1
- RDQDKMRIPBYWPA-UHFFFAOYSA-N 9,9-dimethyl-4-[4-(4-methylpiperazin-1-yl)anilino]-3,5,13,17,18-pentazatetracyclo[8.8.0.02,7.011,17]octadeca-1(18),2,4,6,10-pentaen-12-one Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC=C(CC(C)(C)C2=C3C(=O)NCCCN3N=C22)C2=N1 RDQDKMRIPBYWPA-UHFFFAOYSA-N 0.000 description 1
- ADHFMENDOUEJRK-UHFFFAOYSA-N 9-[(4-fluorophenyl)methyl]-n-hydroxypyrido[3,4-b]indole-3-carboxamide Chemical compound C1=NC(C(=O)NO)=CC(C2=CC=CC=C22)=C1N2CC1=CC=C(F)C=C1 ADHFMENDOUEJRK-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 102000003989 Aurora kinases Human genes 0.000 description 1
- 108090000433 Aurora kinases Proteins 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- AWIYMZPIJHWVDV-UHFFFAOYSA-N C.CC1=CC(CN)=NN1C Chemical compound C.CC1=CC(CN)=NN1C AWIYMZPIJHWVDV-UHFFFAOYSA-N 0.000 description 1
- SHROHNLENDKTPR-UHFFFAOYSA-N C1CCC(=O)C2=C1C(C(=O)OCC)=NN2CCN(C)C.C1CCC(=O)C2=C1C(C(=O)OCC)=NN2CC(C)N(C)C Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2CCN(C)C.C1CCC(=O)C2=C1C(C(=O)OCC)=NN2CC(C)N(C)C SHROHNLENDKTPR-UHFFFAOYSA-N 0.000 description 1
- YTSLJIYLFAZGNH-KITNVHQASA-M CB(O)N/C(BOC=N)=N\S(=O)(=O)C(F)(F)F.CB(O)NC(=N)BOC=N.CN1CCN(C2=C(Cl)C=C(CC(=N)N)C=C2)CC1.CN1CCN(C2=C(Cl)C=C(N)C=C2)CC1.CS/C(BOC=N)=N\B(C)O.O=S(=O)(OS(=O)(=O)C(F)(F)F)C(F)(F)F.[V]I Chemical compound CB(O)N/C(BOC=N)=N\S(=O)(=O)C(F)(F)F.CB(O)NC(=N)BOC=N.CN1CCN(C2=C(Cl)C=C(CC(=N)N)C=C2)CC1.CN1CCN(C2=C(Cl)C=C(N)C=C2)CC1.CS/C(BOC=N)=N\B(C)O.O=S(=O)(OS(=O)(=O)C(F)(F)F)C(F)(F)F.[V]I YTSLJIYLFAZGNH-KITNVHQASA-M 0.000 description 1
- DWPMJTVAEDBIES-UHFFFAOYSA-N CC(=O)N1CCC(C)CC1 Chemical compound CC(=O)N1CCC(C)CC1 DWPMJTVAEDBIES-UHFFFAOYSA-N 0.000 description 1
- WSWLRLQWCPFCMU-UHFFFAOYSA-N CC1(C)CC(=O)C2OC2C1.CC1(C)CC(=O)CC(=O)C1.CC1(C)CC=CC(=O)C1.CC1=CCC(C)(C)CC1=O.COC1=CC(=O)CC(C)(C)C1 Chemical compound CC1(C)CC(=O)C2OC2C1.CC1(C)CC(=O)CC(=O)C1.CC1(C)CC=CC(=O)C1.CC1=CCC(C)(C)CC1=O.COC1=CC(=O)CC(C)(C)C1 WSWLRLQWCPFCMU-UHFFFAOYSA-N 0.000 description 1
- VCZNNAKNUVJVGX-UHFFFAOYSA-N CC1=CC=C(C#N)C=C1 Chemical compound CC1=CC=C(C#N)C=C1 VCZNNAKNUVJVGX-UHFFFAOYSA-N 0.000 description 1
- LMYRWZFENFIFIT-UHFFFAOYSA-N CC1=CC=C(S(N)(=O)=O)C=C1 Chemical compound CC1=CC=C(S(N)(=O)=O)C=C1 LMYRWZFENFIFIT-UHFFFAOYSA-N 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N CC1=NC=CC=C1 Chemical compound CC1=NC=CC=C1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- TVSMLBGFGKLKOO-UHFFFAOYSA-N CC1CCN(C)CC1 Chemical compound CC1CCN(C)CC1 TVSMLBGFGKLKOO-UHFFFAOYSA-N 0.000 description 1
- WCKITLGQGJSRBV-UHFFFAOYSA-N CC1CCN(C=O)CC1 Chemical compound CC1CCN(C=O)CC1 WCKITLGQGJSRBV-UHFFFAOYSA-N 0.000 description 1
- PWZKIZAHIAGUMK-UHFFFAOYSA-N CC1CCN(CC2=CC=CC=C2)CC1 Chemical compound CC1CCN(CC2=CC=CC=C2)CC1 PWZKIZAHIAGUMK-UHFFFAOYSA-N 0.000 description 1
- UZOFELREXGAFOI-UHFFFAOYSA-N CC1CCNCC1 Chemical compound CC1CCNCC1 UZOFELREXGAFOI-UHFFFAOYSA-N 0.000 description 1
- ZJMWRROPUADPEA-UHFFFAOYSA-N CCC(C)C1=CC=CC=C1 Chemical compound CCC(C)C1=CC=CC=C1 ZJMWRROPUADPEA-UHFFFAOYSA-N 0.000 description 1
- USSPHSVODLAWSA-UHFFFAOYSA-N CCC(C)N(C)C Chemical compound CCC(C)N(C)C USSPHSVODLAWSA-UHFFFAOYSA-N 0.000 description 1
- QCUADJGOBFPYBB-UHFFFAOYSA-N CCC(CC)(NC)C1=CC=CC=C1 Chemical compound CCC(CC)(NC)C1=CC=CC=C1 QCUADJGOBFPYBB-UHFFFAOYSA-N 0.000 description 1
- HSHIHFMFJLIQDN-UHFFFAOYSA-N CCC(CO)NC Chemical compound CCC(CO)NC HSHIHFMFJLIQDN-UHFFFAOYSA-N 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N CCC(N)=O Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- FBLJZPQLNMVEMR-UHFFFAOYSA-N CCC/C1=N/C2=C(C=CC=C2)N1 Chemical compound CCC/C1=N/C2=C(C=CC=C2)N1 FBLJZPQLNMVEMR-UHFFFAOYSA-N 0.000 description 1
- FGVCXGKSUDRPEG-UHFFFAOYSA-N CCC1=C(C#N)C(C)=C(C)O1 Chemical compound CCC1=C(C#N)C(C)=C(C)O1 FGVCXGKSUDRPEG-UHFFFAOYSA-N 0.000 description 1
- YBIUIWMGOWQBMO-UHFFFAOYSA-N CCC1=C(C(C)=O)C=C(N2CCOCC2)C=C1 Chemical compound CCC1=C(C(C)=O)C=C(N2CCOCC2)C=C1 YBIUIWMGOWQBMO-UHFFFAOYSA-N 0.000 description 1
- GKTFLKJXZOYBRW-UHFFFAOYSA-N CCC1=C(C(N)=O)C=CC=C1 Chemical compound CCC1=C(C(N)=O)C=CC=C1 GKTFLKJXZOYBRW-UHFFFAOYSA-N 0.000 description 1
- YDHFGKITBDGHQG-UHFFFAOYSA-N CCC1=C(C)C=CC(CO)=C1 Chemical compound CCC1=C(C)C=CC(CO)=C1 YDHFGKITBDGHQG-UHFFFAOYSA-N 0.000 description 1
- IQHHLQVUUXLKFL-UHFFFAOYSA-N CCC1=C(CCO)C=CC=C1 Chemical compound CCC1=C(CCO)C=CC=C1 IQHHLQVUUXLKFL-UHFFFAOYSA-N 0.000 description 1
- DKCRZEKSRKEQKH-UHFFFAOYSA-N CCC1=C(CN(C)C2CCCCC2)C=CC=C1 Chemical compound CCC1=C(CN(C)C2CCCCC2)C=CC=C1 DKCRZEKSRKEQKH-UHFFFAOYSA-N 0.000 description 1
- SBUIQTMDIOLKAL-UHFFFAOYSA-N CCC1=C(CO)C=CC=C1 Chemical compound CCC1=C(CO)C=CC=C1 SBUIQTMDIOLKAL-UHFFFAOYSA-N 0.000 description 1
- VXZFTPFQNTZYTP-UHFFFAOYSA-N CCC1=C(N2CCOCC2)C=CC=C1 Chemical compound CCC1=C(N2CCOCC2)C=CC=C1 VXZFTPFQNTZYTP-UHFFFAOYSA-N 0.000 description 1
- VGMJYYDKPUPTID-UHFFFAOYSA-N CCC1=C(O)C=C(O)C=C1 Chemical compound CCC1=C(O)C=C(O)C=C1 VGMJYYDKPUPTID-UHFFFAOYSA-N 0.000 description 1
- AVVVXUXMKWPKAJ-UHFFFAOYSA-N CCC1=C(O)C=CC(C)=C1 Chemical compound CCC1=C(O)C=CC(C)=C1 AVVVXUXMKWPKAJ-UHFFFAOYSA-N 0.000 description 1
- FEPCOWLFXLFUBL-UHFFFAOYSA-N CCC1=C(O)C=CC(S(N)(=O)=O)=C1 Chemical compound CCC1=C(O)C=CC(S(N)(=O)=O)=C1 FEPCOWLFXLFUBL-UHFFFAOYSA-N 0.000 description 1
- DWVXFVWWARTDCQ-UHFFFAOYSA-N CCC1=C(O)C=CC=C1O Chemical compound CCC1=C(O)C=CC=C1O DWVXFVWWARTDCQ-UHFFFAOYSA-N 0.000 description 1
- BYVJVUZSNXUNRW-UHFFFAOYSA-N CCC1=C(O)C=CC=N1 Chemical compound CCC1=C(O)C=CC=N1 BYVJVUZSNXUNRW-UHFFFAOYSA-N 0.000 description 1
- JBULJAUADRCOGQ-UHFFFAOYSA-N CCC1=CC(C(F)(F)F)=C(N2CCN(C)CC2)C=C1 Chemical compound CCC1=CC(C(F)(F)F)=C(N2CCN(C)CC2)C=C1 JBULJAUADRCOGQ-UHFFFAOYSA-N 0.000 description 1
- XNWHUXDXHXZXBO-UHFFFAOYSA-N CCC1=CC(C(F)(F)F)=CC(Br)=C1 Chemical compound CCC1=CC(C(F)(F)F)=CC(Br)=C1 XNWHUXDXHXZXBO-UHFFFAOYSA-N 0.000 description 1
- AALMJHUGWWWVER-UHFFFAOYSA-N CCC1=CC(C(F)(F)F)=CC(OC)=C1 Chemical compound CCC1=CC(C(F)(F)F)=CC(OC)=C1 AALMJHUGWWWVER-UHFFFAOYSA-N 0.000 description 1
- XFGXJRCFLRULKX-UHFFFAOYSA-N CCC1=CC(Cl)=C(N2CCN(C)CC2)C=C1 Chemical compound CCC1=CC(Cl)=C(N2CCN(C)CC2)C=C1 XFGXJRCFLRULKX-UHFFFAOYSA-N 0.000 description 1
- DPCQFBWPRXQASW-UHFFFAOYSA-N CCC1=CC(Cl)=CC(Cl)=C1 Chemical compound CCC1=CC(Cl)=CC(Cl)=C1 DPCQFBWPRXQASW-UHFFFAOYSA-N 0.000 description 1
- YFKHBMRIAOSGBD-UHFFFAOYSA-N CCC1=CC(N2CCN(C)CC2)=CC=C1 Chemical compound CCC1=CC(N2CCN(C)CC2)=CC=C1 YFKHBMRIAOSGBD-UHFFFAOYSA-N 0.000 description 1
- GXKPUVFATVHXIU-UHFFFAOYSA-N CCC1=CC(N2CCOCC2)=CC=C1 Chemical compound CCC1=CC(N2CCOCC2)=CC=C1 GXKPUVFATVHXIU-UHFFFAOYSA-N 0.000 description 1
- YSBIHGDDSAESCO-UHFFFAOYSA-N CCC1=CC(O)=C(CN2CCOCC2)C=C1 Chemical compound CCC1=CC(O)=C(CN2CCOCC2)C=C1 YSBIHGDDSAESCO-UHFFFAOYSA-N 0.000 description 1
- CCCIJKRNTQUVSO-UHFFFAOYSA-N CCC1=CC(O)=CC(C(F)(F)F)=C1 Chemical compound CCC1=CC(O)=CC(C(F)(F)F)=C1 CCCIJKRNTQUVSO-UHFFFAOYSA-N 0.000 description 1
- OOOMPLNDUPMWLO-UHFFFAOYSA-N CCC1=CC(OC2=CC=CC=C2)=CC=C1 Chemical compound CCC1=CC(OC2=CC=CC=C2)=CC=C1 OOOMPLNDUPMWLO-UHFFFAOYSA-N 0.000 description 1
- OMVRDNSBZWICJU-UHFFFAOYSA-N CCC1=CC(OCCN2CCOCC2)=CC(C(F)(F)F)=C1 Chemical compound CCC1=CC(OCCN2CCOCC2)=CC(C(F)(F)F)=C1 OMVRDNSBZWICJU-UHFFFAOYSA-N 0.000 description 1
- OLOBSRWDALLNKY-UHFFFAOYSA-N CCC1=CC2=C(C=C1)NC=C2 Chemical compound CCC1=CC2=C(C=C1)NC=C2 OLOBSRWDALLNKY-UHFFFAOYSA-N 0.000 description 1
- YTGIWZVLLCQQPW-UHFFFAOYSA-N CCC1=CC2=C(C=C1)NN=C2 Chemical compound CCC1=CC2=C(C=C1)NN=C2 YTGIWZVLLCQQPW-UHFFFAOYSA-N 0.000 description 1
- FEBBVYICKVSRRM-UHFFFAOYSA-N CCC1=CC=C(Br)C(Cl)=C1 Chemical compound CCC1=CC=C(Br)C(Cl)=C1 FEBBVYICKVSRRM-UHFFFAOYSA-N 0.000 description 1
- DVEITBVSDDUYBA-UHFFFAOYSA-N CCC1=CC=C(C(=O)CCCN(CC)CC)C=C1 Chemical compound CCC1=CC=C(C(=O)CCCN(CC)CC)C=C1 DVEITBVSDDUYBA-UHFFFAOYSA-N 0.000 description 1
- FBJQWZOURYYIFT-UHFFFAOYSA-N CCC1=CC=C(C(=O)N2CC(C)OC(C)C2)C=C1 Chemical compound CCC1=CC=C(C(=O)N2CC(C)OC(C)C2)C=C1 FBJQWZOURYYIFT-UHFFFAOYSA-N 0.000 description 1
- YKFAFWKDOSYQIP-UHFFFAOYSA-N CCC1=CC=C(C(N)=O)C=C1 Chemical compound CCC1=CC=C(C(N)=O)C=C1 YKFAFWKDOSYQIP-UHFFFAOYSA-N 0.000 description 1
- MWPMOCSRYWBEIC-UHFFFAOYSA-N CCC1=CC=C(CCCN(C)C)C=C1 Chemical compound CCC1=CC=C(CCCN(C)C)C=C1 MWPMOCSRYWBEIC-UHFFFAOYSA-N 0.000 description 1
- RTBFSPYCARIUFS-UHFFFAOYSA-N CCC1=CC=C(CCN(C)C)C=C1 Chemical compound CCC1=CC=C(CCN(C)C)C=C1 RTBFSPYCARIUFS-UHFFFAOYSA-N 0.000 description 1
- ZQTNLWUYFOGYBZ-UHFFFAOYSA-N CCC1=CC=C(CCN2CCOCC2)C=C1 Chemical compound CCC1=CC=C(CCN2CCOCC2)C=C1 ZQTNLWUYFOGYBZ-UHFFFAOYSA-N 0.000 description 1
- RNUYBEOUXPOHNW-UHFFFAOYSA-N CCC1=CC=C(CCO)C=C1 Chemical compound CCC1=CC=C(CCO)C=C1 RNUYBEOUXPOHNW-UHFFFAOYSA-N 0.000 description 1
- QHTKTNLJVDSPEP-UHFFFAOYSA-N CCC1=CC=C(CN(C)C)C=C1 Chemical compound CCC1=CC=C(CN(C)C)C=C1 QHTKTNLJVDSPEP-UHFFFAOYSA-N 0.000 description 1
- VJVAWRRCYYEMQW-UHFFFAOYSA-N CCC1=CC=C(CN2CCCCC2)C=C1 Chemical compound CCC1=CC=C(CN2CCCCC2)C=C1 VJVAWRRCYYEMQW-UHFFFAOYSA-N 0.000 description 1
- BBNBYFMJDSRXQL-UHFFFAOYSA-N CCC1=CC=C(CN2CCN(C)CC2)C=C1 Chemical compound CCC1=CC=C(CN2CCN(C)CC2)C=C1 BBNBYFMJDSRXQL-UHFFFAOYSA-N 0.000 description 1
- KWRBWHORQRERAX-UHFFFAOYSA-N CCC1=CC=C(CN2CCOCC2)C=C1 Chemical compound CCC1=CC=C(CN2CCOCC2)C=C1 KWRBWHORQRERAX-UHFFFAOYSA-N 0.000 description 1
- LWKOEFRBPYMJPO-UHFFFAOYSA-N CCC1=CC=C(CN2CCS(=O)(=O)CC2)C=C1 Chemical compound CCC1=CC=C(CN2CCS(=O)(=O)CC2)C=C1 LWKOEFRBPYMJPO-UHFFFAOYSA-N 0.000 description 1
- YSLBFFIVJGJBSA-UHFFFAOYSA-N CCC1=CC=C(CO)C=C1 Chemical compound CCC1=CC=C(CO)C=C1 YSLBFFIVJGJBSA-UHFFFAOYSA-N 0.000 description 1
- GPOFSFLJOIAMSA-UHFFFAOYSA-N CCC1=CC=C(Cl)C=C1 Chemical compound CCC1=CC=C(Cl)C=C1 GPOFSFLJOIAMSA-UHFFFAOYSA-N 0.000 description 1
- BLDNWXVISIXWKZ-UHFFFAOYSA-N CCC1=CC=C(F)C=C1 Chemical compound CCC1=CC=C(F)C=C1 BLDNWXVISIXWKZ-UHFFFAOYSA-N 0.000 description 1
- KLQNCSLBKKYPET-UHFFFAOYSA-N CCC1=CC=C(N(C)C)C=C1 Chemical compound CCC1=CC=C(N(C)C)C=C1 KLQNCSLBKKYPET-UHFFFAOYSA-N 0.000 description 1
- CFWHSBCRIFAIEI-UHFFFAOYSA-N CCC1=CC=C(N(CC)CC)C=C1 Chemical compound CCC1=CC=C(N(CC)CC)C=C1 CFWHSBCRIFAIEI-UHFFFAOYSA-N 0.000 description 1
- VIQFLLLOFWZVFB-UHFFFAOYSA-N CCC1=CC=C(N2C=CN=C2)C=C1 Chemical compound CCC1=CC=C(N2C=CN=C2)C=C1 VIQFLLLOFWZVFB-UHFFFAOYSA-N 0.000 description 1
- RGTQRTJBPMZYTC-UHFFFAOYSA-N CCC1=CC=C(N2CCCCC2)C=C1 Chemical compound CCC1=CC=C(N2CCCCC2)C=C1 RGTQRTJBPMZYTC-UHFFFAOYSA-N 0.000 description 1
- MIHNNKUHHQKULP-UHFFFAOYSA-N CCC1=CC=C(N2CCN(C(C)(C)C)CC2)C=C1 Chemical compound CCC1=CC=C(N2CCN(C(C)(C)C)CC2)C=C1 MIHNNKUHHQKULP-UHFFFAOYSA-N 0.000 description 1
- QMXMHMSOTIVLJJ-UHFFFAOYSA-N CCC1=CC=C(N2CCN(C(C)=O)CC2)C=C1 Chemical compound CCC1=CC=C(N2CCN(C(C)=O)CC2)C=C1 QMXMHMSOTIVLJJ-UHFFFAOYSA-N 0.000 description 1
- IZXGWTCDVKQGEL-UHFFFAOYSA-N CCC1=CC=C(N2CCN(C(C)C)CC2)C=C1 Chemical compound CCC1=CC=C(N2CCN(C(C)C)CC2)C=C1 IZXGWTCDVKQGEL-UHFFFAOYSA-N 0.000 description 1
- XDWNQNJCLBCLAZ-UHFFFAOYSA-N CCC1=CC=C(N2CCN(C)CC2)C(Br)=C1 Chemical compound CCC1=CC=C(N2CCN(C)CC2)C(Br)=C1 XDWNQNJCLBCLAZ-UHFFFAOYSA-N 0.000 description 1
- FYHVVKDYQLQVEQ-UHFFFAOYSA-N CCC1=CC=C(N2CCN(C)CC2)C(CO)=C1 Chemical compound CCC1=CC=C(N2CCN(C)CC2)C(CO)=C1 FYHVVKDYQLQVEQ-UHFFFAOYSA-N 0.000 description 1
- FWQFUUOUZYHWOT-UHFFFAOYSA-N CCC1=CC=C(N2CCN(C)CC2)C(F)=C1 Chemical compound CCC1=CC=C(N2CCN(C)CC2)C(F)=C1 FWQFUUOUZYHWOT-UHFFFAOYSA-N 0.000 description 1
- ZRAWQNAOSJEQRG-UHFFFAOYSA-N CCC1=CC=C(N2CCOCC2)C(C(=O)O)=C1 Chemical compound CCC1=CC=C(N2CCOCC2)C(C(=O)O)=C1 ZRAWQNAOSJEQRG-UHFFFAOYSA-N 0.000 description 1
- RDEFSCOLPCBXFX-UHFFFAOYSA-N CCC1=CC=C(N2CCOCC2)C(C(=O)OC)=C1 Chemical compound CCC1=CC=C(N2CCOCC2)C(C(=O)OC)=C1 RDEFSCOLPCBXFX-UHFFFAOYSA-N 0.000 description 1
- OIQYAADESGEXRK-UHFFFAOYSA-N CCC1=CC=C(N2CCOCC2)C(F)=C1 Chemical compound CCC1=CC=C(N2CCOCC2)C(F)=C1 OIQYAADESGEXRK-UHFFFAOYSA-N 0.000 description 1
- DBNRBEJKPXCZCT-UHFFFAOYSA-N CCC1=CC=C(N2CCOCC2)C=C1 Chemical compound CCC1=CC=C(N2CCOCC2)C=C1 DBNRBEJKPXCZCT-UHFFFAOYSA-N 0.000 description 1
- HOPWGOFWAPWHDS-UHFFFAOYSA-N CCC1=CC=C(NC(C)=O)C=C1 Chemical compound CCC1=CC=C(NC(C)=O)C=C1 HOPWGOFWAPWHDS-UHFFFAOYSA-N 0.000 description 1
- HXDOZKJGKXYMEW-UHFFFAOYSA-N CCC1=CC=C(O)C=C1 Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 1
- BUQNXFUMFXFRKC-UHFFFAOYSA-N CCC1=CC=C(O)C=C1C Chemical compound CCC1=CC=C(O)C=C1C BUQNXFUMFXFRKC-UHFFFAOYSA-N 0.000 description 1
- PDANEMKPCQPBOO-UHFFFAOYSA-N CCC1=CC=C(OC)C(Cl)=C1 Chemical compound CCC1=CC=C(OC)C(Cl)=C1 PDANEMKPCQPBOO-UHFFFAOYSA-N 0.000 description 1
- SCOOKCTUFLTFSE-UHFFFAOYSA-N CCC1=CC=C(OC)C(N2CCN(C)CC2)=C1 Chemical compound CCC1=CC=C(OC)C(N2CCN(C)CC2)=C1 SCOOKCTUFLTFSE-UHFFFAOYSA-N 0.000 description 1
- CAWZFQGJUGEKFU-UHFFFAOYSA-N CCC1=CC=C(OC)C(O)=C1 Chemical compound CCC1=CC=C(OC)C(O)=C1 CAWZFQGJUGEKFU-UHFFFAOYSA-N 0.000 description 1
- HDNRAPAFJLXKBV-UHFFFAOYSA-N CCC1=CC=C(OC)C=C1 Chemical compound CCC1=CC=C(OC)C=C1 HDNRAPAFJLXKBV-UHFFFAOYSA-N 0.000 description 1
- PTWVGZARGDEDQB-UHFFFAOYSA-N CCC1=CC=C(OC2CCN(C)CC2)C=C1 Chemical compound CCC1=CC=C(OC2CCN(C)CC2)C=C1 PTWVGZARGDEDQB-UHFFFAOYSA-N 0.000 description 1
- BOWRZBXXGIAXBP-UHFFFAOYSA-N CCC1=CC=C(S(=O)(=O)N2CCCCC2)C=C1 Chemical compound CCC1=CC=C(S(=O)(=O)N2CCCCC2)C=C1 BOWRZBXXGIAXBP-UHFFFAOYSA-N 0.000 description 1
- OMMUGDBUZDSUMN-UHFFFAOYSA-N CCC1=CC=C(S(=O)(=O)N2CCOCC2)C=C1 Chemical compound CCC1=CC=C(S(=O)(=O)N2CCOCC2)C=C1 OMMUGDBUZDSUMN-UHFFFAOYSA-N 0.000 description 1
- MLTGAVXHWSDGIS-UHFFFAOYSA-N CCC1=CC=C(S(N)(=O)=O)C=C1 Chemical compound CCC1=CC=C(S(N)(=O)=O)C=C1 MLTGAVXHWSDGIS-UHFFFAOYSA-N 0.000 description 1
- ARGITQZGLVBTTI-UHFFFAOYSA-N CCC1=CC=C2OCOC2=C1 Chemical compound CCC1=CC=C2OCOC2=C1 ARGITQZGLVBTTI-UHFFFAOYSA-N 0.000 description 1
- YHFNABYZVADUHR-UHFFFAOYSA-N CCC1=CC=CC(C(=O)NC2=CN=CC=C2)=C1 Chemical compound CCC1=CC=CC(C(=O)NC2=CN=CC=C2)=C1 YHFNABYZVADUHR-UHFFFAOYSA-N 0.000 description 1
- YZQJOFFFRWMDSY-UHFFFAOYSA-N CCC1=CC=CC(C(C)O)=C1 Chemical compound CCC1=CC=CC(C(C)O)=C1 YZQJOFFFRWMDSY-UHFFFAOYSA-N 0.000 description 1
- CKQINTYJQOUAOQ-UHFFFAOYSA-N CCC1=CC=CC(C(F)(F)F)=C1 Chemical compound CCC1=CC=CC(C(F)(F)F)=C1 CKQINTYJQOUAOQ-UHFFFAOYSA-N 0.000 description 1
- MVGMZFRPBRUJAQ-UHFFFAOYSA-N CCC1=CC=CC(C(N)=O)=C1 Chemical compound CCC1=CC=CC(C(N)=O)=C1 MVGMZFRPBRUJAQ-UHFFFAOYSA-N 0.000 description 1
- ZERBMMBDFPAPIH-UHFFFAOYSA-N CCC1=CC=CC(C2=CN=CO2)=C1 Chemical compound CCC1=CC=CC(C2=CN=CO2)=C1 ZERBMMBDFPAPIH-UHFFFAOYSA-N 0.000 description 1
- CBIIINXOIWZROA-UHFFFAOYSA-N CCC1=CC=CC(CC(C)=O)=C1 Chemical compound CCC1=CC=CC(CC(C)=O)=C1 CBIIINXOIWZROA-UHFFFAOYSA-N 0.000 description 1
- VZIIVQUZIOHZIL-UHFFFAOYSA-N CCC1=CC=CC(CN(C)C)=C1 Chemical compound CCC1=CC=CC(CN(C)C)=C1 VZIIVQUZIOHZIL-UHFFFAOYSA-N 0.000 description 1
- DSHJVIRYDBEQIX-UHFFFAOYSA-N CCC1=CC=CC(CN2CCN(C)CC2)=C1 Chemical compound CCC1=CC=CC(CN2CCN(C)CC2)=C1 DSHJVIRYDBEQIX-UHFFFAOYSA-N 0.000 description 1
- SQGVEBDQLTVECN-UHFFFAOYSA-N CCC1=CC=CC(CN2CCOCC2)=C1 Chemical compound CCC1=CC=CC(CN2CCOCC2)=C1 SQGVEBDQLTVECN-UHFFFAOYSA-N 0.000 description 1
- JBXKSUUBAYVELX-UHFFFAOYSA-N CCC1=CC=CC(CO)=C1 Chemical compound CCC1=CC=CC(CO)=C1 JBXKSUUBAYVELX-UHFFFAOYSA-N 0.000 description 1
- OCDGENVBNLMBMK-UHFFFAOYSA-N CCC1=CC=CC(CO)=C1C Chemical compound CCC1=CC=CC(CO)=C1C OCDGENVBNLMBMK-UHFFFAOYSA-N 0.000 description 1
- LOXUEGMPESDGBQ-UHFFFAOYSA-N CCC1=CC=CC(Cl)=C1 Chemical compound CCC1=CC=CC(Cl)=C1 LOXUEGMPESDGBQ-UHFFFAOYSA-N 0.000 description 1
- POAYVWFHRAXGFC-UHFFFAOYSA-N CCC1=CC=CC(N(C)C)=C1 Chemical compound CCC1=CC=CC(N(C)C)=C1 POAYVWFHRAXGFC-UHFFFAOYSA-N 0.000 description 1
- HMNKTRSOROOSPP-UHFFFAOYSA-N CCC1=CC=CC(O)=C1 Chemical compound CCC1=CC=CC(O)=C1 HMNKTRSOROOSPP-UHFFFAOYSA-N 0.000 description 1
- GPUDUECEGICJIL-UHFFFAOYSA-N CCC1=CC=CC(OC2CCN(C)CC2)=C1 Chemical compound CCC1=CC=CC(OC2CCN(C)CC2)=C1 GPUDUECEGICJIL-UHFFFAOYSA-N 0.000 description 1
- UXXWDQNFHQNGKB-UHFFFAOYSA-N CCC1=CC=CC(S(=O)(=O)N2CCOCC2)=C1 Chemical compound CCC1=CC=CC(S(=O)(=O)N2CCOCC2)=C1 UXXWDQNFHQNGKB-UHFFFAOYSA-N 0.000 description 1
- NIEHEMAZEULEKB-UHFFFAOYSA-N CCC1=CC=CC=C1OC Chemical compound CCC1=CC=CC=C1OC NIEHEMAZEULEKB-UHFFFAOYSA-N 0.000 description 1
- ADEZRPOZAAGDEY-UHFFFAOYSA-N CCC1=CC=CC=C1OCC(N)=O Chemical compound CCC1=CC=CC=C1OCC(N)=O ADEZRPOZAAGDEY-UHFFFAOYSA-N 0.000 description 1
- NMBWXBWFDHVLGS-UHFFFAOYSA-N CCC1=CC=CC=C1S(N)(=O)=O Chemical compound CCC1=CC=CC=C1S(N)(=O)=O NMBWXBWFDHVLGS-UHFFFAOYSA-N 0.000 description 1
- MJFHQVZSQGPXIW-UHFFFAOYSA-N CCC1=CC=NN1CC Chemical compound CCC1=CC=NN1CC MJFHQVZSQGPXIW-UHFFFAOYSA-N 0.000 description 1
- IQWHXRKZJXFLTB-UHFFFAOYSA-N CCC1=CN=C(CC)O1 Chemical compound CCC1=CN=C(CC)O1 IQWHXRKZJXFLTB-UHFFFAOYSA-N 0.000 description 1
- AJPYVCWILJRZDU-UHFFFAOYSA-N CCC1=CSC=C1C(N)=O Chemical compound CCC1=CSC=C1C(N)=O AJPYVCWILJRZDU-UHFFFAOYSA-N 0.000 description 1
- UEBPNTQZRFNLAP-UHFFFAOYSA-N CCC1=NC=C(C2=CC=CC=C2)O1 Chemical compound CCC1=NC=C(C2=CC=CC=C2)O1 UEBPNTQZRFNLAP-UHFFFAOYSA-N 0.000 description 1
- PQAMFDRRWURCFQ-UHFFFAOYSA-N CCC1=NC=CN1 Chemical compound CCC1=NC=CN1 PQAMFDRRWURCFQ-UHFFFAOYSA-N 0.000 description 1
- CGZDWVZMOMDGBN-UHFFFAOYSA-N CCC1=NC=CS1 Chemical compound CCC1=NC=CS1 CGZDWVZMOMDGBN-UHFFFAOYSA-N 0.000 description 1
- CBNLNXLAIMQSTR-UHFFFAOYSA-N CCC1=NNC=C1 Chemical compound CCC1=NNC=C1 CBNLNXLAIMQSTR-UHFFFAOYSA-N 0.000 description 1
- MZMHDMCGCUWTDS-UHFFFAOYSA-N CCC1CCCN(CC)C1 Chemical compound CCC1CCCN(CC)C1 MZMHDMCGCUWTDS-UHFFFAOYSA-N 0.000 description 1
- WOJIOLIUVNJLLC-UHFFFAOYSA-N CCC1CCN(C(=O)C2=CC=CC=C2)CC1 Chemical compound CCC1CCN(C(=O)C2=CC=CC=C2)CC1 WOJIOLIUVNJLLC-UHFFFAOYSA-N 0.000 description 1
- BPPBPKULSUGTDN-UHFFFAOYSA-N CCC1CCN(C(=O)N2CCN(C)CC2)CC1 Chemical compound CCC1CCN(C(=O)N2CCN(C)CC2)CC1 BPPBPKULSUGTDN-UHFFFAOYSA-N 0.000 description 1
- UMXJYVNHXALWNO-UHFFFAOYSA-N CCC1CCN(C(=O)OC(C)(C)C)C1 Chemical compound CCC1CCN(C(=O)OC(C)(C)C)C1 UMXJYVNHXALWNO-UHFFFAOYSA-N 0.000 description 1
- DZEKXNZRIOWTHG-UHFFFAOYSA-N CCC1CCN(C(=O)OC(C)(C)C)CC1 Chemical compound CCC1CCN(C(=O)OC(C)(C)C)CC1 DZEKXNZRIOWTHG-UHFFFAOYSA-N 0.000 description 1
- YRPDCERXKOLAFN-UHFFFAOYSA-N CCC1CCN(C(C)=O)CC1 Chemical compound CCC1CCN(C(C)=O)CC1 YRPDCERXKOLAFN-UHFFFAOYSA-N 0.000 description 1
- CZXVWYLYVPKBAR-UHFFFAOYSA-N CCC1CCN(C)CC1 Chemical compound CCC1CCN(C)CC1 CZXVWYLYVPKBAR-UHFFFAOYSA-N 0.000 description 1
- QGCKNCZZQDELAD-UHFFFAOYSA-N CCC1CCN(C=O)CC1 Chemical compound CCC1CCN(C=O)CC1 QGCKNCZZQDELAD-UHFFFAOYSA-N 0.000 description 1
- CKNFDJGHXOYYMR-UHFFFAOYSA-N CCC1CCN(CC)CC1 Chemical compound CCC1CCN(CC)CC1 CKNFDJGHXOYYMR-UHFFFAOYSA-N 0.000 description 1
- VMUOXMZAVAFFRR-UHFFFAOYSA-N CCC1CCN(CC2=CC=CC=C2)C1 Chemical compound CCC1CCN(CC2=CC=CC=C2)C1 VMUOXMZAVAFFRR-UHFFFAOYSA-N 0.000 description 1
- VEQTZGVFPJSKIU-UHFFFAOYSA-N CCC1CCN(CC2=CC=CC=C2)CC1 Chemical compound CCC1CCN(CC2=CC=CC=C2)CC1 VEQTZGVFPJSKIU-UHFFFAOYSA-N 0.000 description 1
- REXMUVZPMPDDIL-UHFFFAOYSA-N CCC1CCN(S(=O)(=O)C2=CC=CC=C2)CC1 Chemical compound CCC1CCN(S(=O)(=O)C2=CC=CC=C2)CC1 REXMUVZPMPDDIL-UHFFFAOYSA-N 0.000 description 1
- STPBZRQOABFHFY-UHFFFAOYSA-N CCC1CCN(S(C)(=O)=O)CC1 Chemical compound CCC1CCN(S(C)(=O)=O)CC1 STPBZRQOABFHFY-UHFFFAOYSA-N 0.000 description 1
- DZFFQSFNUBWNSF-UHFFFAOYSA-N CCC1CCNC1 Chemical compound CCC1CCNC1 DZFFQSFNUBWNSF-UHFFFAOYSA-N 0.000 description 1
- KWHPWBXOLZTZMJ-UHFFFAOYSA-N CCC1CCNCC1 Chemical compound CCC1CCNCC1 KWHPWBXOLZTZMJ-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N CCCC Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- CXOWYJMDMMMMJO-UHFFFAOYSA-N CCCC(C)(C)C Chemical compound CCCC(C)(C)C CXOWYJMDMMMMJO-UHFFFAOYSA-N 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N CCCC(C)C Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- YCTCYXPUEQVXQA-UHFFFAOYSA-N CCCC1=C(C)ON=C1 Chemical compound CCCC1=C(C)ON=C1 YCTCYXPUEQVXQA-UHFFFAOYSA-N 0.000 description 1
- AJBMNDMITCOCOH-UHFFFAOYSA-N CCCC1=CC(C#N)=CC=C1 Chemical compound CCCC1=CC(C#N)=CC=C1 AJBMNDMITCOCOH-UHFFFAOYSA-N 0.000 description 1
- UJODZZISNNOLSA-UHFFFAOYSA-N CCCC1=CC(F)=CC(C(F)(F)F)=C1 Chemical compound CCCC1=CC(F)=CC(C(F)(F)F)=C1 UJODZZISNNOLSA-UHFFFAOYSA-N 0.000 description 1
- AFYWHWCEKNKPAW-UHFFFAOYSA-N CCCC1=CC(I)=CC=C1 Chemical compound CCCC1=CC(I)=CC=C1 AFYWHWCEKNKPAW-UHFFFAOYSA-N 0.000 description 1
- BAIXRYZNMVCYGE-UHFFFAOYSA-N CCCC1=CC(N2C=CC=C2)=CC=C1 Chemical compound CCCC1=CC(N2C=CC=C2)=CC=C1 BAIXRYZNMVCYGE-UHFFFAOYSA-N 0.000 description 1
- BMHLOUHRWJJUKS-UHFFFAOYSA-N CCCC1=CC(N2CCN(C)CC2)=CC=C1 Chemical compound CCCC1=CC(N2CCN(C)CC2)=CC=C1 BMHLOUHRWJJUKS-UHFFFAOYSA-N 0.000 description 1
- FRNQLQRBNSSJBK-UHFFFAOYSA-N CCCC1=CC(O)=CC(O)=C1 Chemical compound CCCC1=CC(O)=CC(O)=C1 FRNQLQRBNSSJBK-UHFFFAOYSA-N 0.000 description 1
- NZSPOOBIPDPNNX-UHFFFAOYSA-N CCCC1=CC(OC)=CC=C1 Chemical compound CCCC1=CC(OC)=CC=C1 NZSPOOBIPDPNNX-UHFFFAOYSA-N 0.000 description 1
- MYEIDJPOUKASEC-UHFFFAOYSA-N CCCC1=CC2=C(C=C1)OCO2 Chemical compound CCCC1=CC2=C(C=C1)OCO2 MYEIDJPOUKASEC-UHFFFAOYSA-N 0.000 description 1
- NUPWGLKBGVNSJX-UHFFFAOYSA-N CCCC1=CC=C(Br)C=C1 Chemical compound CCCC1=CC=C(Br)C=C1 NUPWGLKBGVNSJX-UHFFFAOYSA-N 0.000 description 1
- TVORNOMEKLJRCZ-UHFFFAOYSA-N CCCC1=CC=C(C)N1C Chemical compound CCCC1=CC=C(C)N1C TVORNOMEKLJRCZ-UHFFFAOYSA-N 0.000 description 1
- TZZUWLNIZBCCGL-UHFFFAOYSA-N CCCC1=CC=C(CO)C=C1 Chemical compound CCCC1=CC=C(CO)C=C1 TZZUWLNIZBCCGL-UHFFFAOYSA-N 0.000 description 1
- SSEIGOHJXIXVFE-UHFFFAOYSA-N CCCC1=CC=C(CO)O1 Chemical compound CCCC1=CC=C(CO)O1 SSEIGOHJXIXVFE-UHFFFAOYSA-N 0.000 description 1
- AAXQJBQADLSMJI-UHFFFAOYSA-N CCCC1=CC=C(COC(C)=O)O1 Chemical compound CCCC1=CC=C(COC(C)=O)O1 AAXQJBQADLSMJI-UHFFFAOYSA-N 0.000 description 1
- LUJGLFMPEZIRRP-UHFFFAOYSA-N CCCC1=CC=C(F)C=C1 Chemical compound CCCC1=CC=C(F)C=C1 LUJGLFMPEZIRRP-UHFFFAOYSA-N 0.000 description 1
- OAPDPORYXWQVJE-UHFFFAOYSA-N CCCC1=CC=C(N)C=C1 Chemical compound CCCC1=CC=C(N)C=C1 OAPDPORYXWQVJE-UHFFFAOYSA-N 0.000 description 1
- LUMCBXGWWCDYEF-UHFFFAOYSA-N CCCC1=CC=C(N2C=CC=N2)C=C1 Chemical compound CCCC1=CC=C(N2C=CC=N2)C=C1 LUMCBXGWWCDYEF-UHFFFAOYSA-N 0.000 description 1
- NNTASBUDZOQNBB-UHFFFAOYSA-N CCCC1=CC=C(N2CCN(C)CC2)C=C1 Chemical compound CCCC1=CC=C(N2CCN(C)CC2)C=C1 NNTASBUDZOQNBB-UHFFFAOYSA-N 0.000 description 1
- RXPPOFLHLRUFBU-UHFFFAOYSA-N CCCC1=CC=C(N2CCOCC2)C=C1 Chemical compound CCCC1=CC=C(N2CCOCC2)C=C1 RXPPOFLHLRUFBU-UHFFFAOYSA-N 0.000 description 1
- HQQXWLXWAUYDAW-UHFFFAOYSA-N CCCC1=CC=C(NC(C)=O)C=C1 Chemical compound CCCC1=CC=C(NC(C)=O)C=C1 HQQXWLXWAUYDAW-UHFFFAOYSA-N 0.000 description 1
- UNICFBZXZDTXRK-UHFFFAOYSA-N CCCC1=CC=C(OCCCN(C)C)C=C1 Chemical compound CCCC1=CC=C(OCCCN(C)C)C=C1 UNICFBZXZDTXRK-UHFFFAOYSA-N 0.000 description 1
- JYYQLEBULAPBGS-UHFFFAOYSA-N CCCC1=CC=C(S(C)(=O)=O)C=C1 Chemical compound CCCC1=CC=C(S(C)(=O)=O)C=C1 JYYQLEBULAPBGS-UHFFFAOYSA-N 0.000 description 1
- CICCMHNIYTXWRF-UHFFFAOYSA-N CCCC1=CC=C(S(N)(=O)=O)C=C1 Chemical compound CCCC1=CC=C(S(N)(=O)=O)C=C1 CICCMHNIYTXWRF-UHFFFAOYSA-N 0.000 description 1
- REFXEKIEYCQSQN-UHFFFAOYSA-N CCCC1=CC=CN1C Chemical compound CCCC1=CC=CN1C REFXEKIEYCQSQN-UHFFFAOYSA-N 0.000 description 1
- JAWZAONCXMJLFT-UHFFFAOYSA-N CCCC1=CC=NC=C1 Chemical compound CCCC1=CC=NC=C1 JAWZAONCXMJLFT-UHFFFAOYSA-N 0.000 description 1
- MLAXEZHEGARMPE-UHFFFAOYSA-N CCCC1=CN=CC=C1 Chemical compound CCCC1=CN=CC=C1 MLAXEZHEGARMPE-UHFFFAOYSA-N 0.000 description 1
- QZNFRMXKQCIPQY-UHFFFAOYSA-N CCCC1=CSC=C1 Chemical compound CCCC1=CSC=C1 QZNFRMXKQCIPQY-UHFFFAOYSA-N 0.000 description 1
- OIALIKXMLIAOSN-UHFFFAOYSA-N CCCC1=NC=CC=C1 Chemical compound CCCC1=NC=CC=C1 OIALIKXMLIAOSN-UHFFFAOYSA-N 0.000 description 1
- MKBBSFGKFMQPPC-UHFFFAOYSA-N CCCC1=NC=CN1 Chemical compound CCCC1=NC=CN1 MKBBSFGKFMQPPC-UHFFFAOYSA-N 0.000 description 1
- MWVPQZRIWVPJCA-UHFFFAOYSA-N CCCC1CC1 Chemical compound CCCC1CC1 MWVPQZRIWVPJCA-UHFFFAOYSA-N 0.000 description 1
- DEDZSLCZHWTGOR-UHFFFAOYSA-N CCCC1CCCCC1 Chemical compound CCCC1CCCCC1 DEDZSLCZHWTGOR-UHFFFAOYSA-N 0.000 description 1
- DTGZORBDGLEVNY-UHFFFAOYSA-N CCCC1CCCO1 Chemical compound CCCC1CCCO1 DTGZORBDGLEVNY-UHFFFAOYSA-N 0.000 description 1
- QCJUOAMEYXBKQJ-UHFFFAOYSA-N CCCC1COC2=C(C=CC=C2)O1 Chemical compound CCCC1COC2=C(C=CC=C2)O1 QCJUOAMEYXBKQJ-UHFFFAOYSA-N 0.000 description 1
- OCKPCBLVNKHBMX-UHFFFAOYSA-N CCCCC1=CC=CC=C1 Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 1
- ADSOSINJPNKUJK-UHFFFAOYSA-N CCCCC1=CC=CC=N1 Chemical compound CCCCC1=CC=CC=N1 ADSOSINJPNKUJK-UHFFFAOYSA-N 0.000 description 1
- QTNOWIJWHWQTTF-UHFFFAOYSA-N CCCCCC1=CN=CN1 Chemical compound CCCCCC1=CN=CN1 QTNOWIJWHWQTTF-UHFFFAOYSA-N 0.000 description 1
- YZULHOOBWDXEOT-UHFFFAOYSA-N CCCCCN(CC)CC Chemical compound CCCCCN(CC)CC YZULHOOBWDXEOT-UHFFFAOYSA-N 0.000 description 1
- NNFAFRAQHBRBCQ-UHFFFAOYSA-N CCCCCN1CCCC1=O Chemical compound CCCCCN1CCCC1=O NNFAFRAQHBRBCQ-UHFFFAOYSA-N 0.000 description 1
- IERWMZNDJGYCIA-UHFFFAOYSA-N CCCCCN1CCOCC1 Chemical compound CCCCCN1CCOCC1 IERWMZNDJGYCIA-UHFFFAOYSA-N 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N CCCCCO Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N CCCCN Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- MCMFEZDRQOJKMN-UHFFFAOYSA-N CCCCN1C=CN=C1 Chemical compound CCCCN1C=CN=C1 MCMFEZDRQOJKMN-UHFFFAOYSA-N 0.000 description 1
- JSHASCFKOSDFHY-UHFFFAOYSA-N CCCCN1CCCC1 Chemical compound CCCCN1CCCC1 JSHASCFKOSDFHY-UHFFFAOYSA-N 0.000 description 1
- AXWLKJWVMMAXBD-UHFFFAOYSA-N CCCCN1CCCCC1 Chemical compound CCCCN1CCCCC1 AXWLKJWVMMAXBD-UHFFFAOYSA-N 0.000 description 1
- LMRKVKPRHROQRR-UHFFFAOYSA-N CCCCN1CCOCC1 Chemical compound CCCCN1CCOCC1 LMRKVKPRHROQRR-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N CCCCO Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- CXBDYQVECUFKRK-UHFFFAOYSA-N CCCCOC Chemical compound CCCCOC CXBDYQVECUFKRK-UHFFFAOYSA-N 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N CCCN Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- ZUHZZVMEUAUWHY-UHFFFAOYSA-N CCCN(C)C Chemical compound CCCN(C)C ZUHZZVMEUAUWHY-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N CCCO Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- XACGYPBXAJTOHE-JYBOHDQNSA-N CCC[C@H]1CC2CC([C@H]1C)C2(C)C Chemical compound CCC[C@H]1CC2CC([C@H]1C)C2(C)C XACGYPBXAJTOHE-JYBOHDQNSA-N 0.000 description 1
- DAZXVJBJRMWXJP-UHFFFAOYSA-N CCN(C)C Chemical compound CCN(C)C DAZXVJBJRMWXJP-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N CCN1CCCCC1 Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- WCHRUQCKOAGNCB-UHFFFAOYSA-N CCOC(=O)C(=O)C1C(=O)C(C)=CCC1(C)C Chemical compound CCOC(=O)C(=O)C1C(=O)C(C)=CCC1(C)C WCHRUQCKOAGNCB-UHFFFAOYSA-N 0.000 description 1
- IPIWFMBETBQJCO-UHFFFAOYSA-N CCOC(=O)C(=O)C1CC(C)(C)C=C(C)C1=O Chemical compound CCOC(=O)C(=O)C1CC(C)(C)C=C(C)C1=O IPIWFMBETBQJCO-UHFFFAOYSA-N 0.000 description 1
- ZQHLLKJPPJXBOR-UHFFFAOYSA-N CCOC(=O)C(=O)C1CCC=C(C)C1=O Chemical compound CCOC(=O)C(=O)C1CCC=C(C)C1=O ZQHLLKJPPJXBOR-UHFFFAOYSA-N 0.000 description 1
- ZPUKPAPWEWUPTC-UHFFFAOYSA-N CCOC(=O)C1=CC=C(CC)C=C1 Chemical compound CCOC(=O)C1=CC=C(CC)C=C1 ZPUKPAPWEWUPTC-UHFFFAOYSA-N 0.000 description 1
- FCMXTCCIABXEHZ-UHFFFAOYSA-N CCOC(=O)C1=NC(CC)=CN1C Chemical compound CCOC(=O)C1=NC(CC)=CN1C FCMXTCCIABXEHZ-UHFFFAOYSA-N 0.000 description 1
- YIZJGXLXROURIW-UHFFFAOYSA-N CCOC(=O)C1=NN(C)C2=C1CCC1=CN=C(OS(C)(=O)=O)N=C12 Chemical compound CCOC(=O)C1=NN(C)C2=C1CCC1=CN=C(OS(C)(=O)=O)N=C12 YIZJGXLXROURIW-UHFFFAOYSA-N 0.000 description 1
- FKRCODPIKNYEAC-UHFFFAOYSA-N CCOC(=O)CC Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 1
- WKGJQUDONDDASX-UHFFFAOYSA-N CCOC(=O)CC1=CC=C(CC)C=C1 Chemical compound CCOC(=O)CC1=CC=C(CC)C=C1 WKGJQUDONDDASX-UHFFFAOYSA-N 0.000 description 1
- ZALLFZWCIIZYGQ-UHFFFAOYSA-N CCOC(=O)N1CCC(CC)CC1 Chemical compound CCOC(=O)N1CCC(CC)CC1 ZALLFZWCIIZYGQ-UHFFFAOYSA-N 0.000 description 1
- YTQNUVLMVCPPFF-HJWRWDBZSA-N CCOC1=CCC/C(=C/N(C)C)C1=O Chemical compound CCOC1=CCC/C(=C/N(C)C)C1=O YTQNUVLMVCPPFF-HJWRWDBZSA-N 0.000 description 1
- YELGXBUYFOSFJM-SNVBAGLBSA-N CC[C@@H](NC)C1=CC=CC=C1 Chemical compound CC[C@@H](NC)C1=CC=CC=C1 YELGXBUYFOSFJM-SNVBAGLBSA-N 0.000 description 1
- YELGXBUYFOSFJM-JTQLQIEISA-N CC[C@H](NC)C1=CC=CC=C1 Chemical compound CC[C@H](NC)C1=CC=CC=C1 YELGXBUYFOSFJM-JTQLQIEISA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N CN(C)CC1=CC=CC=C1 Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N CN(C)CCN(C)C Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- KWAWWQICHIREBG-UHFFFAOYSA-N CN(O)C1CCCCC1 Chemical compound CN(O)C1CCCCC1 KWAWWQICHIREBG-UHFFFAOYSA-N 0.000 description 1
- NCLWMRHNDKORFM-UHFFFAOYSA-N CN(O)CC1=CC=CC=C1 Chemical compound CN(O)CC1=CC=CC=C1 NCLWMRHNDKORFM-UHFFFAOYSA-N 0.000 description 1
- AVFZOVWCLRSYKC-UHFFFAOYSA-N CN1CCCC1 Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 description 1
- RXYPXQSKLGGKOL-UHFFFAOYSA-N CN1CCN(C)CC1 Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 1
- KLNAMUMXXCWVAL-UHFFFAOYSA-N CNC(C)(C)C1=CC=CC=C1 Chemical compound CNC(C)(C)C1=CC=CC=C1 KLNAMUMXXCWVAL-UHFFFAOYSA-N 0.000 description 1
- QQKZVPJUJMPBBR-UHFFFAOYSA-N CNC(C)(C)C1=CC=NC=C1 Chemical compound CNC(C)(C)C1=CC=NC=C1 QQKZVPJUJMPBBR-UHFFFAOYSA-N 0.000 description 1
- MUIKHERDKLRMFH-UHFFFAOYSA-N CNC(C)C1=CC=NC=C1 Chemical compound CNC(C)C1=CC=NC=C1 MUIKHERDKLRMFH-UHFFFAOYSA-N 0.000 description 1
- SHDMMLFAFLZUEV-UHFFFAOYSA-N CNC(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound CNC(C1=CC=CC=C1)C1=CC=CC=C1 SHDMMLFAFLZUEV-UHFFFAOYSA-N 0.000 description 1
- FMZRRIHWLOAPQX-UHFFFAOYSA-N CNC(CN1CCOCC1)C1=CC=CC=C1 Chemical compound CNC(CN1CCOCC1)C1=CC=CC=C1 FMZRRIHWLOAPQX-UHFFFAOYSA-N 0.000 description 1
- VQBPLSIDVQEIRR-UHFFFAOYSA-N CNC1(C2=CC=CC=C2)CC1 Chemical compound CNC1(C2=CC=CC=C2)CC1 VQBPLSIDVQEIRR-UHFFFAOYSA-N 0.000 description 1
- VEBLEROFGPOMPB-UHFFFAOYSA-N CNC1CC1 Chemical compound CNC1CC1 VEBLEROFGPOMPB-UHFFFAOYSA-N 0.000 description 1
- PVVRRUUMHFWFQV-UHFFFAOYSA-N CNCC#N Chemical compound CNCC#N PVVRRUUMHFWFQV-UHFFFAOYSA-N 0.000 description 1
- CBBFWSMELCDMPZ-UHFFFAOYSA-N CNCC(N)=O Chemical compound CNCC(N)=O CBBFWSMELCDMPZ-UHFFFAOYSA-N 0.000 description 1
- AZLYFFWKOFXIRJ-UHFFFAOYSA-N CNCC1=CC(OC)=CC(OC)=C1 Chemical compound CNCC1=CC(OC)=CC(OC)=C1 AZLYFFWKOFXIRJ-UHFFFAOYSA-N 0.000 description 1
- MMNUIVWEFIBTRB-UHFFFAOYSA-N CNCC1=CC=C(F)C(F)=C1 Chemical compound CNCC1=CC=C(F)C(F)=C1 MMNUIVWEFIBTRB-UHFFFAOYSA-N 0.000 description 1
- BCYMJVQGRGNEAO-UHFFFAOYSA-N CNCC1=CC=C2OCCC2=C1 Chemical compound CNCC1=CC=C2OCCC2=C1 BCYMJVQGRGNEAO-UHFFFAOYSA-N 0.000 description 1
- CEPGPPSMCRKGFJ-UHFFFAOYSA-N CNCC1=CC=C2OCOC2=C1 Chemical compound CNCC1=CC=C2OCOC2=C1 CEPGPPSMCRKGFJ-UHFFFAOYSA-N 0.000 description 1
- ZXWCKKSSCIFVBT-UHFFFAOYSA-N CNCC1=CC=CC(F)=C1 Chemical compound CNCC1=CC=CC(F)=C1 ZXWCKKSSCIFVBT-UHFFFAOYSA-N 0.000 description 1
- FIFKRPFWLHBMHL-UHFFFAOYSA-N CNCC1=CC=CC(OC)=C1 Chemical compound CNCC1=CC=CC(OC)=C1 FIFKRPFWLHBMHL-UHFFFAOYSA-N 0.000 description 1
- MQRIUFVBEVFILS-UHFFFAOYSA-N CNCC1=CC=CC2=CC=CC=C21 Chemical compound CNCC1=CC=CC2=CC=CC=C21 MQRIUFVBEVFILS-UHFFFAOYSA-N 0.000 description 1
- AHIHZCXUWGORQO-UHFFFAOYSA-N CNCC1=CC=CC=C1F Chemical compound CNCC1=CC=CC=C1F AHIHZCXUWGORQO-UHFFFAOYSA-N 0.000 description 1
- JCCQJCOMFAJJCQ-UHFFFAOYSA-N CNCC1=CC=CC=C1OC Chemical compound CNCC1=CC=CC=C1OC JCCQJCOMFAJJCQ-UHFFFAOYSA-N 0.000 description 1
- MCSAQVGDZLPTBS-UHFFFAOYSA-N CNCC1=CC=CN=C1 Chemical compound CNCC1=CC=CN=C1 MCSAQVGDZLPTBS-UHFFFAOYSA-N 0.000 description 1
- DNBWGFKLIBQQSL-UHFFFAOYSA-N CNCC1=CC=NC=C1 Chemical compound CNCC1=CC=NC=C1 DNBWGFKLIBQQSL-UHFFFAOYSA-N 0.000 description 1
- HJELPNLGHMWKQT-UHFFFAOYSA-N CNCCCOC Chemical compound CNCCCOC HJELPNLGHMWKQT-UHFFFAOYSA-N 0.000 description 1
- OPKOKAMJFNKNAS-UHFFFAOYSA-N CNCCO Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 1
- RCSSHZGQHHEHPZ-QMMMGPOBSA-N CN[C@@H](C)C1=CC=CC=C1 Chemical compound CN[C@@H](C)C1=CC=CC=C1 RCSSHZGQHHEHPZ-QMMMGPOBSA-N 0.000 description 1
- ULIMZYAYESNNIP-VIFPVBQESA-N CN[C@@H](CO)C1=CC=CC=C1 Chemical compound CN[C@@H](CO)C1=CC=CC=C1 ULIMZYAYESNNIP-VIFPVBQESA-N 0.000 description 1
- AIXUYZODYPPNAV-SNVBAGLBSA-N CN[C@@H]1CCC2=C1C=CC=C2 Chemical compound CN[C@@H]1CCC2=C1C=CC=C2 AIXUYZODYPPNAV-SNVBAGLBSA-N 0.000 description 1
- YYMHHPFPTALMCY-QMMMGPOBSA-N CN[C@H](C(N)=O)C1=CC=CC=C1 Chemical compound CN[C@H](C(N)=O)C1=CC=CC=C1 YYMHHPFPTALMCY-QMMMGPOBSA-N 0.000 description 1
- YORRIBKELCOOIJ-SSDOTTSWSA-N CN[C@H](C)C1=CC=C(F)C=C1 Chemical compound CN[C@H](C)C1=CC=C(F)C=C1 YORRIBKELCOOIJ-SSDOTTSWSA-N 0.000 description 1
- RCSSHZGQHHEHPZ-MRVPVSSYSA-N CN[C@H](C)C1=CC=CC=C1 Chemical compound CN[C@H](C)C1=CC=CC=C1 RCSSHZGQHHEHPZ-MRVPVSSYSA-N 0.000 description 1
- ZINZYRWMDNKTBY-CYBMUJFWSA-N CN[C@H](CN1CCCC1)C1=CC=CC=C1 Chemical compound CN[C@H](CN1CCCC1)C1=CC=CC=C1 ZINZYRWMDNKTBY-CYBMUJFWSA-N 0.000 description 1
- WDWBJLRLEYGMMU-CQSZACIVSA-N CN[C@H](CN1CCCCC1)C1=CC=CC=C1 Chemical compound CN[C@H](CN1CCCCC1)C1=CC=CC=C1 WDWBJLRLEYGMMU-CQSZACIVSA-N 0.000 description 1
- FMZRRIHWLOAPQX-CYBMUJFWSA-N CN[C@H](CN1CCOCC1)C1=CC=CC=C1 Chemical compound CN[C@H](CN1CCOCC1)C1=CC=CC=C1 FMZRRIHWLOAPQX-CYBMUJFWSA-N 0.000 description 1
- ULIMZYAYESNNIP-SECBINFHSA-N CN[C@H](CO)C1=CC=CC=C1 Chemical compound CN[C@H](CO)C1=CC=CC=C1 ULIMZYAYESNNIP-SECBINFHSA-N 0.000 description 1
- FEQANDAOUJBIST-SNVBAGLBSA-N CN[C@H](COC)C1=CC=CC=C1 Chemical compound CN[C@H](COC)C1=CC=CC=C1 FEQANDAOUJBIST-SNVBAGLBSA-N 0.000 description 1
- CHLICZRVGGXEOD-UHFFFAOYSA-N COC1=CC=C(C)C=C1 Chemical compound COC1=CC=C(C)C=C1 CHLICZRVGGXEOD-UHFFFAOYSA-N 0.000 description 1
- INCNTGFNJQHOOA-ZCFIWIBFSA-N C[C@H](c(cc1)ccc1F)NN Chemical compound C[C@H](c(cc1)ccc1F)NN INCNTGFNJQHOOA-ZCFIWIBFSA-N 0.000 description 1
- HHRZAEJMHSGZNP-SSDOTTSWSA-N C[C@H](c1ccccc1)NN Chemical compound C[C@H](c1ccccc1)NN HHRZAEJMHSGZNP-SSDOTTSWSA-N 0.000 description 1
- 101100326430 Caenorhabditis elegans bub-1 gene Proteins 0.000 description 1
- 101100220616 Caenorhabditis elegans chk-2 gene Proteins 0.000 description 1
- 101100498823 Caenorhabditis elegans ddr-2 gene Proteins 0.000 description 1
- 101100205088 Caenorhabditis elegans iars-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229940123587 Cell cycle inhibitor Drugs 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical group ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 1
- 102000003910 Cyclin D Human genes 0.000 description 1
- 108090000259 Cyclin D Proteins 0.000 description 1
- 102000013701 Cyclin-Dependent Kinase 4 Human genes 0.000 description 1
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 1
- 102000013717 Cyclin-Dependent Kinase 5 Human genes 0.000 description 1
- 102000000577 Cyclin-Dependent Kinase Inhibitor p27 Human genes 0.000 description 1
- 108010016777 Cyclin-Dependent Kinase Inhibitor p27 Proteins 0.000 description 1
- 102100032857 Cyclin-dependent kinase 1 Human genes 0.000 description 1
- 101710106279 Cyclin-dependent kinase 1 Proteins 0.000 description 1
- 102100026805 Cyclin-dependent-like kinase 5 Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 102100030960 DNA replication licensing factor MCM2 Human genes 0.000 description 1
- 229940123780 DNA topoisomerase I inhibitor Drugs 0.000 description 1
- 229940124087 DNA topoisomerase II inhibitor Drugs 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 102100031480 Dual specificity mitogen-activated protein kinase kinase 1 Human genes 0.000 description 1
- 101710146526 Dual specificity mitogen-activated protein kinase kinase 1 Proteins 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000583807 Homo sapiens DNA replication licensing factor MCM2 Proteins 0.000 description 1
- 101001018431 Homo sapiens DNA replication licensing factor MCM7 Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101150030450 IRS1 gene Proteins 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- 101150076933 KIP gene Proteins 0.000 description 1
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- 229940124647 MEK inhibitor Drugs 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- YMMCBGIHBVKZGD-UHFFFAOYSA-N NNCc(cc1)ccc1F Chemical compound NNCc(cc1)ccc1F YMMCBGIHBVKZGD-UHFFFAOYSA-N 0.000 description 1
- VROZMLUIKPQVNT-UHFFFAOYSA-N NNCc(cc1F)ccc1F Chemical compound NNCc(cc1F)ccc1F VROZMLUIKPQVNT-UHFFFAOYSA-N 0.000 description 1
- BUASGXQDKFDJIT-UHFFFAOYSA-N NNCc1ccc2OCCc2c1 Chemical compound NNCc1ccc2OCCc2c1 BUASGXQDKFDJIT-UHFFFAOYSA-N 0.000 description 1
- ZGFAEQGIQBHZMQ-SECBINFHSA-N NN[C@H]1c2ccccc2CC1 Chemical compound NN[C@H]1c2ccccc2CC1 ZGFAEQGIQBHZMQ-SECBINFHSA-N 0.000 description 1
- ORONATMCSSTFFJ-UHFFFAOYSA-N NNc1ccc2[nH]ccc2c1 Chemical compound NNc1ccc2[nH]ccc2c1 ORONATMCSSTFFJ-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910020889 NaBH3 Inorganic materials 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 102100026379 Neurofibromin Human genes 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- RCKRBHPASXMLJI-LREBCSMRSA-N OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(=O)NCC=2C=CC=CC=2)C3=N1 Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(=O)NCC=2C=CC=CC=2)C3=N1 RCKRBHPASXMLJI-LREBCSMRSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 108091008606 PDGF receptors Proteins 0.000 description 1
- 102000038030 PI3Ks Human genes 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 241001482237 Pica Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 102100033479 RAF proto-oncogene serine/threonine-protein kinase Human genes 0.000 description 1
- 101150101372 RAF1 gene Proteins 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 102100027940 Serine/threonine-protein kinase PAK 4 Human genes 0.000 description 1
- 101710148155 Serine/threonine-protein kinase PAK 4 Proteins 0.000 description 1
- 101710148159 Serine/threonine-protein kinase PAK 5 Proteins 0.000 description 1
- 102100026840 Serine/threonine-protein kinase PAK 6 Human genes 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical compound [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- 239000000365 Topoisomerase I Inhibitor Substances 0.000 description 1
- 239000000317 Topoisomerase II Inhibitor Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- WUDXWASLGUZIMB-UHFFFAOYSA-N [2-(4-methylpiperazino)-5-nitrophenyl]methanol Chemical compound C1CN(C)CCN1C1=CC=C([N+]([O-])=O)C=C1CO WUDXWASLGUZIMB-UHFFFAOYSA-N 0.000 description 1
- FMOZPLTVMGODOF-UHFFFAOYSA-N [5-[[(3-carbamoyl-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazolin-8-yl)amino]methyl]furan-2-yl]methyl acetate Chemical compound O1C(COC(=O)C)=CC=C1CNC1=NC=C(CCC2=C3N(C)N=C2C(N)=O)C3=N1 FMOZPLTVMGODOF-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N [H]CC Chemical compound [H]CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LXTHCCWEYOKFSR-BKUVIOGVSA-N [H][C@]12C[C@]3([H])C[C@]([H])(C1)C[C@](CC)(C2)C3 Chemical compound [H][C@]12C[C@]3([H])C[C@]([H])(C1)C[C@](CC)(C2)C3 LXTHCCWEYOKFSR-BKUVIOGVSA-N 0.000 description 1
- SCKYQTNMKBTHDQ-MPZDIEGVSA-N [H][C@]12C[C@]3([H])C[C@]([H])(C1)C[C@](CCC)(C2)C3 Chemical compound [H][C@]12C[C@]3([H])C[C@]([H])(C1)C[C@](CCC)(C2)C3 SCKYQTNMKBTHDQ-MPZDIEGVSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000001785 acacia senegal l. willd gum Substances 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000005078 alkoxycarbonylalkyl group Chemical group 0.000 description 1
- 125000000676 alkoxyimino group Chemical group 0.000 description 1
- 125000000278 alkyl amino alkyl group Chemical group 0.000 description 1
- 125000004457 alkyl amino carbonyl group Chemical group 0.000 description 1
- 125000004471 alkyl aminosulfonyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000003806 alkyl carbonyl amino group Chemical group 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- 125000005197 alkyl carbonyloxy alkyl group Chemical group 0.000 description 1
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 description 1
- 125000004656 alkyl sulfonylamino group Chemical group 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 230000002942 anti-growth Effects 0.000 description 1
- 238000011394 anticancer treatment Methods 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000005100 aryl amino carbonyl group Chemical group 0.000 description 1
- 125000004658 aryl carbonyl amino group Chemical group 0.000 description 1
- 125000005129 aryl carbonyl group Chemical group 0.000 description 1
- 125000005199 aryl carbonyloxy group Chemical group 0.000 description 1
- 125000005002 aryl methyl group Chemical group 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000004657 aryl sulfonyl amino group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 239000005441 aurora Substances 0.000 description 1
- 230000035578 autophosphorylation Effects 0.000 description 1
- URQAMACHHWVNRD-UHFFFAOYSA-N azane;1-hydroxybenzotriazole Chemical compound N.C1=CC=C2N(O)N=NC2=C1 URQAMACHHWVNRD-UHFFFAOYSA-N 0.000 description 1
- LYLAWZBBDFLDCZ-UHFFFAOYSA-N azanium;benzotriazole-1-carboxylate Chemical compound [NH4+].C1=CC=C2N(C(=O)[O-])N=NC2=C1 LYLAWZBBDFLDCZ-UHFFFAOYSA-N 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 125000002047 benzodioxolyl group Chemical group O1OC(C2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- WARCRYXKINZHGQ-UHFFFAOYSA-N benzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1 WARCRYXKINZHGQ-UHFFFAOYSA-N 0.000 description 1
- WXBLLCUINBKULX-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1.OC(=O)C1=CC=CC=C1 WXBLLCUINBKULX-UHFFFAOYSA-N 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- GTRLQRHWPXEBLF-UHFFFAOYSA-N benzyl carbamimidothioate Chemical compound NC(=N)SCC1=CC=CC=C1 GTRLQRHWPXEBLF-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- MCQRPQCQMGVWIQ-UHFFFAOYSA-N boron;methylsulfanylmethane Chemical compound [B].CSC MCQRPQCQMGVWIQ-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- XDSYAIICRRZSJX-UHFFFAOYSA-N carbamimidoyl(phenyl)azanium;hydrogen carbonate Chemical compound OC(O)=O.NC(N)=NC1=CC=CC=C1 XDSYAIICRRZSJX-UHFFFAOYSA-N 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000005392 carboxamide group Chemical group NC(=O)* 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 210000003793 centrosome Anatomy 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 101150113535 chek1 gene Proteins 0.000 description 1
- 238000009104 chemotherapy regimen Methods 0.000 description 1
- 238000004296 chiral HPLC Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940111134 coxibs Drugs 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000006254 cycloalkyl carbonyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- OILAIQUEIWYQPH-UHFFFAOYSA-N cyclohexane-1,2-dione Chemical compound O=C1CCCCC1=O OILAIQUEIWYQPH-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 1
- NISGSNTVMOOSJQ-UHFFFAOYSA-N cyclopentanamine Chemical compound NC1CCCC1 NISGSNTVMOOSJQ-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 125000004473 dialkylaminocarbonyl group Chemical group 0.000 description 1
- 125000004472 dialkylaminosulfonyl group Chemical group 0.000 description 1
- 125000004986 diarylamino group Chemical group 0.000 description 1
- KJOZJSGOIJQCGA-UHFFFAOYSA-N dichloromethane;2,2,2-trifluoroacetic acid Chemical compound ClCCl.OC(=O)C(F)(F)F KJOZJSGOIJQCGA-UHFFFAOYSA-N 0.000 description 1
- LZPVNFLWFSSMJC-UHFFFAOYSA-N dichloromethane;n,n-diethylethanamine;methanol Chemical compound OC.ClCCl.CCN(CC)CC LZPVNFLWFSSMJC-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 125000005046 dihydronaphthyl group Chemical group 0.000 description 1
- 125000005044 dihydroquinolinyl group Chemical group N1(CC=CC2=CC=CC=C12)* 0.000 description 1
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- BADXJIPKFRBFOT-UHFFFAOYSA-N dimedone Chemical compound CC1(C)CC(=O)CC(=O)C1 BADXJIPKFRBFOT-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- ODCCJTMPMUFERV-UHFFFAOYSA-N ditert-butyl carbonate Chemical compound CC(C)(C)OC(=O)OC(C)(C)C ODCCJTMPMUFERV-UHFFFAOYSA-N 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical class CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- SBKWQCZFXFSBRH-MDZDMXLPSA-N ethyl (6e)-6-(dimethylaminomethylidene)-1-(2-hydroxyethyl)-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1C\C(=C/N(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2CCO SBKWQCZFXFSBRH-MDZDMXLPSA-N 0.000 description 1
- ARODGCJBRNZEMD-UHFFFAOYSA-N ethyl 1,4,4-trimethyl-8-[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)anilino]-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=C1C(F)(F)F)=CC=C1N1CCN(C)CC1 ARODGCJBRNZEMD-UHFFFAOYSA-N 0.000 description 1
- MQCGCIFIJXUUNK-UHFFFAOYSA-N ethyl 1,5,5-trimethyl-8-[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)anilino]-4h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CC(C)(C)C2=CN=C3NC(C=C1C(F)(F)F)=CC=C1N1CCN(C)CC1 MQCGCIFIJXUUNK-UHFFFAOYSA-N 0.000 description 1
- BFICYXZVWOMTPE-UHFFFAOYSA-N ethyl 1,5,5-trimethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-4h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CC(C)(C)C2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 BFICYXZVWOMTPE-UHFFFAOYSA-N 0.000 description 1
- YMFDRFUTVPDMNM-UHFFFAOYSA-N ethyl 1-(1-acetylpiperidin-4-yl)-6-(dimethylaminomethylidene)-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C1CCN(C(C)=O)CC1 YMFDRFUTVPDMNM-UHFFFAOYSA-N 0.000 description 1
- MNMGJKFFBQOWPN-UHFFFAOYSA-N ethyl 1-(1-acetylpiperidin-4-yl)-7-oxo-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2C1CCN(C(C)=O)CC1 MNMGJKFFBQOWPN-UHFFFAOYSA-N 0.000 description 1
- AVKSWMAXRRIDAI-UHFFFAOYSA-N ethyl 1-(1-benzylpiperidin-4-yl)-6-(dimethylaminomethylidene)-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C(CC1)CCN1CC1=CC=CC=C1 AVKSWMAXRRIDAI-UHFFFAOYSA-N 0.000 description 1
- GLMICRPLPDETRN-UHFFFAOYSA-N ethyl 1-(1-benzylpiperidin-4-yl)-7-oxo-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2C(CC1)CCN1CC1=CC=CC=C1 GLMICRPLPDETRN-UHFFFAOYSA-N 0.000 description 1
- DVIMORORTXYZJI-UHFFFAOYSA-N ethyl 1-(2-ethoxy-2-oxoethyl)-7-oxo-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2CC(=O)OCC DVIMORORTXYZJI-UHFFFAOYSA-N 0.000 description 1
- IXOUJKMRQJVTLI-UHFFFAOYSA-N ethyl 1-(2-hydroxyethyl)-7-oxo-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2CCO IXOUJKMRQJVTLI-UHFFFAOYSA-N 0.000 description 1
- HDULIYOIPBPBNX-UHFFFAOYSA-N ethyl 1-(3,3-dimethylbutyl)-8-iodo-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1CC2=CN=C(I)N=C2C2=C1C(C(=O)OCC)=NN2CCC(C)(C)C HDULIYOIPBPBNX-UHFFFAOYSA-N 0.000 description 1
- MVJURAPQGMPYJV-UHFFFAOYSA-N ethyl 1-(4-cyanophenyl)-6-(dimethylaminomethylidene)-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C1=CC=C(C#N)C=C1 MVJURAPQGMPYJV-UHFFFAOYSA-N 0.000 description 1
- RGRGKLLURZWVEW-UHFFFAOYSA-N ethyl 1-(4-cyanophenyl)-7-oxo-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2C1=CC=C(C#N)C=C1 RGRGKLLURZWVEW-UHFFFAOYSA-N 0.000 description 1
- YHBPOYFMCWQMQJ-UHFFFAOYSA-N ethyl 1-(4-methoxyphenyl)-7-oxo-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2C1=CC=C(OC)C=C1 YHBPOYFMCWQMQJ-UHFFFAOYSA-N 0.000 description 1
- QCNYHVPOSBZZJR-UHFFFAOYSA-N ethyl 1-[2-(dimethylamino)ethyl]-6-(dimethylaminomethylidene)-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2CCN(C)C QCNYHVPOSBZZJR-UHFFFAOYSA-N 0.000 description 1
- YHMMRHPWSLJGJW-UHFFFAOYSA-N ethyl 1-[3,3-bis(methylamino)butyl]-6-(dimethylaminomethylidene)-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2CCC(C)(NC)NC YHMMRHPWSLJGJW-UHFFFAOYSA-N 0.000 description 1
- LFNDARXXJABQTE-UHFFFAOYSA-N ethyl 1-benzyl-6-(dimethylaminomethylidene)-7-oxo-4,5-dihydroindazole-3-carboxylate ethyl 6-(dimethylaminomethylidene)-7-oxo-1-phenyl-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C1=CC=CC=C1.C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2CC1=CC=CC=C1 LFNDARXXJABQTE-UHFFFAOYSA-N 0.000 description 1
- YTJLTGQSSKLOKO-UHFFFAOYSA-N ethyl 1-benzyl-7-oxo-5,6-dihydro-4h-indazole-3-carboxylate;ethyl 1-(1-methylpiperidin-4-yl)-7-oxo-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2CC1=CC=CC=C1.C1CCC(=O)C2=C1C(C(=O)OCC)=NN2C1CCN(C)CC1 YTJLTGQSSKLOKO-UHFFFAOYSA-N 0.000 description 1
- WLQVDTPJEUEGCR-UHFFFAOYSA-N ethyl 1-methyl-8-(1,3-thiazol-2-ylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=NC=CS1 WLQVDTPJEUEGCR-UHFFFAOYSA-N 0.000 description 1
- RNGGYZXVTDDIBS-UHFFFAOYSA-N ethyl 1-methyl-8-(1h-pyrazol-5-ylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC=1C=CNN=1 RNGGYZXVTDDIBS-UHFFFAOYSA-N 0.000 description 1
- IIPRLANQUGRZDY-UHFFFAOYSA-N ethyl 1-methyl-8-(4-morpholin-4-ylanilino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC(C=C1)=CC=C1N1CCOCC1 IIPRLANQUGRZDY-UHFFFAOYSA-N 0.000 description 1
- NXAURZVAVMOQIG-UHFFFAOYSA-N ethyl 1-methyl-8-(pyrrolidin-3-ylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1CCNC1 NXAURZVAVMOQIG-UHFFFAOYSA-N 0.000 description 1
- OFRYJFKZMKXSMM-UHFFFAOYSA-N ethyl 1-methyl-8-[3-[(4-methylpiperazin-1-yl)methyl]anilino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC(C=1)=CC=CC=1CN1CCN(C)CC1 OFRYJFKZMKXSMM-UHFFFAOYSA-N 0.000 description 1
- OFQAYKGFHQOOQI-UHFFFAOYSA-N ethyl 1-methyl-8-[4-(1-methylpiperidin-4-yl)oxyanilino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC(C=C1)=CC=C1OC1CCN(C)CC1 OFQAYKGFHQOOQI-UHFFFAOYSA-N 0.000 description 1
- QRMMYDGRZWTMSX-UHFFFAOYSA-N ethyl 1-methyl-8-[4-(morpholin-4-ylmethyl)anilino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC(C=C1)=CC=C1CN1CCOCC1 QRMMYDGRZWTMSX-UHFFFAOYSA-N 0.000 description 1
- ZTRMJEJLWWFMJO-UHFFFAOYSA-N ethyl 1-tert-butyl-6-(dimethylaminomethylidene)-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C(C)(C)C ZTRMJEJLWWFMJO-UHFFFAOYSA-N 0.000 description 1
- XWAZKFWFTMMONG-UHFFFAOYSA-N ethyl 1-tert-butyl-7-oxo-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2C(C)(C)C XWAZKFWFTMMONG-UHFFFAOYSA-N 0.000 description 1
- LNSKFTRABZMJJS-UHFFFAOYSA-N ethyl 2-(3,3-dimethylbutyl)-8-iodo-1,3,4,5-tetrahydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1CC2=CN=C(I)N=C2C2=C1C(C(=O)OCC)N(CCC(C)(C)C)N2 LNSKFTRABZMJJS-UHFFFAOYSA-N 0.000 description 1
- OZZSRGIZQGQEKF-UHFFFAOYSA-N ethyl 2-(3-aminopropyl)-4,4-dimethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-3,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride Chemical compound Cl.CCOC(=O)C1N(CCCN)NC(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 OZZSRGIZQGQEKF-UHFFFAOYSA-N 0.000 description 1
- JCIXCJMMZVMDIR-UHFFFAOYSA-N ethyl 2-(3-aminopropyl)-8-anilino-4,4-dimethyl-3,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride Chemical compound Cl.CCOC(=O)C1N(CCCN)NC(C2=N3)=C1C(C)(C)CC2=CN=C3NC1=CC=CC=C1 JCIXCJMMZVMDIR-UHFFFAOYSA-N 0.000 description 1
- VOZSJHIGJPQUQL-UHFFFAOYSA-N ethyl 2-[3,3-bis(methylamino)butyl]-6-(dimethylaminomethylidene)-7-oxo-1,3,4,5-tetrahydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)N(CCC(C)(NC)NC)N2 VOZSJHIGJPQUQL-UHFFFAOYSA-N 0.000 description 1
- ZNTXZFZVZVTIPH-UHFFFAOYSA-N ethyl 4,4-dimethyl-7-oxo-1-trityl-5,6-dihydroindazole-3-carboxylate Chemical compound CC1(C)CCC(=O)C2=C1C(C(=O)OCC)=NN2C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 ZNTXZFZVZVTIPH-UHFFFAOYSA-N 0.000 description 1
- VAAUGDVTOIFBQA-UHFFFAOYSA-N ethyl 4,4-dimethyl-7-oxo-2-trityl-1,3,5,6-tetrahydroindazole-3-carboxylate Chemical compound N1C(C(CCC2(C)C)=O)=C2C(C(=O)OCC)N1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 VAAUGDVTOIFBQA-UHFFFAOYSA-N 0.000 description 1
- AGFSTXULNHROIX-UHFFFAOYSA-N ethyl 4,4-dimethyl-7-oxo-5,6-dihydro-2h-indazole-3-carboxylate Chemical compound CC1(C)CCC(=O)C2=C1C(C(=O)OCC)=NN2 AGFSTXULNHROIX-UHFFFAOYSA-N 0.000 description 1
- LYWPMXSQEDUCGZ-UHFFFAOYSA-N ethyl 4,4-dimethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-1-trityl-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C(C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)C(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 LYWPMXSQEDUCGZ-UHFFFAOYSA-N 0.000 description 1
- WRHVUXAXAOGGQP-UHFFFAOYSA-N ethyl 4,4-dimethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-2,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NNC(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 WRHVUXAXAOGGQP-UHFFFAOYSA-N 0.000 description 1
- JYMJSUPOAKAMNY-UHFFFAOYSA-N ethyl 4,4-dimethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-2-[2-[(2-methylpropan-2-yl)oxycarbonylamino]ethyl]-3,5-dihydro-1h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1N(CCNC(=O)OC(C)(C)C)NC(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 JYMJSUPOAKAMNY-UHFFFAOYSA-N 0.000 description 1
- FGQVYSCIJBJMMI-UHFFFAOYSA-N ethyl 4,4-dimethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-2-[3-[(2-methylpropan-2-yl)oxycarbonylamino]propyl]-3,5-dihydro-1h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1N(CCCNC(=O)OC(C)(C)C)NC(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 FGQVYSCIJBJMMI-UHFFFAOYSA-N 0.000 description 1
- WVLGMUKLOKEHSF-UHFFFAOYSA-N ethyl 4,4-dimethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-2-trityl-3,5-dihydro-1h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1N(C(C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)NC(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 WVLGMUKLOKEHSF-UHFFFAOYSA-N 0.000 description 1
- RBZOUBJNAJAMOR-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-1-(1-formylpiperidin-4-yl)-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C1CCN(C=O)CC1 RBZOUBJNAJAMOR-UHFFFAOYSA-N 0.000 description 1
- GEGIKLCGEGZERH-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-1-(1-methylpiperidin-4-yl)-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C1CCN(C)CC1 GEGIKLCGEGZERH-UHFFFAOYSA-N 0.000 description 1
- ZTBPWEDSFZRDRY-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-1-(2-ethoxy-2-oxoethyl)-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2CC(=O)OCC ZTBPWEDSFZRDRY-UHFFFAOYSA-N 0.000 description 1
- VKPXMMLAHIWCQS-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-1-(4-methoxyphenyl)-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C1=CC=C(OC)C=C1 VKPXMMLAHIWCQS-UHFFFAOYSA-N 0.000 description 1
- HHHYANXMXHQWIU-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-1-[2-(dimethylamino)propyl]-7-oxo-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2CC(C)N(C)C HHHYANXMXHQWIU-UHFFFAOYSA-N 0.000 description 1
- WWHNUBOXBBHPQW-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-4,4-dimethyl-7-oxo-1-trityl-5h-indazole-3-carboxylate Chemical compound CC1(C)CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 WWHNUBOXBBHPQW-UHFFFAOYSA-N 0.000 description 1
- VBIKSKQITCMXAH-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-4,4-dimethyl-7-oxo-2-trityl-3,5-dihydro-1h-indazole-3-carboxylate Chemical compound N1C(C(C(=CN(C)C)CC2(C)C)=O)=C2C(C(=O)OCC)N1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 VBIKSKQITCMXAH-UHFFFAOYSA-N 0.000 description 1
- NHHZFWVHCHTEMQ-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-7-oxo-1-(2,2,2-trifluoroethyl)-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2CC(F)(F)F NHHZFWVHCHTEMQ-UHFFFAOYSA-N 0.000 description 1
- FEEXGVJCLVFFIG-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-7-oxo-1-(4-sulfamoylphenyl)-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C1=CC=C(S(N)(=O)=O)C=C1 FEEXGVJCLVFFIG-UHFFFAOYSA-N 0.000 description 1
- HSWJJJCMMGFVEP-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-7-oxo-1-piperidin-4-yl-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C1CCNCC1 HSWJJJCMMGFVEP-UHFFFAOYSA-N 0.000 description 1
- RTNCSZMLVSITCJ-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-7-oxo-1-pyridin-2-yl-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=C1C(C(=O)OCC)=NN2C1=CC=CC=N1 RTNCSZMLVSITCJ-UHFFFAOYSA-N 0.000 description 1
- BQDQSNUVRWPIOJ-UHFFFAOYSA-N ethyl 6-(dimethylaminomethylidene)-7-oxo-2-(2,2,2-trifluoroethyl)-4,5-dihydroindazole-3-carboxylate Chemical compound C1CC(=CN(C)C)C(=O)C2=NN(CC(F)(F)F)C(C(=O)OCC)=C21 BQDQSNUVRWPIOJ-UHFFFAOYSA-N 0.000 description 1
- YKPJPZGYJLZQOS-UHFFFAOYSA-N ethyl 7-oxo-1-(2,2,2-trifluoroethyl)-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2CC(F)(F)F YKPJPZGYJLZQOS-UHFFFAOYSA-N 0.000 description 1
- CONJPGIAAPVBOU-UHFFFAOYSA-N ethyl 7-oxo-1-(4-sulfamoylphenyl)-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2C1=CC=C(S(N)(=O)=O)C=C1 CONJPGIAAPVBOU-UHFFFAOYSA-N 0.000 description 1
- LPYLOKLRLLYDTQ-UHFFFAOYSA-N ethyl 7-oxo-1-[(5-phenyl-1,3-oxazol-2-yl)methyl]-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2CC(O1)=NC=C1C1=CC=CC=C1 LPYLOKLRLLYDTQ-UHFFFAOYSA-N 0.000 description 1
- VIPPTAAWRUMXHX-UHFFFAOYSA-N ethyl 7-oxo-1-phenyl-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2C1=CC=CC=C1 VIPPTAAWRUMXHX-UHFFFAOYSA-N 0.000 description 1
- IHZWFALFAVGLFN-UHFFFAOYSA-N ethyl 7-oxo-1-piperidin-4-yl-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2C1CCNCC1 IHZWFALFAVGLFN-UHFFFAOYSA-N 0.000 description 1
- VUPTTYJXHQKCGR-UHFFFAOYSA-N ethyl 7-oxo-1-pyridin-2-yl-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=C1C(C(=O)OCC)=NN2C1=CC=CC=N1 VUPTTYJXHQKCGR-UHFFFAOYSA-N 0.000 description 1
- OWJJGDCLFWXAQM-UHFFFAOYSA-N ethyl 7-oxo-2-(2,2,2-trifluoroethyl)-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound C1CCC(=O)C2=NN(CC(F)(F)F)C(C(=O)OCC)=C21 OWJJGDCLFWXAQM-UHFFFAOYSA-N 0.000 description 1
- PFPBWIBDNHEMPJ-UHFFFAOYSA-N ethyl 7-oxo-2-[(5-phenyl-1,3-oxazol-2-yl)methyl]-5,6-dihydro-4h-indazole-3-carboxylate Chemical compound CCOC(=O)C1=C2CCCC(=O)C2=NN1CC(O1)=NC=C1C1=CC=CC=C1 PFPBWIBDNHEMPJ-UHFFFAOYSA-N 0.000 description 1
- FQDKCRPIHYQUDB-UHFFFAOYSA-N ethyl 8-(3,5-dichloroanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC(Cl)=CC(Cl)=C1 FQDKCRPIHYQUDB-UHFFFAOYSA-N 0.000 description 1
- DXOMAJXDTZJNEK-UHFFFAOYSA-N ethyl 8-(4-acetamidoanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC=C(NC(C)=O)C=C1 DXOMAJXDTZJNEK-UHFFFAOYSA-N 0.000 description 1
- UPBLXCOVORTYOY-UHFFFAOYSA-N ethyl 8-(4-chloroanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC=C(Cl)C=C1 UPBLXCOVORTYOY-UHFFFAOYSA-N 0.000 description 1
- MQLWASFZFOUQJE-UHFFFAOYSA-N ethyl 8-(4-ethoxycarbonylanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC=C(C(=O)OCC)C=C1 MQLWASFZFOUQJE-UHFFFAOYSA-N 0.000 description 1
- POYXSNHGAOBVCU-UHFFFAOYSA-N ethyl 8-(4-hydroxyanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC=C(O)C=C1 POYXSNHGAOBVCU-UHFFFAOYSA-N 0.000 description 1
- ZKEIAECIYCZDIM-UHFFFAOYSA-N ethyl 8-(4-methoxyanilino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC=C(OC)C=C1 ZKEIAECIYCZDIM-UHFFFAOYSA-N 0.000 description 1
- XMEQWVCWTXFCGA-UHFFFAOYSA-N ethyl 8-(ethylcarbamoylamino)-1-methylpyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C12=NC(NC(=O)NCC)=NC=C2C=CC2=C1N(C)N=C2C(=O)OCC XMEQWVCWTXFCGA-UHFFFAOYSA-N 0.000 description 1
- WPDQKWKEGZFOJM-UHFFFAOYSA-N ethyl 8-(imidazol-1-ylamino)-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NN1C=CN=C1 WPDQKWKEGZFOJM-UHFFFAOYSA-N 0.000 description 1
- BIEMJFQDZSSPQP-UHFFFAOYSA-N ethyl 8-[(1-acetylpiperidin-4-yl)amino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1CCN(C(C)=O)CC1 BIEMJFQDZSSPQP-UHFFFAOYSA-N 0.000 description 1
- WIVYHMQYDCDVJL-UHFFFAOYSA-N ethyl 8-[(1-benzylpyrrolidin-3-yl)amino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC(C1)CCN1CC1=CC=CC=C1 WIVYHMQYDCDVJL-UHFFFAOYSA-N 0.000 description 1
- DWSGREGCNLGXHG-UHFFFAOYSA-N ethyl 8-[3-(hydroxymethyl)-4-(4-methylpiperazin-1-yl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC(C=C1CO)=CC=C1N1CCN(C)CC1 DWSGREGCNLGXHG-UHFFFAOYSA-N 0.000 description 1
- BQUGORJVDAJVBJ-UHFFFAOYSA-N ethyl 8-[3-(hydroxymethyl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC=CC(CO)=C1 BQUGORJVDAJVBJ-UHFFFAOYSA-N 0.000 description 1
- PXGFKUIQRCTNDX-UHFFFAOYSA-N ethyl 8-[3-bromo-5-(trifluoromethyl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC(Br)=CC(C(F)(F)F)=C1 PXGFKUIQRCTNDX-UHFFFAOYSA-N 0.000 description 1
- WMPQRBSIVBSYCJ-UHFFFAOYSA-N ethyl 8-[3-chloro-4-(4-methylpiperazin-1-yl)anilino]-1,4,4-trimethyl-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=C1Cl)=CC=C1N1CCN(C)CC1 WMPQRBSIVBSYCJ-UHFFFAOYSA-N 0.000 description 1
- ACVZXDAHJPJJPS-UHFFFAOYSA-N ethyl 8-[3-chloro-4-(4-methylpiperazin-1-yl)anilino]-1,5,5-trimethyl-4h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CC(C)(C)C2=CN=C3NC(C=C1Cl)=CC=C1N1CCN(C)CC1 ACVZXDAHJPJJPS-UHFFFAOYSA-N 0.000 description 1
- RTIVMJYBWAPNTJ-UHFFFAOYSA-N ethyl 8-[3-chloro-4-(4-methylpiperazin-1-yl)anilino]-2-[2-[(2-methylpropan-2-yl)oxycarbonylamino]ethyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N1=C2C3=NN(CCNC(=O)OC(C)(C)C)C(C(=O)OCC)=C3CCC2=CN=C1NC(C=C1Cl)=CC=C1N1CCN(C)CC1 RTIVMJYBWAPNTJ-UHFFFAOYSA-N 0.000 description 1
- CWXFDLUPHOWPJD-UHFFFAOYSA-N ethyl 8-[3-chloro-4-(4-methylpiperazin-1-yl)anilino]-2-[3-[(2-methylpropan-2-yl)oxycarbonylamino]propyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N1=C2C3=NN(CCCNC(=O)OC(C)(C)C)C(C(=O)OCC)=C3CCC2=CN=C1NC(C=C1Cl)=CC=C1N1CCN(C)CC1 CWXFDLUPHOWPJD-UHFFFAOYSA-N 0.000 description 1
- LLNOJHCNLKHREZ-UHFFFAOYSA-N ethyl 8-[3-chloro-4-(4-methylpiperazin-1-yl)anilino]-4,5-dihydro-2h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C=1NN=C(C2=N3)C=1CCC2=CN=C3NC(C=C1Cl)=CC=C1N1CCN(C)CC1 LLNOJHCNLKHREZ-UHFFFAOYSA-N 0.000 description 1
- QOHUKCNSJNYUPB-UHFFFAOYSA-N ethyl 8-[3-fluoro-4-(4-methylpiperazin-1-yl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC(C=C1F)=CC=C1N1CCN(C)CC1 QOHUKCNSJNYUPB-UHFFFAOYSA-N 0.000 description 1
- KMCBSWOVKYWTCL-UHFFFAOYSA-N ethyl 8-[3-methoxy-5-(trifluoromethyl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC(OC)=CC(C(F)(F)F)=C1 KMCBSWOVKYWTCL-UHFFFAOYSA-N 0.000 description 1
- QNZWMXBASDLCDH-UHFFFAOYSA-N ethyl 8-[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)anilino]-2-[2-[(2-methylpropan-2-yl)oxycarbonylamino]ethyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N1=C2C3=NN(CCNC(=O)OC(C)(C)C)C(C(=O)OCC)=C3CCC2=CN=C1NC(C=C1C(F)(F)F)=CC=C1N1CCN(C)CC1 QNZWMXBASDLCDH-UHFFFAOYSA-N 0.000 description 1
- VNTZDQPTBYFMRO-UHFFFAOYSA-N ethyl 8-[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)anilino]-2-[3-[(2-methylpropan-2-yl)oxycarbonylamino]propyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N1=C2C3=NN(CCCNC(=O)OC(C)(C)C)C(C(=O)OCC)=C3CCC2=CN=C1NC(C=C1C(F)(F)F)=CC=C1N1CCN(C)CC1 VNTZDQPTBYFMRO-UHFFFAOYSA-N 0.000 description 1
- LVUMODVSPBTREC-UHFFFAOYSA-N ethyl 8-[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)anilino]-4,5-dihydro-2h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C=1NN=C(C2=N3)C=1CCC2=CN=C3NC(C=C1C(F)(F)F)=CC=C1N1CCN(C)CC1 LVUMODVSPBTREC-UHFFFAOYSA-N 0.000 description 1
- UDSXFPYVCWSQSO-UHFFFAOYSA-N ethyl 8-[4-(4-methylpiperazin-1-yl)anilino]-2-[2-[(2-methylpropan-2-yl)oxycarbonylamino]ethyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N1=C2C3=NN(CCNC(=O)OC(C)(C)C)C(C(=O)OCC)=C3CCC2=CN=C1NC(C=C1)=CC=C1N1CCN(C)CC1 UDSXFPYVCWSQSO-UHFFFAOYSA-N 0.000 description 1
- HZBYYUBJXQNHCR-UHFFFAOYSA-N ethyl 8-[4-(4-methylpiperazin-1-yl)anilino]-2-[3-[(2-methylpropan-2-yl)oxycarbonylamino]propyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N1=C2C3=NN(CCCNC(=O)OC(C)(C)C)C(C(=O)OCC)=C3CCC2=CN=C1NC(C=C1)=CC=C1N1CCN(C)CC1 HZBYYUBJXQNHCR-UHFFFAOYSA-N 0.000 description 1
- YONRYKQPBKKVFU-UHFFFAOYSA-N ethyl 8-[4-(4-methylpiperazin-1-yl)anilino]-4,5-dihydro-2h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C=1NN=C(C2=N3)C=1CCC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 YONRYKQPBKKVFU-UHFFFAOYSA-N 0.000 description 1
- NCXIDSHYSMGQKQ-UHFFFAOYSA-N ethyl 8-[4-(hydroxymethyl)anilino]-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1=CC=C(CO)C=C1 NCXIDSHYSMGQKQ-UHFFFAOYSA-N 0.000 description 1
- JBDVMJNRPGCLNN-UHFFFAOYSA-N ethyl 8-amino-1,5,5-trimethyl-4h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1C(C)(C)C2=CN=C(N)N=C2C2=C1C(C(=O)OCC)=NN2C JBDVMJNRPGCLNN-UHFFFAOYSA-N 0.000 description 1
- GUAHQNVJSKHHDA-UHFFFAOYSA-N ethyl 8-amino-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1CC2=CN=C(N)N=C2C2=C1C(C(=O)OCC)=NN2C GUAHQNVJSKHHDA-UHFFFAOYSA-N 0.000 description 1
- UWHQZMYZCIZYEW-UHFFFAOYSA-N ethyl 8-amino-2-(3-aminopropyl)-1,3,4,5-tetrahydropyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride Chemical compound Cl.C1CC2=CN=C(N)N=C2C2=C1C(C(=O)OCC)N(CCCN)N2 UWHQZMYZCIZYEW-UHFFFAOYSA-N 0.000 description 1
- JWNUCZJVWXMGSU-UHFFFAOYSA-N ethyl 8-amino-2-(3-aminopropyl)-4,4-dimethyl-3,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride Chemical compound Cl.CC1(C)CC2=CN=C(N)N=C2C2=C1C(C(=O)OCC)N(CCCN)N2 JWNUCZJVWXMGSU-UHFFFAOYSA-N 0.000 description 1
- XEGIFNTURGTVEV-UHFFFAOYSA-N ethyl 8-amino-2-[2-[(2-methylpropan-2-yl)oxycarbonylamino]ethyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N1=C(N)N=C2C3=NN(CCNC(=O)OC(C)(C)C)C(C(=O)OCC)=C3CCC2=C1 XEGIFNTURGTVEV-UHFFFAOYSA-N 0.000 description 1
- CHKSUQVXWUBMBM-UHFFFAOYSA-N ethyl 8-amino-2-[3-[(2-methylpropan-2-yl)oxycarbonylamino]propyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N1=C(N)N=C2C3=NN(CCCNC(=O)OC(C)(C)C)C(C(=O)OCC)=C3CCC2=C1 CHKSUQVXWUBMBM-UHFFFAOYSA-N 0.000 description 1
- RXVFSQHKTCIWTE-UHFFFAOYSA-N ethyl 8-amino-4,4-dimethyl-1-trityl-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CC1(C)CC2=CN=C(N)N=C2C2=C1C(C(=O)OCC)=NN2C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 RXVFSQHKTCIWTE-UHFFFAOYSA-N 0.000 description 1
- OWYHOWTUQQEDMG-UHFFFAOYSA-N ethyl 8-amino-4,4-dimethyl-2,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CC1(C)CC2=CN=C(N)N=C2C2=C1C(C(=O)OCC)=NN2 OWYHOWTUQQEDMG-UHFFFAOYSA-N 0.000 description 1
- OHRUSZAGVFLQGE-UHFFFAOYSA-N ethyl 8-amino-4,4-dimethyl-2-[2-[(2-methylpropan-2-yl)oxycarbonylamino]ethyl]-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound NC1=NC=C2CC(C)(C)C3=C(C(=O)OCC)N(CCNC(=O)OC(C)(C)C)N=C3C2=N1 OHRUSZAGVFLQGE-UHFFFAOYSA-N 0.000 description 1
- IVIPNBVBGFQFGC-UHFFFAOYSA-N ethyl 8-amino-4,4-dimethyl-2-[3-[(2-methylpropan-2-yl)oxycarbonylamino]propyl]-3,5-dihydro-1h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CC1(C)CC2=CN=C(N)N=C2C2=C1C(C(=O)OCC)N(CCCNC(=O)OC(C)(C)C)N2 IVIPNBVBGFQFGC-UHFFFAOYSA-N 0.000 description 1
- ASRLKONJAOKZBY-UHFFFAOYSA-N ethyl 8-amino-4,4-dimethyl-2-trityl-3,5-dihydro-1h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N1C(C2=NC(N)=NC=C2CC2(C)C)=C2C(C(=O)OCC)N1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 ASRLKONJAOKZBY-UHFFFAOYSA-N 0.000 description 1
- SKJXAXWOMHRBRX-UHFFFAOYSA-N ethyl 8-amino-4,5-dihydro-2h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1CC2=CN=C(N)N=C2C2=C1C(C(=O)OCC)=NN2 SKJXAXWOMHRBRX-UHFFFAOYSA-N 0.000 description 1
- OPUYYVDBFJRZHZ-UHFFFAOYSA-N ethyl 8-anilino-1,4,4-trimethyl-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1C(C)(C)CC2=CN=C3NC1=CC=CC=C1 OPUYYVDBFJRZHZ-UHFFFAOYSA-N 0.000 description 1
- HLDXLIHWXPQBFV-UHFFFAOYSA-N ethyl 8-anilino-1,5,5-trimethyl-4h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CC(C)(C)C2=CN=C3NC1=CC=CC=C1 HLDXLIHWXPQBFV-UHFFFAOYSA-N 0.000 description 1
- VQTMJXZOFMWOFI-UHFFFAOYSA-N ethyl 8-anilino-2-[2-[(2-methylpropan-2-yl)oxycarbonylamino]ethyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N1=C2C3=NN(CCNC(=O)OC(C)(C)C)C(C(=O)OCC)=C3CCC2=CN=C1NC1=CC=CC=C1 VQTMJXZOFMWOFI-UHFFFAOYSA-N 0.000 description 1
- ZTGSZKZCEONFIE-UHFFFAOYSA-N ethyl 8-anilino-2-[3-[(2-methylpropan-2-yl)oxycarbonylamino]propyl]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N1=C2C3=NN(CCCNC(=O)OC(C)(C)C)C(C(=O)OCC)=C3CCC2=CN=C1NC1=CC=CC=C1 ZTGSZKZCEONFIE-UHFFFAOYSA-N 0.000 description 1
- MBNBMPCAESKNSS-UHFFFAOYSA-N ethyl 8-anilino-4,4-dimethyl-2,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NNC(C2=N3)=C1C(C)(C)CC2=CN=C3NC1=CC=CC=C1 MBNBMPCAESKNSS-UHFFFAOYSA-N 0.000 description 1
- TUMCEIYPTKWPPX-UHFFFAOYSA-N ethyl 8-anilino-4,4-dimethyl-2-[2-[(2-methylpropan-2-yl)oxycarbonylamino]ethyl]-5h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound N=1N(CCNC(=O)OC(C)(C)C)C(C(=O)OCC)=C(C(CC2=CN=3)(C)C)C=1C2=NC=3NC1=CC=CC=C1 TUMCEIYPTKWPPX-UHFFFAOYSA-N 0.000 description 1
- KPLUFEYLIYOMJD-UHFFFAOYSA-N ethyl 8-anilino-4,4-dimethyl-2-[3-[(2-methylpropan-2-yl)oxycarbonylamino]propyl]-3,5-dihydro-1h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1N(CCCNC(=O)OC(C)(C)C)NC(C2=N3)=C1C(C)(C)CC2=CN=C3NC1=CC=CC=C1 KPLUFEYLIYOMJD-UHFFFAOYSA-N 0.000 description 1
- USDXBWZWNILIJR-UHFFFAOYSA-N ethyl 8-benzyl-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3CC1=CC=CC=C1 USDXBWZWNILIJR-UHFFFAOYSA-N 0.000 description 1
- UAJSDTVGGAFGNY-UHFFFAOYSA-N ethyl 8-benzylsulfanyl-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound CCOC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3SCC1=CC=CC=C1 UAJSDTVGGAFGNY-UHFFFAOYSA-N 0.000 description 1
- UNABKLRSHQIFGV-UHFFFAOYSA-N ethyl 8-ethoxy-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1CC2=CN=C(OCC)N=C2C2=C1C(C(=O)OCC)=NN2C UNABKLRSHQIFGV-UHFFFAOYSA-N 0.000 description 1
- AEYUHDUONIAEJK-UHFFFAOYSA-N ethyl 8-iodo-1,5,5-trimethyl-4h-pyrazolo[4,3-h]quinazoline-3-carboxylate Chemical compound C1C(C)(C)C2=CN=C(I)N=C2C2=C1C(C(=O)OCC)=NN2C AEYUHDUONIAEJK-UHFFFAOYSA-N 0.000 description 1
- WUDNUHPRLBTKOJ-UHFFFAOYSA-N ethyl isocyanate Chemical compound CCN=C=O WUDNUHPRLBTKOJ-UHFFFAOYSA-N 0.000 description 1
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- QKLCQKPAECHXCQ-UHFFFAOYSA-N ethyl phenylglyoxylate Chemical compound CCOC(=O)C(=O)C1=CC=CC=C1 QKLCQKPAECHXCQ-UHFFFAOYSA-N 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000007941 film coated tablet Substances 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- FXHZCDUQCKTJIL-UHFFFAOYSA-N fluoren-1-one;piperidine Chemical compound C1CCNCC1.C1=CC=C2C3=CC=CC(=O)C3=CC2=C1 FXHZCDUQCKTJIL-UHFFFAOYSA-N 0.000 description 1
- IRXSLJNXXZKURP-UHFFFAOYSA-N fluorenylmethyloxycarbonyl chloride Chemical compound C1=CC=C2C(COC(=O)Cl)C3=CC=CC=C3C2=C1 IRXSLJNXXZKURP-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229960000789 guanidine hydrochloride Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 description 1
- 229940083094 guanine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000005241 heteroarylamino group Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 1
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 1
- 229940125697 hormonal agent Drugs 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- WICNYNXYKZNNSN-UHFFFAOYSA-N hydron;4-methylpiperazine-1-carbonyl chloride;chloride Chemical compound Cl.CN1CCN(C(Cl)=O)CC1 WICNYNXYKZNNSN-UHFFFAOYSA-N 0.000 description 1
- RGZRSLKIOCHTSI-UHFFFAOYSA-N hydron;n-methylhydroxylamine;chloride Chemical compound Cl.CNO RGZRSLKIOCHTSI-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 239000000677 immunologic agent Substances 0.000 description 1
- 229940124541 immunological agent Drugs 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229940045996 isethionic acid Drugs 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 150000002541 isothioureas Chemical class 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960004393 lidocaine hydrochloride Drugs 0.000 description 1
- YECIFGHRMFEPJK-UHFFFAOYSA-N lidocaine hydrochloride monohydrate Chemical compound O.[Cl-].CC[NH+](CC)CC(=O)NC1=C(C)C=CC=C1C YECIFGHRMFEPJK-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 description 1
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical class [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 235000012254 magnesium hydroxide Nutrition 0.000 description 1
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Substances [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- QLNWXBAGRTUKKI-UHFFFAOYSA-N metacetamol Chemical compound CC(=O)NC1=CC=CC(O)=C1 QLNWXBAGRTUKKI-UHFFFAOYSA-N 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 229940087646 methanolamine Drugs 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- NNBBQNFHCVVQHZ-UHFFFAOYSA-N methyl carbamimidothioate;sulfuric acid Chemical compound CSC(N)=N.OS(O)(=O)=O NNBBQNFHCVVQHZ-UHFFFAOYSA-N 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- LYRJEVGXXUHVHG-UHFFFAOYSA-N n,1,4,4-tetramethyl-8-[3-[(4-methylpiperazin-1-yl)methyl]anilino]-5h-pyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CNC(=O)C1=NN(C)C(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=1)=CC=CC=1CN1CCN(C)CC1 LYRJEVGXXUHVHG-UHFFFAOYSA-N 0.000 description 1
- DIDONUZOGIKCCY-UHFFFAOYSA-N n,1,4,4-tetramethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-5h-pyrazolo[4,3-h]quinazoline-3-carboxamide;trihydrochloride Chemical compound Cl.Cl.Cl.CNC(=O)C1=NN(C)C(C2=N3)=C1C(C)(C)CC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 DIDONUZOGIKCCY-UHFFFAOYSA-N 0.000 description 1
- VHBNWKZVXAJYTR-UHFFFAOYSA-N n,1-dimethyl-8-(piperidin-4-ylamino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CNC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC1CCNCC1 VHBNWKZVXAJYTR-UHFFFAOYSA-N 0.000 description 1
- ZZHLJJZYXUQIBQ-UHFFFAOYSA-N n,1-dimethyl-8-[4-(4-methylpiperazin-1-yl)anilino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound CNC(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 ZZHLJJZYXUQIBQ-UHFFFAOYSA-N 0.000 description 1
- DBNQIOANXZVWIP-UHFFFAOYSA-N n,n-dimethyl-1,1-bis[(2-methylpropan-2-yl)oxy]methanamine Chemical compound CC(C)(C)OC(N(C)C)OC(C)(C)C DBNQIOANXZVWIP-UHFFFAOYSA-N 0.000 description 1
- OVLVTFNPCGHUTO-HHHXNRCGSA-N n-[(1s)-2-(dimethylamino)-1-phenylethyl]-1-methyl-8-[4-(4-methylpiperazin-1-yl)anilino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound N([C@H](CN(C)C)C=1C=CC=CC=1)C(=O)C1=NN(C)C(C2=N3)=C1CCC2=CN=C3NC(C=C1)=CC=C1N1CCN(C)CC1 OVLVTFNPCGHUTO-HHHXNRCGSA-N 0.000 description 1
- TYQWGUCSXZECEV-RUZDIDTESA-N n-[(1s)-2-azido-1-phenylethyl]-1-methyl-8-[4-(4-methylpiperazin-1-yl)anilino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC=C(CCC2=C3N(C)N=C2C(=O)N[C@H](CN=[N+]=[N-])C=2C=CC=CC=2)C3=N1 TYQWGUCSXZECEV-RUZDIDTESA-N 0.000 description 1
- GSJNDXKXMIRPMK-UHFFFAOYSA-N n-[(3-fluorophenyl)methyl]-1-methyl-8-(4-morpholin-4-ylanilino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide;hydrochloride Chemical compound Cl.C1=2CCC3=CN=C(NC=4C=CC(=CC=4)N4CCOCC4)N=C3C=2N(C)N=C1C(=O)NCC1=CC=CC(F)=C1 GSJNDXKXMIRPMK-UHFFFAOYSA-N 0.000 description 1
- ZRHZLEGVEVZEMF-UHFFFAOYSA-N n-[(3-fluorophenyl)methyl]-1-methyl-8-(4-morpholin-4-ylanilino)-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide;methanesulfonic acid Chemical compound CS(O)(=O)=O.C1=2CCC3=CN=C(NC=4C=CC(=CC=4)N4CCOCC4)N=C3C=2N(C)N=C1C(=O)NCC1=CC=CC(F)=C1 ZRHZLEGVEVZEMF-UHFFFAOYSA-N 0.000 description 1
- TXNFDCNKCZXVTK-UHFFFAOYSA-N n-benzyl-1-methyl-8-[4-(4-methyl-4-oxidopiperazin-4-ium-1-yl)anilino]-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=2CCC3=CN=C(NC=4C=CC(=CC=4)N4CC[N+](C)([O-])CC4)N=C3C=2N(C)N=C1C(=O)NCC1=CC=CC=C1 TXNFDCNKCZXVTK-UHFFFAOYSA-N 0.000 description 1
- PYNNKMHZEUWQGS-UHFFFAOYSA-N n-benzyl-8-(cyclopentylamino)-n-hydroxy-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=2CCC3=CN=C(NC4CCCC4)N=C3C=2N(C)N=C1C(=O)N(O)CC1=CC=CC=C1 PYNNKMHZEUWQGS-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ALXPUKLGPACDFZ-UHFFFAOYSA-N n-cyclohexyl-8-(cyclopentylamino)-n-hydroxy-1-methyl-4,5-dihydropyrazolo[4,3-h]quinazoline-3-carboxamide Chemical compound C1=2CCC3=CN=C(NC4CCCC4)N=C3C=2N(C)N=C1C(=O)N(O)C1CCCCC1 ALXPUKLGPACDFZ-UHFFFAOYSA-N 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ALCSCNYDTSWHDD-UHFFFAOYSA-N n-tritylhydroxylamine Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(NO)C1=CC=CC=C1 ALCSCNYDTSWHDD-UHFFFAOYSA-N 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 1
- XIMLAVRHZBUYBE-UHFFFAOYSA-N piperidin-2-one;hydrate;hydrochloride Chemical compound O.Cl.O=C1CCCCN1 XIMLAVRHZBUYBE-UHFFFAOYSA-N 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002599 prostaglandin synthase inhibitor Substances 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 239000003528 protein farnesyltransferase inhibitor Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- LCXHGYDKTPUJPT-UHFFFAOYSA-N pyrazol-1-ylurea Chemical class NC(=O)NN1C=CC=N1 LCXHGYDKTPUJPT-UHFFFAOYSA-N 0.000 description 1
- USPWKWBDZOARPV-UHFFFAOYSA-N pyrazolidine Chemical compound C1CNNC1 USPWKWBDZOARPV-UHFFFAOYSA-N 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- ZVJHJDDKYZXRJI-UHFFFAOYSA-N pyrroline Natural products C1CC=NC1 ZVJHJDDKYZXRJI-UHFFFAOYSA-N 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 102000009076 src-Family Kinases Human genes 0.000 description 1
- 108010087686 src-Family Kinases Proteins 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 239000007940 sugar coated tablet Substances 0.000 description 1
- 238000009495 sugar coating Methods 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 102000013498 tau Proteins Human genes 0.000 description 1
- 108010026424 tau Proteins Proteins 0.000 description 1
- 239000003277 telomerase inhibitor Substances 0.000 description 1
- 125000006633 tert-butoxycarbonylamino group Chemical group 0.000 description 1
- CMIBWIAICVBURI-UHFFFAOYSA-N tert-butyl 3-aminopyrrolidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(N)C1 CMIBWIAICVBURI-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- TZRQZPMQUXEZMC-UHFFFAOYSA-N tert-butyl n-(2-bromoethyl)carbamate Chemical compound CC(C)(C)OC(=O)NCCBr TZRQZPMQUXEZMC-UHFFFAOYSA-N 0.000 description 1
- IOKGWQZQCNXXLD-UHFFFAOYSA-N tert-butyl n-(3-bromopropyl)carbamate Chemical compound CC(C)(C)OC(=O)NCCCBr IOKGWQZQCNXXLD-UHFFFAOYSA-N 0.000 description 1
- UQJXXWHAJKRDKY-UHFFFAOYSA-N tert-butyl n-[[(2-methylpropan-2-yl)oxycarbonylamino]-methylsulfanylmethylidene]carbamate Chemical compound CC(C)(C)OC(=O)NC(SC)=NC(=O)OC(C)(C)C UQJXXWHAJKRDKY-UHFFFAOYSA-N 0.000 description 1
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- CBDKQYKMCICBOF-UHFFFAOYSA-N thiazoline Chemical compound C1CN=CS1 CBDKQYKMCICBOF-UHFFFAOYSA-N 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- GRGCWBWNLSTIEN-UHFFFAOYSA-N trifluoromethanesulfonyl chloride Chemical compound FC(F)(F)S(Cl)(=O)=O GRGCWBWNLSTIEN-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- BJAARRARQJZURR-UHFFFAOYSA-N trimethylazanium;hydroxide Chemical compound O.CN(C)C BJAARRARQJZURR-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- WRSWIWOVJBYZAW-UHFFFAOYSA-M zinc;methanidylbenzene;bromide Chemical compound Br[Zn+].[CH2-]C1=CC=CC=C1 WRSWIWOVJBYZAW-UHFFFAOYSA-M 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
- C07D487/14—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/551—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/08—Drugs for disorders of the urinary system of the prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/54—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings condensed with carbocyclic rings or ring systems
- C07D231/56—Benzopyrazoles; Hydrogenated benzopyrazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/70—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
- C07D239/72—Quinazolines; Hydrogenated quinazolines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
Definitions
- the present invention relates to pyrazolo-quinazoline derivatives, to a process for their preparation, to pharmaceutical compositions comprising them, and to their use as therapeutic agents, particularly in the treatment of cancer and cell proliferation disorders.
- cytotoxic drugs such as, e.g., fluorouracil (5-FU), doxorubicin and camptothecins, damage DNA or affect cellular metabolic pathways and thus cause, in many cases, an indirect block of the cell cycle. Therefore, by producing an irreversible damage to both normal and tumor cells, these agents result in a significant toxicity and side-effects.
- restriction points a family of enzymes known as the cyclin-dependent kinases (cdk).
- cdk cyclin-dependent kinases
- Checkpoint controls are defective in tumor cells due, in part, to disregulation of cdk activity. For example, altered expression of cyclin E and cdks has been observed in tumor cells, and deletion of the cdk inhibitor p27 KIP gene in mice has been shown to result in a higher incidence of cancer.
- cdks are rate-limiting enzymes in cell cycle progression and, as such, represent molecular targets for therapeutic intervention.
- the direct inhibition of cdk/cyclin kinase activity should be helpful in restricting the unregulated proliferation of a tumor cell.
- Aurora kinases Further protein kinases known in the art as being implicated in the growth of cancer cells are the Aurora kinases, in particular Aurora-2.
- Aurora-2 was found to be over-expressed in a number of different tumor types. Its gene locus maps at 20q13, a chromosomal region frequently amplified in many cancers, including breast [Cancer Res. 1999, 59(9) 2041-4] and colon.
- the pyrazolo-quinazolines of the invention are useful in the treatment of a variety of cancers including, but not limited to: carcinoma such as bladder, breast, colon, kidney, liver, lung, including small cell lung cancer, esophagus, gall-bladder, ovary, pancreas, stomach, cervix, thyroid, prostate, and skin, including squamous cell carcinoma; hematopoietic tumors of lymphoid lineage including leukaemia, acute lymphocitic leukaemia, acute lymphoblastic leukaemia, B-cell lymphoma, T-cell-lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma and Burkett's lymphoma; hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias, myelodysplastic syndrome and promyelocytic leukaemia; tumors of
- these pyrazolo-quinazoline derivatives are also useful in the treatment of a variety of cell proliferative disorders such as, for example, benign prostate hyperplasia, familial adenomatosis, polyposis, neurofibromatosis, psoriasis, vascular smooth cell proliferation associated with atherosclerosis, pulmonary fibrosis, arthritis, glomerulonephritis and post-surgical stenosis and restenosis.
- the compounds of the invention may be useful in treatment of Alzheimer's disease, as suggested by the fact that cdk5 is involved in the phosphorylation of tau protein (J. Biochem. 117, 741-749, 1995).
- the compounds of this invention may also be useful in the treatment of cancer, viral infections, prevention of AIDS development in HIV-infected individuals, autoimmune diseases and neurodegenerative disorders.
- the compounds of this invention may be useful in inhibiting tumor angiogenesis and metastasis, as well as in the treatment of organ transplant rejection and host versus graft disease.
- the compounds of the invention may also act as inhibitor of other protein kinases, e.g., protein kinase C in different isoforms, Met, PAK-4, PAK-5, ZC-1, STLK-2, DDR-2, Bub-1, PLK, Chk1, Chk2, HER2, raf1, MEK1, MAPK, EGF-R, PDGF-R, FGF-R, IGF-R, PI3K, weel kinase, Src, Abl, Akt, MAPK, ILK, MK-2, IKK-2, Cdc7, Nek, and thus be effective in the treatment of diseases associated with other protein kinases.
- protein kinase C in different isoforms, Met, PAK-4, PAK-5, ZC-1, STLK-2, DDR-2, Bub-1, PLK, Chk1, Chk2, HER2, raf1, MEK1, MAPK, EGF-R, PDGF-R, FGF-R, I
- the compounds of the invention are also useful in the treatment and prevention of radiotherapy-induced or chemotherapy-induced alopecia.
- the present invention provides a method for treating cell proliferative disorders caused by and/or associated with an altered protein kinase activity, like for instance Aurora 2 activity and cell cycle dependent kinase activity, by administering to a mammal in need thereof an effective amount of a pyrazolo-quinazoline derivative represented by formula (Ia) or (Ib)
- R is hydrogen or an optionally substituted group selected from amino, straight or branched C 1 -C 6 alkyl, C 3 -C 10 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl;
- X is a single bond or a divalent radical selected from —NR′—, —CONR′—, —NH—CO—NH—, —O—, —S— or —SO 2 —, wherein R′ is hydrogen or an optionally substituted group selected from straight or branched C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyl or, together with the nitrogen atom to which they are bonded, R and R′ may form a 5 to 6 membered heteroaryl or heterocyclyl group optionally containing one additional
- the present invention also provides a method for treating cell proliferative disorders caused by and/or associated with an altered protein kinase activity, like cell cycle dependent kinase activity, by administering to a mammal in need thereof an effective amount of a pyrazolo-quinazoline derivative represented by the above formula (Ia) or (Ib).
- the cell proliferative disorder is selected from the group consisting of cancer, Alzheimer's disease, viral infections, auto-immune diseases and neurodegenerative disorders.
- cancers that may be treated include carcinoma, squamous cell carcinoma, hematopoietic tumors of myeloid or lymphoid lineage, tumors of mesenchymal origin, tumors of the central and peripheral nervous system, melanoma, seminoma, teratocarcinoma, osteosarcoma, xeroderma pigmentosum, keratoxanthoma, thyroid follicular cancer, and Kaposi's sarcoma.
- the cell proliferative disorder is selected from the group consisting of benign prostate hyperplasia, familial adenomatosis, polyposis, neuro-fibromatosis, psoriasis, vascular smooth cell proliferation associated with atherosclerosis, pulmonary fibrosis, arthritis, glomerulonephritis and post-surgical stenosis and restenosis.
- the inventive method provides tumor angiogenesis and metastasis inhibition as well as treatment of organ transplant rejection and host versus graft disease.
- the inventive methods may also provide cell cycle inhibition or cdk/cyclin dependent inhibition.
- the methods object of the present invention provide treatment and prevention of radiotherapy-induced or chemotherapy-induced alopecia.
- the present invention also provides a pyrazolo-quinazoline derivative represented by formula (Ia) or (Ib)
- R is hydrogen or an optionally substituted group selected from amino, straight or branched C 1 -C 6 alkyl, C 3 -C 10 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl;
- X is a single bond or a divalent radical selected from —NR′—, —CONR′—, —NH—CO—NH—, —O—, —S— or —SO 2 —, wherein R′ is hydrogen or an optionally substituted group selected from straight or branched C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyl or, together with the nitrogen atom to which they are bonded, R and R′ may form a 5 to 6 membered heteroaryl or heterocyclyl group optionally containing one additional
- the present invention also includes methods of synthesizing the pyrazolo-quinazoline derivatives represented by formulae (Ia) or (Ib) that, unless otherwise provided, may be conveniently grouped and defined as compounds of formula (I).
- Pharmaceutical compositions comprising the pyrazolo-quinazoline derivatives of formula (I) are also included in the present invention.
- protein kinase inhibitors Several heterocyclic compounds are known in the art as protein kinase inhibitors.
- 2-carboxamido-pyrazoles and 2-ureido-pyrazoles, and derivatives thereof, have been disclosed as protein kinase inhibitors in the international patent applications WO 01/12189, WO 01/12188, WO 02/48114 and WO 02/70515, all in the name of the applicant itself.
- Fused bicyclic compounds comprising pyrazole moieties and possessing kinase inhibitory activity have been also disclosed in WO 00/69846, WO 02/12242 as well as WO 03/028720 and still unpublished U.S. patent application 60/381,092 (filed in May 17, 2002), all in the name of the applicant itself.
- Fused tricyclic derivatives possessing kinase inhibitory activity are also disclosed in two copending applications PCT/EP03/01594 and PCT/US03/04844 (both claiming Feb. 19, 2002 priority from U.S. applications No. 60/357,918 and No. 60/357,960, respectively) and herewith incorporated by reference; none of the said applications specifically disclose the derivatives in re.
- fused polycyclic pyrimidine derivatives as protein kinase inhibitors are also disclosed in the international patent applications WO 98/58926 and WO 98/28281, both in the name of Celltech Therapeutics Ltd; though comprised within the general formula of both applications, no specific examples of pyrazolo-quinazolines of the present invention are exemplified therein.
- heterocyclic ring fused pyrimidine derivatives for the treatment of hyperproliferative diseases are disclosed in WO 96/40142 in the name of Pfizer Inc.
- the compounds of formula (I) of the invention may have asymmetric carbon atoms and may therefore exist as individual optical isomers, as racemic admixtures or as any other admixture comprising a majority of one of the two optical isomers, which are all to be intended as within the scope of the present invention.
- Prodrugs are any covalently bonded compounds which release the active parent drug, according to formula (I), in vivo.
- each tautomeric form is contemplated as being included within this invention whether existing in equilibrium or predominantly in one form.
- C 1 -C 6 alkyl we intend any of the groups such as, for instance, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, n-hexyl, and the like.
- C 3 -C 10 cycloalkyl we intend, unless otherwise provided, a cycloaliphatic ring such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, as well as any bridged cycloalkyl group with up to 10 carbon atoms.
- aryl includes carbocyclic or heterocyclic hydrocarbons with from 1 to 2 ring moieties, either fused or linked to each other by single bonds, wherein at least one of the rings is aromatic; if present, any aromatic heterocyclic hydrocarbon also referred to as heteroaryl group, comprises a 5 to 6 membered ring with from 1 to 3 heteroatoms selected among N, O or S.
- aryl groups are, for instance, phenyl, biphenyl, ⁇ - or ⁇ -naphthyl, dihydronaphthyl, thienyl, benzothienyl, furyl, benzofuranyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolyl, isoindolyl, purinyl, quinolyl, isoquinolyl, dihydroquinolinyl, quinoxalinyl, benzodioxolyl, indanyl, indenyl, triazolyl, and the like.
- heterocyclyl includes 5 to 6 membered saturated, partly unsaturated or fully unsaturated heterocycles with from 1 to 3 heteroatoms selected among N, O or S.
- saturated or partly unsaturated heterocycles are, for instance, pyran, pyrrolidine, pyrroline, imidazoline, imidazolidine, pyrazolidine, pyrazoline, thiazoline, thiazolidine, dihydrofuran, tetrahydrofuran, 1,3-dioxolane, piperidine, piperazine, morpholine and the like.
- any of the above R, R′, R 1 , R′′ and R′′′ group may be optionally substituted in any of their free positions by one or more groups, for instance 1 to 6 groups, independently selected from: halogen, nitro, oxo groups ( ⁇ O), cyano, azido, alkyl, polyfluorinated alkyl, hydroxyalkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyl, cycloalkyl, alkylaryl, alkylheterocyclyl, hydroxy, alkoxy, polyfluorinated alkoxy, aryloxy, arylalkyloxy, heterocyclyloxy, heterocyclylalkyloxy, methylenedioxy, alkylcarbonyloxy, alkylcarbonyloxyalkyl, arylcarbonyloxy, carboxy, alkoxycarbonyl, alkoxycarbonylalkyl, aryloxycarbon
- halogen atom we intend a fluorine, chlorine, bromine or iodine atom.
- perfluorinated alkyl we intend any of the above straight or branched C 1 -C 6 alkyl groups which are substituted by more than one fluorine atom such as, for instance, trifluoromethyl, trifluoroethyl, 1,1,1,3,3,3-hexafluoropropyl, and the like.
- alkoxy aryloxy, heterocyclyloxy and derivatives thereof, e.g. perfluorinated alkoxy
- alkoxy, aryloxy, heterocyclyloxy and derivatives thereof e.g. perfluorinated alkoxy
- any group which name is a composite name such as, for instance, arylalkyl or heterocyclylalkyl has to be intended as conventionally construed by the parts from which it derives, e.g. by an alkyl group which is further substituted by aryl or heterocyclyl, wherein alkyl, aryl or heterocyclyl are as above defined.
- any of the terms such as, for instance, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, alkoxycarbonylamino, heterocyclylcarbonyl, heterocyclylcarbonylamino, cycloalkyloxycarbonyl and the like, include groups wherein the alkyl, alkoxy, aryl, cycloalkyl and heterocyclyl moieties are as above defined.
- Pharmaceutically acceptable salts of the compounds of formula (I) include the acid addition salts with inorganic or organic acids, e.g., nitric, hydrochloric, hydrobromic, sulfuric, perchloric, phosphoric, acetic, trifluoroacetic propionic, glycolic, lactic, oxalic, malonic, malic, maleic, tartaric, citric, benzoic, cinnamic, mandelic, methanesulphonic, isethionic and salicylic acid, as well as the salts with inorganic or organic bases, e.g., alkali or alkaline-earth metals, especially sodium, potassium, calcium or magnesium hydroxides, carbonates or bicarbonates, acyclic or cyclic amines, preferably methylamine, ethylamine, diethylamine, triethylamine, piperidine and the like.
- inorganic or organic acids e.g., nitric, hydrochloric,
- preferred derivatives are those wherein X is a group —NH— and R 2 is a group selected from —NHR′′, —N(OH)R′′, —OR′′ or —R′′, wherein R′′ is an optionally substituted group selected from C 3 -C 6 cycloalkyl or cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl; and R, R 1 and A are as above defined.
- R 2 is a group selected from —NHR′′, —N(OH)R′′, —OR′′ or —R′′, wherein R′′ is an optionally substituted group selected from C 3 -C 6 cycloalkyl or cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl; and R, R 1 and A are as above defined.
- R 2 is a group selected from —NHR′′, —N(OH)R′′, —OR′′ or —R′′, wherein R′′ is an optionally substituted group selected from C 3 -C 6 cycloalkyl or cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl; and R, R 1 and A are as above defined.
- a class of preferred compounds is represented by those derivatives wherein X is a group —NH— and R 2 is a group —NHR′′ or —N(OH)R′′ wherein R′′ is a hydrogen atom or a straight or branched C 1 -C 4 alkyl group; and wherein A, R and R 1 are as above defined.
- Another class of preferred compounds of the invention of formula (Ia) or (Ib) is represented by the derivatives wherein X is a group —O— and R 2 is a group —NHR′′ or —N(OH)R′′ wherein R′′ is a hydrogen atom or a straight or branched C 1 -C 4 alkyl group; and wherein A, R and R 1 are as above defined.
- Another class of preferred compounds of the invention of formula (Ia) or (Ib) is represented by the derivatives wherein X is a group —S— and R 2 is a group —NHR′′ or —N(OH)R′′ wherein R′′ is a hydrogen atom or a straight or branched C 1 -C 4 alkyl group; and wherein A, R and R 1 are as above defined.
- Another class of preferred compounds of the invention of formula (Ib) is represented by the derivatives wherein R, X and A are as above defined and R 1 and R 2 are linked together through a divalent —(CH 2 ) n —NH— group so as to give rise to:
- A is a group selected from —CH 2 —C(CH 3 ) 2 — or —C(CH 3 ) 2 —CH 2 —.
- R 1 has the above reported meanings, according to the operative conditions set forth in any one of the steps (st.2a), (st.2b) or (st.2c) st.2a) in the presence of a lower alcohol so as to obtain a mixture of the compounds of formula (IVa) and (IVb)
- R 1 is as above reported, and separating their mixture into the single compounds (IVa) and (IVb); st.2b) in the presence of acetic acid so as to obtain a compound of formula (IVa); st.2c) by alkylating a compound of formula (IVa) being obtained in step (st.2a) or (st.2b) and wherein R 1 is hydrogen with the compounds of formula (IVc)
- Y is a suitable leaving group such as mesyl, tosyl, halogen, as to obtain a mixture of compounds of formula (IVa) and (IVb) wherein R 1 is as above reported and separating their mixture into the compounds (IVa) and (IVb); st.3) reacting the compound of formula (IVa) prepared according to any one of steps (st.2a), (st.2b) or (st.2c), or of formula (IVb) prepared according to steps (st.2a) or (st.2c), with dimethylformamide-di-tert-butylacetale so as to obtain a compound of formula (Va) or (Vb)
- R—X— is amino, R 2 is ethoxy, and R 1 is as above defined; and optionally converting them into other derivatives of formula (I); st.4b) with a guanidine derivative of formula (VI)
- R and R 1 are as above reported, X is —NH—, and R 2 is ethoxy; and optionally converting them into other derivatives of formula (I); (4) when, in formula (Ib), A is a —(CH 2 ) 2 — group, —CH 2 —C(CH 3 ) 2 — group, —C(CH 3 ) 2 —CH 2 — group, R 1 is directly linked to R 2 so as to yield a tetra-cyclic ring structure: st.13) reacting a compound of formula (IV), (IX), (XII) wherein R 1 is hydrogen, obtained according to (st.2), (st.6), (st.10) of the process, with triphenylmethyl chloride so as to obtain a compound of formula (XIV)
- Tr stands for trityl (triphenylmethyl); st.14) reacting the compound of formula (XIV) with dimethylformamide-di-tert-butylacetale, as set forth in step (st.3), so as to obtain a compound of formula (XV)
- R is as above defined, A is a —(CH 2 ) 2 — group, —CH 2 —C(CH 3 ) 2 — group, —C(CH 3 ) 2 —CH 2 — group, X is NH, R 1 is trityl and R 2 is ethoxy; st.16) reacting the above compound of formula (Ia) or (Ib) under acidic conditions, so as to obtain the corresponding compound of formula (Ia) or (Ib) wherein R 1 is hydrogen; st.17) reacting the above compound of formula (Ia) or (Ib) with a suitable alkylating agent of formula (XVI) in the presence of litium tert-butylate
- the compounds of formula (I) which are prepared according to the process object of the invention for instance as set forth in steps (st.4a), (st.4b), (st.4c), (st.8), (st.12), (st.13), (st.18) and (st.22), can be conveniently converted into other compounds of formula (I) by operating according to well-known operative conditions.
- R 2 is ethoxy
- R 2 is a group —NHR′′ by treatment with an amine of formula R′′—NH 2 (XXII)
- R 2 is —OH
- R 2 is a group —NR′′R′′′ or —N(OH)R′′, through reaction with a derivative of formula (XXIII) or (XXIV)
- R is hydrogen and X is —NH—
- R is alkyl, cycloalkyl, cycloalkyl-alkyl, arylalkyl, heterocyclyl, heterocyclylalkyl, and X is —NH—, by first converting the amino group to iodine, as described in the previous step (st.29), and by subsequently reacting the iododerivative with an alkyl, cycloalkyl, cycloalkyl-alkyl, arylalkyl, heterocyclyl or heterocyclylalkyl amine of formula RNH 2 (XXVII), wherein R is as therein defined; st.30) wherein R is hydrogen and X is —NH— may be converted into the compounds of formula (I) wherein R is aryl and X is a single bond, by first converting the amino group to iodine, as per the above
- R is as above defined, e.g. methyl
- X is —S—
- R is an optionally substituted alkyl, cycloalkyl, heterocyclyl, cycloalkyl-alkyl, arylalkyl or heterocyclylalkyl group
- R is an optionally substituted alkyl, cycloalkyl, heterocyclyl, cycloalkyl-alkyl, arylalkyl or heterocyclylalkyl group
- R is an optionally substituted alkyl, cycloalkyl, heterocyclyl, cycloalkyl-alkyl, arylalkyl or heterocyclylalkyl group
- R is methyl and X is —O—
- R is an optionally substituted alkyl, cycloalkyl, heterocyclyl, cycloalkyl-alkyl, heterocyclylalkyl group, and X is —NH—, by first converting the MeO— group into HO—, then by reacting it with a triflating agent so as to obtain the corresponding trifluoromethansulfonate and finally by reacting it with an amine of formula R—NH 2 (XXVII) wherein R is an optionally substituted alkyl, cycloalkyl, heterocyclyl, cycloalkylalkyl, arylalkyl or heterocyclylalkyl group
- st.33c wherein R is methyl and X is —O— may be converted into the compounds of formula (I) wherein R is an aryl and X is —NH—, by first converting the MeO— group into —OH, then by reacting it with a triflating agent so as to obtain the corresponding trifluoromethansulfonate and finally by reacting it with an amine of formula RNH 2 (XXVII) wherein R is an optionally substituted aryl in the presence of palladium acetate and BINAP; st.34) wherein A is a —(CH 2 ) 2 — group may be converted into the compounds of formula (I) wherein A is a —CH ⁇ CH— group, under dehydrogenating operative conditions in the presence of a Pd or Pt catalyst.
- steps (st.1) of the process 2-ethoxy-2-cyclohexen-1-one is reacted with diethyl oxalate in the presence of LiN(TMS) 2 and of a suitable solvent such as, for instance, dioxane, tetrahydrofuran or diethyl ether.
- a suitable solvent such as, for instance, dioxane, tetrahydrofuran or diethyl ether.
- step (st.2a) the compound of formula (II) is reacted with a suitable hydrazine derivative of formula (III), in the presence of a lower alcohol such as methanol, ethanol or admixtures thereof.
- a lower alcohol such as methanol, ethanol or admixtures thereof.
- the above reaction is carried out in ethanol at refluxing temperature, so as to obtain a mixture of both compounds of formula (IVa) and (IVb) wherein the former is present in major amounts.
- Their separation into the single compounds (IVa) and (IVb) is carried out under conventional methods, for instance through preparative HPLC.
- step (st.2b) of the process instead, that is by reacting the compound of formula (II) with the hydrazine derivative of formula (III) in the presence of acetic acid, a single compound of formula (IVa) is obtained.
- the reaction is preferably carried out at room temperature.
- step (st.2c) of the process the compound of formula (IVa) wherein R 1 is hydrogen, is reacted with a suitable compound of formula (IVc) in the presence of a base such as sodium hydride in a suitable solvent, for instance tetrahydrofuran, dioxane or dimethylformamide, at a temperature ranging from room temperature to 100° C., so as to obtain a mixture of compounds (IVa) and (IVb) wherein the former is present in major amounts, and by separating them under conventional methods, for instance through preparative HPLC.
- a base such as sodium hydride
- a suitable solvent for instance tetrahydrofuran, dioxane or dimethylformamide
- step (st.3) of the process the compound of formula (IVa) or (IVb) is reacted with dimethylformamide-di-tert-butylacetale, in the presence of a suitable solvent such as, for instance, dimethylformamide, so as to get the compounds of formula (Va) or (Vb), respectively.
- a suitable solvent such as, for instance, dimethylformamide
- the reaction is carried out at a temperature ranging from room temperature to about 70° C.
- the compound of formula (Va) or (Vb) is reacted with guanidine, guanidine salts or derivatives thereof, alkylisothiourea or methylisourea so as to obtain the corresponding compound of formula (Ia) or (Ib) through pyrimidine ring formation.
- Any of the above reactions is carried out according to conventional methods.
- the reactions with guanidine or salts thereof such as hydrochloride, carbonate or nitrate, or with the guanidine derivative of formula (VI), as set forth in steps (st.4a) or (st.4b), are carried out in a lower alcoholic solvent under neutral or basic conditions, preferably with ethanol and sodium ethylate or with diazabicycloundecene (DBU) at refluxing temperature or, alternatively, in dimethylformamide at a temperature ranging from 80° C. to refluxing temperature in the presence of potassium carbonate.
- DBU diazabicycloundecene
- the reaction with alkylisothiourea (VII), in (st.4c) is carried out in the presence of potassium acetate and in a suitable solvent such as dimethylformamide at refluxing temperature.
- reaction with methylisourea is carried out in a suitable solvent such as acetonitrile and in the presence of a base such as potassium carbonate at refluxing temperature.
- steps (st.5) and (st.6) are carried out under the operative conditions set forth in steps (st.1), (st.2a) or (st.2b) and lead to the desired compounds of formula (IXa) or (IXb), respectively.
- Step (st.7) of the process is preferably carried out by reacting the derivative of formula (IXa) or (IXb) with ethyl formate under basic conditions, preferably in the presence of sodium ethylate or sodium hydride and of a suitable solvent such as, for instance, diethyl ether, tetrahydrofuran or dioxane, at a temperature ranging from room temperature to refluxing temperature.
- a suitable solvent such as, for instance, diethyl ether, tetrahydrofuran or dioxane
- step (st.8) are those previously reported for steps (st.4a and st.4b).
- step (st.9) 2-methoxy-5,5-dimethyl-2-cyclohexen-1-one is reacted with diethyl oxalate in the presence of sodium hydride and in a suitable solvent such as diethyl ether, tetrahydrofuran or dioxane, at refluxing temperature.
- steps (st.10) are essentially those previously reported for steps (st.2a) or (st.2b), and those of steps (st.11) and (st.12) correspond to those of (st.3) and (st.4a and st.4b), respectively.
- step (st.13) of the process it is clear to the skilled man that both compounds of formula (IVa) or (IVb) wherein R 1 is a hydrogen atom are tautomeric forms of a given compound which can be conveniently identified as having formula (IV).
- this same derivative is reacted with triphenylmethyl chloride so as to obtain a compound of formula (XIV) wherein either one of the two pyrazole nitrogen atoms are alkylated with a trityl (e.g. triphenylmethyl) group.
- step (st.14) and (st.15) of the process essentially correspond to those already reported for steps (st.3) and (st.4a and st.4b).
- step (st.16) the trityl group of the compounds of formula (I) is removed under acidic conditions, for instance with trifluoroacetic acid and in the presence of a suitable solvent such as dichloromethane, so as to give rise to the corresponding compound of formula (I) wherein R 1 is hydrogen, in both forms:
- step (st.17) of the process allows to selectively alkylate the pyrazole nitrogen atom which is in proximity of the —COOEt group; this reaction may be carried out with lithium tert-butylate and in a suitable solvent, such as dioxane, diethyl ether or tetrahydrofuran.
- a suitable solvent such as dioxane, diethyl ether or tetrahydrofuran.
- step (st.18) the above compound is first converted into the free amino derivative by working according to conventional methods, for instance under acidic conditions, preferably with hydrochloric acid, in a suitable solvent such as dioxane at refluxing temperature, and subsequently cyclised to the desired tetracyclic derivative in the presence of a base such as cesium carbonate (CsCO 3 ) and in a suitable solvent such as a lower alcohol, preferably methanol, ranging from room temperature to reflux.
- a base such as cesium carbonate (CsCO 3 )
- a suitable solvent such as a lower alcohol, preferably methanol
- steps (st.19) and (st.20) of the process essentially correspond to those already reported for steps (st.3) and (st.4c); the subsequent acidic treatment of the compound of formula (XVIII) to the compound of formula (XIX) is preferably carried out with an aqueous solution of acetic acid, at a temperature of about 100° C.
- step (st.21) the compound of formula (XIX) is reacted with a suitable derivative of formula (XX) in the presence of sodium hydride and in a suitable solvent, e.g. diethyl ether, tetrahydrofuran or dioxane, at a temperature ranging from about ⁇ 50° C. to room temperature.
- a suitable solvent e.g. diethyl ether, tetrahydrofuran or dioxane
- step (st.22) essentially correspond to those of step (st.1) of the process.
- compounds of formula (I) bearing R 2 as an ethoxy group, or even as an alkoxy group can be converted into a variety of derivatives according to methods well-known in the art to convert carboxyester groups (—COOR 2 ) into carboxamides (—CONH 2 ), N-substituted carboxamides (—CONHR′′) and carboxylic acids (—COOH), for instance as reported in steps (st.23), (st.24) and (st.25).
- the operative conditions are those widely known in the art and may comprise, for instance in the conversion of a carboxyester group into a carboxamide group, the reaction with ammonia or ammonium hydroxide in the presence of a suitable solvent such as a lower alcohol, dimethylformamide or mixtures thereof; preferably the reaction is carried out with ammonium hydroxide in a methanol/dimethylformamide mixture, at a temperature ranging from about 50° C. to about 100° C.
- carboxyester groups may be converted into carboxylic acid derivatives through basic or acidic hydrolysis conditions, widely known in the art.
- step (st.26) of the process compounds of formula (I) wherein R 2 is hydroxy (—COOH) may be converted into carboxamido derivatives (—CONR′′R′′′) or [—CON(OH)R′′ ] wherein R′′ and R′′′ are as formerly indicated, also inclusive of compounds wherein R′′ and R′′′ form, together with the nitrogen atom to which they are bonded, a 5 or 6 membered heteroaryl or heterocyclyl group optionally containing one additional heteroatom selected among N, O or S.
- reaction is carried out in the presence of an amine of formula (XXIII) or of a compound of formula (XXIV), as the case may be, under basic conditions, preferably with N,N-diisopropyl-N-ethylamine or triethylamine, in a suitable solvent such as dichloromethane, dimethylformamide, tetrahydrofuran, or dioxane, and in the presence of a suitable condensing agent such as N,N′-dicyclohexylcarbodiimide (DCC), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDCI) or O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethylisouronium tetrafluoroborate (TBTU); catalytic amounts of (benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluoro
- compounds of formula (I) wherein R—NH— is an amino (—NH 2 ) group may be easily converted into the corresponding carboxamido (—NHCOR) or ureido (—NHCONHR) derivatives, as set forth in steps (st.27) or (st.28) of the process, respectively.
- the reaction with isocyanate is performed with sodium hydride in dimethylformamide whilst the one with the acid chloride may be carried out in a suitable solvent such as pyridine, tetrahydrofuran, ethyl acetate or dioxane, or a mixture of them at room temperature.
- the preparation of the iodo derivatives may be carried out in a suitable solvent such as tetrahydrofuran, diethyl ether or dimethoxyethane, at a temperature ranging from room temperature to about 70° C., and for a time of about 8 hours to about 48 hours.
- a suitable solvent such as tetrahydrofuran, diethyl ether or dimethoxyethane
- the subsequent conversion of the iododerivative may be carried out in a suitable solvent such as dimethylformamide, dimethoxyethane or acetonitrile and in the presence of catalytic amounts of palladium acetate, (2,2′-bis(diphenylphosphino)-1,1′-binaphtalene (BINAP) and a base such as potassium carbonate, potassium phosphate or cesium carbonate, at a temperature ranging from room temperature to 110° C. and for a time ranging from about 2 to about 24 hours.
- a suitable solvent such as dimethylformamide, dimethoxyethane or acetonitrile
- a base such as potassium carbonate, potassium phosphate or cesium carbonate
- Compounds of formula (I) wherein RNH— represents an alkylamino, cycloalkylamino, cycloalkyl-alkylamino, heterocyclylamino, heterocyclylalkylamino can be obtained from the corresponding iodo derivative as set forth in step (st.29a) of the process.
- the reaction may be carried out in a suitable solvent such as dimethylformamide, dioxane or acetonitrile or without solvent at a temperature ranging from 40° C. to 120° C. for a time ranging from 3 to 18 hours.
- R—X— represents an alkylthio group
- R—S— alkylthio group
- the oxidative step may be carried out with oxone in the presence of a suitable solvent, preferably dimethylformamide or dimethylsulfoxide at room temperature; the subsequent replacement of the alkylsulfonyl group with a suitable amino derivative is preferably carried out in the presence of dimethylsulfoxide, dimethylformamide, dimethoxyethane, dioxane, acetonitrile, N-methyl-pyrrolidone or diglyme, at a temperature ranging from room temperature to about 100° C.
- a suitable solvent preferably dimethylformamide or dimethylsulfoxide at room temperature
- the subsequent replacement of the alkylsulfonyl group with a suitable amino derivative is preferably carried out in the presence of dimethylsulfoxide, dimethylformamide, dimethoxyethane, dioxane, acetonitrile, N-methyl-pyrrolidone or diglyme, at a temperature ranging from room temperature to about 100° C.
- this same solvent can also act as oxidizing agent capable of furnishing the desired compounds wherein A represents a group —CH ⁇ CH—.
- step (st.33) of the process compounds of formula (I) wherein X is —O— may be easily obtained by reacting the sulfonyl derivative with an alcohol or phenol derivative of formula (XXX) wherein R is as in formula (I).
- the reaction may be carried out in the presence of a base such as potassium or sodium carbonate, butyl lithium, lithium amide, sodium hydride or the like, in a suitable solvent such as dimethylformamide or tetrahydrofuran, and by working at a temperature ranging from room temperature to about 100° C.
- compounds of formula (I) wherein X is —O— may be obtained by reacting the compounds of formula (Va) and (Vb) with methylisourea sulfate by operating in a suitable solvent such as dioxane, dimethylformamide or acetonitrile in the presence of a base such as sodium or potassium carbonate at a temperature ranging from 50° C. to 100° C.
- a suitable solvent such as dioxane, dimethylformamide or acetonitrile
- the compounds of formula (I) wherein X is —O— and R is hydrogen may be obtained by reacting the compounds of formula (I) wherein X is —O— and R is methyl with trimethylsilyl chloride in the presence of sodium iodide and in a suitable solvent such as dioxane, tetrahydrofuran or acetonitrile at room temperature.
- the compounds of formula (I) wherein X is —O— and R is a trifluorosulfonyl group may be obtained by reacting the compounds of formula (I) wherein X is —O— and R is hydrogen with a triflating agent such as trifluoromethanesulfonic anhydride, trifluoromethanesulfonylchloride or N-phenyl-bis(trifluoromethanesulfonimide), optionally in the presence of a base such as triethylamine or N,N-diisopropyl-N-ethylamine (DIPEA), in a suitable solvent such as dichloromethane, tetrahydrofuran or dioxane at a temperature ranging from ⁇ 78° C. to room temperature.
- a triflating agent such as trifluoromethanesulfonic anhydride, trifluoromethanesulfonylchloride or N-phenyl-bis(triflu
- the compounds of formula (I) wherein X is —O— and R is as described above may be obtained by reacting the compounds of formula (I) wherein X is —O— and R is a trifluoromethanesulfonyl group with an alcohol or phenol of formula (XXX) wherein R is as in formula (I), by operating in a suitable solvent such as dioxane, tetrahydrofuran, dimethoxyethane, acetonitrile, dimethylformamide or dimethylsulfoxide, at a temperature ranging from room temperature to about 90° C., optionally in the presence of a base such as potassium carbonate, potassium tertbutoxide or sodium hydride.
- a suitable solvent such as dioxane, tetrahydrofuran, dimethoxyethane, acetonitrile, dimethylformamide or dimethylsulfoxide
- reaction may be carried out in a suitable solvent such as toluene, dimethylformamide, dimethoxyethane or acetonitrile, in the presence of palladium acetate, ( ⁇ )-BINAP and a base such as potassium phosphate (K 3 PO 4 ) or potassium or cesium carbonate (K 2 CO 3 or CsCO 3 ) at a temperature ranging from 0° C. to 100° C. (st.33c).
- a suitable solvent such as toluene, dimethylformamide, dimethoxyethane or acetonitrile
- a base such as potassium phosphate (K 3 PO 4 ) or potassium or cesium carbonate (K 2 CO 3 or CsCO 3 ) at a temperature ranging from 0° C. to 100° C. (st.33c).
- the compounds of formula (I) wherein X is —NH— and R is an optionally substituted alkyl, cycloalkyl, heterocyclyl, cycloalkyl-alkyl or a heterocyclylalkyl group may be obtained by reacting the compounds of formula (I) wherein X is —O— and R is a trifluoromethanesulfonyl group with an amine of formula R—NH 2 (XXVII) wherein R is as in formula (I), by operating in a suitable solvent such as dioxane, tetrahydrofuran, dimethoxyethane, acetonitrile, dimethylformamide or dimethylsulfoxide, at a temperature ranging from room temperature to 90° C., optionally in the presence of a base such as potassium carbonate or triethylamine.
- a suitable solvent such as dioxane, tetrahydrofuran, dimethoxyethane, acetonitrile, di
- any of the above compounds of formula (I) wherein A represents a —CH 2 —CH 2 — group can undergo dehydrogenation in the presence of an optionally supported palladium or platinum catalyst, so as to give rise to the corresponding aromatic derivative wherein A is —CH ⁇ CH—, as per (st.34) of the process.
- R 1 is a hydrogen atom or an optionally substituted group selected from straight or branched C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl are novel and, hence, represent a further object of the invention.
- the starting material and any other reactant is known or easily prepared according to known methods.
- 2-ethoxy-2-cyclohexen-1-one is a known compound which can be easily obtained by refluxing cyclohexan-1,2-dione with ethanol in toluene, in the presence of catalytic amounts of p-toluenesulfonic acid (TsOH).
- 2-methoxy-4,4-dimethyl-2-cyclohexen-1-one is a known compound which can be prepared through epoxidation of commercially available 4,4-dimethyl-2-cyclohexen-1-one and subsequent treatment of the epoxide with potassium hydroxide in methanol.
- 2-methoxy-5,5-dimethyl-2-cyclohexen-1-one may be prepared according to the following scheme from commercially available 55-dimethyl-cyclohexan-1,3-dione:
- racemate resolution includes, for instance, partitioned crystallization of diastereoisomeric salt derivatives or preparative chiral HPLC.
- the compounds of formula (I) of the invention may be also prepared according to combinatorial chemistry techniques widely known in the art, for instance by accomplishing the aforementioned reactions between the several intermediates in a serial manner and by working under solid-phase-synthesis (SPS) conditions.
- SPS solid-phase-synthesis
- R is hydrogen or an optionally substituted group selected from amino, straight or branched C 1 -C 6 alkyl, C 3 -C 10 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl;
- X is a single bond or a divalent radical selected from —NR′—, —CONR′—, —NH—CO—NH—, —O—, —S— or —SO 2 —, wherein R′ is hydrogen or an optionally substituted group selected from straight or branched C 1 -C 6 alkyl, C 3 -C 6 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyl or, together with the nitrogen atom to which they are bonded, R and R′ may form a 5 to 6 membered heteroaryl or heterocyclyl group optionally containing one additional
- the compounds of formula (I) are active as protein kinase inhibitors and are therefore useful, for instance, to restrict the unregulated proliferation of tumor cells.
- the inhibiting activity of putative cdk/cyclin inhibitors and the potency of selected compounds is determined through a method of assay based on the use of the SPA technology (Amersham Pharmacia Biotech).
- the assay consists of the transfer of radioactivity labelled phosphate moiety by the kinase to a biotinylated substrate.
- the resulting 33P-labelled biotinylated product is allowed to bind to streptavidin-coated SPA beads (biotin capacity 130 pmol/mg), and light emitted was measured in a scintillation counter.
- x is the logarithm of the inhibitor concentration
- y is the response; y starts at bottom and goes to top with a sigmoid shape.
- Reaction was carried out in buffer (10 mM Tris, pH 7.5, 10 mM MgCl 2 , 0.2 mg/ml BSA, 7.5 mM DTT) containing 3.7 nM enzyme, histone and ATP (constant ratio of cold/labeled ATP 1/3000). Reaction was stopped with EDTA and the substrate captured on phosphomembrane (Multiscreen 96 well plates from Millipore). After extensive washing, the multiscreen plates were read on a top counter. Control (time zero) for each ATP and histone concentrations was measured.
- Reaction velocities are measured at four ATP, substrate (histone) and inhibitor concentrations.
- An 80-point concentration matrix was designed around the respective ATP and substrate Km values, and the inhibitor IC50 values (0.3, 1, 3, 9 fold the Km or IC50 values).
- a preliminary time course experiment in the absence of inhibitor and at the different ATP and substrate concentrations allows the selection of a single endpoint time (10 min) in the linear range of the reaction for the Ki determination experiment.
- ⁇ and ⁇ the cooperativity factor between substrate and ATP binding and substrate and inhibitor binding respectively.
- the selected compounds are characterized on a panel of ser/thre kinases strictly related to cell cycle (cdk2/cyclin E, cdk1/cyclin B1, cdk5/p25, cdk4/cyclin D1), and also for specificity on MAPK, PKA, EGFR, IGF1-R, Aurora-2 and Cdc 7
- the inhibition assay of cdk5/p25 activity is performed according to the following protocol.
- mice GST-Rb (769-921) (# sc-4112 from Santa Cruz) substrate, 10 ⁇ M ATP (0.5 ⁇ Ci P33 ⁇ -ATP), 100 ng of baculovirus expressed GST-cdk4/GST-Cyclin D1, suitable concentrations of inhibitor in a final volume of 50 ⁇ l buffer (TRIS HCl 10 mM pH 7.5, MgCl 2 10 mM, 7.5 mM DTT+0.2 mg/ml BSA) were added to each well of a 96 U bottom well plate. After 40 min at 37° C. incubation, reaction was stopped by 20 ⁇ l EDTA 120 mM.
- the inhibition assay of IGF1-R activity is performed according to the following protocol.
- IGF1-R must be activated by auto-phosphorylation before starting the experiment.
- a concentrated enzyme solution (694 nM) is incubated for half a hour at 28° C. in the presence of 100 ⁇ M ATP and then brought to the working dilution in the indicated buffer.
- biotinylated peptide 4 repeats of LRRWSLG
- 10 ⁇ M ATP 0.5 uCi P 33 ⁇ -ATP
- 7.5 ng Aurora 2, inhibitor in a final volume of 30 ⁇ l buffer (HEPES 50 mM pH 7.0, MgCl 2 10 mM, 1 mM DTT, 0.2 mg/ml BSA, 3 ⁇ M orthovanadate) were added to each well of a 96 U bottom well plate. After 60 minutes at room temperature incubation, reaction was stopped and biotinylated peptide captured by adding 100 ⁇ l of bead suspension.
- the inhibition assay of Cdc7/dbf4 activity is performed according to the following protocol.
- Biotin-MCM2 substrate is trans-phosphorylated by the Cdc7/Dbf4 complex in the presence of ATP traced with ⁇ 33 -ATP.
- the phosphorylated Biotin-MCM2 substrate is then captured by Streptavidin-coated SPA beads and the extent of phosphorylation evaluated by ⁇ counting.
- the inhibition assay of Cdc7/dbf4 activity was performed in 96 wells plate according to the following protocol.
- Substrate, enzyme and ATP were diluted in 50 mM HEPES pH 7.9 containing 15 mM MgCl 2 , 2 mM DTT, 3 ⁇ M NaVO 3 , 2 mM glycerophosphate and 0.2 mg/ml BSA.
- the solvent for test compounds also contained 10% DMSO.
- the compounds of the present invention can be administered either as single agents or, alternatively, in combination with known anticancer treatments such as radiation therapy or chemotherapy regimen in combination with cytostatic or cytotoxic agents, antibiotic-type agents, alkylating agents, antimetabolite agents, hormonal agents, immunological agents, interferon-type agents, cyclooxygenase inhibitors (e.g. COX-2 inhibitors), matrixmetalloprotease inhibitors, telomerase inhibitors, tyrosine kinase inhibitors, anti-growth factor receptor agents, anti-HER agents, anti-EGFR agents, anti-angiogenesis agents (e.g.
- cytostatic or cytotoxic agents antibiotic-type agents, alkylating agents, antimetabolite agents, hormonal agents, immunological agents, interferon-type agents, cyclooxygenase inhibitors (e.g. COX-2 inhibitors), matrixmetalloprotease inhibitors, telomerase inhibitors, tyrosine kinase inhibitors, anti-growth factor receptor agents, anti
- angiogenesis inhibitors farnesyl transferase inhibitors, ras-raf signal transduction pathway inhibitors, cell cycle inhibitors, other cdks inhibitors, tubulin binding agents, topoisomerase I inhibitors, topoisomerase II inhibitors, and the like.
- such combination products employ the compounds of this invention within the dosage range described below and the other pharmaceutically active agent within the approved dosage range.
- the compounds of formula (I) of the present invention suitable for administration to a mammal, e.g., to humans, can be administered by the usual routes and the dosage level depends upon the age, weight, conditions of the patient and administration route.
- a suitable dosage adopted for oral administration of a compound of formula (I) may range from about 10 to about 500 mg per dose, from 1 to 5 times daily.
- the compounds of the invention can be administered in a variety of dosage forms, e.g., orally, in the form tablets, capsules, sugar or film coated tablets, liquid solutions or suspensions; rectally in the form suppositories; parenterally, e.g., intramuscularly, or through intravenous and/or intrathecal and/or intraspinal injection or infusion.
- the present invention also includes pharmaceutical compositions comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof in association with a pharmaceutically acceptable excipient, which may be a carrier or a diluent.
- a pharmaceutically acceptable excipient which may be a carrier or a diluent.
- compositions containing the compounds of the invention are usually prepared following conventional methods and are administered in a suitable pharmaceutical form.
- the solid oral forms may contain, together with the active compound, diluents, e.g., lactose, dextrose saccharose, sucrose, cellulose, corn starch or potato starch; lubricants, e.g., silica, talc, stearic acid, magnesium or calcium stearate, and/or polyethylene glycols; binding agents, e.g., starches, arabic gum, gelatine methylcellulose, carboxymethylcellulose or polyvinyl pyrrolidone; disintegrating agents, e.g., starch, alginic acid, alginates or sodium starch glycolate; effervescing mixtures; dyestuffs; sweeteners; wetting agents such as lecithin, polysorbates, laurylsulphates; and, in general, non-toxic and pharmacologically inactive substances used in pharmaceutical formulations.
- diluents e.g., lactose, dextrose saccharose, suc
- liquid dispersions for oral administration may be, e.g., syrups, emulsions and suspensions.
- the syrups may contain, as carrier, saccharose or saccharose with glycerine and/or mannitol and sorbitol.
- the suspensions and the emulsions may contain, as examples of carriers, natural gum, agar, sodium alginate, pectin, methylcellulose, carboxymethylcellulose, or polyvinyl alcohol.
- the suspension or solutions for intramuscular injections may contain, together with the active compound, a pharmaceutically acceptable carrier, e.g., sterile water, olive oil, ethyl oleate, glycols, e.g., propylene glycol and, if desired, a suitable amount of lidocaine hydrochloride.
- a pharmaceutically acceptable carrier e.g., sterile water, olive oil, ethyl oleate, glycols, e.g., propylene glycol and, if desired, a suitable amount of lidocaine hydrochloride.
- the solutions for intravenous injections or infusions may contain, as a carrier, sterile water or preferably they may be in the form of sterile, aqueous, isotonic, saline solutions or they may contain propylene glycol as a carrier.
- the suppositories may contain, together with the active compound, a pharmaceutically acceptable carrier, e.g., cocoa butter, polyethylene glycol, a polyoxyethylene sorbitan fatty acid ester surfactant or lecithin.
- a pharmaceutically acceptable carrier e.g., cocoa butter, polyethylene glycol, a polyoxyethylene sorbitan fatty acid ester surfactant or lecithin.
- Each code which unambiguosly identifies a single specific compound of formula (I) only, consists of five units B-X-M(C)-D.
- Code B represents any R substituent, as per formula (I), being attached to the rest of the molecule through the X linkage; each B group is represented through the proper chemical formula in the following table I, also indicating its point of attachment to the rest of the molecule X-M.
- Code X just represents the X group in formula (I); its meanings are represented in the following table II, also indicating its point of attachment to the rest of the molecule M.
- Code C represents the R 1 group being attached to the rest of the molecule through any one of the pyrazole nitrogen atoms, as per formula (I). Each C group is represented through the proper chemical formula in the following table III, also indicating its point of attachment to the rest of the molecule M.
- Code D represents the R 2 group being attached to the rest of the molecule through the carbonyl group, as per formula (I). Each D group is represented through the proper chemical formula in the following table IV, also indicating its point of attachment to the rest of the molecule M.
- code M refers to the central core of the molecule (I) bearing a carbonyl group in position 3. From all of the above it is clear to the skilled person that M is substituted by groups —X— (code X), R 1 (code C) and R 2 (code D), as reported in formula (I); each M group is represented through the proper chemical formula, in table V, also indicating the positions of the other substituents.
- the compound B66-X03-M00(C01)-D01 represents the pyrazolo-quinazoline derivative of formula (Ia) wherein the central core is represented by the moiety MOO of table V, R is the group of formula B66 of table I, X is the divalent group X03 of table II, R 1 is the group C01 of table III and R 2 is the group D01 of table IV, having formula
- the HPLC equipment consisted of a Waters 2790 HPLC system equipped with a 996 Waters PDA detector and Micromass mod. ZQ single quadrupole mass spectrometer, equipped with an electrospray (ESI) ion source. Instrument control, data acquisition and data processing were providen by Empower and MassLynx 4.0 software.
- ESI electrospray
- HPLC HPLC was carried out at 25° C. at a flow rate of 1 mL/min using a RP18 Waters ⁇ Terra (4.6 ⁇ 50 mm, 3.5 ⁇ m) column.
- Mobile phase A was ammonium acetate 5 mM buffer (pH 5.5 with acetic acid/acetonitrile 95:5), and
- Mobile phase B was H 2 O/acetonitrile (5:95); the gradient was from 10 to 90% B in 8 minutes then hold 90% B 2 minutes.
- the injection volume was 10 ⁇ l.
- the mass spectrometer was operated in positive and in negative ion mode, the capillary voltage was set up at 2.5 KV; the source temperature was 120° C.; cone was 10 V; full scan, mass range from 100 to 800 amu was set up.
- the HPLC equipment consisted of a Waters 2790 HPLC system equipped with a 996 Waters PDA detector and Micromass mod. ZQ single quadrupole mass spectrometer, equipped with an electrospray (ESI) ion source. Instrument control, data acquisition and data processing were providen by Empower and MassLynx 4.0 software.
- ESI electrospray
- HPLC HPLC was carried out at 25° C. at a flow rate of 1 mL/min using a RP18 Waters ⁇ Terra (3.0 ⁇ 30 mm, 3.5 ⁇ m) column.
- Mobile phase A was ammonium acetate 5 mM buffer (pH 5.5 with acetic acid/acetonitrile 95:5), and
- Mobile phase B was H 2 O/acetonitrile (5:95); the gradient was from 10 to 90% B in 4 min then hold 90% B 1 minute.
- the injection volume was 10 ⁇ l.
- the mass spectometer was operated in positive and in negative ion mode, the capillary voltage was set up at 2.5 KV; the source temperature was 120° C.; cone was 10 V; full scan, mass range from 100 to 800 amu was set up.
- Mass spectra were recorded on a Finnigan LCQ ion trap mass spectrometer using the electrospray (ESI) ionization technique with positive and negative ion detection.
- the mass spectrometer is directly connected to a SSP4000 HPLC system (Thermo Separation), equipped with an LcPal autosampler (CTC Analytics) and a UV 6000LP PDA detector (Thermo Separation). Instrument control, data acquisition and processing were performed by using Xcalibur 1.2 software.
- HPLC analysis were carried out at room temperature at a flow rate of 1 mL/min using an RP C18 Waters ZorbaxSB C18 column (4.6 ⁇ 50 mm; 1.8 ⁇ m).
- Mobile phase A was ammonium acetate 5 mM buffer (pH 5.5 with acetic acid):acetonitrile 90:10
- Mobile phase B was ammonium acetate 5 mM buffer (pH 5.5 with acetic acid):acetonitrile 10:90; the gradient was from 0 to 100% B in 7 minutes then hold 100% B for 2 minutes before requilibration. Total LC time is 12 minutes.
- the injection volume was 10 ⁇ l. UV Detection was performed between 215 and 400 nm.
- Ions were generated under the following conditions: ESI sprayer voltage 4.0 kV, heated capillary temperature 255° C., sheath gas nitrogen with a pressure of 5.0 Bar. A full scan detection mode (from 50 to 1000 amu) was used with an MS/MS analysis of the most intense ion (normalized collision energy: 35%).
- UV Detection 215-400 nm.
- B28-X00-M01(C01)-D03 1 H NMR 400 MHz, DMSO-d 6 ) ⁇ ppm 0.90-2.00 (6m, 11 H) 3.34 (m, 2 H) 4.67 (s, 3 H) 7.41 (bs, 1 H) 7.48 (m, 2 H) 7.86 (m, 1 H) 9.12 (s, 1 H).
- the aqueous solution was then extracted with diethyl ether (300 mL ⁇ 3), dried on Na 2 SO 4 and evaporated under reduced pressure to remove most of the solvent.
- the crude material contained the title compound as a low boiling point oil that was used in the next step without further purification.
- the slurry was diluted with water (800 mL), acidified with 1 N HCl (50 mL) and extracted with ethyl acetate (500 mL ⁇ 2). The organic layers were collected, washed with brine, dried on Na 2 SO 4 and evaporated to dryness to obtain the crude title compound (10.60 g) as an orange oil, which was used without further purification.
- Step 8 Ethyl 8- ⁇ [3-chloro-4-(4-methylpiperazin-1-yl)phenyl]amino ⁇ -1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B13-X00-M03(C01)-D01]
- Ethyl 8-iodo-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (0.5 g, 1.3 mmol) and cyclopentylamine (0.65 mL, 6.5 mmol) were heated at 100° C. under nitrogen for 3 hours. The mixture was concentrated under reduced pressure and the residue was purified by chromatography on a silica gel column (eluant: ethyl acetate/cyclohexane 70/30) to give 0.24 g of 8-(cyclopentylamino)-1-methyl-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (54% yield).
- Step 7 [8-(cyclohexylamino)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazolin-3-yl](phenyl)methanone [B27-X00-M00(C01)-D07] and [8-(cyclohexylamino)-1-methyl-1H-pyrazolo[4,3-h]quinazolin-3-yl](phenyl)methanone [B27-X00-M01(C01)-D07]
- the final compound that precipitated was collected by suction filtration, washed with water and crystallized twice from methanol containing sodium hydroxide, and dried at 40° C. under vacuum. There were thus obtained 60 mg of the title compound.
- reaction mixture was poured into ice-water (200 mL), the pH was adjusted to 10 by addition of saturated sodium carbonate and the solution extracted with ethyl acetate (4 ⁇ 20 mL). The collected organic extracts were washed with brine until neutral, with water and dried over Na 2 SO 4 .
- Step 1 8-[(4-Hydroxybenzyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B85-X00-M00(C01)-D03]
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Oncology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Virology (AREA)
- Dermatology (AREA)
- Urology & Nephrology (AREA)
- Rheumatology (AREA)
- Communicable Diseases (AREA)
- Transplantation (AREA)
- Molecular Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Pain & Pain Management (AREA)
- AIDS & HIV (AREA)
- Hematology (AREA)
- Heart & Thoracic Surgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Pyrazolo-quinazoline derivatives of formula (Ia) or (Ib) as defined in the specification, and pharmaceutically acceptable salts thereof, process for their preparation and pharmaceutical compositions comprising them are disclosed; the compounds of the invention may be useful, in therapy, in the treatment of diseases associated with a disregulated protein kinase activity, like cancer.
Description
- The present application is a continuation of U.S. patent application Ser. No. 15/467,323, filed Mar. 23, 2017 (now allowed), which is a continuation of U.S. patent application Ser. No. 15/256,916, filed Sep. 6, 2016 (now U.S. Pat. No. 9,637,497), which is a division of U.S. patent application Ser. No. 14/625,093, filed Feb. 18, 2015 (now U.S. Pat. No. 9,464,090), which is a continuation of U.S. application Ser. No. 13/972,659, filed Aug. 21, 2013 (now U.S. Pat. No. 8,981,089), which is a division of U.S. patent application Ser. No. 12/262,933, filed Oct. 31, 2008 (now U.S. Pat. No. 8,541,429), which is a division of U.S. patent application Ser. No. 10/557,565, filed Sep. 26, 2006 (now U.S. Pat. No. 7,482,354), which is a 35 U.S.C. § 371 National Phase Application of PCT/EP2004/050612, filed Apr. 27, 2004, which claims priority to U.S. Provisional Application No. 60/472,661, filed May 22, 2003, the entire contents and disclosures of each of which are incorporated herein by reference.
- The present invention relates to pyrazolo-quinazoline derivatives, to a process for their preparation, to pharmaceutical compositions comprising them, and to their use as therapeutic agents, particularly in the treatment of cancer and cell proliferation disorders.
- Several cytotoxic drugs such as, e.g., fluorouracil (5-FU), doxorubicin and camptothecins, damage DNA or affect cellular metabolic pathways and thus cause, in many cases, an indirect block of the cell cycle. Therefore, by producing an irreversible damage to both normal and tumor cells, these agents result in a significant toxicity and side-effects.
- In this respect, compounds capable of functioning as highly specific antitumor agents by selectively leading to tumor cell arrest and apoptosis, with comparable efficacy but reduced toxicity than the currently available drugs, are desirable.
- It is well known that progression through the cell cycle is governed by a series of checkpoint controls, otherwise referred to as restriction points, which are regulated by a family of enzymes known as the cyclin-dependent kinases (cdk). In turn, the cdks themselves are regulated at many levels such as, for instance, binding to cyclins.
- The coordinated activation and inactivation of different cyclin/cdk complexes is necessary for normal progression through the cell cycle. Both the critical G1-S and G2-M transitions are controlled by the activation of different cyclin/cdk activities. In G1, both cyclin D/cdk4 and cyclin E/cdk2 are thought to mediate the onset of S-phase. Progression through S-phase requires the activity of cyclin A/cdk2 whereas the activation of cyclin A/cdc2 (cdk1) and cyclin B/cdc2 are required for the onset of mitosis. For a general reference to cyclins and cyclin-dependent kinases see, for instance, Kevin R. Webster et al, in Exp. Opin. Invest. Drugs, 1998, Vol. 7(6), 865-887.
- Checkpoint controls are defective in tumor cells due, in part, to disregulation of cdk activity. For example, altered expression of cyclin E and cdks has been observed in tumor cells, and deletion of the cdk inhibitor p27 KIP gene in mice has been shown to result in a higher incidence of cancer.
- Increasing evidence supports the idea that the cdks are rate-limiting enzymes in cell cycle progression and, as such, represent molecular targets for therapeutic intervention. In particular, the direct inhibition of cdk/cyclin kinase activity should be helpful in restricting the unregulated proliferation of a tumor cell.
- Further protein kinases known in the art as being implicated in the growth of cancer cells are the Aurora kinases, in particular Aurora-2.
- Aurora-2 was found to be over-expressed in a number of different tumor types. Its gene locus maps at 20q13, a chromosomal region frequently amplified in many cancers, including breast [Cancer Res. 1999, 59(9) 2041-4] and colon.
- 20q13 amplification correlates with poor prognosis in patients with node-negative breast cancer and increased Aurora-2 expression is indicative of poor prognosis and decreased survival time in bladder cancer patients [J. Natl. Cancer Inst., 2002, 94(17) 1320-9]. For a general reference to Aurora-2 role in the abnormal centrosome function in cancer see also Molecular Cancer Therapeutics, 2003, 2, 589-595.
- It is an object of the invention to provide compounds which are useful in treating cell proliferative disorders caused by and/or associated with an altered protein kinase activity, for instance Aurora 2 inhibitory activity and cell cycle dependent kinase activity. It is another object to provide compounds which have protein kinase inhibitory activity.
- The present inventors have now discovered that certain pyrazolo-quinazolines are endowed with protein kinase inhibitory activity and are thus useful in therapy as antitumor agents and lack, in terms of both toxicity and side effects, the aforementioned drawbacks associated with currently available antitumor drugs.
- More specifically, the pyrazolo-quinazolines of the invention are useful in the treatment of a variety of cancers including, but not limited to: carcinoma such as bladder, breast, colon, kidney, liver, lung, including small cell lung cancer, esophagus, gall-bladder, ovary, pancreas, stomach, cervix, thyroid, prostate, and skin, including squamous cell carcinoma; hematopoietic tumors of lymphoid lineage including leukaemia, acute lymphocitic leukaemia, acute lymphoblastic leukaemia, B-cell lymphoma, T-cell-lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma and Burkett's lymphoma; hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias, myelodysplastic syndrome and promyelocytic leukaemia; tumors of mesenchymal origin, including fibrosarcoma and rhabdomyosarcoma; tumors of the central and peripheral nervous system, including astrocytoma neuroblastoma, glioma and schwannomas; other tumors, including melanoma, seminoma, teratocarcinoma, osteosarcoma, xeroderma pigmentosum, keratoxanthoma, thyroid follicular cancer and Kaposi's sarcoma.
- Due to the key role of cell cycle kinases such as Aurora or cdks in the regulation of cellular proliferation, these pyrazolo-quinazoline derivatives are also useful in the treatment of a variety of cell proliferative disorders such as, for example, benign prostate hyperplasia, familial adenomatosis, polyposis, neurofibromatosis, psoriasis, vascular smooth cell proliferation associated with atherosclerosis, pulmonary fibrosis, arthritis, glomerulonephritis and post-surgical stenosis and restenosis.
- The compounds of the invention may be useful in treatment of Alzheimer's disease, as suggested by the fact that cdk5 is involved in the phosphorylation of tau protein (J. Biochem. 117, 741-749, 1995).
- The compounds of this invention, as modulators of apoptosis, may also be useful in the treatment of cancer, viral infections, prevention of AIDS development in HIV-infected individuals, autoimmune diseases and neurodegenerative disorders.
- The compounds of this invention may be useful in inhibiting tumor angiogenesis and metastasis, as well as in the treatment of organ transplant rejection and host versus graft disease.
- The compounds of the invention may also act as inhibitor of other protein kinases, e.g., protein kinase C in different isoforms, Met, PAK-4, PAK-5, ZC-1, STLK-2, DDR-2, Bub-1, PLK, Chk1, Chk2, HER2, raf1, MEK1, MAPK, EGF-R, PDGF-R, FGF-R, IGF-R, PI3K, weel kinase, Src, Abl, Akt, MAPK, ILK, MK-2, IKK-2, Cdc7, Nek, and thus be effective in the treatment of diseases associated with other protein kinases.
- The compounds of the invention are also useful in the treatment and prevention of radiotherapy-induced or chemotherapy-induced alopecia.
- Accordingly, in a first embodiment, the present invention provides a method for treating cell proliferative disorders caused by and/or associated with an altered protein kinase activity, like for instance Aurora 2 activity and cell cycle dependent kinase activity, by administering to a mammal in need thereof an effective amount of a pyrazolo-quinazoline derivative represented by formula (Ia) or (Ib)
- wherein
R is hydrogen or an optionally substituted group selected from amino, straight or branched C1-C6 alkyl, C3-C10 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl;
X is a single bond or a divalent radical selected from —NR′—, —CONR′—, —NH—CO—NH—, —O—, —S— or —SO2—, wherein R′ is hydrogen or an optionally substituted group selected from straight or branched C1-C6 alkyl, C3-C6 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyl or, together with the nitrogen atom to which they are bonded, R and R′ may form a 5 to 6 membered heteroaryl or heterocyclyl group optionally containing one additional heteroatom selected among N, O or S;
R1, bonded to any one of the nitrogen atoms of the pyrazole ring as per formulae (Ia) or (Ib), represents a hydrogen atom or an optionally substituted group selected from straight or branched C1-C6 alkyl, C3-C6 cycloalkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl or, in formula (Ib), R1 is a divalent —(CH2)n—NH— group being linked to R2, wherein n is 2 or 3;
R2 is a group selected from —NR″R″′, —N(OH)R″, —OR″ or —R″, wherein R″ and R″′ are, each independently, hydrogen or an optionally substituted group selected from straight or branched C1-C6 alkyl, C3-C6 cycloalkyl or cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl or, together with the nitrogen atom to which they are bonded, R″ and R′″ may form a 5 to 6 membered heteroaryl or heterocyclyl group, optionally containing one additional heteroatom selected among N, O or S;
A is a divalent group selected from —CH2—, —(CH2)2—, —CH2—C(CH3)2—, —C(CH3)2—CH2— or —CH═CH—;
or a pharmaceutically acceptable salt thereof. - In another embodiment, the present invention also provides a method for treating cell proliferative disorders caused by and/or associated with an altered protein kinase activity, like cell cycle dependent kinase activity, by administering to a mammal in need thereof an effective amount of a pyrazolo-quinazoline derivative represented by the above formula (Ia) or (Ib).
- In a preferred embodiment of the methods described above, the cell proliferative disorder is selected from the group consisting of cancer, Alzheimer's disease, viral infections, auto-immune diseases and neurodegenerative disorders.
- Specific types of cancer that may be treated include carcinoma, squamous cell carcinoma, hematopoietic tumors of myeloid or lymphoid lineage, tumors of mesenchymal origin, tumors of the central and peripheral nervous system, melanoma, seminoma, teratocarcinoma, osteosarcoma, xeroderma pigmentosum, keratoxanthoma, thyroid follicular cancer, and Kaposi's sarcoma.
- In another preferred embodiment of the method described above, the cell proliferative disorder is selected from the group consisting of benign prostate hyperplasia, familial adenomatosis, polyposis, neuro-fibromatosis, psoriasis, vascular smooth cell proliferation associated with atherosclerosis, pulmonary fibrosis, arthritis, glomerulonephritis and post-surgical stenosis and restenosis. In addition, the inventive method provides tumor angiogenesis and metastasis inhibition as well as treatment of organ transplant rejection and host versus graft disease. The inventive methods may also provide cell cycle inhibition or cdk/cyclin dependent inhibition.
- In addition to the above, the methods object of the present invention provide treatment and prevention of radiotherapy-induced or chemotherapy-induced alopecia.
- The present invention also provides a pyrazolo-quinazoline derivative represented by formula (Ia) or (Ib)
- wherein
R is hydrogen or an optionally substituted group selected from amino, straight or branched C1-C6 alkyl, C3-C10 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl;
X is a single bond or a divalent radical selected from —NR′—, —CONR′—, —NH—CO—NH—, —O—, —S— or —SO2—, wherein R′ is hydrogen or an optionally substituted group selected from straight or branched C1-C6 alkyl, C3-C6 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyl or, together with the nitrogen atom to which they are bonded, R and R′ may form a 5 to 6 membered heteroaryl or heterocyclyl group optionally containing one additional heteroatom selected among N, O or S;
R1, bonded to any one of the nitrogen atoms of the pyrazole ring as per formulae (Ia) or (Ib), represents a hydrogen atom or an optionally substituted group selected from straight or branched C1-C6 alkyl, C3-C6 cycloalkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl or, in formula (Ib), R1 is a divalent —(CH2)n—NH— group being linked to R2, wherein n is 2 or 3;
R2 is a group selected from —NR″R″′, —N(OH)R″, —OR″ or —R″, wherein R″ and R″′ are, each independently, hydrogen or an optionally substituted group selected from straight or branched C1-C6 alkyl, C3-C6 cycloalkyl or cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl or, together with the nitrogen atom to which they are bonded, R″ and R″′ may form a 5 to 6 membered heteroaryl or heterocyclyl group, optionally containing one additional heteroatom selected among N, O or S;
A is a divalent group selected from —CH2—, —(CH2)2—, —CH2—C(CH3)2—, —C(CH3)2—CH2— or —CH═CH—;
or a pharmaceutically acceptable salt thereof. - The present invention also includes methods of synthesizing the pyrazolo-quinazoline derivatives represented by formulae (Ia) or (Ib) that, unless otherwise provided, may be conveniently grouped and defined as compounds of formula (I). Pharmaceutical compositions comprising the pyrazolo-quinazoline derivatives of formula (I) are also included in the present invention.
- A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description.
- Several heterocyclic compounds are known in the art as protein kinase inhibitors. As an example, 2-carboxamido-pyrazoles and 2-ureido-pyrazoles, and derivatives thereof, have been disclosed as protein kinase inhibitors in the international patent applications WO 01/12189, WO 01/12188, WO 02/48114 and WO 02/70515, all in the name of the applicant itself.
- Fused bicyclic compounds comprising pyrazole moieties and possessing kinase inhibitory activity have been also disclosed in WO 00/69846, WO 02/12242 as well as WO 03/028720 and still unpublished U.S. patent application 60/381,092 (filed in May 17, 2002), all in the name of the applicant itself.
- Fused tricyclic derivatives possessing kinase inhibitory activity are also disclosed in two copending applications PCT/EP03/01594 and PCT/US03/04844 (both claiming Feb. 19, 2002 priority from U.S. applications No. 60/357,918 and No. 60/357,960, respectively) and herewith incorporated by reference; none of the said applications specifically disclose the derivatives in re.
- In addition, fused polycyclic pyrimidine derivatives as protein kinase inhibitors are also disclosed in the international patent applications WO 98/58926 and WO 98/28281, both in the name of Celltech Therapeutics Ltd; though comprised within the general formula of both applications, no specific examples of pyrazolo-quinazolines of the present invention are exemplified therein.
- Finally, heterocyclic ring fused pyrimidine derivatives for the treatment of hyperproliferative diseases are disclosed in WO 96/40142 in the name of Pfizer Inc.
- The compounds of formula (I) of the invention may have asymmetric carbon atoms and may therefore exist as individual optical isomers, as racemic admixtures or as any other admixture comprising a majority of one of the two optical isomers, which are all to be intended as within the scope of the present invention.
- Likewise, the use as an antitumor agent of all the possible isomers and their admixtures and of both the metabolites and the pharmaceutically acceptable bio-precursors (otherwise referred to as pro-drugs) of the compounds of formula (I) are also within the scope of the present invention.
- Prodrugs are any covalently bonded compounds which release the active parent drug, according to formula (I), in vivo.
- In cases when compounds may exist in tautomeric forms, for instance keto-enol tautomers, each tautomeric form is contemplated as being included within this invention whether existing in equilibrium or predominantly in one form.
- In the present description, unless otherwise specified, with the term straight or branched C1-C6 alkyl we intend any of the groups such as, for instance, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, n-hexyl, and the like.
- With the term C3-C10 cycloalkyl we intend, unless otherwise provided, a cycloaliphatic ring such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, as well as any bridged cycloalkyl group with up to 10 carbon atoms.
- The term aryl includes carbocyclic or heterocyclic hydrocarbons with from 1 to 2 ring moieties, either fused or linked to each other by single bonds, wherein at least one of the rings is aromatic; if present, any aromatic heterocyclic hydrocarbon also referred to as heteroaryl group, comprises a 5 to 6 membered ring with from 1 to 3 heteroatoms selected among N, O or S.
- Examples of aryl groups according to the invention are, for instance, phenyl, biphenyl, α- or β-naphthyl, dihydronaphthyl, thienyl, benzothienyl, furyl, benzofuranyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolyl, isoindolyl, purinyl, quinolyl, isoquinolyl, dihydroquinolinyl, quinoxalinyl, benzodioxolyl, indanyl, indenyl, triazolyl, and the like.
- Unless otherwise specified, the term heterocyclyl includes 5 to 6 membered saturated, partly unsaturated or fully unsaturated heterocycles with from 1 to 3 heteroatoms selected among N, O or S. Apart from the fully unsaturated heterocycles, previously referred to as aromatic heterocycles and encompassed by the term aryl, examples of saturated or partly unsaturated heterocycles according to the invention are, for instance, pyran, pyrrolidine, pyrroline, imidazoline, imidazolidine, pyrazolidine, pyrazoline, thiazoline, thiazolidine, dihydrofuran, tetrahydrofuran, 1,3-dioxolane, piperidine, piperazine, morpholine and the like.
- From all of the above, it is clear to the skilled man that any compound of the invention wherein X represents a single bond has to be intended as having the R group directly linked to the pyrimidine moiety.
- According to the above indicated substituent meanings and unless otherwise specified, any of the above R, R′, R1, R″ and R″′ group may be optionally substituted in any of their free positions by one or more groups, for instance 1 to 6 groups, independently selected from: halogen, nitro, oxo groups (═O), cyano, azido, alkyl, polyfluorinated alkyl, hydroxyalkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyl, cycloalkyl, alkylaryl, alkylheterocyclyl, hydroxy, alkoxy, polyfluorinated alkoxy, aryloxy, arylalkyloxy, heterocyclyloxy, heterocyclylalkyloxy, methylenedioxy, alkylcarbonyloxy, alkylcarbonyloxyalkyl, arylcarbonyloxy, carboxy, alkoxycarbonyl, alkoxycarbonylalkyl, aryloxycarbonyl, cycloalkyloxycarbonyl, amino, aminoalkyl, alkylaminoalkyl, alkylaminoalkyloxy, ureido, alkylamino, dialkylamino, arylamino, diarylamino, formylamino, alkylcarbonylamino, arylcarbonylamino, heterocyclylcarbonylamino, alkoxycarbonylamino, alkoxyimino, alkylsulfonylamino, arylsulfonylamino, formyl, alkylcarbonyl, arylcarbonyl, heterocyclylcarbonyl, cycloalkylcarbonyl, heterocyclylcarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylaminocarbonyl, alkylsulfonyl, arylsulfonyl, heterocyclylsulfonyl, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, arylthio and alkylthio.
- In this respect, with the term halogen atom we intend a fluorine, chlorine, bromine or iodine atom.
- With the term perfluorinated alkyl we intend any of the above straight or branched C1-C6 alkyl groups which are substituted by more than one fluorine atom such as, for instance, trifluoromethyl, trifluoroethyl, 1,1,1,3,3,3-hexafluoropropyl, and the like.
- With the term alkoxy, aryloxy, heterocyclyloxy and derivatives thereof, e.g. perfluorinated alkoxy, we intend any of the above alkyl, aryl or heterocyclyl groups linked to the rest of the molecule through an oxygen atom (—O—).
- From all of the above, it is clear to the skilled person that any group which name is a composite name such as, for instance, arylalkyl or heterocyclylalkyl has to be intended as conventionally construed by the parts from which it derives, e.g. by an alkyl group which is further substituted by aryl or heterocyclyl, wherein alkyl, aryl or heterocyclyl are as above defined.
- Likewise, any of the terms such as, for instance, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, alkoxycarbonylamino, heterocyclylcarbonyl, heterocyclylcarbonylamino, cycloalkyloxycarbonyl and the like, include groups wherein the alkyl, alkoxy, aryl, cycloalkyl and heterocyclyl moieties are as above defined.
- Pharmaceutically acceptable salts of the compounds of formula (I) include the acid addition salts with inorganic or organic acids, e.g., nitric, hydrochloric, hydrobromic, sulfuric, perchloric, phosphoric, acetic, trifluoroacetic propionic, glycolic, lactic, oxalic, malonic, malic, maleic, tartaric, citric, benzoic, cinnamic, mandelic, methanesulphonic, isethionic and salicylic acid, as well as the salts with inorganic or organic bases, e.g., alkali or alkaline-earth metals, especially sodium, potassium, calcium or magnesium hydroxides, carbonates or bicarbonates, acyclic or cyclic amines, preferably methylamine, ethylamine, diethylamine, triethylamine, piperidine and the like.
- According to a first embodiment of the invention addressed to the compounds of formula (Ia) or (Ib), preferred derivatives are those wherein X is a group —NH— and R2 is a group selected from —NHR″, —N(OH)R″, —OR″ or —R″, wherein R″ is an optionally substituted group selected from C3-C6 cycloalkyl or cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl; and R, R1 and A are as above defined.
- Also preferred are the compounds of formula (Ia) or (Ib) wherein X is a group —O— and R2 is a group selected from —NHR″, —N(OH)R″, —OR″ or —R″, wherein R″ is an optionally substituted group selected from C3-C6 cycloalkyl or cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl; and R, R1 and A are as above defined.
- Also preferred are the compounds of formula (Ia) or (Ib) wherein X is a group —S— and R2 is a group selected from —NHR″, —N(OH)R″, —OR″ or —R″, wherein R″ is an optionally substituted group selected from C3-C6 cycloalkyl or cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl; and R, R1 and A are as above defined.
- Even more preferred, within the above classes of compounds (Ia) or (Ib) are those same derivatives wherein A is a group —(CH2)2—.
- According to another embodiment of the invention addressed to the compounds of formula (Ia) or (Ib), a class of preferred compounds is represented by those derivatives wherein X is a group —NH— and R2 is a group —NHR″ or —N(OH)R″ wherein R″ is a hydrogen atom or a straight or branched C1-C4 alkyl group; and wherein A, R and R1 are as above defined.
- Another class of preferred compounds of the invention of formula (Ia) or (Ib) is represented by the derivatives wherein X is a group —O— and R2 is a group —NHR″ or —N(OH)R″ wherein R″ is a hydrogen atom or a straight or branched C1-C4 alkyl group; and wherein A, R and R1 are as above defined.
- Another class of preferred compounds of the invention of formula (Ia) or (Ib) is represented by the derivatives wherein X is a group —S— and R2 is a group —NHR″ or —N(OH)R″ wherein R″ is a hydrogen atom or a straight or branched C1-C4 alkyl group; and wherein A, R and R1 are as above defined.
- Another class of preferred compounds of the invention of formula (Ib) is represented by the derivatives wherein R, X and A are as above defined and R1 and R2 are linked together through a divalent —(CH2)n—NH— group so as to give rise to:
- Also preferred, within the above class of derivatives of formula (Ia) and (Ib), are the compounds wherein A is a group selected from —CH2—C(CH3)2— or —C(CH3)2—CH2—.
- For a reference to any specific compound of formula (Ia) or (Ib) of the invention, optionally in the form of a pharmaceutically acceptable salt, see the experimental section and claims.
- As formerly indicated, a further object of the present invention is represented by the process for preparing the compounds of formula (I) which formula, unless otherwise specifically provided, has to be intended as comprising the derivatives of formula (Ia) and (Ib).
- Therefore, the compounds of formula (I) or the pharmaceutically acceptable salts thereof may be obtained by a process comprising:
- (1) when A is a —(CH2)2— group:
st.1) reacting 2-ethoxy-2-cyclohexen-1-one with diethyl oxalate, in the presence of lithium (bis-trimethylsilyl)amide [LiN(TMS)2], so as to obtain a compound of formula (II) - and treating it with a hydrazine derivative of formula (III)
-
R1—NHNH2 (III) - wherein R1 has the above reported meanings, according to the operative conditions set forth in any one of the steps (st.2a), (st.2b) or (st.2c)
st.2a) in the presence of a lower alcohol so as to obtain a mixture of the compounds of formula (IVa) and (IVb) - wherein R1 is as above reported, and separating their mixture into the single compounds (IVa) and (IVb);
st.2b) in the presence of acetic acid so as to obtain a compound of formula (IVa);
st.2c) by alkylating a compound of formula (IVa) being obtained in step (st.2a) or (st.2b) and wherein R1 is hydrogen with the compounds of formula (IVc) -
R1Y (IVc) - wherein Y is a suitable leaving group such as mesyl, tosyl, halogen, as to obtain a mixture of compounds of formula (IVa) and (IVb) wherein R1 is as above reported and separating their mixture into the compounds (IVa) and (IVb);
st.3) reacting the compound of formula (IVa) prepared according to any one of steps (st.2a), (st.2b) or (st.2c), or of formula (IVb) prepared according to steps (st.2a) or (st.2c), with dimethylformamide-di-tert-butylacetale so as to obtain a compound of formula (Va) or (Vb) - wherein R1 is as above reported; and reacting the compound of formula (Va) or (Vb) according to any one of the alternative steps (st.4a), (st.4b) or (st.4c)
st.4a) with guanidine so as to obtain a compound of formula (Ia) or (Ib) - wherein R—X— is amino, R2 is ethoxy, and R1 is as above defined; and optionally converting them into other derivatives of formula (I);
st.4b) with a guanidine derivative of formula (VI) -
R—NH—C(═NH)NH2 (VI) - wherein R is as above reported, so as to obtain a compound of formula (Ia) or (Ib) wherein R and R1 are as above reported, X is —NH—, and R2 is ethoxy; and optionally converting them into other derivatives of formula (I);
st.4c) with an alkylisothiourea of formula (VII) -
R—S—C(═NH)NH2 (VII) - wherein R is as above reported, so as to obtain a compound of formula (Ia) or (Ib) wherein R and R1 are as above reported, X is —S— and R2 is ethoxy; and optionally converting them into other derivatives of formula (I);
st.4d) with methylisourea so as to obtain a compound of formula (Ia) or (Ib) wherein R1 is as above reported R is methyl, X is —O— and R2 is ethoxy; and optionally converting them into other derivatives of formula (I);
(2) when A is a —C(CH3)2—CH2— group:
st.5) reacting 2-methoxy-4,4-dimethyl-2-cyclohexen-1-one with diethyl oxalate, in the presence of [LiN(TMS)2], so as to obtain a compound of formula (VIII) - st.6) reacting the compound of formula (VIII) with a hydrazine derivative of formula (III) according to any one of previous steps (st.2a) or (st.2b) so as to obtain the compound of formula (IXa) or (IXb)
- wherein R1 is as above reported;
st.7) reacting the compound of formula (IXa) or (IXb) with ethyl formate under basic conditions, so as to obtain the compound of formula (Xa) or (Xb) - st.8) reacting the compound of formula (Xa) or (Xb) with guanidine or a guanidine derivative of formula (VI), so as to obtain a compound of formula (Ia) or (Ib)
- wherein R and R1 are as above reported, X is —NH—, and R2 is ethoxy; and optionally converting them into other derivatives of formula (I);
(3) when A is a —CH2—C(CH3)2— group:
st.9) reacting 2-methoxy-5,5-dimethyl-2-cyclohexen-1-one with diethyl oxalate in the presence of sodium hydride, so as to obtain the compound of formula (XI) - st.10) reacting the compound of formula (XI) with a hydrazine derivative of formula (III) according to any one of previous steps (st.2a) or (st.2b) so as to obtain the compound of formula (XIIa) or (XIIb)
- wherein R1 is as above reported;
st.11) reacting the compound of formula (XIIa) or (XIIb) with dimethylformamide-di-tert-butylacetale so as to obtain a compound of formula (XIIIa) or (XIIIb) - st.12) reacting the compound of formula (XIIIa) or (XIIIb) with guanidine or a guanidine derivative of formula (VI), so as to obtain a compound of formula (Ia) or (Ib)
- wherein R and R1 are as above reported, X is —NH—, and R2 is ethoxy; and optionally converting them into other derivatives of formula (I);
(4) when, in formula (Ib), A is a —(CH2)2— group, —CH2—C(CH3)2— group, —C(CH3)2—CH2— group, R1 is directly linked to R2 so as to yield a tetra-cyclic ring structure:
st.13) reacting a compound of formula (IV), (IX), (XII) wherein R1 is hydrogen, obtained according to (st.2), (st.6), (st.10) of the process, with triphenylmethyl chloride so as to obtain a compound of formula (XIV) - wherein Tr stands for trityl (triphenylmethyl);
st.14) reacting the compound of formula (XIV) with dimethylformamide-di-tert-butylacetale, as set forth in step (st.3), so as to obtain a compound of formula (XV) - st.15) reacting the compound of formula (XV) with a suitable guanidine derivative of formula (VI), as set forth in step (st.4b), so as to obtain a compound of formula (Ia) or (Ib)
- wherein R is as above defined, A is a —(CH2)2— group, —CH2—C(CH3)2— group, —C(CH3)2—CH2— group, X is NH, R1 is trityl and R2 is ethoxy;
st.16) reacting the above compound of formula (Ia) or (Ib) under acidic conditions, so as to obtain the corresponding compound of formula (Ia) or (Ib) wherein R1 is hydrogen;
st.17) reacting the above compound of formula (Ia) or (Ib) with a suitable alkylating agent of formula (XVI) in the presence of litium tert-butylate -
Br—(CH2)n—NH—BOC (XVI) - wherein n is 2 or 3, so as to obtain a compound of formula (Ib)
- wherein A, n and R are as above defined;
st.18) reacting the above compound of formula (Ib) under acidic conditions, so as to convert the tert-butoxycarbonylamino group into amino (deprotection) and reacting it with cesium carbonate (CsCO3) so as to obtain any one of the two compounds of formula (Ib) - wherein A and R is as above defined, and optionally converting them into other derivatives of formula (I);
(5) when R2 is a bulky group:
st.19) reacting 2-ethoxy-2-cyclohexenone with dimethylformamide-di-tert-butylacetale, as reported in step (st.3), so as to obtain a compound of formula (XVII) - st.20) reacting the compound of formula (XVII) with a derivative of formula (VII), according to step (st.4c), so as to obtain a compound of formula (XVIII)
- wherein R is as above defined; and subsequently treating it under acidic conditions so as to obtain a compound of formula (XIX)
- st.21) reacting the compound of formula (XIX) with a compound of formula (XX)
- wherein R2 is a bulky group, so as to obtain a compound of formula (XXI)
- st.22) reacting the compound of formula (XXI) with a hydrazine derivative of formula (III), as per step (st.1) of the process, so as to obtain a compound of formula (I) wherein R and R1 are as above defined, X is —S— and R2 is a bulky group; and optionally converting them into other derivatives of formula (I).
- As above reported, the compounds of formula (I) which are prepared according to the process object of the invention, for instance as set forth in steps (st.4a), (st.4b), (st.4c), (st.8), (st.12), (st.13), (st.18) and (st.22), can be conveniently converted into other compounds of formula (I) by operating according to well-known operative conditions.
- As an example, the compounds of formula (I):
- st.23) wherein R2 is ethoxy may be converted into the compounds of formula (Ia) or (Ib) wherein R2 is amino by treatment with ammonium hydroxide
- st.24) wherein R2 is ethoxy may be converted into the compounds of formula (I) wherein R2 is a group —NHR″ by treatment with an amine of formula R″—NH2 (XXII)
- st.25) wherein R2 is ethoxy may be converted into the compounds of formula (I) wherein R2 is a group —OH through acidic or basic hydrolysis
- st.26) wherein R2 is —OH may be converted into the compounds of formula (I) wherein R2 is a group —NR″R″′ or —N(OH)R″, through reaction with a derivative of formula (XXIII) or (XXIV)
-
R″R″′NH (XXIII) -
R″NHOH (XXIV) - under basic conditions and in the presence of a suitable condensing agent
- st.27) wherein R is hydrogen and X is —NH— may be converted into the compounds of formula (I) wherein R is other than hydrogen, as above defined, and X is —CONH—, through reaction with an acid halide, for instance chloride, of formula R—COCl (XXV)
- st.28) wherein R is hydrogen and X is —NH— may be converted into the compounds of formula (I) wherein R is other than hydrogen, as above defined, and X is —NH—CO—NH—, through reaction with an isocyanate of formula R—NCO (XXVI)
- st.29) wherein R is hydrogen and X is —NH— may be converted into the compounds of formula (I) wherein R is aryl and X is —NH—, by first converting the amino group to iodine with iso-amylnitrite and diiodomethane or cesium iodide, in the presence of iodine and CuI, and by subsequently reacting the iododerivative with an arylamine of formula R—NH2 (XXVII), in the presence of palladium acetate and (2,2′-bis(diphenylphosphino))-1,1′-binaphthalene (BINAP)
- st.29a) wherein R is hydrogen and X is —NH— may be converted into the compounds of formula (I) wherein R is alkyl, cycloalkyl, cycloalkyl-alkyl, arylalkyl, heterocyclyl, heterocyclylalkyl, and X is —NH—, by first converting the amino group to iodine, as described in the previous step (st.29), and by subsequently reacting the iododerivative with an alkyl, cycloalkyl, cycloalkyl-alkyl, arylalkyl, heterocyclyl or heterocyclylalkyl amine of formula RNH2 (XXVII), wherein R is as therein defined;
st.30) wherein R is hydrogen and X is —NH— may be converted into the compounds of formula (I) wherein R is aryl and X is a single bond, by first converting the amino group to iodine, as per the above step (st.29), and by subsequently reacting the iododerivative with an arylboronic acid of formula R—B(OH)2 (XXVIII), in the presence of a palladium derivative - st.31) wherein R is hydrogen and X is —NH— may be converted into the compounds of formula (I) wherein R is alkyl or arylmethyl, by reaction with an alkyl aldehyde or aryl-aldehyde of formula R—CHO (XXIX) in the presence of sodium cyanoborohydride (NaBH3CN) and acetic acid
- st.31a) wherein R is hydrogen and X is —NH— may be converted into the compounds of formula (I) wherein R is cycloalkyl or heterocycloalkyl, by reaction with an cycloalkyl ketone or heterocycloalkylketone in the presence of sodium triacetoxyborohydride (NaBH(OAc)3) and trifluoroacetic acid
- st.32) wherein R is as above defined, e.g. methyl, and X is —S— may be converted into the compounds of formula (I) wherein R is an optionally substituted alkyl, cycloalkyl, heterocyclyl, cycloalkyl-alkyl, arylalkyl or heterocyclylalkyl group, by first converting the RS— group into RSO2— under oxidative conditions, and by then reacting the sulfonyl derivative with an amine of formula R—NH2 (XXVII) wherein R is an optionally substituted alkyl, cycloalkyl, heterocyclyl, cycloalkyl-alkyl, arylalkyl or heterocyclylalkyl group
- st.33) wherein R is as above defined, e.g. methyl, and X is —S— may be converted into the compounds of formula (I) wherein R is as defined in formula (I) and X is —O—, by first converting the RS— group into RSO2— as per step (st.32) and by then reacting the sulfonyl derivative with a compound of formula R—OH (XXX)
- st.33a) wherein R is methyl, and X is —O— may be converted into the compounds of formula (I) wherein R is as defined in formula (I) and X is —O—, by first converting the MeO— group into HO—, then by reacting it with a triflating agent so as to obtain the corresponding trifluoromethansulfonate and finally by reacting it with a compound of formula R—OH (XXX)
- st.33b) wherein R is methyl and X is —O— may be converted into the compounds of formula (I) wherein R is an optionally substituted alkyl, cycloalkyl, heterocyclyl, cycloalkyl-alkyl, heterocyclylalkyl group, and X is —NH—, by first converting the MeO— group into HO—, then by reacting it with a triflating agent so as to obtain the corresponding trifluoromethansulfonate and finally by reacting it with an amine of formula R—NH2 (XXVII) wherein R is an optionally substituted alkyl, cycloalkyl, heterocyclyl, cycloalkylalkyl, arylalkyl or heterocyclylalkyl group
- st.33c) wherein R is methyl and X is —O— may be converted into the compounds of formula (I) wherein R is an aryl and X is —NH—, by first converting the MeO— group into —OH, then by reacting it with a triflating agent so as to obtain the corresponding trifluoromethansulfonate and finally by reacting it with an amine of formula RNH2 (XXVII) wherein R is an optionally substituted aryl in the presence of palladium acetate and BINAP;
st.34) wherein A is a —(CH2)2— group may be converted into the compounds of formula (I) wherein A is a —CH═CH— group, under dehydrogenating operative conditions in the presence of a Pd or Pt catalyst. - The above process, in any one of the aforementioned variants, is an analogy process which can be carried out according to well known methods known in the art.
- According to steps (st.1) of the process, 2-ethoxy-2-cyclohexen-1-one is reacted with diethyl oxalate in the presence of LiN(TMS)2 and of a suitable solvent such as, for instance, dioxane, tetrahydrofuran or diethyl ether.
- According to step (st.2a), the compound of formula (II) is reacted with a suitable hydrazine derivative of formula (III), in the presence of a lower alcohol such as methanol, ethanol or admixtures thereof. Preferably, the above reaction is carried out in ethanol at refluxing temperature, so as to obtain a mixture of both compounds of formula (IVa) and (IVb) wherein the former is present in major amounts. Their separation into the single compounds (IVa) and (IVb) is carried out under conventional methods, for instance through preparative HPLC.
- By working according to step (st.2b) of the process, instead, that is by reacting the compound of formula (II) with the hydrazine derivative of formula (III) in the presence of acetic acid, a single compound of formula (IVa) is obtained. The reaction is preferably carried out at room temperature.
- According to step (st.2c) of the process, the compound of formula (IVa) wherein R1 is hydrogen, is reacted with a suitable compound of formula (IVc) in the presence of a base such as sodium hydride in a suitable solvent, for instance tetrahydrofuran, dioxane or dimethylformamide, at a temperature ranging from room temperature to 100° C., so as to obtain a mixture of compounds (IVa) and (IVb) wherein the former is present in major amounts, and by separating them under conventional methods, for instance through preparative HPLC.
- According to step (st.3) of the process, the compound of formula (IVa) or (IVb) is reacted with dimethylformamide-di-tert-butylacetale, in the presence of a suitable solvent such as, for instance, dimethylformamide, so as to get the compounds of formula (Va) or (Vb), respectively. Preferably, the reaction is carried out at a temperature ranging from room temperature to about 70° C.
- According to any one of the alternative steps (st.4a), (st.4b), (st.4c) or (st.4d) of the process, the compound of formula (Va) or (Vb) is reacted with guanidine, guanidine salts or derivatives thereof, alkylisothiourea or methylisourea so as to obtain the corresponding compound of formula (Ia) or (Ib) through pyrimidine ring formation. Any of the above reactions is carried out according to conventional methods. As an example, the reactions with guanidine or salts thereof such as hydrochloride, carbonate or nitrate, or with the guanidine derivative of formula (VI), as set forth in steps (st.4a) or (st.4b), are carried out in a lower alcoholic solvent under neutral or basic conditions, preferably with ethanol and sodium ethylate or with diazabicycloundecene (DBU) at refluxing temperature or, alternatively, in dimethylformamide at a temperature ranging from 80° C. to refluxing temperature in the presence of potassium carbonate. The reaction with alkylisothiourea (VII), in (st.4c), is carried out in the presence of potassium acetate and in a suitable solvent such as dimethylformamide at refluxing temperature.
- The reaction with methylisourea (st.4d) is carried out in a suitable solvent such as acetonitrile and in the presence of a base such as potassium carbonate at refluxing temperature.
- The reactions of steps (st.5) and (st.6) are carried out under the operative conditions set forth in steps (st.1), (st.2a) or (st.2b) and lead to the desired compounds of formula (IXa) or (IXb), respectively.
- Step (st.7) of the process is preferably carried out by reacting the derivative of formula (IXa) or (IXb) with ethyl formate under basic conditions, preferably in the presence of sodium ethylate or sodium hydride and of a suitable solvent such as, for instance, diethyl ether, tetrahydrofuran or dioxane, at a temperature ranging from room temperature to refluxing temperature.
- The reaction conditions of step (st.8) are those previously reported for steps (st.4a and st.4b).
- According to step (st.9), 2-methoxy-5,5-dimethyl-2-cyclohexen-1-one is reacted with diethyl oxalate in the presence of sodium hydride and in a suitable solvent such as diethyl ether, tetrahydrofuran or dioxane, at refluxing temperature.
- The subsequent reaction conditions of steps (st.10) are essentially those previously reported for steps (st.2a) or (st.2b), and those of steps (st.11) and (st.12) correspond to those of (st.3) and (st.4a and st.4b), respectively.
- According to step (st.13) of the process, it is clear to the skilled man that both compounds of formula (IVa) or (IVb) wherein R1 is a hydrogen atom are tautomeric forms of a given compound which can be conveniently identified as having formula (IV). In this respect, this same derivative is reacted with triphenylmethyl chloride so as to obtain a compound of formula (XIV) wherein either one of the two pyrazole nitrogen atoms are alkylated with a trityl (e.g. triphenylmethyl) group.
- The operative conditions in steps (st.14) and (st.15) of the process essentially correspond to those already reported for steps (st.3) and (st.4a and st.4b). According to step (st.16), the trityl group of the compounds of formula (I) is removed under acidic conditions, for instance with trifluoroacetic acid and in the presence of a suitable solvent such as dichloromethane, so as to give rise to the corresponding compound of formula (I) wherein R1 is hydrogen, in both forms:
- Its subsequent alkylation with a derivative of formula (XVI), according to step (st.17) of the process, allows to selectively alkylate the pyrazole nitrogen atom which is in proximity of the —COOEt group; this reaction may be carried out with lithium tert-butylate and in a suitable solvent, such as dioxane, diethyl ether or tetrahydrofuran.
- According to step (st.18), the above compound is first converted into the free amino derivative by working according to conventional methods, for instance under acidic conditions, preferably with hydrochloric acid, in a suitable solvent such as dioxane at refluxing temperature, and subsequently cyclised to the desired tetracyclic derivative in the presence of a base such as cesium carbonate (CsCO3) and in a suitable solvent such as a lower alcohol, preferably methanol, ranging from room temperature to reflux.
- The operative conditions of steps (st.19) and (st.20) of the process essentially correspond to those already reported for steps (st.3) and (st.4c); the subsequent acidic treatment of the compound of formula (XVIII) to the compound of formula (XIX) is preferably carried out with an aqueous solution of acetic acid, at a temperature of about 100° C.
- According to step (st.21), the compound of formula (XIX) is reacted with a suitable derivative of formula (XX) in the presence of sodium hydride and in a suitable solvent, e.g. diethyl ether, tetrahydrofuran or dioxane, at a temperature ranging from about −50° C. to room temperature.
- The operative conditions of step (st.22) essentially correspond to those of step (st.1) of the process.
- As formerly indicated, the compounds of formula (I) thus prepared may be easily converted into several other compounds of formula (I) of the invention.
- As an example, compounds of formula (I) bearing R2 as an ethoxy group, or even as an alkoxy group, can be converted into a variety of derivatives according to methods well-known in the art to convert carboxyester groups (—COOR2) into carboxamides (—CONH2), N-substituted carboxamides (—CONHR″) and carboxylic acids (—COOH), for instance as reported in steps (st.23), (st.24) and (st.25).
- The operative conditions are those widely known in the art and may comprise, for instance in the conversion of a carboxyester group into a carboxamide group, the reaction with ammonia or ammonium hydroxide in the presence of a suitable solvent such as a lower alcohol, dimethylformamide or mixtures thereof; preferably the reaction is carried out with ammonium hydroxide in a methanol/dimethylformamide mixture, at a temperature ranging from about 50° C. to about 100° C.
- Analogous operative conditions apply in the preparation of N-substituted carboxamides wherein a suitable primary amine is used in place of ammonia or ammonium hydroxide.
- Likewise, carboxyester groups may be converted into carboxylic acid derivatives through basic or acidic hydrolysis conditions, widely known in the art.
- According to step (st.26) of the process, compounds of formula (I) wherein R2 is hydroxy (—COOH) may be converted into carboxamido derivatives (—CONR″R″′) or [—CON(OH)R″ ] wherein R″ and R″′ are as formerly indicated, also inclusive of compounds wherein R″ and R″′ form, together with the nitrogen atom to which they are bonded, a 5 or 6 membered heteroaryl or heterocyclyl group optionally containing one additional heteroatom selected among N, O or S.
- The reaction is carried out in the presence of an amine of formula (XXIII) or of a compound of formula (XXIV), as the case may be, under basic conditions, preferably with N,N-diisopropyl-N-ethylamine or triethylamine, in a suitable solvent such as dichloromethane, dimethylformamide, tetrahydrofuran, or dioxane, and in the presence of a suitable condensing agent such as N,N′-dicyclohexylcarbodiimide (DCC), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDCI) or O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethylisouronium tetrafluoroborate (TBTU); catalytic amounts of (benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP) ma be also required.
- In addition, compounds of formula (I) wherein R—NH— is an amino (—NH2) group may be easily converted into the corresponding carboxamido (—NHCOR) or ureido (—NHCONHR) derivatives, as set forth in steps (st.27) or (st.28) of the process, respectively. Typically, the reaction with isocyanate is performed with sodium hydride in dimethylformamide whilst the one with the acid chloride may be carried out in a suitable solvent such as pyridine, tetrahydrofuran, ethyl acetate or dioxane, or a mixture of them at room temperature.
- Compounds of formula (I) wherein R—NH— represents an arylamino or heteroarylamino group, can be obtained by the corresponding iodo derivatives which, in their turn, may be prepared by the corresponding compounds of formula (I) wherein R—NH— is amino, as per step (st.29) of the process.
- The preparation of the iodo derivatives may be carried out in a suitable solvent such as tetrahydrofuran, diethyl ether or dimethoxyethane, at a temperature ranging from room temperature to about 70° C., and for a time of about 8 hours to about 48 hours.
- The subsequent conversion of the iododerivative may be carried out in a suitable solvent such as dimethylformamide, dimethoxyethane or acetonitrile and in the presence of catalytic amounts of palladium acetate, (2,2′-bis(diphenylphosphino)-1,1′-binaphtalene (BINAP) and a base such as potassium carbonate, potassium phosphate or cesium carbonate, at a temperature ranging from room temperature to 110° C. and for a time ranging from about 2 to about 24 hours.
- Compounds of formula (I) wherein R is aryl and X is a single bond can be obtained, as reported in step (st.30), from the iodo derivative above mentioned by reaction with arylboronic acids of formula (XXVIII) in a suitable solvent such as dimethylformamide, dichloromethane, methanol, dimethoxyethane or acetonitrile, in the presence of tris(dibenzylideneacetone)dipalladium (0) or tetrakis triphenylphosphino palladium [Pd(PPh3)4], optionally in the presence of cesium fluoride, at a temperature ranging from room temperature to 100° C.
- Compounds of formula (I) wherein RNH— represents an alkylamino, cycloalkylamino, cycloalkyl-alkylamino, heterocyclylamino, heterocyclylalkylamino can be obtained from the corresponding iodo derivative as set forth in step (st.29a) of the process. The reaction may be carried out in a suitable solvent such as dimethylformamide, dioxane or acetonitrile or without solvent at a temperature ranging from 40° C. to 120° C. for a time ranging from 3 to 18 hours.
- Compounds of formula (I) wherein R—NH— is amino may be also converted into the corresponding alkylamino or arylmethylamino derivatives of formula (I) as reported in (st.31), by operating in a suitable solvent or in a mixture of solvents, for instance comprising a 1:1:1 mixture of acetic acid, methanol and water.
- Compounds of formula (I) wherein R—NH— is amino may be also converted into the corresponding cycloalkylamino or heterocycloalkylamino derivatives of formula (I) as reported in (st.31a), by operating in a suitable solvent such as methylene chloride, acetonitrile, dimethylformamide.
- Compounds of formula (I) wherein R—X— represents an alkylthio group (R—S—) may be converted into a variety of compounds of formula (I) wherein X is —NH—, by first oxidizing the alkylthio to alkylsulfonyl group and by replacing it with a R—NH— group, as reported in (st.32). The oxidative step may be carried out with oxone in the presence of a suitable solvent, preferably dimethylformamide or dimethylsulfoxide at room temperature; the subsequent replacement of the alkylsulfonyl group with a suitable amino derivative is preferably carried out in the presence of dimethylsulfoxide, dimethylformamide, dimethoxyethane, dioxane, acetonitrile, N-methyl-pyrrolidone or diglyme, at a temperature ranging from room temperature to about 100° C.
- Interestingly, when the last step is carried out in the presence of dimethylsulfoxide as a suitable solvent, this same solvent can also act as oxidizing agent capable of furnishing the desired compounds wherein A represents a group —CH═CH—. These latter derivatives are then separated from the reaction mixture according to conventional methods, for instance by chromatography or by preparative HPLC.
- According to step (st.33) of the process, compounds of formula (I) wherein X is —O— may be easily obtained by reacting the sulfonyl derivative with an alcohol or phenol derivative of formula (XXX) wherein R is as in formula (I). The reaction may be carried out in the presence of a base such as potassium or sodium carbonate, butyl lithium, lithium amide, sodium hydride or the like, in a suitable solvent such as dimethylformamide or tetrahydrofuran, and by working at a temperature ranging from room temperature to about 100° C.
- Alternatively, according to steps (st.4d) and (st.33a), compounds of formula (I) wherein X is —O— may be obtained by reacting the compounds of formula (Va) and (Vb) with methylisourea sulfate by operating in a suitable solvent such as dioxane, dimethylformamide or acetonitrile in the presence of a base such as sodium or potassium carbonate at a temperature ranging from 50° C. to 100° C. The compounds of formula (I) wherein X is —O— and R is hydrogen may be obtained by reacting the compounds of formula (I) wherein X is —O— and R is methyl with trimethylsilyl chloride in the presence of sodium iodide and in a suitable solvent such as dioxane, tetrahydrofuran or acetonitrile at room temperature. The compounds of formula (I) wherein X is —O— and R is a trifluorosulfonyl group may be obtained by reacting the compounds of formula (I) wherein X is —O— and R is hydrogen with a triflating agent such as trifluoromethanesulfonic anhydride, trifluoromethanesulfonylchloride or N-phenyl-bis(trifluoromethanesulfonimide), optionally in the presence of a base such as triethylamine or N,N-diisopropyl-N-ethylamine (DIPEA), in a suitable solvent such as dichloromethane, tetrahydrofuran or dioxane at a temperature ranging from −78° C. to room temperature.
- The compounds of formula (I) wherein X is —O— and R is as described above may be obtained by reacting the compounds of formula (I) wherein X is —O— and R is a trifluoromethanesulfonyl group with an alcohol or phenol of formula (XXX) wherein R is as in formula (I), by operating in a suitable solvent such as dioxane, tetrahydrofuran, dimethoxyethane, acetonitrile, dimethylformamide or dimethylsulfoxide, at a temperature ranging from room temperature to about 90° C., optionally in the presence of a base such as potassium carbonate, potassium tertbutoxide or sodium hydride.
- Alternatively the reaction may be carried out in a suitable solvent such as toluene, dimethylformamide, dimethoxyethane or acetonitrile, in the presence of palladium acetate, (±)-BINAP and a base such as potassium phosphate (K3PO4) or potassium or cesium carbonate (K2CO3 or CsCO3) at a temperature ranging from 0° C. to 100° C. (st.33c).
- The compounds of formula (I) wherein X is —NH— and R is an optionally substituted alkyl, cycloalkyl, heterocyclyl, cycloalkyl-alkyl or a heterocyclylalkyl group may be obtained by reacting the compounds of formula (I) wherein X is —O— and R is a trifluoromethanesulfonyl group with an amine of formula R—NH2 (XXVII) wherein R is as in formula (I), by operating in a suitable solvent such as dioxane, tetrahydrofuran, dimethoxyethane, acetonitrile, dimethylformamide or dimethylsulfoxide, at a temperature ranging from room temperature to 90° C., optionally in the presence of a base such as potassium carbonate or triethylamine.
- Finally, any of the above compounds of formula (I) wherein A represents a —CH2—CH2— group can undergo dehydrogenation in the presence of an optionally supported palladium or platinum catalyst, so as to give rise to the corresponding aromatic derivative wherein A is —CH═CH—, as per (st.34) of the process.
- See the experimental section for any specific example concerning the preparation of the compounds of formula (I) of the invention and their conversion into other compounds of formula (I).
- The intermediate compounds of formula (Va) or (Vb) according to step (st.3) of the process
- and wherein R1 is a hydrogen atom or an optionally substituted group selected from straight or branched C1-C6 alkyl, C3-C6 cycloalkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl are novel and, hence, represent a further object of the invention.
- According to any variant of the process for preparing the compounds of formula (I), the starting material and any other reactant is known or easily prepared according to known methods.
- As an example, 2-ethoxy-2-cyclohexen-1-one is a known compound which can be easily obtained by refluxing cyclohexan-1,2-dione with ethanol in toluene, in the presence of catalytic amounts of p-toluenesulfonic acid (TsOH).
- Likewise, 2-methoxy-4,4-dimethyl-2-cyclohexen-1-one is a known compound which can be prepared through epoxidation of commercially available 4,4-dimethyl-2-cyclohexen-1-one and subsequent treatment of the epoxide with potassium hydroxide in methanol.
- Finally, 2-methoxy-5,5-dimethyl-2-cyclohexen-1-one may be prepared according to the following scheme from commercially available 55-dimethyl-cyclohexan-1,3-dione:
- The compounds of formula (III), (VI), (VII), (XVI), (XXII), (XXIII), (XXIV), (XXV), (XXVI), (XXVII), (XXVIII), (XXIX) and (XXX) are known or easily prepared according to known methods.
- Just as an example, when preparing given guanidino derivatives of formula (VI) wherein R is a rather complex chemical moiety, the following scheme may be followed:
- From all of the above, it is clear to the skilled man that when preparing the compounds of formula (I) according to any one of the aforementioned process variants, optional functional groups within the starting materials or the intermediates thereof and which could give rise to unwanted side reactions, need to be properly protected according to conventional techniques. Likewise, the conversion of these latter into the free deprotected compounds may be carried out according to known procedures.
- As it will be readily appreciated, if the compounds of formula (I) prepared according to the process described above are obtained as an admixture of isomers, their separation into the single isomers of formula (I), according to conventional techniques, is within the scope of the present invention.
- Conventional techniques for racemate resolution include, for instance, partitioned crystallization of diastereoisomeric salt derivatives or preparative chiral HPLC.
- In addition, the compounds of formula (I) of the invention may be also prepared according to combinatorial chemistry techniques widely known in the art, for instance by accomplishing the aforementioned reactions between the several intermediates in a serial manner and by working under solid-phase-synthesis (SPS) conditions.
- For a general reference to the preparation of the compounds of formula (I) of the invention according to combinatorial chemistry techniques, see the experimental section.
- Hence, it is a further object of the present invention a library of two or more compounds of formula (Ia) or (Ib)
- wherein
R is hydrogen or an optionally substituted group selected from amino, straight or branched C1-C6 alkyl, C3-C10 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl;
X is a single bond or a divalent radical selected from —NR′—, —CONR′—, —NH—CO—NH—, —O—, —S— or —SO2—, wherein R′ is hydrogen or an optionally substituted group selected from straight or branched C1-C6 alkyl, C3-C6 cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyl or, together with the nitrogen atom to which they are bonded, R and R′ may form a 5 to 6 membered heteroaryl or heterocyclyl group optionally containing one additional heteroatom selected among N, O or S;
R1, bonded to any one of the nitrogen atoms of the pyrazole ring as per formulae (Ia) or (Ib), represents a hydrogen atom or an optionally substituted group selected from straight or branched C1-C6 alkyl, C3-C6 cycloalkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl or, in formula (Ib), R1 is a divalent —(CH2)n—NH— group being linked to R2, wherein n is 2 or 3;
R2 is a group selected from —NR″R″′, —N(OH)R″, —OR″ or —R″, wherein R″ and R″′ are, each independently, hydrogen or an optionally substituted group selected from straight or branched C1-C6 alkyl, C3-C6 cycloalkyl or cycloalkyl-alkyl, aryl, arylalkyl, heterocyclyl or heterocyclylalkyl or, together with the nitrogen atom to which they are bonded, R″ and R″′ may form a 5 to 6 membered heteroaryl or heterocyclyl group, optionally containing one additional heteroatom selected among N, O or S;
A is a divalent group selected from —CH2—, —(CH2)2—, —CH2—C(CH3)2—, —C(CH3)2—CH2— or —CH═CH—;
or a pharmaceutically acceptable salt thereof. - The compounds of formula (I) are active as protein kinase inhibitors and are therefore useful, for instance, to restrict the unregulated proliferation of tumor cells.
- In therapy, they may be used in the treatment of various tumors, such as those formerly reported, as well as in the treatment of other cell proliferative disorders such as psoriasis, vascular smooth cell proliferation associated with atherosclerosis and post-surgical stenosis and restenosis and in the treatment of Alzheimer's disease.
- The inhibiting activity of putative cdk/cyclin inhibitors and the potency of selected compounds is determined through a method of assay based on the use of the SPA technology (Amersham Pharmacia Biotech).
- The assay consists of the transfer of radioactivity labelled phosphate moiety by the kinase to a biotinylated substrate. The resulting 33P-labelled biotinylated product is allowed to bind to streptavidin-coated SPA beads (biotin capacity 130 pmol/mg), and light emitted was measured in a scintillation counter.
- 4 μM in house biotinylated histone H1 (Sigma # H-5505) substrate, 10 μM ATP (0.1 microCi P33γ-ATP), 1.1 nM Cyclin A/CDK2 complex, inhibitor in a final volume of 30 μl buffer (TRIS HCl 10 mM pH 7.5, MgCl2 10 mM, DTT 7.5 mM+0.2 mg/ml BSA) were added to each well of a 96 U bottom. After incubation for 60 min at room temperature, the reaction was stopped by addition of 100 μl PBS buffer containing 32 mM EDTA, 500 μM cold ATP, 0.1% Triton X100 and 10 mg/ml streptavidin coated SPA beads. After 20 min incubation, 110 μL of suspension were withdrawn and transferred into 96-well OPTIPLATEs containing 100 μl of 5M CsCl. After 4 hours, the plates were read for 2 min in a Packard TOP-Count radioactivity reader.
- inhibitors were tested at different concentrations ranging from 0.0015 to 10 μM. Experimental data were analyzed by the computer program GraphPad Prizm using the four parameter logistic equation:
-
y=bottom+(top−bottom)/(1+10{circumflex over ( )}((log IC50−x)*slope)) - where x is the logarithm of the inhibitor concentration, y is the response; y starts at bottom and goes to top with a sigmoid shape.
- Reaction was carried out in buffer (10 mM Tris, pH 7.5, 10 mM MgCl2, 0.2 mg/ml BSA, 7.5 mM DTT) containing 3.7 nM enzyme, histone and ATP (constant ratio of cold/labeled ATP 1/3000). Reaction was stopped with EDTA and the substrate captured on phosphomembrane (Multiscreen 96 well plates from Millipore). After extensive washing, the multiscreen plates were read on a top counter. Control (time zero) for each ATP and histone concentrations was measured.
- Reaction velocities are measured at four ATP, substrate (histone) and inhibitor concentrations. An 80-point concentration matrix was designed around the respective ATP and substrate Km values, and the inhibitor IC50 values (0.3, 1, 3, 9 fold the Km or IC50 values). A preliminary time course experiment in the absence of inhibitor and at the different ATP and substrate concentrations allows the selection of a single endpoint time (10 min) in the linear range of the reaction for the Ki determination experiment.
- Kinetic parameters were estimated by simultaneous nonlinear least-square regression using [Eq. 1] (competitive inhibitor respect to ATP, random mechanism) using the complete data set (80 points):
-
- where A=[ATP], B=[Substrate], I=[inhibitor], Vm=maximum velocity, Ka, Kb, Ki the dissociation constants of ATP, substrate and inhibitor respectively. α and β the cooperativity factor between substrate and ATP binding and substrate and inhibitor binding respectively.
- In addition the selected compounds are characterized on a panel of ser/thre kinases strictly related to cell cycle (cdk2/cyclin E, cdk1/cyclin B1, cdk5/p25, cdk4/cyclin D1), and also for specificity on MAPK, PKA, EGFR, IGF1-R, Aurora-2 and Cdc 7
- 10 μM □ in house biotinylated histone H1 (Sigma # H-5505) substrate, 30 μM □ATP (0.3 microCi P33γ-ATP), 4 ng GST-Cyclin E/CDK2 complex, inhibitor in a final volume of 30 μl buffer (TRIS HCl 10 mM pH 7.5, MgCl2 10 mM, DTT 7.5 mM+0.2 mg/ml BSA) were added to each well of a 96 U bottom. After incubation for 60 min at room temperature, the reaction was stopped by addition of 100 μl PBS buffer containing 32 mM EDTA, 500 μM cold ATP, 0.1% Triton X100 and 10 mg/ml streptavidin coated SPA beads. After 20 min incubation, 110 μL of suspension were withdrawn and transferred into 96-well OPTIPLATEs containing 100 μl of 5M CsCl. After 4 hours, the plates were read for 2 min in a Packard TOP-Count radioactivity reader.
- see above
- 4 μM in house biotinylated histone H1 (Sigma # H-5505) substrate, 20 μM ATP (0.2 microCi P33γ-ATP), 3 ng Cyclin B/CDK1 complex, inhibitor in a final volume of 30 μl buffer (TRIS HCl 10 mM pH 7.5, MgCl2 10 mM, DTT 7.5 mM+0.2 mg/ml BSA) were added to each well of a 96 U bottom. After 20 min at r.t. incubation, reaction was stopped by 100 μl PBS+32 mM EDTA+0.1% Triton X-100+500 μM ATP, containing 1 mg SPA beads. Then a volume of 110 μl is transferred to Optiplate.
- After 20 min. incubation for substrate capture, 100 μl 5M CsCl were added to allow statification of beads to the top of the Optiplate and let stand 4 hours before radioactivity counting in the Top-Count instrument.
- see above
- The inhibition assay of cdk5/p25 activity is performed according to the following protocol.
- 10 μM biotinylated histone H1 (Sigma # H-5505) substrate, 30 μM ATP (0.3 microCi P33γ-ATP), 15 ng CDK5/p25 complex, inhibitor in a final volume of 30 μl buffer (TRIS HCl 10 mM pH 7.5, MgCl2 10 mM, DTT 7.5 mM+0.2 mg/ml BSA) were added to each well of a 96 U bottom. After incubation for 35 min at room temperature, the reaction was stopped by addition of 100 μl PBS buffer containing 32 mM EDTA, 500 μM cold ATP, 0.1% Triton X100 and 10 mg/ml streptavidin coated SPA beads. After 20 min incubation, 110 μL of suspension were withdrawn and transferred into 96-well OPTIPLATEs containing 100 μl of 5M CsCl. After 4 hours, the plates were read for 2 min in a Packard TOP-Count radioactivity reader.
- see above
- 0.4 μM mouse GST-Rb (769-921) (# sc-4112 from Santa Cruz) substrate, 10 μM ATP (0.5 μCi P33γ-ATP), 100 ng of baculovirus expressed GST-cdk4/GST-Cyclin D1, suitable concentrations of inhibitor in a final volume of 50 μl buffer (TRIS HCl 10 mM pH 7.5, MgCl2 10 mM, 7.5 mM DTT+0.2 mg/ml BSA) were added to each well of a 96 U bottom well plate. After 40 min at 37° C. incubation, reaction was stopped by 20 μl EDTA 120 mM.
- 60 μl were transferred from each well to MultiScreen plate, to allow substrate binding to phosphocellulose filter. Plates were then washed 3 times with 150 μl/well PBS Ca++/Mg++ free and filtered by MultiScreen filtration system.
- filters were allowed to dry at 37° C., then 100 μl/well scintillant were added and 33P labeled Rb fragment was detected by radioactivity counting in the Top-Count instrument.
- see above
- 10 μM in house biotinylated MBP (Sigma # M-1891) substrate, 15 μM ATP (0.15 microCi P33γ-ATP), 30 ng GST-MAPK (Upstate Biotechnology #14-173), inhibitor in a final volume of 30 μl buffer (TRIS HCl 10 mM pH 7.5, MgCl2 10 mM, DTT 7.5 mM+0.2 mg/ml BSA) were added to each well of a 96 U bottom. After incubation for 35 min at room temperature, the reaction was stopped by addition of 100 μl PBS buffer containing 32 mM EDTA, 500 μM cold ATP, 0.1% Triton X100 and 10 mg/ml streptavidin coated SPA beads. After 20 min incubation, 110 μL of suspension were withdrawn and transferred into 96-well OPTIPLATEs containing 100 μl of 5M CsCl. After 4 hours, the plates were read for 2 min in a Packard TOP-Count radioactivity reader.
- see above
- 10 μM in house biotinylated histone H1 (Sigma # H-5505) substrate, 10 μM ATP (0.2 microM P33γ-ATP), 0.45 U PICA (Sigma #2645), inhibitor in a final volume of 30 μl buffer (TRIS HCl 10 mM pH 7.5, MgCl2 10 mM, DTT 7.5 mM+0.2 mg/ml BSA) were added to each well of a 96 U bottom. After incubation for 90 min at room temperature, the reaction was stopped by addition of 100 μl PBS buffer containing 32 mM EDTA, 500 μM cold ATP, 0.1% Triton X100 and 10 mg/ml streptavidin coated SPA beads. After 20 min incubation, 110 μL of suspension were withdrawn and transferred into 96-well OPTIPLATEs containing 100 μl of 5M CsCl. After 4 hours, the plates were read for 2 min in a Packard TOP-Count radioactivity reader.
- see above
- 10 μM in house biotinylated MBP (Sigma # M-1891) substrate, 2 μM ATP (0.04 microCi P33γ-ATP), 36 ng insect cell expressed GST-EGFR, inhibitor in a final volume of 30 μl buffer (Hepes 50 mM pH 7.5, MgCl2 3 mM, MnCl2 3 mM, DTT 1 mM, NaVO3 3 μM, +0.2 mg/ml BSA) were added to each well of a 96 U bottom. After incubation for 20 min at room temperature, the reaction was stopped by addition of 100 μl PBS buffer containing 32 mM EDTA, 500 μM cold ATP, 0.1% Triton X100 and 10 mg/ml streptavidin coated SPA beads. After 20 min incubation, 110 μL of suspension were withdrawn and transferred into 96-well OPTIPLATEs containing 100 μl of 5M CsCl. After 4 hours, the plates were read for 2 min in a Packard TOP-Count radioactivity reader.
- see above
- The inhibition assay of IGF1-R activity is performed according to the following protocol.
- IGF1-R must be activated by auto-phosphorylation before starting the experiment. Just prior to the assay, a concentrated enzyme solution (694 nM) is incubated for half a hour at 28° C. in the presence of 100 μM ATP and then brought to the working dilution in the indicated buffer.
- 10 μM biotinylated IRS 1 peptide (PRIMM) substrate, 0-20 μM inhibitor, 6 μM ATP, 1 microCi 33P-ATP, and 6 nM GST-IGF1-R (pre-incubated for 30 min at room temperature with cold 60 μM cold ATP) in a final volume of 30 μl buffer (50 mM HEPES pH 7.9, 3 mM MnCl2, 1 mM DTT, 3 μM NaVO3) were added to each well of a 96 U bottom well plate. After incubation for 35 min at room temperature, the reaction was stopped by addition of 100 μl PBS buffer containing 32 mM EDTA, 500 μM cold ATP, 0.1% Triton X100 and 10 mg/ml streptavidin coated SPA beads. After 20 min incubation, 110 μL of suspension were withdrawn and transferred into 96-well OPTIPLATEs containing 100 μl of 5M CsCl. After 4 hours, the plates were read for 2 min in a Packard TOP-Count radioactivity reader.
- 8 μM biotinylated peptide (4 repeats of LRRWSLG), 10 μM ATP (0.5 uCi P33γ-ATP), 7.5 ng Aurora 2, inhibitor in a final volume of 30 μl buffer (HEPES 50 mM pH 7.0, MgCl2 10 mM, 1 mM DTT, 0.2 mg/ml BSA, 3 μM orthovanadate) were added to each well of a 96 U bottom well plate. After 60 minutes at room temperature incubation, reaction was stopped and biotinylated peptide captured by adding 100 μl of bead suspension.
- 100 μl of CsCl2 5 M were added to each well and let stand 4 hour before radioactivity was counted in the Top-Count instrument.
- see above
- The inhibition assay of Cdc7/dbf4 activity is performed according to the following protocol.
- The Biotin-MCM2 substrate is trans-phosphorylated by the Cdc7/Dbf4 complex in the presence of ATP traced with γ33-ATP. The phosphorylated Biotin-MCM2 substrate is then captured by Streptavidin-coated SPA beads and the extent of phosphorylation evaluated by β counting.
- The inhibition assay of Cdc7/dbf4 activity was performed in 96 wells plate according to the following protocol.
- To each well of the plate were added:
-
- 10 μl substrate (biotinylated MCM2, 6 μM final concentration)
- 10 μl enzyme (Cdc7/Dbf4, 17.9 nM final concentration)
- 10 μl test compound (12 increasing concentrations in the nM to M range to generate a dose-response curve)
- 10 μl of a mixture of cold ATP (2 μM final concentration) and radioactive ATP (1/5000 molar ratio with cold ATP) was then used to start the reaction which was allowed to take place at 37° C.
- Substrate, enzyme and ATP were diluted in 50 mM HEPES pH 7.9 containing 15 mM MgCl2, 2 mM DTT, 3 μM NaVO3, 2 mM glycerophosphate and 0.2 mg/ml BSA. The solvent for test compounds also contained 10% DMSO.
- After incubation for 60 minutes, the reaction was stopped by adding to each well 100 μl of PBS pH 7.4 containing 50 mM EDTA, 1 mM cold ATP, 0.1% Triton X100 and 10 mg/ml streptavidin coated SPA beads.
- After 20 min incubation, 110 μL of suspension were withdrawn and transferred into 96-well OPTIPLATEs containing 100 μl of 5M CsCl. After 4 hours, the plates were read for 2 min in a Packard TOP-Count radioactivity reader.
- see above.
- The compounds of the present invention can be administered either as single agents or, alternatively, in combination with known anticancer treatments such as radiation therapy or chemotherapy regimen in combination with cytostatic or cytotoxic agents, antibiotic-type agents, alkylating agents, antimetabolite agents, hormonal agents, immunological agents, interferon-type agents, cyclooxygenase inhibitors (e.g. COX-2 inhibitors), matrixmetalloprotease inhibitors, telomerase inhibitors, tyrosine kinase inhibitors, anti-growth factor receptor agents, anti-HER agents, anti-EGFR agents, anti-angiogenesis agents (e.g. angiogenesis inhibitors), farnesyl transferase inhibitors, ras-raf signal transduction pathway inhibitors, cell cycle inhibitors, other cdks inhibitors, tubulin binding agents, topoisomerase I inhibitors, topoisomerase II inhibitors, and the like.
- If formulated as a fixed dose, such combination products employ the compounds of this invention within the dosage range described below and the other pharmaceutically active agent within the approved dosage range.
- Compounds of formula (I) may be used sequentially with known anticancer agents when a combination formulation is inappropriate.
- The compounds of formula (I) of the present invention, suitable for administration to a mammal, e.g., to humans, can be administered by the usual routes and the dosage level depends upon the age, weight, conditions of the patient and administration route.
- For example, a suitable dosage adopted for oral administration of a compound of formula (I) may range from about 10 to about 500 mg per dose, from 1 to 5 times daily. The compounds of the invention can be administered in a variety of dosage forms, e.g., orally, in the form tablets, capsules, sugar or film coated tablets, liquid solutions or suspensions; rectally in the form suppositories; parenterally, e.g., intramuscularly, or through intravenous and/or intrathecal and/or intraspinal injection or infusion.
- The present invention also includes pharmaceutical compositions comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof in association with a pharmaceutically acceptable excipient, which may be a carrier or a diluent.
- The pharmaceutical compositions containing the compounds of the invention are usually prepared following conventional methods and are administered in a suitable pharmaceutical form.
- For example, the solid oral forms may contain, together with the active compound, diluents, e.g., lactose, dextrose saccharose, sucrose, cellulose, corn starch or potato starch; lubricants, e.g., silica, talc, stearic acid, magnesium or calcium stearate, and/or polyethylene glycols; binding agents, e.g., starches, arabic gum, gelatine methylcellulose, carboxymethylcellulose or polyvinyl pyrrolidone; disintegrating agents, e.g., starch, alginic acid, alginates or sodium starch glycolate; effervescing mixtures; dyestuffs; sweeteners; wetting agents such as lecithin, polysorbates, laurylsulphates; and, in general, non-toxic and pharmacologically inactive substances used in pharmaceutical formulations. These pharmaceutical preparations may be manufactured in known manner, for example, by means of mixing, granulating, tabletting, sugar-coating, or film-coating processes.
- The liquid dispersions for oral administration may be, e.g., syrups, emulsions and suspensions.
- As an example, the syrups may contain, as carrier, saccharose or saccharose with glycerine and/or mannitol and sorbitol.
- The suspensions and the emulsions may contain, as examples of carriers, natural gum, agar, sodium alginate, pectin, methylcellulose, carboxymethylcellulose, or polyvinyl alcohol.
- The suspension or solutions for intramuscular injections may contain, together with the active compound, a pharmaceutically acceptable carrier, e.g., sterile water, olive oil, ethyl oleate, glycols, e.g., propylene glycol and, if desired, a suitable amount of lidocaine hydrochloride.
- The solutions for intravenous injections or infusions may contain, as a carrier, sterile water or preferably they may be in the form of sterile, aqueous, isotonic, saline solutions or they may contain propylene glycol as a carrier.
- The suppositories may contain, together with the active compound, a pharmaceutically acceptable carrier, e.g., cocoa butter, polyethylene glycol, a polyoxyethylene sorbitan fatty acid ester surfactant or lecithin.
- With the aim to better illustrate the present invention, without posing any limitation to it, the following examples are now given.
- Several compounds of formula (I), hence including those of formula (Ia) and (Ib) of the invention, have been prepared. Whilst some of them have been specifically named and listed in the following experimental section, most have been conveniently identified as per the coding system of the tables reported in the experimental section, together with their analytical data.
- Each code, which unambiguosly identifies a single specific compound of formula (I) only, consists of five units B-X-M(C)-D.
- Code B represents any R substituent, as per formula (I), being attached to the rest of the molecule through the X linkage; each B group is represented through the proper chemical formula in the following table I, also indicating its point of attachment to the rest of the molecule X-M.
- Code X just represents the X group in formula (I); its meanings are represented in the following table II, also indicating its point of attachment to the rest of the molecule M.
- Code C represents the R1 group being attached to the rest of the molecule through any one of the pyrazole nitrogen atoms, as per formula (I). Each C group is represented through the proper chemical formula in the following table III, also indicating its point of attachment to the rest of the molecule M.
- Code D represents the R2 group being attached to the rest of the molecule through the carbonyl group, as per formula (I). Each D group is represented through the proper chemical formula in the following table IV, also indicating its point of attachment to the rest of the molecule M.
- Finally, code M refers to the central core of the molecule (I) bearing a carbonyl group in position 3. From all of the above it is clear to the skilled person that M is substituted by groups —X— (code X), R1 (code C) and R2 (code D), as reported in formula (I); each M group is represented through the proper chemical formula, in table V, also indicating the positions of the other substituents.
- Therefore, the coding system presently used for some compounds of formula (I) can be shortly summarised as follows:
- Just as an example, which is not intended to limit the scope of the present invention, the compound B66-X03-M00(C01)-D01 (see example 36) represents the pyrazolo-quinazoline derivative of formula (Ia) wherein the central core is represented by the moiety MOO of table V, R is the group of formula B66 of table I, X is the divalent group X03 of table II, R1 is the group C01 of table III and R2 is the group D01 of table IV, having formula
- From all of the above, it is clear to the skilled person that when R1 and R2 are linked together as per formula (Ib), then this additional cycle is already included in the structure of the M moiety and, hence, codes C and D are missing.
-
TABLE I TABLE OF B GROUPS Fragment Code B00 B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B60 B61 B62 B63 B64 B65 B66 B67 B68 B69 B70 B71 B72 B73 B74 B75 B76 B77 B78 B79 B80 B81 B82 B83 B84 B85 B86 B87 B88 B89 B90 B91 B92 B93 B94 B95 B96 B97 B98 B99 B100 B101 B102 B103 B104 B105 B106 B107 B108 B109 B110 B111 B112 B113 B114 B115 B116 B117 B118 B119 B120 B121 B122 B123 B124 B125 B126 B127 B128 B129 B130 B131 B132 B133 B134 B135 B136 B137 B138 B139 B140 B141 B142 B143 B144 B145 B146 B147 B148 B149 B150 B151 B152 B153 B154 B155 B156 B157 B158 B159 B160 B161 B162 B163 B164 B165 B166 B167 B168 B169 B170 B171 B172 B173 -
TABLE II TABLE OF X LINKERS Fragment Code —NH-M X00 —CONH-M X01 —NHCONH-M X02 —O-M X03 —S-M X04 —SO2-M X05 —M X06 -
TABLE IV TABLE OF D GROUPS Fragment Code M—OMe D00 M—OEt D01 M—OH D02 M—NH2 D03 D04 M—NH—OH D05 D06 M—Ph D07 D08 D09 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 D32 D33 D34 D35 D36 D37 D38 D39 D40 D41 D42 D43 D44 D45 D46 D47 D48 D49 D50 D51 D52 D53 D54 D55 D56 D57 D58 D59 D60 D61 D62 D63 D64 D65 D66 D67 D68 D69 D70 D71 D72 D73 D74 D75 D76 D77 D78 D79 D80 D81 D82 D83 D84 D85 D86 D87 D88 D89 D90 D91 D92 D93 D94 D95 D96 D97 D98 D99 D100 D101 D102 D103 D104 D105 D106 D107 D108 D109 D110 D111 D112 D113 D114 D115 D116 D117 D118 D119 D120 D121 D122 D123 D124 D125 D126 D127 D128 D129 D130 D131 D132 D133 D134 D135 D136 D137 D138 D139 D140 D141 D142 D143 D144 D145 D146 D147 D148 D149 D150 D151 D152 D153 D154 D155 D156 D157 D158 D159 D160 D161 D162 D163 D164 D165 - The compounds of the present invention, as prepared according to the following examples, were also characterized by 1H NMR and/or by HPLC/MS analytical data; HPLC/MS data were collected following any one of methods 1, 2 or 3.
- The HPLC equipment consisted of a Waters 2790 HPLC system equipped with a 996 Waters PDA detector and Micromass mod. ZQ single quadrupole mass spectrometer, equipped with an electrospray (ESI) ion source. Instrument control, data acquisition and data processing were providen by Empower and MassLynx 4.0 software.
- HPLC was carried out at 25° C. at a flow rate of 1 mL/min using a RP18 Waters×Terra (4.6×50 mm, 3.5 μm) column. Mobile phase A was ammonium acetate 5 mM buffer (pH 5.5 with acetic acid/acetonitrile 95:5), and Mobile phase B was H2O/acetonitrile (5:95); the gradient was from 10 to 90% B in 8 minutes then hold 90% B 2 minutes. The injection volume was 10 μl.
- The mass spectrometer was operated in positive and in negative ion mode, the capillary voltage was set up at 2.5 KV; the source temperature was 120° C.; cone was 10 V; full scan, mass range from 100 to 800 amu was set up.
- The HPLC equipment consisted of a Waters 2790 HPLC system equipped with a 996 Waters PDA detector and Micromass mod. ZQ single quadrupole mass spectrometer, equipped with an electrospray (ESI) ion source. Instrument control, data acquisition and data processing were providen by Empower and MassLynx 4.0 software.
- HPLC was carried out at 25° C. at a flow rate of 1 mL/min using a RP18 Waters×Terra (3.0×30 mm, 3.5 μm) column. Mobile phase A was ammonium acetate 5 mM buffer (pH 5.5 with acetic acid/acetonitrile 95:5), and Mobile phase B was H2O/acetonitrile (5:95); the gradient was from 10 to 90% B in 4 min then hold 90% B 1 minute. The injection volume was 10 μl.
- The mass spectometer was operated in positive and in negative ion mode, the capillary voltage was set up at 2.5 KV; the source temperature was 120° C.; cone was 10 V; full scan, mass range from 100 to 800 amu was set up.
- Mass spectra were recorded on a Finnigan LCQ ion trap mass spectrometer using the electrospray (ESI) ionization technique with positive and negative ion detection. The mass spectrometer is directly connected to a SSP4000 HPLC system (Thermo Separation), equipped with an LcPal autosampler (CTC Analytics) and a UV 6000LP PDA detector (Thermo Separation). Instrument control, data acquisition and processing were performed by using Xcalibur 1.2 software. HPLC analysis were carried out at room temperature at a flow rate of 1 mL/min using an RP C18 Waters ZorbaxSB C18 column (4.6×50 mm; 1.8 μm).
- Mobile phase A was ammonium acetate 5 mM buffer (pH 5.5 with acetic acid):acetonitrile 90:10, and Mobile phase B was ammonium acetate 5 mM buffer (pH 5.5 with acetic acid):acetonitrile 10:90; the gradient was from 0 to 100% B in 7 minutes then hold 100% B for 2 minutes before requilibration. Total LC time is 12 minutes. The injection volume was 10 μl. UV Detection was performed between 215 and 400 nm.
- Ions were generated under the following conditions: ESI sprayer voltage 4.0 kV, heated capillary temperature 255° C., sheath gas nitrogen with a pressure of 5.0 Bar. A full scan detection mode (from 50 to 1000 amu) was used with an MS/MS analysis of the most intense ion (normalized collision energy: 35%).
- UV Detection: 215-400 nm.
-
- 50 g (0.45 mol) of 1,2-dicyclohexandione were dissolved in a mixture of 1 L of toluene and 0.5 L of ethanol. 10 g of p-toluenesulfonic acid were added and the solution heated at reflux for 2 days. (TLC chloroform/methanol 6/1). The solvent was then evaporated, the residue redissolved with dichloromethane and washed with a saturated solution of NaHCO3. The organic layer was dried over Na2SO4 and concentrated. The crude was purified by chromatography on a silica gel column by eluting with a mixture of cyclohexane/ethyl acetate 98/2 (66% yield as an oil).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20 (t, 3H) 2.33-2.39 (m, 6H) 3.67 (q, 2H) 5.97 (t, 1H).
-
- 41.40 g (0.29 mol) of 2-ethoxycyclohex-2-en-1-one were dissolved in 310 mL of diethyl ether and 325 mL of 1M LiN(TMS)2 in tetrahydrofuran were added dropwise at −50° C. After 30 minutes at the same temperature, 44.2 mL of diethyloxalate were also added under stirring. The solution was kept at room temperature overnight (TLC chloroform). 300 mL of water were then added, the pH adjusted to 4-5 by adding 1 N HCl and the resulting solution extracted with ethyl acetate. The organic layer was dried over Na2SO4 and evaporated to dryness. The crude was purified by chromatography on a silica gel column eluted by chloroform (76% yield as an oil).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.12 (t, 3H) 1.51 (t, 3H) 2.06-2.58 (m, 4H) 3.57 (m, 1H) 3.86 (q, 2H) 4.38 (q, 2H) 6.09 (m, 1H).
-
- 30 g (0.125 mol) of ethyl (3-ethoxy-2-oxocyclohex-3-en-1-yl)(oxo)acetate were dissolved in 150 mL of glacial acetic acid and 6.5 mL of methylhydrazine were added. The mixture was stirred at room temperature for 6 hours. The solvent was then evaporated and the crude redissolved with water, the solution made basic with 30% NH4OH and extracted with chlorform. The organic layer was then dried over Na2SO4 and concentrated. The residue was chromatographed on a silica gel column (eluant: chloroform) and crystallized from a mixture n-hexane/diethyl ether (TLC chloroform; 63% yield as a white solid).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.12 (t, J 6.89 Hz, 3H) 1.51 (t, J 6.94 Hz, 3H) 2.06-2.58 (m, 4H) 3.57 (m, 1H) 3.86 (q, J 6.83 Hz, 2H) 4.38 (q, J 6.94 Hz, 2H; 6.09 (m, 1H).
- According to the same method, but employing the suitable substituted hydrazine derivative, the following compounds were prepared:
- ethyl 1-tert-butyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.16 (t, J 6.83 Hz, 3H) 1.58 (s, 9H) 2.30-2.93 (3m, 6H) 4.18 (q, J 6.83 Hz, 2H);
- ethyl 1-(2-hydroxyethyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz), DMSO-d6) δ ppm 1.3 (t, J 7.20 Hz, 3H) 1.9-2.9 (3m, 6H) 3.7 (m, 2H) 4.3 (q, J 7.20 Hz, 2H) 4.53 (t, J 5.85, 2H) 4.77 (t, J 5.73, OH);
- ethyl 1-(2-ethoxy-2-oxoethyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz), DMSO-d6) δ ppm 1.18 (t, J 7.20 Hz, 3H) 1.29 (t, J 7.20 Hz, 3H) 2.04 (m, 2H); 2.52 (m, 2H) 2.93 (t, J 6.10 Hz, 2H) 4.04 (q, J 7.07 Hz, 2H) 4.37 (q, J 7.20 Hz, 2H) 5.26 (s, 1H);
- ethyl 7-oxo-1-(2,2,2-trifluoroethyl)-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20 (t, J 7.07 Hz, 3H) 2.05 (m, 2H) 2.57 (m, 2H) 2.95 (m, 2H) 4.2 (q, J 7.07 Hz, 2H) 5.3 (2d, 2H);
- ethyl 7-oxo-2-(2,2,2-trifluoroethyl)-4,5,6,7-tetrahydro-2H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (t, J 7.08 Hz, 3H) 2.05 (m, 2H) 2.57 (t, J 7.44 Hz, 2H) 2.94 (m, 2H) 4.30 (q, J 7.19 Hz, 2H) 5.46 (2d, 2H);
- ethyl 7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.28 (t, J=7.07 Hz, 3H) 2.04 (m, 2H) 2.51 (m, 2H) 2.87 (t, J=6.10 Hz, 2H) 4.27 (q, J=7.11 Hz, 2H) 14.39 (s, 1H);
- ethyl 1-[4-(aminosulfonyl)phenyl]-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (t, J=7.13 Hz, 3H) 2.10-2.19 (m, 2H) 2.57-2.63 (m, 2H) 3.05 (t, J=6.10 Hz, 2H) 4.37 (q, J=7.07 Hz, 2H) 7.54 (s, 2H) 7.77 (d, J=8.78 Hz, 2H) 7.96 (d, J=8.90 Hz, 2H);
- ethyl 1-(4-methoxyphenyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J=7.07 Hz, 3H) 2.05-2.17 (m, 2H) 2.56 (dd, J=7.26, 5.55 Hz, 2H) 3.03 (t, J=6.10 Hz, 2H) 3.85 (s, 3H) 4.34 (q, J=7.07 Hz, 2H) 7.05 (d, J=9.02 Hz, 2H) 7.44 (d, J=9.02 Hz, 2H);
- ethyl 1-(4-cyanophenyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (t, J=7.07 Hz, 3H) 2.09-2.19 (m, 2H) 2.60 (dd, J=7.32, 5.49 Hz, 2H) 3.04 (t, J=6.16 Hz, 2H) 4.36 (q, J=7.11 Hz, 2H) 7.80 (d, J=8.90 Hz, 2H) 8.03 (d, J=8.78 Hz, 2H);
- ethyl 7-oxo-1-pyridin-2-yl-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (t, J=7.13 Hz, 3H) 2.10-2.21 (m, 2H) 2.58 (dd, J=7.32, 5.61 Hz, 2H) 3.05 (t, J=6.16 Hz, 2H) 4.36 (q, J=7.07 Hz, 2H) 7.61 (ddd, J=7.41, 4.73, 1.04 Hz, 1H) 7.64 (dt, J=7.93, 0.98 Hz, 1H) 8.07 (td, J=7.74, 1.83 Hz, 1H) 8.57 (ddd, J=4.79, 1.86, 0.79 Hz, 1H);
- ethyl 7-oxo-1-phenyl-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.30 (t, 3H, J 7.08) 2.08 (m, 2H) 2.54 (m, 2H) 4.30 (q, 2H, J 7.08) 7.49 (m, 5H);
- ethyl 1-benzyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate ethyl 1-(1-methylpiperidin-4-yl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J=7.07 Hz, 3H) 1.84-2.11 (m, 6H) 2.28 (s, 3H) 2.48-2.53 (m, 2H) 2.52-2.60 (m, 2H) 2.91-3.00 (m, 2H) 2.94 (t, J=6.16 Hz, 2H) 4.32 (q, J=7.15 Hz, 2H) 4.93-5.11 (m, 1H)
- (The hydrazino derivative being employed was not commercially available (CAS no 53242-78-7) and was thus synthetized as described in the literature: WO 02/085906).
- ethyl 7-oxo-1-piperidin-4-yl-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- (The hydrazino derivative being employed was not commercially available and was thus synthetized as described in the literature: DE 3634942 A1).
- ethyl 1-(1-benzylpiperidin-4-yl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, 3H, J 7.07 Hz) 3.34 (s, 2H) 4.31 (q, 2H, J 7.07 Hz) 5.06 (m, 1H) 7.35 (m, 5H);
- ethyl 1-(1-acetylpiperidin-4-yl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate (The hydrazino derivative being employed was not commercially available and was thus synthetized as reported in example 69).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (bs, 3H) 2.59 (m, 1H) 2.71 (m, 1H) 2.95 (m, 1H) 3.29 (m, 1H) 3.94 (m, 1H) 4.30 (m, 2H) 4.48 (m, 1H) 5.29 (m, 1H)
- ethyl 1-(2-dimethylaminoethyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate ethyl 1-(2-dimethylaminopropyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
-
- 1.2 g (5 mmol) of ethyl (3-ethoxy-2-oxocyclohex-3-en-1-yl)(oxo)acetate were dissolved in 20 mL of ethanol and 25 mL (5.2 mmol) of hydrazine hydrate 98% were added dropwise. The solution was stirred at room temperature for 5 hours, then heated at 60° C. for further 5 hours. The solvent was removed in vacuo and the residue taken up with diethyl ether and the resulting precipitate collected by filtration giving 0.8 g of the title compound, that was employed in the next step without any further purification.
- 0.28 g (1.17 mmol) of ethyl 7-ethoxy-4,5-dihydro-1H-indazole-3-carboxylate were dissolved in 12 mL of dry dimethylformamide and 0.25 g (1.40 mmol) of 3,3-dimethylbutyl methanesulfonate were added. The resulting solution was treated with 0.06 g (1.40 mmol) of sodium hydride 60% in mineral oil and the reaction mixture stirred at 65° C. for 4 hours. Water was added to the reaction and the solution extracted with ethyl acetate. The solvent was evaporated in vacuo and the residue redissolved with 10 mL of methanol. Few drops of 1 N HCl were then added and after 3 hours the reaction was partitioned between water and ethyl acetate, giving a crude that, after drying over Na2SO4, was purified by chromatography on a silica gel column (eluant hexane/ethyl acetate 95/5) (75% yield).
-
- 900 mg (4.3 mmol) of ethyl 7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate were dissolved in 26 mL of DMF and 712 mg (5.16 mmol) of K2CO3 and 995 mg (5.16 mmol) of 2-(chloromethyl)-5-phenyl-1,3-oxazole were added. The reaction mixture was stirred at room temperature for 5 hours then the solvent was removed under vacuo and the residue was dissolved in dichloromethane and washed with water. The organic layer was dried over Na2SO4 and evaporated to dryness. By chromatography, 405 mg (30% yield) of the two regioisomers were recovered.
- ethyl 7-oxo-1-[(5-phenyl-1,3-oxazol-2-yl)methyl]-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (t, 3H) 2.09 (m, 2H) 2.59 (m, 2H) 2.97 (m, 2H) 4.31 (q, 2H) 6.04 (s, 2H) 7.39 (m, 1H) 7.49 (m, 2H) 7.63 (s, 1H) 7.66 (m, 2H)
- ethyl 7-oxo-2-[(5-phenyl-1,3-oxazol-2-yl)methyl]-4,5,6,7-tetrahydro-2H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, 3H) 2.09 (m, 2H) 2.60 (m, 2H) 2.99 (m, 2H) 4.31 (q, 2H) 5.98 (s, 2H) 7.39 (m, 1H) 7.49 (m, 2H) 7.62 (s, 1H) 7.66 (m, 2H).
-
- 1 g (4.8 mmol) of ethyl 7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate were dissolved in 30 mL of dry DMF and treated with 1.59 g (11.52 mmol) of K2CO3 and 800 mg (5.76 mmol) of bromoacetic acid at room temperature. After heating at 80° C. overnight the mixture was cooled and the solvent was removed under vacuo. The crude was dissolved in water and neutralized with HCl 37%. Three extractions with dichloromethane afforded 1.7 g of crude that was purified by flash chromatography (eluant dichloromethane) yielding 783 mg (61%) of the product as mixture of regioisomers.
- 743 mg (2.79 mmol) of [3-(ethoxycarbonyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazol-1(2)-yl]acetic acid as mixture of isomers were dissolved in 28 mL of DMF and 2.18 g (4.18 mmol) of benzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate (PyBOP), 690 mg (5.58 mmol) of 1-aminobutan-2-one hydrochloride and 2.4 mL (13.95 mmol) of N-ethyl-N,N-diisopropylamine were added. After 2 hours the solvent was evaporated under vacuo, the crude was dissolved in dichloromethane and washed with saturated NaHCO3, brine and water. Purification by flash chromatography (eluant hexane/ethylacetate 8/2) yielded 511 mg of ethyl 7-oxo-1-{2-oxo-2-[(2-oxobutyl)amino]ethyl}-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate and 20 mg of ethyl 7-oxo-2-{2-oxo-2-[(2-oxobutyl)amino]ethyl}-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate (57% overall yield).
- ethyl 7-oxo-1-{2-oxo-2-[(2-oxobutyl)amino]ethyl}-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 0.94 (t, 3H) 1.32 (t, 3H) 2.09 (m, 2H) 2.44 (q, 2H) 2.52 (t, 2H) 2.96 (t, 2H) 3.98 (d, 2H) 4.31 (q, 2H) 5.26 (s, 2H) 8.44 (t, 1H);
- ethyl 7-oxo-2-{2-oxo-2-[(2-oxobutyl)amino]ethyl}-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 0.94 (t, 3H) 1.31 (t, 3H) 2.08 (m, 2H) 2.44 (q, 2H) 2.53 (t, 2H) 2.94 (t, 2H) 3.99 (d, 2H) 4.29 (q, 2H) 5.32 (s, 2H) 8.48 (t, 1H).
- A solution of 506 mg (1.51 mmol) of ethyl 7-oxo-1-{2-oxo-2-[(2-oxobutyl)amino]ethyl}-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate in toluene (45 mL) was treated with 0.422 mL (4.53 mmol) of phosphoric trichloride and heated at 90° C. for 15 hours. The mixture was cooled to room temperature, poured into ice and neutralized with NaOH 5N. The aqueous phase was extracted with dichloromethane and the organic layer afforded 425 mg of crude that was purified on silica gel (eluant hexane/ethylacetate 7/3). 285 mg of the title compound were thus isolated (60% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.16 (t, 3H) 1.32 (t, 3H) 2.08 (m, 2H) 2.63 (m, 4H) 2.97 (t, 2H) 4.31 (q, 2H) 5.84 (s, 2H) 6.79 (s, 1H).
-
- 16 g (0.07 mol) of ethyl 1-methyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate were dissolved in 100 mL of dimethylformamide and 32 mL of dimethylformamide ditertbutyl acetale were added. The mixture was stirred at 60° C. for 8 hours. The solvent was then evaporated in vacuo and the product crystallized from ethanol (90% yield).
- 1H NMR (400 MHz), DMSO-d6) δ ppm 2.72-2.95 (m, 4H) 3.04-3.14 (m, 6H) 4.10 (s, 3H) 4.24 (q, J 7.20 Hz, 2H) 7.46 (m, 1H).
- By working according to the same method the following compounds were prepared:
- Ethyl 1-tert-butyl-6-[(dimethylamino)methylene]-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate;
ethyl 6-[(dimethylamino)methylene]-1-(2-hydroxyethyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate - 1H NMR (400 MHz), DMSO-d6) δ ppm 2.80 (t, J 6.34 Hz, 2H) 2.88 (t, J 6.21, 2H) 3.70 (m, 2H) 4.24 (q, J 7.07 Hz, 3H) 4.58 (t, J 5.97 Hz, 2H) 4.79 (bs, OH) 7.47 (bs, 1H);
- ethyl 6-[(dimethylamino)methylene]-1-(2-ethoxy-2-oxoethyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.17 (t, J 7.07 Hz, 3H) 1.28 (t, J 7.13 Hz, 3H) 2.86 (m, 4H) 3.10 (s, 6H) 4.10 (q, J 7.11 Hz, 2H) 4.26 (q, J 7.11 Hz, 2H) 5.33 (s, 2H) 7.43 (s, 1H);
- ethyl 1-[4-(aminosulfonyl)phenyl]-6-[(dimethylamino)methylene]-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate;
ethyl-6-[(dimethylamino)methylene]-1-(4-methoxyphenyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate - 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J=7.07 Hz, 3H) 2.87-2.93 (m, 2H) 2.95-3.00 (m, 2H) 3.12 (s, 6H) 3.83 (s, 3H) 4.32 (q, J=7.07 Hz, 2H) 7.00 (d, J=9.02 Hz, 2H) 7.39 (d, J=9.02 Hz, 2H) 7.42 (s, 1H);
- ethyl 1-(4-cyanophenyl)-6-[(dimethylamino)methylene]-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J=7.13 Hz, 3H) 2.88-2.94 (m, 2H) 2.97-3.03 (m, 2H) 3.14 (s, 6H) 4.34 (q, J=7.15 Hz, 2H) 7.48 (s, 1H) 7.73 (d, J=8.90 Hz, 2H) 7.96 (d, J=8.78 Hz, 2H);
- ethyl 6-[(dimethylamino)methylene]-7-oxo-1-pyridin-2-yl-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J=7.07 Hz, 3H) 2.87-2.93 (m, 2H) 3.00 (t, J=6.71 Hz, 2H) 3.13 (s, 6H) 4.33 (q, J=7.07 Hz, 2H) 7.40 (s, 1H) 7.54 (ddd, J=7.47, 4.79, 1.04 Hz, 1H) 7.56 (dt, J=8.02, 0.93 Hz, 1H) 7.99-8.04 (m, 1H) 8.52 (ddd, J=4.82, 1.89, 0.85 Hz, 1H);
- ethyl 6-(dimethylamino)methylene-1-(3,3-dimethylaminobutyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate;
ethyl 6-(dimethylamino)methylene-2-(3,3-dimethylaminobutyl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate;
ethyl 6-[(dimethylamino)methylene]-7-oxo-1-(2,2,2-trifluoroethyl)-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate - 1H NMR (400 MHz, DMSO-d6) δ ppm 1.30 (t, J 7.07 Hz, 3H) 2.88 (2m, 4H) 3.10 (s, 6H) 4.33 (q, J 7.07 Hz, 2H) 5.45 (q, J 8.90 Hz, 2H) 7.50 (bs, 1H);
- ethyl 6-[(dimethylamino)methylene]-7-oxo-2-(2,2,2-trifluoroethyl)-4,5,6,7-tetrahydro-2H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.28 (t, J 7.07 Hz, 3H) 2.82 (2m, 4H) 3.12 (s, 3H) 4.29 (q, J 7.07 Hz, 2H) 5.57 (q, J 9.02 Hz, 2H) 7.53 (bs, 1H);
- ethyl 6-[(dimethylamino)methylene]-7-oxo-1-phenyl-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
ethyl 1-benzyl-6-[(dimethylamino)methylene]-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
ethyl 6-[(dimethylamino)methylene]-1-(1-methylpiperidin-4-yl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
ethyl 6-[(dimethylamino)methylene]-7-oxo-1-piperidin-4-yl-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
ethyl 1-(1-benzylpiperidin-4-yl)-6-[(dimethylamino)methylene]-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate - 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (t, J=7.07 Hz, 3H) 1.76-2.15 (m, 4H) 2.79-3.01 (m, 4H) 3.13 (s, 6H) 3.24-3.64 (m, 6H) 4.29 (q, J=7.07 Hz, 2H) 5.30 (dd, J=17.01, 7.26 Hz, 1H) 7.14-7.40 (m, 6H);
- ethyl 1-(1-acetylpiperidin-4-yl)-6-[(dimethylamino)methylene]-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
ethyl 6-[(dimethylamino)methylene]-1-(1-formylpiperidin-4-yl)-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
ethyl 1-(2-dimethylaminoethyl)-6-dimethylaminomethylene-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
ethyl 1-(2-dimethylaminopropyl)-6-dimethylaminomethylene-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate -
- 9 g (69 mmol) of ethyl-6-[(dimethylamino)methylene]-1-methyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate were dissolved in 350 mL of anhydrous dimethylformamide and 13.4 g of anhydrous potassium acetate (138 mmol) and 19.18 g (69 mmol) of methylisothiourea sulfate were added. The mixture was maintained at 90° C. under stirring for 8 hours. The solvent was then evaporated, the residue redissolved with dichloromethane and washed with water. The organic layer was dried over Na2SO4 and evaporated. The crude was finally triturated with diethyl ether and collected by filtration to give 15.5 g (74% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (t, J 7.07 Hz, 3H) 2.54 (s, 3H) 2.84-3.00 (m, 4H) 4.26 (q, J 7.07 Hz, 2H) 4.31 (s, 3H) 8.53 (m, 1H).
- Following the same method, but employing the suitable substituted isothiourea derivative, the following compounds can be prepared:
- ethyl 8-(benzylthio)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B05-X04-M00(C01)-D01];
ethyl 1-methyl-8-(phenylthio)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B04-X04-M00(C01)-D01]. -
- Under a nitrogen atmosphere, a 0.5 M solution of benzylzinc bromide in THF (3.11 mL, 1.556 mmol) was added to a mixture of ethyl 1-methyl-8-(methylthio)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (237 mg, 0.778 mmol) and Pd(PPh3)4(9 mg, 0.0078 mmol, 1%). After 20 hours of heating at 60° C. under nitrogen, the mixture was cooled to room temperature, shaken with aqueous sodium bicarbonate and ethyl acetate and then filtered. The organic phase was then separated and the aqueous phase was extracted twice with ethyl acetate. The combined organic phase was dried over Na2SO4, evaporated and the crude was purified on silica gel (eluant dichloromethane/methanol 97/3). 20 mg of the title compound were isolated.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, 3H) 2.99 (m, 4H) 4.23 (s, 2H) 4.27 (m, 5H) 7.23 (m, 1H) 7.32 (m, 2H) 7.36 (m, 2H) 8.66 (s, 1H)
- ethyl 1-methyl-8-(phenylthio)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate-[B04-X04-M00(C01)-D01]
- To a stirred suspension of ethyl 1-methyl-8-(methylsulfonyl)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (46 mg, 0.137 mmol) and phenylthiol (16 μl, 17 mg, 0.15 mmol) in ethanol (1 mL), 1N sodium hydroxide (150 μl, 0.15 mmol) was added at room temperature under an argon atmosphere. After the mixture was stirred for 3 days, 1N hydrochloric acid (150 μl, 0.15 mmol) was added and the solvent removed under vacuo. By chromatography on silica gel (eluant: dichloromethane/methanol 97/3), 13 mg of ethyl 1-methyl-8-(phenylthio)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate and 10 mg of ethyl 8-ethoxy-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate were isolated.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.26 (t, 3H) 2.86 (t, 2H) 2.93 (t, 2H) 3.68 (s, 3H) 4.25 (q, 2H) 7.48 (m, 3H) 7.64 (m, 2H) 8.53 (s, 1H);
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, 3H) 1.38 (t, 3H) 2.91 (t, 2H) 3.01 (t, 2H) 4.33 (m, 5H) 4.41 (q, 2H).
-
- 13.00 g (0.043 mol) of ethyl 1-methyl-8-(methylthio)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate were suspended in a mixture of 200 mL of methanol, 200 mL of dimethylformamide and 200 mL of ammonium hydrate 30%. The mixture was stirred at 65° C. in a closed bottle for about 8 hours. The solvent was then evaporated to dryness, the residue redissolved with dichloromethane and washed with water. The organic layer was dried over Na2SO4 and evaporated. The crude was purified by chromatography on a silica gel column eluted by a mixture cyclohexane/ethyl acetate, giving 6.16 g (52% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.54 (s, 3H) 2.75-3.05 (m, 4H) 4.28 (s, 3H) 7.47 (bs, 2H) 8.51 (m, 1H).
-
- 6.00 g (0.022 mol) of 1-methyl-8-(methylthio)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide were dissolved in 1000 mL of dimethylformamide and 40.18 g of oxone were added. The mixture was stirred 16 hours at room temperature. Water and ethyl acetate were then added and the layers separated. The organic layer was finally dried over Na2SO4 and evaporated. The residue was triturated with diethyl ether and 5.40 g (80% yield) of the title compound were collected by filtration.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 3.06 (m, 4H) 3.43 (s, 3H) 4.29 (s, 3H) 7.45 (bs, 2H) 8.91 (m, 1H).
- By working according to this methodology the following compound was prepared:
- ethyl 1-methyl-8-(methylsulfonyl)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B67-X05-M00(C01)-D01]
-
- 1.5 g of 1-methyl-8-(methylsulfonyl)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide were dissolved in 100 mL of dry dimethylsulfoxide and 1.15 mL of cyclohexylamine were added. After 16 hours at 80° C. under nitrogen the solvent was evaporated at reduced pressure. The residue was then redissolved with dichloromethane and washed with water. The organic layer was dried over Na2SO4 and evaporated to dryness. By chromatography on a silica gel column (eluant dichloromethane/acetone 9/1) 300 mg of 8-(cyclohexylamino)-1-methyl-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide and 200 mg of 8-(cyclohexylamino)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide and were obtained (30% yield overall).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.63 (m, 10H) 2.73 (m, 2H) 2.94 (m, 2H) 3.69 (m, 1H) 4.31 (m, 3H) 6.94 (d, J 6.58 Hz, 1H) 7.23 (s, 1H) 7.43 (s, 1H) 8.20 (s, 1H);
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.63 (m, 10H) 3.88 (m, 1H) 4.66 (s, 3H) 7.40 (s, 1H) 7.47 (d, J 8.66 Hz, 1H) 7.59 (s, 1H) 7.74 (s, 1H) 7.87 (d, J 8.66 Hz, 1H) 9.13 (s, 1H)
- By working according to this methodology, and by taking into account that when the amine is available as a salt, stoichiometric amounts of potassium carbonate were employed, the following compounds were prepared as coded in Table VI:
-
TABLE VI B76-X06-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.60 (m, 6 H) 2.75 (m, 2 H) 2.96 (m, 2 H) 3.76 (m, 4 H) 4.29 (s, 3 H) 7.24 (s, 1 H) 7.44 (s, 1 H) 8.29 (s, 1 H) B23-X00-M00(C01)-D03 1H NMR (400 MHz, DMSOd6) δ ppm 2.21 (s, 6 H) 2.46 (m,, 2 H) 2.74 (m, 2 H) 2.95 (m,, 2 H) 3.41 (m, 2 H) 4.32 (s, 3 H) 6.90 (t, J 5.73 Hz, 1 H) 7.24 (s, 1 H) 7.43 (s, 1 H) 8.21 (s, 1 H) B24-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.69 (m, 4 H); 2.49 (m, 4 H); 2.95 and 2.61 (2m, 4 H); 3.40 (m, 2 H); 4.32 (s, 3 H); 6.95 (bs, NH); 7.2-7.4 (2s, 2 H); 8.21 (s, 1 H). B25-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.51 (m, 6 H) 2.52 (m, 6 H) 2.70 (m, 2 H,) 2.95 (m, 2 H,) 3.42 (m, 2 H) 4.32 (s, 3 H) 7.2-7.4 (2s, 2 H) 8.21 (s, 1 H). B26-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.37-2.54 (m, 6 H) 2.74 (m, 2 H,) 2.95 (m, 2 H.) 3.45 (m, 2 H) 3.59 (m, 4 H) 4.32 (s, 3 H) 6.93 (bs, NH) 8.22 (s, 1 H). B28-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.18 (m, 11 H) 2.72 (m, 2 H) 2.94 (m, 2 H,) 3.16 (m, 2 H) 4.31 (s, 3 H) 7.14-7.49 (3bs, 3 H) 8.19 (s, 1 H). B29-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.00 (m, 3 H) 2.60-3.20 (m, 10H) 2.73 (m, 2 H) 2.95 (m, 2 H) 3.88 (m, 1 H) 4.31 (s, 3 H) 6.88 (bs, 1 H) 7.24 (s, 1 H) 7.43 (s, 1 H) 8.22 (s, 1 H). B30-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.98 (m, 2 H) 3.07 (m, 2 H) 4.34 (s, 3 H) 6.60 (m, 2 H) 7.44 (m, 2 H) 7.32 (s, 1 H) 8.71 (s, 1 H). B31-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.74 (m, 2 H) 2.94 (m, 2 H) 4.62 (d, J 6.10 Hz, 2 H) 7.23 (m, 2 H) 7.34 (m, 1 H) 7.41 (s, 1 H) 7.73 (m, 2 H) 8.24 (s, 1 H) 8.50 (m, 1 H). B32-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.86 (m, 4 H) 4.17 (s, 3 H) 4.56 (d, J 6.22 Hz, 2 H) 7.23 (s, 1 H) 7.34 (dd, J 7.87, 4.69 Hz, 1 H) 7.42 (s, 1 H) 7.74 (m, 1 H) 7.74 (dt, J 7.68, 1.83 Hz, 1 H) 8.24 (s, 1 H) 8.44 (dd, J 4.76, 1.46 Hz, 1 H) 8.57 (d, J 1.83 Hz, 1 H) B33-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.73 (m, 2 H) 2.93 (m, 2 H) 4.55 (d, J 6.22 Hz, 2 H) 7.22 (s, 1 H) 7.32 (m, 2 H) 7.41 (s, 1 H) 7.78 (bs, 1 H) 8.24 (s, 1 H) 8.49 (m, 2 H). B34-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.73 (m, 2 H) 2.94 (m, 2 H) 4.62 (d, J 6.22 Hz, 2 H) 7.23 (s, 1 H) 7.41 (s, 1 H) 7.54-7.76 (2m, 4 H) 7.82 (bs. 1 H) 8.24 (s, 1 H). B35-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.74 (m, 2 H) 2.94 (m, 2 H) 4.23 (s, 3 H) 4.44 (d, J 6.22 Hz, 2 H) 5.97 (s, 2 H) 6.83 (m, 2 H) 6.91 (s, 1 H) 7.23 (s, 1 H); 7.42 (s, 1 H) 7.63 (bs, 1 H) 8.23 (s, 1 H). B37-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.73 (m, 2 H) 1.93 (m, 2 H) 2.22 (m, 2 H) 2.73 (m, 2 H) 2.95 (m, 2 H) 3.34 (m, 4 H) 4.32 (s, 3 H) 7.09 (bs, 1 H) 7.22 (s, 1 H) 7.43 (s, 1 H) 8.22 (s, 1 H). B38-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.74 (m, 2 H) 2.81 (t, J 7.38 Hz, 2 H) 2.95 (t, J 7.62 Hz, 2 H) 3.54 (m, 2 H) 4.32 (s, 3 H) 6.86 (s, 1 H) 7.16 (t, J 5.55 Hz, 1 H) 7.24 (s, 1 H) 7.43 (s, 1 H) 7.61 (s, 1 H) 8.22 (s, 1 H) 12.00 (s, 1 H) B39-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.00 (m, 2 H) 2.73 (m, 2 H) 2.94 (m, 2 H) 3.33 (m, 4 H) 4.25 (s, 3 H) 6.99 (s, 1 H) 7.27 (m, 3 H) 7.24 (s, 3 H) 7.43 (s, 1 H) 7.80 (s, 1 H) 8.22 (s, 1 H). B40-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.22 (s, 3 H) 2.44 (m, J 4.39 Hz, 4 H) 2.83 (m, 4 H) 3.10 (m, 4 H) 4.20 (s, 3 H) 4.47 (d, J 6.22 Hz, 2 H) 6.78 (m, 2 H) 6.94 (m, 1 H) 7.13 (m, 1 H) 7.22 (s, 1 H) 7.41 (s, 1 H) 7.63 (s, 1 H) 8.22 (s, 1 H) B41-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.28 (s, 3 H) 2.52 (m, 4 H) 2.83 (m, 4 H) 3.11 (s, 4 H) 4.22 (s, 3 H) 4.43 (d, J 6.22 Hz, 2 H) 6.88 (d, J 8.78 Hz, 2 H) 7.20 (d, J 8.66 Hz, 2 H) 7.23 (s, 1 H) 7.41 (t, 1 H) 7.57 (t, J 6.10 Hz, 1 H) 8.21 (s, 1 H) B42-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.75 (m, 2 H) 2.95 (m, 2 H) 4.27 (s, 3 H) 4.71 (d, J 6.22 Hz, 2 H) 6.96 (m, 1 H) 7.32 (m, 1 H) 7.24 (s, 1 H) 7.43 (s, 1 H) 7.73 (s, 1 H) 8.26 (s, 1 H). B44-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.85 (m, 4 H) 4.27 (s, 3 H) 4.52 (d, J 5.97 Hz, 2 H) 6.24 (d, J 2.68 Hz, 1 H) 6.38 (dd, J 3.11, 1.89 Hz, 1 H) 7.23 (m, J 0.49 Hz, 1 H) 7.43 (s, 1 H) 7.56 (m, J 0.98 Hz, 2 H) 8.24 (s, 1 H) B45-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.5-1.9 (3m, 4 H) 2.73 (m, 2 H) 2.94 (m, 2 H) 3.33 (m, 2 H) 3.6-3.8 (2m, 2 H) 4.05 (m, 1 H) 4.31 (s, 3 H) 7.10 (bs, 1 H) 7.24 (s, 1 H) 7.44 (s, 1 H) 8.21 (s, 1 H). B46-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.73 (t, J = 7.62 Hz, 2 H) 2.93 (t, J = 7.68 Hz, 2 H) 3.73 (s, 3 H) 4.19 (s, 3 H) 4.51 (d, J = 6.34 Hz, 2 H) 6.74-6.82 (m, 1 H) 6.87-6.96 (m, 2 H) 7.16-7.30 (m, 2 H) 7.41 (s, 1 H) 7.68 (t, J = 6.65 Hz, 1 H) 8.23 (s, 1 H) B47-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.68 (none, 2 H) 2.81 (m, 4 H) 3.10 (none, 1 H) 4.34 (s, 3 H) 7.00 (s, 1 H) 7.23 (s, 1 H) 7.43 (s, 1 H) 8.18 (s, 1 H) B48-X00-M01(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.72 (s, 6 H) 2.14 (s, 3 H) 2.22 (m, J 2.07 Hz, 6 H) 4.70 (s, 3 H) 7.19 (s, 1 H) 7.41 (s, 1 H) 7.48 (d, J 8.66 Hz, 1 H) 7.76 (s, 1 H) 7.91 (d, J 8.66 Hz, 1 H) 9.13 (s, 1 H) B49-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 0.99 (s, 3 H) 1.04 (d, J 7.07 Hz, 3 H) 1.19 (s, 3 H) 1.4-2.4 (5m, 8H) 2.70-3.00 (2t, 4 H) 3.34 (bs, 2 H) 4.35 (s, 3 H) 7.23-7.42 (3bs, 3 H) 8.20 (s, 1 H) B50-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.54 (m, 2 H) 1.91 (d, J 11.71 Hz, 2 H) 2.06 (m, 2 H) 2.73 (m, J 7.93, 7.44 Hz, 2 H) 2.83 (d, J 11.34 Hz, 2 H) 2.94 (t, J 7.62 Hz, 2 H) 3.48 (s, 2 H) 3.70 (m, 1 H) 4.30 (s, 3 H) 7.01 (d, J 4.51 Hz, 1 H) 7.23 (s, 1 H) 7.30 (m, 5 H) 7.43 (s, 1 H) 8.20 (s, 1 H) B51-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.73 (t, J = 7.62 Hz, 2 H) 2.93 (t, J = 7.68 Hz, 2 H) 4.10 (s, 3 H) 4.60 (d, J = 6.10 Hz, 2 H) 7.22 (s, 1 H) 7.27 (s, 2 H) 7.41 (s, 1 H) 7.51 (d, J = 8.54 Hz, 2 H) 7.77 (d, J = 8.41 Hz, 2 H) 7.78-7.83 (m, 1 H) 8.23 (s, 1 H) B52-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.73 (m, 2 H) 2.93 (m, 2 H) 3.18 (s, 3 H) 4.63 (d, J 6.22 Hz, 2 H) 7.23 (s, 1 H) 7.41 (s, 1 H) 7.59 (m, 2 H) 7.86 (m, 3 H) 8.24 (s, 1 H). B53-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 3.11 (m, 4 H) 4.37 (s, 3 H) 4.43 (s, 3 H) 7.37 (m, 4 H) 7.57 (s, 1 H) 7.74 (m, 2 H) 8.20 (m, 2 H) 8.92 (s, 1 H). B54-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.73 and 2.93 (2t, 4 H, J 8.04 Hz) 4.18 (s, 3 H) 4.49 (d, 2 H, 6.34 Hz) 7.13 (m, 1 H) 7.36 (m, 1 H) 7.42 and 7.23 (2s, 2 H) 7.58 (m, 1 H) 7.73 (bs, 2 H) 8.23 (s, 1 H). B55-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 0.24 (m, 2 H) 0.44 (m, 2 H) 1.13 (m, 1 H) 2.74 (m, 2 H) 2.95 (t, J 7.68 Hz, 2 H) 3.20 (m, 2 H) 4.32 (s, 3 H) 7.17 (t, J 5.79 Hz, 1 H) 7.23 (s, 1 H) 7.43 (s, 1 H) 8.21 (s, 1 H) B56-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.75 (t, J = 7.68 Hz, 2 H) 2.95 (t, J = 7.80 Hz, 2 H) 3.51-3.75 (m, 2 H) 4.04 (dd, J = 11.52, 6.77 Hz, 1 H) 4.27 (s, 3 H) 4.34 (dd, J = 11.58, 2.19 Hz, 1 H) 4.38-4.48 (m, 1 H) 6.74-6.94 (m, 4 H) 7.24 (s, 1 H) 7.36 (t, J = 5.97 Hz, 1 H) 7.44 (s, 1 H) 8.25 (s, 1 H) B57-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.74 (m, 2 H) 2.94 (m, 2 H) 4.14 (bs, 3 H) 4.62 (d,, J 6.22 Hz2 H) 7.23 (s, 1 H) 7.42 (s, 1 H) 7.51 (m, 2 H) 7.60 (m, 1 H) 7.83 (bs, 1 H) 9.26 (s, 1 H). B58-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.74 (m, 2 H) 2.95 (m, 2 H) 3.05 (m, 2 H) 3.69 (m, 2 H) 4.33 (s, 3 H) 7.24 (3m, 3 H) 7.32 (m, 1 H), 7.43/m, 1 H) 8.22 (s, 1 H) 8.51 (m, 1 H). B59-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.73 and 2.93 (2t, 4 H, J 7.56) 4.18 (s, 3 H) 6.27 (2s, 2 H) 7.22 (m, 1 H) 7.31 (2s, 2 H) 7.37-7.43 (2m, 2 H) 7.55 (s, 1 H) 7.74 (bs, 1 H) 8.24 (s, 1 H). B30-X00-M01(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 4.72 (s, 3 H) 6.67 (m, 1 H) 7.56 (m, 1 H) 7.44 (s, 1 H) 7.63 (s, 1 H) 8.33 (m, 1 H) 8.35 (m, 1 H) 9.73). B45-X00-M01(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.50-2.00 (2m, 4 H) 3.34 (m, 2 H) 3.67-3.69 (2m, 2 H) 4.18 (m, 1 H) 4.67 (s, 3 H) 7.42 (m, 1 H) 7.74 (m, 2 H) 7.88 (m, 1 H) 7.88 (m, 1 H) 9.15 (s, 1 H). B28-X00-M01(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 0.90-2.00 (6m, 11 H) 3.34 (m, 2 H) 4.67 (s, 3 H) 7.41 (bs, 1 H) 7.48 (m, 2 H) 7.86 (m, 1 H) 9.12 (s, 1 H). B29-X00-M01(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 4.04 (m, 1 H) 4.66 (s, 3 H) 7.42 (bs, 1 H) 7.50 (m, 1 H) 7.70 (s, 1 H) 7.88 (m, 1 H) 9.15 (s, 1 H). B50-X00-M01(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 4.65 (s, 3 H) 7.00-8.00 (m, 9H) 9.14 (s, 1 H). B55-X00-M01(C01)-D03 1H NMR (400 MHz, DMSOd6) δ ppm 0.31 (m, 2 H) 0.49 (m, 2 H) 1.25 (m, 1 H) 3.33 (m, 2 H) 4.68 (s, 3 H) 7.41 (s, 1 H) 7.49 (m, 2 H) 7.73 (s, 1 H) 7.75 (s, 1 H) 9.14 (s, 1 H). B01-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.84 (m, 4 H) 3.40 (m, 4 H) 4.31 (s, 3 H) 4.66 (s, 1 H) 6.96 (t, J 5.67 Hz, 1 H) 7.23 (s, 1 H) 7.43 (s, 1 H) 8.21 (s, 1 H) B02-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.72 (m, 2 H) 2.73 (m, 2 H) 2.95 (m, 2 H) 3.50 (m, 2 H) 4.32 (s, 3 H) 4.45 (m, 1 H) 7.05 (bs, 1 H) 7.23 (s, 1 H) 7.42 (s, 1 H) 8.20 (s, 1 H). B05-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.73 (m, 2 H) 2.93 (m, 2 H) 4.17 (bs, 3 H) 4.55 (d, J 6.22 Hz, 2 H) 7.15-7.40 (m, 7H) 7.70 (bs, 1 H) 8.23 (s, 1 H). B69-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.15 (s, 3 H) 2.74 (t, J = 7.68 Hz, 2 H) 2.95 (t, J = 7.68 Hz, 2 H) 3.44 (s, 3 H) 4.32 (s, 3 H) 4.46 (d, J = 5.73 Hz, 2 H) 5.66 (dd, J = 3.41, 0.73 Hz, 1 H) 5.84 (d, J = 3.29 Hz, 1 H) 7.24 (s, 1 H) 7.28 (t, J = 4.94 Hz, 1 H) 7.43 (s, 1 H) 8.24 (s, 1 H) B70-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.75 and 2.95 (2t, 4 H, J 7.32 Hz) 4.24 (s, 3 H) 4.57 (d, 2 H, J 6.22 Hz) 6.13 (s, 1 H) 7.23 and 7.43 (2s, 2 H) 7.64 (bs, 1 H) 8.25 (s, 1 H) B71-X00-M00(C01)-D03 B72-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.74 (t, J = 7.62 Hz, 2 H) 2.94 (t, J = 7.62 Hz, 2 H) 4.20 (s, 3 H) 4.58 (d, J = 6.22 Hz, 2 H) 6.53 (dd, J = 2.50, 1.77 Hz, 1 H) 7.22 (s, 1 H) 7.41 (s, 1 H) 7.46 (d, J = 8.66 Hz, 2 H) 7.72 (dd, J = 1.71, 0.49 Hz, 1 H) 7.74-7.77 (m, 1 H) 7.77 (d, J = 8.66 Hz, 2 H) 8.24 (s, 1 H) 8.43 (dd, J = 2.50, 0.55 Hz, 1 H) B74-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.73 (m, 2 H) 2.96 (m, 2 H) 3.16 (s, 6 H) 4.43 (s, 3 H) 7.23 (bs, 1 H) 7.43 (bs, 1 H) 8.28 (s, 1 H). -
-
- A solution of 5,5-dimethyl-cyclohexane-1,3-dione (80.0 g, 0.57 mol) in anhydrous methanol (600 mL) was treated with a 1 M solution of titanium chloride (TiCl4) in dichloromethane (17.2 mL). After stirring 1 hour at room temperature, the mixture was slowly poured into cold 5% NaHCO3 solution and extracted with diethyl ether (450 mL×6). The organic layers were collected, washed with brine, dried on Na2SO4 and evaporated to dryness affording the title compound (81.5 g, 92% yield) as a pale yellow oil.
- 1H NMR (300 MHz, CHCl3-d) δ ppm 1.05 (s, 6H) 2.19 (s, 2H) 2.26 (s, 2H) 3.68 (s, 3H) 5.35 (s, 1H).
-
- A solution of 3-methoxy-5,5-dimethyl-cyclohex-2-enone (80 g, 0.52 mol) in anhydrous tetrahydrofuran (270 mL) was treated dropwise with a 1 M solution of LiAlH4 in tetrahydrofuran (182 mL), under argon atmosphere and keeping the temperature of the reaction between 0° C. and 5° C. The temperature was allowed to rise to 25° C. and the mixture was stirred for 4 hours. The resulting slurry was cooled with an ice bath, quenched with ethyl acetate (30 mL) and poured with caution into a cooled 2 M H2SO4 solution. The aqueous solution was then extracted with diethyl ether (300 mL×3), dried on Na2SO4 and evaporated under reduced pressure to remove most of the solvent. The crude material contained the title compound as a low boiling point oil that was used in the next step without further purification.
- 1H NMR (300 MHz, CHCL3-d) δ ppm 1.04 (s, 6H) 2.23 (dd, J 4.10, 2.05 Hz, 2H) 2.27 (s, 2H) 6.02 (dt, J 9.96, 2.05 Hz, 1H) 6.85 (dt, J 9.96, 4.10 Hz, 1H).
-
- 5,5-dimethyl-cyclohex-2-enone from the previous step (0.52 mol theoretically) was dissolved in methanol (500 mL), cooled to 0° C. and treated wit 30% hydrogen peroxide (265 mL, 2.6 mol). The resulting solution was treated dropwise with a 2% NaOH solution (142 mL, 0.067 mol) keeping the reaction temperature around 0° C. The mixture was allowed to stay at 4° C. for twenty hours and was then diluted with water (900 mL) and extracted with ethyl ether (450 mL×4).
- The extracts were collected, washed with 5% Na2S2O5 solution, with brine, dried on Na2SO4 and concentrated under reduced pressure. The residue was purified by distillation under vacuum to obtain the title compound (56.8 g, 78.3% yield) as a colourless oil.
- 1H NMR (300 MHz, CHCl3-d) δ ppm 0.91 (s, 3H) 1.01 (s, 3H) 1.82 (m, 2H) 2.03 (d, J 15.53 Hz, 1H) 2.64 (d, J 13.77 Hz, 1H) 3.20 (dt, J 3.74, 0.92 Hz, 1H) 3.49 (t, J 4.10 Hz, 1H).
-
- A solution of 4,4-dimethyl-7-oxa-bicyclo[4.1.0]heptan-2-one (44.0 g, 0.31 mol) in methanol (150 mL) was added to a solution of 85% potassium hydroxide (20.7 g, 0.31 mol) in methanol (450 mL) at room temperature. The mixture was kept at this temperature for 20 hours and was then heated to reflux for 30 minutes. After cooling, the solution was diluted with water (1.2 L) and extracted wit ethyl ether (350 mL×5). The organic extracts were collected, washed with brine, dried on Na2SO4 and evaporated under vacuum to remove most of the solvent. The crude material was purified by distillation to obtain pure the title compound (32.8 g, 68% yield) as an oil.
- 1H NMR (300 MHz, CHCl3-d) δ ppm 1.04 (s, 6H) 2.30 (d, J 4.69 Hz, 2H) 2.35 (s, 2H) 3.59 (t, 3H) 5.67 (t, J 4.54 Hz, 1H).
-
- 60% sodium hydride in mineral oil (2.41 g, 60.3 mmol) was suspended in anhydrous tetrahydrofuran (60 mL) under argon atmosphere and treated with a solution of 2-methoxy-5,5-dimethyl-cyclohex-2-enone (6.20 g, 40.2 mmol) in anhydrous tetrahydrofuran (50 mL). After 15 minutes, a solution of diethyl oxalate (8.17 mL, 60.3 mmol) in anhydrous tetrahydrofuran (50 mL) was added and the mixture was refluxed for 1 hour. The slurry was diluted with water (800 mL), acidified with 1 N HCl (50 mL) and extracted with ethyl acetate (500 mL×2). The organic layers were collected, washed with brine, dried on Na2SO4 and evaporated to dryness to obtain the crude title compound (10.60 g) as an orange oil, which was used without further purification.
- 1H NMR (300 MHz, CHCl3-d) δ ppm 1.41 (t, 3H) 2.77 (s, 2H) 3.13 (s, 6H) 4.23 (s, 3H) 4.40 (q, J 7.13 Hz, 2H) 7.58 (s, 1H).
-
- A solution of ethyl (3-methoxy-6,6-dimethyl-2-oxocyclohex-3-en-1-yl)(oxo)acetate from the previous step (40.2 mmol theoretically) in acetic acid (65 mL) was treated dropwise with a solution of methyl hydrazine (2.14 mL, 40.2 mmol) in acetic acid (20 mL) and allowed to stand at room temperature overnight. The mixture was then diluted with water (800 mL) and extracted with ethyl acetate (500 mL×2). The organic extracts were washed with brine, dried on Na2SO4 and evaporated to dryness. The crude material was chromatographed on silica gel eluted with dichloromethane/ethyl acetate 100:5 to obtain the pure title compound (4.8 g, 47.7% yield).
- 1H NMR (300 MHz, CHCl3-d) δ ppm 1.42 (t, J 7.18 Hz, 3H) 1.49 (s, 3H) 1.98 (t, J 6.45 Hz, 2H) 2.61 (t, J 6.45 Hz, 2H) 4.19 (s, 3H) 4.43 (q, J 7.03 Hz, 2H)
-
- A solution of ethyl 1,4,4-trimethyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate (4.8 g, 19.18 mmol) in anhydrous dimethylformamide (30 mL) was treated with dimethylformamide di-tert-butylacetal (9.19 mL, 38.35 mmol) at 65° C. for 2 hours. The mixture was evaporated to dryness and the crude material was crystallized from hexane to give the title compound (5.1 g, 87% yield).
- 1H NMR (300 MHz, CHCl3-d) δ ppm 1.21 (m, 9H) 2.76 (s, 2H) 3.15 (s, 6H) 4.22 (s, 3H) 4.41 (q, 2H).
-
-
- A solution of 4,4-dimethyl-cyclohex-2-enone (32.0 g, 0.26 mol) and 30% hydrogen peroxide (132 mL, 1.29 mol) in methanol (250 mL) was treated dropwise with a 2% sodium hydroxide solution (70 mL, 0.035 mol) keeping the reaction temperature around 0° C. The mixture was allowed to stay at 4° C. for 20 hours and was then diluted with water (400 mL) and extracted with diethyl ether (250 mL×4).
- The extracts were collected, washed with 5% Na2S2O5 solution, with brine, dried on Na2SO4 and concentrated under reduced pressure. The residue was purified by distillation under vacuum to obtain the title compound (27.6 g, 76.4% yield) as an oil.
- 1H NMR (300 MHz, CHCl3-d) δ ppm 1.05 (s, 3H) 1.21 (s, 3H) 1.20-2.50 (m, 5H) 3.20 (m, 1H).
-
- A solution of 5,5-dimethyl-7-oxabicyclo[4.1.0]heptan-2-one (19.4 g, 138.4 mmol) in methanol (95 mL) was added to a solution of 85% potassium hydroxide (9.1 g, 138.4 mmol) in methanol (285 mL) at room temperature. The mixture was kept at this temperature for 20 hours and was then heated to reflux for 30 minutes. After cooling, the solution was diluted with water (750 mL) and extracted with diethyl ether (350 mL×4). The organic extracts were collected, washed with brine, dried on Na2SO4 and evaporated to dryness. The crude material was taken up with hexane (380 mL), maintained under vigorous stirring for 30 minutes and filtered to remove the solid material. The filtrate was evaporated under vacuum to obtain the pure title compound (9.8 g, 45.9% yield) as a pale yellow oil.
- 1H NMR (CDCl3 400 MHz) δ ppm 1.23 (s, 6H) 1.87 (t, 2H) 2.61 (t, 2H) 3.60 (s, 3H) 5.57 (s, 1H)
-
- A solution of 2-methoxy-4,4-dimethyl-cyclohex-2-enone (12.5 g, 81.1 mmol) and diethyl oxalate (12.1 mL, 89.2 mmol) in ethyl ether was treated with a 1 M solution of lithium bis(trimethylsilyl)amide in tetrahydrofuran under argon atmosphere. The reaction was stirred at room temperature for 2 hours, poured into a 10% NaH2PO4 solution (500 mL) and extracted with diethyl ether (300 mL×2). The organic extracts were washed with brine, dried on Na2SO4 and evaporated to dryness. The crude material was taken up with hexane, stirred and filtered to give the title compound (16.8 g, 81.5% yield) as a yellow crystalline solid.
- 1H NMR (300 MHz, CHCl3-d) δ ppm 1.15 (s, 6H) 1.38 (t, 3H) 2.77 (s, 2H) 3.63 (s, 3H) 4.35 (q, 2H) 5.62 (s, 1H).
-
- A solution of ethyl (3-methoxy-5,5-dimethyl-2-oxocyclohex-3-en-1-yl)(oxo)acetate (15.50 g, 0.061 mol) in acetic acid (100 mL) was treated dropwise with a solution of methyl hydrazine (3.49 mL, 0.066 mol) dissolved in acetic acid (50 mL). After 24 hours at room temperature, the reaction mixture was diluted with water (2 L) under vigorous stirring. The resulting precipitate was filtered and washed with water to obtain the title compound (10.30 g, 67.6% yield) as a yellow solid.
- 1H NMR (300 MHz, CHCl3-d) δ ppm 1.20 (s, 6H) 1.42 (t, 3H) 2.43 (s, 2H) 2.93 (s, 2H) 4.21 (s, 3H) 4.41 (q, 2H).
-
- A solution of ethyl 1,5,5-trimethyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate (1.00 g, 4 mmol) in anhydrous ethyl formate (10 mL) was treated with sodium ethoxide (0.54 g, 8 mmol) and refluxed for 3 hours. The mixture was cooled to room temperature and poured into cold water (40 mL). The aqueous layer was washed with diethyl ether (40 mL) to remove unreacted starting material, acidified with a 20% NaH2PO4 solution and extracted with ethyl acetate (50 mL×2). The organic extracts were collected, dried on Na2SO4 and evaporated to dryness to obtain the title compound (0.88 g, 78.8% yield) as a brown solid.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.21 (s, 6H) 1.32 (t, 3H) 2.87 (s, 2H) 4.19 (s, 3H) 4.30 (q, 2H) 7.74 (s, 1H) 14.00 (br, 1H)
-
- 16.00 g (0.06 mol) of ethyl-6-[(dimethylamino)methylene]-1-methyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate were dissolved in 600 mL of ethanol and 3.90 g of sodium ethylate, and 5.44 g of guanidine hydrochloride were added consecutively. The solution was stirred at reflux for 12 hours. The solvent was then evaporated, the residue redissolved with dichloromethane and washed with water. The organic layer was then dried over anhydrous Na2SO4 and concentrated. The residue was triturated with diethyl ether and the product collected by filtration (85% yield as a white solid).
- 1H NMR (400 MHz, DMSO-d6) δ ppm: 1.28 (t, J 7.07 Hz, 3H) 2.68-2.93 (m, 4H) 4.25 (q, J 7.07 Hz, 2H) 4.30 (s, 3H) 6.54 (bs, 2H) 8.15 (m, 1H).
- According to this same methodology, but employing a suitable substituted guanidine derivative, the following compounds were prepared, as reported in table VII:
-
TABLE VII B04-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (t, J 7.07 Hz, 3 H) 2.82 (m, 2 H) 2.95 (m, 2 H) 4.27 (q, J 7.07 Hz, 2 H) 4.32 (s, 3 H) 6.93 (m, 2 H) 7.37 (m, 2 H) 7.77 (m, 2 H) 8.39 (s, 1 H) 9.49 (s, 1 H). B06-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (t, J 7.07 Hz, 3 H) 2.84 (m, 2 H) 2.96 (m, 2 H) 4.27 (q, J 7.07 Hz, 2 H) 6.97 (m, 1 H) 7.30 (m, 1 H) 7.54 (m, 1 H) 7.97 (m, 1 H) 8.42 (s, 1 H) 9.74 (s, 1 H). B07-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (t, J 7.07 Hz, 3 H) 2.85 (m, 2 H) 2.97 (m, 2 H) 4.28 (q, J 7.07 Hz, 2 H) 4.33 (s, 3 H) 7.28 (m, 1 H) 7.51 (m, 1 H) 7.89 (m, 2 H) 8.18 (bs, 1 H) 8.47 (s, 1 H) 9.88 (s, 1 H). B08-X00-M00(C01)-D01 B09-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (t, J 7.07 Hz, 3 H) 2.21 (s, 3 H,) 2.45 (m, 2 H) 2.81 (m, 2 H) 2.95 (m, 2 H) 3.69 (m, 4 H) 4.26 (q, J 7.07 Hz, 2 H) 4.33 (s, 3 H) 6.65 (m, 1 H) 7.10 (m, 1 H) 7.19 (m, 1 H) 7.21 (m, 1 H) 8.38 (s, 1 H) 9.31 (bs, 1 H). B10-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (t, J = 7.19 Hz, 3 H) 2.25 (s, 3 H) 2.48 (m, 4 H) 2.84 (t, J = 7.74 Hz, 2 H) 2.99 (t, J = 7.74 Hz, 2 H) 3.10 (m, 4 H) 4.32 (q, J = 7.19 Hz, 2 H) 4.36 (s, 3 H) 6.93 (d, J = 9.34 Hz, 2 H) 7.53 (d, J = 9.34 Hz, 2 H) 8.37 (s, 1 H) 9.29 (s, 1 H) B04-X00-M00(C02)-D01 B04-X00-M00(C04)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.30 (t, J 7.07 Hz, 3 H) 2.82 (m, 2 H) 2.96 (m, 2 H) 3.79 (m, 2 H) 4.28 (q, J 7.07 Hz, 2 H) 4.78 (t, J 5.25 Hz, OH) 4.88 (t, J 5.73 Hz, 2 H) 6.95 (m, 1 H) 7.29 (m, 2 H) 7.65 (m, 2 H) 8.39 (s, 1 H) 9.44 (bs, 1 H). B04-X00-M00(C06)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.12 (t, 3 H, J = 7.07 Hz) 1.33 (t, 3 H, J = 7.07 Hz) 2.90 (m, 2 H) 3.03 (m, 2 H) 4.07 (q, 2 H, J = 7.07 Hz) 4.31 (q, 2 H, J = 7.07 Hz) 5.73 (s, 2 H) 7.01 (m, 1 H) 7.31 (m, 2 H) 7.57 (m, 2 H) 8.44 (s, 1 H) 9.49 (bs, 1 H). B04-X00-M00(C08)-D01 B04-X00-M00(C09)-D01 B04-X00-M00(C10)-D01 B04-X00-M00(C05)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J 7.07 Hz, 3 H) 2.87 (m, 2 H) 3.02 (m, 2 H) 4.36 (q, J 7.07 Hz, 2 H) 5.53 (q, J 8.90 H, 2 H) 6.90 (m, 1 H) 7.24 (m, 2 H) 7.79 (m, 2 H) 8.42 (s, 1 H) 9.74 (bs, 1 H). B04-X00-M04(C05)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.30 (t, J 7.07 Hz, 3 H) 2.87 (m, 2 H) 2.98 (m, 2 H) 4.29 (q, J 7.07 Hz, 2 H) 5.85 (q, J 8.90 Hz, 2 H) 6.80-7.60 (3m, 5 H) 8.43 (s, 1 H) 9.58 (bs, 1 H). B04-X00-M00(C11)-D01 B36-X00-M00(C01)-D01 B12-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J 7.07 Hz, 3 H) 2.25 (s, 3 H) 2.52 (m, 4 H) 2.93 (m, 8 H) 4.31 (q, J 7.07 Hz, 2 H) 4.36 (s, 3 H) 7.54 (d, J 8.90 Hz, 1 H) 7.93 (dd, J 8.84, 2.50 Hz, 1 H) 8.07 (d, J 2.56 Hz, 1 H) 8.46 (s, 1 H) 9.78 (s, 1 H) B13-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J 7.07 Hz, 3 H) 2.28 (s, 3 H) 2.53 (m, 4 H) 2.94 (m, 8 H) 4.31 (q, J 7.15 Hz, 2 H) 4.38 (s, 3 H) 7.14 (d, J 8.90 Hz, 1 H) 7.53 (dd, J 8.72, 2.50 Hz, 1 H) 7.96 (d, J 2.44 Hz, 1 H) 8.44 (s, 1 H) 9.60 (s, 1 H) B00-X00-M00(C00)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J = 7.2 Hz, 3 H) 2.78 (m, 2 H) 2.96 (m, 2 H) 4.31 (q, J = 7.2 Hz, 2 H) 6.64 (m, 2 H) 8.19 (bs, 1 H) B00-X00-M00(C03)-D01 B00-X00-M04(C03)-D01 B00-X00-M00(C04)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J = 7.07 Hz, 3 H) 2.76 (t, J = 7.68 Hz, 2 H) 2.94 (t, J = 7.50 Hz, 2 H) 3.79-3.88 (m, 2 H) 4.30 (q, J = 7.07 Hz, 2 H) 4.80 (t, J = 5.79 Hz, 1 H) 4.84 (t, J = 5.97 Hz, 2 H) 6.55 (s, 2 H) 8.19 (s, 1 H) B00-X00-M00(C05)-D01 B00-X00-M00(C08)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.35 (t, J = 7.07 Hz, 3 H) 2.83 (t, J = 7.56 Hz, 2 H) 3.02 (t, J = 7.38 Hz, 2 H) 4.36 (q, J = 7.07 Hz, 2 H) 6.14 (s, 2 H) 7.44 (s, 2 H) 7.83 (d, J = 8.78 Hz, 2 H) 7.92-7.99 (m, 2 H) 8.25 (s, 1 H) B00-X00-M00(C09)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (t, J = 7.13 Hz, 3 H) 2.80 (t, J = 7.50 Hz, 2 H) 3.00 (t, J = 7.38 Hz, 2 H) 3.85 (s, 3 H) 4.34 (q, J = 7.11 Hz, 2 H) 6.10 (s, 2 H) 7.03 (d, J = 9.02 Hz, 2 H) 7.50 (d, J = 9.02 Hz, 2 H) 8.20 (s, 1 H) B00-X00-M00(C10)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (t, J = 7.07 Hz, 3 H) 2.83 (t, J = 7.56 Hz, 2 H) 3.01 (t, J = 7.68 Hz, 2 H) 4.36 (q, J = 7.15 Hz, 2 H) 6.24 (s, 2 H) 7.83 (d, J = 8.78 Hz, 2 H) 7.97 (d, J = 8.78 Hz, 2 H) 8.23 (s, 1 H) B00-X00-M00(C10)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (t, J = 7.07 Hz, 3 H) 2.83 (t, J = 7.50 Hz, 2 H) 3.01 (t, J = 7.56 Hz, 2 H) 4.35 (q, J = 7.07 Hz, 2 H) 6.02 (s, 2 H) 7.57 (ddd, J = 7.53, 4.85, 1.04 Hz, 1 H) 7.68 (dt, J = 7.99, 0.95 Hz, 1 H) 8.05 (td, J = 7.74, 1.95 Hz, 1 H) 8.21 (s, 1 H) 8.53 (ddd, J = 4.88, 1.83, 0.85 Hz, 1 H) B00-X00-M00(C16)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (t, 3 H, J = 7.07 Hz) 2.82 and 3.01 (2t, 4 H, J = 7.68 Hz) 4.34 (q, 2 H, J = 7.68 Hz) 6.06 (s, 2 H) 7.46-7.60 (2m, 5 H) 8.22 (s, 1 H) B00-X00-M00(C17)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, 3 H, J = 7.20 Hz) 2.76 and 2.96 (2t, 4 H, J = 7.31 Hz) 4.29 (q, 2 H, J = 7.20 Hz) 6.09 (s, 2 H) 6.64 (s, 2 H) 7.34 (m, 5 H) 8.19 (s, 1 H) B00-X00-M00(C20)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, 3 H, J 7.19 Hz) 2.09 (m, 4 H) 3.85 (m, 4 H) 4.31 (q, 2 H, J 7.19 Hz) 5.88 (m, 1 H) 6.67 (bs, 2 H) 8.08 (s, 1 H) 8.21 (s, 1 H). B00-X00-M00(C19)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J = 7.07 Hz, 3 H) 1.93-2.16 (m, 4 H) 2.24-2.43 (m, 5 H) 2.74 (t, J = 7.62 Hz, 2 H) 2.88-3.02 (m, 4 H) 4.31 (q, J = 7.07 Hz, 2 H) 5.48-5.69 (m, 1 H) 6.56 (s, 2 H) 8.20 (s, 1 H) B00-X00-M00(C21)-D01 B00-X00-M00(C22)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J = 7.07 Hz, 3 H) 1.74-2.06 (m, 4 H) 2.08 (s, 3 H) 2.73-2.78 (m, 2 H) 2.74-2.86 (m, 1 H) 2.94 (t, J = 7.62 Hz, 2 H) 3.28-3.36 (m, 1 H) 3.91-4.04 (m, 1 H) 4.30 (q, J = 7.11 Hz, 2 H) 4.48-4.59 (m, 1 H) 5.78-5.97 (m, 1 H) 6.61 (s, 2 H) 8.20 (s, 1 H) B00-X00-M00(C23)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J = 7.07 Hz, 3 H) 2.32 (s, 6 H) 2.76 (t, J = 7.68 Hz, 2 H) 2.94 (t, J = 7.50 Hz, 2 H) 3.34 (m, 2 H) 4.30 (q, J = 7.07 Hz, 2 H) 4.61 (m, 2 H) 6.55 (s, 2 H) 8.19 (s, 1 H) B00-X00-M00(C24)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J = 7.07 Hz, 3 H) 1.71 (m, 2 H) 2.32 (s, 6 H) 2.76 (t, J = 7.68 Hz, 2 H) 2.94 (t, J = 7.50 Hz, 2 H) 3.34 (m, 2 H) 4.30 (q, J = 7.07 Hz, 2 H) 4.61 (m, 2 H) 6.55 (s, 2 H) 8.19 (s, 1 H) B10-X00-M00(C19)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (m, 3 H) 2.53-2.51 (m, 6 H) 2.97 and 2.51 (2t, 4 H J 7.44 Hz) 3.13 (m, 4 H) 4.30 (m, 2 H) 6.96 (m, 2 H) 7.37 (m, 2 H) 8.37 (s, 1 H) 9.14 (s, 1 H). B04-X00-M00(C21)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (t, J = 7.07 Hz, 3 H) 1.89-1.96 (m, 2 H) 2.00-2.15 (m, 4 H) 2.79-2.89 (m, 4 H) 2.98 (t, J = 7.87 Hz, 2 H) 3.52 (s, 2 H) 4.32 (q, J = 7.15 Hz, 2 H) 5.48-5.66 (m, 1 H) 6.99-7.09 (m, 1 H) 7.21-7.43 (m, 7 H) 7.59 (dd, J = 8.60, 1.04 Hz, 2 H) 8.43 (s, 1 H) 9.45 (s, 1 H) B10-X00-M04(C15)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, 3 H) 2.26 (m, 7 H) 2.98 (m, 6 H) 3.33 (m, 2 H) 4.30 (q, 2 H) 6.32 (s, 2 H) 6.70 (d, 2 H) 7.33 (d, 2 H) 7.39 (m, 1 H) 7.47 (m, 2 H) 7.67 (m, 3 H) 8.42 (m, 1 H) 9.29 (m, 1 H) B10-X00-M00(C15)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (t, 3 H) 2.30 (m, 4 H) 2.52 (m, 5 H) 2.86 (m, 2 H) 3.07 (m, 4 H) 4.33 (q, 2 H) 6.03 (s, 1 H) 6.88 (d, 2 H) 7.39 (m, 1 H) 7.51 (m, 2 H) 7.65 (m, 5 H) 8.36 (s, 1 H) 9.42 (s, 1 H) -
- A solution of ethyl 6-[(dimethylamino)methylene]-1,4,4-trimethyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate (0.50 g, 1.6 mmol) and N-[3-chloro-4-(4-methyl-piperazin-1-yl)-phenyl]-guanidine (0.48 g, 1.8 mmol) in anhydrous dimethylformamide was heated to 100° C. and kept at this temperature for 37 hours. After cooling, the mixture was diluted with water (50 mL) and the resulting precipitate was collected by filtration and dried to give the title compound (0.72 g, 85% yield) as a yellow solid.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (m, 9H) 2.75 (s, 2H) 2.84 (s, 3H) 3.33 (m, 8H) 4.32 (q, J 7.07 Hz, 2H) 4.37 (s, 3H) 7.20 (d, J 8.78 Hz, 1H) 7.57 (dd, J 8.84, 2.50 Hz, 1H) 8.01 (d, J 2.44 Hz, 1H) 8.44 (s, 1H) 9.68 (s, 1H).
- By working according to this methodology, and by taking into account that when the guanidine derivative is available as a salt, stoichiometric amounts of potassium carbonate were employed, the following compounds were prepared:
- Ethyl 1,4,4-trimethyl-8-{[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B12-X00-M03(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J 7.13 Hz, 3H) 1.34 (s, 6H) 2.24 (s, 3H) 2.46 (s, 4H) 2.75 (s, 2H) 2.84 (t, J 4.63 Hz, 4H) 4.32 (q, J 7 11 Hz, 2H) 4.34 (s, 3H) 7.54 (d, J 8 78 Hz, 1H) 7.93 (dd, J 8.84, 2.50 Hz, 1H) 8.06 (d, J 2.44 Hz, 1H) 8.45 (s, 1H) 9.78 (s, 1H);
- Ethyl 8-anilino-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B04-X00-M03(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (m, 9H) 2.74 (s, 2H) 4.32 (q, J 7.15 Hz, 2H) 4.36 (s, 3H) 6.98 (tt, J 7.36, 1.07, 1.04 Hz, 1H) 7.31 (dd, J 8.47, 7.38 Hz, 2H) 7.71 (dd, J 8.60, 0.91 Hz, 2H) 8.42 (s, 1H) 9.54 (s, 1H);
- Ethyl 8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B10-X00-M03(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J=7.07 Hz, 3H) 1.33 (s, 6H) 2.27 (s, 3H) 2.52 (m, 4H) 2.71 (s, 2H) 3.03-3.15 (m, 4H) 4.32 (q, J=7.07 Hz, 2H) 4.33 (s, 3H) 6.91 (d, J=9.02 Hz, 2H) 7.53 (d, J=9.02 Hz, 2H) 8.35 (s, 1H) 9.28 (s, 1H);
- Ethyl 8-amino-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B00-X00-M03(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J=7.07 Hz, 3H) 1.31 (s, 6H) 2.64 (s, 2H) 4.31 (q, J=7.07 Hz, 2H) 4.33 (s, 3H) 6.61 (s, 2H) 8.18 (s, 1H).
-
- A solution of ethyl 6-(hydroxymethylene)-1,5,5-trimethyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate (400 mg, 1.44 mmol) and N-[3-chloro-4-(4-methyl-piperazin-1-yl)-phenyl]-guanidine (424 mg, 1.58 mmol) in anhydrous dimethylformamide (5 mL) was heated at 100° C. for 3 hours. After cooling, the reaction mixture was poured into brine (50 mL) and extracted with ethyl acetate (50 mL×2). The extracts were collected, dried on Na2SO4 and evaporated to dryness. The crude material was purified by flash chromatography on silica gel eluted with dichloromethane/methanol 9:1 to give the pure title compound (240 mg, 33% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (m, 9H) 2.27 (s, 3H) 2.52 (m, 4H) 2.92 (s, 2H) 2.95 (t, J 4.63 Hz, 4H) 4.31 (q, J 7.07 Hz, 2H) 4.39 (s, 3H) 7.14 (d, J 8.78 Hz, 1H) 7.52 (dd, J 8.78, 2.44 Hz, 1H) 7.98 (d, J 2.44 Hz, 1H) 8.54 (s, 1H) 9.63 (s, 1H).
- By working according to this methodology, and by taking into account that when the guanidine derivative is available as a salt, stoichiometric amounts of potassium carbonate were employed, the following compounds were prepared:
- Ethyl 1,5,5-trimethyl-8-{[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B12-X00-M02(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (m, 9H) 2.27 (s, 3H) 2.52 (m, 4H) 2.86 (t, J 4.51 Hz, 4H) 2.93 (s, 2H) 4.32 (q, J 7.15 Hz, 2H) 4.37 (s, 3H) 7.54 (d, J 8.66 Hz, 1H) 7.93 (dd, J 8.78, 2.56 Hz, 1H) 8.09 (d, J 2.44 Hz, 1H) 8.56 (s, 1H) 9.81 (s, 1H);
- Ethyl 8-anilino-1,5,5-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B04-X00-M02(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (m, 9H) 2.93 (s, 2H) 4.31 (q, J 7.15 Hz, 2H) 4.38 (s, 3H) 6.98 (tt, J 7.36, 1.07, 1.04 Hz, 1H) 7.32 (dd, J 8.47, 7.50 Hz, 2H) 7.72 (dd, J 8.60, 1.04 Hz, 2H) 8.53 (s, 1H) 9.57 (s, 1H);
- Ethyl 1,5,5-trimethyl-8-{[4-(4-methylpiperazin-1-yl)-phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B10-X00-M02(C01)-D01]
- 1H NMR (400 MHz, DMSO-D6) 6 ppm 1.30 (s, 6H) 1.34 (t, J=7.07 Hz, 3H) 2.25 (s, 3H) 2.48 (m, 4H) 2.91 (s, 2H) 3.09 (m, 4H) 4.31 (q, J=7.19 Hz, 2H) 4.35 (s, 3H) 6.92 (d, J=9.29 Hz, 2H) 7.52 (d, J=9.29 Hz, 2H) 8.46 (s, 1H) 9.30 (s, 1H);
- Ethyl 1,5,5-trimethyl-8-amino-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B00-X00-M02(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.25 (s, 6H) 1.32 (t, J=7.13 Hz, 3H) 2.86 (s, 2H) 4.30 (q, J=7.07 Hz, 2H) 4.35 (s, 3H) 6.61 (s, 2H) 8.29 (s, 1H).
-
- To a suspension of 5.187 g (19 mmol) of ethyl 8-amino-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate in dry dimethylformamide (120 mL), were added 1-acetyl-4-piperidone (4.7 mL, 38 mmol), CF3COOH (10 mL, 128 mmol) and NaBH(OAc)3 (8.862 g, 42 mmol). After 18 hours, NaOH 0.33N (800 mL, 264 mmol) was added dropwise to the mixture. The precipitate was filtered, washed with water and dried in oven to dryness to give 5.3 g (70% yield) of the title compound.
- 1H NMR (400 MHz), DMSO-d6) δ ppm 1.34 (t, J 7.07 Hz, 3H) 1.47 (m, 2H) 1.95 (m, 2H) 2.02 (s, 3H) 2.73 (m, 1H) 2.77 (m, 2H) 3.17 (m, 1H) 3.83 (m, 1H) 3.95 (m, 1H) 4.30 (q, J 7.07 Hz, 2H) 4.31 (m, 1H) 4.33 (s, 3H) 7.14 (m, 1H) 8.24 (s, 1H)
- By working according to the above method the following compounds were prepared:
-
TABLE VIII B73-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J 7.13 Hz, 3 H) 1.54 (m, 4 H) 1.70 (m, 2 H) 1.94 (m, 2 H) 2.77 (m, 2 H) 2.94 (t, J 7.74 Hz, 2 H) 4.17 (m, 1 H) 4.30 (q, J 7.07 Hz, 2 H) 4.35 (s, 3 H) 7.11 (d, J 6.34 Hz, 1 H) 8.22 (s, 1 H) B89-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20 (t, J 7.07 Hz, 3 H) 1.32 (t, J 7.13 Hz, 3 H) 1.41 (m, 2 H) 1.92 (dd, J 12.62, 2.99 Hz, 2 H) 2.89 (m, 6 H) 3.94 (m, 3 H) 4.05 (q, J 7.07 Hz, 2 H) 4.30 (q, J 7.19 Hz, 2 H) 4.33 (s, 3 H) 7.13 (d, J 5.85 Hz, 1 H) 8.24 (s, 1 H) B27-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.08-1.37 (m, 5 H) 1.32 (t, J = 7.07 Hz, 3 H) 1.53-1.99 (m, 5 H) 2.76 (t, J = 7.62 Hz, 2 H) 2.94 (t, J = 7.50 Hz, 2 H) 3.62-3.77 (m, 1 H) 4.30 (q, J = 7.15 Hz, 2 H) 4.34 (s, 3 H) 6.98 (d, J = 5.37 Hz, 1 H) 8.21 (s, 1 H) B90-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J = 7.07 Hz, 3 H) 1.54 (m, 2 H) 1.89 (d, J = 12.80 Hz, 2 H) 1.96 (m, 2 H) 2.18 (s, 3 H) 2.77 (m, 4 H) 2.94 (t, J = 7.74 Hz, 2 H) 3.66 (m, 1 H) 4.30 (q, J = 7.19 Hz, 2 H) 4.33 (s, 3 H) 7.03 (d, J = 6.46 Hz, 1 H) 8.22 (s, 1 H) B94-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (t, J = 7.2 Hz, 3 H); 1.58 (m, 2 H); 1.98 (m, 2 H); 2.75 (m, 2 H); 2.92 (m, 2 H); 3.30 (m, 2 H); 3.59 (m, 2 H); 3.72 (m, 1 H); 4.26 (s, 3 H); 4.29 (q, J = 7.2 Hz, 2 H); 7.13 (d, J = 7.2 Hz, 1 H); 7.68 (m, 2 H); 7.75 (m, 1 H); 7.78 (m, 2 H); 8.20 (s, 1 H) B100-X00-M00(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J = 7.2 Hz, 3 H); 1.45 (m, 2 H); 1.90 (m, 2 H); 2.19 (m, 3 H); 2.31 (m, 4 H); 2.77 (m, 2 H); 2.87 (m, 2 H), 2.94 (m, 2 H); 3.15 (m, 4 H); 3.60 (m, 2 H); 3.87 (m, 1 H); 4.30 (q, J = 7.2 Hz, 2 H); 4.33 (s, 3 H), 7.13 (bs, 1 H); 8.23 (s, 1 H) B73-X00-M00(C09)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.10-1.24 (m, 4 H) 1.34 (t, J = 7.13 Hz, 3 H) 1.40-1.62 (m, 4 H) 2.83 (t, J = 7.62 Hz, 2 H) 3.03 (t, J = 7.44 Hz, 2 H) 3.83 (s, 3 H) 3.85-3.87 (m, 1 H) 4.34 (q, J = 7.15 Hz, 2 H) 6.94 (s, 1 H) 7.05 (d, J = 8.90 Hz, 2 H) 7.46 (d, J = 9.02 Hz, 2 H) 8.18 (s, 1 H) B73-X00-M00(C10)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.06-1.67 (m, 8 H) 1.34 (t, J = 7.13 Hz, 3 H) 2.85 (t, J = 7.68 Hz, 2 H) 3.03 (t, J = 7.68 Hz, 2 H) 3.28-3.44 (m, 1 H) 4.35 (q, J = 7.07 Hz, 2 H) 6.93 (s, 1 H) 7.82 (d, J = 8.78 Hz, 2 H) 8.04 (d, J = 8.66 Hz, 2 H) 8.22 (s, 1 H) B73-X00-M00(C08)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.05-1.54 (m, 8 H) 1.34 (t, J = 7.13 Hz, 3 H) 2.85 (t, J = 7.62 Hz, 2 H) 3.03 (t, J = 7.44 Hz, 2 H) 3.25-3.42 (m, 1 H) 4.30-4.41 (m, J = 7.07, 7.07, 7.07 Hz, 2 H) 6.87 (s, 1 H) 7.48 (s, 2 H) 7.79 (d, J = 8.78 Hz, 2 H) 7.95 (d, J = 8.78 Hz, 2 H) 8.22 (s, 1 H) B73-X00-M00(C11)-D01 B73-X00-M00-(C19)-D01 B91-X00-M00(C19)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, 3 H, J = 7.08) 2.04 (s, 3 H) 2.75 and 2.94 (2t, 4 H, J = 7.32) 4.31 (q, 2 H, J = 7.08) 8.26 (s, 1 H) B73-X00-M00 (C20)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29-1.35 (m, 3 H) 1.50-1.63 (m, 4 H) 1.66-2.17 (m, 8 H) 2.72-2.86 (m, 1 H) 2.76-2.81 (m, 2 H) 2.94 (t, J = 7.74 Hz, 2 H) 3.11-3.27 (m, 1 H) 3.86-3.97 (m, 1 H) 4.12-4.23 (m, 1 H) 4.30 (q, J = 7.15 Hz, 2 H) 4.34-4.44 (m, 1 H) 5.82-5.98 (m, 1 H) 7.14 (s, 1 H) 8.08 (s, 1 H) 8.24 (s, 1 H) B73-X00-M00(C22)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, 3H, J = 7.07) 2.09 (s, 3H) 2.94 and 2.76 (2t, 4H, J = 7.68) 3.18 (m, 1H) 4.02 (m, 1H) 4.18 (m, 1H) 4.30 (q, 2H, J = 7.07 Hz) 4.56 (m, 1H) 5.88 (m, 1H) 7.13 (bs, 1H) 8.24 (s, 1H) B91-X00-M00(C22)-D01 B73-X00-M00(C023)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J = 7.07 Hz, 3 H) 1.65 (m, 6 H) 1.94 (m, 2 H) 2.32 (s, 6 H) 2.73 (m, 2 H) 2.95 (t, J 7.62 Hz, 2 H) 3.34 (m, 2 H) 4.17 (m, 1 H) 4.31 (q, J = 7.03 Hz, 2 H) 4.61 (m, 2 H) 8.20 (s, 1 H) B73-X00-M00(C024)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J = 7.07 Hz, 3 H) 1.65 (m, 6 H) 1.94 (m, 2 H) 2.29 (s, 6 H) 2.50 (m, 2 H) 2.73 (m, 2 H) 2.95 (t, J 7.62 Hz, 2 H) 4.17 (m, 1 H) 4.31 (q, J = 7.03 Hz, 2 H) 4.54 (m, 2 H) 8.20 (s, 1 H) B95-X00-M00(C01)-D01 B91-X00-M03(C01)-D01 1H NMR (400 MHz), DMSO-d6) δ ppm 1.31 (s, 6 H) 1.32 (t, J = 7.07 Hz, 3 H) 1.49 (m, 2 H) 1.96 (m, 2 H) 2.02 (s, 3 H) 2.65 (s, 2 H) 2.76 (m, 1 H) 3.16 (m, 1 H) 3.83 (m, 1 H) 3.95 (m, 1 H) 4.30 (m, 1 H) 4.31 (q, J = 7.03 Hz, 2 H) 4.32 (s, 3 H) 7.17 (s, 1 H) 8.24 (s, 1 H) B89-X00-M03(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.23 (t, J = 7.07 Hz, 3 H) 1.33 (s, 6 H) 1.35 (t, J = 7.14 Hz, 3 H) 1.43 (m, 2 H) 1.95 (dd, J = 12.43, 2.54 Hz, 2 H) 2.67 (s, 2 H) 2.98 (m, 2 H) 3.92 (m, 1 H) 3.99 (m, 2 H) 4.08 (q, J = 7.00 Hz, 2 H) 4.33 (q, J = 7.10 Hz, 2 H) 4.34 (s, 3 H) 7.17 (s, 1 H) 8.25 (s, 1 B73-X00-M03(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (s, 6 H) 1.32 (t, J = 7.13 Hz, 3 H) 1.55 (m, 4 H) 1.70 (m, 2 H) 1.94 (m, 2 H) 2.64 (s, 2 H) 4.17 (m, 1 H) 4.31 (q, J = 7.11 Hz, 2 H) 4.34 (s, 3 H) 7.12 (d, J = 7.19 Hz, 1 H) 8.21 (s, 1 H) B92-X00-M03(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J = 7.07 Hz, 3 H) 1.31 (s, 6 H) 1.46 (m, 2 H) 1.96 (m, 2 H) 2.65 (s, 2 H) 3.18 (m, 2 H) 3.62 (m, 1 H) 4.01 (m, 1 H) 4.31 (q, J = 7.03 Hz, 2 H) 4.32 (s, 3 H) 4.40 (m, 1 H) 7.18 (s, 1 H) 7.34-7.49 (m, 5 H) 8.23 (s, 1 H) B93-X00-M03(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (s, 6 H) 1.31 (t, J = 7.19 Hz, 3 H) 1.59 (m, 2 H) 2.01 (m, 2 H) 2.89 (s, 3 H) 2.90 (m, 2 H) 3.56 (m, 2 H) 3.87 (m, 1 H) 4.30 (q, J = 7.03 Hz, 2 H) 4.32 (s, 3 H) 8.24 (s, 1 H) B94-X00-M03(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (s, 6 H) 1.31 (t, J = 7.19 Hz, 3 H) 1.59 (m, 2 H) 1.99 (m, 2 H) 2.56 (m, 2 H) 2.63 (s, 2 H) 3.59 (m, 2 H) 3.73 (m, 1 H) 4.25 (s, 3 H) 4.30 (q, J = 7.03 Hz, 2 H) 7.14 (d, J = 6.83 Hz, 1 H) 7.68 (m, 2 H) 7.73 (m, 1 H) 7.77 (m, 2 H) 8.19 (s, 1 H) B91-X00-M05 1H NMR (400 MHz), DMSO-d6) δ ppm 1.37 (m, 2 H) 1.89 (m, 2 H) 2.02 (s, 3 H) 2.75 (m, 1 H) 2.93 (m, 2 H) 3.17 (m, 1 H) 3.64 (m, 2 H) 3.81 (m, 1 H) 4.01 (m, 1 H) 4.26 (m, 1 H) 4.36 (m, 2 H) 6.54 (bs, 1 H) 7.17 (s, 1 H) 8.23 (s, 1 H) -
- 2.0 g (7.2 mmol) of ethyl 6-[(dimethylamino)methylene]-1-methyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate were dissolved in 200 mL of acetonitrile and 17.4 g (70.6 mmol) of methylisourea sulfate and 10.0 g (72.4 mmol) of potassium carbonate were added. The reaction mixture was stirred at reflux for 16 hours. The solvent was then evaporated, the residue redissolved with dichloromethane and washed with water. The organic layer was dried over anhydrous Na2SO4 and concentrated. After a chromatography on a silica gel column (eluant dichloromethane) 1.7 g of product were obtained (86% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J 7.07 Hz, 3H) 2.98 (m, 4H) 3.97 (s, 3H) 4.31 (q, J 7.07 Hz, 2H) 4.34 (s, 3H) 8.54 (s, 1H).
- Ethyl 8-hydroxy-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B00-X03-M00(C01)-D01]
- 1.5 g (5.2 mmol) of ethyl 8-methoxy-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate were dissolved in 90 mL of acetonitrile and 1.6 g (10.6 mmol) of sodium iodide and 1.5 mL of trimethylsilylchloride were added. After a day under stirring and nitrogen atmosphere at room temperature the solvent was evaporated, the residue redissolved with a mixture dichloromethane/methanol 4/1 and washed with a saturated aqueous solution of Na2S2O3. The organic layer was dried over Na2SO4 and evaporated to dryness. The residue crystallized from methanol leading 1.1 g of the title compound (78% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J 7.07 Hz, 3H) 2.84 (m, 4H) 4.31 (q, J 7.07 Hz, 2H) 4.29 (s, 3H) 7.87 (s, 1H) 11.70 (s, 1H).
-
- 0.60 g (2.19 mmol) of ethyl 8-hydroxy-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate and 0.31 mL (2.19 mmol) of triethylamine were dissolved in 60 mL of dichloromethane and stirred for 5 hours at −78° C.; then, 0.72 mL (2.19 mmol) of triflic anhydride were added. The reaction was stirred overnight and allowed to come to room temperature, washed with aqueous NaHCO3, dried over Na2SO4 and evaporated to dryness. The residue was triturated with diethyl ether/acetone and the product collected by filtration giving 0.60 g (67% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J 7.13 Hz, 3H) 3.09 (s, 4H) 4.28 (s, 3H) 4.32 (q, J 7.11 Hz, 2H) 8.86 (s, 1H).
-
- To a solution of 1.5 g (3.7 mmol) of ethyl 1-methyl-8-{[(trifluoromethyl)sulfonyl]oxy}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate in 150 mL of anhydrous dioxane, 756 mg (4.1 mmol) of tert-butyl 3-aminopyrrolidine-1-carboxylate were added. The reaction mixture was stirred at room temperature overnight. The solvent was then removed under reduced pressure, the residue redissolved with dichloromethane and washed with water. The organic layer was dried over sodium sulfate and evaporated. 1.2 g (88% yield) of the title compound was collected by filtration after trituration with diethylether.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J=7.07 Hz, 3H) 1.38-1.44 (m, 9H) 1.81-1.99 (m, 1H) 2.09-2.23 (m, 1H) 2.79 (t, J=7.68 Hz, 2H) 2.95 (t, J=7.80 Hz, 2H) 3.13-3.66 (m, 4H) 4.30 (q, J=7.07 Hz, 2H) 4.32-4.41 (m, 1H) 4.34 (s, 3H) 7.40 (s, 1H) 8.27 (s, 1H)
- Analogously, but employing the suitable amino derivative, the following compounds was prepared:
- ethyl 8-[(1-benzylpyrrolidin-3-yl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B98-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, 3H, J 7.07 Hz) 2.21 and 1.79 (2m, 2H) 2.51 and 2.69 (2m, 4H) 2.93 and 2.74 (2t, 4H, J 7.68 Hz) 4.30 (m, 5H) 7.33 (m, 6H) 8.23 (s, 1H).
-
- 2.5 g of ethyl 8-amino-1-methyl-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (9.16 mmol) were dissolved in 40 mL of methanol, 40 mL of dimethylformamide and 50 mL of NH4OH 30% mixture. The mixture was maintained at 65° C. under stirring for a day. The solvent was then evaporated to dryness, the residue redissolved with dichloromethane and washed with water. The organic layer was dried over Na2SO4 and evaporated. The crude was triturated with diethyl ether and the product collected by filtration (50% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.68 and 2.90 (2m, 4H) 4.28 (s, 3H) 6.50 (bs, 2H) 7.13-7.42 (bs, 2H) 8.15 (s, 1H).
- By working according to this method, the following compounds were prepared:
-
TABLE IX B04-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.79 (m, 2 H) 2.96 (m, 2 H) 4.31 (s, 3 H) 6.94 (m, 1 H) 7.22 (bs, 1 H) 7.28 (m, 2 H) 7.68 (m, 2 H) 8.88 (s, 1 H) 9.48 (bs, 1 H). B06-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.81 (m, 2 H) 2.97 (m, 2 H) 4.33 (s, 3 H) 6.97 (m, 1 H) 7.29 (m, 1 H) 7.44 (bs, 1 H) 7.66 (m, 1 H) 7.98 (m, 1 H) 8.43 (s, 1 H) 9.73 (bs, 1 H). B07-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.81 (t, J 7.68 Hz, 2 H) 2.98 (t, J 7.74 Hz, 2 H) 4.30 (s, 3 H) 7.24 (s, 1 H) 7.26 (dd, J 8.66, 0.85 Hz, 1 H) 7.44 (s, 1 H) 7.51 (t, J 7.93 Hz, 1 H) 7.90 (d, J 8.05 Hz, 1 H) 8.19 (s, 1 H) 8.45 (s, 1 H) 9.87 (s, 1 H) B08-X00-M00(C01)-D03 B09-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.73 (m, 2 H) 2.97 (m, 2 H) 4.31 (s, 3 H) 6.58 (m, 1 H) 7.00- 7.40 (3m, 4 H) 8.37 (s, 1 H) 9.32 (bs, 1 H). B10-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.64 (s, 3 H) 2.76 (m, 2 H) 2.95 (m, 2 H) 4.29 (s, 3 H) 6.92 (m, 2 H) 7.23 (bs, 1 H) 7.41 (bs, 1 H) 7.54 (m, 2 H) 8.32 (s, 1 H) 9.27 (bs, 1 H). B36-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.76 (m, 2 H) 2.95 (m, 2 H) 4.28 (s, 3 H) 5.95 (s, 2 H) 6.84 (m, 1 H) 7.06 (m, 1 H) 7.34 (m, 1 H) 7.22 (bs, 1 H) 7.42 (bs, 1 H) 8.34 (s, 1 H) 9.34 (bs, 1 H). B04-X00-M00(C02)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.77 (s, 9H) 2.72 (m, 2 H) 2.96 (m, 2 H) 7.02 (m, 1 H) 7.20-7.40 (m, 3 H) 7.65 (m, 1 H) 7.67 (m, 1 H) 8.40 (s, 1 H) 9.21 (bs, 1 H). B04-X00-M00(C04)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.78 (t, J 7.68 Hz, 2 H) 2.96 (t, J 7.74 Hz, 2 H) 3.83 (q, J 5.69 Hz, 2 H) 4.78 (t, J 5.49 Hz, 1 H) 4.84 (t, J 5.79 Hz, 2 H) 6.94 (t, J 7.38 Hz, 1 H) 7.23 (s, 1 H) 7.28 (m, 2 H) 7.43 (s, 1 H) 7.67 (d, J 7.68 Hz, 2 H) 8.37 (s, 1 H) 9.42 (s, 1 H) B04-X00-M00(C07)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.98 (m, 4 H) 5.47 (s, 2 H) 6.97 (t, J 7.32 Hz, 1 H) 7.31 (t, 4 H) 7.49 (s, 1 H) 7.65 (t, J 7.68 Hz, 3 H) 8.41 (s, 1 H) 9.48 (s, 1 H) B04-X00-M00(C08)-D03 B04-X00-M00(C09)-D03 B04-X00-M00(C10)-D03 B04-X00-M00(C05)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.86 (m, 2 H) 2.92 (m, 2 H) 5.44 (q, J 9.02, 2 H) 6.90 (m, 1 H) 7.24 (m, 2 H) 7.80 (m, 3 H) 7.93 (bs, 1 H) 8.40 (s, 1 H) 9.72 (bs, 1 H). B04-X00-M04(C05)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.83 (m, 2 H) 3.00 (m, 2 H) 5.75 (q; J 8.90 Hz, 2 H) 6.97 (m, 1 H) 7.28 (m, 2 H) 7.40 (bs, 1 H) 7.56 (m, 2 H) 8.42 (s, 1 H) 9.56 (bs, 1 H) B04-X00-M00(C11)-D03 B04-X00-M00(C00)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.86 (m, 2 H) 3.03 (m, 2 H) 6.95 (m, 1 H) 7.30 (m, 3 H) 7.51 (bs, 1 H) 7.89 (m, 2 H) 8.40 (s, 1 H) 9.45 (bs, 1 H) 14.03 (bs, 1 H). B12-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.52 (m, 4 H) 2.90 (m, 8 H) 4.33 (s, 3 H) 7.27 (s, 1 H) 7.47 (s, 1 H) 7.53 (d, J 8.78 Hz, 1 H) 7.93 (dd, J 8.90, 2.44 Hz, 1 H) 8.08 (d, J 2.56 Hz, 1 H) 8.45 (s, 1 H) 9.76 (s, 1 H) B13-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3 H) 2.52 (m, 4 H) 2.92 (m, 8 H) 4.35 (s, 3 H) 7.14 (d, J 8.78 Hz, 1 H) 7.27 (s, 1 H) 7.47 (s, 1 H) 7.53 (dd, J = 8.78, 2.44 Hz, 1 H) 7.97 (d, J = 2.56 Hz, 1 H) 8.42 (s, 1 H) 9.58 (s, 1 H) B27-X00-M00(C03)-D03 B27-X00-M04(C03)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 0.79 (s, 3 H) 1.64 (m, 2 H) 4.85 (m, 2 H) 6.67 (m, 1 H) 7.16-7.24 (m, 3 H) 7.25-7.42 (2 bs, 2 H) 9.25 (bs, 1 H). B04-X00-M00(C21)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.92 (dd, J = 11.58, 4.15 Hz, 2 H) 2.01-2.10 (m, 2 H) 2.12- 2.23 (m, 2 H) 2.80 (t, J = 7.56 Hz, 2 H) 2.88 (d, J = 11.10 Hz, 2 H) 2.98 (t, J = 7.50 Hz, 2 H) 3.52 (s, 2 H) 5.48-5.61 (m, 1 H) 6.99-7.07 (m, 1 H) 7.26 (s, 1 H) 7.27-7.39 (m, 7 H) 7.43 (s, 1 H) 7.60 (dd, J = 8.54, 1.10 Hz, 2 H) 8.41 (s, 1 H) 9.43 (s, 1 H) B00-X00-M00(C21)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.94 (d, J = 11.95 Hz, 2 H) 2.10-2.33 (m, 4 H) 2.70 (t, J = 7.74 Hz, 2 H) 2.93 (t, J = 7.56 Hz, 4 H) 3.55 (s, 2 H) 5.41-5.69 (m, 1 H) 6.51 (s, 2 H) 7.15-7.43 (m, 7 H) 8.17 (s, 1 H) B10-X00-M00(C19)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.51 (m, 4 H) 2.79 (m, 4 H) 3.13 (m, 4 H) 5.46 (m, 1 H) 6.95 (m, 2 H) 7.38 (m, 2 H) 7.36 and 7.26 (2s, 2 H) 8.34 (s, 1 H) 9.12 (s, 1H). B04-X00-M04(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.83 (t, J = 7.68 Hz, 2 H) 3.00 (t, J = 7.62 Hz, 2 H) 4.34 (s, 3 H) 6.92-7.03 (m, 1 H) 7.26 (s, 1 H) 7.31 (dd, J = 8.41, 7.44 Hz, 2 H) 7.47 (s, 1 H) 7.72 (dd, J = 8.60, 0.91 Hz, 2 H) 8.42 (s, 1 H) 9.51 (s, 1 H) B73-X00-M00(C05)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.42-1.78 (m, 6 H) 1.84-2.00 (m, 2 H) 2.78 (t, J = 7.74 Hz, 2 H) 2.98 (t, J = 7.74 Hz, 2 H) 4.02-4.20 (m, 1 H) 5.81 (q, J = 8.82 Hz, 2 H) 7.22 (d, J = 6.95 Hz, 1 H) 7.41 (s, 1 H) 7.45 (s, 1 H) 8.25 (s, 1 H) B73-X00-M00(C04)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.41-1.77 (m, 6 H) 1.84-2.01 (m, 2 H) 2.73 (t, J = 7.74 Hz, 2 H) 2.95 (t, J = 7.56 Hz, 2 H) 3.85 (t, J = 6.10 Hz, 2 H) 4.09-4.25 (m, 1 H) 4.73-4.90 (m, 1 H) 4.82 (t, J = 6.16 Hz, 2 H) 7.04 (d, J = 5.98 Hz, 1 H) 7.24 (s, 1 H) 7.43 (s, 1 H) 8.20 (s, 1 H) B73-X00-M00(C21)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.71 AND 2.94 (2T, 4 H, J 7.80 Hz) 3.55 (s, 2 H) 4.15 (m, 1 H) 5.62 (m, 1 H) 7.25-7.36 (m, 5 H) 7.23 and 7.39 (2s, 2 H) 8.20 (s, 1 H). B97-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.4 (s, 9H) 1.8-2.2 (2m, 2 H) 2.75 and 2.96 (2t, 4 H) 3.2-3.7 (m, 4 H) 4.2-4.4 (m, 4 H) 7.38 (s, 1 H) 7.24 and 7.44 (2s, 2 H) 8.25 (s, 1 H). B98-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.6-2.2 (m, 2 H) 2.72 (m, 4 H) 2.94 (m, 4 H) 4.27 (s, 3 H) 4.32 (m, 1 H) 7.33 (m, 6 H) 7.43 (2s, 2 H) 8.21 (s, 1 H). B95-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.02 (t, J = 7.19 Hz, 3 H) 1.44-1.58 (m, 2 H) 1.87-1.94 (m, 2 H) 1.95-2.03 (m, 2 H) 2.35 (q, J = 7.07 Hz, 2 H) 2.73 (t, J = 7.56 Hz, 2 H) 2.89 (d, J = 11.71 Hz, 2 H) 2.94 (t, J = 7.62 Hz, 2 H) 3.59-3.78 (m, 1 H) 4.30 (s, 3 H) 7.00 (d, J = 7.93 Hz, 1 H) 7.23 (s, 1 H) 7.44 (s, 1 H) 8.21 (s, 1 H) B73-X00-M00(C19)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.72 and 2.94 (2t, 4 H, J 7.94 Hz) 4.20 (m, 1 H) 5.60 (m, 1 H) 7.25 (s, 1 H) 1.10 and 7.35 (2s, 2 H) 8.21 (s, 1 H). B91-X00-M00(C19)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.04 (s, 3 H) 2.28 (s, 3 H) 3.18 (m, 4 H) 4.30 (m, 4 H) 5.50 (m, 1 H) 7.26 (s, 1 H) 7.10 and 7.36 (2s, 2 H) 8.24 (s, 1 H). B91-X00-M00(C22)-D03 B73-X00-M00(C22)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.07 (s, 3H) 2.94 and 2.72 (2t, 4H, J = 7.93) 4.18 (m, 1H) 5.83 (m, 1H) 7.09 (s, 1H) 7.42 and 7.23 (2s, 2H) 8.22 (s, 1H B73-X00-M00(C20)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.48-1.63 (m, 4 H) 1.66-2.15 (m, 8 H) 2.66-2.84 (m, 1 H) 2.72 (t, J = 7.62 Hz, 2 H) 2.94 (t, J = 7.68 Hz, 2 H) 3.08-3.39 (m, 1 H) 3.86-3.97 (m, 1 H) 4.10-4.25 (m, 1 H) 4.31-4.42 (m, 1 H) 5.77-5.95 (m, 1 H) 7.08 (s, 1 H) 7.23 (s, 1 H) 7.43 (s, 1 H) 8.09 (s, 1 H) 8.22 (s, 1 H) B73-X00-M00(C16)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.03-1.64 (m, 8 H) 2.80 (t, J = 7.62 Hz, 2 H) 3.03 (t, J = 7.62 Hz, 2 H) 3.27-3.33 (m, 1 H) 6.77 (s, 1 H) 7.33 (s, 1 H) 7.44-7.57 (m, 5 H) 7.61 (s, 1 H) 8.17 (s, 1 H) B73-X00-M00(C17)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31-1.87 (m, 8 H) 2.76 (t, J = 7.68 Hz, 2 H) 2.99 (t, J = 7.62 Hz, 2 H) 3.99 (s, 1 H) 6.07 (s, 2 H) 7.06 (d, J = 7.44 Hz, 1 H) 7.13-7.35 (m, 6 H) 7.44 (s, 1 H) 8.21 (s, 1 H) B73-X00-M00(C09)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.00-1.68 (m, 8 H) 2.79 (t, J = 7.62 Hz, 2 H) 3.02 (t, J = 7.62 Hz, 2 H) 3.21-3.44 (m, 1 H) 3.82 (s, 3 H) 6.79 (d, J = 5.85 Hz, 1 H) 7.04 (d, J = 9.02 Hz, 2 H) 7.31 (s, 1 H) 7.46 (d, J = 8.90 Hz, 2 H) 7.58 (s, 1 H) 8.16 (s, 1 H) B73-X00-M00(C10)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.05-1.65 (m, 8 H) 2.82 (t, J = 7.62 Hz, 2 H) 3.03 (t, J = 7.68 Hz, 2 H) 3.25-3.44 (m, 1 H) 6.90 (s, 1 H) 7.42 (s, 1 H) 7.70 (s, 1 H) 7.84 (d, J = 8.66 Hz, 2 H) 8.03 (d, J = 8.78 Hz, 2 H) 8.21 (s, 1 H) B73-X00-M00(C11)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.06-1.65 (m, 8 H) 2.82 (t, J = 7.62 Hz, 2 H) 3.03 (t, J = 7.68 Hz, 2 H) 3.13-3.62 (m, 1 H) 6.78 (s, 1 H) 7.37 (s, 1 H) 7.58 (ddd, J = 7.53, 4.85, 1.04 Hz, 1 H) 7.65 (s, 1 H) 7.68 (dt, J = 7.93, 0.91 Hz, 1 H) 8.04-8.10 (m, 1 H) 8.18 (s, 1 H) 8.57 (ddd, J = 4.85, 1.86, 0.85 Hz, 1 H) B73-X00-M00(C08)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.07-1.55 (m, 8 H) 2.82 (t, J = 7.62 Hz, 2 H) 3.03 (t, J = 7.56 Hz, 2 H) 3.26-3.42 (m, 1 H) 6.82 (s, 1 H) 7.41 (s, 1 H) 7.44 (s, 2 H) 7.64 (s, 1 H) 7.80 (d, J = 8.66 Hz, 2 H) 7.93 (d, J = 8.78 Hz, 2 H) 8.21 (s, 1 H) -
- 0.40 g (1.47 mmol) of 8-amino-1-methyl-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide were suspended in 20 mL of tetrahydrofuran and 5 mL of pyridine and 0.42 mL (3.22 mmol) of phenylacetylchloride were added. The reaction mixture was stirred at room temperature for 16 hours. The solvent was evaporated, the residue redissolved with dichloromethane, washed with aqueous NaHCO3 and then with water. After drying over anhydrous Na2SO4 the solvent was removed under reduced pressure and the crude purified by chromatography on a silica gel column (eluant cyclohexane/acetone) giving 0.35 mg of the title compound (60% yield).
- 1H NMR (400 MHz), DMSO-d6) δ ppm 2.62-3.02 (2m, 4H) 3.76 (m, 2H) 4.3 (s, 3H) 7.00-7.50 (m, 7H) 8.50 (s, 1H) 10.80 (bs, 1H).
- By working according to this method, the following compound was prepared:
- 8-(benzoylamino)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B04-X01-M00(C01)-D03]
- 1H NMR (400 MHz), DMSO-d6) δ ppm 2.87-3.04 (2m, 4H) 4.33 (s, 3H) 7.20-7.46 (bs, 2H) 7.47-7.53 (m, 3H) 7.90-8.00 (m, 2H) 8.60 (s, 1H) 10.97 (m, 1H).
-
- 1.00 g (3.7 mmol) of ethyl 8-amino-1-methyl-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate were dissolved in 50 mL of pyridine and 1 mL (8.0 mmol) of trichloroacetylisocyanate were added. The mixture was stirred overnight at room temperature. The solvent was then evaporated under reduced pressure and the residue was treated with 50 mL of methanol. After 2 hours under stirring the solvent was removed, the residue redissolved with dichloromethane and washed with a diluted solution of ammonium hydrate. After drying over anhydrous Na2SO4 the organic layer was evaporated to dryness and the residue purified by chromatography on a silica gel column (eluant: dichloromethane/acetone 4/1) leading 0.40 g (34% yield) of the title compound.
- 1H NMR (400 MHz), DMSO-d6) δ ppm 1.28 (t, J 7.07 Hz, 3H) 2.8-3.0 (2m, 4H) 4.19-4.34 (1s and 1q, J 7.07 Hz, 3H) 7.04 (bs, 2H) 8.44 (bs, 1H) 9.91 (bs, 1H).
-
- To a suspension of 18 mg (0.44 mmol) of sodium hydride 60% in mineral oil (0.37 mmol) in dry dimethylformamide, a solution of 100 mg of ethyl 8-amino-1-methyl-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (0.37 mmol) in 5 mL of the same solvent was added dropwise at 0° C. under stirring. After 5 minutes, 0.070 mL (0.88 mmol) of ethylisocyanate were added to the mixture and the reaction allowed to come to room temperature. After 8 hours the solvent was evaporated under reduced pressure, the residue redissolved with dichloromethane and washed with water. After drying over Na2SO4 the solvent was removed and the product purified by chromatography on a silica gel column (eluant dichloromethane/acetone) leading 64 mg (50% yield) of the title compound.
- 1H NMR (400 MHz), DMSO-d6) δ ppm 1.10 (t, J 7.20 Hz, 3H) 1.29 (t, J 7.07 Hz, 3H) 2.76-3.04 (2m, 4H) 3.12 (m, 2H) 4.21 (q, J 7.07 Hz, 2H) 4.32 (s, 3H) 8.45 (m, 1H) 8.71 (t, 1H) 9.70 (bs, 1H).
-
- A suspension of 0.20 g (0.63 mmol) of ethyl 8-[(aminocarbonyl)amino]-1-methyl-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate in 15 mL of a mixture methanol/dimethylformamide/ammonium hydroxide 30% 1/1/1 was stirred in a close bottle at 65° C. for 48 hours. The solvent was then evaporated under reduced pressure, the residue redissolved with a mixture dichloromethane/methanol 9/1 and washed with water. The organic layer was dried over anhydrous Na2SO4 and evaporated to dryness. The product was purified by chromatography on a silica gel column (eluant dichloromethane/acetone/methanol) giving 0.09 g (50% yield) of the title compound.
- 1H NMR (400 MHz), DMSO-d6), δ ppm 2.91-3.09 (m, 4H) 3.81 (s, 3H) 6.47 (m, 3H) 7.83 (bs, 2H) 8.58 (m, 1H).
- By working according to the above method, the following compound was prepared:
- 8-{[(ethylamino)carbonyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B03-X02-M00(C01)-D03]
- 1H NMR (400 MHz), DMSO-d6), δ ppm 1.10 (t, J 7.19 Hz, 3H) 2.82 (t, J 7.62 Hz, 2H) 2.97 (t, J 7.74 Hz, 2H) 3.23 (m, 2H) 4.28 (s, 3H) 7.24 (s, 1H) 7.45 (s, 1H) 8.42 (s, 1H) 8.75 (t, J 5.61 Hz, 1H) 9.67 (s, 1H).
-
- To a well stirred, warm suspension of ethyl 8-amino-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (8.8 g, 0.032 mol) in dimethoxyethane (1.2 L) maintained in an inert atmosphere of argon, cesium iodide (9.13 g, 0.035 mol), bisublimated iodine (4.45 g, 0.018 mol), copper iodide (2.01 g, 0.01 mol) and isopentyl nitrite (7.00 mL, 6.14 g, 0.052 mol) were added in sequence. The reaction mixture was stirred vigorously at 65-70° C. for 18 hours. After cooling in a ice-water bath, the solid was filtered off and the filtrate was diluted with dichloromethane (2.0 L), washed with 30% ammonium hydroxide (150 mL), sodium thiosulphate (300 mL), brine and dried over anhydrous Na2SO4. Concentrating to a volume of about 100 mL of dimethoxyethane, the crude ethyl 8-iodo-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate precipitated; it was then filtered and washed with dimethoxyethane.
- Flash chromatography on silica gel (eluant: dichloromethane/methanol 98:2) yielded 5.69 g of the title compound. (46% yield)
- 1H NMR (400 MHz), DMSO-d6), δ ppm 1.28 (t, J 7.07 Hz, 3H) 2.81-3.07 (2t, J 8.90 Hz, 4H) 4.24 (s, 3H) 4.27 (q, J 7.07 Hz, 2H) 8.5 (bs, 1H).
- By working according to this method, the following compounds were prepared:
- ethyl 8-iodo-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 3H) 1.3 (s, 6H) 2.8 (s, 2H) 4.3 (s, 3H) 4.3 (q, J 7.1 Hz, 2H) 8.5 (s, 1H);
- ethyl 8-iodo-1,5,5-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J=7.19 Hz, 3H) 1.32 (s, 6H) 2.96 (s, 2H) 4.31 (q, J=7.07 Hz, 2H) 4.28 (s, 3H) 8.58 (s, 1H);
- ethyl 1-(3,3-dimethylbutyl)-8-iodo-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate;
ethyl 2-(3,3-dimethylbutyl)-8-iodo-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate. -
- Ethyl 8-iodo-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (0.5 g, 1.3 mmol) and cyclopentylamine (0.65 mL, 6.5 mmol) were heated at 100° C. under nitrogen for 3 hours. The mixture was concentrated under reduced pressure and the residue was purified by chromatography on a silica gel column (eluant: ethyl acetate/cyclohexane 70/30) to give 0.24 g of 8-(cyclopentylamino)-1-methyl-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (54% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, J 7.13 Hz, 3H) 1.54 (m, 4H) 1.70 (m, 2H) 1.94 (m, 2H) 2.77 (m, 2H) 2.94 (t, J 7.74 Hz, 2H) 4.17 (m, 1H) 4.30 (q, J 7.07 Hz, 2H) 4.35 (s, 3H) 7.11 (d, J 6.34 Hz, 1H) 8.22 (s, 1H)
- By working according to this method, the following compounds were prepared:
- 8-{[1-(ethoxycarbonyl)piperidin-4-yl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B89-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20 (t, J 7.07 Hz, 3H) 1.32 (t, J 7.13 Hz, 3H) 1.41 (m, 2H) 1.92 (dd, J 12.62, 2.99 Hz, 2H) 2.89 (m, 6H) 3.94 (m, 3H) 4.05 (q, J 7.07 Hz, 2H) 4.30 (q, J 7.19 Hz, 2H) 4.33 (s, 3H) 7.13 (d, J 5.85 Hz, 1H) 8.24 (s, 1H);
-
- Ethyl 8-(cyclopentylamino)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (230 mg, 0.67 mmol) was suspended in anhydrous ethanol (5 mL) and treated with a 1.5 M solution of potassium hydroxide in ethanol (1.33 mL, 3 eq.) at reflux temperature for 1.5 hours. After cooling in ice bath, the resulting precipitate was collected by filtration to give the title compound (193 mg, 82% yield) as a crystalline solid.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.61 (m, 6H) 1.94 (m, 2H) 2.67 (m, 2H) 2.90 (m, 2H) 4.16 (m, 1H) 4.21 (s, 3H) 6.90 (d, J 6.83 Hz, 1H) 8.12 (s, 1H)
- By working according to the above method the following compounds were prepared:
-
TABLE X B89-X00-M00(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20 (t, J 7.07 Hz, 3 H) 1.41 (m, 2 H) 1.92 (dd, J 12.62, 2.99 Hz, 2 H) 2.66 (m, 4 H) 2.91 (m, 2 H) 3.94 (m, 3 H) 4.04 (q, J 7.07 Hz, 2 H) 4.18 (s, 3 H) 7.13 (d, 1 H, J 5.85 Hz, 2 H) 8.24 (s, 1 H). B04-X00-M00(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 2.78-2.98 (m, 1 H) 6.91-6.97 (m, 1 H) 7.25-7.30 (m, 1 H) 7.66-7.71 (m, 1 H) B04-X00-M04(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 2.74 (t, J = 7.62 Hz, 2 H) 2.95 (t, J = 7.68 Hz, 2 H) 4.23 (s, 3 H) 6.95 (tt, J = 7.35, 1.13 Hz, 1 H) 7.30 (dd, J = 8.60, 7.38 Hz, 2 H) 7.73 (dd, J = 8.72, 1.04 Hz, 2 H) 8.32 (s, 1 H) 9.39 (s, 1 H) B91-X00-M00(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.41 (m, 2 H) 1.92 (m, 2 H) 2.02 (s, 3 H) 2.67 (m, 1 H) 2.75 (m, 1 H) 2.90 (m, 2 H) 3.16 (m, 1 H) 3.82 (m, 1 H) 3.94 (m, 1 H) 4.19 (s, 3 H) 4.28 (m, 1 H) 6.94 (m, 1 H) 8.14 (s, 1 H) B94-X00-M00(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.57 (m, 2 H) 1.99 (m, 2 H) 2.55 (m, 2 H) 2.63 (m, 2 H) 2.88 (m, 2 H) 3.58 (m, 2 H) 3.70 (m, 1 H) 4.11 (s, 3 H) 6.92 (d, J = 6.95 Hz, 1 H) 7.68 (t, J = 7.32 Hz, 2 H) 7.72-7.76 (m, 1 H) 7.76-7.80 (m, 2 H) 8.09 (s, 1 H) B94-X00-M03(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (s, 6 H) 1.59 (m, 2 H) 1.99 (m, 2 H) 2.56 (m, 2 H) 3.58 (m, 2 H) 3.70 (m, 1 H) 4.08 (s, 3 H) 6.93 (s, 1 H) 7.68 (m, 2 H) 7.77 (m, 3 H) 8.08 (m, 1 H) 8.18 (s, 1 H) B93-X00-M03(C01)-D02 B73-X00-M00(C04)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.46-1.99 (m, 8 H) 2.75 (t, J = 7.68 Hz, 2 H) 2.93 (t, J = 7.50 Hz, 2 H) 3.83 (t, 2 H) 4.10-4.22 (m, 1 H) 4.77-4.87 (m, 3 H) 7.04 (d, J = 5.97 Hz, 1 H) 8.21 (s, 1 H) 12.61 (s, 1 H) B90-X00-M00(C01)-D02 B00-X00-M00(C21)-D02 B04-X00-M00(C21)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.81-1.90 (m, 2 H) 2.00-2.20 (m, 4 H) 2.72 (t, J = 7.68 Hz, 2 H) 2.88 (d, J = 10.00 Hz, 2 H) 2.94 (t, J = 7.50 Hz, 2 H) 3.53 (s, 2 H) 5.40-5.54 (m, 1 H) 6.96-7.04 (m, 1 H) 7.21-7.39 (m, 5 H) 7.26-7.31 (m, 2 H) 7.62 (dd, J = 8.54, 0.98 Hz, 2 H) 8.32 (s, 1 H) 9.31 (s, 1 H) B10-X00-M00(C19)-D02 -
- A suspension of potassium 8-(cyclopentylamino)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (180 mg, 0.51 mmol) in anhydrous dimethylformamide (3.0 mL) and anhydrous tetrahydrofuran (3.0 mL) was treated with N-ethyl-N,N-diisopropylamine (0.175 mL, 2 eq.) and N-ethyl-N′,N′-diisopropyl carbodiimide hydrochloride (EDCI) (195 mg, 2 eq). The mixture was then cooled to 0° C. and treated with ammonium 1H-1,2,3-benzotriazol-1-ate (137 mg, 2 eq). After 5 minutes the reaction was warmed to room temperature and kept at this temperature overnight. The reaction was diluted with water and the resulting precipitate was collected by filtration to afford the title compound (143 mg, 90% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.65 (m, 6H) 1.94 (m, 2H) 2.73 (m, 2H) 2.95 (t, J 7.62 Hz, 2H) 4.17 (m, 1H) 4.32 (s, 3H) 7.08 (d, J 6.83 Hz, 1H) 7.23 (s, 1H) 7.43 (s, 1H) 8.20 (s, 1H)
- By working according to the above method the following compounds were prepared:
-
TABLE XI B89-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20 (t, J 7.07 Hz, 3 H) 1.41 (m, 2 H) 1.92 (dd, J 12.62, 2.99, 2 H) 2.74 (m, 2 H) 2.91 (m, 2 H) 2.95 (m, 4 H) 3.94 (m, 3 H) 4.04 (q, J 7.07 Hz, 2 H) 4.30 (s, 3 H) 7.09 (bs, 1 H) 7.23 (s, 1 H) 7.44 (s, 1 H) 8.22 (s, 1 H). B91-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.37 (m, 2 H) 1.92 (m, 2 H) 2.02 (s, 3 H), 2.74 (m, 2 H) 2.76 (m, 1 H) 2.95 (m, 2 H) 3.16 (m, 1 H) 3.81 (m, 1 H) 3.94 (m, 1 H) 4.27 (m, 1 H) 4.31 (s, 3 H) 7.11 (d, J 6.83 Hz, 1 H) 7.23 (s, 1 H) 7.44 (s, 1 H) 8.23 (s, 1 H) B100-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.44-1.57 (m, 2 dihydrochloride H) 1.95 (d, J = 12.19 Hz, 2 H) 2.74-2.83 (m, 5 H) 2.89- 3.53 (m, 10 H) 3.65 (dd, J = 12.50, 7.87 Hz, 4 H) 3.96 (t, J = 10.61 Hz, 1 H) 4.30 (s, 3 H) 7.29 (s, 1 H) 7.47 (s, 1 H) 7.64 (s, 1 H) 8.26 (s, 1 H) 10.39 (s, 1 H) B93-X00-M00(C01)-D03 1H NMR (400 MHz, DMSOd6) δ ppm 1.60 (m, 2 H) 2.01 (m, 2 H) 2.74 (m, 2 H) 2.89 (m, 7H,) 3.55 (m, 2 H.) 3.86 (m, 1 H) 4.31 (s, 3 H) 7.15 (bd, 1 H) 7.24 (s, 1 H) 7.44 (s, 1 H) 8.24 (s, 1 H) B92-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.52 (s, 2 H) hydrochloride 1.99 (s, 2 H) 2.78 (t, J = 7.56 Hz, 2 H) 2.98 (t, J = 7.62 Hz, 2 H) 3.01-3.76 (m, 3 H) 4.05 (m, 1 H) 4.30 (s, 3 H) 4.41 (m, 1 H) 7.27 (s, 1 H) 7.40 (m, 2 H) 7.47 (m, 4 H) 7.60 (s, 1 H) 8.25 (s, 1 H) B95-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.02 (t, J = 7.19 Hz, 3 H) 1.52 (m, 2 H) 1.90 (m, 2 H) 1.98 (m, 2 H) 2.35 (q, J = 7.07 Hz, 2 H) 2.73 (t, J = 7.56 Hz, 2 H) 2.89 (d, J = 11.71 Hz, 2 H) 2.94 (t, J = 7.62 Hz, 2 H) 3.66 (m, 1 H) 4.30 (s, 3 H) 7.00 (d, J = 7.93 Hz, 1 H) 7.23 (s, 1 H) 7.44 (s, 1 H) 8.21 (s, 1 H) B73-X00-M00(C00)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.65 (m, 6 H) 1.94 (m, 2 H) 2.73 (m, 2 H) 2.95 (t, J 7.62 Hz, 2 H) 4.17 (m, 1 H) 7.08 (d, J 6.83 Hz, 1 H) 7.23 (s, 1 H) 7.43 (s, 1 H) 8.20 (s, 1 H) B91-X00-M00(C00)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.36 (m, 1 H); 1.46 (m, 1 H); 1.90 (m, 1 H); 1.96 (m, 1 H); 2.02 (s, 3 H); 2.74 (d, J = 5 Hz, 3 H); 2.74 (m, 2 H); 2.75 (m, 1 H); 2.95 (m, 2 H); 3.16 (m, 1 H); 3.82 (m, 1 H); 3.95 (m, 1 H); 4.29 (m, 1 H); 4.31 (s, 3 H); 7.11(bs, 1 H); 8.05 (q, J = 4.5 Hz, 1 H); 8.23(s, 1 H) B94-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.53-1.68 (m, 2 H) 1.92-2.05 (m, 2 H) 2.52-2.62 (m, 2 H) 2.71 (t, J = 7.62 Hz, 2 H) 2.89-2.98 (m, 2 H) 3.53-3.63 (m, 2 H) 3.65-3.79 (m, 1 H) 4.24 (s, 3 H) 7.10 (d, J = 7.32 Hz, 1 H) 7.23 (s, 1 H) 7.41 (s, 1 H) 7.65-7.70 (m, 2 H) 7.72- 7.78 (m, 1 H) 7.76-7.80 (m, 2 H) 8.19 (s, 1 H) B73-X00-M00(C023)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.65 (m, 6 H) 1.94 (m, 2 H) 2.32 (s, 6 H) 2.73 (m, 2 H) 2.95 (t, J 7.62 Hz, 2 H) 3.34 (m, 2 H) 4.17 (m, 1 H) 4.61 (m, 2 H) 7.08 (d, J 6.83 Hz, 1 H) 7.23 (s, 1 H) 7.43 (s, 1 H) 8.20 (s, 1 H) B73-X00-M00(C024)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.65 (m, 6 H) 1.94 (m, 2 H) 2.29 (s, 6 H) 2.50 (m, 2 H) 2.73 (m, 2 H) 2.95 (t, J 7.62 Hz, 2 H) 4.17 (m, 1 H) 4.54 (m, 2 H) 7.08 (d, J 6.83 Hz, 1 H) 7.23 (s, 1 H) 7.43 (s, 1 H) 8.20 (s, 1 H) B79-X00-M00(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.65-1.82 (m, 2 H) 2.05-2.16 (m, 2 H) 2.75 (d, J = 4.76 Hz, 3 H) 2.75- 2.80 (m, 2 H) 2.97 (t, J = 7.68 Hz, 2 H) 3.01-3.09 (m, 2 H) 3.27-3.49 (m, 2 H) 3.93-4.10 (m, 1 H) 4.31 (s, 3 H) 7.59 (s, 1 H) 8.07 (q, J = 4.47 Hz, 1 H) 8.26 (s, 1 H) 8.44-8.63 (m, 1 H) 8.69-8.90 (m, 1 H) B90-X00-M00(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.48-1.62 (m, 2 H) 1.90 (d, J = 13.05 Hz, 2 H) 2.00-2.08 (m, 2 H) 2.21 (s, 3 H) 2.70-2.76 (m, 2 H) 2.74 (d, J = 4.76 Hz, 3 H) 2.78-2.84 (m, 2 H) 2.95 (t, J = 7.56 Hz, 2 H) 3.62-3.75 (m, 1 H) 4.31 (s, 3 H) 7.01 (d, J = 7.68 Hz, 1 H) 8.06 (q, J = 4.59 Hz, 1 H) 8.21 (s, 1 H) B90-X00-M00(C01)-D27 1H NMR (400 MHz, DMSO-d6) δ ppm 2.68-2.82 (m, 4 H) 2.73 and 2.95 (2t, 4 H J 7.44 Hz) 3.67 (m, 1 H) 4.30 (s, 3 H) 7.01 (bs, 1 H) 8.11 (d, 1 H, J 4.51 Hz) 8.21 (s, 1 H) B89-X00-M00(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20 (t, J = 7.07 Hz, 3 H) 1.41 (m, 2 H) 1.92 (dd, J = 12.68, 2.68 Hz, 2 H) 2.70-2.79 (m, 5 H) 2.95 (t, J = 7.68 Hz, 4 H) 3.84-3.99 (m, 3 H) 4.05 (q, J = 7.07 Hz, 2 H) 4.30 (s, 3 H) 7.09 (d, J = 5.98 Hz, 1 H) 8.06 (q, J = 4.39 Hz, 1 H) 8.22 (s, 1 H) B91-X00-M00(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.40 (m, 2 H) 1.94 (m, 2 H) 2.02 (s, 3 H), 2.74 (m, 5 H) 2.96 (m, 2 H) 3.16 (m, 1 H) 3.83 (m, 1 H) 3.94 (m, 1 H) 4.27 (m, 1 H) 4.31 (s, 3 H) 7.11 (d, J 6.83 Hz, 1 H) 7.23 (s, 1 H) 7.44 (s, 1 H) 8.23 (s, 1 H) B73-X00-M00(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.58 (m, 4 H) hydrochloride 1.73 (m, 2 H) 1.97 (m, 2 H) 2.75 (d, J = 4.76 Hz, 3 H) 2.79 (t, J = 7.62 Hz, 2 H) 2.99 (t, J = 7.68 Hz, 2 H) 4.21 (s, 1 H) 4.32 (s, 3 H) 7.68-7.92 (m, 1 H) 8.12 (q, J = 4.39 Hz, 1 H) 8.24 (s, 1 H) B100-X00-M00(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.43-1.51 (m, 2 H) 1.91 (dd, J = 12.68, 3.17 Hz, 2 H) 2.21 (s, 3 H) 2.33 (s, 4 H) 2.71-2.76 (m, 2 H) 2.75 (d, J = 4.76 Hz, 3 H) 2.82-2.91 (m, 2 H) 2.95 (t, J = 7.62 Hz, 2 H) 3.12-3.18 (m, 4 H) 3.60 (dt, J = 13.32, 3.34 Hz, 2 H) 3.80-3.95 (m, 1 H) 4.30 (s, 3 H) 7.09 (s, 1 H) 8.06 (q, J = 4.63 Hz, 1 H) 8.22 (s, 1 H) B92-X00-M00(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.52 (s, 2 H) hydrochloride 1.99 (s, 2 H) 2.75 (d, J = 4.76 Hz, 3 H) 2.78 (m, 2 H) 2.98 (t, J = 7.68 Hz, 2 H) 3.06-3.79 (m, 3 H) 4.05 (m, 1 H) 4.30 (s, 3 H) 4.41 (m, 1 H) 7.37-7.43 (m, 2 H) 7.45- 7.49 (m, 3 H) 7.60 (s, 1 H) 8.10 (q, J = 4.63 Hz, 1 H) 8.25 (s, 1 H) B93-X00-M00(C01)-D04 1H NMR (400 MHz, DMSOd6) δ ppm 1.60 (m, 2 H) 2.01 (m, 2 H) 2.74 (m, 5 H) 2.89 (m, 3 H,) 2.95 (m, 4 H) 3.56 (m, 2 H.) 3.86 (m, 1 H) 4.31 (s, 3 H) 7.15 (bd, 1 H) 8.05 (m, 1 H) 8.24 (s, 1 H) B96-X00-M00(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34-1.46 (m, 2 H) 1.42 (s, 9 H) 1.84-1.94 (m, 2 H) 2.71-2.77 (m, 2 H) 2.75 (d, J = 4.76 Hz, 3 H) 2.93 (m, 4 H) 3.94(m, 3 H) 4.30 (s, 3 H) 7.09 (d, J = 4.15 Hz, 1 H) 8.07 (m, 1 H) 8.22 (s, 1 H) B94-X00-M00(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.60 (m, 2 H) 1.98 (m, 2 H) 2.53-2.61 (m, 2 H) 2.67-2.77 (m, 2 H) 2.74 (d, J = 4.76 Hz, 3 H) 2.93 (m, 2 H) 3.58 (d, J = 13.90 Hz, 2 H) 3.72 (m, 1 H) 4.24 (s, 3 H) 7.10 (d, J = 7.07 Hz, 1 H) 7.64-7.71 (m, 2 H) 7.72-7.77 (m, 1 H) 7.76- 7.80 (m, 2 H) 8.04 (q, J = 4.59 Hz, 1 H) 8.19 (s, 1 H) B73-X00-M00(C01)-D26 1H NMR (400 MHz, DMSO-d6) δ ppm 1.58 (m, 4 H) dihydrochloride 1.72 (m, 2 H) 1.97 (m, 2 H) 2.79 (m, 2 H) 2.86 (m, 11 H) 3.01 (m, 2 H) 3.81 (s, 1 H) 4.03 (s, 1 H) 4.21 (m, 1 H) 4.33 (m, 3 H) 7.70 (m, 1 H) 8.25 (s, 1 H) B73-X00-M00(C01)-D10 1H NMR (400 MHz, DMSO-d6) δ ppm 1.58 (m, 4 H) dihydrochloride 1.72 (m, 2 H) 1.96 (m, 2 H) 2.79 (m, 2 H) 2.82 (d, J = 2.2 Hz, 3 H) 2.87 (m, 2 H) 3.0-3.7 (m, 6 H) 4.21 (m, 1 H) 4.32 (s, 3 H) 4.60 (m, 1 H) 4.80 (m, 1 H) 7.70 (m, 1 H) 8.26 (s, 1 H) B73-X00-M00(C01)-D25 1H NMR (400 MHz, DMSO-d6) δ ppm 1.55 (m, 4 H) 1.71 (m, 2 H) 1.94 (m, 2 H) 2.76 (m, 2 H) 2.94 (m, 2 H) 4.17 (m, 1 H) 4.22 (d, J = 5.68 Hz, 2 H) 4.36 (s, 3 H) 7.10 (bd, 1 H) 8.22 (s, 1 H) 8.35 (t, J = 5.68 Hz, 1 H) B73-X00-M00(C01)-D30 1H NMR (400 MHz, DMSO-d6) δ ppm 1.55 (m, 4 H) 1.71 (m, 2 H) 1.93 (m, 2 H) 2.74 (m, 2 H) 2.96 (m, 2 H) 3.81 (d, J = 5.68 Hz, 2 H) 4.17 (m, 1 H) 4.35 (s, 3 H) 7.07 (m, 2 H) 7.38 (bs, 1 H) 8.015 (t, J = 5.68 Hz, 1 H)8.21 (s, 1 H) B73-X00-M00(C01)-D05 1H NMR (400 MHz, DMSO-d6) δ ppm 1.46-1.61 (m, 4 H) 1.64-1.78 (m, 2 H) 1.87-2.01 (m, 2 H) 2.67-2.89 (m, 4 H) 3.35 (s, 3 H) 4.11-4.23 (m, 1 H) 4.31 (s, 3 H) 7.06 (d, J = 6.58 Hz, 1 H) 8.20 (s, 1 H) 9.88 (s, 1 H) B73-X00-M00(C01)-D72 1H NMR (400 MHz, DMSO-d6) δ ppm 1.55 (m, 4 H) 1.71 (m, 2 H) 1.92 (m, 2 H) 2.23 (s, 6 H) 2.52 (m, 2 H) 2.71 (m, 2 H) 2.91 (m, 4 H) 4.17 (m, 1 H) 4.37 (s, 3 H) 5.09 (m, 1 H) 7.07 (d, J 6.83 Hz, 1 H) 7.24 (m, 1 H) 7.33 (m, 2 H) 7.42 (m, 2 H) 8.20 (s, 1 H) 8.28 (m, 1 H) B73-X00-M00(C01)-D163 1H NMR (400 MHz, DMSO-d6) δ ppm 1.08 (m, 3 H) 1.65 (m, 6 H) 1.94 (m, 2 H) 2.17 (s, 6 H) 2.45 (m, 2 H) 2.73 (m, 2 H) 2.95 (m, 2 H) 4.04 (m, 1 H) 4.17 (m, 1 H) 4.32 (s, 3 H) 7.08 (d, J 6.83 Hz, 1 H) 7.91 (d, 1 H) 8.20 (s, 1 H) B94-X00-M00(C01)-D72 1H NMR (400 MHz, DMSO-d6) δ ppm 1.61 (m, 2 H) 1.97 (m, 2 H) 2.23 (s, 6 H) 2.52 (m, 2 H) 2.55 (m, 2 H) 2.70 (m, 2 H) 2.90 (m, 4 H) 3.56 (m, 2 H) 3.72 (m, 1 H) 4.28 (s, 3 H) 5.10 (m, 1 H) 7.11 (d, J 6.83 Hz, 1 H) 7.24 (m, 1 H) 7.33 (m, 2 H) 7.40 (m, 2 H) 7.68 (m, 2 H) 7.77 (m, 3 H) 8.18 (s, 1 H) 8.27 (m, 1 H) B94-X00-M00(C01)-D163 1H NMR (400 MHz, DMSO-d6) δ ppm 1.14 (m, 3 H) 1.61 (m, 2 H) 2.00 (m, 2 H) 2.19 (s, 6 H) 2.52 (m, 2 H) 2.55 (m, 2 H) 2.72 (m, 2 H) 2.94 (m, 2 H) 3.57 (m, 2 H) 3.73 (m, 1 H) 4.10 (m, 1 H) 4.25 (s, 3 H) 7.09 (m, 1 H) 7.68 (m, 2 H) 7.77 (m, 3 H) 8.19 (s, 1 H) B91-X00-M03(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (s, 6 H) 1.43 (m, 2 H) 1.94 (m, 2 H) 2.02 (s, 3 H) 2.62 (s, 2 H) 2.76 (m, 1 H) 3.16 (m, 1 H) 3.83 (m, 1 H) 3.94 (m, 1 H) 4.28 (m, 1 H) 4.29 (s, 3 H) 7.12 (d, J = 4.15 Hz, 1 H) 7.27 (s, 1 H) 7.53 (s, 1 H) 8.21 (s, 1 H) B89-X00-M03(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20 (t, J = 7.07 hydrochloride Hz, 3 H) 1.34 (s, 6 H) 1.38-1.49 (m, 2 H) 1.89-1.99 (m, 2 H) 2.65 (s, 2 H) 2.90-3.04 (m, 2 H) 3.90-4.00 (m, 3 H) 4.06 (q, J = 7.07 Hz, 2 H) 4.29 (s, 3 H) 7.31 (s, 1 H) 7.57 (s, 1 H) 8.24 (s, 1 H) 8.41 (s, 2 H) B73-X00-M03(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.35 (s, 6 H) hydrochloride 1.51-1.77 (m, 6 H) 1.85-2.04 (m, 2 H) 2.67 (s, 2 H) 4.14-4.25 (m, 1 H) 4.31 (s, 3 H) 7.34 (s, 1 H) 7.60 (s, 1 H) 7.86 (s, 1 H) 8.23 (s, 1 H) B92-X00-M03(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (s, 6 H) 1.50 (m, 2 H) 1.99 (m, 2 H) 2.62 (s, 2 H) 3.10 (m, 2 H) 3.62 (m, 1 H) 4.01 (m, 1 H) 4.29 (s, 3 H) 4.40 (m, 1 H) 7.15 (s, 1 H) 7.27 (s, 1 H) 7.38 (m, 2 H) 7.47 (m, 3 H) 7.53 (s, 1 H) 8.22 (s, 1 H) B94-X00-M03(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (s, 6 H) 1.60 (m, 2 H) 1.99 (m, 2 H) 2.52 (s, 2 H) 2.59 (m, 2 H) 2.75 (d, J = 4.51 Hz, 3 H) 3.57 (m, 2 H) 3.71 (m, 1 H) 4.22 (s, 3 H) 7.11 (s, 1 H) 7.68 (m, 2 H) 7.77 (m, 3 H) 8.11 (m, 1 H) 8.18 (s, 1 H) B93-X00-M03(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (s, 6 H) 1.60 (m, 2 H) 2.02 (m, 2 H) 2.62 (s, 2 H) 2.89 (m, 5 H) 3.55 (m, 2 H) 3.85 (m, 1 H) 4.30 (s, 3 H) 7.15 (bd, 1 H) 7.27 (s, 1 H) 7.53 (s, 1 H) 8.22 (s, 1 H) B91-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (s, 6 H) 1.34-1.52 (m, 2 H) 1.87-2.00 (m, 2 H) 2.02 (s, 3 H) 2.62 (s, 2 H) 2.71-2.84 (m, 1 H) 2.76 (d, J = 4.76 Hz, 3 H) 3.10-3.22 (m, 1 H) 3.83 (d, J = 12.93 Hz, 1 H) 3.89- 4.02 (m, 1 H) 4.23-4.35 (m, 1 H) 4.30 (s, 3 H) 7.13 (d, J = 4.88 Hz, 1 H) 8.13 (q, J = 4.72 Hz, 1 H) 8.22 (s, 1 H) B73-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (s, 6 H) hydrochloride 1.50-1.65 (m, 4 H) 1.67-1.78 (m, 2 H) 1.88-2.08 (m, 2 H) 2.67 (s, 2 H) 2.76 (d, J = 4.63 Hz, 3 H) 4.09-4.24 (m, 1 H) 4.31 (s, 3 H) 7.84 (s, 1 H) 8.20 (q, J = 4.51 Hz, 1 H) 8.23 (s, 1 H) B92-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (s, 6 H) 1.50 (m, 2 H) 1.99 (m, 2 H) 2.62 (s, 2 H) 2.75 (d, J = 4.51 Hz, 3 H) 3.14 (m, 2 H) 3.63 (m, 1 H) 4.01 (m, 1 H) 4.29 (s, 3 H) 4.43 (m, 1 H) 7.15 (s, 1 H) 7.39 (m, 2 H) 7.47 (m, 3 H) 8.13 (m, 1 H) 8.22 (s, 1 H) B94-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (s, 6 H) 1.60 (m, 2 H) 1.99 (m, 2 H) 2.52 (s, 2 H) 2.59 (m, 2 H) 2.75 (d, J = 4.51 Hz, 3 H) 3.57 (m, 2 H) 3.71 (m, 1 H) 4.22 (s, 3 H) 7.11 (s, 1 H) 7.68 (m, 2 H) 7.77 (m, 3 H) 8.11 (m, 1 H) 8.18 (s, 1 H) B93-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (s, 6 H) 1.60 (m, 2 H) 2.02 (m, 2 H) 2.62 (s, 2 H) 2.75 (d, 3 H) 2.89 (m, 5 H) 3.55 (m, 2 H) 3.85 (m, 1 H) 4.30 (s, 3 H) 7.16 (bd, 1 H) 8.13 (d, 1 H) 8.22 (s, 1 H) B89-X00-M03(C01)-D25 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20 (t, J = 7.13 Hz, 3 H) 1.33 (s, 6 H) 1.35-1.50 (m, 2 H) 1.93 (m, 2 H) 2.64 (s, 2 H) 2.86-3.06 (m, 2 H) 3.84-4.00 (m, 3 H) 4.05 (q, J = 7.07 Hz, 2 H) 4.25 (d, J = 5.73 Hz, 2 H) 4.33 (s, 3 H) 7.14 (s, 1 H) 8.23 (s, 1 H) 8.92 (t, J = 5.79 Hz, 1 H) B89-X00-M03(C01)-D138 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20 (t, J = 7.13 Hz, 3 H) 1.22 (s, 6 H) 1.42 (m, 2 H) 1.94 (m, 2 H) 2.62 (s, 2 H) 3.0 (m, 5 H) 3.54 (m, 2 H) 3.63 (m, 2 H) 3.95 (m, 3 H) 4.05 (q, J = 7.07 Hz, 2 H) 4.33 (s, 3 H) 7.14 (s, 1 H) 8.23 (s, 1 H) 8.92 (t, J = 5.79 Hz, 1 H)
In table XII below see the HPLC/Mass data for some representative compounds of the invention -
TABLE XII M + H Time Method B89-X00-M03(C01)-D05 444.23 2.07 2 B89-X00-M03(C01)-D31 500.29 2.6 2 B89-X00-M03(C01)-D32 500.29 2.44 2 B89-X00-M03(C01)-D33 498.24 2.85 2 B89-X00-M03(C01)-D136 541.32 1.73 2 B89-X00-M03(C01)-D137 515.3 1.79 2 B89-X00-M03(C01)-D17 555.33 1.88 2 B89-X00-M03(C01)-D76 541.32 2 2 B89-X00-M03(C01)-D78 486.28 2.29 2 B89-X00-M03(C01)-D79 516.29 1.91 2 B89-X00-M03(C01)-D14 496.3 3.16 2 B89-X00-M03(C01)-D80 486.28 2.21 2 B89-X00-M03(C01)-D44 519.28 2.49 2 B89-X00-M03(C01)-D81 539.34 1.98 2 B89-X00-M03(C01)-D12 486.28 2.55 2 B89-X00-M03(C01)-D25 467.24 2.66 2 B89-X00-M03(C01)-D82 486.28 2.27 2 B89-X00-M03(C01)-D83 530.26 2.41 2 B89-X00-M03(C01)-D84 519.28 2.66 2 B89-X00-M03(C01)-D85 487.27 2.18 2 B89-X00-M03(C01)-D60 548.29 2.83 2 B89-X00-M03(C01)-D86 499.31 1.8 2 B89-X00-M03(C01)-D87 548.29 2.94 2 B89-X00-M03(C01)-D88 510.31 3.37 2 B89-X00-M03(C01)-D89 481.26 2.51 2 B89-X00-M03(C01)-D90 504.24 3.03 2 B89-X00-M03(C01)-D91 514.27 2.82 2 B89-X00-M03(C01)-D92 498.28 2.25 2 B89-X00-M03(C01)-D93 540.32 2.49 2 B89-X00-M03(C01)-D94 474.26 2.65 2 B89-X00-M03(C01)-D04 442.25 2.48 2 B89-X00-M03(C01)-D95 502.27 2 2 B89-X00-M03(C01)-D34 548.29 2.8 2 B89-X00-M03(C01)-D96 510.24 3.09 2 B89-X00-M03(C01)-D97 486.28 2.27 2 B89-X00-M03(C01)-D45 519.28 2.52 2 B89-X00-M03(C01)-D98 500.29 2.43 2 B89-X00-M03(C01)-D99 528.29 2.86 2 B89-X00-M03(C01)-D100 526.31 2.22 2 B89-X00-M03(C01)-D06 472.26 2.15 2 B89-X00-M03(C01)-D101 514.31 2.62 2 B89-X00-M03(C01)-D102 456.26 2.67 2 B89-X00-M03(C01)-D103 512.29 2.03 2 B89-X00-M03(C01)-D104 486.28 2.27 2 B89-X00-M03(C01)-D105 512.2 2.15 2 B89-X00-M03(C01)-D106 498.31 3.22 2 B89-X00-M03(C01)-D107 512.25 2.52 2 B89-X00-M03(C01)-D108 615.33 2.98 2 B89-X00-M03(C01)-D109 561.32 3.4 2 B89-X00-M03(C01)-D110 515.27 1.99 2 B89-X00-M03(C01)-D111 528.32 2.76 2 B89-X00-M03(C01)-D112 533.29 2.76 2 B89-X00-M03(C01)-D113 512.29 2.27 2 B89-X00-M03(C01)-D114 583.33 2.9 2 B89-X00-M03(C01)-D115 525.32 1.91 2 B89-X00-M03(C01)-D116 539.34 1.95 2 B89-X00-M03(C01)-D117 514.31 2.64 2 B89-X00-M03(C01)-D118 500.29 2.52 2 B89-X00-M03(C01)-D119 502.27 2.02 2 B89-X00-M03(C01)-D120 482.28 3.06 2 B89-X00-M03(C01)-D121 553.32 2.32 2 B89-X00-M03(C01)-D122 526.31 2.38 2 B89-X00-M03(C01)-D123 498.28 2 2 B89-X00-M03(C01)-D124 456.26 2.25 2 B89-X00-M03(C01)-D125 602.26 3.64 2 B89-X00-M03(C01)-D126 584.3 3.2 2 B89-X00-M03(C01)-D127 603.33 3.08 2 B89-X00-M03(C01)-D128 565.35 1.99 2 B89-X00-M03(C01)-D129 527.34 1.91 2 B89-X00-M03(C01)-D130 541.35 1.93 2 B89-X00-M03(C01)-D131 525.32 1.78 2 B89-X00-M03(C01)-D132 616.36 2.25 2 B89-X00-M03(C01)-D133 603.33 3.37 2 B89-X00-M03(C01)-D134 521.29 3.11 2 B89-X00-M03(C01)-D135 498.28 2.03 2 -
- A solution of 110 mg (0.27 mmol) of ethyl 8-{[1-(tert-butoxycarbonyl)pyrrolidin-3-yl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate in a mixture dichoromethane-trifluoroacetic acid 9/1 was stirred at room temperature for 6 hours. The solvent was then removed in vacuo and the resulting oil taken up with dichloromethane and washed with aqueous NaHCO3. The organic layer was dried over Na2SO4 and evaporated. The residue was triturated with diethylether giving 83 mg (60% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.98-2.11 (m, 1H) 2.22 (s, 1H) 2.77 (t, J=7.62 Hz, 2H) 2.92-3.02 (m, 2H) 3.14-3.55 (m, 4H) 4.31 (s, 3H) 4.44-4.57 (m, 1H) 7.27 (s, 2H) 8.29 (s, 1H) 8.76 (s, 1H)
- Analogously the following compound was prepared:
- N,1-dimethyl-8-(piperidin-4-ylamino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B79-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.65-1.82 (m, 2H) 2.05-2.16 (m, 2H) 2.75 (d, J=4.76 Hz, 3H) 2.75-2.80 (m, 2H) 2.97 (t, J=7.68 Hz, 2H) 3.01-3.09 (m, 2H) 3.27-3.49 (m, 2H) 3.93-4.10 (m, 1H) 4.31 (s, 3H) 7.59 (s, 1H) 8.07 (q, J=4.47 Hz, 1H) 8.26 (s, 1H) 8.44-8.63 (m, 1H) 8.69-8.90 (m, 1H).
-
- To a solution of 1 g (2.4 mmol) of 8-[(1-benzylpiperidin-4-yl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide in 90 mL of absolute ethanol 1 g of palladium on charcoal 10% w and 30 mL of 98% formic acid were added. The resulting mixture was stirred at 60° C. for 12 hours. The catalyst was then filtered on celite and the filtrate evaporated. The crude was purified by chromatography on a silica gel column eluted with a mixture CH2Cl2-MeOH-Et3N, giving 350 mg (45% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.65-1.77 (m, 2H) 2.04-2.17 (m, 2H) 2.75 (t, J=7.56 Hz, 2H) 2.96 (t, J=7.56 Hz, 2H) 2.99-3.09 (m, 2H) 3.28-3.44 (m, 2H) 3.93-4.08 (m, 1H) 4.31 (s, 3H) 7.25 (s, 1H) 7.31 (d, J=7.56 Hz, 1H) 7.43 (s, 1H) 8.25 (s, 1H).
-
- 500 mg (1.53 mmol) of 1-methyl-8-(piperidin-4-ylamino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide were dissolved in 10 mL of dimethylformamide, containing 253 mg (1.68 mmol) of tert-butyldimethylsilyl chloride, 0.26 mL of triethylamine and 7 mg of 4-dimethylaminopyridine (0.06 mmol), and the mixture stirred at 35-40° C. for 25 hours under nitrogen. The mixture was then partitioned between dichloromethane and water, the organic layer was separated, washed with brine and dried over sodium sulfate. Evaporation of the volatiles in vacuo afforded 435 mg (80% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.25-1.48 (m, 2H) 1.88-2.03 (m, 2H) 2.74 (t, J=7.68 Hz, 2H) 2.77-2.87 (m, 1H) 2.95 (t, J=7.62 Hz, 2H) 3.10-3.20 (m, 1H) 3.66-3.79 (m, 1H) 3.93-4.05 (m, 1H) 4.09-4.17 (m, 1H) 4.31 (s, 3H) 7.13 (d, J=6.83 Hz, 1H) 7.23 (s, 1H) 7.44 (s, 1H) 8.01 (s, 1H) 8.23 (s, 1H).
-
- 500 mg (1.1 mmol) of 1-(1-benzylpiperidin-4-yl)-8-(cyclopentylamino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide were dissolved in 50 mL of acetic acid and 50 mg of PtO2 were added. The mixture was submitted to hydrogenation at 60 psi at room temperature. After 12 hors the catalyst was filtered on celite and the filtrate evaporated. The residue was redissolved with dicholoromethane and washed with aqueous NaHCO3. The organic layer was dried over sodium sulfate and the solvent removed under reduced pressure. The title compound (80% yield) was collected by filtration after trituration with diethylether.
-
- To a suspension of 400 mg (1.14 mmol) of potassium 8-(cyclopentylamino)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate in 80 mL of dichloromethane and a few drops of dimethylformamide 0.11 mL (0.13 mmol) of oxalyl chloride were added at 0° C. The mixture was stirred at room temperature for 6 hours and then evaporated, redissolved in anhydrous dichloromethane and dropped into a solution of 344 mg (2.28 mmol) of N-methylhydroxylamine hydrochloride and 0.33 mL of triethylamine in 20 mL of the same solvent, cooled to 0° C. After 4 hours the mixture was washed with a saturated solution of sodium hydrogenocarbonate, dried over sodium sulfate and evaporated to dryness. The residue was triturated with diethylether and filtered to give 780 mg (60% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.46-1.61 (m, 4H) 1.64-1.78 (m, 2H) 1.87-2.01 (m, 2H) 2.67-2.89 (m, 4H) 3.35 (s, 3H) 4.11-4.23 (m, 1H) 4.31 (s, 3H) 7.06 (d, J=6.58 Hz, 1H) 8.20 (s, 1H) 9.88 (s, 1H).
- Analogously, but employing the suitable hydroxylamino derivatives, the following compounds were prepared:
- N-cyclohexyl-8-(cyclopentylamino)-N-hydroxy-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B73-X00-M00(C01)-D29]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 0.96-2.04 (m, 18H) 2.67-2.81 (m, 4H) 4.04-4.45 (m, 2H) 4.30 (s, 3H) 6.97-7.10 (m, 1H) 8.20 (s, 1H) 9.45 (s, 1H);
- N-benzyl-8-(cyclopentylamino)-N-hydroxy-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B73-X00-M00(C01)-D28]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.51-1.61 (m, 4H) 1.64-1.79 (m, 2H) 1.87-2.00 (m, 2H) 2.70-2.88 (m, 4H) 4.08-4.22 (m, 1H) 4.31 (s, 3H) 5.01 (s, 2H) 7.06 (d, J=6.58 Hz, 1H) 7.22-7.43 (m, 5H) 8.21 (s, 1H) 9.89 (s, 1H).
-
- To a solution of 260 mg (0.81 mmol) of 8-anilino-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid in 50 mL of anhydrous dimethylformamide 111 mg of N-hydroxybenzotriazole (0.81 mmol), 0.16 mL of N-methylmorpholine, 205 mg (1.07 mmol) of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride and 585 mg (2.13 mmol) of triphenylmethylhydroxylamine were added consecutively. After 48 hours at room temperature the solvent was removed under reduced pressure and the residue taken up with dichoromethane and washed with water. The organic layer was then dried over sodium sulfate and evaporated. The crude was treated with 10 mL of a mixture dichloromethane-trifluoroacetic acid and after 4 hours the volatiles were removed in vacuo. The residue was redissolved with dichoromethane and washed with aqueous NaHCO3 and the product purified by chromatography on a silica gel column, eluted with CH2Cl2—CH3COCH3 4/1, to give 180 mg (66% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.80-2.91 (m, 2H) 2.93-3.06 (m, 2H) 4.33 (s, 3H) 6.97 (tt, J=7.35, 1.07 Hz, 1H) 7.31 (dd, J=8.47, 7.38 Hz, 2H) 7.72 (dd, J=8.66, 1.10 Hz, 2H) 8.42 (s, 1H) 8.91 (s, 1H) 9.52 (s, 1H) 10.93 (s, 1H)
-
- 1.0 g (2.6 mmol) of ethyl 8-iodo-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate were dissolved in a mixture of 100 mL of methanol and 100 mL of ammonium hydrate 33%. The solution was stirred in a close bottle at 60° C. for 4 hours. The resulting precipitate was collected giving 0.5 g (54% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.99 (m, 4H) 4.25 (s, 3H) 7.31 (s, 1H) 7.51 (s, 1H) 8.47 (s, 1H)
-
- 8-iodo-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (0.10 g, 0.28 mmol) and 1-methylpiperidin-4-amine (0.19 g, 1.7 mmol) were heated at 80° C. under nitrogen for 3 hours. The mixture was concentrated under reduced pressure and the residue was purified by chromatography on a silica gel column (eluant: dichloromethane/ethanol/ammonium hydroxide 90/10/1) to give 0.047 mg of 1-methyl-8-[(1-methylpiperidin-4-yl)amino]-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (50% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.54 (m, 2H) 1.91 (m, 2H) 2.06 (m, 2H) 2.4 (s, 3H) 2.73 (m, 2H) 2.83 (m, 2H) 2.94 (m, 2H) 3.70 (m, 1H) 4.30 (s, 3H) 7.01 (m, 1H) 7.25 (s, 1H) 7.44 (s, 1H) 8.29 (s, 1H)
-
-
- 3.4 g (0.02 mmol) of 2-ethoxycyclohex-2-en-1-one were dissolved in 30 mL of dry dimethylformamide and 30 mL (0.05 mmol) of dimethylformamide dimethyl acetale were added. The solution was stirred at 60° C. for 2 hours. The solvent was then evaporated under vacuum, the residue triturated with diethyl ether and collected by filtration to give 6.6 g of the title compound (80% yield).
-
- To a solution of 2.0 g (0.01 mol) of 6-[(dimethylamino)methylene]-2-ethoxycyclohex-2-en-1-one in 20 mL of dimethylformamide 2.6 g of S-benzylisothiourea (2 eq. mol.) were added. The reaction mixture was stirred at 95° C. for 4 hours. The solvent was then evaporated under reduced pressure and the crude purified by chromatography on a silica gel column (eluant dichloromethane/methanol 9/1) leading 1.5 g (50% yield) of the title compound.
-
- 1.5 g (5 mmol) of 2-(benzylthio)-8-ethoxy-5,6-dihydroquinazoline were dissolved in 50 mL of acetic acid and 3 mL of water. The solution was stirred at refluxing temperature for 4 hours. The solvent was then removed under vacuum, the residue partitioned between dichloromethane and a NaHCO3 saturated solution. The organic layer was dried over anhydrous Na2SO4 and concentrated, giving 1.0 g (74% yield) of the title compound.
-
- To a solution of 0.22 g (0.81 mmol) of 2-(benzylthio)-6,7-dihydroquinazolin-8(5H)-one in 5 mL of dry tetrahydrofuran cooled to −50° C., 0.10 g of sodium hydride 60% in mineral oil were added. The resulting suspension was maintained at the same temperature for 30 minutes and then 0.59 mL of ethyl α-oxobenzeneacetate (PhCOCOOEt) were added and the reaction mixture allowed to come to room temperature. After 16 hours the mixture was partitioned between water and ethyl acetate and the organic layer was dried over Na2SO4 and evaporated to dryness. The residue was purified by chromatography on a silica gel column (eluant hexane/ethyl acetate 7/3) giving 0.22 g (68% yield) of the title compound.
-
- 0.22 g (0.55 mmol) of 1-[2-(benzylthio)-8-oxo-5,6,7,8-tetrahydroquinazolin-7-yl]-2-phenylethane-1,2-dione were dissolved in 6 mL of ethanol and 0.03 g (0.66 mmol) of methyl hydrazine were added. The reaction mixture was maintained under stirring at refluxing temperature for 5 hours. After that time the solvent was removed under reduced pressure, the residue redissolved with dichloromethane and washed with water. The organic layer was dried over Na2SO4 and concentrated, giving 0.16 g of the title compound (70% yield).
-
- To a solution of 70 mg (0.17 mmol) of [8-(benzylthio)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazolin-3-yl](phenyl)methanone in 3 mL of dichloromethane, 115 mg (0.34 mmol) of m-chloroperbenzoic acid were added. The reaction mixture was maintained at room temperature for 1 hour. The solution was then washed with aqueous NaHCO3 and the organic layer was dried over Na2SO4 and evaporated in vacuo, giving 70 mg (93% yield) of the title compound.
-
- 83 mg (0.19 mmol) of [8-(benzylsulfonyl)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazolin-3-yl](phenyl)methanone were dissolved in 3 mL of dimethylsulfoxide and cyclohexylamine (0.033 mL, 0.29 mmol) and the solution was heated at 100° C. under stirring for 16 hours. The solvent was then removed under reduced pressure and the crude purified by chromatography on a silica gel column (eluant dichloromethane/acetone) giving 31 mg of [8-(cyclohexylamino)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazolin-3-yl](phenyl)methanone and 15 mg of [8-(cyclohexylamino)-1-methyl-1H-pyrazolo[4,3-h]quinazolin-3-yl](phenyl)methanone (70% yield overall).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.00-2.00 (5m, 11H) 2.61 (m, 2H) 2.66 (m, 2H) 3.80 (s, 3H) 7.17 (bs, 1H) 7.34-7.37 (m, 3H) 7.41-7.51 (m, 3H) 8.27 (s, 1H);
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.20-2.20 (5m, 11H) 4.02 (bs, 3H) 6.69 (m, 1H) 7.37-7.58 (2m, 6H) 7.93 (bs, 1H) 8.83 (bs, 1H).
-
- Palladium acetate [Pd(OAc)2] (15.3 mg, 0.07 mmol, 10%), (+)-BINAP (42.6 mg, 0.07 mmol, 10%) and dimethylformamide (12 mL) were charged in a round-bottom flask flushed with argon. The mixture was stirred under argon for 30 minutes. Then 2-aminopyridine (70.4 mg, 0.75 mmol), ethyl 8-iodo-.1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (250 mg, 0.65 mmol), potassium carbonate (1.89 g, 13.67 mmol) and dimethylformamide (5 mL) were added. The resulting mixture was stirred at room temperature for 1 hour and then heated to 120° C. in an oil bath under argon with good stirring for 18 hours.
- After cooling to room temperature, the reaction mixture was poured into water and extracted with dichloromethane. The organic extracts were washed with brine and dried over Na2SO4. The solvent was removed under vacuum, the crude solid was taken up with diethyl ether, filtered, washed with diethyl ether and purified by flash chromatography on silica gel (eluant: dichloromethane/methanol 97.5:2.5) to afford 145 mg (63.8% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 3H) 3.0 (m, 4H) 4.3 (q, J 7.2 Hz, 2H) 4.4 (s, 3H) 7.0 (ddd, J 7.2, 4.9, 1.0 Hz, 1H) 7.8 (ddd, 1H) 8.2 (d, J 8.4 Hz, 1H) 8.3 (ddd, J 4.8, 2.0, 0.9 Hz, 1H) 8.5 (s, 1H) 9.9 (s, 1H).
- By working according to the above method, the following compounds were prepared:
- ethyl 8-[(3,5-dichlorophenyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B14-X00-M00(C01)D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 3H) 2.9 (m, 4H) 4.3 (q, J 7.2 Hz, 2H) 4.4 (s, 3H) 7.1 (m, 1H) 7.4 (m, 2H) 8.5 (s, 1H) 10 (s, 1H);
- ethyl 8-{[3-methoxy-5-(trifluoromethyl)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B16-X00-M00(C01)D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 3H) 2.9 (m, 4H) 3.8 (s, 3H) 4.3 (q, J 7.2 Hz, 2H) 4.4 (s, 3H) 6.8 (s, 1H) 7.6 (s, 1H) 7.8 (s, 1H) 8.5 (s, 1H) 9.9 (s, 1H);
- ethyl 8-[(4-hydroxyphenyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B18-X00-M00(C01)D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 3H) 2.9 (m, 4H) 4.3 (m, 5H) 6.7 (d, J 8.8 Hz, 2H) 7.4 (d, J 8.9 Hz, 2H) 8.3 (s, 1H) 9.1 (s, 1H) 9.2 (s, 1H);
- ethyl 8-(1H-imidazol-1-ylamino)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B21-X00-M00(C01)D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (m, 3H) 2.9 (m, 4H) 4.3 (d, J 7.1 Hz, 2H) 4.4 (s, 3H) 7.1 (s, 1H) 7.6 (d, J 8.9 Hz, 2H) 7.7 (s, 1H) 7.9 (d, J 8.9 Hz, 2H) 8.2 (s, 1H) 8.5 (s, 1H) 9.7 (s, 1H);
- ethyl 1-methyl-8-(1,3-thiazol-2-ylamino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B86-X00-M00(C01)D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (m, 3H) 3.0 (m, 4H) 4.3 (q, J 7.1 Hz, 2H) 4.4 (s, 3H) 7.1 (d, J 3.5 Hz, 1H) 7.5 (d, J 3.7 Hz, 1H) 8.6 (s, 1H) 11.6 (s, 1H);
- ethyl 1-methyl-8-(1H-pyrazol-3-ylamino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B77-X00-M00(C01)D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 3H) 2.9 (m, 4H) 4.3 (q, J 7.1 Hz, 2H) 4.4 (s, 3H) 6.5 (s, 1H) 7.6 (s, 1H) 8.4 (s, 1H) 9.6 (s, 1H) 12.2 (s, 1H);
- ethyl 1-methyl-8-[(4-morpholin-4-ylphenyl)amino]-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B19-X00-M00(C01)D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 3H) 2.9 (m, 4H) 3.1 (m, 4H) 3.8 (m, 4H) 4.3 (q, J 7.2 Hz, 2H) 4.3 (s, 3H) 6.9 (d, J 9.0 Hz, 2H) 7.6 (d, J 9.0 Hz, 2H) 8.4 (s, 1H) 9.3 (s, 1H);
- ethyl 8-{[4-(ethoxycarbonyl)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B87-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 6H) 3.0 (m, 4H) 4.3 (m, 4H) 4.4 (s, 3H) 7.9 (m, 4H) 8.5 (s, 1H) 10.0 (s, 1H);
- ethyl 8-{[4-(N,N-diethylamino)phenyl]amino}-}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B17-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.1 (t, J 7.0 Hz, 6H) 1.3 (t, J 7.1 Hz, 3H) 2.9 (m, 4H) 3.3 (m, 4H) 4.3 (q, J 7.1, 7.1 Hz, 2H) 4.3 (s, 3H) 6.7 (d, J 9.1 Hz, 2H) 7.4 (d, J 9.0 Hz, 2H) 8.3 (s, 1H) 9.1 (s, 1H);
- ethyl 8-{[4-(acetylamino)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B22-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 3H) 2.0 (s, 3H) 2.9 (m, 4H) 4.3 (q, J 7.1 Hz, 2H) 4.4 (s, 3H) 7.5 (d, J 9.0 Hz, 2H) 7.6 (d, J 9.0 Hz, 2H) 8.4 (s, 1H) 9.4 (s, 1H) 9.8 (s, 1H);
- ethyl 8-{[3-(hydroxymethyl)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B11-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 3H) 2.9 (m, 4H) 4.3 (q, J 7.1 Hz, 2H) 4.4 (s, 3H) 4.5 (s, 2H) 6.9 (m, 1H) 7.3 (t, J 7.8 Hz, 1H) 7.5 (m, 1H) 7.8 (s, 1H) 8.4 (s, 1H) 9.5 (s, 1H);
- ethyl 8-[(4-methoxyphenyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B68-X00-M00(C01)-D001]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 3H) 2.9 (m, 4H) 3.7 (s, 3H) 4.3 (q, J 7.1 Hz, 2H) 4.3 (s, 3H) 6.9 (d, J 9.0 Hz, 2H) 7.6 (d, J 9.0 Hz, 2H) 8.4 (s, 1H) 9.3 (s, 1H);
- ethyl 8-{[(4-Bromo-3-chloro)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B88-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.3 (t, J 7.1 Hz, 3H) 2.9 (m, 4H) 4.3 (q, J 7.1 Hz, 2H) 4.4 (s, 3H) 7.6 (dd, J 8.8, 2.4 Hz, 1H) 7.7 (d, J 8.8 Hz, 1H) 8.2 (d, J 2.4 Hz, 1H) 8.5 (s, 1H) 9.9 (s, 1H);
- ethyl 8-{[3-bromo-5-(trifluoromethyl)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B115-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J=7.1 Hz, 3H) 2.95 (m, 4H) 4.31 (q, J=7.2 Hz, 2H) 4.39 (s, 3H) 7.49 (s, 1H) 8.10 (s, 1H) 8.36 (s, 1H) 8.54 (s, 1H) 10.11 (s, 1H);
- ethyl 8-[4-(4-methyl-piperazin-1-yl)-3-(hydroxymethyl)phenylamino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B116-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J=7.07 Hz, 3H) 2.28 (s, 3H) 2.42-2.61 (m, 4H) 2.79-2.88 (m, 6H) 2.98 (t, J=7.80 Hz, 2H) 4.31 (q, J=7.15 Hz, 2H) 4.36 (s, 3H) 4.56 (d, J=5.24 Hz, 2H) 5.06 (t, J=5.30 Hz, 1H) 7.03 (d, J=8.66 Hz, 1H) 7.50 (dd, 1H) 7.81 (d, J=2.68 Hz, 1H) 8.39 (s, 1H) 9.42 (s, 1H);
- ethyl 1-methyl-8-{[4-(morpholin-4-ylmethyl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B102-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J=7.13 Hz, 3H) 2.35 (s, 4H) 2.86 (t, J=7.62 Hz, 2H) 2.99 (t, J=7.80 Hz, 2H) 3.42 (s, 2H) 3.55-3.61 (m, 4H) 4.31 (q, J=7.07 Hz, 2H) 4.37 (s, 3H) 7.24 (d, J=8.41 Hz, 2H) 7.66 (d, J=8.41 Hz, 2H) 8.42 (s, 1H) 9.52 (s, 1H);
- ethyl 1-methyl-8-({4-[(1-methylpiperidin-4-yl)oxy]phenyl}amino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B103-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (t, 3H) 2.09 (m, 4H) 2.86 (m, 5H) 2.98 (t, 2H) 3.37 (m, 5H) 4.30 (q, 2H) 4.34 (s, 3H) 7.03 (m, 2H) 7.61 (m, 2H) 8.39 (s, 1H) 9.40 (s, 1H);
- ethyl 1-methyl-8-({3-[(4-methylpiperazin-1-yl)methyl]phenyl}amino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B104-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, 3H) 2.21 (m, 3H) 2.40 (m, 8H) 2.86 (t, 2H) 2.99 (t, 2H) 3.44 (s, 2H) 4.30 (q, 2H) 4.39 (s, 3H) 6.91 (m, 1H) 7.24 (m, 1H) 7.56 (m, 1H) 7.75 (dd, 1H) 8.43 (m, 1H) 9.54 (s, 1H);
- ethyl 8-{[3-fluoro-4-(4-methylpiperazin-1-yl)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B109-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, 3H) 2.28 (s, 3H) 2.85 (t, 2H) 2.99 (m, 6H) 4.30 (q, 2H) 4.37 (s, 3H) 7.01 (t, 1H) 7.35 (dd, 1H) 7.64 (dd, 1H) 8.42 (m, 1H) 9.56 (s, 1H);
- ethyl 8-[(4-chlorophenyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B112-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, 3H) 2.86 (t, 2H) 2.99 (t, 2H) 4.30 (q, 2H) 4.37 (s, 3H) 7.38 (d, 2H) 7.74 (d, 2H) 8.45 (s, 1H) 9.70 (s, 1H);
- ethyl 8-{[4-(hydroxymethyl)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B114-X00-M00(C01)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, 3H) 2.86 (t, 2H) 2.99 (t, 2H) 4.30 (q, 2H) 4.37 (s, 3H) 4.45 (s, 2H) 7.27 (d, 2H) 7.65 (d, 2H) 8.42 (s, 1H) 9.50 (s, 1H).
-
- To a solution of ethyl 1-methyl-8-(pyridin-2-ylamino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (220 mg, 0.63 mmol) in methanol (250 mL), 33% aqueous ammonium hydroxide (100 mL) was added and the solution was stirred at 65° C. for 8 hours.
- By concentrating the solution, the final compound that precipitated was collected by suction filtration, washed with water and crystallized twice from methanol containing sodium hydroxide, and dried at 40° C. under vacuum. There were thus obtained 60 mg of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ 3.0 (m, 4H) 4.4 (s, 3H) 7.0 (ddd, J 7.2, 4.9, 1.0 Hz, 1H) 7.3 (s, 1H) 7.5 (s, 1H) 7.8 (ddd, 1H) 8.2 (d, J 8.4 Hz, 1H) 8.3 (ddd, J 4.8, 2.0, 0.9 Hz, 1H) 8.5 (s, 1H) 9.9 (s, 1H)
- By working according to the same procedure, the following compounds were prepared:
- 8-[(3,5-dichlorophenyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B14-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 3.0 (m, 4H) 4.4 (s, 3H) 7.1 (t, J 1.8 Hz, 1H) 7.3 (s, 1H) 7.5 (s, 1H) 7.9 (d, J 1.8 Hz, 2H) 8.5 (s, 1H) 10.0 (s, 1H);
- 8-{[3-methoxy-5-(trifluoromethyl)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B16-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.9 (m, 4H) 3.8 (s, 3H) 4.3 (s, 3H) 6.8 (s, 1H) 7.3 (s, 1H) 7.5 (s, 1H) 7.6 (s, 1H) 7.8 (s, 1H) 8.5 (s, 1H) 9.9 (s, 1H);
- 8-[(4-hydroxyphenyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B18-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.9 (m, 4H) 4.3 (s, 3H) 6.7 (d, J 8.8 Hz, 2H) 7.2 (s, 1H) 7.4 (d, J 8.9 Hz, 2H) 7.5 (s, 1H) 8.3 (s, 1H) 9.1 (s, 1H) 9.2 (s, 1H);
- 8-{[4-(1H-imidazol-1-yl)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B21-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.9 (m, 4H) 4.4 (s, 3H) 7.1 (s, 1H) 7.3 (s, 1H) 7.5 (s, 1H) 7.6 (d, J 8.9 Hz, 2H) 7.7 (t, J 1.2 Hz, 1H) 7.9 (d, J 9.0 Hz, 2H) 8.2 (s, 1H) 8.4 (s, 1H) 9.7 (s, 1H);
- 1-methyl-8-(thiazol-2-ylamino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B86-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 3.0 (m, 4H) 4.4 (s, 3H) 7.1 (d, J 3.7 Hz, 1H) 7.3 (s, 1H) 7.5 (d, J 3.7 Hz, 1H) 7.5 (s, 1H) 8.6 (s, 1H) 11.8 (s, 1H);
- 1-methyl-8-(1H-pyrazol-3-ylamino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B77-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.9 (m, 4H) 4.3 (s, 3H) 6.5 (bs, 1H) 7.25 (s, 1H) 7.45 (s, 1H) 7.6 (bs, 1H) 8.4 (s, 1H) 9.9 (s, 1H);
- 8-{[4-(N-morpholino)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B19-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.9 (m, 4H) 3.1 (m, 4H) 3.8 (m, 4H) 4.3 (s, 3H) 6.9 (d, J 9.1 Hz, 2H) 7.2 (s, 1H) 7.5 (s, 1H) 7.6 (d, J 9.0 Hz, 2H) 8.4 (s, 1H) 9.3 (s, 1H);
- 8-{[4-(diethylamino)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B17-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.1 (t, J 7.0 Hz, 6H) 2.9 (m, 4H) 3.3 (m, 4H) 4.3 (s, 3H) 6.7 (d, J 9.0 Hz, 2H) 7.2 (s, 1H) 7.4 (m, J 9.0 Hz, 1H) 7.4 (d, J 9.0 Hz, 2H) 8.3 (s, 1H) 9.1 (s, 1H);
- 8-{[4-(acetylamino)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B22-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.0 (s, 3H) 2.9 (m, 4H) 4.3 (s, 3H) 7.3 (s, 1H) 7.5 (s, 1H) 7.5 (d, J 8.9 Hz, 2H) 7.6 (d, J 9.0 Hz, 2H) 8.4 (s, 1H) 9.4 (s, 1H) 9.8 (s, 1H);
- 8-{[3-(hydroxymethyl)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B11-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.9 (m, 4H) 4.3 (s, 3H) 4.5 (s, 2H) 5.2 (s, 1H) 6.9 (d, J 8.0 Hz, 1H) 7.2 (m, 2H) 7.5 (s, 1H) 7.5 (dd, J 8.1, 1.4 Hz, 1H) 7.8 (t, J 1.8 Hz, 1H) 8.4 (s, 1H) 9.5 (s, 1H);
- 8-[(4-methoxyphenyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B68-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.9 (m, 4H) 3.7 (s, 3H) 4.3 (s, 3H) 6.9 (d, J 9.1 Hz, 2H) 7.3 (s, 1H) 7.5 (s, 1H) 7.6 (d, J 9.0 Hz, 2H) 8.4 (s, 1H) 9.3 (s, 1H);
- 8-{[(4-Bromo-3-chloro)phenyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B88-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.9 (m, 4H) 4.4 (s, 3H) 7.3 (s, 1H) 7.5 (s, 1H) 7.6 (dd, J 8.8, 2.4 Hz, 1H) 7.7 (d, J 8.8 Hz, 1H) 8.2 (d, J 2.4 Hz, 1H) 8.5 (s, 1H) 9.9 (s, 1H);
- 8-[4-(4-methyl-piperazin-1-yl)-3-(hydroxymethyl)phenylamino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B116-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.29 (s, 3H) 2.45-2.61 (m, 4H) 2.73-2.87 (m, 6H) 2.99 (t, J=7.56 Hz, 2H) 4.34 (s, 3H) 4.56 (d, J=5.24 Hz, 2H) 5.06 (t, J=5.37 Hz, 1H) 7.03 (d, J=8.66 Hz, 1H) 7.26 (s, 1H) 7.46 (s, 1H) 7.50 (dd, J=8.23, 2.99 Hz, 1H) 7.83 (d, J=2.68 Hz, 1H) 8.38 (s, 1H) 9.40 (s, 1H);
- 8-[4-(4-methyl-piperazin-1-yl)-3-(hydroxymethyl)phenylamino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid methylamide [B116-X00-M00(C01)-D04]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.28 (s, 3H) 2.45-2.55 (m, 4H) 2.75 (d, J=4.63 Hz, 3H) 2.81 (t, J=7.19 Hz, 2H) 2.83 (t, J=4.63 Hz, 4H) 2.99 (t, J=7.56 Hz, 2H) 4.34 (s, 3H) 4.56 (d, J=5.24 Hz, 2H) 5.05 (t, J=5.37 Hz, 1H) 7.03 (d, J=8.54 Hz, 1H) 7.50 (d, J=8.41, 2.56 Hz, 1H) 7.83 (d, J=2.68 Hz, 1H) 8.07 (q, J=4.63 Hz, 1H) 8.37 (s, 1H) 9.40 (s, 1H);
- 8-[4-(4-methyl-piperazin-1-yl)-3-(bromo)phenylamino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide trihydrochloride [B117-X00-M00(C01)-D03
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.83 (m, 2H) 2.88 (d, J=4.68 Hz, 3H) 3.01 (m, 4H) 3.19 (m, 2H) 3.53 (m, 2H) 4.37 (s, 3H) 7.23 (m, 1H) 7.29 (s, 1H) 7.46 (s, 1H) 7.63 (m, 1H) 8.21 (m, 1H) 8.44 (s, 1H) 9.67 (s, 1H) 10.13 (s, 1H);
- 8-[3-(4-methyl-piperazin-1-ylmethyl)-phenylamino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B104-X00-M00(C01)-D03
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3H) 2.44 (s, 4H) 2.78-3.03 (m, 4H) 3.04-3.40 (m, 4H) 3.45 (s, 2H) 4.37 (s, 3H) 6.90 (d, J=7.32 Hz, 1H) 7.25 (t, J=7.68 Hz, 1H) 7.27 (s, 1H) 7.46 (s, 1H) 7.57 (dd, J=7.68, 1.59 Hz, 1H) 7.76 (t, J=1.77 Hz, 1H) 8.42 (s, 1H) 9.52 (s, 1H);
- 8-{[(3-hydroxy)-5-trifluoromethyl]phenylamino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B118-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.77-3.07 (m, 4H) 3.84 (s, 3H) 4.35 (s, 3H) 6.84 (s, 1H) 7.28 (s, 1H) 7.47 (s, 1H) 7.57 (s, 1H) 7.85 (s, 1H) 8.49 (s, 1H) 9.86 (s, 1H);
- 8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid methylamide [B10-X00-M00(C01)-D04]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.75 (d, J=4.76 Hz, 3H) 2.81 (t, J=7.68 Hz, 2H) 2.85 (d, J=4.39 Hz, 3H) 2.94-3.07 (m, 4H) 3.11-3.25 (m, 2H) 3.51 (d, J=11.83 Hz, 2H) 3.73 (d, J=13.66 Hz, 2H) 4.33 (s, 3H) 6.99 (d, J=9.15 Hz, 2H) 7.60 (d, J=9.02 Hz, 2H) 8.08 (q, J=4.67 Hz, 1H) 8.37 (s, 1H) 9.40 (s, 1H) 10.36 (s, 1H);
- 8-anilino-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid methylamide [B04-X00-M00(C01)-D04]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.72 (d, J=4.76 Hz, 3H) 2.79 (t, J=7.68 Hz, 2H) 2.97 (t, J=7.68 Hz, 2H) 4.31 (s, 3H) 6.94 (t, J=7.38 Hz, 1H) 7.21-7.32 (m, 2H) 7.68 (d, J=7.56 Hz, 2H) 8.06 (q, J=4.35 Hz, 1H) 8.38 (s, 1H) 9.48 (s, 1H).
-
- To a solution of 1-methyl-8-(pyridin-2-ylamino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide in a 1:1 mixture of methanol and dichloromethane, 4 N HCl in dioxane (1 mL) was added. After 1 hour at room temperature the solvent was removed under vacuum and the solid was triturated with diethyl ether affording the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 3.0 (m, 4H) 4.4 (s, 3H) 7.3 (m, 2H) 7.5 (s, 1H) 7.8 (d, J 8.8 Hz, 1H) 8.2 (t, J 7.7 Hz, 1H) 8.4 (dd, J 5.9, 1.0 Hz, 2H) 8.6 (s, 1H) 11.6 (s, 1H).
- By working according to this method, the following compounds were prepared:
- 1-methyl-8-(thiazol-2-ylamino)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide hydrochloride
- 1H NMR (400 MHz, DMSO-d6) δ ppm 3.0 (m, 4H) 4.4 (s, 3H) 7.1 (d, J 3.7 Hz, 1H) 7.3 (s, 1H) 7.5 (d, J 3.7 Hz, 1H) 7.5 (s, 1H) 8.6 (s, 1H) 11.8 (s, 1H);
- 8-[4(N-Methylpiperazino)-3-chlorophenylamino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide trichlorohydrate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 3.1 (m, 15H) 4.4 (s, 3H) 7.2 (d, J 8.9 Hz, 1H) 7.3 (s, 1H) 7.5 (s, 1H) 7.6 (dd, J 8.8, 2.4 Hz, 1H) 8.0 (d, J 2.6 Hz, 1H) 8.4 (s, 1H) 9.7 (s, 1H) 10.5 (s, 1H);
- 8-[4(N-Methylpiperazino)-3-bromophenylamino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide trichlorohydrate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 3.1 (m, 15H) 4.4 (s, 3H) 7.2 (d, J 8.8 Hz, 1H) 7.3 (s, 1H) 7.5 (s, 1H) 7.6 (dd, J 8.6, 2.4 Hz, 1H) 8.0 (d, J 2.6 Hz, 1H) 8.2 (s, 1H) 9.7 (s, 1H) 10.5 (s, 1H);
- N-benzyl-1-methyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (L)-tartrate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.40 (s, 3H) 2.70 (m, 4H) 2.80 (t, J=7.62 Hz, 2H) 3.00 (t, J=7.62 Hz, 2H) 3.14 (m, 4H) 4.20 (s, 2H) 4.34 (s, 3H) 4.43 (d, J=6.34 Hz, 2H) 6.93 (d, J=9.15 Hz, 2H) 7.27 (m, 5H) 7.55 (d, J=9.02 Hz, 2H) 8.35 (s, 1H) 8.69 (t, J=6.34 Hz, 1H) 9.28 (s, 1H);
- 1-methyl-8-[(4-morpholin-4-ylphenyl)amino]-N-[(1R)-1-phenylethyl]-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide hydrochloride
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.51 (m, 3H) 2.97 (m, 4H) 3.21 (m, 4H) 3.84 (m, 4H) 4.37 (m, 3H) 5.15 (m, 1H) 7.28 (m, 7H) 7.63 (m, 2H) 8.40 (m, 1H) 8.44 (m, 1H) 9.50 (m, 1H);
- N-(3-fluorobenzyl)-1-methyl-8-[(4-morpholin-4-ylphenyl)amino]-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide hydrochloride
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.91 (m, J=73.53 Hz, 4H) 3.16 (m, 4H) 3.81 (m, 4H) 4.35 (s, 3H) 4.43 (m, 2H) 7.07 (m, 6H) 7.61 (m, 2H) 8.37 (m, 1H) 8.80 (m, 1H) 9.44 (m, 1H);
- N-(3-fluorobenzyl)-1-methyl-8-[(4-morpholin-4-ylphenyl)amino]-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide methanesulfonate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.33 (s, 3H) 3.00 (s, 4H) 3.17 (s, 4H) 3.80 (s, 4H) 4.35 (s, 3H) 4.43 (m, 2H) 7.07 (m, 6H) 7.61 (m, 2H) 8.37 (m, 1H) 8.80 (m, 1H) 9.46 (m, 1H).
-
- To a suspension of 0.30 g (0.86 mmol) of ethyl 8-anilino-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate in a mixture of 10 mL of methanol and 10 mL of dimethylformamide, 5 mL of ethanolamine were added. The mixture was heated in a close bottle under stirring at 65° C. After 5 hours the solvent was removed, the residue redissolved with dichloromethane and washed with water. The organic layer was dried over Na2SO4 and evaporated. The residue was triturated with diethyl ether and the product collected by filtration (60% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm: 2.7-3.0 (2m, 4H) 3.47 (m, 4H) 4.32 (s, 3H) 4.71 (t, 1H) 6.94-7.67 (3m, 5H) 7.91 (t, J 5.73 Hz, 1H) 8.38 (bs, 1H) 9.48 (bs, 1H).
- By working analogously the following compound was prepared:
- 8-anilino-N,1-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B04-X00-M00(C01)-D04]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.72 (d, J 4.76 Hz, 3H) 2.79 (t, J 7.68 Hz, 2H) 2.97 (t, J 7.68 Hz, 2H) 4.31 (s, 3H) 6.94 (t, J 7.38 Hz, 1H) 7.28 (m, 2H) 7.68 (d, J 7.56 Hz, 2H) 8.06 (q, J 4.35 Hz, 1H) 8.38 (s, 1H) 9.48 (s, 1H).
-
- Pd(OAc)2 (20 mg, 0.09 mmol, 10%), (±)-BINAP (55 mg, 0.09 mmol, 10%) and dimethylformamide (15 mL) were charged in a round-bottom flask flushed with argon. The mixture was stirred under argon for 30 minutes. Then 3-chloro-p-anisidine (153 mg, 0.97 mmol), 8-iodo-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (300 mg, 0.84 mmol), K2CO3 (2.45 g, 17.8 mmol) and dimethylformamide (6 mL) were added. The resulting mixture was stirred at room temperature for 1 hour and then heated to 120° C. in an oil bath under argon with good stirring for 18 hours.
- After cooling to room temperature, the reaction mixture was poured into water (300 mL) and extracted with dichloromethane (5×60 mL). The organic extracts were washed with water (2×20 mL) and dried over anhydrous Na2SO4. The solvent was removed under vacuum, the crude solid was taken up with diethyl ether, filtered, washed with diethyl ether and purified by flash chromatography on silica gel (eluant: dichloromethane/methanol 97.5:2.5) to afford 95 mg of pure title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.9 (m, 4H) 3.8 (s, 3H) 4.3 (s, 3H) 7.1 (d, J 9.0 Hz, 1H) 7.3 (s, 1H) 7.5 (s, 1H) 7.5 (dd, J 9.0, 2.6 Hz, 1H) 7.9 (d, J 2.6 Hz, 1H) 8.4 (s, 1H) 9.5 (s, 1H)
- By working according to the same procedure the following compound was prepared:
- 8-[4(N-Methyl-N-piperazinyl)-3-chlorophenylamino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B13-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.3 (s, 3H) 2.5 (m, 4H) 2.9 (m, 8H) 4.4 (s, 3H) 7.1 (d, J 8.8 Hz, 1H) 7.3 (s, 1H) 7.5 (s, 1H) 7.5 (dd, J 8.8, 2.4 Hz, 1H) 8.0 (d, J 2.6 Hz, 1H) 8.4 (s, 1H) 9.6 (s, 1H).
-
- To a solution of 8-amino-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (244 mg, 1.0 mmol) in a mixture of glacial acetic acid/methanol/water (1:1:1) (30 mL) in a round-bottom flask were added p-methoxybenzaldehyde (0.44 mL, 450 mg, 3.0 mmol) and then 85% sodium cyanoborohydride (210 mg, 2.0 mmol). The solution was stirred at room temperature for 7 hours. At that time further amount of aldehyde (0.44 mL) and sodium cyanoborohydride (210 mg) were added and stirring was continued overnight.
- The reaction mixture was poured into ice-water (200 mL), the pH was adjusted to 10 by addition of saturated sodium carbonate and the solution extracted with ethyl acetate (4×20 mL). The collected organic extracts were washed with brine until neutral, with water and dried over Na2SO4.
- Evaporation of the solvent under vacuum left a yellow solid residue that was purified by flash chromatography on silica gel (eluant: dichloromethane/methanol 95:5) to yield 250 mg of yellow pure compound. Crystallization from methanol afforded 225 mg of crystalline title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.8 (m, 4H) 3.7 (s, 3H) 4.2 (s, 3H) 4.5 (d, J 6.1 Hz, 2H) 7.2 (s, 1H) 6.8 (d, J 8.8 Hz, 2H) 7.4 (s, 1H) 7.3 (d, J 8.8 Hz, 2H) 7.6 (m, 1H) 8.2 (s, 1H)
- By working according to this method, the following compounds were prepared:
- 1-methyl-8-[(thien-3-ylmethyl)amino]-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B43-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.8 (m, 4H) 4.2 (s, 3H) 4.5 (d, J 6.1 Hz, 2H) 7.1 (m, 1H) 7.2 (s, 1H) 7.3 (m, 1H) 7.4 (s, 1H) 7.5 (m, 1H) 7.6 (m, 1H) 8.2 (s, 1H);
- 8-[(3,5-dihydroxybenzyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B62-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.8 (m, 4H) 4.2 (m, 2H) 4.3 (s, 3H) 4.4 (d, J 6.2 Hz, 2H) 6.0 (m, 1H) 6.2 (m, 2H) 7.2 (s, 1H) 7.4 (s, 1H) 7.6 (m, 1H) 8.2 (s, 1H);
- 8-({4-[3-(dimethylamino)propoxy]benzyl}amino)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B61-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.8 (m, 2H) 2.2 (s, 6H) 2.4 (t, 2H) 2.8 (m, 4H) 4.0 (t, 2H) 4.3 (s, 3H) 4.5 (d, J 6.5 Hz, 2H) 6.9 (m, J 9.0 Hz, 2H) 7.2 (d, J 8.7 Hz, 2H) 7.2 (s, 1H) 7.4 (s, 1H) 7.6 (m, 1H) 8.2 (s, 1H);
- [5-({[3-(aminocarbonyl)-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazolin-8-yl]amino}methyl)-2-furyl]methyl acetate [B65-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.0 (s, 3H) 2.8 (m, 4H) 4.3 (s, 3H) 4.5 (d, J 6.1 Hz, 2H) 5.0 (s, 2H) 6.2 (d, J 3.2 Hz, 1H) 6.4 (d, J 3.2 Hz, 1H) 7.2 (s, 1H) 7.4 (s, 1H) 7.6 (t, J 6.0 Hz, 1H) 8.2 (s, 1H);
- 8-[(3-cyanobenzyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B63-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.8 (m, 4H) 4.1 (s, 3H) 4.6 (d, J 6.1 Hz, 2H) 7.2 (s, 1H) 7.4 (s, 1H) 7.5 (t, J 7.7 Hz, 1H) 7.7 (m, 4H) 8.2 (s, 1H);
- 8-[(4-Bromobenzyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B64-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.8 (m, 4H) 4.2 (s, 3H) 4.5 (d, J 6.3 Hz, 2H) 7.2 (s, 1H) 7.3 (d, J 8.5 Hz, 2H) 7.4 (s, 1H) 7.5 (d, J 8.5 Hz, 2H) 7.7 (m, 1H) 8.2 (s, 1H);
- 8-{[4-(acetylamino)benzyl]amino}-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B80-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.0 (s, 3H) 2.7 (m, 2H) 2.9 (t, J 7.7 Hz, 2H) 4.2 (s, 3H) 4.5 (d, J 6.2 Hz, 2H) 7.2 (s, 1H) 7.3 (d, J 8.5 Hz, 2H) 7.4 (s, 1H) 7.5 (d, J 8.5 Hz, 2H) 7.6 (t, J 7.4 Hz, 1H) 8.2 (s, 1H) 9.9 (s, 1H);
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.7 (m, 2H) 2.9 (t, J 7.6 Hz, 2H) 4.3 (s, 3H) 4.3 (s, 2H) 4.5 (d, J 6.0 Hz, 2H) 5.1 (s, 1H) 6.2 (m, 2H) 7.2 (s, 1H) 7.4 (s, 1H) 7.6 (t, J 5.9 Hz, 1H) 8.2 (s, 1H);
- 8-[(1-Methylimidazol-2-yl)methylamino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B82-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.8 (m, 4H) 3.7 (s, 3H) 4.3 (s, 3H) 4.6 (m, 2H) 6.9 (s, 1H) 7.17 (s, 1H) 7.24 (s, 1H) 7.43 (s, 1H) 7.5 (m, 1H) 8.3 (s, 1H);
- 8-[(4-Aminobenzyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B83-X00-M00(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.7 (m, 2H) 2.9 (t, J 7.7 Hz, 2H) 4.3 (s, 3H) 4.4 (d, J 6.1 Hz, 2H) 5.1 (s, 2H) 6.5 (d, J 8.4 Hz, 2H) 7.0 (d, J 8.3 Hz, 2H) 7.2 (s, 1H) 7.4 (m, 2H) 8.2 (s, 1H);
- 8-[(4-Fluorobenzyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.73 (t, J=7.74 Hz, 2H) 2.94 (t, J=7.56 Hz, 2H) 4.18 (s, 3H) 4.52 (d, J=6.22 Hz, 2H) 7.13 (t, J=8.90 Hz, 2H) 7.23 (s, 1H) 7.38 (dd, J=8.66, 5.61 Hz, 2H) 7.42 (t, 1H) 7.71 (t, J=5.97 Hz, 1H) 8.23 (s, 1H).
-
- To a well stirred solution of 8-[(4-methoxybenzyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (242 mg, 0.7 mmol) in chloroform (30 mL) boron tribromide (1 M in dichloromethane, 5.12 mL, 5.1 mmol) was added dropwise over a 5 minutes period, at room temperature. The mixture was heated to reflux for 8 hours. A solution of 10% aqueous ammonium hydroxide (30 mL) was added dropwise at 0° C. over a 10 minutes period. A precipitate was formed and, after 2 hours, it was filtered and washed with water and dried at 40° C. under vacuum. There were obtained 130 mg of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.8 (m, 4H) 4.2 (s, 3H) 4.5 (m, 2H) 6.7 (d, J 8.65 Hz, 2H) 7.2 (d, J 8.5 Hz, 2H) 7.25 (s, 1H) 7.4 (s, 1H) 7.8 (m, 1H) 8.2 (s, 1H)
- To a solution of 8-[(4-hydroxybenzyl)amino]-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (70 mg, 0.2 mmol) in anhydrous dimethylformamide (3 mL), N-morpholinoethylchloride hydrochloride (47 mg, 0.3 mmol) and powdered potassium carbonate (45 mg, 3.3 mmol) were added. The mixture was heated to reflux for 1 hour. The reaction mixture was poured into iced water (70 mL) and extracted with dichloromethane; the organic extracts were washed with brine until neutral pH, then with water and dried over Na2SO4. The crude was purified by flash chromatography on silica gel (eluant: dichloromethane/methanol 96:4) to yield a white solid that was crystallized from methanol, affording 47.0 mg of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.5 (m, 4H) 2.7 (t, 2H) 2.8 (m, 4H) 3.6 (m, 4H) 4.0 (t, 2H) 4.2 (s, 3H) 4.5 (m, 2H) 6.9 (d, J 8.42 Hz, 2H) 7.2 (s, 1H) 7.25 (d, J 8.54 Hz, 2H) 7.4 (s, 1H) 7.6 (m, 1H) 8.2 (s, 1H).
- Analogously the following compound was prepared:
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.47-2.56 (m, 4H) 2.73 (t, J=7.26 Hz, 2H) 2.85 (t, J=7.80 Hz, 2H) 3.01 (t, J=7.80 Hz, 2H) 3.57-3.64 (m, 4H) 4.17 (t, J=5.49 Hz, 2H) 4.35 (s, 3H) 6.86 (t, J=1.83 Hz, 1H) 7.28 (s, 1H) 7.48 (s, 1H) 7.61 (t, J=2.32 Hz, 1H) 7.80 (t, J=1.46 Hz, 1H) 8.49 (s, 1H) 9.85 (s, 1H).
- 2-anilino-5,6,8,9,10,11-hexahydro-7H-[1,4]diazepino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7-one [B04-X00-M06]
-
- 1 g (4.2 mmol) of ethyl (3-ethoxy-2-oxocyclohex-3-en-1-yl)(oxo)acetate were dissolved in 10 mL of ethanol, 0.21 mL of hydrazine hydrate were added and the solution stirred at reflux for a day. The solvent was then evaporated and the residue redissolved with dichloromethane. The organic layer was washed with water, dried over Na2SO4 and concentrated. The crude was triturated with diethyl ether and filtered to give (70% yield) the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.16 (t, J 6.83 Hz 3H) 2.25-3-27 (3m, 6H) 4.18 (q, J 6.83 Hz, 2H) 8.45 (bs, 1H).
- Analogously the following compound was prepared:
- Ethyl 4,4-dimethyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J=6.95 Hz, 3H) 1.42 (s, 6H) 1.90-2.02 (m, 2H) 2.55-2.63 (m, 2H) 4.33 (q, J=6.95 Hz, 2H) 14.34 (s, 1H).
-
- 1.20 g (4.8 mmol) of ethyl 7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate were dissolved in 40 mL of dichloromethane and 0.76 mL of triethylamine and 1.47 g (5.3 mmol) of triphenylmethyl chloride were added. The solution was stirred at room temperature for 6 hours. Then the solution was diluted with further dichloromethane and washed with water. The organic layer was treated with anhydrous Na2SO4 and evaporated to dryness. The product, as a mixture of regioisomers, was finally obtained by crystallization from diethyl ether (80% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.25 (t, 3H) 1.94-2.98 (3m, 6H) 4.25 (q, 2H) 6.85-7.36 (2m, 15H).
- Analogously the following compounds were prepared:
- Ethyl 1-trityl-4,4-dimethyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-D6) 8 ppm 1.26 (t, J=7.07 Hz, 3H) 1.45 (s, 6H) 1.79-1.88 (m, 2H) 2.18-2.26 (m, 2H) 4.27 (q, J=7.15 Hz, 2H) 6.84-7.01 (m, 6H) 7.14-7.33 (m, 9H);
- Ethyl 2-trityl-4,4-dimethyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 0.88 (t, J=7.13 Hz, 3H) 1.27 (s, 6H) 1.92-1.99 (m, 2H) 2.56-2.63 (m, 2H) 3.44 (q, J=7.15 Hz, 2H) 6.99-7.05 (m, 6H) 7.31-7.37 (m, 9H).
-
- 3.0 g (6.6 mmol) of ethyl 7-oxo-1 (2)-trityl-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate were dissolved in 20 mL of dimethylformamide and 3.2 mL (13.2 mmol) of dimethylformamide ditertbutylacetale were added. The solution was heated at 65° C. under stirring for a day and then evaporated to dryness. The product was obtained by crystallization from a mixture diethyl ether/ethyl acetate (90% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.24 and 0.79 (2t, J 7.07 Hz, 3H) 2.70-2.90 (2t, J 6.71 Hz, 6H) 2.94 and 2.99 (2m, 6H) 4.21 (q, J 7.07 Hz, 2H) 6.90-7.30 (m, 15H).
- Analogously the following compounds were prepared:
- Ethyl 6-[(dimethylamino)methylene]-1-trityl-4,4-dimethyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.26 (t, J=7.13 Hz, 3H) 1.36 (s, 6H) 2.66 (s, 2H) 2.98 (s, 6H) 4.25 (q, J=7.15 Hz, 2H) 6.96 (t, 7H) 7.15-7.29 (m, 9H);
- Ethyl 6-[(dimethylamino)methylene]-2-trityl-4,4-dimethyl-7-oxo-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 0.90 (t, J=7.19 Hz, 3H) 1.19 (s, 6H) 2.78 (s, 2H) 3.11 (s, 6H) 3.42 (q, J=7.23 Hz, 2H) 6.97-7.09 (m, 6H) 7.30-7.37 (m, 9H) 7.48 (s, 1H).
-
- To a solution of 636 mg of ethyl 6-[(dimethylamino)methylene]-7-oxo-1 (2)-trityl-4,5,6,7-tetrahydro-1H-indazole-3-carboxylate (1.18 mmol) and 440 mg (1.18 mmol) of phenylguanidine carbonate in 100 mL of absolute ethanol, 0.5 mL of diazabicycloundecene were added. The mixture was stirred at reflux for 48 hours and then the solvent evaporated under reduced pressure. The residue was redissolved with dichloromethane and washed with water. The organic layer was dried over Na2SO4 and purified by chromatography on a silica gel column (eluant cyclohexane/ethyl acetate 8/2) to give 240 mg of the title compound (35% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 0.81 (t, J 7.20 Hz, 3H) 2.80-2.95 (m, 4H) 3.58 (q, J 7.20 Hz, 2H) 6.85-7.80 (5m, 20H) 8.38 (bs, 1H) 9.49 (bs, 1H).
- According to the same method but employing the suitable guanidine derivatives, the following compounds were prepared:
- Ethyl 8-{[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]amino}-1(and 2)-trityl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate
Ethyl 8-{[3-chloro-4-(4-methylpiperazin-1-yl)phenyl]amino}-1(and 2)-trityl-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate
Ethyl 8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-1 (and 2)-trityl-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate
Ethyl 8-amino-1 (and 2)-trityl-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate
Ethyl 8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-1-trityl-4,4 dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate - 1H NMR (400 MHz, DMSO-d6) δ ppm 1.24 (t, J 7.20 Hz, 3H) 1.31 (s, 6H) 2.20 (s, 3H) 2.43 (m, 4H) 2.56 (m, 2H) 2.99 (m, 4H) 4.24 (q, J 7.20 Hz, 2H) 6.61 (d, J=8.79 Hz, 2H) 6.92-7.37 (m, 17H) 8.07 (bs, 1H);
- Ethyl 8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-2-trityl-4,4 dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 0.89 (t, J 7.20 Hz, 3H) 1.17 (s, 6H) 2.21 (s, 3H) 2.46 (m, 4H) 2.71 (m, 2H) 3.04 (m, 4H) 3.40 (q, J 7.20 Hz, 2H) 6.80 (d, J=8.79 Hz, 2H) 6.96-7.43 (m, 15H) 7.60 (d, J=8.79 Hz, 2H) 8.31 (bs, 1H) 9.31 (bs, 1H);
- Ethyl 8-anilino-1 (and 2)-trityl-4,4 dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate;
Ethyl 8-amino-1-trityl-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate - 1H NMR (400 MHz, DMSO-d6) δ ppm 1.27 (t, J=7.13 Hz, 3H) 1.31 (s, 6H) 2.52 (s, 2H) 4.27 (q, J=7.07 Hz, 2H) 5.20 (s, 2H) 7.03-7.09 (m, 6H) 7.16-7.34 (m, 9H) 7.93 (s, 1H);
- Ethyl 8-amino-2-trityl-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate
- 1H NMR (400 MHz, DMSO-d6) δ ppm 0.95 (t, J=7.13 Hz, 3H) 1.16 (s, 6H) 2.63 (s, 2H) 3.46 (q, J=7.07 Hz, 2H) 6.47 (s, 2H) 7.09-7.16 (m, 6H) 7.24-7.41 (m, 9H) 8.14 (s, 1H).
-
- 1.50 g (2.6 mmol) of ethyl 8-anilino-1(2)-trityl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate were dissolved in 50 mL of dichloromethane and 5 mL of trifluoroacetic acid were added. The solution was stirred overnight and the solvent removed in vacuo. The residue was redissolved in dichloromethane and washed with a saturated solution of NaHCO3. The organic layer was then dried over Na2SO4 and the solvent evaporated to dryness. By crystallization from diisopropyl ether 0.70 mg of the title compound were obtained (80% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.17 (t, 3H, J 7.07 Hz) 3.05-3.28 (2m, 4H) 4.18 (q, 2H, J 7.07 Hz) 6.83-7.63 (3m, 5H) 8.31 (bs, 1H) 9.10 (m, 2H).
- According to the same method the following compounds were prepared:
- Ethyl 8-{[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]amino}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B12-X00-M00(C00)-D01]
Ethyl 8-{[3-chloro-4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B13-X00-M00(C00)-D01]
Ethyl 8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B10-X00-M00(C00)-D01] - 1H NMR (400 MHz, DMSO-d6) δ ppm 1.35 (t, J 7.20 Hz, 3H) 2.30 (s, 3H) 2.50-2.60 (m, 4H) 2.86 (m, 2H) 2.99 (m, 2H) 3.10 (m, 4H) 4.33 (q, J 7.20 Hz, 2H) 6.90 (d, J=8.90 Hz, 2H) 7.71 (d, J=8.90 Hz, 2H) 8.34 (s, 1H) 9.27 (bs, 1H) 14.22 (bs, 1H)
- Ethyl 8-amino-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B00-X00-M00(C00)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, 3H, J 7.2 Hz) 2.78 (m, 2H) 2.96 (m, 2H) 4.31 (q, 2H, J 7.2 Hz) 6.64 (m, 2H) 8.19 (bs, 1H);
- Ethyl 8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B10-X00-M03(C00)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (t, J 7.20 Hz, 3H) 1.33 (s, 6H) 2.22 (s, 3H) 2.40-2.50 (m, 4H) 2.73 (m, 2H) 3.07 (m, 4H) 4.35 (q, J 7.20 Hz, 2H) 6.91 (d, J=9.02 Hz, 2H) 7.70 (d, J=9.02 Hz, 2H) 8.33 (bs, 1H) 9.30 (bs, 1H) 14.13 (bs, 1H);
- Ethyl 8-amino-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B00-X00-M03(C00)-D01]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (m, 9H) 2.66 (s, 2H) 4.22-4.42 (m, 2H) 6.36 (d, 2H) 8.19 (d, 1H) 14.11 (d, 1H);
- Ethyl 8-anilino-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate [B04-X00-M03 (C00)-D01].
-
- 500 mg of ethyl 8-anilino-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (1.5 mmol) were dissolved in 10 mL of dry dimethylformamide and 1.63 mL of 1 M lithium tert-butoxide in tetrahydrofuran were added to the cooled solution. After 30 minutes under stirring at 0° C. a solution of 432 mg of tert-butoxycarbonylaminopropyl bromide in 8 mL of dry tetrahydrofuran were added dropwise. After a night at room temperature the mixture was poured into a solution of NaH2PO4 and extracted with dichloromethane. The organic layer was then dried over Na2SO4 and the solvent evaporated, giving an oil that was treated according to the following step 7, without any further purification.
- Analogously the following compounds can be prepared:
- Ethyl 2-{3-[(tert-butoxycarbonyl)amino]propyl}-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate
Ethyl 2-{3-[(tert-butoxycarbonyl)amino]propyl}-8-{[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]amino}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate
Ethyl 2-{3-[(tert-butoxycarbonyl)amino]propyl}-8-{[3-chloro-4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate
Ethyl 8-amino-2-{3-[(tert-butoxycarbonyl)amino]propyl}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate;
Ethyl 8-amino-2-{3-[(tert-butoxycarbonyl)amino]propyl}-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate;
Ethyl 8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-2-{3-[(tert-butoxycarbonyl)amino]propyl}-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate;
Ethyl 8-anilino-2-{3-[(tert-butoxycarbonyl)amino]propyl}-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate. - Following the above method, but employing tert-butoxycarbonylaminoethyl bromide, the following compounds were prepared:
- Ethyl 8-anilino-2-{2-[(tert-butoxycarbonyl)amino]ethyl}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate;
Ethyl 2-{2-[(tert-butoxycarbonyl)amino]ethyl}-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate
Ethyl 2-{2-[(tert-butoxycarbonyl)amino]ethyl}-8-{[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]amino}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate
Ethyl 2-{2-[(tert-butoxycarbonyl)amino]ethyl}-8-{[3-chloro-4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate
Ethyl 8-amino-2-{2-[(tert-butoxycarbonyl)amino]ethyl}-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate - 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (s, 9H) 1.36 (t, 3H, J 7.2 Hz) 2.74 (m, 2H) 2.94 (m, 2H) 3.34 (m, 2H) 4.33 (q, 2H, J 7.2 Hz) 4.57 (t, 2H) 6.50 (m, 2H) 6.87 (t, 1H) 8.15 (bs, 1H);
- Ethyl 8-amino-2-{2-[(tert-butoxycarbonyl)amino]ethyl}-4,4-dimethyl-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate;
Ethyl 8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-2-{2-[(tert-butoxycarbonyl)amino]ethyl}-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate;
Ethyl 8-anilino-2-{2-[(tert-butoxycarbonyl)amino]ethyl}-4,4-dimethyl-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate. -
- The crude of previous step 6 was dissolved in 20 mL of dioxane and 8 mL of HCl 37% were added. After 6 hours under stirring at room temperature the solvent was removed in vacuo, the residue triturated with ethanol and the product collected by filtration (80% yield).
- By working according to the above method, the following compounds were prepared:
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.37 (t, 3H, J 7.2 Hz) 2.85 (m, 2H) 3.02 (m, 2H) 3.50 (m, 2H) 4.37 (q. 2H, J 7.2 Hz) 4.84 (t, 2H) 7.47 (m, 1H) 8.08 (m, 3H) 8.29 (s, 1H);
- Ethyl 8-amino-2-(3-aminopropyl)-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride B00-X00-M04(C13)-D01;
Ethyl 8-amino-2-(3-aminopropyl)-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride B00-X00-M09(C13)-D01;
Ethyl 2-(3-aminopropyl)-8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride B10-X00-M09(C13)-D01;
Ethyl 8-anilino-2-(3-aminopropyl)-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride B04-X00-M09(C13)-D01;
Ethyl 8-amino-2-(3-aminoethyl)-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride B00-X00-M09(C12)-D01;
Ethyl 2-(3-aminoethyl)-8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride B10-X00-M09(C12)-D01;
Ethyl 8-anilino-2-(3-aminoethyl)-4,4-dimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride B04-X00-M09(C12)-D01. -
- 185 mg (0.43 mmol) of ethyl 2-(3-aminopropyl)-8-anilino-4,5-dihydro-2H-pyrazolo[4,3-h]quinazoline-3-carboxylate hydrochloride were dissolved in 10 mL of methanol and 400 mg of cesium carbonate were added. After 3 hours under stirring at room temperature the solvent was removed at reduced pressure. Water was then added to the residue and the solid collected by filtration and washed with water and acetone to give 100 mg (70% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.18 (ddd, J 13.02, 6.65, 6.55 Hz, 2H) 2.88 (m, 4H) 3.21 (q, J 5.89 Hz, 2H) 4.50 (t, J 6.77 Hz, 2H) 6.93 (t, J 7.32 Hz, 1H) 7.28 (dd, J 8.29, 7.56 Hz, 2H) 7.85 (d, J 7.68 Hz, 2H) 8.27 (t, J 5.18 Hz, 1H) 8.38 (s, 1H) 9.62 (s, 1H)
- By working according to this method the following compounds were prepared:
- 2-anilino-5,6,9,10-tetrahydropyrazino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7(8H)-one [B04-X00-M05]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.92 (m, 4H) 3.65 (m, 2H) 4.41 (m, 2H) 6.93 (m, 1H) 7.28 (m, 2H) 7.85 (m, 2H) 8.26 (m, 1H) 8.39 (s, 1H) 9.61 (s, 1H);
- 2-{[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]amino}-5,6,9,10-tetrahydropyrazino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7(8H)-one [B12-X00-M05]
2-{[3-chloro-4-(4-methylpiperazin-1-yl)phenyl]amino}-5,6,9,10-tetrahydropyrazino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7(8H)-one [B13-X00-M05]
2-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-5,6,9,10-tetrahydropyrazino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7(8H)-one [B10-X00-M05]
2-amino-5,6,9,10-tetrahydropyrazino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7(8H)-one [B00-X00-M05] - 1H NMR (400 MHz, DMSO-d6) δ ppm 2.74 (t, J=7.56 Hz, 2H) 2.88-2.98 (m, 2H) 3.60-3.68 (m, 2H) 4.29-4.42 (m, 2H) 6.48 (s, 2H) 8.15 (s, 1H) 8.21-8.32 (m, 1H);
- 2-amino-5,6,8,9,10,11-hexahydro-7H-[1,4]diazepino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7-one [B00-X00-M06]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.18 (ddd, J 13.02, 6.65, 6.55 Hz, 2H) 2.74 (m, 2H) 2.92 (m, 2H) 3.21 (q, J 5.89 Hz, 2H) 4.50 (t, J 6.77 Hz, 2H) 6.48 (m, 2H) 8.17 (s, 1H) 8.23 (m, 1H);
- 2-{[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]amino}-5,6,8,9,10,11-hexahydro-7H-[1,4]diazepino[1′,2′: 1,5]pyrazolo[4,3-h]quinazolin-7-one[B12-X00-M06]
2-{[3-chloro-4-(4-methylpiperazin-1-yl)phenyl]amino}-5,6,8,9,10,11-hexahydro-7H-[1,4]diazepino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7-one [B13-X00-M06]
2-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-5,6,8,9,10,11-hexahydro-7H-[1,4]diazepino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7-one [B10-X00-M06]
2-amino-6,6-dimethyl-5,9,10-trihydropyrazino[1′,2′: 1,5]pyrazolo[4,3-h]quinazolin-7(8H)-one [B00-X00-M07];
2-anilino-6,6-dimethyl-5,9,10-trihydropyrazino[1′,2′: 1,5]pyrazolo[4,3-h]quinazolin-7(8H)-one [B04-X00-M07];
2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-6,6-dimethyl-5,9,10-trihydropyrazino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7(8H)-one [B10-X00-M07] - 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (s, 6H) 2.23 (s, 3H) 2.47 (m, 4H) 2.92 (m, 2H) 3.07 (m, 4H) 3.65 (m, 2H) 4.41 (m, 2H) 6.91 (d, J=9.02 Hz, 2H) 7.53 (d, J=9.02 Hz, 2H) 8.23 (m, 1H) 8.34 (s, 1H) 9.12 (s, 1H);
- 2-amino-6,6-dimethyl-5,8,9,10,11-pentahydro-7H-[1,4]diazepino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7-one [B00-X00-M08];
2-anilino-6,6-dimethyl-5,8,9,10,11-pentahydro-7H-[1,4]diazepino[1′,2′: 1,5]pyrazolo[4,3-h]quinazolin-7-one [B04-X00-M08];
2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-6,6-dimethyl-5,8,9,10,11-pentahydro-7H-[1,4]diazepino[1′,2′:1,5]pyrazolo[4,3-h]quinazolin-7-one [B10-X00-M08] - 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (s, 6H) 2.18 (ddd, J 13.02, 6.65, 6.55 Hz, 2H) 2.23 (s, 3H) 2.47 (m, 4H) 2.92 (m, 2H) 3.07 (m, 4H) 3.21 (q, J 5.89 Hz, 2H) 4.50 (t, J 6.77 Hz, 2H) 6.91 (d, J=9.02 Hz, 2H) 7.53 (d, J=9.02 Hz, 2H) 8.27 (m, 1H) 8.34 (s, 1H) 9.12 (s, 1H).
-
- 0.63 g (1.80 mmol) of ethyl 8-anilino-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate were dissolved in 100 mL of a mixture tetrahydrofuran/methanol/water 8/1/1 and 0.19 g (4.53 mmol) of lithium hydroxide hydrate were added. The solution was stirred at 60° C. for 1.5 hours. The mixture was then cooled to room temperature and 1 N HCl added until neutral pH. Water was added and the resulting precipitate collected by filtration (87% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.85 (t, J 7.74 Hz, 2H) 2.99 (m, 2H) 4.36 (s, 3H) 6.98 (tt, J 7.35, 1.07 Hz, 1H) 7.31 (dd, J 8.47, 7.50 Hz, 2H) 7.72 (dd, J 8.60, 0.91 Hz, 2H) 8.42 (s, 1H) 9.52 (s, 1H) 12.68 (s, 1H)
- By working according to the same procedure the following compounds were prepared:
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.48 and 3.64 (2t, J 7.25 Hz, 4H) 3.84 (s, 3H) 8.04 (bs, 2H) 8.46 (bs, 1H);
- 1H NMR (400 MHz, DMSO-d6 Hz) 6.49 (m, 1H) 7.07 (m, 2H) 7.94 (bs, 1H) 8.30 (s, 1H) 9.35 (bs, 1H);
- 1H NMR (400 MHz, DMSO-d6) δ ppm 0.80 (s, 9H) 1.62 (m, 2H) 2.26 (s, 3H) 2.52 (m, 4H) 3.13 (m, 4H) 4.86 (m, 2H) 6.58 (m, 1H) 7.13 (m, 1H) 7.20 (m, 1H) 8.41 (s, 1H) 9.20 (bs, 1H);
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.89 (s, 3H) 2.74 (m, 2H) 2.95 (m, 2H) 4.30 (s, 3H) 6.93 (m, 2H) 7.52 (m, 2H) 8.33 (s, 1H) 9.28 (bs, 1H);
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.09 (m, 4H) 2.83 (m, 5H) 2.97 (t, 2H) 4.33 (s, 3H) 7.02 (m, 2H) 7.61 (m, 2H) 8.38 (s, 1H) 9.39 (s, 1H);
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.81 (m, 5H) 2.93 (t, 2H) 3.09 (m, 4H) 3.71 (m, 4H) 4.32 (s, 3H) 6.64 (m, 1H) 7.17 (m, 1H) 7.29 (m, 2H) 8.38 (s, 1H) 9.42 (s, 1H) 10.33 (s, 1H);
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.89 (t, 2H) 2.97 (t, 2H) 3.70 (s, 3H) 7.51 (m, 3H) 7.67 (m, 2H) 8.56 (s, 1H) 12.81 (bs, 1H);
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.92 (t, 2H) 2.97 (t, 2H) 4.23 (s, 2H) 4.26 (s, 3H) 7.23 (m, 1H) 7.32 (m, 2H) 7.36 (m, 2H) 8.65 (s, 1H) 12.82 (bs, 1H);
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.60 (m, 5H) 2.89 (m, 2H) 3.04 (m, 4H) 3.33 (m, 4H) 6.31 (s, 2H) 6.78 (d, 2H) 7.39 (m, 3H) 7.47 (m, 2H) 7.63 (m, 2H) 7.67 (s, 1H) 8.42 (s, 1H) 9.33 (s, 1H) 13.55 (s, 1H).
-
- 45 mg (0.14 mmol) of 8-anilino-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid were dissolved in 7 mL of dimethylformamide and 145.6 mg (0.28 mmol) of (benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP); 0.12 mL (0.70 mmol) of N,N-diisopropyl-N-ethyl amine and 0.08 mL (0.70 mmol) of aniline were then added. After 6 hours the solvent was removed, the residue was redissolved with dichloromethane and washed with water. The organic layer was dried over Na2SO4 and evaporated to dryness. The product crystallized from methanol (60% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm: 2.88 (m, 2H) 3.07 (m, 2H) 4.43 (s, 3H,) 6.97-7.85 (6m, 10H) 8.45 (s, 1H) 9.55 (s, 1H) 10.09 (s, 1H).
- By working analogously the following compounds were prepared:
-
TABLE XIII B04-X00-M00(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 2.72 (d, J = 4.76 Hz, 3 H) 2.79 (t, J = 7.68 Hz, 2 H) 2.97 (t, J = 7.68 Hz, 2 H) 4.31 (s, 3 H) 6.94 (t, J = 7.38 Hz, 1 H) 7.21-7.32 (m, 2 H) 7.68 (d, J = 7.56 Hz, 2 H) 8.06 (q, J = 4.35 Hz, 1 H) 8.38 (s, 1 H) 9.48 (s, 1 H) B04-X00-M00(C01)-D08 1H NMR (400 MHz, DMSO-d6) δ ppm 1.89 (m, 4 H) 2.83 (m, 2 H) 2.94 (m, 2 H) 3.49 (t, J 6.77 Hz, 2 H) 3.83 (t, J 6.58 Hz, 2 H) 4.34 (s, 3 H) 6.97 (t, J 7.32 Hz, 1 H) 7.31 (dd, J 8.29, 7.56 Hz, 2 H) 7.73 (d, J 7.44 Hz, 2 H) 8.42 (s, 1 H) 9.51 (s, 1 H) B04-X00-M00(C01)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 2.65 (m, 2 H) 3.01 (m, 2 H) 4.36 (s, 3 H) 4.43 (d, J 6.34 Hz, 2 H) 6.97 (t, J 7.32 Hz, 1 H) 7.31 (m, 7 H) 7.72 (d, J 7.5 Hz, 2 H) 8.42 (s, 1 H) 8.71 (t, J 6.4 Hz, 1 H) 9.52 (s, 1 H) B04-X00-M00(C01)-D10 1H NMR (400 MHz, DMSO-d6) δ ppm 2.65-3.5 (m, 15 H) 4.35 (s, 3 H) 6.98 (t, J 7.4 Hz, 1 H) 7.32 (dd, J 8.29, 7.56 Hz, 2 H) H) 7.73 (d, J 7.5 Hz, 2 H) 8.44 (s, 1 H) 9.55 (s, 1 H) B04-X00-M00(C01)-D11 1H NMR (400 MHz, DMSO-d6) δ ppm 0.88 (d, J 6.71 Hz, 6 H) 1.86 (m, 1 H) 2.83 (dd, J 8.05, 7.19 Hz, 2 H) 3.00 (t, J 7.74 Hz, 2 H) 3.07 (t, J 6.58 Hz, 2 H) 4.36 (s, 3 H) 6.97 (tt, J 7.32, 1.10 Hz, 1 H) 7.31 (dd, J 8.47, 7.50 Hz, 2 H) 7.72 (dd, J 8.54, 0.98 Hz, 2 H) 8.09 (t, J 6.16 Hz, 1 H) 8.42 (s, 1 H) 9.52 (s, 1 H) B04-X00-M00(C01)-D12 1H NMR (400 MHz, DMSO-d6) δ ppm 2.83 (m, 2 H) 3.01 (m, 2 H) 3.28 (s, 3 H) 3.43 (m, 4 H) 4.36 (s, 3 H) 6.98 (m, 1 H) 7.31 (dd, J 8.41, 7.44 Hz, 2 H) 7.72 (dd, J 8.66, 0.98 Hz, 2 H) 7.99 (t, J 5.49 Hz, 1 H) 8.42 (s, 1 H) 9.52 (s, 1 H) B04-X00-M00(C01)-D13 1H NMR (400 MHz, DMSO-d6) δ ppm 1.16 (m, 6 H) 1.83 (m, 2 H) 2.83 (m, 2 H) 3.01 (m, 2 H) 2.9-3.5 (m, 8 H) 4.36 (s, 3 H) 6.97 (m, 1 H) 7.31 (m, 2 H) 7.72 (dd, J 8.54, 0.98 Hz, 2 H) 8.09 (t, J 6.16 Hz, 1 H) 8.43 (s, 1 H) 9.53 (s, 1 H) B04-X00-M00(C01)-D14 1H NMR (400 MHz, DMSO-d6) δ ppm 1.54 (m, 4 H) 1.70 (m, 2 H) 1.85 (m, 2 H) 2.83 (m, 2 H) 3.0 (m, 2 H) 4.21 (m, 1 H) 4.35 (s, 3 H) 6.97 (t, J 7.32 Hz, 1 H) 7.31 (dd, J 8.29, 7.56 Hz, 2 H) 7.73 (d, J 7.44 Hz, 2 H) 8.42 (s, 1 H) 9.51 (s, 1 H) B04-X00-M00(C01)-D15 1H NMR (400 MHz, DMSO-d6) δ ppm 2.65 (s, 3 H) 2.83 (m, 2 H) 3.01 (m, 2 H) 3.06 (m, 8 H) 4.42 (s, 3 H) 6.75 (m, 1 H) 6.99 (t, J 7.32 Hz, 1 H) 7.20 (t, J 8.05 Hz, 1 H) 7.32 (m, 3 H) 7.55 (bs, 1 H) 7.72 (dd, J 8.66, 0.98 Hz, 2 H) 8.45(s, 1 H) 9.55 (s, 1 H) 9.91 (s, 1 H) B04-X00-M00(C01)-D16 1H NMR (400 MHz, DMSO-d6) δ ppm 2.84 (m, 2 H) 3.01 (m, 2 H) 4.35 (s, 3 H) 4.43 (d, J 6.10 Hz, 2 H) 6.25 (dd, J 3.17, 0.85 Hz, 1 H) 6.40 (dd, J 3.17, 1.83 Hz, 1 H) 6.97 (m, 1 H) 7.31 (dd, J 8.54, 7.44 Hz, 2 H) 7.57 (dd, J 1.83, 0.85 Hz, 1 H) 7.72 (dd, J 8.60, 1.04 Hz, 2 H) 8.42 (s, 1 H) 8.54 (t, J 6.04 Hz, 1 H) 9.52 (s, 1 H) B04-X00-M00(C01)-D17 1H NMR (400 MHz, DMSO-d6) δ ppm 1.7 (m, 2 H) 2.83 (m, 2 H) 3.01 (m, 2 H) 3.2-3.7 (m, 12 H) 4.35 (s, 3 H) 6.98 (m, 1 H) 7.32 (dd, J 8.54, 7.44 Hz, 2 H) 7.72 (dd, J 8.54, 0.98 Hz, 2 H) 8.38 (m, 1 H) 8.42 (s, 1 H) 9.52 (s, 1 H) B00-X00-M00(C21)-D04] 1H NMR (400 MHz, DMSO-d6) δ ppm 1.94 (d, J = 10.73 Hz, 2 H) 2.11-2.31 (m, 4 H) 2.70 (t, J = 7.93 Hz, 2 H) 2.76 (d, J = 4.76 Hz, 3 H) 2.86-3.02 (m, J = 7.56, 7.56 Hz, 4 H) 3.55 (s, 2 H) 5.50-5.62 (m, 1 H) 6.51 (s, 2 H) 7.19- 7.39 (m, 5 H) 7.93-8.04 (m, 1 H) 8.17 (s, 1 H) B00-X00-M00(C01)-D18 1H NMR (400 MHz, DMSO-d6) δ ppm 2.79 (m, 2 H) 3.03 (m, 2 H) 4.40 (s, 3 H) 6.61 (bs, 2 H) 7.18 (m, 1 H) 7.87 (m, 1 H) 8.18 (m, 1 H) 8.22 (m, 1 H) 8.37 (m, 1 H) 9.46 (s, 1 H). B04-X00-M00(C01)-D27 B04-X00-M04(C01)-D27 B04-X00-M00(C21)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 1.93 (d, J = 9.76 Hz, 2 H) 2.00-2.10 (m, 2 H) 2.13-2.28 (m, 2 H) 2.81 (t, J = 7.44 Hz, 2 H) 2.88 (d, J = 11.22 Hz, 2 H) 3.00 (t, J = 7.62 Hz, 2 H) 3.51 (s, 2 H) 4.42-4.50 (m, J = 6.46 Hz, 2 H) 5.49-5.62 (m, 1 H) 6.99-7.40 (m, 13 H) 7.61 (d, J = 8.66 Hz, 2 H) 8.42 (s, 1 H) 8.68 (t, J = 6.16 Hz, 1 H) 9.44 (s, 1 H) B04-X00-M00(C01)-D19 1H NMR (400 MHz, DMSO-d6) δ ppm 2.85 (m, 4 H) 3.01 (m, 2 H) 3.49 (m, 2 H) 4.35 (s, 3 H) 6.97 (m, 1 H) 7.31 (m, 7 H) 7.72 (dd, J 8.60, 1.04 Hz, 2 H) 8.18 (m, 1 H) 8.42 (s, 1 H) 9.52 (s, 1 H) B10-X00-M00(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 2.75 (d, J = 4.76 Hz, 3 H) 2.81 (t, J = 7.68 Hz, 2 H) 2.85 (d, J = 4.39 Hz, 3 H) 2.94-3.07 (m, 4 H) 3.11-3.25 (m, 2 H) 3.51 (d, J = 11.83 Hz, 2 H) 3.73 (d, J = 13.66 Hz, 2 H) 4.33 (s, 3 H) 6.99 (d, J = 9.15 Hz, 2 H) 7.60 (d, J = 9.02 Hz, 2 H) 8.08 (q, J = 4.67 Hz, 1 H) 8.37 (s, 1 H) 9.40 (s, 1 H) 10.36 (s, 1 H) B10-X00-M00(C01)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 2.29 (s, 3 H) 2.55 (m, 4 H) 2.80 (m, 2 H) 2.99 (m, 2 H) 3.10 (m, 2 H) 4.34 (s, 3 H) 4.44 (d, J 6.34 Hz, 2 H) 6.92 (d, J 9.02 Hz, 2 H) 7.25 (m, 1 H) 7.32 (m, 4 H) 7.72 (d, J 7.5 Hz, 2 H) 8.35 (s, 1 H) 8.69 (t, J 6.4 Hz, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D21 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H), 2.80 (t, 2 H), 2.99 (t, 2 H), 3.09 (bs, 4 H), 3.34 (m, 4 H), 4.34 (s, 3 H), 4.40 (d, 2 H), 6.93 (d, 2 H), 7.15 (t, 2 H), 7.37 (t, 2 H), 7.53 (d, 2 H), 8.35 (s, 1 H), 8.74 (t, 1 H), 9.26 (s, 1 H). B10-X00-M00(C01)-D22 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H), 2.80 (t, 2 H), 2.99 (t, 2 H), 3.09 (bs, 4 H), 3.34 (m, 4 H), 3.74, (s, 3 H), 4.33 (d + s, 5 H), 6.90 (t, 4 H), 7.25 (d, 2 H), 7.53 (d, 2 H), 8.35 (s, 1 H), 8.60 (t, 1 H), 9.26 (s, 1 H). B10-X00-M00(C01)-D23 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H), 2.52 (m, 4 H), 2.80 (t, 2 H), 2.99 (t, 2 H), 3.09 (bs, 4 H), 4.35 (s, 3 H), 4.50 (d, 2 H), 6.93 (d, 2 H), 7.55 (m, 4 H), 7.69 (d, 2 H), 8.35 (s, 1 H), 8.87 (t, 1 H), 9.26 (s, 1 H). B10-X00-M00(C01)-D24 1H NMR (400 MHz, DMSO-d6) δ ppm 1.50 (d, 3 H), 2.24 (s, 3 H), 2.47 (m, 4 H), 2.78 (t, 2 H), 2.96 (t, 2 H), 3.08 (m, 4 H), 4.35 (s, 3 H), 5.15 (m, 1 H), 6.91 (d, 2 H), 7.24 (m, 1 H), 7.33 (t, 2 H), 7.42 (m, 2 H), 7.53 (d, 2 H), 8.34 (s, 1 H), 8.43 (d, 1 H), 9.25 (s, 1 H). B10-X00-M00(C19)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 2.23 (s, 3 H) 2.24 (s, 3 H) 2.48 (m, 4 H) 3.12 (m, 4 H) 5.44 (m, 1 H) 6.95 (m, 2 H) 7.38 (m, 2 H) 7.94 (s, 1 H) 8.34 (s, 1 H) 9.12 (s, 1H). B10-X00-M00(C01)-D40 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3 H) 2.80 (t, 2 H) 2.99 (t, 3 H) 3.09 (m, 4 H) 4.35 (s, 3 H) 4.43 (d, 2 H) 6.93 (d, 2 H) 7.07 (m, 1 H) 7.14 (m, 1 H) 7.18 (m, 1 H) 7.37 (m, 1 H) 7.53 (d, 2 H) 8.35 (m, 1 H) 8.79 (t, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D16 1H NMR (400 MHz, DMSO-d6) δ ppm 2.95 (m, 15 H) 4.33 (s, 3 H) 4.43 (d, J = 5.97 Hz, 2 H) 6.25 (dd, J = 3.17, 0.85 Hz, 1 H) 6.40 (dd, J = 3.23, 1.89 Hz, 1 H) 6.94 (d, J = 9.02 Hz, 2 H) 7.56 (d, J = 9.02 Hz, 2 H) 7.57 (dd, J = 1.83, 0.85 Hz, 1 H) 8.36 (s, 1 H) 8.52 (t, J = 6.16 Hz, 1 H) 9.29 (s, 1 H) B10-X00-M00(C01)-D76 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3 H) 2.52 (m, 12 H) 2.80 (t, 2 H) 2.99 (t, 2 H) 3.08 (m, 4 H) 3.59 (m, 4 H) 4.33 (s, 3 H) 6.92 (d, 2 H) 7.52 (d, 2 H) 7.99 (t, 1 H) 8.35 (s, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D47 1H NMR (400 MHz, DMSO-d6) δ ppm 2.36 (s, 3 H) 2.64 (m, 4 H) 2.78 (t, 2 H) 2.96 (t, 2 H) 3.13 (m, 4 H) 4.35 (s, 3 H) 5.15 (m, 1 H) 6.94 (d, 2 H) 7.24 (m, 1 H) 7.33 (m, 2 H) 7.41 (m, 2 H) 7.54 (d, 2 H) 8.34 (s, 1 H) 8.42 (d, 1 H) 9.27 (s, 1 H) B10-X00-M00(C01)-D61 1H NMR (400 MHz, DMSO-d6) δ ppm 1.49 (d, 3 H) 2.27 (s, 3 H) 2.78 (t, 2 H) 2.96 (t, 2 H) 3.09 (m, 4 H) 4.35 (s, 3 H) 5.15 (m, 1 H) 6.93 (d, 2 H) 7.24 (m, 1 H) 7.33 (m, 2 H) 7.41 (m, 2 H) 7.52 (d, 2 H) 8.34 (s, 1 H) 8.42 (d, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D50 1H NMR (400 MHz, DMSO-d6) δ ppm 2.25 (s, 3 H) 2.52 (m, 4 H) 2.80 (t, 2 H) 2.99 (t, 2 H) 3.08 (m, 4 H) 3.60 (s, 3 H) 4.32 (s, 3 H) 4.39 (d, 2 H) 5.89 (m, 1 H) 5.97 (m, 1 H) 6.64 (m, 1 H) 6.92 (d, 2 H) 7.52 (d, 2 H) 8.26 (t, 1 H) 8.35 (s, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D44 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3 H) 2.49 (m, 4 H) 2.82 (t, 2 H) 3.01 (t, 2 H) 3.10 (m, 4 H) 4.38 (s, 3 H) 4.46 (d, 2 H) 6.94 (d, 2 H) 7.33 (d, 2 H) 7.55 (d, 2 H) 8.37 (s, 1 H) 8.52 (d, 2 H) 8.88 (t, 1 H) 9.29 (s, 1 H) B10-X00-M00(C01)-D45 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.80 (t, 2 H) 2.99 (t, 2 H) 3.09 (m, 4 H) 4.34 (s, 3 H) 4.44 (d, 2 H) 6.93 (d, 2 H) 7.38 (m, 1 H) 7.53 (d, 2 H) 7.72 (m, 1 H) 8.35 (s, 1 H) 8.46 (m, 1 H) 8.55 (m, 1 H) 8.83 (t, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D34 1H NMR (400 MHz, DMSO-d6) δ ppm 2.28 (m, 3 H) 2.53 (m, 4 H) 2.78 (m, 2 H) 2.94 (m, 2 H) 3.10 (m, 4 H) 3.74 (m, 2 H) 4.37 (m, 3 H) 5.00 (t, 1 H) 5.03 (m, 1 H) 6.92 (m, 2 H) 7.25 (m, 1 H) 7.33 (m, 2 H) 7.39 (m, 2 H) 7.54 (m, 2 H) 8.27 (d, 1 H) 8.34 (m, 1 H) 9.26 (m, 1 H) B10-X00-M00(C01)-D60 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.52 (m, 4 H) 2.78 (t, J = 7.74 Hz, 2 H) 2.95 (t, 2 H) 3.09 (m, 4 H) 3.74 (m, 2 H) 4.37 (s, 3 H) 5.01 (m, 2 H) 6.92 (d, 2 H) 7.30 (m, 5 H) 7.53 (d, 2 H) 8.27 (d, J = 8.29 Hz, 1 H) 8.34 (s, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D42 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.52 (m, 4 H) 2.80 (t, 2 H) 2.99 (s, 2 H) 3.09 (m, 4 H) 4.34 (s, 3 H) 4.39 (d, 2 H) 6.93 (d, 2 H) 7.18 (m, 1 H) 7.37 (m, 2 H) 7.53 (d, 2 H) 8.35 (s, 1 H) 8.81 (t, 1 H) 9.26 (m, 1 H) B10-X00-M00(C01)-D41 1H NMR (400 MHz, DMSO-d6) δ ppm 0.89 (t, J = 7.32 Hz, 3 H) 1.87 (m, 2 H) 2.27 (s, 3 H) 2.52 (m, 4 H) 2.77 (m, 2 H) 2.95 (m, 2 H) 3.09 (m, 4 H) 4.35 (s, 3 H) 4.88 (td, J = 8.75, 6.40 Hz, 1 H) 6.91 (d, J = 9.15 Hz, 2 H) 7.23 (m, 1 H) 7.33 (t, J = 7.50 Hz, 2 H) 7.42 (m, 2 H) 7.54 (d, J = 9.02 Hz, 2 H) 8.34 (s, 1 H) 8.41 (d, J = 8.78 Hz, 2 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D54 1H NMR (400 MHz, DMSO-d6) δ ppm 2.24 (s, 3 H) 2.52 (m, 10 H) 2.78 (t, 2 H) 2.95 (m, 4 H) 3.08 (m, 4 H) 3.59 (m, 4 H) 4.37 (s, 3 H) 5.16 (m, 1 H) 6.92 (d, 2 H) 7.24 (m, 1 H) 7.33 (m, 2 H) 7.42 (m, 2 H) 7.53 (d, 2 H) 8.34 (s, 1 H) 8.40 (d, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D67 1H NMR (400 MHz, DMSO-d6) δ ppm 2.20 (s, 3 H) 2.26 (s, 3 H) 2.51 (m, 4 H) 2.80 (t, J = 7.68 Hz, 2 H) 2.99 (t, J = 7.68 Hz, 2 H) 3.08 (m, 4 H) 3.66 (s, 3 H) 4.30 (d, J = 5.97 Hz, 2 H) 4.32 (s, 3 H) 5.94 (s, 1 H) 6.91 (d, J = 9.15 Hz, 2 H) 7.54 (d, J = 9.02 Hz, 2 H) 8.23 (t, J = 5.97 Hz, 1 H) 8.35 (s, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D49 1H NMR (400 MHz, DMSO-d6) δ ppm 2.25 (s, 3 H) 2.51 (m, 4 H) 2.80 (t, J = 7.68 Hz, 2 H) 3.00 (t, J = 7.68 Hz, 2 H) 3.08 (m, 4 H) 4.33 (s, 3 H) 4.58 (d, J = 6.22 Hz, 2 H) 6.91 (d, J = 9.02 Hz, 2 H) 6.96 (dd, J = 5.06, 3.48 Hz, 1 H) 7.01 (dd, J = 3.41, 1.10 Hz, 1 H) 7.37 (dd, J = 5.06, 1.28 Hz, 1 H) 7.53 (d, J = 9.15 Hz, 2 H) 8.35 (s, 1 H) 8.74 (t, J = 6.22 Hz, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D68 1H NMR (400 MHz, DMSO-d6) δ ppm 0.89 (t, J = 7.26 Hz, 3 H) 1.86 (m, 2 H) 2.25 (s, 3 H) 2.49 (m, 4 H) 2.78 (m, 2 H) 2.95 (m, 2 H) 3.08 (m, 4 H) 4.35 (s, 3 H) 4.88 (m, 1 H) 6.91 (d, J = 9.15 Hz, 2 H) 7.23 (m, 1 H) 7.33 (m, 2 H) 7.42 (m, 2 H) 7.53 (d, J = 9.02 Hz, 2 H) 8.34 (s, 1 H) 8.41 (d, J = 8.78 Hz, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D64 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.52 (m, 4 H) 2.83 (m, 4 H) 2.90 (m, 3 H) 3.09 (m, 4 H) 3.18 (s, 3 H) 4.30 (d, J = 17.68 Hz, 6 H) 4.69 (s, 2 H) 4.97 (s, 2 H) 6.91 (m, J = 9.02 Hz, 2 H) 7.29 (m, 5 H) 7.52 (m, 2 H) 8.36 (s, 1 H) 9.27 (s, 1 H) B10-X00-M00(C01)-D53 1H NMR (400 MHz, DMSO-d6) δ ppm 1.50 (d, 3 H) 2.27 (s, 3 H) 2.52 (m, 4 H) 2.78 (t, 2 H) 2.95 (t, 2 H) 3.09 (m, 4 H) 4.37 (s, 3 H) 5.13 (m, 1 H) 6.93 (d, 2 H) 7.41 (d, 2 H) 7.53 (d, 2 H) 8.35 (s, 1 H) 8.51 (m, 2 H) 8.66 (d, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D52 1H NMR (400 MHz, DMSO-d6) δ ppm 1.72 (s, 6 H) 2.26 (s, 3 H) 2.50 (m, 4 H) 2.79 (t, 2 H) 2.92 (t, 2 H) 3.10 (m, 4 H) 4.38 (s, 3 H) 6.94 (d, 2 H) 7.22 (m, 1 H) 7.34 (m, 2 H) 7.43 (m, 2 H) 7.54 (d, 2 H) 7.81 (s, 1 H) 8.36 (s, 1 H) 9.28 (s, 1 H) B10-X00-M00(C01)-D57 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3 H) 2.52 (m, 4 H) 2.81 (t, 2 H) 3.01 (t, 2 H) 3.09 (m, 4 H) 4.33 (s, 3 H) 4.92 (d, 2 H) 6.92 (d, 2 H) 7.57 (m, 6 H) 7.85 (m, 1 H) 7.96 (m, 1 H) 8.24 (m, 1 H) 8.35 (s, 1 H) 8.69 (t, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D59 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.52 (m, 4 H) 2.80 (t, J = 7.68 Hz, 2 H) 2.99 (t, J = 7.62 Hz, 2 H) 3.09 (m, 4 H) 4.32 (d, J = 5.85 Hz, 2 H) 4.33 (s, 3 H) 5.98 (s, 2 H) 6.80 (dd, J = 7.93, 1.59 Hz, 1 H) 6.86 (d, J = 7.80 Hz, 1 H) 6.91 (d, J = 2.56 Hz, 1 H) 6.91 (d, J = 8.05 Hz, 2 H) 7.54 (d, J = 9.15 Hz, 2 H) 8.35 (s, 1 H) 8.63 (t, J = 6.40 Hz, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D37 1H NMR (400 MHz, DMSO-d6) δ ppm 1.49 (d, J = 7.07 Hz, 3 H) 2.27 (s, 3 H) 2.51 (m, 4 H) 2.78 (t, J = 7.68 Hz, 2 H) 2.95 (t, J = 7.74 Hz, 2 H) 3.09 (m, 4 H) 4.35 (s, 3 H) 5.15 (m, 1 H) 6.91 (d, J = 9.15 Hz, 2 H) 7.15 (t, J = 8.96 Hz, 2 H) 7.46 (dd, J = 8.54, 5.61 Hz, 2 H) 7.53 (d, J = 9.15 Hz, 2 H) 8.34 (s, 1 H) 8.49 (d, J = 8.41 Hz, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D74 1H NMR (400 MHz, DMSO-d6) δ ppm 0.92 (m, 2 H) 1.18 (m, 4 H) 1.67 (m, 5 H) 2.27 (s, 3 H) 2.52 (m, 4 H) 2.79 (t, 2 H) 2.98 (t, 2 H) 3.08 (m, 6 H) 4.33 (s, 3 H) 6.92 (d, 2 H) 7.53 (d, 2 H) 8.05 (t, 1 H) 8.35 (s, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D39 1H NMR (400 MHz, DMSO-d6) δ ppm 1.68 (m, 4 H) 2.24 (s, 3 H) 2.52 (m, 8 H) 2.78 (t, 2 H) 2.95 (t, 2 H) 3.08 (m, 4 H) 4.36 (s, 3 H) 5.11 (m, 1 H) 6.92 (d, 2 H) 7.33 (m, 3 H) 7.41 (m, 2 H) 7.52 (d, 2 H) 8.34 (s, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D51 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.52 (m, 4 H) 2.79 (t, J = 7.80 Hz, 2 H) 2.95 (m, 2 H) 3.09 (m, 4 H) 4.37 (s, 3 H) 5.53 (d, J = 7.80 Hz, 1 H) 6.92 (d, J = 9.15 Hz, 2 H) 7.31 (m, 1 H) 7.38 (m, 2 H) 7.38 (m, 1 H) 7.47 (m, 2 H) 7.54 (d, J = 9.15 Hz, 2 H) 7.86 (s, 1 H) 8.12 (d, J = 7.80 Hz, 1 H) 8.35 (s, 1 H) 9.27 (s, 1 H) B10-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3 H) 2.53 (m, 10 H) 2.80 (t, 2 H) 2.95 (m, 4 H) 3.10 (m, 4 H) 3.58 (m, 4 H) 4.39 (s, 3 H) 5.18 (m, 1 H) 6.94 (d, 2 H) 7.26 (m, 1 H) 7.35 (m, 2 H) 7.44 (m, 2 H) 7.55 (d, 2 H) 8.36 (s, 1 H) 8.42 (d, 1 H) 9.28 (s, 1 H) B10-X00-M00(C01)-D62 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.52 (m, 4 H) 2.80 (t, J = 7.68 Hz, 2 H) 2.98 (t, J = 7.56 Hz, 2 H) 3.09 (m, 4 H) 4.35 (s, 3 H) 6.36 (d, J = 8.78 Hz, 1 H) 6.91 (d, J = 9.15 Hz, 2 H) 7.28 (m, 2 H) 7.36 (t, J = 7.50 Hz, 4 H) 7.41 (m, 4 H) 7.54 (d, J = 9.15 Hz, 2 H) 8.35 (s, 1 H) 8.70 (d, J = 8.90 Hz, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D75 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (m, 11 H) 1.12 (d, J = 6.83 Hz, 3 H) 2.26 (s, 3 H) 2.51 (m, 4 H) 2.80 (t, J = 7.62 Hz, 2 H) 2.95 (m, 2 H) 3.09 (m, 4 H) 3.82 (m, 1 H) 4.33 (s, 3 H) 6.91 (d, J = 9.02 Hz, 2 H) 7.54 (d, J = 9.02 Hz, 2 H) 7.65 (d, J = 9.27 Hz, 1 H) 8.35 (s, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D46 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3 H) 2.50 (m, 4 H) 2.78 (t, J = 7.80 Hz, 2 H) 2.96 (m, 2 H) 3.09 (m, 4 H) 3.30 (s, 3 H) 3.60 (dd, J = 9.94, 5.18 Hz, 1 H) 3.78 (dd, J = 10.00, 7.93 Hz, 1 H) 4.37 (s, 3 H) 5.23 (m, 1 H) 6.92 (d, J = 9.15 Hz, 2 H) 7.30 (m, 3 H) 7.43 (m, 2 H) 7.54 (d, J = 9.02 Hz, 2 H) 8.34 (s, 1 H) 8.41 (d, J = 8.54 Hz, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D56 1H NMR (400 MHz, DMSO-d6) δ ppm 0.68 (m, 6 H) 2.04 (m, 4 H) 2.25 (s, 3 H) 2.49 (m, 4 H) 2.78 (t, J = 7.68 Hz, 2 H) 2.91 (t, J = 7.80 Hz, 2 H) 3.08 (m, 4 H) 4.37 (s, 3 H) 6.91 (d, J = 9.15 Hz, 2 H) 7.28 (m, 5 H) 7.42 (s, 1 H) 7.54 (d, J = 9.02 Hz, 2 H) 8.34 (s, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D69 1H NMR (400 MHz, DMSO-d6) δ ppm 1.86 (m, 4 H) 2.25 (s, 3 H) 2.49 (m, 4 H) 2.77 (m, 2 H) 2.83 (t, J = 7.68 Hz, 2 H) 3.03 (m, 2 H) 3.08 (m, 4 H) 4.31 (s, 3 H) 5.20 (m, 1 H) 6.91 (d, J = 9.15 Hz, 2 H) 7.16 (m, 4 H) 7.53 (d, J = 9.15 Hz, 2 H) 8.14 (d, J = 9.02 Hz, 1 H) 8.36 (s, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D63 1H NMR (400 MHz, DMSO-d6) δ ppm 2.25 (s, 3 H) 2.49 (m, 4 H) 2.80 (t, J = 7.68 Hz, 2 H) 2.99 (t, J = 7.68 Hz, 2 H) 3.08 (m, 4 H) 3.15 (t, J = 8.66 Hz, 2 H) 4.33 (m, 2 H) 4.33 (s, 3 H) 4.50 (t, J = 8.72 Hz, 2 H) 6.69 (d, J = 8.17 Hz, 1 H) 6.91 (d, J = 9.15 Hz, 2 H) 7.05 (dd, J = 8.11, 1.89 Hz, 1 H) 7.20 (d, J = 1.22 Hz, 1 H) 7.53 (d, J = 9.02 Hz, 2 H) 8.35 (s, 1 H) 8.56 (t, J = 6.34 Hz, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D65 1H NMR (400 MHz, DMSO-d6) δ ppm 2.60 (m, 4 H) 2.25 (s, 3 H) 2.48 (m, 4 H) 2.93 (m, 4 H) 3.08 (m, 4 H) 4.32 (s, 3 H) 5.52 (q, J = 8.17 Hz, 1 H) 6.91 (d, J = 9.02 Hz, 2 H) 7.24 (m, 4 H) 7.54 (d, J = 9.15 Hz, 2 H) 8.27 (d, J = 8.66 Hz, 1 H) 8.36 (s, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D43 1H NMR (400 MHz, DMSO-d6) δ ppm 1.28 (m, 4 H) 2.26 (s, 3 H) 2.52 (m, 4 H) 2.79 (t, 2 H) 2.96 (t, 2 H) 3.09 (m, 4 H) 4.35 (s, 3 H) 6.93 (d, 2 H) 7.16 (m, 1 H) 7.25 (m, J = 10.00 Hz, 4 H) 7.53 (d, 2 H) 8.35 (s, 1 H) 8.86 (s, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D66 1H NMR (400 MHz, DMSO-d6) δ ppm 1.67 (s, 6 H) 2.24 (s, 3 H) 2.50 (m, 4 H) 2.76 (t, 2 H) 2.88 (t, 2 H) 3.08 (m, 4 H) 4.37 (s, 3 H) 6.93 (d, 2 H) 7.37 (m, 2 H) 7.52 (d, 2 H) 8.04 (s, 1 H) 8.33 (s, 1 H) 8.48 (m, 2 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D55 1H NMR (400 MHz, DMSO-d6) δ ppm 2.25 (s, 3 H) 2.52 (m, 4 H) 2.80 (t, 2 H) 2.99 (t, 2 H) 3.08 (m, 4 H) 4.35 (s, 3 H) 4.48 (d, 2 H) 6.93 (d, 2 H) 7.18 (m, 2 H) 7.31 (m, 2 H) 7.53 (d, 2 H) 8.35 (s, 1 H) 8.68 (t, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D35 1H NMR (400 MHz, DMSO-d6) δ ppm 2.24 (s, 3 H) 2.51 (m, 4 H) 2.80 (t, 2 H) 2.99 (t, 2 H) 3.08 (m, 4 H) 3.75 (s, 3 H) 4.34 (s, 3 H) 4.39 (d, 2 H) 6.83 (m, 1 H) 6.90 (m, 4 H) 7.24 (t, 1 H) 7.53 (d, 2 H) 8.35 (s, 1 H) 8.67 (t, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D48 1H NMR (400 MHz, DMSO-d6) δ ppm 2.24 (s, 3 H) 2.47 (m, 4 H) 2.80 (t, 2 H) 2.99 (t, 2 H) 3.08 (m, 4 H) 3.85 (s, 3 H) 4.35 (s, 3 H) 4.41 (d, 2 H) 6.92 (m, 3 H) 7.01 (m, 1 H) 7.17 (m, 1 H) 7.24 (m, 1 H) 7.53 (d, 2 H) 8.35 (s, 1 H) 8.38 (t, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D77 1H NMR (400 MHz, DMSO-d6) δ ppm 1.12 (t, J = 7.56 Hz, 6 H) 2.29 (s, 3 H) 2.55 (m, 4 H) 2.56 (q, J = 7.68 Hz, 4 H) 2.83 (t, J = 7.62 Hz, 2 H) 3.00 (t, J = 7.62 Hz, 2 H) 3.11 (m, 4 H) 4.40 (s, 3 H) 6.93 (d, J = 9.15 Hz, 2 H) 7.14 (d, J = 7.68 Hz, 2 H) 7.22 (dd, J = 8.29, 6.83 Hz, 1 H) 7.56 (d, J = 9.02 Hz, 2 H) 8.37 (s, 1 H) 9.28 (s, 1 H) 9.57 (s, 1 H) B10-X00-M00(C01)-D58 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3 H) 2.51 (m, 4 H) 2.80 (t, J = 7.74 Hz, 2 H) 2.99 (t, J = 7.62 Hz, 2 H) 3.08 (m, 4 H) 3.73 (s, 6 H) 4.34 (s, 3 H) 4.36 (d, J = 6.71 Hz, 2 H) 6.38 (t, J = 2.32 Hz, 1 H) 6.50 (d, J = 2.19 Hz, 2 H) 6.91 (d, J = 9.15 Hz, 2 H) 7.54 (d, J = 9.15 Hz, 2 H) 8.35 (s, 1 H) 8.64 (t, J = 6.28 Hz, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D20 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3 H) 2.52 (m, 4 H) 2.84 (t, J = 7.74 Hz, 2 H) 3.05 (t, J = 7.74 Hz, 2 H) 3.09 (m, 4 H) 4.41 (s, 3 H) 6.92 (d, J = 9.15 Hz, 2 H) 7.10 (tt, J = 7.39, 1.14 Hz, 1 H) 7.34 (dd, J = 8.29, 7.56 Hz, 2 H) 7.55 (d, J = 9.02 Hz, 2 H) 7.83 (dd, J = 8.66, 1.10 Hz, 2 H) 8.38 (s, 1 H) 9.28 (s, 1 H) 10.07 (s, 1 H) B10-X00-M00(C01)-D36 1H NMR (400 MHz, DMSO-d6) δ ppm 1.49 (m, 6 H) 2.27 (s, 3 H) 2.52 (m, 10 H) 2.78 (t, 2 H) 2.95 (t, 2 H) 3.09 (m, 4 H) 4.37 (s, 3 H) 5.12 (m, 1 H) 6.93 (d, 2 H) 7.24 (m, 1 H) 7.33 (m, 2 H) 7.39 (m, 2 H) 7.53 (d, 2 H) 8.34 (m, 2 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D70 1H NMR (400 MHz, DMSO-d6) δ ppm 2.28 (s, 3 H) 2.79 (t, 2 H) 2.97 (t, 2 H) 3.09 (m, 4 H) 3.35 (m, 4 H) 3.65 (dd, 1 H) 3.90 (dd, 1 H) 4.37 (s, 3 H) 5.25 (m, 1 H) 6.92 (d, J = 8.78 Hz, 2 H) 7.29 (m, 1 H) 7.37 (m, 2 H) 7.47 (m, 2 H) 7.53 (d, 2 H) 8.35 (s, 1 H) 8.82 (d, 1 H) 9.26 (s, 1 H) B10-X00-M00(C01)-D73 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.81 (m, 4 H) 3.11 (m, 6 H) 3.34 (m, 4 H) 4.33 (s, 3 H) 4.52 (m, 1 H) 5.38 (m, 1 H) 5.44 (d, 1 H) 6.92 (d, 2 H) 7.22 (m, 3 H) 7.53 (d, 2 H) 7.70 (m, 1 H) 8.38 (s, 1 H) 9.27 (s, 1H) B10-X00-M00(C01)-D165 1H NMR (400 MHz, DMSO-d6) δ ppm 2.04 (s, 3 H) 2.27 (s, 3 H) 2.52 (m, 4 H) 2.74 (t, 2 H) 2.87 (t, 2 H) 3.09 (m, 4 H) 3.35 (m, 8 H) 4.34 (s, 3 H) 6.92 (d, 2 H) 7.31 (m, 1 H) 7.43 (m, 4 H) 7.52 (d, 2 H) 8.32 (s, 1 H) 9.10 (s, 1 H) 9.25 (s, 1 H) B10-X00-M00(C01)-D144 1H NMR (400 MHz, DMSO-d6) δ ppm 1.81 (s, 3 H) 2.24 (m, 7 H) 2.47 (m, 4 H) 2.78 (m, 6 H) 3.08 (m, 4 H) 3.46 (m, 2 H) 3.55 (m, 2 H) 4.37 (s, 3 H) 6.93 (d, 2 H) 7.21 (m, 1 H) 7.35 (m, 4 H) 7.54 (d, 2 H) 8.35 (m, 2 H) 9.27 (s, 1 H) B10-X00-M00(C01)-D164 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.52 (m, 4 H) 2.78 (t, 2 H) 2.96 (t, 2 H) 3.09 (m, 4 H) 3.55 (m, 8 H) 4.34 (s, 3 H) 6.00 (d, 1 H) 6.92 (d, 2 H) 7.34 (m, 1 H) 7.43 (m, 4 H) 7.52 (d, 2 H) 8.24 (d, 1 H) 8.34 (s, 1 H) 9.26 (s, 1 H) B109-X00-M00(C01)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 2.28 (s, 3 H) 2.53 (m, 4 H) 2.83 (m, 2 H) 3.00 (m, 6 H) 4.36 (s, 3 H) 4.44 (d, J = 6.34 Hz, 2 H) 7.01 (dd, J = 9.94, 8.96 Hz, 1 H) 7.27 (m, 5 H) 7.37 (dd, J = 8.29, 2.19 Hz, 1 H) 7.67 (dd, J = 15.36, 2.44 Hz, 1 H) 8.41 (s, 1 H) 8.71 (t, J = 6.34 Hz, 1 H) 9.55 (s, 1 H) B109-X00-M00(C01)-D21 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.54 (m, 4 H) 2.82 (t, J = 7.68 Hz, 2 H) 2.99 (m, 6 H) 4.36 (s, 3 H) 4.41 (d, J = 6.34 Hz, 2 H) 7.01 (dd, J = 9.94, 8.96 Hz, 1 H) 7.15 (t, J = 8.96 Hz, 2 H) 7.37 (m, 3 H) 7.67 (dd, J = 15.43, 2.38 Hz, 1 H) 8.41 (s, 1 H) 8.75 (t, J = 6.28 Hz, 1 H) 9.55 (s, 1 H) B108-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.08 (s, 9 H) 2.71 (m, 4 H) 2.80 (t, 2 H) 2.99 (t, 2 H) 3.06 (m, 4 H) 4.34 (s, 3 H) 6.91 (d, 2 H) 7.25 (s, 1 H) 7.46 (s, 1 H) 7.51 d, 2 H) 8.34 (s, 1 H) 9.24 (s, 1 H) B108-X00-M00(C01)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 1.07 (s, 9 H) 2.71 (m, 4 H) 2.80 (t, 2 H) 2.99 (t, 2 H) 3.06 (m, 4 H) 4.34 (s, 3 H) 4.42 (d, 2 H) 6.91 (d, 2 H) 7.34 (m, 5 H) 8.35 (s, 1 H) 8.69 (t, 1 H) 9.24 (s, 1 H) B108-X00-M00(C01)-D44 1H NMR (400 MHz, DMSO-d6) δ ppm 1.08 (s, 9 H) 2.69 (m, 4 H) 2.80 (t, 2 H) 2.99 (t, 2 H) 3.06 (m, 4 H) 4.36 (s, 3 H) 4.44 (d, 2 H) 6.92 (d, 2 H) 7.31 (m, 2 H) 7.54 (d, 2 H) 8.35 (s, 1 H) 8.50 (m, 2 H) 8.86 (t, 1 H) 9.26 (s, 1 H) B108-X00-M00(C01)-D52 1H NMR (400 MHz, DMSO-d6) δ ppm 1.08 (s, 9 H) 1.70 (s, 6 H) 2.69 (m, 4 H) 2.77 (t, 2 H) 2.90 (t, 2 H) 3.06 (m, 4 H) 4.36 (s, 3 H) 6.92 (d, 2 H) 7.20 (m, 1 H) 7.32 (m, 2 H) 7.41 (m, 2 H) 7.51 (d, 2 H) 7.79 (s, 1 H) 8.33 (s, 1 H) 9.25 (s, 1 H) B108-X00-M00(C01)-D51 1H NMR (400 MHz, DMSO-d6) δ ppm 1.09 (s, 9 H) 2.69 (s, 4 H) 2.79 (t, J = 7.68 Hz, 2 H) 2.95 (t, J = 7.86 Hz, 2 H) 3.08 (s, 4 H) 4.37 (s, 3 H) 5.53 (d, J = 7.80 Hz, 1 H) 6.91 (d, J = 9.15 Hz, 2 H) 7.31 (m, 1 H) 7.38 (m, 3 H) 7.47 (d, J = 7.19 Hz, 2 H) 7.53 (d, J = 9.15 Hz, 2 H) 7.87 (s, 1 H) 8.12 (d, J = 7.68 Hz, 1 H) 8.34 (s, 1 H) 9.26 (s, 1 H) B108-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 1.09 (s, 9 H) 2.52 (m, 4 H) 2.68 (m, 4 H) 2.78 (t, 2 H) 2.92 (m, 4 H) 3.07 (m, 4 H) 3.56 (m, 4 H) 4.37 (s, 3 H) 5.16 (m, 1 H) 6.92 (d, 2 H) 7.24 (m, 1 H) 7.33 (m, 2 H) 7.42 (m, 2 H) 7.51 (d, 2 H) 8.34 (s, 1 H) 8.40 (d, 1 H) 9.25 (s, 1 H) B108-X00-M00(C01)-D35 1H NMR (400 MHz, DMSO-d6) δ ppm 1.07 (s, 9 H) 2.66 (s, 4 H) 2.80 (t, J = 7.68 Hz, 2 H) 2.99 (t, J = 7.62 Hz, 2 H) 3.06 (s, 4 H) 3.75 (s, 3 H) 4.34 (s, 3 H) 4.40 (d, J = 6.22 Hz, 2 H) 6.82 (ddd, J = 8.20, 2.59, 0.91 Hz, 1 H) 6.90 (m, 4 H) 7.24 (t, J = 8.05 Hz, 1 H) 7.53 (d, J = 8.90 Hz, 2 H) 8.35 (s, 1 H) 8.67 (t, J = 6.34 Hz, 1 H) 9.25 (s, 1 H) B19-X00-M00(C01)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 2.80 (t, 2 H) 3.00 (t, 2 H) 3.05 (m, 4 H) 3.75 (m, 4 H) 4.34 (s, 3 H) 4.44 (d, 2 H) 6.94 (d, 2 H) 7.34 (m, 5 H) 7.55 (d, 2 H) 8.35 (s, 1 H) 8.69 (t, 1 H) 9.28 (s, 1 H) B19-X00-M00(C01)-D21 1H NMR (400 MHz, DMSO-d6) δ ppm 2.80 (t, 2 H) 2.99 (t, 2 H) 3.05 (m, 4 H) 3.75 (m, 4 H) 4.34 (s, 3 H) 4.41 (d, 2 H) 6.94 (d, 2 H) 7.15 (m, 2 H) 7.36 (m, 2 H) 7.55 (d, 2 H) 8.35 (s, 1 H) 8.74 (t, 1 H) 9.28 (s, 1 H) B19-X00-M00(C01)-D24 1H NMR (400 MHz, DMSO-d6) δ ppm 1.51 (d, 3 H) 2.79 (t, 2 H) 2.96 (t, 2 H) 3.05 (m, 4 H) 3.75 (m, 4 H) 4.35 (s, 3 H) 5.15 (m, 1 H) 6.94 (d, 2 H) 7.23 (m, 1 H) 7.33 (m, 2 H) 7.41 (m, 2 H) 7.55 (d, 2 H) 8.35 (s, 1 H) 8.42 (d, 1 H) 9.27 (s, 1 H) B19-X00-M00(C01)-D47 1H NMR (400 MHz, DMSO-d6) δ ppm 1.51 (m, 3 H) 2.78 (m, 2 H) 2.96 (m, 2 H) 3.05 (m, 4 H) 3.75 (m, 4 H) 4.35 (s, 3 H) 5.15 (m, 1 H) 6.94 (m, 2 H) 7.24 (t, 1 H) 7.33 (t, 2 H) 7.41 (m, 2 H) 7.55 (m, 2 H) 8.35 (s, 1 H) 8.42 (s, 1 H) 9.27 (s, 1 H) B19-X00-M00(C01)-D42 1H NMR (400 MHz, DMSO-d6) δ ppm 2.90 (m, 4 H) 3.05 (m, 4 H) 3.76 (m, 4 H) 4.35 (s, 3 H) 4.40 (m, 2 H) 6.94 (m, 2 H) 7.37 (m, 3 H) 7.55 (m, 2 H) 8.36 (s, 1 H) 8.81 (m, 1 H) 9.28 (s, 1 H) B19-X00-M00(C01)-D41 1H NMR (400 MHz, DMSO-d6) δ ppm 0.89 (m, 3 H) 1.81 (m, 2 H) 2.78 (m, 4 H) 3.05 (m, 4 H) 3.76 (m, 4 H) 4.36 (s, 3 H) 4.88 (m, 1 H) 6.93 (m, 2 H) 7.23 (m, 1 H) 7.33 (m, 2 H) 7.41 (m, 2 H) 7.55 (m, 2 H) 8.34 (m, 1 H) 8.37 (d, 1 H) 9.27 (s, 1 H) B19-X00-M00(C01)-D68 1H NMR (400 MHz, DMSO-d6) δ ppm 1.81 (m, 2 H) 2.78 (m, 4 H) 3.05 (m, 4 H) 3.75 (m, 4 H) 4.36 (s, 3 H) 4.88 (m, 1 H) 6.93 (m, 2 H) 7.33 (m, 5 H) 7.55 (m, 2 H) 8.34 (m, 1 H) 8.40 (m, 1 H) 9.27 (m, 1 H) B19-X00-M00(C01)-D61 1H NMR (400 MHz, DMSO-d6) δ ppm 1.51 (m, 3 H) 2.96 (m, 4 H) 3.05 (m, 4 H) 3.75 (m, 4 H) 4.35 (s, 3 H) 5.15 (m, 1 H) 6.94 (m, 2 H) 7.33 (m, 5 H) 7.55 (m, 2 H) 8.35 (s, 1 H) 8.42 (m, 1 H) 9.27 (m, 1 H) B19-X00-M00(C01)-D40 1H NMR (400 MHz, DMSO-d6) δ ppm 2.91 (m, 4 H) 3.05 (m, 4 H) 3.75 (m, 4 H) 4.35 (s, 3 H) 4.43 (m, 2 H) 6.94 (d, 2 H) 7.18 (m, 4 H) 7.55 (d, 2 H) 8.36 (s, 1 H) 8.79 (s, 1 H) 9.28 (s, 1 H) B19-X00-M00(C01)-D34 1H NMR (400 MHz, DMSO-d6) δ ppm 2.79 (t, J = 7.68 Hz, 2 H) 2.96 (t, J = 7.74 Hz, 2 H) 3.05 (m, 4 H) 3.74 (m, 6 H) 4.37 (s, 3 H) 5.02 (m, 2 H) 6.93 (d, J = 9.15 Hz, 2 H) 7.24 (m, 1 H) 7.33 (m, 2 H) 7.39 (m, 2 H) 7.56 (d, J = 9.02 Hz, 2 H) 8.27 (d, J = 8.29 Hz, 1 H) .35 (s, 1 H) 9.28 (s, 1 H) B19-X00-M00(C01)-D44 1H NMR (400 MHz, DMSO-d6) δ ppm 3.01 (m, 4 H) 3.07 (s, 4 H) 3.77 (m, 4 H) 4.38 (m, 3 H) 4.46 (m, 2 H) 6.95 (m, 1 H) 7.33 (m, 2 H) 7.57 (m, 2 H) 8.38 (s, 1 H) 8.58 (m, 2 H) 8.88 (m, 1 H) 9.31 (s, 1 H) B19-X00-M00(C01)-D52 1H NMR (400 MHz, DMSO-d6) δ ppm 1.70 (s, 6 H) 2.77 (t, J = 7.80 Hz, 2 H) 2.90 (m, 2 H) 3.06 (m, 4 H) 3.76 (m, 4 H) 4.36 (s, 3 H) 6.93 (d, J = 9.15 Hz, 2 H) 7.20 (m, 1 H) 7.32 (t, J = 7.68 Hz, 2 H) 7.42 (m, 2 H) 7.56 (d, J = 9.15 Hz, 2 H) 7.79 (s, 1 H) 8.34 (s, 1 H) 9.27 (s, 1 H) B19-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 2.52 (m, 5 H) 2.78 (m, 5 H) 3.05 (m, 4 H) 3.56 (m, 4 H) 3.76 (m, 4 H) 4.37 (s, 3 H) 5.17 (m, 1 H) 7.30 (m, 9 H) 8.34 (m, 1 H) 8.40 (m, 1 H) 9.28 (s, 1 H) B19-X00-M00(C01)-D51 1H NMR (400 MHz, DMSO-d6) δ ppm 2.87 (m, 4 H) 3.06 (m, 4 H) 3.76 (m, 4 H) 4.37 (s, 3 H) 5.54 (m, 1 H) 6.94 (m, 2 H) 7.42 (m, 8 H) 7.86 (m, 1 H) 8.11 (d, 1 H) 8.35 (m, 1 H) 9.28 (m, 1 H) B19-X00-M00(C01)-D39 1H NMR (400 MHz, DMSO-d6) δ ppm 1.69 (m, 4 H) 2.52 (s, 6 H) 2.87 (d, 4 H) 3.05 (s, 4 H) 3.76 (s, 4 H) 4.37 (s, 3 H) 5.10 (m, 1 H) 7.30 (m, 9 H) 8.35 (m, 2 H) 9.28 (m, 1 H) B09-X00-M00(C01)-D35 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3 H) 2.52 (m, 4 H) 2.82 (t, 2 H) 3.00 (t, 2 H) 3.13 (m, 4 H) 3.75 (s, 3 H) 4.36 (s, 3 H) 4.40 (d, 2 H) 6.59 (m, 1 H) 6.83 (m, 1 H) 6.90 (m, 2 H) 7.14 (m, 1 H) 7.24 (m, 3 H) 8.40 (s, 1 H) 8.67 (t, 1 H) 9.33 (s, 1 H) B09-X00-M00(C01)-D34 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3 H) 2.52 (m, 4 H) 2.80 (t, 2 H) 2.97 (t, 2 H) 3.13 (m, 4 H) 3.73 (m, 2 H) 4.39 (s, 3 H) 5.00 (m, 2 H) 6.59 (m, 1 H) 7.14 (m, 1 H) 7.25 (m, 7 H) 8.26 (d, 1 H) 8.40 (s, 1 H) 9.33 (s, 1 H) B09-X00-M00(C01)-D43 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (m, 4 H) 2.28 (s, 3 H) 2.52 (m, 4 H) 2.81 (t, 2 H) 2.97 (t, 2 H) 3.14 (m, 4 H) 4.37 (s, 3 H) 6.59 (m, 1 H) 6.71 (m, 1 H) 7.24 (m, 7 H) 8.40 (s, 1 H) 8.86 (s, 1 H) 9.33 (s, 1 H) B09-X00-M00(C01)-D39 1H NMR (400 MHz, DMSO-d6) δ ppm 1.70 (m, 4 H) 2.25 (s, 3 H) 2.48 (m, 4 H) 2.83 (m, 10 H) 3.12 (m, 4 H) 4.38 (s, 3 H) 5.10 (m, 1 H) 6.58 (ddd, J = 8.14, 2.29, 0.67 Hz, 1 H) 7.14 (t, J = 7.99 Hz, 1 H) 7.24 (m, 3 H) 7.33 (m, 2 H) 7.42 (m, 2 H) 8.35 (d, J = 8.66 Hz, 1 H) 8.39 (s, 1 H) 9.33 (s, 1 H) B09-X00-M00(C01)-D51 1H NMR (400 MHz, DMSO-d6) δ ppm 2.28 (s, 3 H) 2.52 (m, 4 H) 2.81 (t, J = 7.80 Hz, 2 H) 2.97 (m, 2 H) 3.14 (m, 4 H) 4.39 (s, 3 H) 5.53 (d, J = 7.68 Hz, 1 H) 6.58 (dd, J = 8.11, 2.26 Hz, 1 H) 7.14 (t, J = 8.05 Hz, 1 H) 7.26 (m, 2 H) 7.31 (m, 1 H) 7.38 (m, 3 H) 7.48 (m, 2 H) 7.87 (s, 1 H) 8.12 (d, J = 7.68 Hz, 1 H) 8.40 (s, 1 H) 9.34 (s, 1 H) B09-X00-M00(C01)-D36 1H NMR (400 MHz, DMSO-d6) δ ppm 1.49 (m, 6 H) 2.29 (s, 3 H) 2.49 (m, 8 H) 2.80 (t, J = 7.68 Hz, 3 H) 2.97 (m, 3 H) 3.14 (m, 4 H) 4.39 (s, 3 H) 5.14 (m, 1 H) 6.58 (dd, J = 8.17, 1.83 Hz, 1 H) 7.15 (t, J = 8.11 Hz, 1 H) 7.26 (m, 3 H) 7.33 (t, J = 7.50 Hz, 2 H) 7.41 (m, 2 H) 8.36 (s, 1 H) 8.40 (s, 1 H) 9.34 (s, 1 H) B101-X00-M00(C01)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 2.16 (s, 3 H) 2.34 (m, 8 H) 2.83 (t, 2 H) 3.01 (t, 2 H) 3.40 (s, 2 H) 4.36 (s, 3 H) 4.43 (d, 2 H) 7.23 (m, 3 H) 7.34 (m, 3 H) 7.65 (d, 2 H) 8.41 (s, 1 H) 8.71 (t, 1 H) 9.50 (s, 1 H) B101-X00-M00(C01)-D44 1H NMR (400 MHz, DMSO-d6) δ ppm 2.16 (s, 3 H) 2.34 (m, 8 H) 2.83 (t, 2 H) 3.00 (t, 2 H) 3.40 (s, 2 H) 4.38 (s, 3 H) 4.44 (d, 2 H) 7.23 (d, 2 H) 7.30 (m, 2 H) 7.65 (d, 2 H) 8.41 (s, 1 H) 8.50 (m, 2 H) 8.87 (t, 1 H) 9.51 (s, 1 H) B101-X00-M00(C01)-D52 1H NMR (400 MHz, DMSO-d6) δ ppm 1.70 (s, 6 H) 2.16 (s, 3 H) 2.34 (m, 8 H) 2.79 (t, 2 H) 2.91 (t, 2 H) 3.40 (s, 2 H) 4.38 (s, 3 H) 7.21 (m, 3 H) 7.32 (m, 2 H) 7.42 (m, 2 H) 7.64 (d, 2 H) 7.80 (s, 1 H) 8.39 (s, 1 H) 9.50 (s, 1 H) B101-X00-M00(C01)-D37 1H NMR (400 MHz, DMSO-d6) δ ppm 1.50 (d, 3 H) 2.16 (s, 3 H) 2.34 (m, 8 H) 2.81 (t, 2 H) 2.97 (t, 2 H) 3.41 (m, 2 H) 4.37 (s, 3 H) 5.15 (m, 1 H) 7.15 (dd, 2 H) 7.23 (d, 2 H) 7.46 (dd, 2 H) 7.64 (d, 2 H) 8.40 (s, 1 H) 8.50 (d, 1 H) 9.49 (s, 1 H) B101-X00-M00(C01)-D51 1H NMR (400 MHz, DMSO-d6) δ ppm 2.16 (s, 3 H) 2.34 (m, 8 H) 2.81 (t, 2 H) 2.97 (t, 2 H) 3.40 (s, 2 H) 4.39 (s, 3 H) 5.52 (d, 1 H) 7.23 (d, 2 H) 7.31 (m, 1 H) 7.38 (m, 4 H) 7.46 (m, 2 H) 7.64 (d, 2 H) 7.87 (s, 2 H) 8.12 (d, 1 H) 8.40 (s, 1 H) 9.50 (s, 1 H) B102-X00-M00(C01)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 2.36 (m, 4 H) 2.83 (t, J = 7.74 Hz, 2 H) 3.01 (t, J = 7.68 Hz, 2 H) 3.43 (m, 2 H) 3.59 (m, 4 H) 4.36 (s, 3 H) 4.44 (d, J = 6.46 Hz, 2 H) 7.25 (m, 3 H) 7.32 (m, 4 H) 7.68 (d, J = 8.17 Hz, 2 H) 8.41 (s, 1 H) 8.71 (t, J = 6.28 Hz, 1 H) 9.52 (s, 1 H) B102-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 2.52 (m, 10 H) 2.81 (t, 2 H) 2.95 (t, 2 H) 3.43 (s, 2 H) 3.59 (m, 8 H) 4.39 (s, 3 H) 5.18 (m, 1 H) 7.25 (m, 3 H) 7.33 (m, 2 H) 7.42 (m, 2 H) 7.66 (d, 2 H) 8.40 (m, 2 H) 9.51 (s, 1 H) B102-X00-M00(C01)-D52 1H NMR (400 MHz, DMSO-d6) δ ppm 1.70 (s, 6 H) 2.36 (m, 4 H) 2.79 (t, 2 H) 2.91 (t, 2 H) 3.42 (s, 2 H) 3.59 (m, 4 H) 4.38 (s, 3 H) 7.25 (m, 3 H) 7.32 (m, 2 H) 7.42 (m, 2 H) 7.66 (d, 2 H) 7.80 (s, 1 H) 8.40 (s, 1 H) 9.51 (s, 1 H) B102-X00-M00(C01)-D51 1H NMR (400 MHz, DMSO-d6) δ ppm 2.37 (m, 4 H) 2.81 (t, 2 H) 2.97 (t, 2 H) 3.42 (s, 2 H) 3.59 (m, 4 H) 4.39 (s, 3 H) 5.54 (d, 1 H) 7.25 (d, 2 H) 7.31 (m, 1 H) 7.38 (m, 2 H) 7.46 (m, 2 H) 7.66 (d, 2 H) 7.87 (s, 2 H) 8.12 (d, 1 H) 8.41 (s, 1 H) 9.52 (s, 1 H) B102-X00-M00(C01)-D43 1H NMR (400 MHz, DMSO-d6) δ ppm 1.26 (m, 4 H) 2.37 (m, 4 H) 2.82 (t, 2 H) 2.97 (t, 2 H) 3.44 (m, 2 H) 3.59 (m, 4 H) 4.37 (s, 3 H) 7.16 (m, 1 H) 7.24 (m, 6 H) 7.66 (d, 2 H) 8.40 (s, 1 H) 8.87 (s, 1 H) 9.51 (s, 1 H) B102-X00-M00(C01)-D39 1H NMR (400 MHz, DMSO-d6) δ ppm 1.71 (m, 4 H) 2.36 (m, 4 H) 2.81 (t, 2 H) 2.97 (t, 2 H) 3.35 (m, 6 H) 3.42 (s, 2 H) 3.59 (m, 4 H) 4.39 (s, 3 H) 5.11 (m, 1 H) 7.25 (m, 3 H) 7.35 (m, 2 H) 7.43 (m, 2 H) 7.66 (d, 2 H) 8.40 (m, 2 H) 9.51 (s, 1 H) B102-X00-M00(C01)-D36 1H NMR (400 MHz, DMSO-d6) δ ppm 1.49 (m, 6 H) 2.38 (m, 10 H) 2.81 (t, 2 H) 2.97 (t, 2 H) 3.42 (s, 2 H) 3.59 (m, 4 H) 4.39 (s, 3 H) 5.11 (m, 1 H) 7.25 (m, 3 H) 7.33 (m, 2 H) 7.40 (m, 2 H) 7.66 (d, 2 H) 8.35 (d, 1 H) 8.40 (s, 1 H) 9.51 (s, 1 H) B105-X00-M00(C01)-D35 1H NMR (400 MHz, DMSO-d6) δ ppm 2.38 (m, 4 H) 2.92 (m, 4 H) 3.44 (m, 2 H) 3.59 (m, 4 H) 3.75 (s, 3 H) 4.39 (m, 5 H) 6.90 (m, 4 H) 7.25 (m, 2 H) 7.57 (m, 1 H) 7.77 (m, 1 H) 8.42 (m, 1 H) 8.68 (s, 1 H) 9.54 (m, 1 H) B105-X00-M00(C01)-D51 1H NMR (400 MHz, DMSO-d6) δ ppm 2.38 (m, 4 H) 2.90 (m, 4 H) 3.44 (m, 2 H) 3.59 (m, 4 H) 4.42 (s, 3 H) 5.53 (m, 1 H) 6.93 (m, 1 H) 7.47 (m, 8 H) 7.82 (m, J = 39.51 Hz, 2 H) 8.12 (m, 1 H) 8.42 (m, 1 H) 9.55 (m, 1 H) B105-X00-M00(C01)-D39 1H NMR (400 MHz, DMSO-d6) δ ppm 2.09 (m, 4 H) 2.38 (m, 4 H) 2.90 (m, 4 H) 3.45 (m, 4 H) 3.59 (m, 4 H) 4.42 (s, 3 H) 6.93 (m, 1 H) 7.25 (m, 7 H) 7.57 (m, 1 H) 7.76 (m, 1 H) 8.42 (m, 1 H) 9.54 (m, 1 H) B105-X00-M00(C01)-D34 1H NMR (400 MHz, DMSO-d6) δ ppm 2.38 (m, 4 H) 2.90 (m, 4 H) 3.45 (m, 2 H) 3.60 (m, 4 H) 3.73 (m, 2 H) 4.42 (m, 3 H) 5.00 (m, 2 H) 6.92 (m, 1 H) 7.32 (m, 6 H) 7.57 (m, 1 H) 7.77 (m, 1 H) 8.27 (m, 1 H) 8.42 (m, 1 H) 9.54 (m, 1 H) B105-X00-M00(C01)-D43 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (m, 4 H) 2.38 (m, 4 H) 2.98 (m, 4 H) 3.44 (m, 2 H) 3.60 (m, 4 H) 4.40 (s, 3 H) 6.92 (m, 1 H) 7.20 (m, 6 H) 7.58 (m, 1 H) 7.77 (s, 1 H) 8.42 (s, 1 H) 9.20 (m, 2 H) B105-X00-M00(C01)-D36 1H NMR (400 MHz, DMSO-d6) δ ppm 1.49 (m, 6 H) 2.52 (m, 8 H) 2.81 (m, 4 H) 3.45 (m, 2 H) 3.60 (s, 4 H) 4.42 (s, 3 H) 5.11 (m, 1 H) 6.92 (m, 1 H) 7.25 (m, 6 H) 7.57 (m, 1 H) 7.76 (m, 1 H) 8.34 (m, 1 H) 8.42 (m, 1 H) 9.54 (m, 1 H) B104-X00-M00(C01)-D52 1H NMR (400 MHz, DMSO-d6) δ ppm 1.71 (s, 6 H) 2.21 (s, 3 H) 2.40 (m, 8 H) 2.80 (t, 2 H) 2.92 (t, 2 H) 3.44 (s, 2 H) 4.40 (s, 3 H) 6.91 (m, 1 H) 7.32 (m, 4 H) 7.42 (m, 2 H) 7.55 (m, 1 H) 7.75 (m, 1 H) 7.81 (m, 1 H) 8.41 (s, 1 H) 9.53 (s, 1 H) B104-X00-M00(C01)-D43 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (m, 4 H) 2.20 (m, 3 H) 2.40 (m, 8 H) 2.82 (t, 2 H) 2.98 (t, 2 H) 3.44 (s, 2 H) 4.39 (s, 3 H) 6.90 (m, 1 H) 7.25 (m, 6 H) 7.56 (m, 1 H) 7.76 (m, 1 H) 8.42 (s, 1 H) 8.87 (s, 1 H) 9.53 (s, 1 H) B104-X00-M00(C01)-D51 1H NMR (400 MHz, DMSO-d6) δ ppm 2.22 (s, 3 H) 2.42 (m, 8 H) 2.82 (t, 2 H) 2.97 (t, 2 H) 3.44 (s, 2 H) 4.41 (s, 3 H) 5.53 (d, 1 H) 6.91 (d, 1 H) 7.24 (m, 1 H) 7.38 (m, 3 H) 7.46 (m, 2 H) 7.56 (m, 1 H) 7.75 (m, 1 H) 7.87 (s, 2 H) 8.12 (m, 1 H) 8.42 (s, 1 H) 9.54 (s, 1 H) B104-X00-M00(C01)-D35 1H NMR (400 MHz, DMSO-d6) δ ppm 2.19 (s, 3 H) 2.39 (m, 8 H) 2.83 (t, 2 H) 3.01 (t, 2 H) 3.43 (s, 2 H) 3.75 (s, 3 H) 4.38 (s, 3 H) 4.41 (d, 2 H) 6.83 (m, 1 H) 6.90 (m, 3 H) 7.24 (m, 2 H) 7.56 (m, 1 H) 7.76 (m, 1 H) 8.42 (s, 1 H) 8.68 (t, 1 H) 9.53 (s, 1 H) B103-X00-M00(C01)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 1.74 (m, 1 H) 1.95 (m, 1 H) 2.09 (m, 1 H) 2.26 (m, 1 H) 2.82 (m, 5 H) 3.00 (t, 2 H) 3.34 (m, 4 H) 4.34 (s, 3 H) 4.43 (d, 2 H) 4.65 (m, 1 H) 7.02 (m, 2 H) 7.25 (m, 1 H) 7.33 (m, 4 H) 7.62 (m, 2 H) 8.38 (s, 1 H) 8.67 (t, 1 H) 9.39 (s, 1 H) B103-X00-M00(C01)-D52 1H NMR (400 MHz, DMSO-d6) δ ppm 1.70 (s, 6 H) 1.79 (m, 2 H) 2.00 (m, 2 H) 2.56 (s, 3 H) 2.68 (m, 2 H) 2.78 (t, 2 H) 2.90 (t, 2 H) 2.99 (m, 2 H) 4.35 (s, 3 H) 4.42 (m, 1 H) 6.97 (d, 2 H) 7.21 (m, 1 H) 7.32 (m, 2 H) 7.41 (m, 2 H) 7.58 (d, 2 H) 7.78 (s, 1 H) 8.35 (s, 1 H) 9.34 (s, 1 H) B103-X00-M00(C01)-D37 1H NMR (400 MHz, DMSO-d6) δ ppm 1.48 (d, 3 H) 1.84 (m, 2 H) 2.01 (m, 2 H) 2.79 (m, 4 H) 2.96 (m, 4 H) 4.34 (s, 3 H) 4.43 (m, 1 H) 5.15 (m, 1 H) 6.97 (d, 2 H) 7.15 (m, 2 H) 7.46 (m, 2 H) 7.58 (d, 2 H) 8.36 (s, 1 H) 8.47 (d, 1 H) 9.34 (s, 1 H) B103-X00-M00(C01)-D51 1H NMR (400 MHz, DMSO-d6) δ ppm 1.71 (m, 2 H) 1.96 (m, 2 H) 2.34 (s, 3 H) 2.42 (m, 2 H) 2.79 (m, 6 H) 4.36 (m, 4 H) 5.52 (d, 1 H) 6.94 (d, 2 H) 7.31 (m, 1 H) 7.38 (m, 2 H) 7.46 (m, 2 H) 7.56 (d, 2 H) 7.87 (s, 2 H) 8.11 (d, 1 H) 8.36 (s, 1 H) 9.34 (s, 1 H) B103-X00-M00(C01)-D44 1H NMR (400 MHz, DMSO-d6) δ ppm 1.69 (m, 2 H) 1.94 (m, 2 H) 2.32 (s, 3 H) 2.39 (m, 2 H) 2.80 (m, 4 H) 2.99 (t, 2 H) 4.35 (m, 4 H) 4.44 (d, 2 H) 6.94 (d, 2 H) 7.31 (m, 2 H) 7.57 (d, 2 H) 8.37 (s, 1 H) 8.50 (m, 2 H) 8.85 (t, 1 H) 9.34 (s, 1 H) B103-X00-M00(C01)-D36 1H NMR (400 MHz, DMSO-d6) δ ppm 1.91 (m, 4 H) 2.20 (m, 3 H) 2.37 (m, 4 H) 2.55 (m, 4 H) 2.88 (m, J = 59.63 Hz, 6 H) 4.28 (m, 1 H) 4.35 (s, 3 H) 5.10 (m, 1 H) 5.35 (none, 1 H) 6.93 (m, 2 H) 7.31 (m, 5 H) 7.56 (m, 2 H) 8.35 (m, 2 H) 9.32 (m, 6 H) B103-X00-M00(C01)-D39 1H NMR (400 MHz, DMSO-d6) δ ppm 1.68 (s, 4 H) 1.91 (m, 4 H) 2.20 (m, 3 H) 2.52 (m, 8 H) 2.87 (m, J = 66.33 Hz, 4 H) 3.04 (m, 2 H) 4.28 (m, 1 H) 4.35 (s, 3 H) 5.08 (m, 1 H) 6.93 (m, 2 H) 7.38 (m, 7 H) 8.35 (m, 2 H) 9.32 (m, 1 H) B103-X00-M00(C01)-D34 1H NMR (400 MHz, DMSO-d6) δ ppm 1.78 (m, J = 106.57 Hz, 4 H) 2.41 (m, 7 H) 2.87 (m, J = 68.16 Hz, 4 H) 3.73 (m, 2 H) 4.28 (m, 1 H) 4.36 (s, 3 H) 5.00 (m, 2 H) 6.93 (m, 2 H) 7.32 (m, 5 H) 7.56 (m, 2 H) 8.26 (m, 1 H) 8.36 (m, 1 H) 9.32 (m, 1 H) B103-X00-M00(C01)-D43 1H NMR (400 MHz, DMSO-d6) δ ppm 1.28 (m, 4 H) 1.79 (m, J = 107.43 Hz, 4 H) 2.43 (m, 7 H) 2.88 (m, J = 66.33 Hz, 4 H) 4.29 (m, 1 H) 4.34 (m, 3 H) 6.93 (m, 2 H) 7.22 (m, 5 H) 7.56 (m, 2 H) 8.36 (s, 1 H) 8.86 (m, 1 H) 9.32 (m, 1 H) B00-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 2.52 (m, 6 H) 2.71 (t, 2 H) 2.90 (t, 2 H) 3.57 (m, 4 H) 4.36 (m, 3 H) 5.15 (m, 1 H) 6.55 (s, 2 H) 7.24 (m, 1 H) 7.33 (m, 2 H) 7.41 (m, 2 H) 8.17 (s, 1 H) 8.36 (d, 1 H). B00-X00-M00(C01)-D44 1H NMR (400 MHz, DMSO-d6) δ ppm 2.71 (t, 2 H) 2.94 (t, 2 H) 4.35 (s, 3 H) 4.43 (d, 2 H) 6.56 (s, 2 H) 7.31 (m, 2 H) 8.18 (s, 1 H) 8.50 (m, 2 H) 8.82 (t, 1 H). B113-X00-M00(C01)-D44 1H NMR (400 MHz, DMSO-d6) δ ppm 2.83 (t, 2 H) 3.00 (t, 2 H) 4.35 (s, 3 H) 4.44 (d, 2 H) 7.16 (m, 2 H) 7.30 (m, 2 H) 7.71 (m, 2 H) 8.41 (s, 1 H) 8.50 (m, 2 H) 8.87 (t, 1 H) 9.55 (s, 1 H) B112-X00-M00(C01)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 2.84 (t, J = 7.68 Hz, 2 H) 3.01 (t, J = 7.68 Hz, 2 H) 4.35 (s, 3 H) 4.44 (d, J = 6.34 Hz, 2 H) 7.26 (m, 5 H) 7.36 (d, J = 9.02 Hz, 2 H) 7.76 (d, J = 9.02 Hz, 2 H) 8.44 (s, 1 H) 8.72 (t, J = 6.40 Hz, 1 H) 9.68 (s, 1 H) B04-X04-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.87 (t, 2 H) 2.99 (t, 2 H) 3.71 (s, 3 H) 7.25 (m, 1 H) 7.44 (s, 1 H) 7.51 (m, 3 H) 7.66 (m, 2 H) 8.55 (s, 1 H) B10-X00-M04(C15)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.85 (m, 6 H) 3.05 (m, 4 H) 3.33 (m, 5 H) 6.28 (s, 2 H) 6.80 (d, 2 H) 7.33 (s, 2 H) 7.47 (m, 7 H) 7.63 (d, 2 H) 7.66 (s, 1 H) 8.42 (s, 1 H) 9.34 (s, 1 H) B09-X00-M04(C03)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 0.79 (m, 9 H) 1.64 (t, 2 H) 2.86 (m, 15 H) 4.84 (t, 2 H) 6.67 (m, 1 H) 7.21 (m, 3 H) 7.39 (s, 2 H) 8.41 (s, 1 H) 9.25 (s, 1 H) B10-X00-M00(C14)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.13 (t, 3 H) 2.25 (s, 3 H) 2.52 (m, 4 H) 2.61 (q, 2 H) 2.84 (t, 2 H) 3.03 (m, 6 H) 6.16 (s, 2 H) 6.75 (d, 2 H) 6.83 (s, 1 H) 7.29 (br. s, 2 H) 7.36 (d, 2 H) 7.45 (br. s, 1 H) 8.38 (s, 1 H) 9.25 (s, 1 H) B10-X00-M00(C14)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 1.12 (t, 3 H) 2.24 (s, 3 H) 2.46 (m, 4 H) 2.60 (q, 2 H) 2.85 (t, 2 H) 3.02 (m, 6 H) 4.41 (d, 2 H) 6.18 (s, 2 H) 6.74 (d, 2 H) 6.83 (s, 1 H) 7.23 (m, 1 H) 7.31 (m, 4 H) 7.37 (d, 2 H) 8.38 (s, 1 H) 8.69 (t, 1 H) 9.26 (s, 1 H) B08-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.79 (m, 2 H) 2.96 (m, 2 H) 3.83 (s, 3 H) 4.23 (s, 3 H) 6.96 (m, 3 H) 7.22 (s, 1 H) 7.43 (s, 1 H) 8.00 (m, 1 H) 8.11 (s, 1 H) 8.35 (s, 1 H) B36-X00-M00(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 2.78 (t, 2 H) 2.95 (t, 2 H) 4.28 (s, 3 H) 5.95 (s, 2 H) 6.84 (d, 1 H) 7.06 (dd, 1 H) 7.22 (s, 1 H) 7.34 (d, 1 H) 7.42 (s, 1 H) 8.34 (s, 1 H) 9.34 (s, 1 H) -
- To a well stirred and warm suspension of 8-amino-1-methyl-N-[(1S)-2-morpholin-4-yl-1-phenylethyl]-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (3 g, 6.92 mmol) in dimethoxyethane (240 mL), maintained in an inert atmosphere of argon, cesium iodide (2.16 g, 8.3 mmol), bisublimated iodine (870 mg, 3.46 mmol), copper iodide (460 mg, 2.42 mmol) and isopentyl nitrite (1.71 mL, 1.5 g, 12.46 mmol) were added, in sequence. The reaction mixture was stirred vigorously at 65-70° C. for 18 hours. After cooling in an ice-water bath, the solid was filtered off and the filtrate was diluted with dichloromethane (100 mL), washed with 30% ammonium hydroxide (50 mL), sodium thiosulphate (100 mL), brine and dried over anhydrous Na2SO4. The crude was purified by flash chromatography on silica gel (eluant: dichloromethane/methanol 95:59) and 1.48 g of the title compound was isolated (40% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.52 (m, 6H) 2.89 (t, 2H) 2.99 (t, 2H) 4.30 (s, 3H) 5.17 (m, 1H) 7.22 (m, 1H) 7.34 (m, 2H) 7.41 (m, 2H) 8.47 (s, 1H)
-
- Palladium acetate [Pd(OAc)2] (10 mg, 0.022 mmol, 10%), (+)-BINAP (14 mg, 0.022 mmol, 10%) and dimethylformamide (4 mL) were charged in a round-bottom flask flushed with argon. The mixture was stirred under argon for 30 minutes. Then, 3-(4-methylpiperazin-1-yl)phenylamine (84 mg, 0.44 mmol), 8-iodo-1-methyl-N-[(1S)-2-morpholin-4-yl-1-phenylethyl]-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (120 mg, 0.22 mmol), potassium carbonate (670 mg, 4.85 mmol) and dimethylformamide (1.5 mL) were added. The resulting mixture was heated at 80° C. in an oil bath under argon with good stirring for 1.5 hours.
- After cooling to room temperature, the reaction mixture was poured into water and extracted with dichloromethane. The organic extracts were washed with brine and dried over Na2SO4. The solvent was removed under vacuo, the crude was purified by flash chromatography on silica gel (eluant: dichloromethane/methanol 95:5) to afford 40 mg (30% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.27 (s, 3H) 2.52 (m, 8H) 2.80 (t, 2H) 2.94 (m, 4H) 3.13 (m, 4H) 3.56 (m, 4H) 4.39 (s, 3H) 5.16 (m, 1H) 6.59 (m, 1H) 7.14 (m, 1H) 7.24 (m, 2H) 7.33 (m, 2H) 7.42 (m, 2H) 8.39 (m, 2H) 9.33 (s, 1H).
- By working analogously the following compounds were prepared:
-
TABLE XIV B107-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 2.52 (m, 6 H) 2.80 (t, 2 H) 2.97 (m, 2 H) 3.09 (m, 4 H) 3.57 (m, 4 H) 3.76 (m, 4 H) 4.39 (s, 3 H) 5.18 (m, 1 H) 6.60 (m, 1 H) 7.16 (m, 1 H) 7.42 (m, 6 H) 8.40 (m, 2 H) 9.35 (s, 1 H) B105-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 2.52 (m, 10 H) 2.81 (t, 2 H) 2.97 (t, 2 H) 3.34 (m, 10 H) 4.41 (s, 3 H) 5.17 (m, 1 H) 6.93 (m, 1 H) 7.34 (m, 4 H) 7.42 (m, 2 H) 7.58 (m, 1 H) 7.77 (m, 1 H) 8.41 (m, 2 H) 9.54 (s, 1 H) B103-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 1.66 (m, 2 H) 1.92 (m, 2 H) 2.21 (m, 5 H) 2.52 (m, 4 H) 2.65 (m, 2 H) 2.79 (t, 2 H) 2.95 (m, 4 H) 3.56 (m, 4 H) 4.29 (m, 1 H) 4.36 (s, 3 H) 5.17 (m, 1 H) 6.93 (d, 2 H) 7.24 (m, 1 H) 7.33 (m, 2 H) 7.42 (m, 2 H) 7.56 (d, 2 H) 8.35 (s, 1 H) 8.40 (d, 1 H) 9.32 (s, 1 H) B101-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 2.19 (s, 3 H) 2.52 (m, 8 H) 2.80 (t, 2 H) 2.95 (m, 4 H) 3.33 (m, 6 H) 3.56 (m, 4 H) 4.39 (s, 3 H) 5.17 (m, 1 H) 7.23 (m, 3 H) 7.33 (m, 2 H) 7.42 (m, 2 H) 7.65 (d, 2 H) 8.40 (m, 2 H) 9.50 (s, 1 H) B104-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 2.21 (s, 3 H) 2.42 (m, 13 H) 2.81 (t, J = 7.80 Hz, 2 H) 2.95 (m, 3 H) 3.44 (s, 2 H) 3.57 (m, 4 H) 4.41 (s, 3 H) 5.17 (m, 1 H) 6.90 (d, J = 7.56 Hz, 1 H) 7.24 (t, J = 7.68 Hz, 2 H) 7.33 (t, J = 7.50 Hz, 2 H) 7.43 (m, 2 H) 7.57 (dd, J = 8.29, 0.98 Hz, 1 H) 7.76 (t, J = 1.95 Hz, 1 H) 8.41 (d, J = 7.68 Hz, 1 H) 8.41 (s, 1 H) 9.53 (s, 1 H) B110-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 1.45 (m, 6 H) 2.73 (m, 16 H) 3.57 (m, 4 H) 4.39 (s, 3 H) 5.17 (m, 1 H) 7.26 (m, 2 H) 7.25 (m, 1 H) 7.33 (t, J = 7.56 Hz, 2 H) 7.43 (m, 2 H) 7.70 (s, 2 H) 8.42 (m, 2 H) 9.55 (s, 1 H) B106-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 1.74 (m, 2 H) 1.98 (m, 2 H) 2.52 (m, 7 H) 2.81 (m, 8 H) 3.56 (m, 4 H) 4.41 (m, 4 H) 5.17 (m, 1 H) 6.60 (m, 1 H) 7.26 (m, 5 H) 7.44 (m, 3 H) 8.42 (m, 2 H) 9.50 (s, 1 H) B111-X00-M00(C01)-D38 1H NMR (400 MHz, DMSO-d6) δ ppm 1.30 (t, J = 7.19 Hz, 3 H) 2.46 (m, 5 H) 2.80 (t, J = 7.74 Hz, 2 H) 2.93 (m, 3 H) 3.56 (q, 4 H) 4.03 (q, J = 7.19 Hz, 2 H) 4.20 (s, 3 H) 5.16 (m, 1 H) 6.20 (d, J = 1.71 Hz, 1 H) 7.24 (t, J = 7.32 Hz, 1 H) 7.33 (t, J = 7.44 Hz, 2 H) 7.42 (m, 3 H) 8.36 (s, 1 H) 8.41 (d, J = 6.95 Hz, 1 H) 9.23 (s, 1 H) -
- To a solution of 129 mg (0.228 mmol) of N-[(1S)-2-azido-1-phenylethyl]-1-methyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide in 16 mL of methanol, 65 mg (1.2 mmol) of NH4Cl dissolved in 3.2 mL of water and 39 mg of iron (0.7 mmol) were added and the mixture refluxed overnight. The suspension was cooled to room temperature and filtered. After removal of methanol, solid Na2CO3 was added portionwise to the aqueous phase up to pH 10 and the product was then extracted with dichloromethane. Flash chromatography of the crude (eluant dichloromethane/methanol 95/5) yielded 94 mg of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.24 (s, 3H) 2.47 (m, 4H) 2.78 (t, J=7.68 Hz, 2H) 2.96 (m, 3H) 3.08 (m, 5H) 4.37 (s, 3H) 5.01 (m, 1H) 6.91 (d, J=9.15 Hz, 2H) 7.31 (m, 5H) 7.54 (d, J=9.02 Hz, 2H) 8.34 (s, 1H) 8.54 (d, J=8.17 Hz, 1H) 9.26 (s, 1H).
- By working according to the above method the following compound was prepared:
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.21 (s, 3H) 1.34 (s, 3H) 2.24 (s, 3H) 2.45-2.49 (m, 4H) 2.62-2.72 (m, 2H) 2.90-3.05 (m, 2H) 3.06-3.10 (m, 4H) 4.35 (s, 3H) 5.01 (td, J=8.20, 5.67 Hz, 1H) 6.91 (d, J=9.15 Hz, 2H) 7.24-7.29 (m, 1H) 7.33-7.38 (m, 2H) 7.38-7.41 (m, 2H) 7.53 (d, J=9.15 Hz, 2H) 8.34 (s, 1H) 8.65 (d, J=8.29 Hz, 1H) 9.26 (s, 1H).
- To a solution of 50 mg (0.091 mmol) of N-[(1S)-2-amino-1-phenylethyl]-1-methyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide in methanol (5 mL), 0.027 mL of formaldehyde (40% aqueous solution 0.364 mmol) and acetic acid (0.02 mL) were added. After 30 minutes, 77 mg (0.364 mmol) of sodiumtriacetoxyborohydride were added and the mixture was stirred for 5 hours. The solvent was removed under vacuo, the crude was dissolved in water and Na2CO3 was added portionwise up to basic pH. The product was extracted with dichloromethane as the sole compound (34 mg, 66% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 9H) 2.52 (m, 4H) 2.78 (t, 2H) 2.95 (t, 2H) 3.09 (m, 4H) 4.37 (s, 3H) 5.11 (m, 1H) 6.93 (d, 2H) 7.24 (m, 1H) 7.33 (m, 2H) 7.41 (m, 2H) 7.53 (d, 2H) 8.34 (m, 2H) 9.26 (s, 1H).
- By working analogously the following compounds were prepared:
- 1-methyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-N-{(1S)-2-[(1-methylpiperidin-4-yl)amino]-1-phenylethyl}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B10-X00-M00(C01)-D145]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.76 (m, 4H) 2.73 (m, 24H) 4.39 (s, 3H) 5.34 (m, 1H) 6.98 (d, 2H) 7.30 (m, 1H) 7.38 (m, 2H) 7.43 (m, 2H) 7.57 (d, 2H) 8.36 (s, 1H) 8.75 (s, 1H) 9.33 (bs, 1H)
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.21 (s, 3H) 1.32 (s, 3H) 2.24 (s, 6H) 2.25 (s, 3H) 2.49 (m, 4H) 2.67 (m, 2H) 2.80 (m, 2H) 3.08 (m, 4H) 4.34 (s, 3H) 5.12 (td, J=8.20, 5.67 Hz, 1H) 6.91 (d, J=9.15 Hz, 2H) 7.25 (m, 1H) 7.34 (m, 2H) 7.42 (m, 2H) 7.53 (d, J=9.15 Hz, 2H) 8.33 (s, 1H) 8.45 (d, J=8.29 Hz, 1H) 9.26 (s, 1H)
-
- To a solution of 39.4 mg (0.0774 mmol) of N-benzyl-1-methyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino)}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide, 17.4 mg (0.0774 mg) of 3-chlorobenzenecarboperoxoic acid were added and the mixture was stirred at room temperature. After 45 minutes an aqueous solution of NaHCO3 was added and the solvent removed. Treatment with methanol and filtration afforded 26.6 mg of the title compound (66% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.81 (t, J=7.74 Hz, 2H) 3.00 (t, J=7.62 Hz, 2H) 3.37 (m, 8H) 3.15 (s, 3H) 4.34 (s, 3H) 4.43 (d, J=6.34 Hz, 2H) 6.98 (d, J=9.15 Hz, 2H) 7.24 (m, 1H) 7.33 (m, 4H) 7.57 (d, J=9.15 Hz, 2H) 8.36 (s, 1H) 8.70 (t, J=6.34 Hz, 1H) 9.30 (s, 1H).
-
- Pd(OAc)2 (762.34 mg, 3.395 mmol), (+)-BINAP (2.145 g, 3.395 mmol) and dimethylformamide (250 mL) were charged in a round-bottom flask flushed with argon. The mixture was stirred under argon for 30 minutes. Then 4-(4-methyl-piperazin-1-yl)-phenylamine (19.493 g, 101.908 mmol), ethyl 8-iodo-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (14.00 g, 33.961 mmol), K2CO3 (60.00 g, 434.112 mmol) and dimethylformamide (250 mL) were added. The resulting mixture was stirred at room temperature for 1 hour and then heated to 80° C. in an oil bath under argon with good stirring for 3 hours.
- After cooling to room temperature, the reaction mixture was filtered by suction filtration washing with dichloromethane and the filtrate was evaporated to dryness. The crude was purified by flash chromatography on silica gel (eluant: dichloromethane/methanol 94:6) to afford 11.60 g (yield 72%) of pure title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J=7.07 Hz, 3H) 1.33 (s, 6H) 2.27 (s, 3H) 2.52 (m, 4H) 2.71 (s, 2H) 3.03-3.15 (m, 4H) 4.32 (q, J=7.07 Hz, 2H) 4.33 (s, 3H) 6.91 (d, J=9.02 Hz, 2H) 7.53 (d, J=9.02 Hz, 2H) 8.35 (s, 1H) 9.28 (s, 1H).
- By working according to the above method the following compound was prepared:
-
TABLE XV B19-X00-M03(C01)-D01 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (t, J = 7.07 Hz, 3 H) 1.33 (s, 6 H) 2.71 (s, 2 H) 3.01-3.08 (m, 4 H) 3.70-3.80 (m, 4 H) 4.32 (q, J = 7.07 Hz, 2 H) 4.33 (s, 3 H) 6.93 (d, J = 9.15 Hz, 2 H) 7.55 (d, J = 9.02 Hz, 2 H) 8.36 (s, 1 H) 9.30 (s, 1 H) -
- To a suspension of ethyl 8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (11.60 g, 24.390 mmol) in anhydrous ethanol (450 mL), 1.5 M potassium hydroxide in 95% ethanol (63 mL) was added under good stirring and the mixture was heated to reflux for 3 hours. After cooling in an ice bath, a solid was formed, that was filtered washing with ethanol, dried at 40° C. under vacuum to yield 11.8 g (quantitative yield) of white solid title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (s, 6H) 2.23 (s, 3H) 2.47 (m, 4H) 2.58 (s, 2H) 3.03-3.15 (m, 4H) 4.17 (s, 3H) 6.91 (d, J=9.02 Hz, 2H) 7.54 (d, J=9.02 Hz, 2H) 8.24 (s, 1H) 9.12 (s, 1H)
- By working according to the above method the following compounds were prepared:
-
TABLE XVI B04-X00-M03(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.35 (s, 6 H) 2.73 (s, 2 H) 4.34 (s, 3 H) 6.98 (tt, J 7.36, 1.13, 1.10 Hz, 1 H) 7.31 (dd, J 8.47, 7.38 Hz, 2 H) 7.71 (dd, J 8.66, 0.98 Hz, 2 H) 8.42 (s, 1 H) 9.53 (s, 1 H) 12.84 (s, 1 H) B12-X00-M03(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (s, 6 H) 2.24 (s, 3 H) 2.45 (s, 4 H) 2.61 (s, 2 H) 2.84 (t, J 4.51 Hz, 4 H) 4.18 (s, 3 H) 7.52 (d, J 9.02 Hz, 1 H) 7.94 (dd, J 8.90, 2.44 Hz, 1 H) 8.09 (d, J 2.56 Hz, 1 H) 8.34 (s, 1 H) 9.63 (s, 1 H) B13-X00-M03(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (s, 6 H) 2.25 (s, 3 H) 2.52 (m, 4 H) 2.61 (s, 2 H) 2.94 (t, J 4.51 Hz, 4 H) 4.20 (s, 3 H) 7.12 (d, J 8.90 Hz, 1 H) 7.53 (dd, J 8.78, 2.56 Hz, 1 H) 7.99 (d, J 2.56 Hz, 1 H) 8.31 (s, 1 H) 9.45 (s, 1 H) B00-X00-M03(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.28 (s, 6 H) 2.51 (s, 2 H) 4.16 (s, 3 H) 6.37 (s, 2 H) 8.07 (s, 1 H) B19-X00-M03(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (s, 6 H) 2.58 (s, 2 H) 3.01-3.09 (m, 4 H) 3.71-3.79 (m, 4 H) 4.18 (s, 3 H) 6.91 (d, J = 9.15 Hz, 2 H) 7.57 (d, J = 9.15 Hz, 2 H) 8.25 (s, 1 H) 9.14 (s, 1 H) B109-X00-M00(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 2.24 (s, 3 H) 2.48 (m, 4 H) 2.76 (t, J = 7.68 Hz, 2 H) 2.96 (m, 6 H) 4.27 (s, 3 H) 6.99 (dd, J = 10.00, 8.90 Hz, 1 H) 7.38 (ddd, J = 8.87, 2.47, 0.85 Hz, 1 H) 7.68 (dd, J = 15.49, 2.44 Hz, 1 H) 8.34 (s, 1 H) 9.45 (s, 1 H) B13-X00-M02(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.27 (s, 6 H) 2.25 (s, 3 H) 2.51 (m, 4 H) 2.91 (s, 2 H) 2.94 (t, J 4.39 Hz, 4 H) 4.25 (s, 3 H) 7.13 (d, J 8.78 Hz, 1 H) 7.53 (dd, J 8.78, 2.56 Hz, 1 H) 8.00 (d, J 2.44 Hz, 1 H) 8.43 (s, 1 H) 9.49 (s, 1 H) B12-X00-M02(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.27 (s, 6 H) 2.24 (s, 3 H) 2.45 (s, 4 H) 2.84 (t, J 4.63 Hz, 4 H) 2.91 (s, 2 H) 4.23 (s, 3 H) 7.52 (d, J 8.78 Hz, 1 H) 7.93 (dd, J 8.78, 2.32 Hz, 1 H) 8.11 (d, J 2.56 Hz, 1 H) 8.44 (s, 1 H) 9.67 (s, 1 H) B04-X00-M02(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (s, 6 H) 2.92 (s, 2 H) 4.37 (s, 3 H) 6.98 (tt, J 7.33, 1.10, 1.07 Hz, 1 H) 7.32 (dd, J 8.41, 7.44 Hz, 2 H) 7.72 (dd, J 8.66, 0.98 Hz, 2 H) 8.52 (s, 1 H) 9.56 (s, 1 H) 12.80 (s, 1 H) B10-X00-M02(C01)-D02 1H NMR (400 MHz, DMSO-d6) δ ppm 1.25 (s, 6 H) 2.23 (s, 3 H) 2.47 (m, 4 H) 2.89 (s, 2 H) 3.07 (m, 4 H) 4.21 (s, 3 H) 6.89 (d, J = 9.17 Hz, 2 H) 7.54 (d, J = 9.17 Hz, 2 H) 8.35 (s, 1 H) 9.14 (s, 1 H) -
- To a suspension of 8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid potassium salt (9.5 g, 19.561 mmol) in a 1:1 mixture of anhydrous tetrahydrofurane and dimethylformamide (50 mL), 2M methylamine in tetrahydrofurane (21.12 mL, 42.24 mmol), 1-hydroxybenzotriazole (5.332 g, 39.458 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) (7.567 g, 39.473 mmol) were added in that order, and the reaction mixture stirred at room temperature for 18 hours.
- The reaction mixture was poured into water (2.5 L) and extracted with dichloromethane (4×250 mL). The combined organic extracts were washed with water, essicated over anhydrous sodium sulphate, and the solvent was removed under reduced pressure. The crude was purified by flash chromatography on silica gel (eluant: methylene chloride/methanol 94:6) to afford 8.20 g (yield 92%) of pure title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (s, 6H) 2.26 (s, 3H) 2.44-2.54 (m, 4H) 2.68 (s, 2H) 2.76 (d, J=4.76 Hz, 3H) 3.04-3.13 (m, 4H) 4.31 (s, 3H) 6.91 (d, J=9.02 Hz, 2H) 7.53 (d, J=9.02 Hz, 2H) 8.15 (q, J=4.84 Hz, 1H) 8.34 (s, 1H) 9.25 (s, 1H)
- By working according to the above method the following compounds were prepared:
-
TABLE XVII B19-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (s, 6 H) 2.68 (s, 2 H) 2.76 (d, J = 4.76 Hz, 3 H) 3.02-3.09 (m, 4 H) 3.72-3.79 (m, 4 H) 4.31 (s, 3 H) 6.93 (d, J = 9.02 Hz, 2 H) 7.55 (d, J = 9.02 Hz, 2 H) 8.15 (q, J = 4.63 Hz, 1 H) 8.34 (s, 1 H) 9.28 (s, 1 H) B10-X00-M03(C01)-D25 1H NMR (400 MHz, DMSO-d6) δ ppm 1.35 (s, 6 H) 2.28 (s, 3 H) 2.50-2.57 (m, 4 H) 2.70 (s, 2 H) 3.04- 3.13 (m, 4 H) 4.26 (d, J = 5.85 Hz, 2 H) 4.34 (s, 3 H) 6.92 (d, J = 9.02 Hz, 2 H) 7.53 (d, J = 9.02 Hz, 2 H) 8.36 (s, 1 H) 8.94 (t, J = 5.85 Hz, 1 H) 9.28 (s, 1 H) B10-X00-M03(C01)-D30 1H NMR (400 MHz, DMSO-d6) δ ppm 1.35 (s, 6 H) 2.28 (s, 3 H) 2.47-2.59 (m, 4 H) 2.69 (s, 2 H) 3.02- 3.16 (m, 4 H) 3.83 (d, J = 5.73 Hz, 2 H) 4.34 (s, 3 H) 6.92 (d, J = 9.15 Hz, 2 H) 7.08 (s, 1 H) 7.36 (s, 1 H) 7.53 (d, J = 9.02 Hz, 2 H) 8.12 (t, J = 5.67 Hz, 1 H) 8.35 (s, 1 H) 9.27 (s, 1 H) B10-X00-M03(C01)-D162 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (s, 6 H) tri hydrochloride salt 2.70 (s, 2 H) 2.85 (d, J = 4.63 Hz, 3 H) 2.95-3.05 (m, 2 H) 3.11-3.25 (m, 2 H) 3.52 (d, J = 11.46 Hz, 2 H) 3.67 (s, 3 H) 3.74 (d, J = 13.66 Hz, 2 H) 4.00 (d, J = 5.97 Hz, 2 H) 4.34 (s, 3 H) 6.99 (d, J = 9.15 Hz, 2 H) 7.60 (d, J = 9.02 Hz, 2 H) 8.37 (s, 1 H) 8.54 (t, J = 6.04 Hz, 1 H) 9.39 (s, 1 H) 10.23 (s, 1 H) B10-X00-M03(C01)-D20 1H NMR (400 MHz, DMSO-d6) δ ppm 1.36 (s, 6 H) 2.27 (s, 3 H) 2.50-2.57 (m, 4 H) 2.71 (s, 2 H) 3.07- 3.13 (m, 4 H) 4.38 (s, 3 H) 6.92 (d, J = 9.15 Hz, 2 H) 7.06-7.15 (m, 1 H) 7.31-7.40 (m, 2 H) 7.55 (d, J = 9.15 Hz, 2 H) 7.80 (dd, J = 8.54, 0.98 Hz, 2 H) 8.37 (s, 1 H) 9.29 (s, 1 H) 10.29 (s, 1 H) B10-X00-M03(C01)-D09 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (s, 6 H) 2.70 (s, 2 H) 2.84 (d, J = 4.15 Hz, 3 H) 3.03 (t, J = 12.56 Hz, 2 H) 3.10-3.25 (m, 2 H) 3.36-3.55 (m, 2 H) 3.74 (d, J = 13.05 Hz, 2 H) 4.32 (s, 3 H) 4.45 (d, J = 6.34 Hz, 2 H) 7.00 (d, J = 9.02 Hz, 2 H) 7.21-7.29 (m, 1 H) 7.31-7.36 (m, 4 H) 7.59 (d, J = 9.02 Hz, 2 H) 8.36 (s, 1 H) 8.77 (t, J = 6.34 Hz, 1 H) 9.46 (s, 1 H) 10.46 (s, 1 H) B10-X00-M03(C01)-D34 1H NMR (400 MHz, DMSO-d6) δ ppm 1.23 (s, 3 H) 1.33 (s, 3 H) 2.27 (s, 3 H) 2.48-2.56 (m, 4 H) 2.67 (s, 2 H) 3.04-3.14 (m, 4 H) 3.71 (t, J = 6.04 Hz, 2 H) 4.35 (s, 3 H) 4.96 (t, J = 5.61 Hz, 1 H) 5.02 (dt, J = 7.83, 6.20 Hz, 1 H) 6.92 (d, J = 9.15 Hz, 2 H) 7.22-7.28 (m, 1 H) 7.34 (t, J = 7.44 Hz, 2 H) 7.38-7.42 (m, 2 H) 7.53 (d, J = 9.15 Hz, 2 H) 8.34 (s, 1 H) 8.42 (d, J = 8.17 Hz, 1 H) 9.26 (s, 1 H) B10-X00-M03(C01)-D70 1H NMR (400 MHz, DMSO-d6) δ ppm 1.23 (s, 3 H) 1.36 (s, 3 H) 2.27 (s, 3 H) 2.45-2.54 (m, 4 H) 2.61- 2.72 (m, 2 H) 3.07-3.12 (m, 4 H) 3.61-3.68 (m, J = 12.44, 5.12 Hz, 1 H) 3.80 (dd, J = 12.44, 9.51 Hz, 1 H) 4.35 (s, 3 H) 5.27 (td, J = 9.21, 5.00 Hz, 1 H) 6.92 (d, J = 9.15 Hz, 2 H) 7.27-7.33 (m, 1 H) 7.38 (t, J = 7.44 Hz, 2 H) 7.48 (d, J = 7.07 Hz, 2 H) 7.53 (d, J = 9.02 Hz, 2 H) 8.34 (s, 1 H) 8.93 (d, J = 9.02 Hz, 1 H) 9.27 (s, 1 H) B10-X00-M03(C01)-D163 1H NMR (400 MHz, DMSO-d6) δ ppm 1.08 (d, J = 6.54 Hz, 3 H) 1.31 (s, 6 H) 2.17 (s, 6 H) 2.22 (s, 3 H) 2.45 (m, 6 H) 2.65 (s, 2 H) 3.04 (m, 4 H) 4.04 (m, 1 H) 4.29 (s, 3 H) 6.90 (d, J = 9.02 Hz, 2 H) 7.49 (d, J = 9.02 Hz, 2 H) 7.91 (d, J = 8.46 Hz, 1 H) 8.32 (s, 1 H) 9.27 (s, 1 H) B10-X00-M02(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.28 (s, 6 H) 2.26 (s, 3 H) 2.47 (m, 4 H) 2.93 (s, 2 H) 3.09 (m, 4 H) 4.33 (s, 3 H) 6.93 (d, J = 9.32 Hz, 2 H) 7.25 (s, 1 H) 7.46 (s, 1 H) 7.53 (d, J = 9.32 Hz, 2 H) 8.44 (s, 1 H) 9.28 (s, 1 H)
Reported below are the analytical HPLC/Mass data for some representative compounds of the invention. -
TABLE XVIII M + H Time 1 Method B10-X00-M03(C01)-D136 560.34 2.2 1 B10-X00-M03(C01)-D26 532.34 2.25 1 B10-X00-M03(C01)-D86 518.33 2.43 1 B10-X00-M03(C01)-D137 534.32 2.34 1 B10-X00-M03(C01)-D116 558.36 2.45 1 B10-X00-M03(C01)-D79 535.31 2.5 1 B10-X00-M03(C01)-D123 517.3 2.67 1 B10-X00-M03(C01)-D135 517.3 2.64 1 B10-X00-M03(C01)-D138 505.3 2.63 1 B10-X00-M03(C01)-D139 506.29 2.45 1 B10-X00-M03(C01)-D95 521.29 2.77 1 B10-X00-M03(C01)-D119 521.29 2.77 1 B10-X00-M03(C01)-D81 558.36 2.6 1 B10-X00-M03(C01)-D115 544.34 2.45 1 B10-X00-M03(C01)-D105 531.31 2.9 1 B10-X00-M03(C01)-D140 545.33 2.87 1 B10-X00-M03(C01)-D100 545.33 3.05 1 B10-X00-M03(C01)-D82 505.3 3.1 1 B10-X00-M03(C01)-D97 505.3 3.19 1 B10-X00-M03(C01)-D121 572.34 3.23 1 B10-X00-M03(C01)-D06 491.28 2.93 1 B10-X00-M03(C01)-D104 505.3 3.21 1 B10-X00-M03(C01)-D113 531.31 3.07 1 B10-X00-M03(C01)-D83 549.29 3.45 1 B10-X00-M03(C01)-D131 519.31 3.47 1 B10-X00-M03(C01)-D102 475.29 3.54 1 B10-X00-M03(C01)-D122 545.33 3.32 1 B10-X00-M03(C01)-D85 506.29 3.24 3 B10-X00-M03(C01)-D93 559.34 3.61 1 B10-X00-M03(C01)-D94 493.28 3.58 1 B10-X00-M03(C01)-D60 567.31 3.92 1 B10-X00-M03(C01)-D117 533.33 3.77 1 B10-X00-M03(C01)-D34 567.31 3.99 1 B10-X00-M03(C01)-D87 567.31 4.21 1 B10-X00-M03(C01)-D108 634.35 4.07 1 B10-X00-M03(C01)-D91 533.29 4.01 1 B10-X00-M03(C01)-D114 602.35 4.1 1 B10-X00-M03(C01)-D14 515.32 4.64 1 B10-X00-M03(C01)-D141 552.31 4.34 1 B10-X00-M03(C01)-D109 580.34 4.89 1 B10-X00-M03(C01)-D107 531.28 3.56 1 -
- To 8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid methylamide (7.00 g, 15.192 mmol) dissolved into a 1:1 mixture of methanol/dichloromethane (149 mL) 4M hydrochloric acid in dioxane (12.12 mL, 48.48 mL) was added and the solution stirred at room temperature for 2 hours. After removing the solvent under reduced pressure, the reddish solid was dried at 43° C. under vacuum for 10 hours. There were obtained 8.11 g of the title compound as a red solid.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (s, 6H) 2.69 (s, 2H) 2.76 (d, J=4.76 Hz, 3H) 2.85 (d, J=3.54 Hz, 3H) 2.95-3.08 (m, 2H) 3.10-3.26 (m, 2H) 3.39-3.55 (m, 2H) 3.74 (d, J=13.41 Hz, 2H) 4.30 (s, 3H) 7.00 (d, J=9.02 Hz, 2H) 7.59 (d, J=8.90 Hz, 2H) 8.16 (q, J=4.51 Hz, 1H) 8.36 (s, 1H) 9.44 (s, 1H) 10.37 (s, 1H)
-
- To a suspension of 8-[4-(4-methyl-piperazin-1-yl)-phenylamino]-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid potassium salt (185.5 mg, 0.382 mmol) in a 1:1 mixture of anhydrous tetrahydrofurane and dimethylformamide (4.8 mL), N-ethyldiisopropylamine (0.13 mL, 0.760 mmol), 1-hydroxybenzotriazole ammonium salt (102 mg, 0.760 mmol) were added in that order. The reaction mixture was cooled to 0° C., treated with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) (146 mg, 0.760 mmol) and then stirred at room temperature for 18 hours.
- The reaction mixture was poured into water (10 mL) and the precipitate was filtered, washed with water, dried under vacuum at 40° C. for 4 hours. There were obtained 130 mg (yield 76%) of pure title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (s, 6H) 2.26 (s, 3H) 2.46-2.56 (m, 4H) 2.68 (s, 2H) 3.04-3.14 (m, 4H) 4.31 (s, 3H) 6.91 (d, J=9.15 Hz, 2H) 7.29 (s, 1H) 7.53 (d, J=9.15 Hz, 2H) 7.55 (s, 1H) 8.34 (s, 1H) 9.25 (s, 1H)
- By working according to the above method the following compounds were prepared:
-
TABLE XIX B04-X00-M03(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.35 (s, 6 H) 2.71 (s, 2 H) 4.33 (s, 3 H) 6.97 (tt, J 7.38, 1.10 Hz, 1 H) 7.31 (m, 3 H) 7.56 (s, 1 H) 7.71 (dd, J 8.60, 1.04 Hz, 2 H) 8.41 (s, 1 H) 9.52 (s, 1 H) B12-X00-M03(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.35 (s, 6 H) 2.72 (s, 2 H) 2.87 (d, J 4.63 Hz, 3 H) 3.35 (m, 8 H) 4.34 (s, 3 H) 7.21 (d, J 8.78 Hz, 1 H) 7.32 (s, 1 H) 7.56 (s, 1 H) 7.59 (dd, J 8.78, 2.56 Hz, 1 H) 8.01 (d, J 2.44 Hz, 1 H) 8.43 (s, 1 H) 9.68 (s, 1 H) 10.39 (s, 1 H) B13-X00-M03(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.35 (s, 6 H) 2.73 (s, 2 H) 2.88 (d, J 4.63 Hz, 3 H) 3.32 (m, 8 H) 4.32 (s, 3 H) 7.33 (s, 1 H) 7.54 (d, J 8.90 Hz, 1 H) 7.56 (s, 1 H) 8.01 (dd, J 8.72, 2.38 Hz, 1 H) 8.12 (d, J 2.56 Hz, 1 H) 8.45 (s, 1 H) 9.86 (s, 1 H) 10.35 (s, 1 H) B19-X00-M03(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (s, 6 H) 2.68 (s, 2 H) 3.00-3.13 (m, 4 H) 3.70-3.80 (m, 4 H) 4.31 (s, 3 H) 6.92 (d, J = 9.02 Hz, 2 H) 7.29 (s, 1 H) 7.51-7.59 (m, 3 H) 8.34 (s, 1 H) 9.27 (s, 1 H) B13-X00-M02(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.29 (m, 6 H) 2.86 (d, J 4.39 Hz, 3 H) 2.95 (s, 2 H) 3.34 (m, 8 H) 4.37 (s, 3 H) 7.21 (d, J 8.78 Hz, 1 H) 7.29 (s, 1 H) 7.45 (s, 1 H) 7.58 (dd, J 8.84, 2.50 Hz, 1 H) 8.04 (d, J 2.44 Hz, 1 H) 8.53 (s, 1 H) 9.71 (s, 1 H) 10.49 (s, 1 H) B12-X00-M02(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (m, 6 H) 2.88 (d, J 4.39 Hz, 3 H) 2.96 (s, 2 H) 3.38 (m, 8 H) 4.35 (s, 3 H) 7.29 (s, 1 H) 7.46 (s, 1 H) 7.54 (d, J 8.90 Hz, 1 H) 8.00 (dd, J 8.66, 2.32 Hz, 1 H) 8.15 (d, J 2.44 Hz, 1 H) 8.55 (s, 1 H) 9.89 (s, 1 H) 10.32 (s, 1 H) B04-X00-M02(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.30 (s, 6 H) 2.95 (s, 2 H) 4.35 (s, 3 H) 6.98 (tt, J 7.35, 1.04, 0.98 Hz, 1 H) 7.27 (s, 1 H) 7.31 (dd, J 8.35, 7.50 Hz, 2 H) 7.47 (s, 1 H) 7.72 (dd, J 8.54, 0.98 Hz, 2 H) 8.51 (s, 1 H) 9.55 (s, 1 H) B10-X00-M02(C01)-D03 1H NMR (400 MHz, DMSO-d6) δ ppm 1.28 (s, 6 H) 2.26 (s, 3 H) 2.47 (m, 4 H) 2.93 (s, 2 H) 3.09 (m, 4 H) 4.33 (s, 3 H) 6.93 (d, J = 9.32 Hz, 2 H) 7.25 (s, 1 H) 7.46 (s, 1 H) 7.53 (d, J = 9.32 Hz, 2 H) 8.44 (s, 1 H) 9.28 (s, 1 H) -
- A suspension of ethyl 8-amino-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate (20.00 g, 66.368 mmol) in anhydrous ethanol (250 mL), 1.5M potassium hydroxide in ethanol (150 mL) was added under good stirring and the mixture was heated to reflux for 1.5 hours. After cooling in an ice bath, a solid was formed; that was filtered washing with ethanol, dried at 40° C. under vacuum to yield 17.34 g (yield 84%) of white solid compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.28 (s, 6H) 2.51 (s, 2H) 4.16 (s, 3H) 6.37 (s, 2H) 8.07 (s, 1H)
- To a suspension of 8-amino-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid potassium salt (17.00 g, 54.594 mmol) in a 1:1 mixture of anhydrous tetrahydrofurane and dimethylformamide (340 mL), 2 M methylamine in tetrahydrofurane (40.80 mL, 81.60 mmol), 1-hydroxybenzotriazole (8.840 g, 65.418 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) (12.540 g, 65.418 mmol) were added in that order, and the thick slurry was stirred at room temperature for 20 hours.
- The reaction mixture was poured into water (2.5 L) and extracted with dichloromethane (4×250 mL). The combined organic extracts were washed with water (50 mL), dried over anhydrous sodium sulphate, and the solvent was removed under reduced pressure. There were obtained 17.0 g of yellowish solid that were triturated with diethylether to yield 13.05 g (yield 87%) of the desired compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (s, 6H) 2.60 (s, 2H) 2.75 (d, J=4.76 Hz, 3H) 4.30 (s, 3H) 6.55 (s, 2H) 8.12 (q, J=4.39 Hz, 1H) 8.17 (s, 1H).
- By working in an analogous way the following compounds were prepared:
- 8-amino-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid methylamide [B00-X00-M00(C01)-D04]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.69-2.74 (m, 2H) 2.74 (d, J=4.76 Hz, 3H) 2.94 (t, J=7.56 Hz, 2H) 4.31 (s, 3H) 6.54 (s, 2H) 7.99-8.08 (m, 1H) 8.18 (s, 1H);
- 8-amino-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide [B00-X00-M03(C01)-D03]
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.32 (s, 6H) 2.61 (s, 2H) 4.30 (s, 3H) 6.57 (s, 2H) 7.27 (s, 1H) 7.51 (s, 1H) 8.17 (s, 1H)
- In a round bottom flask maintained under argon atmosphere, ethyl 8-amino-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid methylamide (13.00 g, 45.400 mmol) was dissolved into anhydrous dimethoxyethane (800 mL); cesium iodide (11.795 g, 45.400 mmol), bisublimated iodine (5.761 g, 22.698 mmol), copper(I) iodide (2.594 g, 13.621 mmol), and iso-amyl nitrite (9.107 mL, 68.100 mmol) were added in that order and the mixture was heated to 70° C. for 22 hours.
- After cooling to room temperature, the solids materials were removed by suction filtration, washing with dichloromethane. The filtrate was concentrated to 400 mL, diluted with dichloromethane (1000 mL), washed with 30% ammonium hydroxide (100 mL), 5% sodium thiosulphate (50 mL), water (4×100 mL), and dried over anhydrous sodium sulphate. The solvent was removed under vacuum to afford 11.00 g of dark oil that was triturated with diethylether to yield 4.300 g of the title compound as a yellow solid. Purification of the mother liquors by flash chromatography on silica gel (eluant dichloromethane/methanol 97:3) afforded further 2.04 g of yellowish solid compound (overall yield 35%).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (s, 6H) 2.76 (d, J=4.76 Hz, 3H) 2.80 (s, 2H) 4.24 (s, 3H) 8.16-8.25 (m, 1H) 8.48 (s, 1H)
- Pd(OAc)2 (16.34 mg, 0.0728 mmol), (+)-BINAP (45.33 mg, 0.0728 mmol) and dimethylformamide (12 mL) were charged in a round-bottom flask flushed with argon. The mixture was stirred under argon for 30 minutes. Then 3-(4-methyl-piperazin-1-ylmethyl)-phenylamine (448.4 mg, 2.184 mmol), ethyl 8-iodo-1,4,4-trimethyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylic acid methylamide (300 mg, 0.728 mmol), K2CO3 (1.508 g, 10.910 mmol) and dimethylformamide (10 mL) were added. The resulting mixture was heated to 80° C. in an oil bath under argon with good stirring for 3 hours.
- After cooling to room temperature, the reaction mixture was filtered by suction filtration washing with dichloromethane and the filtrate was evaporated to dryness. The crude was purified by flash chromatography on silica gel (eluant: dichloromethane/methanol 95:5) to afford 215 mg (yield 62%) of pure title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.35 (s, 6H) 2.25 (s, 3H) 2.42 (m, 4H) 2.71 (s, 2H) 2.77 (d, J=4.76 Hz, 3H) 3.44 (m, 4H) 3.48 (s, 2H) 4.35 (s, 3H) 6.91 (d, J=7.31 Hz, 1H) 7.26 (t, J=7.68 Hz, 1H) 7.56 (d, J=8.78 Hz, 1H) 7.76 (s, 1H) 8.15 (s, 1H) 8.41 (s, 1H) 9.5 (s, 1H)
- By working according to the above method the following compounds were prepared:
-
TABLE XX B10-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (s, 6 H) 2.26 (s, 3 H) 2.44-2.54 (m, 4 H) 2.68 (s, 2 H) 2.76 (d, J = 4.76 Hz, 3 H) 3.04-3.13 (m, 4 H) 4.31 (s, 3 H) 6.91 (d, J = 9.02 Hz, 2 H) 7.53 (d, J = 9.02 Hz, 2 H) 8.15 (q, J = 4.84 Hz, 1 H) 8.34 (s, 1 H) 9.25 (s, 1 H) B09-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (s, 6 H) 2.27 (s, 3 H) 2.52 (m, 4 H) 2.70 (s, 2 H) 2.76 (d, J = 4.76 Hz, 3 H) 3.13 (m, 4 H) 4.33 (s, 3 H) 6.59 (d, J = 7.31 Hz, 1 H) 7.14 (t, J = 7.68 Hz, 1 H) 7.23 (s, 1 H) 7.26 (d, J = 8.78 Hz, 1 H) 8.15 (s, 1 H) 8.39 (s, 1 H) 9.33 (s, 1 H) B101-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (s, 6 H) 2.55-3.62 (m, 13 H) 2.71 (s, 2 H) 2.75-2.79 (m, J = 4.76 Hz, 3 H) 4.33 (s, 3 H) 7.25 (d, J = 10.24 Hz, 2 H) 7.69 (d, J = 7.80 Hz, 2 H) 8.10-8.18 (m, 1 H) 8.41 (s, 1 H) 9.55 (s, 1 H) B19-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (s, 6 H) 2.68 (s, 2 H) 2.76 (d, J = 4.76 Hz, 3 H) 3.02-3.09 (m, 4 H) 3.72-3.79 (m, 4 H) 4.31 (s, 3 H) 6.93 (d, J = 9.02 Hz, 2 H) 7.55 (d, J = 9.02 Hz, 2 H) 8.15 (q, J = 4.63 Hz, 1 H) 8.34 (s, 1 H) 9.28 (s, 1 H) B107-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (s, 6 H) 2.70 (s, 2 H) 2.76 (d, J = 4.76 Hz, 3 H) 3.06-3.13 (m, 4 H) 3.73-3.78 (m, 4 H) 4.33 (s, 3 H) 6.59 (dd, J = 7.93, 2.07 Hz, 1 H) 7.16 (t, J = 8.11 Hz, 1 H) 7.23 (t, J = 2.01 Hz, 1 H) 7.30 (dd, J = 7.74, 1.40 Hz, 1 H) 8.16 (q, J = 4.59 Hz, 1 H) 8.39 (s, 1 H) 9.35 (s, 1 H) B102-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (s, 6 H) 2.35 (s, 4 H) 2.70 (s, 2 H) 2.76 (d, J = 4.76 Hz, 3 H) 3.43 (s, 2 H) 3.58 (s, 4 H) 4.33 (s, 3 H) 7.25 (s, 2 H) 7.66 (s, 2 H) 8.40 (s, 1 H) 9.51 (s, 1 H) B105-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.35 (s, 7 H) 2.38 (s, 4 H) 2.71 (s, 2 H) 2.77 (d, J = 4.76 Hz, 3 H) 3.44 (s, 2 H) 3.58 (s, 5 H) 4.36 (s, 3 H) 6.87-6.99 (m, 1 H) 7.25 (t, J = 7.56 Hz, 1 H) 7.58 (d, J = 6.71 Hz, 1 H) 7.76 (s, 1 H) 8.41 (s, 1 H) B103-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (s, 6 H) 1.64-2.07 (m, 4 H) 2.37-2.62 (m, 5 H) 2.68 (s, 2 H) 2.76 (d, J = 4.63 Hz, 3 H) 2.81-3.00 (m, 2 H) 4.30 (s, 3 H) 4.34-4.46 (m, 1 H) 6.94 (d, J = 9.02 Hz, 2 H) 7.58 (d, J = 9.02 Hz, 2 H) 8.15 (q, J = 4.55 Hz, 1 H) 8.36 (s, 1 H) 9.34 (s, 1 H) B106-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.34 (s, 6 H) 1.70-2.18 (m, 4 H) 2.59 (s, 3 H) 2.71 (s, 2 H) 2.77 (d, J = 4.76 Hz, 3 H) 2.93-3.50 (m, 4 H) 4.35 (s, 3 H) 4.40- 4.57 (m, 1 H) 6.61 (dd, J = 7.93, 2.07 Hz, 1 H) 7.21 (t, J = 8.11 Hz, 1 H) 7.26-7.32 (m, 1 H) 7.47 (s, 1 H) 8.12- 8.19 (m, 1 H) 8.42 (s, 1 H) 9.51 (s, 1 H) B120-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.04-1.24 (m, 6 H) 1.33 (s, 6 H) 2.68 (s, 2 H) 2.76 (d, J = 4.76 Hz, 3 H) 2.79-3.52 (m, 9 H) 4.31 (s, 3 H) 6.94 (d, J = 8.78 Hz, 2 H) 7.55 (d, J = 8.78 Hz, 2 H) 8.15 (q, J = 4.63 Hz, 1 H) 8.34 (s, 1 H) 9.28 (s, 1 H) B173-X00-M03(C01)-D04 1H NMR (400 MHz, DMSO-d6) δ ppm 1.31 (s, 6 H) 2.40-2.50 (m, 4 H) 2.68 (s, 2 H) 2.74 (d, J = 4.76 Hz, 3 H) 3.53 (s, 2 H) 3.60 (m, 4 H) 4.30 (s, 3 H) 6.98 (d, 1 H) 7.06 (dd, 1 H) 7.23 (d, 1 H) 8.14 (q, 1 H) 8.37 (s, 1 H) 9.39 (s, 1 H) 10 (bs, 1 H)
Reported below are the analytical HPLC/Mass data for some representative compounds of the invention -
TABLE XXI M + H RT method B121-X00-M03(C01)-D04 442.514 4.40 1 B122-X00-M03(C01)-D04 393.461 4.70 1 B123-X00-M03(C01)-D04 380.422 3.42 1 B124-X00-M03(C01)-D04 379.434 4.86 1 B125-X00-M03(C01)-D04 406.503 5.60 1 B126-X00-M03(C01)-D04 395.433 4.37 1 B127-X00-M03(C01)-D04 442.514 4.90 1 B128-X00-M03(C01)-D04 406.46 5.40 1 B114-X00-M03(C01)-D04 393.461 4.35 1 B129-X00-M03(C01)-D04 406.46 4.10 1 B11-X00-M03(C01)-D04 393.461 4.50 1 B130-X00-M03(C01)-D04 406.46 4.10 1 B131-X00-M03(C01)-D04 449.524 6.10 1 B168-X00-M03(C01)-D04 420.487 4.50 1 B132-X00-M03(C01)-D04 448.54 6.14 1 B133-X00-M03(C01)-D04 412.488 4.90 1 B134-X00-M03(C01)-D04 407.487 4.90 1 B135-X00-M03(C01)-D04 406.46 4.80 1 B21-X00-M03(C01)-D04 429.498 4.66 1 B136-X00-M03(C01)-D04 439.489 4.76 1 B137-X00-M03(C01)-D04 409.46 4.7 1 B138-X00-M03(C01)-D04 393.461 5.02 1 B139-X00-M03(C01)-D04 407.487 4.77 1 B140-X00-M03(C01)-D04 393.46 4.62 1 B141-X00-M03(C01)-D04 407.487 4.60 1 B142-X00-M03(C01)-D04 395.433 4.05 1 B143-X00-M03(C01)-D04 406.503 6.10 1 B144-X00-M03(C01)-D04 446.568 6.27 1 B145-X00-M03(C01)-D04 420.53 3.41 1 B17-X00-M03(C01)-D04 434.557 5.27 1 B146-X00-M03(C01)-D04 488.648 4.6 1 B147-X00-M03(C01)-D04 420.53 3.58 1 B148-X00-M03(C01)-D04 407.487 4.33 1 B149-X00-M03(C01)-D04 407.487 4.50 1 B150-X00-M03(C01)-D04 492.549 3.85 1 B151-X00-M03(C01)-D04 486.566 5.38 1 B152-X00-M03(C01)-D04 510.632 6.60 1 B153-X00-M03(C01)-D04 512.604 5.55 1 B154-X00-M03(C01)-D04 506.576 5.34 1 B155-X00-M03(C01)-D04 504.604 5.03 1 B156-X00-M03(C01)-D04 489.593 4.45 1 B13-X00-M03(C01)-D04 496.028 4.28 1 B117-X00-M03(C01)-D04 540.479 4.38 1 B157-X00-M03(C01)-D04 512.604 5.60 1 B158-X00-M03(C01)-D04 466.53 5.73 1 B159-X00-M03(C01)-D04 510.632 4.94 1 B160-X00-M03(C01)-D04 491.609 3.71 1 B161-X00-M03(C01)-D04 490.577 5.41 1 B162-X00-M03(C01)-D04 448.584 3.95 1 B163-X00-M03(C01)-D04 476.594 3.82 1 B164-X00-M03(C01)-D04 434.557 3.69 1 B165-X00-M03(C01)-D04 436.486 4.44 1 B109-X00-M03(C01)-D04 479.573 3.93 1 B166-X00-M03(C01)-D04 483.545 5.07 1 B12-X00-M03(C01)-D04 529.58 4.66 1 B167-X00-M03(C01)-D04 505.635 3.75 1 -
- A: Case where the “Resin” is 4-(4-formyl-3-methoxyphenoxy)butyryl polyethylene glycol grafted aminomethylpolystyrene-1% DVB:
- For each variant of R2 primary amine, 1 gram (0.39 mmol) of the aforementioned resin was charged to a 10 mL Argonaut Quest 210 reaction tube. Trimethyl orthoformate (7 mL) was added to the tube along with 5 equivalents (1.95 mmol) of each primary amine (indicated as R2 in the scheme). The reaction was mixed on the Quest at 25° C. for 16 hours followed by a 2-hour period of heating at 70° C. After cooling and removal of the reaction solution, the resin was washed once with trimethyl orthoformate (7 mL each) and three times with anhydrous methanol (7 mL). Anhydrous methanol (5 mL) was then added to the resin, followed by the addition of 148 mg (3.9 mmol, 10 equiv) of sodium borohydride. After vigorous gas evolution had ceased, the tube was capped and mixed for 8 hours at room temperature. The resin was washed 3 times with methanol (5 mL), three times with methanol/water (1:1, 5 mL), and three times with DMF (5 mL). The resin was then treated with 20% piperidine in DMF for 1 hour at room temperature. Again, the resin was washed three times with DMF (5 mL), three times with methanol (5 mL), and three times with dichloromethane (5 mL). A sample of the resin was tested for quantitative amine loading by using the Fmoc UV-spectrometric method described below. Qualitatively, the resin was analyzed using the chloranil test method described below.
- B: Case where the “Resin” is Rink amide, 4-(2′,4′-dimethoxyphenyl-fmoc-aminomethyl)phenoxy (copolystyrene-1% DVB):
- 1 g (0.39 mmol) of the aforementioned resin were charged into a 10 mL Argonaut Quest 210 reaction tube. The resin was treated with 20% piperidine in DMF for 5 minutes and a then a second treatment occurred for 30 minutes at room temperature. The resin was washed with DMF (3×5 mL), with methanol (3×5 mL) and with dichloromethane (3×5 mL).
- Quantitative amine loading by using the Fmoc UV-spectrometric method:
- A precisely tarred quantity (25 mg±5 mg) of dry, loaded resin was charged into a 3 mL polypropylene syringe, fitted with a filter disk. To the syringe, 3 equivalents of 9-fluorenylmethyl chloroformate dissolved in 1 mL of dichloromethane were charged and 1.5 equivalents of N,N-diisopropylethylamine were then added. The resin was shaken by means of orbital shaker, for 1 hour. The resin was washed with DMF (3×2 mL, 5 min.), with methanol (3×2 mL, 5 min.), and with DCM (3×2 mL, 5 min.).
- 1 mL of a 20% piperidine solution in DMF was drawn from the syringe and agitated for 5 minutes at room temperature. The solution was dispensed into a 10 mL volumetric flask. A second aliquot of the 20% piperidine solution in DMF was drawn and agitated for 30 minutes at room temperature. Again, the solution was dispensed into the same 10 mL volumetric flask (stock solution). DMF was added to the volumetric flask to achieve a 10 mL total volume. This volumetric flask containing the stock solution was agitated thoroughly and exactly 0.5 mL were transferred into a second 10 mL volumetric flask (test solution). Again, DMF was added to the volumetric flask up to a 10 mL total volume. The absorbance of this test solution was measured through an Amerasham Pharmacia Biotech Ultrospec 3000 Pro, UV-Vis spectrometer at λ=302 nm against DMF as the blank. The post reaction resin substitution was calculated using the following formula:
-
loading (mmol/g)=(A 302×20 fold×10 mL)/8100×wt - where A302 is the UV absorbance at λ=302 nm, ε=8100 is the extinction coefficient of the piperidine-fluorenone adduct and wt is the tare of the resin in milligrams.
- Qualitative chloranil (3,4,5,6-tetrachloro-1,2-benzoquinone) test for resin bound secondary amines: A small aliquot of pre-washed resin containing the attached amine was placed in a micro-test tube. The beads were washed once with acetone and the solvent was removed by decantation. One drop of the chloranil test solution was added to the test tube and allowed to stand at room temperature for 5 minutes. A dark green to brown color was a positive indication of a secondary amine. The intensity of the color was a non-quantitative indication of secondary amine concentration.
- Test solution: a saturated solution of 3,4,5,6-tetrachloro-1,2-benzoquinone in toluene at room temperature.
- For each variant of R2 primary amine loaded onto 1 g (0.39 mmol) of the resin in step 1 above, the following pre-activated carboxylic acid fluoride reagent was added. In 5 mL of dichloromethane, 166 mg (0.47 mmol, 1.2 equivalents) of 8-iodo-1-methyl-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxylate, 155 mg (0.585 mmol, 1.5 equivalents) of tetramethylfluoroformamidinium hexafluorophosphate and 0.102 mL (0.585 mmol, 1.5 equivalents) of N,N-diisopropylethylamine were dissolved. N,N-Dimethylacetamide was added dropwise to the solution until all reagents were in solution with sonication. The reaction system was stirred at room temperature for 30 minutes. Additional 0.102 mL (0.585 mmol, 1.5 equivalents) of N,N-diisopropylethylamine were added to the solution, in 30 minutes, and the entire content was charged to the resin on the Quest 210 synthesizer. The resin was mixed for 18 hours at room temperature. The resin was drained of the acylation cocktail and washed with DMF (3×5 mL, 5 min.), with methanol (3×5 mL, 5 min.) and with DCM (3×5 mL, 5 min.). The resin was dried from DCM under vacuum. The resin was qualitatively tested for the acylation reaction completion using the chloranil test method. A sample of each dried resin was subjected to the quantitative Fmoc UV-spectrometric analysis to determine the extent of resin bound acylation.
- Using a 4 mL Argonaut Trident synthesizer cassette, 200 mg (0.078 mmol) of each resin type from step 2 above, were charged into separate vials. To each of the reactor vials flushed with argon, potassium carbonate (0.158 g, 1.56 mmol), palladium acetate [Pd(OAc)2] (1.8 mg, 0.008 mmol, 10%), (+)-BINAP (5.0 mg, 0.008 mmol, 10%) and the corresponding R1 amine (0.156 mmol, 2 equivalents) in dimethyacetamide (2 mL) were added. The resulting mixture was agitated at room temperature for 1 hour and then heated to 60° C. for 16 hours on the Argonaut Trident External Agitation Thermal Unit (EATU) synthesis station.
- The resin was drained from the synthesis cocktail and washed using the Argonaut Trident EATU synthesis station with DMF (1×2 mL, 5 min.), with water (1×2 mL, 5 min.), with DMF/water (1:1) (3×2 mL, 5 min.), with DMF (3×2 mL, 5 min.), with methanol (3×2 mL, 5 min.) and with DCM (3×2 mL, 5 min.).
- To each Argonaut Trident reactor vial, 2 mL of the following resin cleavage cocktail were added: dichloromethane (50 mL), trifluoroacetic acid (49 mL) and water (1 mL). The resin suspended in the cleavage cocktail was shaken for 1 hour at room temperature on the Argonaut Trident EATU synthesis station. The solution containing the crude products was captured into separate vials where three additional resin washing with dichloromethane (2 mL each) were also captured to the same corresponding vials.
-
- 15 g of 1,3-bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea (0.052 mol) were suspended in 150 mL of gaseous ammonia in methanol and the mixture was stirred at room temperature in a close bottle at room temperature. The resulting solution was concentrated in vacuo until 10 g (74% yield) of the title compound precipitated which were collected by filtration.
-
- A solution of 5.2 g (20 mmol) of 1,3-bis(tert-butoxycarbonyl)guanidine in 100 mL of dry dichloromethane was cooled to −78° C. under stirring and 5.6 g (20 mmol) of trifluoromethanesulfonic anhydride were added dropwise. The reaction mixture was allowed to come to room temperature and stirred for 5 hours. An aqueous solution of NaHSO4 was added and the organic layer dried over Na2SO4 and evaporated to dryness. The residue was purified by chromatography on a silica gel column (eluant petroleum ether/ethyl acetate 7/3) to give 4.0 g (51% yield) of the title compound.
-
- To a solution of 3.0 g (13.3 mmol) of 4-(3-chloro-4-methylpiperazin-1-yl)aniline and 2.22 mL (16.0 mmol) of triethylamine in 36 mL of dichloromethane, 6.0 g (15.3 mmol) of 1,3-bis(tert-butoxycarbonyl)-2-trifluoromethanesulfonylguanidine were added. The reaction mixture was stirred at room temperature for 72 hours. The solution was diluted with further dichloromethane, washed with water and the solvent dried over Na2SO4 and evaporated in vacuo. The residue was purified by chromatography on a silica gel column (eluant dichloromethane/methanol 92/8) giving 5.4 g (86.2% yield) of a protected intermediate, that was treated with 60 mL of 4 N HCl in dioxane. The mixture was stirred at room temperature overnight. The solvent was removed under reduced pressure, the residue redissolved in water, the resulting solution neutralized and the product extracted with ethyl acetate. The solvent was removed under reduced pressure to give 2.4 g (78.7% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.23 (s, 3H) 2.48 (m, 4H) 2.90 (m, 4H) 5.38 (bs, 4H) 6.72 (dd, J 2.44, 8.42 Hz, 1H) 6.82 (d, J 2.44, 1H) 7.01 (d, J 8.42 Hz, 1H).
- By working analogously, but employing the suitable substituted aniline derivative, the following compounds were prepared:
- N-[3-(4-methylpiperazin-1-yl)phenyl]guanidine;
N-[4-(4-methylpiperazin-1-yl)phenyl]guanidine; - 1H NMR (400 MHz, DMSO-d6) δ ppm 2.80 (s, 3H) 7.09 (m. 4H) 7.41 (s, 2H) 9.85 (s, 1H) 11.39 (s, 1H) (as dihydrochloride);
- N-[4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl]guanidine;
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.22 (s, 3H) 2.43 (m, 4H) 2.80 (m, 4H) 5.46 (bs, 4H) 7.02 (m, 2H) 7.37 (d, 1H, J 8.42 Hz);
-
- A solution of 40 g (0.291 mol) of (2S)-2-amino-2-phenylethanol in 1250 mL of ethylacetate and 99.83 mL (0.583 mol) of N-ethyl-N,N-diisopropylamine was cooled to 0° C. and 76.21 g (0.349 mol) of di-tert-butyl dicarbonate were added portionwise. The mixture was stirred at room temperature for 3 hours then it was washed with 400 mL of 1M KHSO4. The organic layer was dried over Na2SO4 thus affording 69.88 g of the title compound.
- The solution of 68.9 g (0.29 mol) of tert-butyl (1S)-2-hydroxy-1-phenylethylcarbamate and triethylamine (40.36 mL, 0.29 mol) in 700 mL of dry dichloromethane under inert atmosphere was cooled to −10° C. and 24.79 mL (0.319 mol) of mesylchloride were added dropwise. After 2 hours at 0° C. the mixture was poured into ice and water and extracted with dichloromethane. The organic phase was washed with diluted HCl, aqueous NaHCO3, brine and dried over Na2SO4 yielding 89.8 g of the product (98% yield).
- The mixture of 25 g (0.0792 mol) of (2S)-2-[(tert-butoxycarbonyl)amino]-2-phenylethyl methanesulfonate and morpholine (69.37 mL, 0.792 mol) in 250 mL of dry THF under inert atmosphere was refluxed for 8 hours. The reaction was then cooled to room temperature, treated with diethylether and the solid filtered. The solution was evaporated affording the crude as a yellow oil that was purified through silica gel chromatography (eluant hexane/ethylacetate 6/4). 11.59 g of the title product were isolated (48% yield).
- A solution of 11.58 g (0.0378 mol) of tert-butyl (1S)-2-morpholin-4-yl-1-phenylethylcarbamate in 100 mL of dichloromethane was treated with 120 mL of HCl 4M in dioxane and stirred for 18 hours. The mixture was diluted with diethylether and the product filtered (9.48 g, 90% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 3.37 (m, 6H) 3.83 (m, 4H) 4.90 (m, 1H) 7.51 (m, 5H) 8.84 (bs, 3H).
- By working analogously the following compounds was prepared:
- (1S)-2-(4-methylpiperazin-1-yl)-1-phenylethanamine trihydrochloride
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.78 (m, 13H) 4.47 (m, 1H) 7.46 (m, 5H) 8.45 (bs, 3H) 10.40 (bs, 1H).
-
- Step. 1 1-tert-butyl-4-(4-nitrophenyl)piperazine
- A solution of 800 mg (5.67 mmol) of 1-fluoro-4-nitrobenzene, 2.07 g (1.2 mmol) of 1-tert-butylpiperazine dihydrobromide and 3.2 mL (20.41 mmol) of triethylamine, in 22 mL of acetonitrile, was refluxed for 10 hours. The mixture was cooled to room temperature, diluted with water and extracted with dichloromethane. The organic layer was washed with water and brine, dried over Na2SO4 and evaporated. Purification by flash chromatography (eluant dichloromethane/methanol 7/3) yielded 860 mg of the title compound as yellow solid.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.05 (s, 9H) 2.63 (m, 4H) 3.43 (m, 4H) 7.03 (d, 2H) 8.05 (d, 2H).
- To a solution of 840 mg (3.189 mmol) of 1-tert-butyl-4-(4-nitrophenyl)piperazine in 24 mL of methanol, 904 mg (16.9 mmol) of ammonium chloride dissolved in 6 mL of water and 552 mg (9.886 mmol) of iron were added. After 7 hours, the suspension was cooled and filtered. pH was adjusted to 10 through portionwise addition of Na2CO3 to the aqueous phase. Extraction with dichloromethane yielded 667 mg of the title amine.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.05 (s, 9H) 2.62 (m, 4H) 2.89 (m, 4H) 4.52 (s, 2H) 6.50 (d, J=8.78 Hz, 2H) 6.67 (d, J=8.78 Hz, 2H).
-
- A suspension of N-(3-Hydroxy-phenyl)-acetamide (30.2 g) in anhydrous tetrahydrofuran (600 mL) was treated with 4-hydroxy-N-methylpiperidine (30.54 mL) and triphenylphosphine (68.18 g); a solution of diethylazadicarboxylate in anhydrous tetrahydrofuran (THF) (40.94 mL in 60 mL of THF) was added dropwise and the mixture was stirred at room temperature for 2 hours and then heated to 50° C. overnight.
- Further amounts of triphenylphosphine (28.00 g) and diethylazadicarboxylate (14 mL) were added and the heating was continued for additional 24 hours.
- The solvent was removed under vacuum and the residue was taken up with ethyl acetate (600 mL), and extracted with 2N hydrochloric acid (3×200 mL). The aqueous layer was washed with ethyl acetate and pH was brought to 10 by addition of 20% sodium hydroxide. Extraction with ethyl acetate (4×100 mL) was carried out and the combined organic extracts were washed with brine and dried over anhydrous sodium sulphate. The solvent was removed under vacuum and the crude was purified by flash chromatography on silica gel (eluant dichloromethane/methanol 85:15 then +0.1% triethylamine) to yield 21 g of the desired compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.52-1.68 (m, 2H) 1.83-1.96 (m, 2H) 2.01 (s, 3H) 2.14 (s, 3H) 2.46-2.52 (m, 2H) 2.52-2.63 (m, 2H) 4.18-4.20 (m, 1H) 6.59 (d, 1H) 7.05 (d, 1H) 7.14 (t, 1H) 7.26 (s, 1H) 9.83 (s, 1H).
- A solution of N-[3-(1-Methyl-piperidin-4-yloxy)-phenyl]-acetamide (2.604 g) in absolute ethanol (40 mL) was treated with 37% hydrochloric acid and the solution was heated to reflux for 3 hours.
- After removing the solvent under vacuum, the residue was dissolved in water and washed with ethyl acetate (30 mL). The aqueous solution was basified by 20% sodium hydroxide and extracted with ethyl acetate (4×50 mL); the combined organic layers were washed with brine (4×20 mL), with water (2×10 mL) and dried over anhydrous sodium sulphate. After removing the solvent, the crude (2.00 g) was crystallized from n-hexane and ethyl acetate to yield 1.00 g of pure compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.54-1.68 (m, 2H) 1.82-1.94 (m, 2H) 2.12-2.27 (m, 2H) 2.21 (s, 3H) 2.58-2.71 (m, 2H) 4.14-4.29 (m, 1H) 4.98 (s, 2H) 6.09 (ddd, J=8.11, 2.32, 0.79 Hz, 1H) 6.14 (ddd, J=7.83, 2.04, 0.98 Hz, 1H) 6.16 (t, J=2.19 Hz, 1H) 6.88 (t, J=7.99 Hz, 1H)
-
- A solution of 2-fluoro-5-nitro-benzoic acid (3.702 g, 20 mmol) in anhydrous methanol (10.00 mL) was treated with 98% sulphuric acid and the solution was heated to reflux for 4 hours. The solvent was removed under vacuum and the residue was dissolved in ethyl acetate (50 mL). The solution was washed with saturated aqueous sodium bicarbonate (3×10 mL), brine until neutrality ant then water, and dried over anhydrous sodium sulphate. The solvent was removed under vacuum to afford a thick oil that started to crystallize. After adding n-hexane (3 mL) the crude was stored for 2 days in the fridge. The crystalline compound was filtered and washed with n-hexane to yield 3.147 g of the pure compound.
- By concentrating the mother liquors a second crop was obtained (390 mg) (y=89%).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 3.94 (s, 3H) 7.69 (m, 1H) 8.55 (m, 1H) 8.65 (m, 1H).
- A solution of methyl 2-fluoro-5-nitro-benzoate (3.487 g, 17.511 mmol) and N-methylpiperazine (3.855 mL, 3.508 g, 35.022 mmol) in 30 mL of anhydrous methanol was heated to reflux for 5 hours.
- After removing the volatiles at reduced pressure, the crude orange oil was treated slowly with water (about 20 mL) and stirred in an ice bath for 1 hour. The crystalline compound formed was filtered by suction filtration, washed with water and dried at 40° C. under vacuum for 24 hours. There were obtained 4.627 g of yellow compound (y=96%).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.25 (s, 3H) 2.46 (m, 4H) 3.27 (m, 4H) 3.87 (s, 3H) 7.22 (d J=9.27 Hz, 1H) 8.08 (dd J=9.27 Hz J=2.80 Hz, 1H) 8.33 (d J=2.80 Hz, 1H).
- A suspension of methyl 2-(4-methyl-piperazin-1-yl)-5-nitro-benzoate (1.40 g, 5.00 mmol) in anhydrous diethyl ether (60 mL) was treated with litium borum hydride (190.5 mg, 8.75 mmol) and the formation of a precipitate was observed. Anhydrous methanol (0.350 mL, 280.3 mg, 8.75 mmol) was then added and the solution heated to reflux for 2 hours. As the reaction was not complete, further litium borum hydride (190.5 mg) and methanol (0.350 mL) were added twice every 4 hours.
- After cooling in ice bath, the reaction mixture was treated with water, with 1N HCl (6 mL) and stirred at room temperature for 15 minutes. The solution was then basified to pH 11 by 1N sodium hydroxide and extracted with dichloromethane; the organic extracts were washed with brine and with water and dried over anhydrous sodium sulphate. The solvent was evaporated to dryness to afford 1,35 g of a brownish solid that was purified by flash chromatography on silica gel (eluant dichloromethane/methanol 95:5) to yield 1,10 g of desired compound (y=87%).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.28 (s, 3H) 2.52 (m, 4H) 3.03 (m, 4H) 4.54 (m, 2H) 5.53 (t, 1H) 7.17 (d J=8.90 Hz, 1H) 8.08 (dd J=8.90 Hz J=2.92 Hz, 1H) 8.33 (d J=2.92 Hz, 1H).
- To a solution of crude [2-(4-Methyl-piperazin-1-yl)-5-nitro-phenyl]-methanol (437 mg, 1.74 mmol) in methanol (1.5 mL), ammonium chloride (NH4C1) (465 mg), water (4.9 mL) and Fe powder (290 mg) were added and the mixture was heated at 100° C. for 3 hours.
- The reaction mixture was filtered and the black precipitate washed with MeOH/water 1:1 (10 mL). Methanol was removed under vacuum and the remaining water was basified with sodium carbonate (Na2CO3) and extracted with ethyl acetate (5×20 mL). The organic extracts were washed with brine (2×10 mL) and with water (2×5 mL) and dried over anhydrous sodium sulphate. After evaporation, the resultant crude orange solid was purified by flash chromatography on silica gel (eluant dichloromethane/methanol/triethylamine 90:10:0.1) to yield 357 mg of pure title compound (y=92%).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3H) 2.52 (m, 4H) 2.73 (m, 4H) 4.48 (m, 2H) 4.75 (bs, 2H) 4.95 (t, 1H) 6.43 (dd J=8.42 Hz J=2.68 Hz, 1H) 6.67 (d J=2.68 Hz, 1H) 6.80 (d J=8.42 Hz, 1H).
-
- To a suspension of 4-methylpiperazine-1-carbonyl chloride hydrochloride (19.9 g 0.1 mol) and piperidone monohydrate hydrochloride (15.3 g 0.1 mol), in 200 mL of dichloromethane, dry triethylamine (45 mL, 0.33 mol) was added dropwise. The mixture was stirred for 2 hours. The organic phase was washed with brine (2×20 mL) and dried over sodium sulfate. After filtration, the solvent was evaporated in vacuo and the crude product was dissolved in EtOH (50 mL) and diethylether (100 mL) and treated with HCl 4N in dioxane (25 mL). After 1 hour, the precipitate was filtered and dried in oven to give 13 g (yield 50%) of the title compound.
- 1H NMR (400 MHz, DMSO-D6) 8 ppm 2.40 (t, J=6.16 Hz, 4H) 2.81 (s, 3H) 3.00-3.11 (m, 2H) 3.12-3.23 (m, 2H) 3.28-3.42 (m, 2H) 3.51 (t, J=6.16 Hz, 4H) 3.73 (d, J=14.27 Hz, 2H) 10.12 (s, 1H)
-
-
- 20 g (0.142 mol) of 1-acetyl-4-piperidone were dissolved in 400 mL of absolute ethanol and 21.2 g (0.156 mol) of benzoylhydrazine were added. The resulting solution was refluxed for 6 hours under stirring. The solvent was then removed in vacuo and the residue partitioned between dichloromethane and water. The organic layer was dried over sodium sulfate and evaporated to dryness. The residue was triturated with diethylether and 30 g (83% yield) of the title compound were collected by filtration.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 2.07 (s, 3H) 2.43-2.62 (m, 4H) 3.45-3.74 (m, 4H) 7.51 (m, 3H) 7.84 (m, 2H) 10.7 (bs, 1H).
-
- 30 g (0.12 mol) of N′-(1-acetylpiperidin-4-ylidene)benzohydrazide were dissolved in 500 mL of glacial acetic acid and 1 g of PtO2 were added. The mixture was hydrogenated at 40 psi for 12 hours at room temperature. The catalyst was then filtered on celite and the filtrate evaporated in vacuo. The residue was redissolved with dichloromethane and washed with aqueous NaHCO3. The solvent was dried over sodium sulfate and removed under reduced pressure to give, after trituration with diethylether, 28.6 g (92% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.25 (m, 2H) 1.81 (m, 2H) 2.00 (s, 3H) 3.75 (m, 2H) 4.10 (m, 2H) 4.19 (s, 1H) 7.49-7.51 (m, 3H) 7.84 (m, 2H) 10.01 (s, 1H).
-
- To a solution of 28.6 g (0.11 mol) of N′-(1-acetylpiperidin-4-yl)benzohydrazide in 700 mL of acetonitrile, 53.19 g (0.44 mol) of 4-dimethylaminopyridine (DMAP) and 77.2 g (0.35 mol) of di-tert-butyldicarbonate were added. The mixture was stirred overnight, the solvent removed and the residue taken up with dichoromethane and washed with aqueous KHSO4 to remove DMAP. The organic layer was dried over sodium sulfate and evaporated to give 45 g of the title compound as an oil.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.18 and 1.40 (2s, 18H) 1.97 (s, 3H) 4.28 (m, 1H) 7.51-7.53 (m, 4H).
-
- 45 g (0.1 mol) of di-tert-butyl 1-(1-acetylpiperidin-4-yl)-2-benzoylhydrazine-1,2-dicarboxylate were dissolved in 1 L of tetrahydrofuran and a solution of 5.8 g (0.14 mol) of lithium hydroxide monohydrate in 1 L of water were added. The mixture was stirred at room temperature for 16 hours, the tetrahydrofuran removed in vacuo and the aqueous layer extracted several times with dichloromethane. The organic phase was dried over sodium sulfate and evaporated to dryness, giving 32 g (84% yield) of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.41 and 1.42 (2s, 18H) 1.99 (s, 3H) 4.09 (m, 1H) 2.52 and 3.05/2m, 4H) 3.95 and 4.41 (2m, 4H) 8.81 (bs, 1H).
-
- 32 g (0.09 mol) of di-tert-butyl 1-(1-acetylpiperidin-4-yl)hydrazine-1,2-dicarboxylate were dissolved in 300 mL of methanol and 30 mL of HCl 4 M in dioxane were added. The mixture was stirred at room temperature overnight. The solvent was then evaporated and the residue crystallized from ethanol, giving 14 g (77% yield) of the title compound.
-
- To a suspension of 500 mg of 2-phenyl-D-alanine (3.02 mmol) and trimethylammonium hydroxide (aqueous solution 10%, 2.8 mL, 3.02 mmol) in 15 mL of acetonitrile, diterbutylcarbonate (1.047 g, 4.8 mmol) was added and the mixture was stirred at room temperature for 2 days. The solvent was then removed under vacuo, the residue was dissolved in water and washed with diethylether. The aqueous layer was acidified to pH=3-4 with citric acid and the product was extracted with ethyl acetate (3×20 mL). The combined organic phase was washed with water, dried over Na2SO4 and evaporated. The title product was recovered as white solid (630 mg, yield 78%).
- 630 mg (2.374 mmol) of N-(tert-butoxycarbonyl)-2-phenyl-D-alanine were dissolved in 20 mL of dry DMF and O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoborate (TBTU, 1.37 g, 4.27 mmol), morpholine (0.412 mL, 4.73 mmol) and diisopropylethylamine (1.63 mL, 9.5 mol) were added. The mixture was stirred at room temperature for 1 hour, then the solvent was removed and the residue dissolved with dichloromethane. The solution was washed with saturated NaHCO3, brine, water and dried over Na2SO4. 700 mg of the title compound were recovered (88% yield).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.40 (s, 9H) 1.65 (s, 3H) 3.33 (m, 8H) 7.35 (m, 6H).
- A solution of 630 mg (1.884 mmol) of N-(tert-butoxycarbonyl)-(1S)-1-methyl-2-morpholin-4-yl-2-oxo-1-phenylethylamine in 20 mL of dioxane was treated with 2.5 mL of HCl 4N in dioxane overnight. The solvent was removed under vacuo and the solid was triturated with diethylether yielding 560 mg of the title compound.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.94 (s, 3H) 3.35 (m, 8H) 7.51 (m, 5H) 8.52 (bs, 3H).
- Under an argon atmosphere 412 mg of (1S)-1-methyl-2-morpholin-4-yl-2-oxo-1-phenylethylamine hydrochloride (1.522 mol) were dissolved in 30 mL of dry THF. A 2 M solution of borane dimethylsulfide (4.4 mL, 5.78 mmol) was added dropwise at 0° C. and the mixture stirred for 10 minutes at 0° C. and then allowed to reach room temperature (gas evolution). After 4 hours the reaction was quenched with methanol (added very carefully) and diluted with methanol when effervescence ceased. THF was removed under vacuo and the methanolic solution was heated at 60° C. for 30 minutes. The solvent was at last completely removed recovering 330 mg of the amine that was subsequently dissolved in 15 mL of dioxane and treated with 1.35 mL of HCl 4 N in dioxane. After 1 hour the solvent was evaporated and the product was triturated with diethylether to yield 350 mg of the expected salt.
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.66 (s, 3H) 2.52 (m, 6H) 3.57 (m, 4H) 7.51 (m, 5H) 8.53 (s, 3H).
-
- 1 g (3.98 mmol) of Boc-L-phenylglicine was dissolved in 18 mL of dry DMF and 0-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoborate (TBTU, 1.92 g, 5.97 mmol), morpholine (0.555 mL, 6.37 mmol) and diisopropylethylamine (2.72 mL, 15.92 mol) were added. The mixture was stirred at room temperature for 1 hour, then the solvent was removed and the residue dissolved with dichloromethane. The solution was washed with saturated NaHCO3, brine, water and dried over Na2SO4. 1.327 g of the title compound were recovered.
- 1.327 g of N-(tert-butoxycarbonyl)-(1S)-2-morpholin-4-yl-2-oxo-1-phenylethylamine was dissolved in 15 mL of dioxane and treated with 3.5 mL of HCl 4 M in dioxane overnight. The solvent was removed and the solid was triturated with diethylether yielding 920 mg of the product (yield 90%).
- 1H NMR (400 MHz, DMSO-d6) δ ppm 3.13 (m, 4H) 3.54 (m, 4H) 5.58 (m, 1H) 7.50 (s, 5H) 8.58 (s, 3H).
Claims (17)
1. A pyrazolo-quinazoline derivative of formula (Ia):
or a pharmaceutically acceptable salt thereof, wherein
R is substituted or unsubstituted phenyl;
X is —NH—;
R1 is an optionally substituted straight or branched C1-C6 alkyl;
R2 is —NR″R″′, wherein
R″ is hydrogen or an optionally substituted straight or branched C1-C6 alkyl;
R″′ is hydrogen or an optionally substituted group selected from phenyl and straight or branched C1-C6 alkyl; and
A is —(CH2)2—, —CH2—C(CH3)2—, or —C(CH3)2—CH2—.
2. The compound of claim 1 , wherein R is phenyl substituted with heterocyclyl or heterocyclylalkyl.
3. The compound of claim 2 , wherein the heterocyclyl is selected from piperazinyl, morpholinyl, and imidazolyl.
4. The compound of claim 1 , wherein R is phenyl substituted with one or more groups independently selected from halogen, hydroxy, polyfluorinated alkyl, and aminocarbonyl.
5. The compound of claim 1 , wherein R1 is straight or branched C1-C6 alkyl substituted with one or more groups independently selected from halogen and hydroxy.
6. The compound of claim 1 , wherein R1 is unsubstituted straight or branched C1-C6 alkyl.
7. The compound of claim 1 , wherein R1 is methyl.
8. The compound of claim 1 , wherein R″′ is unsubstituted straight or branched C1-C6 alkyl or straight or branched C1-C6 alkyl substituted with one or more groups independently selected from halogen, hydroxy, aryl, heterocyclyl, and di-(C1-C6 alkyl)amino.
9. The compound of claim 8 , wherein the aryl is phenyl.
10. The compound of claim 8 , wherein the heterocyclyl is pyridyl.
11. The compound of claim 1 , wherein A is —CH2—C(CH3)2—.
12. A method for treating a disease selected from the group consisting of ovarian cancer, acute myeloid leukemia, prostate cancer, breast cancer, liver cancer, melanoma, colon cancer, non-small lung cancer, pancreatic cancer, and pancreatic adenocarcinoma, comprising administering to a mammal in need thereof an effective amount of a compound of claim 1 .
14. A method for inhibiting Aurora 2 activity, comprising administering to a mammal in need thereof an effective amount of a compound of claim 1 .
16. A method for inhibiting cell cycle dependent kinase activity, comprising administering to a mammal in need thereof an effective amount of a compound of claim 1 .
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/291,323 US20190194214A1 (en) | 2003-05-22 | 2019-03-04 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US17/084,862 US20210300935A1 (en) | 2003-05-22 | 2020-10-30 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US18/394,122 US20250011333A1 (en) | 2003-05-22 | 2023-12-22 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
Applications Claiming Priority (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US47266103P | 2003-05-22 | 2003-05-22 | |
| PCT/EP2004/050612 WO2004104007A1 (en) | 2003-05-22 | 2004-04-27 | Pyrazolo-quinazoline derivatives,process for their preparation and their use as kinase inhibitors |
| US10/557,565 US7482354B2 (en) | 2003-05-22 | 2004-04-27 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US12/262,933 US8541429B2 (en) | 2003-05-22 | 2008-10-31 | Pyrazolo quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US13/972,659 US8981089B2 (en) | 2003-05-22 | 2013-08-21 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US14/625,093 US9464090B2 (en) | 2003-05-22 | 2015-02-18 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US15/256,916 US9637497B2 (en) | 2003-05-22 | 2016-09-06 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US15/467,323 US10280176B2 (en) | 2003-05-22 | 2017-03-23 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US16/291,323 US20190194214A1 (en) | 2003-05-22 | 2019-03-04 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/467,323 Continuation US10280176B2 (en) | 2003-05-22 | 2017-03-23 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US15/467,323 Division US10280176B2 (en) | 2003-05-22 | 2017-03-23 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/084,862 Continuation US20210300935A1 (en) | 2003-05-22 | 2020-10-30 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190194214A1 true US20190194214A1 (en) | 2019-06-27 |
Family
ID=33476970
Family Applications (9)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/557,565 Expired - Lifetime US7482354B2 (en) | 2003-05-22 | 2004-04-27 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US12/262,933 Expired - Lifetime US8541429B2 (en) | 2003-05-22 | 2008-10-31 | Pyrazolo quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US13/972,659 Expired - Lifetime US8981089B2 (en) | 2003-05-22 | 2013-08-21 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US14/625,093 Expired - Lifetime US9464090B2 (en) | 2003-05-22 | 2015-02-18 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US15/256,916 Expired - Fee Related US9637497B2 (en) | 2003-05-22 | 2016-09-06 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US15/467,323 Expired - Lifetime US10280176B2 (en) | 2003-05-22 | 2017-03-23 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US16/291,323 Abandoned US20190194214A1 (en) | 2003-05-22 | 2019-03-04 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US17/084,862 Abandoned US20210300935A1 (en) | 2003-05-22 | 2020-10-30 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US18/394,122 Abandoned US20250011333A1 (en) | 2003-05-22 | 2023-12-22 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
Family Applications Before (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/557,565 Expired - Lifetime US7482354B2 (en) | 2003-05-22 | 2004-04-27 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US12/262,933 Expired - Lifetime US8541429B2 (en) | 2003-05-22 | 2008-10-31 | Pyrazolo quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US13/972,659 Expired - Lifetime US8981089B2 (en) | 2003-05-22 | 2013-08-21 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US14/625,093 Expired - Lifetime US9464090B2 (en) | 2003-05-22 | 2015-02-18 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US15/256,916 Expired - Fee Related US9637497B2 (en) | 2003-05-22 | 2016-09-06 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US15/467,323 Expired - Lifetime US10280176B2 (en) | 2003-05-22 | 2017-03-23 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/084,862 Abandoned US20210300935A1 (en) | 2003-05-22 | 2020-10-30 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| US18/394,122 Abandoned US20250011333A1 (en) | 2003-05-22 | 2023-12-22 | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
Country Status (36)
| Country | Link |
|---|---|
| US (9) | US7482354B2 (en) |
| EP (1) | EP1636236B1 (en) |
| JP (1) | JP5043432B2 (en) |
| KR (1) | KR101084871B1 (en) |
| CN (2) | CN102079746A (en) |
| AP (1) | AP2064A (en) |
| AR (2) | AR044543A1 (en) |
| AU (1) | AU2004240772B2 (en) |
| BR (2) | BR122019010200B8 (en) |
| CA (1) | CA2526578C (en) |
| CO (1) | CO5721006A2 (en) |
| CR (1) | CR8102A (en) |
| CY (1) | CY1114708T1 (en) |
| DK (1) | DK1636236T3 (en) |
| EA (1) | EA010904B1 (en) |
| EC (1) | ECSP056194A (en) |
| ES (1) | ES2436524T3 (en) |
| GE (1) | GEP20094664B (en) |
| HR (1) | HRP20050967B8 (en) |
| IL (1) | IL172046A (en) |
| IS (1) | IS2939B (en) |
| ME (1) | ME00142B (en) |
| MX (1) | MXPA05012573A (en) |
| MY (1) | MY142019A (en) |
| NO (1) | NO334992B1 (en) |
| NZ (1) | NZ543661A (en) |
| OA (1) | OA13170A (en) |
| PL (1) | PL1636236T3 (en) |
| PT (1) | PT1636236E (en) |
| RS (2) | RS52899B (en) |
| SI (1) | SI1636236T1 (en) |
| TN (1) | TNSN05298A1 (en) |
| TW (1) | TWI349672B (en) |
| UA (1) | UA80763C2 (en) |
| WO (1) | WO2004104007A1 (en) |
| ZA (1) | ZA200509486B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021084541A1 (en) * | 2019-10-31 | 2021-05-06 | Sol-Gel Technologies Ltd. | Treatment of hair loss disorders with a topical egfr inhibitor |
Families Citing this family (73)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EA010904B1 (en) * | 2003-05-22 | 2008-12-30 | НЕРВИАНО МЕДИКАЛ САЙЕНСИЗ С.р.л. | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| CN1897950A (en) * | 2003-10-14 | 2007-01-17 | 惠氏公司 | Fused aryl and heteroaryl derivatives and methods of use |
| US7572914B2 (en) | 2003-12-19 | 2009-08-11 | Takeda Pharmaceutical Company Limited | Kinase inhibitors |
| US7772232B2 (en) | 2004-04-15 | 2010-08-10 | Bristol-Myers Squibb Company | Quinazolinyl compounds as inhibitors of potassium channel function |
| ITMI20041033A1 (en) * | 2004-05-24 | 2004-08-24 | Neuroscienze S C A R L | PHARMACEUTICAL COMPOUNDS |
| JP2008510734A (en) | 2004-08-18 | 2008-04-10 | タケダ サン ディエゴ インコーポレイテッド | Kinase inhibitor |
| ATE479687T1 (en) | 2004-10-15 | 2010-09-15 | Takeda Pharmaceutical | KINASE INHIBITORS |
| US8119655B2 (en) | 2005-10-07 | 2012-02-21 | Takeda Pharmaceutical Company Limited | Kinase inhibitors |
| ES2390237T3 (en) * | 2006-02-10 | 2012-11-07 | Nerviano Medical Sciences S.R.L. | Combinations comprising a cdk inhibitor and an anti-growth factor antibody or an antimitotic agent |
| KR20090007635A (en) * | 2006-05-09 | 2009-01-19 | 노파르티스 아게 | Combinations comprising iron chelators and anti-neoplastic agents and uses thereof |
| WO2007149395A2 (en) * | 2006-06-20 | 2007-12-27 | Amphora Discovery Corporation | 2,5-substituted oxazole derivatives as protein kinase inhibitors for the treatment of cancer |
| US7517882B2 (en) | 2006-09-18 | 2009-04-14 | Polaris Group | Protein kinase inhibitors |
| SG175609A1 (en) | 2006-10-09 | 2011-11-28 | Takeda Pharmaceutical | Kinase inhibitors |
| KR101512284B1 (en) | 2006-12-21 | 2015-04-15 | 네르비아노 메디칼 사이언시스 에스.알.엘. | Substituted pyrazolo-quinazoline derivatives, processes for their preparation, and their use as kinase inhibitors |
| ZA200904912B (en) * | 2006-12-21 | 2010-09-29 | Nerviano Medical Sciences Srl | Substituted pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
| EP2213673B1 (en) | 2007-10-23 | 2013-06-05 | Msd K.K. | Pyridone-substituted-dihydropyrazolopyrimidinone derivative |
| NZ586069A (en) * | 2007-12-19 | 2012-05-25 | Amgen Inc | Fused pyridine, pyrimidine and triazine compounds as cell cycle inhibitors |
| EP2278973B1 (en) * | 2008-04-07 | 2011-11-02 | Amgen Inc. | Gem-disubstituted and spirocyclic amino pyridines/pyrimidines as cell cycle inhibitors |
| TWI426074B (en) * | 2008-04-30 | 2014-02-11 | Nerviano Medical Sciences Srl | Method for producing 5-(2-amino-pyrimidin-4-yl)-2-aryl-1H-pyrrole-3-carboxamide |
| EA020703B9 (en) * | 2008-06-26 | 2015-12-30 | Ле Лаборатуар Сервье | Pyrazolo-quinazolines |
| EP2320903B1 (en) | 2008-07-29 | 2017-01-18 | Nerviano Medical Sciences S.r.l. | THERAPEUTIC COMBINATION COMPRISING A CDKs INHIBITOR AND AN ANTINEOPLASTIC AGENT |
| EP2323664B1 (en) | 2008-07-29 | 2015-01-07 | Nerviano Medical Sciences S.r.l. | Use of a cdk inhibitor for the treatment of glioma |
| JP5579724B2 (en) * | 2008-10-17 | 2014-08-27 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Tetra-aza-heterocycles as phosphatidylinositol-3-kinase (PI-3 kinase) inhibitors |
| WO2010058006A1 (en) | 2008-11-24 | 2010-05-27 | Nerviano Medical Sciences S.R.L. | Cdk inhibitor for the treatment of mesothelioma |
| IT1395724B1 (en) * | 2009-02-25 | 2012-10-19 | Neuroscienze Pharmaness S C A R L | PHARMACEUTICAL COMPOUNDS |
| US8580793B2 (en) * | 2009-03-20 | 2013-11-12 | Nerviano Medical Services S.R.L. | Use of kinase inhibitor for the treatment of thymoma |
| WO2010122091A1 (en) * | 2009-04-22 | 2010-10-28 | Boehringer Ingelheim International Gmbh | Thia-triaza-as-indacenes as pi3-kinases inhibitors for the treatment of cancer |
| JP5801285B2 (en) * | 2009-04-29 | 2015-10-28 | ネルビアーノ・メデイカル・サイエンシーズ・エツセ・エルレ・エルレ | CDK inhibitor salt |
| AR076784A1 (en) | 2009-05-26 | 2011-07-06 | Nerviano Medical Sciences Srl | THERAPEUTIC COMBINATION UNDERSTANDING A PLK1 INHIBITOR AND AN ANTINEOPLASTIC AGENT |
| ES2553114T3 (en) * | 2009-07-29 | 2015-12-04 | Nerviano Medical Sciences S.R.L. | Plk inhibitor salts |
| RU2012136451A (en) * | 2010-01-28 | 2014-03-10 | Президент Энд Феллоуз Оф Гарвард Колледж | COMPOSITIONS AND METHODS FOR IMPROVING PROTEASOMIC ACTIVITY |
| US8735386B2 (en) | 2010-07-23 | 2014-05-27 | Boehringer Ingelheim International Gmbh | Aminopyrazoloquinazolines |
| WO2012013557A1 (en) | 2010-07-30 | 2012-02-02 | Nerviano Medical Sciences S.R.L. | Isoxazolo-quinazolines as modulators of protein kinase activity |
| CN103124723A (en) | 2010-09-23 | 2013-05-29 | 先正达参股股份有限公司 | Novel microbiocides |
| RS55135B1 (en) * | 2010-10-25 | 2016-12-30 | G1 Therapeutics Inc | CDK INHIBITORS |
| CN103298816A (en) * | 2010-12-17 | 2013-09-11 | 内尔维阿诺医学科学有限公司 | Substituted pyrazolo-quinazoline derivatives as kinase inhibitors |
| EP2668190B1 (en) * | 2011-01-26 | 2016-08-17 | Nerviano Medical Sciences S.r.l. | Tricyclic pyrrolo derivatives, process for their preparation and their use as kinase inhibitors |
| JP5925808B2 (en) * | 2011-01-26 | 2016-05-25 | ネルビアーノ・メデイカル・サイエンシーズ・エツセ・エルレ・エルレ | Tricyclic derivatives, their preparation and their use as kinase inhibitors |
| WO2012117021A2 (en) | 2011-03-03 | 2012-09-07 | Syngenta Participations Ag | Novel microbiocidal oxime ethers |
| PT2688887E (en) | 2011-03-23 | 2015-07-06 | Amgen Inc | TRICYCLIC DUAL INHIBITORS OF CDK 4/6 AND FLT3 |
| CN103635230B (en) | 2011-05-12 | 2017-10-31 | 普罗蒂斯特斯治疗公司 | Albumen homeostasis conditioning agent |
| WO2013092460A1 (en) | 2011-12-20 | 2013-06-27 | Syngenta Participations Ag | Cyclic bisoxime microbicides |
| US9150578B2 (en) | 2012-01-23 | 2015-10-06 | Boehringer Ingelheim International Gmbh | 5,8-dihydro-6H-pyrazolo[3,4-h]quinazolines as IGF-1R/IR inhibitors |
| EP2641901A1 (en) | 2012-03-22 | 2013-09-25 | Syngenta Participations AG. | Novel microbiocides |
| WO2014072220A1 (en) | 2012-11-07 | 2014-05-15 | Nerviano Medical Sciences S.R.L. | Substituted pyrimidinyl and pyridinyl-pyrrolopyridinones, process for their preparation and their use as kinase inhibitors |
| US9849135B2 (en) | 2013-01-25 | 2017-12-26 | President And Fellows Of Harvard College | USP14 inhibitors for treating or preventing viral infections |
| CA2906157C (en) | 2013-03-15 | 2022-05-17 | G1 Therapeutics, Inc. | Highly active anti-neoplastic and anti-proliferative agents |
| SMT201900681T1 (en) | 2013-03-15 | 2020-01-14 | G1 Therapeutics Inc | Transient protection of normal cells during chemotherapy |
| WO2015073528A1 (en) | 2013-11-12 | 2015-05-21 | Proteostasis Therapeutics, Inc. | Proteasome activity enhancing compounds |
| ES2716165T3 (en) | 2014-04-07 | 2019-06-10 | Netherlands Translational Res Center B V | (5,6-Dihydro) pyrimido [4,5-e] indolizines |
| WO2015161287A1 (en) | 2014-04-17 | 2015-10-22 | G1 Therapeutics, Inc. | Tricyclic lactams for use in the protection of normal cells during chemotherapy |
| US10555931B2 (en) | 2014-05-28 | 2020-02-11 | Piramal Enterprises Limited | Pharmaceutical combination for the treatment of cancer |
| EP3191098A4 (en) | 2014-09-12 | 2018-04-25 | G1 Therapeutics, Inc. | Combinations and dosing regimes to treat rb-positive tumors |
| WO2016040848A1 (en) | 2014-09-12 | 2016-03-17 | G1 Therapeutics, Inc. | Treatment of rb-negative tumors using topoisomerase inhibitors in combination with cyclin dependent kinase 4/6 inhibitors |
| US10493046B2 (en) | 2015-07-17 | 2019-12-03 | Universite Paris Descartes | 5-hydroxytryptamine 1B receptor-stimulating agent for use as a promoter of satellite cells self-renewal and/or differentiation |
| EP3484462B1 (en) | 2016-07-15 | 2022-12-14 | Institut Pasteur | 5-hydroxytryptamine 1b receptor-stimulating agent for skin and/or hair repair |
| CN108699067B (en) * | 2016-11-11 | 2021-06-15 | 上海海雁医药科技有限公司 | Pyridine amine substituted heterotricyclic compound, its preparation method and medical use |
| EP3652177A1 (en) | 2017-07-11 | 2020-05-20 | Nerviano Medical Sciences S.r.l. | Pyrazolo-quinazoline derivatives as choline kinase inhibitors |
| CN107383019B (en) * | 2017-07-28 | 2019-10-15 | 江苏艾凡生物医药有限公司 | Pyrazolo[4,3-h]quinazoline compounds and uses thereof |
| KR102464677B1 (en) | 2017-08-11 | 2022-11-10 | 셍커 파마슈티컬스 (지앙수) 엘티디. | 1H-pyrazolo[4,3-H]quinazoline compound serving as protein kinase inhibitor |
| TWI855088B (en) * | 2019-06-06 | 2024-09-11 | 美商阿克思生物科學有限公司 | Processes for preparing aminopyrimidine compounds |
| CN114423765B (en) * | 2019-09-05 | 2024-09-20 | 成都赛璟生物医药科技有限公司 | Isozolo [5,4-H ] quinazoline compounds as protein kinase inhibitors |
| US10988479B1 (en) | 2020-06-15 | 2021-04-27 | G1 Therapeutics, Inc. | Morphic forms of trilaciclib and methods of manufacture thereof |
| CN116547280A (en) * | 2020-10-08 | 2023-08-04 | 雷多纳治疗公司 | Benzo [ h ] quinazolin-4-amine and thieno [3,2-h ] quinazolin-4-amine derivatives for the treatment of cancer |
| WO2022111634A1 (en) * | 2020-11-26 | 2022-06-02 | 成都赛璟生物医药科技有限公司 | Heteroarylquinazoline compounds as protein kinase inhibitors |
| CN114685520B (en) * | 2020-12-25 | 2024-08-30 | 武汉誉祥医药科技有限公司 | Tri-fused ring compound and pharmaceutical composition and application thereof |
| CN116528871A (en) * | 2020-12-31 | 2023-08-01 | 恒元生物医药科技(苏州)有限公司 | Pyrazoloquinazoline compound, and preparation method and application thereof |
| US20240140962A1 (en) * | 2021-02-08 | 2024-05-02 | Medshine Discovery Inc. | 5,6-dihydrothieno[3,4-h]quinazoline compound |
| MX2024000022A (en) * | 2021-06-22 | 2024-03-15 | Taxis Pharmaceuticals Inc | THERAPEUTIC COMPOUNDS. |
| CN113527310B (en) * | 2021-07-30 | 2022-09-23 | 上海市肺科医院 | Small molecule compounds for reducing adverse inflammatory responses in patients with autoimmune diseases and their applications |
| JP2024546115A (en) * | 2021-12-10 | 2024-12-17 | シャンドン ルイ ファーマシューティカル カンパニー リミテッド | Protein kinase inhibitors, their production methods and applications |
| AU2024209080A1 (en) * | 2023-01-17 | 2025-07-17 | Phil Rivers Technology Co., Ltd | Stereoisomer and deuterated derivative of pyrazoloquinazoline compound and use |
| WO2024251230A1 (en) * | 2023-06-08 | 2024-12-12 | 山东绿叶制药有限公司 | Salt form and crystal form of plk1 kinase inhibitor, and preparation method therefor and use thereof |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8541429B2 (en) * | 2003-05-22 | 2013-09-24 | Nerviano Medical Sciences S.R.L. | Pyrazolo quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2119975A (en) * | 1936-08-26 | 1938-06-07 | Beatrice S Nazel | Fluid pressure hammer |
| JP3907220B2 (en) * | 1994-06-30 | 2007-04-18 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Heterocycle-containing compounds |
| DK0831829T3 (en) | 1995-06-07 | 2003-12-15 | Pfizer | Heterocyclic, ring-condensed pyrimidine derivatives |
| US6057329A (en) | 1996-12-23 | 2000-05-02 | Celltech Therapeutics Limited | Fused polycyclic 2-aminopyrimidine derivatives |
| GB9713087D0 (en) | 1997-06-20 | 1997-08-27 | Celltech Therapeutics Ltd | Chemical compounds |
| GB9911053D0 (en) | 1999-05-12 | 1999-07-14 | Pharmacia & Upjohn Spa | 4,5,6,7-tetrahydroindazole derivatives process for their preparation and their use as antitumour agents |
| US6387900B1 (en) | 1999-08-12 | 2002-05-14 | Pharmacia & Upjohn S.P.A. | 3(5)-ureido-pyrazole derivatives process for their preparation and their use as antitumor agents |
| HK1046866A1 (en) | 1999-08-12 | 2003-01-30 | 法玛西雅意大利公司 | 3(5)-amino-pyrazole derivatives, process for their preparation and their use as antitumor agents |
| BR0113176A (en) | 2000-08-10 | 2003-06-17 | Pharmacia Italia Spa | Bicyclo-pyrazole compounds, pharmaceutical compositions comprising the compounds, use of the compounds in the manufacture of medicaments, processes for the preparation of the compounds, combinatorial chemical collection and methods for the treatment of mammals including humans using the compounds. |
| MXPA03001306A (en) | 2000-08-11 | 2003-10-15 | Boehringer Ingelheim Pharma | Heterocyclic compounds useful as inhibitors of tyrosine kinases. |
| AU2002215053A1 (en) | 2000-11-27 | 2002-06-24 | Pharmacia Italia S.P.A. | Phenylacetamido- pyrazole derivatives and their use as antitumor agents |
| CA2434066A1 (en) | 2001-01-26 | 2002-09-12 | Pharmacia Italia S.P.A. | Chromane derivatives, process for their preparation and their use as antitumor agents |
| WO2003013655A2 (en) * | 2001-08-10 | 2003-02-20 | Pharmacia Corporation | Carbonic anhydrase inhibitors |
| US20030100594A1 (en) * | 2001-08-10 | 2003-05-29 | Pharmacia Corporation | Carbonic anhydrase inhibitor |
| BR0212841A (en) | 2001-09-26 | 2004-08-03 | Pharmacia Italia Spa | Active aminoindazole derivative as kinase inhibitors, process for their preparation and pharmaceutical compositions containing them |
| MXPA04008130A (en) * | 2002-02-19 | 2004-11-26 | Pharmacia Corp | Tricyclic pyrazole derivatives for the treatment of inflammation. |
| KR101512284B1 (en) * | 2006-12-21 | 2015-04-15 | 네르비아노 메디칼 사이언시스 에스.알.엘. | Substituted pyrazolo-quinazoline derivatives, processes for their preparation, and their use as kinase inhibitors |
-
2004
- 2004-04-27 EA EA200501849A patent/EA010904B1/en unknown
- 2004-04-27 WO PCT/EP2004/050612 patent/WO2004104007A1/en not_active Ceased
- 2004-04-27 RS RS20050944A patent/RS52899B/en unknown
- 2004-04-27 US US10/557,565 patent/US7482354B2/en not_active Expired - Lifetime
- 2004-04-27 SI SI200432118T patent/SI1636236T1/en unknown
- 2004-04-27 AP AP2005003452A patent/AP2064A/en active
- 2004-04-27 PL PL04741483T patent/PL1636236T3/en unknown
- 2004-04-27 HR HRP20050967AA patent/HRP20050967B8/en not_active IP Right Cessation
- 2004-04-27 BR BR122019010200A patent/BR122019010200B8/en active IP Right Grant
- 2004-04-27 RS YUP-2005/0944A patent/RS20050944A/en unknown
- 2004-04-27 DK DK04741483.4T patent/DK1636236T3/en active
- 2004-04-27 ME MEP-2008-259A patent/ME00142B/en unknown
- 2004-04-27 NZ NZ543661A patent/NZ543661A/en not_active IP Right Cessation
- 2004-04-27 BR BRPI0410563A patent/BRPI0410563B8/en not_active IP Right Cessation
- 2004-04-27 UA UAA200512347A patent/UA80763C2/en unknown
- 2004-04-27 CN CN2010105863199A patent/CN102079746A/en active Pending
- 2004-04-27 KR KR1020057022355A patent/KR101084871B1/en not_active Expired - Lifetime
- 2004-04-27 OA OA1200500329A patent/OA13170A/en unknown
- 2004-04-27 EP EP04741483.4A patent/EP1636236B1/en not_active Expired - Lifetime
- 2004-04-27 PT PT47414834T patent/PT1636236E/en unknown
- 2004-04-27 GE GEAP20049128A patent/GEP20094664B/en unknown
- 2004-04-27 ES ES04741483.4T patent/ES2436524T3/en not_active Expired - Lifetime
- 2004-04-27 CA CA2526578A patent/CA2526578C/en not_active Expired - Lifetime
- 2004-04-27 MX MXPA05012573A patent/MXPA05012573A/en active IP Right Grant
- 2004-04-27 AU AU2004240772A patent/AU2004240772B2/en not_active Expired
- 2004-04-27 JP JP2006530168A patent/JP5043432B2/en not_active Expired - Lifetime
- 2004-04-27 CN CNA2004800210752A patent/CN1826343A/en active Pending
- 2004-05-04 TW TW093112449A patent/TWI349672B/en not_active IP Right Cessation
- 2004-05-13 MY MYPI20041795A patent/MY142019A/en unknown
- 2004-05-20 AR ARP040101748A patent/AR044543A1/en active IP Right Grant
-
2005
- 2005-11-18 IS IS8132A patent/IS2939B/en unknown
- 2005-11-20 IL IL172046A patent/IL172046A/en active IP Right Grant
- 2005-11-21 TN TNP2005000298A patent/TNSN05298A1/en unknown
- 2005-11-21 NO NO20055496A patent/NO334992B1/en unknown
- 2005-11-22 CR CR8102A patent/CR8102A/en unknown
- 2005-11-22 CO CO05118410A patent/CO5721006A2/en active IP Right Grant
- 2005-11-23 ZA ZA200509486A patent/ZA200509486B/en unknown
- 2005-11-30 EC EC2005006194A patent/ECSP056194A/en unknown
-
2008
- 2008-10-31 US US12/262,933 patent/US8541429B2/en not_active Expired - Lifetime
-
2013
- 2013-08-21 US US13/972,659 patent/US8981089B2/en not_active Expired - Lifetime
- 2013-12-09 CY CY20131101108T patent/CY1114708T1/en unknown
-
2015
- 2015-02-18 US US14/625,093 patent/US9464090B2/en not_active Expired - Lifetime
- 2015-11-20 AR ARP150103780A patent/AR102722A2/en unknown
-
2016
- 2016-09-06 US US15/256,916 patent/US9637497B2/en not_active Expired - Fee Related
-
2017
- 2017-03-23 US US15/467,323 patent/US10280176B2/en not_active Expired - Lifetime
-
2019
- 2019-03-04 US US16/291,323 patent/US20190194214A1/en not_active Abandoned
-
2020
- 2020-10-30 US US17/084,862 patent/US20210300935A1/en not_active Abandoned
-
2023
- 2023-12-22 US US18/394,122 patent/US20250011333A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8541429B2 (en) * | 2003-05-22 | 2013-09-24 | Nerviano Medical Sciences S.R.L. | Pyrazolo quinazoline derivatives, process for their preparation and their use as kinase inhibitors |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021084541A1 (en) * | 2019-10-31 | 2021-05-06 | Sol-Gel Technologies Ltd. | Treatment of hair loss disorders with a topical egfr inhibitor |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10280176B2 (en) | Pyrazolo-quinazoline derivatives, process for their preparation and their use as kinase inhibitors | |
| EP1478357B1 (en) | Tricyclic pyrazole derivatives, process for their preparation and their use as antitumor agents | |
| AU2009264431B2 (en) | Pyrazolo-quinazolines | |
| JP5925808B2 (en) | Tricyclic derivatives, their preparation and their use as kinase inhibitors | |
| US8541576B2 (en) | Substituted pyrazolo-quinazoline derivatives as kinase inhibitors | |
| US9333205B2 (en) | Isoxazolo-quinazolines as modulators of protein kinase activity | |
| US20080027086A1 (en) | Farnesyl transferase inhibiting tricyclic quinazoline derivatives substituted with carbon-linked imidazoles or triazoles |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NERVIANO MEDICAL SCIENCES S.R.L., ITALY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRAQUANDI, GABRIELLA;BRASCA, MARIA GABRIELLA;D'ALESSIO, ROBERTO;AND OTHERS;SIGNING DATES FROM 20160427 TO 20160429;REEL/FRAME:048499/0836 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |