[go: up one dir, main page]

US20190178249A1 - Co-rotating scroll compressor - Google Patents

Co-rotating scroll compressor Download PDF

Info

Publication number
US20190178249A1
US20190178249A1 US16/321,920 US201716321920A US2019178249A1 US 20190178249 A1 US20190178249 A1 US 20190178249A1 US 201716321920 A US201716321920 A US 201716321920A US 2019178249 A1 US2019178249 A1 US 2019178249A1
Authority
US
United States
Prior art keywords
driving
driven
side wall
scroll
end plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/321,920
Inventor
Takuma YAMASHITA
Takahide Ito
Makoto Takeuchi
Keita Kitaguchi
Hirofumi Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Ltd
Assigned to MITSUBISHI HEAVY INDUSTRIES, LTD., MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD. reassignment MITSUBISHI HEAVY INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIRATA, HIROFUMI, ITO, TAKAHIDE, KITAGUCHI, Keita, TAKEUCHI, MAKOTO, YAMASHITA, Takuma
Publication of US20190178249A1 publication Critical patent/US20190178249A1/en
Assigned to MITSUBISHI HEAVY INDUSTRIES, LTD. reassignment MITSUBISHI HEAVY INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/023Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving
    • F04C18/0238Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/063Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with only rolling movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/023Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors

Definitions

  • the present invention relates to a co-rotating scroll compressor.
  • the co-rotating scroll compressor includes a driving-side scroll and a driven-side scroll that rotates together with and in synchronization with the driving-side scroll.
  • the co-rotating scroll compressor rotates the driving shaft and the driven shaft in the same direction at the same angular velocity by offsetting a driven shaft that supports the rotation of the driven-side scroll from a driving shaft that rotates the driving-side scroll by the turning radius.
  • An outer peripheral ring portion is provided on the driven-side scroll in PTL 1, and this outer peripheral annular block portion has a shape that surrounds the outer periphery of the driven scroll.
  • the outer peripheral annular block portion is advantage in that the rigidity of the driven scroll is enhanced and the deformation of an end plate is suppressed, but it becomes difficult to respond to high acceleration because the rotation inertia force increases.
  • the present invention has been made in view of the situation as above, and an object thereof is to provide a co-rotating scroll compressor that enables speed up and high acceleration.
  • a co-rotating scroll compressor of the present invention employs the following solutions.
  • a co-rotating scroll compressor includes: a driving-side scroll member driven by a drive unit so as to rotate, and including a plurality of spiral driving-side walls provided about a center of a driving-side end plate at predetermined angular intervals; a driven-side scroll member including spiral driven-side walls, the driven-side walls being provided about a center of a driven-side end plate at predetermined angular intervals and in a number corresponding to the driving-side walls, the driven-side walls being engaged with the corresponding driving-side walls so as to form a compression space; a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member so that the driving-side scroll member and the driven-side scroll member rotationally move in a same direction at a same angular velocity; and a driving-side supporting member arranged across the driven-side end plate, fixed to a distal end side of the driving-side walls in an rotation direction, and rotated together with the driving-side
  • the driving-side walls arranged about the center of the end plate of the driving-side scroll member at predetermined angular intervals and the corresponding driven-side walls of the driven-side scroll member are engaged with each other.
  • a plurality of pairs each formed by one driving-side wall and one driven-side are provided, and the scroll-type compressor including a plurality of lines of walls is formed.
  • the driving-side scroll member is driven by the drive unit so as to rotate, and the driving force transmitted to the driving-side scroll member is transmitted to the driven-side scroll member via the synchronous driving mechanism.
  • the driven-side scroll member rotationally moves in the same direction at the same angular velocity as the driving-side scroll member while rotating.
  • the co-rotating scroll compressor in which both of the driving-side scroll member and the driven-side scroll member rotate is provided.
  • the fixing portions of the walls to which the supporting members are fixed has higher rigidity as compared to other regions of the walls. Therefore, it is conceived to be preferred that the fixing portions be provided on the radially outside end portions of the walls subjected to the largest centrifugal force.
  • the fixing portions are provided on the radially outside end portions, the rigidity becomes higher but the stress caused by the centrifugal force increases on the contrary because the mass of the fixing portions becomes larger than the other wall regions.
  • the fixing portions are provided in positions close to the radially outside end portions of the walls and separated from the radially outside end portions in the inner circumferential direction of the walls. As a result, as compared to a case where the fixing portions are placed on the radially outside end portions, the stress generated on the fixing portions can be reduced, and hence the speed up and the high acceleration can be responded to.
  • an angle formed by a line connecting a center of the driving-side wall and the radially outside end portion to each other and a line connecting the center of the driving-side wall and a middle of the fixing portion to each other is 10° or more and 50° or less when the driving-side wall is seen in planar view; and/or an angle formed by a line connecting a center of the driven-side wall and the radially outside end portion to each other and a line connecting the center of the driven-side wall and a middle of the fixing portion to each other is 10° or more and 50° or less when the driven-side wall is seen in planar view.
  • the angle formed by the line connecting the center of the wall and the radially outside end portion to each other and the line connecting the center of the wall and the middle of the fixing portion to each other is preferably 10° or more and 50° or less.
  • the driving-side scroll member includes: a first driving-side scroll portion including a first driving-side end plate and a first driving-side wall, the first driving-side scroll portion being driven by the drive unit; a second driving-side scroll member including a second driving-side end plate and a second driving-side wall; and a wall fixing portion that performs fixing in a state in which distal ends of the first driving-side wall and the second driving-side wall in a rotation axis direction face each other;
  • the driven-side scroll member includes: a first driven-side wall provided on one side surface of the driven-side end plate, the first driven-side wall being engaged with the first driving-side wall; and a second driven-side wall provided on another side surface of the driven-side end plate, the second driven-side wall being engaged with the second driving-side wall; and the driven-side supporting member includes: a first supporting member arranged across the first driving-side end plate, fixed on a distal end side of the first
  • the compression spaces are formed on both side surfaces of the driven-side end plate.
  • the rigidity of the walls is increased.
  • the fixing portion is provided in a position close to the radially outside end portion of the wall and separated from the radially outside end portion in the inner circumferential direction of the wall.
  • the fixing portion of the wall to which the supporting member is fixed is provided in a position close to the radially outside end portion of the wall and separated from the radially outside end portion in the inner circumferential direction of the wall.
  • FIG. 1 is a longitudinal cross-sectional view illustrating a co-rotating scroll compressor according to a first embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a driving-side scroll member in FIG. 1 .
  • FIG. 3 is a plan view illustrating a driven-side scroll member in FIG. 1 .
  • FIG. 4 is a side view of a driving-side supporting member in FIG. 1 seen from the exhaust side.
  • FIG. 5 is a side view of the driven-side supporting member in FIG. 1 seen from the motor side.
  • FIG. 6 is a longitudinal cross-sectional view illustrating a co-rotating scroll compressor according to a second embodiment of the present invention.
  • a first embodiment of the present invention is described below with reference to FIG. 1 and the like.
  • FIG. 1 illustrates a co-rotating scroll compressor 1 A.
  • the co-rotating scroll compressor 1 A can be used as a supercharger that compresses combustion air (fluid) to be supplied to an internal combustion engine such as a vehicle engine, for example.
  • the co-rotating scroll compressor 1 A includes a housing 3 , and a driving-side scroll member 7 and the driven-side scroll member 9 accommodated in the other end side of the housing 3 .
  • the housing 3 has a substantially cylindrical shape, and has one end (not shown) on which a motor accommodation portion that accommodates a drive unit such as an electric motor is provided. As illustrated in FIG. 1 , a scroll accommodation portion 3 b that accommodates the scroll members 7 and 9 are included on the other end. An exhaust opening 3 d for exhausting air that has been compressed is formed in an end portion of the scroll accommodation portion 3 b . Note that, although not shown in FIG. 1 , an air suction opening that sucks air is provided in the housing 3 .
  • the rotational driving force from a rotor of the motor is transmitted to a driving-side shaft portion 7 c of the driving-side scroll member 7 that rotates about a driving rotational axis CL 1 .
  • the driving-side scroll member 7 includes a driving-side end plate 7 a , and a spiral driving-side wall 7 b provided on one side of the driving-side end plate 7 a .
  • the driving-side end plate 7 a is connected to the driving-side shaft portion 7 c connected to a driving shaft 6 , and extends in a direction orthogonal to the driving-side rotational axis CL 1 .
  • the driving-side shaft portion 7 c is provided so as to be rotatable with respect to the housing 3 via a driving-side bearing 11 that is a ball bearing.
  • the driving-side end plate 7 a has a substantially disk-like shape when seen in planar view.
  • the driving-side scroll member 7 includes three spiral driving-side walls 7 b , that is, three lines of spiral driving-side walls 7 b .
  • the three lines of driving-side walls 7 b are provided about the driving-side rotational axis CL 1 at regular intervals.
  • Radially outside end portions 7 e of the driving-side walls 7 b are not fixed to the other wall portions and are independent. That is, wall portions that connect the radially outside end portions 7 e to each other so as to provide reinforcement are not provided.
  • Driving-side fixing portions 7 f for fixing a driving-side supporting member 20 described below is provided near the radially outside end portions 7 e of the driving-side walls 7 b .
  • the driving-side fixing portion 7 f is a bulging portion obtained by increasing the board thickness of the driving-side wall 7 b radially outward.
  • the forming position of the driving-side fixing portion 7 f is a position separated from the radially outside end portion 7 e in the inner circumferential direction (winding starting direction) of the driving-side wall 7 b .
  • an angle ⁇ formed by the line connecting the driving-side rotational axis CL 1 and the radially outside end portion 7 e to each other and the line connecting the driving-side rotational axis CL 1 and the middle of the driving-side fixing portion 7 f (more specifically, the center of a fastening member 24 a ) to each other is 10° or more and 50° or less.
  • the driven-side scroll member 9 is arranged so as to engage with the driving-side scroll member 7 , and includes a driven-side end plate 9 a and a spiral driven-side wall 9 b provided on one side of the driven-side end plate 9 a .
  • a driven-side shaft portion 9 c that extends in the direction of a driven-side rotational axis CL 2 is connected to the driven-side end plate 9 a .
  • the driven-side shaft portion 9 c is provided so as to be rotatable with respect to the housing 3 via a driven-side bearing 13 that is a double row ball bearing.
  • the driven-side end plate 9 a has a substantially disk-like shape when seen in planar view. As illustrated in FIG. 3 , three spiral driven-side walls 9 b , that is, three lines of spiral driven-side walls 9 b are provided in the driven-side scroll member 9 . The three lines of driven-side walls 9 b are arranged about the driven-side rotational axis CL 2 at regular intervals. An exhaust port 9 d that exhausts air that has been compressed is formed in substantially the middle of the driven-side end plate 9 a . The exhaust port 9 d communicates with the exhaust opening 3 d formed in the housing 3 . Radially outside end portions 9 e of the driven-side walls 9 b are not fixed to the other wall portions and are independent. That is, wall portions that connect the radially outside end portions 9 e to each other so as to provide reinforcement are not provided.
  • Driven-side fixing portions 9 f for fixing a driven-side supporting member 22 described below is provided near the radially outside end portions 9 e of the driven-side walls 9 b .
  • the driven-side fixing portion 9 f is a bulging portion obtained by increasing the board thickness of the driven-side wall 9 b radially outward.
  • the forming position of the driven-side fixing portion 9 f is a position separated from the radially outside end portion 9 e in the inner circumferential direction (winding starting direction) of the driven-side wall 9 b .
  • an angle ⁇ formed by the line connecting the driven-side rotational axis CL 2 and the radially outside end portion 9 e to each other and the line connecting the driven-side rotational axis CL 2 and the middle of the driven-side fixing portion 9 f (more specifically, the center of a fastening member 24 b ) to each other is 10° or more and 50° or less.
  • the driving-side scroll member 7 rotates about the driving-side rotational axis CL 1 and the driven-side scroll member 9 rotates about the driven-side rotational axis CL 2 .
  • the driving-side rotational axis CL 1 and the driven-side rotational axis CL 2 are offset from each other by a distance with which a compression chamber can be formed.
  • the driving-side supporting member 20 is fixed to the driving-side fixing portion 7 f on the distal end (free end) of the driving-side wall 7 b of the driving-side scroll member 7 via the fastening member 24 a such as a pin or a bolt.
  • the driven-side scroll member 9 is sandwiched between the driving-side supporting member 20 and the driving-side scroll member 7 . Therefore, the driven-side end plate 9 a is arranged so as to be opposed to the driving-side supporting member 20 .
  • the driving-side supporting member 20 includes a shaft portion 20 a on the center side.
  • the shaft portion 20 a is rotatably attached with respect to the housing 3 via a bearing 26 for the driving-side supporting member that is a ball bearing.
  • the driving-side supporting member 20 rotates about the driving-side rotational axis CL 1 as with the driving-side scroll member 7 .
  • the driving-side supporting member 20 includes a radially extending portion 20 b that extends radially outward to the position of the outer periphery of the driving-side wall 7 b for each position in which the distal end of the driving-side wall 7 b is fixed by the fixing portion 7 f (see FIG. 2 ).
  • the region between the radially extending portions 20 b has a shape that does not extend to the outer periphery side of the driving-side wall 7 b , and saves weight.
  • the radially extending portions 20 b are provided in three directions at equiangular intervals. Note that, in FIG. 4 , the driving-side supporting member 20 and the driven-side scroll member 9 are illustrated and the driving-side scroll member 7 is not illustrated.
  • a pin ring mechanism 15 is provided between the driving-side supporting member 20 and the driven-side end plate 9 a .
  • the pin ring mechanism 15 is used as a synchronous driving mechanism that transmits driving force from the driving-side scroll member 7 to the driven-side scroll member 9 so that both of the scroll members 7 and 9 rotationally move in the same direction at the same angular velocity. That is, a ring member 15 a that is a ball bearing is provided in the driven-side end plate 9 a , and a pin member 15 b is provided in the driving-side supporting member 20 . As illustrated in FIG. 4 , three pin members 15 b are provided so as to correspond to the positions of the radially extending portions 20 b of the driving-side supporting member 20 .
  • the driven-side supporting member 22 is fixed to the distal end (free end) of the driven-side wall 9 b of the driven-side scroll member 9 via the fastening member 24 b such as a pin or a bolt.
  • the driving-side scroll member 7 is sandwiched between the driven-side supporting member 22 and the driven-side scroll member 9 . Therefore, the driving-side end plate 7 a is arranged so as to be opposed to the driven-side supporting member 22 .
  • the driven-side supporting member 22 includes a shaft portion 22 a on the center side.
  • the shaft portion 22 a is rotatably attached with respect to the housing 3 via a bearing 28 for the driven-side supporting member that is a ball bearing.
  • the driven-side supporting member 22 rotates about the driven-side rotational axis CL 2 as with the driven-side scroll member 9 .
  • the driven-side supporting member 22 includes a radially extending portion 22 b that extends radially outward to the position of the outer periphery of the driven-side wall 9 b for each position in which the distal end of the driven-side wall 9 b is fixed.
  • the region between the radially extending portions 22 b has a shape that does not extend to the outer periphery side of the driven-side wall 9 b , and saves weight.
  • the radially extending portions 22 b are provided in three directions at equiangular intervals. Note that, in FIG. 5 , the driven-side supporting member 22 and the driving-side scroll member 7 are illustrated and the driven-side scroll member 9 is not illustrated.
  • the pin ring mechanism 15 is provided between the driven-side supporting member 22 and the driving-side end plate 7 a .
  • the pin ring mechanism 15 is used as a synchronous driving mechanism that transmits driving force from the driving-side scroll member 7 to the driven-side scroll member 9 so that both of the scroll members 7 and 9 rotationally move in the same direction at the same angular velocity. That is, the ring member 15 a is provided in the driving-side end plate 7 a , and the pin member 15 b is provided in the driven-side supporting member 22 .
  • three pin members 15 b are provided so as to correspond to the positions of the radially extending portions 22 b of the driven-side supporting member 22 .
  • the co-rotating scroll compressor 1 A having the abovementioned configuration operates as follows.
  • the driving-side shaft portion 7 c connected to the driving shaft also rotates.
  • the driving-side scroll member 7 rotates about the driving-side rotational axis CL 1 .
  • the driving force is transmitted from the driving-side end plate 7 a to the driven-side supporting member 22 via the pin ring mechanism 15 .
  • the driving force is transmitted from the driving-side supporting member 20 to the driven-side end plate 9 a via the pin ring mechanism 15 .
  • the driving force is transmitted to the driven-side scroll member 9 , and the driven-side scroll member 9 rotates about the driven-side rotational axis CL 2 .
  • the pin member 15 b of the pin ring mechanism 15 moves while being in contact with the ring member 15 a , and hence both of the scroll members 7 and 9 rotationally move in the same direction at the same angular velocity.
  • both of the scroll members 7 and 9 rotationally move in the same direction at the same angular velocity
  • the air sucked from the suction opening in the housing 3 is sucked from the outer periphery side of both of the scroll members 7 and 9 , and is taken into the compression chamber formed by both of the scroll members 7 and 9 .
  • the capacity of the compression chamber decreases as the compression chamber approaches the center side, and air is compressed accordingly.
  • the air compressed as above flows through the exhaust port 9 d in the driven-side scroll member 9 and is exhausted to the outside from the exhaust opening 3 d in the housing 3 .
  • the exhausted compressed air is guided to an internal combustion engine (not shown) and is used as combustion air.
  • the fixing portions 7 f and 9 f of the walls 7 b and 9 b to which the supporting members 20 and 22 are fixed have higher rigidity as compared to other regions of the walls 7 b and 9 b . Therefore, it is conceived to be preferred that the fixing portions 7 f and 9 f be provided on the radially outside end portions 7 e and 9 e of the walls 7 b and 9 b subjected to the largest centrifugal force.
  • the fixing portions 7 f and 9 f are provided on the radially outside end portions 7 e and 9 e , the rigidity becomes higher but the stress caused by the centrifugal force increases on the contrary because the mass of the fixing portions 7 f and 9 f becomes larger than the other wall regions.
  • the fixing portions 7 f and 9 f are provided in positions close to the radially outside end portions 7 e and 9 e of the walls 7 b and 9 b and separated from the radially outside end portions 7 e and 9 e in the inner circumferential direction of the walls 7 b and 9 b .
  • the stress generated on the fixing portions 7 f and 9 f can be reduced, and hence the speed up and the high acceleration can be responded to.
  • the speed up of 10000 rotations per minute or more, preferably 15000 rotations or more can be responded to, and high acceleration that reaches to 10000 rotations in 0.5 seconds at the time of start-up can be responded to.
  • the arrangement and the structure of the fixing portions 7 f and 9 f described in the first embodiment can be also applied to a co-rotating scroll compressor described below.
  • FIG. 6 illustrates a co-rotating scroll compressor 1 B according to this embodiment. Note that structures similar to those in the co-rotating scroll compressor 1 A described with reference to FIG. 1 are the same denoted by the same reference character, and the description thereof is omitted.
  • the driving-side scroll member 70 includes a first driving-side scroll portion 71 on the motor side (the right side in FIG. 6 ) and a second driving-side scroll portion 72 on the exhaust opening 3 d side.
  • the first driving-side scroll portion 71 includes a first driving-side end plate 71 a and a first driving-side wall 71 b .
  • Three lines of first driving-side walls 71 b are provided as with the abovementioned driving-side walls 7 b (see FIG. 2 ).
  • the second driving-side scroll portion 72 includes a second driving-side end plate 72 a and a second driving-side wall 72 b .
  • Three lines of second driving-side walls 72 b are provided as with the abovementioned driving-side walls 7 b (see FIG. 2 ).
  • a second driving-side shaft portion 72 c that extends in the direction of the driving-side rotational axis CL 1 is connected to the second driving-side end plate 72 a .
  • the second driving-side shaft portion 72 c is provided so as to be rotatable with respect to the housing 3 via a second driving-side bearing 14 that is a ball bearing.
  • An exhaust port 72 d is formed in the second driving-side shaft portion 72 c along the driving-side rotational axis CL 1 .
  • the first driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed in a state in which the distal ends (free ends) of the walls 71 b and 72 b are facing each other.
  • the first driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed by a bolt (wall fixing portion) 31 fastened with respect to flange parts 73 provided in a plurality of places so as to protrude radially outward.
  • the driven-side scroll member 90 includes a driven-side end plate 90 a provided in substantially the middle in the axial direction (the horizontal direction in FIG. 6 ).
  • a through hole (not shown) is formed in the middle of the driven-side end plate 90 a , and air that has been compressed flows to the exhaust port 72 d.
  • Driven-side walls 91 b and 92 b are provided on both sides of the driven-side end plate 90 a .
  • the first driven-side wall 91 b provided from the driven-side end plate 90 a to the motor side is engaged with the first driving-side wall 71 b of the first driving-side scroll portion 71
  • the second driven-side wall 92 b provided from the driven-side end plate 90 a to the exhaust opening 3 d side is engaged with the second driving-side wall 72 b of the second driving-side scroll portion 72 .
  • a first supporting member 33 and a second supporting member 35 are provided on both ends of the driven-side scroll member 90 in the axial direction (the horizontal direction in FIG. 6 ).
  • the first supporting member 33 is arranged on the motor side (the right side in FIG. 6 ), and the second supporting member 35 is arranged on the exhaust opening 3 d side.
  • the first supporting member 33 is fixed to a first fixing portion 91 f on the distal end (free end) of the first driven-side wall 91 b by a fastening member 25 a such as a pin or a bolt
  • the second supporting member 35 is fixed to a second fixing portion 92 f on the distal end (free end) of the second driven-side wall 92 b by a fastening member 25 b such as a pin or a bolt.
  • the fixing portions 91 f and 92 f provided on the driven-side walls 91 b and 92 b are bulging portions obtained by increasing the board thickness of the driven-side walls 91 b and 92 b radially outward, and are in positions separated from the radially outside end portions in the inner circumferential direction (winding starting direction) of the driven-side walls 91 b and 92 b.
  • a shaft portion 33 a is provided on the central axis side of the first supporting member 33 , and the shaft portion 33 a is fixed to the housing 3 via a bearing 37 for the first supporting member.
  • a shaft portion 35 a is provided on the central axis side of the second supporting member 35 , and the shaft portion 35 a is fixed to the housing 3 via a bearing 38 for the second supporting member.
  • the driven-side scroll member 90 is rotated about the second center axis CL 2 via the supporting members 33 and 35 .
  • the shapes of the supporting members 33 and 35 are similar to that of the driven-side supporting member 22 in the first embodiment described with reference to FIG. 5 .
  • the pin ring mechanism 15 is provided between the first supporting member 33 and the first driving-side end plate 71 a . That is, the ring member 15 a is provided in the first driving-side end plate 71 a , and the pin member 15 b is provided in the first supporting member 33 . As illustrated in FIG. 5 , three pin members 15 b are provided so as to correspond to the positions of the supporting portions of the first supporting member 33 .
  • the pin ring mechanism 15 is provided between the second supporting member 35 and the second driving-side end plate 72 a . That is, the ring member 15 a is provided in the second driving-side end plate 72 a , and the pin member 15 b is provided in the second supporting member 35 . As illustrated in FIG. 5 , three pin members 15 b are provided so as to correspond to the positions of the supporting portions of the second supporting member 35 .
  • the scroll accommodation portion 3 b of the housing 3 is divided at the substantially middle portion of the scroll members 70 and 90 in the axial direction, and fixed by a bolt 32 .
  • the co-rotating scroll compressor 1 B having the abovementioned configuration operates as follows.
  • both of the scroll members 70 and 90 rotationally move in the same direction at the same angular velocity
  • the air sucked from the suction opening in the housing 3 is sucked from the outer periphery side of both of the scroll members 70 and 90 , and is taken into the compression chamber formed by both of the scroll members 70 and 90 .
  • the compression chamber formed by the first driving-side wall 71 b and the first driven-side wall 91 b and the compression chamber formed by the second driving-side wall 72 b and the second driven-side wall 92 b are separately compressed.
  • the capacity of the compression chambers decreases as the compression chambers approach the center side, and the air is compressed accordingly.
  • the air compressed by the first driving-side wall 71 b and the first driven-side wall 91 b flows through a through hole 90 h formed in the driven-side end plate 90 a , and is merged with air compressed by the second driving-side wall 72 b and the second driven-side wall 92 b .
  • the merged air flows through the exhaust port 72 d and is exhausted to the outside from the exhaust opening 3 d in the housing 3 .
  • the exhausted compressed air is guided to an internal combustion engine (not shown) and is used as combustion air.
  • the fixing portions 91 f and 92 f are provided in places separated from the radially outside end portions of the driven-side walls 91 b and 92 b in the inner circumferential direction, and hence the stress generated on the fixing portions 91 f and 92 f can be reduced. As a result, the speed up and the high acceleration can be responded to.
  • the co-rotating scroll compressor is used as the supercharger, but the present invention is not limited thereto, and the co-rotating scroll compressor can be widely used as long as fluid is compressed.
  • the co-rotating scroll compressor can be used as a refrigerant compressor used in an air conditioning unit.
  • an equiangular interval that is 120° is preferred, but the present invention is not limited thereto.
  • the angle tolerance for the equiangular interval is ⁇ 10°, and the interval may preferably be a substantially equiangular interval of which angle tolerance is ⁇ 1°.
  • pin ring mechanism 15 is used as a synchronous driving mechanism, but the present invention is not limited thereto, and the pin ring mechanism 15 may be used as a crank pin mechanism, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A co-rotating scroll compressor includes a driving-side scroll member (7), a driven-side scroll member, a driving-side supporting member fixed to a distal end side of a driving-side wall (7 b) in a rotation axis direction and rotated together with the driving-side scroll member (7), and a driven-side supporting member fixed to a distal end side of a driven-side wall in the rotation axis direction and rotated together with the driven-side scroll member. A driving-side fixing portion (7 f) of the driving-side wall (7 b) to which the driving-side supporting member is fixed is provided in a position close to a radially outside end portion (7 e) of the driving-side wall (7 b) and separated from the radially outside end portion (7 e) in an inner circumferential direction of the driving-side wall (7 b), and a driven-side fixing portion of the driven-side wall to which the driven-side supporting member is fixed is provided in a position close to a radially outside end portion of the driven-side wall and separated from the radially outside end portion in an inner circumferential direction of the driven-side wall.

Description

    TECHNICAL FIELD
  • The present invention relates to a co-rotating scroll compressor.
  • BACKGROUND ART
  • Hitherto, a co-rotating scroll compressor is known (see PTL 1). The co-rotating scroll compressor includes a driving-side scroll and a driven-side scroll that rotates together with and in synchronization with the driving-side scroll. The co-rotating scroll compressor rotates the driving shaft and the driven shaft in the same direction at the same angular velocity by offsetting a driven shaft that supports the rotation of the driven-side scroll from a driving shaft that rotates the driving-side scroll by the turning radius.
  • CITATION LIST Patent Literature [PTL 1] the Publication of Japanese Patent No. 5443132 SUMMARY OF INVENTION Technical Problem
  • An outer peripheral ring portion is provided on the driven-side scroll in PTL 1, and this outer peripheral annular block portion has a shape that surrounds the outer periphery of the driven scroll. The outer peripheral annular block portion is advantage in that the rigidity of the driven scroll is enhanced and the deformation of an end plate is suppressed, but it becomes difficult to respond to high acceleration because the rotation inertia force increases.
  • The present invention has been made in view of the situation as above, and an object thereof is to provide a co-rotating scroll compressor that enables speed up and high acceleration.
  • Solution to Problem
  • In order to solve the abovementioned problem, a co-rotating scroll compressor of the present invention employs the following solutions.
  • That is, a co-rotating scroll compressor according to an aspect of the present invention includes: a driving-side scroll member driven by a drive unit so as to rotate, and including a plurality of spiral driving-side walls provided about a center of a driving-side end plate at predetermined angular intervals; a driven-side scroll member including spiral driven-side walls, the driven-side walls being provided about a center of a driven-side end plate at predetermined angular intervals and in a number corresponding to the driving-side walls, the driven-side walls being engaged with the corresponding driving-side walls so as to form a compression space; a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member so that the driving-side scroll member and the driven-side scroll member rotationally move in a same direction at a same angular velocity; and a driving-side supporting member arranged across the driven-side end plate, fixed to a distal end side of the driving-side walls in an rotation direction, and rotated together with the driving-side scroll member, and/or a driven-side supporting member arranged across the driving-side end plate, fixed to a distal end side of the driven-side walls in an rotation direction, and rotated together with the driven-side scroll member, in which a fixing portion of each of the driving-side walls to which the driving-side supporting member is fixed is provided in a position close to a radially outside end portion of the driving-side wall and separated from the radially outside end portion in an inner circumferential direction of the driving-side wall, and/or a fixing portion of each of the driven-side walls to which the driven-side supporting member is fixed is provided in a position close to a radially outside end portion of the driven-side wall and separated from the radially outside end portion in an inner circumferential direction of the driven-side wall.
  • The driving-side walls arranged about the center of the end plate of the driving-side scroll member at predetermined angular intervals and the corresponding driven-side walls of the driven-side scroll member are engaged with each other. As a result, a plurality of pairs each formed by one driving-side wall and one driven-side are provided, and the scroll-type compressor including a plurality of lines of walls is formed. The driving-side scroll member is driven by the drive unit so as to rotate, and the driving force transmitted to the driving-side scroll member is transmitted to the driven-side scroll member via the synchronous driving mechanism. As a result, the driven-side scroll member rotationally moves in the same direction at the same angular velocity as the driving-side scroll member while rotating. As described above, the co-rotating scroll compressor in which both of the driving-side scroll member and the driven-side scroll member rotate is provided.
  • When the driving-side scroll member and the driven-side scroll member rotates and the number of revolutions increases, the distal ends of the walls provided on the end plates in the rotation axis direction are displaced to a radially outside place by centrifugal force, and the walls are deformed so as to be inclined. The radially outside end portions of the walls are in positions farthest from the centers of the end plates, and hence the centrifugal force becomes the largest. Therefore, the deformation of the walls becomes the largest at the radially outside end portions. Thus, by fixing the supporting members on the free end side of the walls, the rigidity of the walls is increased and the speed up can be responded to.
  • The fixing portions of the walls to which the supporting members are fixed has higher rigidity as compared to other regions of the walls. Therefore, it is conceived to be preferred that the fixing portions be provided on the radially outside end portions of the walls subjected to the largest centrifugal force. However, as a result of keen examination by the inventors and the like, it has been found that, when the fixing portions are provided on the radially outside end portions, the rigidity becomes higher but the stress caused by the centrifugal force increases on the contrary because the mass of the fixing portions becomes larger than the other wall regions. Thus, the fixing portions are provided in positions close to the radially outside end portions of the walls and separated from the radially outside end portions in the inner circumferential direction of the walls. As a result, as compared to a case where the fixing portions are placed on the radially outside end portions, the stress generated on the fixing portions can be reduced, and hence the speed up and the high acceleration can be responded to.
  • Further, in the co-rotating scroll compressor according to an aspect of the present invention, an angle formed by a line connecting a center of the driving-side wall and the radially outside end portion to each other and a line connecting the center of the driving-side wall and a middle of the fixing portion to each other is 10° or more and 50° or less when the driving-side wall is seen in planar view; and/or an angle formed by a line connecting a center of the driven-side wall and the radially outside end portion to each other and a line connecting the center of the driven-side wall and a middle of the fixing portion to each other is 10° or more and 50° or less when the driven-side wall is seen in planar view.
  • As the position close to the radially outside end portion of the wall in which the fixing portion is provided, the angle formed by the line connecting the center of the wall and the radially outside end portion to each other and the line connecting the center of the wall and the middle of the fixing portion to each other is preferably 10° or more and 50° or less.
  • Further, in the co-rotating scroll compressor according to an aspect of the present invention, the driving-side scroll member includes: a first driving-side scroll portion including a first driving-side end plate and a first driving-side wall, the first driving-side scroll portion being driven by the drive unit; a second driving-side scroll member including a second driving-side end plate and a second driving-side wall; and a wall fixing portion that performs fixing in a state in which distal ends of the first driving-side wall and the second driving-side wall in a rotation axis direction face each other; the driven-side scroll member includes: a first driven-side wall provided on one side surface of the driven-side end plate, the first driven-side wall being engaged with the first driving-side wall; and a second driven-side wall provided on another side surface of the driven-side end plate, the second driven-side wall being engaged with the second driving-side wall; and the driven-side supporting member includes: a first supporting member arranged across the first driving-side end plate, fixed on a distal end side of the first driven-side wall in a rotation axis direction, and rotated together with the first driven-side wall; and a second supporting member arranged across the second driving-side end plate, fixed to a distal end side of the second driven-side wall in a rotation axis direction, and rotated together with the second driven-side wall.
  • By engaging the first driving-side wall and the first driven-side wall with each other and engaging the second driving-side wall and the second driven-side wall with each other, the compression spaces are formed on both side surfaces of the driven-side end plate. Further, by providing the first supporting member fixed to the first driven-side wall and the second supporting member fixed to the second driven-side wall, the rigidity of the walls is increased. Further, as described above, the fixing portion is provided in a position close to the radially outside end portion of the wall and separated from the radially outside end portion in the inner circumferential direction of the wall. As a result, as compared to a case where the fixing portion is placed on the radially outside end portion, the weight increase can be suppressed and the stress generated on the fixing portion can be reduced. Therefore, the speed up and the high acceleration can be responded to.
  • Advantageous Effects of Invention
  • The fixing portion of the wall to which the supporting member is fixed is provided in a position close to the radially outside end portion of the wall and separated from the radially outside end portion in the inner circumferential direction of the wall. As a result, as compared to a case where the fixing portion is placed on the radially outside end portion, the stress generated on the fixing portion can be reduced, and hence the speed up and the high acceleration can be responded to.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a longitudinal cross-sectional view illustrating a co-rotating scroll compressor according to a first embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a driving-side scroll member in FIG. 1.
  • FIG. 3 is a plan view illustrating a driven-side scroll member in FIG. 1.
  • FIG. 4 is a side view of a driving-side supporting member in FIG. 1 seen from the exhaust side.
  • FIG. 5 is a side view of the driven-side supporting member in FIG. 1 seen from the motor side.
  • FIG. 6 is a longitudinal cross-sectional view illustrating a co-rotating scroll compressor according to a second embodiment of the present invention.
  • DESCRIPTION OF EMBODIMENTS
  • Embodiments according to the present invention are described below with reference to the drawings.
  • First Embodiment
  • A first embodiment of the present invention is described below with reference to FIG. 1 and the like.
  • FIG. 1 illustrates a co-rotating scroll compressor 1A. The co-rotating scroll compressor 1A can be used as a supercharger that compresses combustion air (fluid) to be supplied to an internal combustion engine such as a vehicle engine, for example.
  • The co-rotating scroll compressor 1A includes a housing 3, and a driving-side scroll member 7 and the driven-side scroll member 9 accommodated in the other end side of the housing 3.
  • The housing 3 has a substantially cylindrical shape, and has one end (not shown) on which a motor accommodation portion that accommodates a drive unit such as an electric motor is provided. As illustrated in FIG. 1, a scroll accommodation portion 3 b that accommodates the scroll members 7 and 9 are included on the other end. An exhaust opening 3 d for exhausting air that has been compressed is formed in an end portion of the scroll accommodation portion 3 b. Note that, although not shown in FIG. 1, an air suction opening that sucks air is provided in the housing 3.
  • The rotational driving force from a rotor of the motor is transmitted to a driving-side shaft portion 7 c of the driving-side scroll member 7 that rotates about a driving rotational axis CL1.
  • The driving-side scroll member 7 includes a driving-side end plate 7 a, and a spiral driving-side wall 7 b provided on one side of the driving-side end plate 7 a. The driving-side end plate 7 a is connected to the driving-side shaft portion 7 c connected to a driving shaft 6, and extends in a direction orthogonal to the driving-side rotational axis CL1. The driving-side shaft portion 7 c is provided so as to be rotatable with respect to the housing 3 via a driving-side bearing 11 that is a ball bearing.
  • The driving-side end plate 7 a has a substantially disk-like shape when seen in planar view. As illustrated in FIG. 2, the driving-side scroll member 7 includes three spiral driving-side walls 7 b, that is, three lines of spiral driving-side walls 7 b. The three lines of driving-side walls 7 b are provided about the driving-side rotational axis CL1 at regular intervals. Radially outside end portions 7 e of the driving-side walls 7 b are not fixed to the other wall portions and are independent. That is, wall portions that connect the radially outside end portions 7 e to each other so as to provide reinforcement are not provided.
  • Driving-side fixing portions 7 f for fixing a driving-side supporting member 20 described below is provided near the radially outside end portions 7 e of the driving-side walls 7 b. The driving-side fixing portion 7 f is a bulging portion obtained by increasing the board thickness of the driving-side wall 7 b radially outward. The forming position of the driving-side fixing portion 7 f is a position separated from the radially outside end portion 7 e in the inner circumferential direction (winding starting direction) of the driving-side wall 7 b. Specifically, an angle θ formed by the line connecting the driving-side rotational axis CL1 and the radially outside end portion 7 e to each other and the line connecting the driving-side rotational axis CL1 and the middle of the driving-side fixing portion 7 f (more specifically, the center of a fastening member 24 a) to each other is 10° or more and 50° or less.
  • As illustrated in FIG. 1, the driven-side scroll member 9 is arranged so as to engage with the driving-side scroll member 7, and includes a driven-side end plate 9 a and a spiral driven-side wall 9 b provided on one side of the driven-side end plate 9 a. A driven-side shaft portion 9 c that extends in the direction of a driven-side rotational axis CL2 is connected to the driven-side end plate 9 a. The driven-side shaft portion 9 c is provided so as to be rotatable with respect to the housing 3 via a driven-side bearing 13 that is a double row ball bearing.
  • The driven-side end plate 9 a has a substantially disk-like shape when seen in planar view. As illustrated in FIG. 3, three spiral driven-side walls 9 b, that is, three lines of spiral driven-side walls 9 b are provided in the driven-side scroll member 9. The three lines of driven-side walls 9 b are arranged about the driven-side rotational axis CL2 at regular intervals. An exhaust port 9 d that exhausts air that has been compressed is formed in substantially the middle of the driven-side end plate 9 a. The exhaust port 9 d communicates with the exhaust opening 3 d formed in the housing 3. Radially outside end portions 9 e of the driven-side walls 9 b are not fixed to the other wall portions and are independent. That is, wall portions that connect the radially outside end portions 9 e to each other so as to provide reinforcement are not provided.
  • Driven-side fixing portions 9 f for fixing a driven-side supporting member 22 described below is provided near the radially outside end portions 9 e of the driven-side walls 9 b. The driven-side fixing portion 9 f is a bulging portion obtained by increasing the board thickness of the driven-side wall 9 b radially outward. The forming position of the driven-side fixing portion 9 f is a position separated from the radially outside end portion 9 e in the inner circumferential direction (winding starting direction) of the driven-side wall 9 b. Specifically, an angle θ formed by the line connecting the driven-side rotational axis CL2 and the radially outside end portion 9 e to each other and the line connecting the driven-side rotational axis CL2 and the middle of the driven-side fixing portion 9 f (more specifically, the center of a fastening member 24 b) to each other is 10° or more and 50° or less.
  • As described above, as illustrated in FIG. 1, the driving-side scroll member 7 rotates about the driving-side rotational axis CL1 and the driven-side scroll member 9 rotates about the driven-side rotational axis CL2. The driving-side rotational axis CL1 and the driven-side rotational axis CL2 are offset from each other by a distance with which a compression chamber can be formed.
  • As illustrated in FIG. 1, the driving-side supporting member 20 is fixed to the driving-side fixing portion 7 f on the distal end (free end) of the driving-side wall 7 b of the driving-side scroll member 7 via the fastening member 24 a such as a pin or a bolt. The driven-side scroll member 9 is sandwiched between the driving-side supporting member 20 and the driving-side scroll member 7. Therefore, the driven-side end plate 9 a is arranged so as to be opposed to the driving-side supporting member 20.
  • The driving-side supporting member 20 includes a shaft portion 20 a on the center side. The shaft portion 20 a is rotatably attached with respect to the housing 3 via a bearing 26 for the driving-side supporting member that is a ball bearing. As a result, the driving-side supporting member 20 rotates about the driving-side rotational axis CL1 as with the driving-side scroll member 7.
  • As illustrated in FIG. 4, the driving-side supporting member 20 includes a radially extending portion 20 b that extends radially outward to the position of the outer periphery of the driving-side wall 7 b for each position in which the distal end of the driving-side wall 7 b is fixed by the fixing portion 7 f (see FIG. 2). The region between the radially extending portions 20 b has a shape that does not extend to the outer periphery side of the driving-side wall 7 b, and saves weight. In this embodiment, the radially extending portions 20 b are provided in three directions at equiangular intervals. Note that, in FIG. 4, the driving-side supporting member 20 and the driven-side scroll member 9 are illustrated and the driving-side scroll member 7 is not illustrated.
  • As illustrated in FIG. 1, a pin ring mechanism 15 is provided between the driving-side supporting member 20 and the driven-side end plate 9 a. The pin ring mechanism 15 is used as a synchronous driving mechanism that transmits driving force from the driving-side scroll member 7 to the driven-side scroll member 9 so that both of the scroll members 7 and 9 rotationally move in the same direction at the same angular velocity. That is, a ring member 15 a that is a ball bearing is provided in the driven-side end plate 9 a, and a pin member 15 b is provided in the driving-side supporting member 20. As illustrated in FIG. 4, three pin members 15 b are provided so as to correspond to the positions of the radially extending portions 20 b of the driving-side supporting member 20.
  • As illustrated in FIG. 1, the driven-side supporting member 22 is fixed to the distal end (free end) of the driven-side wall 9 b of the driven-side scroll member 9 via the fastening member 24 b such as a pin or a bolt. The driving-side scroll member 7 is sandwiched between the driven-side supporting member 22 and the driven-side scroll member 9. Therefore, the driving-side end plate 7 a is arranged so as to be opposed to the driven-side supporting member 22.
  • The driven-side supporting member 22 includes a shaft portion 22 a on the center side. The shaft portion 22 a is rotatably attached with respect to the housing 3 via a bearing 28 for the driven-side supporting member that is a ball bearing. As a result, the driven-side supporting member 22 rotates about the driven-side rotational axis CL2 as with the driven-side scroll member 9.
  • As illustrated in FIG. 5, the driven-side supporting member 22 includes a radially extending portion 22 b that extends radially outward to the position of the outer periphery of the driven-side wall 9 b for each position in which the distal end of the driven-side wall 9 b is fixed. The region between the radially extending portions 22 b has a shape that does not extend to the outer periphery side of the driven-side wall 9 b, and saves weight. In this embodiment, the radially extending portions 22 b are provided in three directions at equiangular intervals. Note that, in FIG. 5, the driven-side supporting member 22 and the driving-side scroll member 7 are illustrated and the driven-side scroll member 9 is not illustrated.
  • As illustrated in FIG. 1, the pin ring mechanism 15 is provided between the driven-side supporting member 22 and the driving-side end plate 7 a. The pin ring mechanism 15 is used as a synchronous driving mechanism that transmits driving force from the driving-side scroll member 7 to the driven-side scroll member 9 so that both of the scroll members 7 and 9 rotationally move in the same direction at the same angular velocity. That is, the ring member 15 a is provided in the driving-side end plate 7 a, and the pin member 15 b is provided in the driven-side supporting member 22. As illustrated in FIG. 5, three pin members 15 b are provided so as to correspond to the positions of the radially extending portions 22 b of the driven-side supporting member 22.
  • The co-rotating scroll compressor 1A having the abovementioned configuration operates as follows.
  • When the driving shaft is rotated about the driving-side rotational axis CL1 by the motor, the driving-side shaft portion 7 c connected to the driving shaft also rotates. As a result, the driving-side scroll member 7 rotates about the driving-side rotational axis CL1. When the driving-side scroll member 7 rotates, the driving force is transmitted from the driving-side end plate 7 a to the driven-side supporting member 22 via the pin ring mechanism 15. Further, the driving force is transmitted from the driving-side supporting member 20 to the driven-side end plate 9 a via the pin ring mechanism 15. As a result, the driving force is transmitted to the driven-side scroll member 9, and the driven-side scroll member 9 rotates about the driven-side rotational axis CL2. At this time, the pin member 15 b of the pin ring mechanism 15 moves while being in contact with the ring member 15 a, and hence both of the scroll members 7 and 9 rotationally move in the same direction at the same angular velocity.
  • When both of the scroll members 7 and 9 rotationally move in the same direction at the same angular velocity, the air sucked from the suction opening in the housing 3 is sucked from the outer periphery side of both of the scroll members 7 and 9, and is taken into the compression chamber formed by both of the scroll members 7 and 9. The capacity of the compression chamber decreases as the compression chamber approaches the center side, and air is compressed accordingly. The air compressed as above flows through the exhaust port 9 d in the driven-side scroll member 9 and is exhausted to the outside from the exhaust opening 3 d in the housing 3. The exhausted compressed air is guided to an internal combustion engine (not shown) and is used as combustion air.
  • The effects of this embodiment is as follows.
  • When the driving-side scroll member 7 and the driven-side scroll member 9 rotate and the number of revolutions increases, the distal ends of the walls 7 b and 9 b provided on the end plates 7 a and 9 a in the rotation axis direction are displaced to a radially outside place by centrifugal force, and the walls 7 b and 9 b are deformed so as to be inclined. The radially outside end portions 7 e and 9 e of the walls 7 b and 9 b are in positions farthest from the centers CL1 and CL2 of the end plates, and hence the centrifugal force becomes the largest. Therefore, the deformation of the walls 7 b and 9 b becomes the largest at the radially outside end portions 7 e and 9 e. Thus, by fixing the supporting members 20 and 22 on the free end side of the walls 7 b and 9 b, the rigidity of the walls 7 b and 9 b is increased and the speed up can be responded to.
  • The fixing portions 7 f and 9 f of the walls 7 b and 9 b to which the supporting members 20 and 22 are fixed have higher rigidity as compared to other regions of the walls 7 b and 9 b. Therefore, it is conceived to be preferred that the fixing portions 7 f and 9 f be provided on the radially outside end portions 7 e and 9 e of the walls 7 b and 9 b subjected to the largest centrifugal force. However, as a result of keen examination by the inventors and the like, it has been found that, when the fixing portions 7 f and 9 f are provided on the radially outside end portions 7 e and 9 e, the rigidity becomes higher but the stress caused by the centrifugal force increases on the contrary because the mass of the fixing portions 7 f and 9 f becomes larger than the other wall regions. Thus, the fixing portions 7 f and 9 f are provided in positions close to the radially outside end portions 7 e and 9 e of the walls 7 b and 9 b and separated from the radially outside end portions 7 e and 9 e in the inner circumferential direction of the walls 7 b and 9 b. As a result, as compared to a case where the fixing portions 7 f and 9 f are placed on the radially outside end portions 7 e and 9 e, the stress generated on the fixing portions 7 f and 9 f can be reduced, and hence the speed up and the high acceleration can be responded to. For example, the speed up of 10000 rotations per minute or more, preferably 15000 rotations or more can be responded to, and high acceleration that reaches to 10000 rotations in 0.5 seconds at the time of start-up can be responded to.
  • Second Embodiment
  • The arrangement and the structure of the fixing portions 7 f and 9 f described in the first embodiment can be also applied to a co-rotating scroll compressor described below.
  • FIG. 6 illustrates a co-rotating scroll compressor 1B according to this embodiment. Note that structures similar to those in the co-rotating scroll compressor 1A described with reference to FIG. 1 are the same denoted by the same reference character, and the description thereof is omitted.
  • As illustrated in FIG. 6, the driving-side scroll member 70 includes a first driving-side scroll portion 71 on the motor side (the right side in FIG. 6) and a second driving-side scroll portion 72 on the exhaust opening 3 d side.
  • The first driving-side scroll portion 71 includes a first driving-side end plate 71 a and a first driving-side wall 71 b. Three lines of first driving-side walls 71 b are provided as with the abovementioned driving-side walls 7 b (see FIG. 2).
  • The second driving-side scroll portion 72 includes a second driving-side end plate 72 a and a second driving-side wall 72 b. Three lines of second driving-side walls 72 b are provided as with the abovementioned driving-side walls 7 b (see FIG. 2). A second driving-side shaft portion 72 c that extends in the direction of the driving-side rotational axis CL1 is connected to the second driving-side end plate 72 a. The second driving-side shaft portion 72 c is provided so as to be rotatable with respect to the housing 3 via a second driving-side bearing 14 that is a ball bearing. An exhaust port 72 d is formed in the second driving-side shaft portion 72 c along the driving-side rotational axis CL1.
  • The first driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed in a state in which the distal ends (free ends) of the walls 71 b and 72 b are facing each other. The first driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed by a bolt (wall fixing portion) 31 fastened with respect to flange parts 73 provided in a plurality of places so as to protrude radially outward.
  • The driven-side scroll member 90 includes a driven-side end plate 90 a provided in substantially the middle in the axial direction (the horizontal direction in FIG. 6). A through hole (not shown) is formed in the middle of the driven-side end plate 90 a, and air that has been compressed flows to the exhaust port 72 d.
  • Driven- side walls 91 b and 92 b are provided on both sides of the driven-side end plate 90 a. The first driven-side wall 91 b provided from the driven-side end plate 90 a to the motor side is engaged with the first driving-side wall 71 b of the first driving-side scroll portion 71, and the second driven-side wall 92 b provided from the driven-side end plate 90 a to the exhaust opening 3 d side is engaged with the second driving-side wall 72 b of the second driving-side scroll portion 72.
  • A first supporting member 33 and a second supporting member 35 are provided on both ends of the driven-side scroll member 90 in the axial direction (the horizontal direction in FIG. 6). The first supporting member 33 is arranged on the motor side (the right side in FIG. 6), and the second supporting member 35 is arranged on the exhaust opening 3 d side. The first supporting member 33 is fixed to a first fixing portion 91 f on the distal end (free end) of the first driven-side wall 91 b by a fastening member 25 a such as a pin or a bolt, and the second supporting member 35 is fixed to a second fixing portion 92 f on the distal end (free end) of the second driven-side wall 92 b by a fastening member 25 b such as a pin or a bolt. As with the driven-side fixing portion 9 f described with reference to FIG. 3, the fixing portions 91 f and 92 f provided on the driven- side walls 91 b and 92 b are bulging portions obtained by increasing the board thickness of the driven- side walls 91 b and 92 b radially outward, and are in positions separated from the radially outside end portions in the inner circumferential direction (winding starting direction) of the driven- side walls 91 b and 92 b.
  • A shaft portion 33 a is provided on the central axis side of the first supporting member 33, and the shaft portion 33 a is fixed to the housing 3 via a bearing 37 for the first supporting member. A shaft portion 35 a is provided on the central axis side of the second supporting member 35, and the shaft portion 35 a is fixed to the housing 3 via a bearing 38 for the second supporting member. As a result, the driven-side scroll member 90 is rotated about the second center axis CL2 via the supporting members 33 and 35. Further, the shapes of the supporting members 33 and 35 are similar to that of the driven-side supporting member 22 in the first embodiment described with reference to FIG. 5.
  • The pin ring mechanism 15 is provided between the first supporting member 33 and the first driving-side end plate 71 a. That is, the ring member 15 a is provided in the first driving-side end plate 71 a, and the pin member 15 b is provided in the first supporting member 33. As illustrated in FIG. 5, three pin members 15 b are provided so as to correspond to the positions of the supporting portions of the first supporting member 33.
  • The pin ring mechanism 15 is provided between the second supporting member 35 and the second driving-side end plate 72 a. That is, the ring member 15 a is provided in the second driving-side end plate 72 a, and the pin member 15 b is provided in the second supporting member 35. As illustrated in FIG. 5, three pin members 15 b are provided so as to correspond to the positions of the supporting portions of the second supporting member 35.
  • The scroll accommodation portion 3 b of the housing 3 is divided at the substantially middle portion of the scroll members 70 and 90 in the axial direction, and fixed by a bolt 32.
  • The co-rotating scroll compressor 1B having the abovementioned configuration operates as follows.
  • When the driving shaft connected to a rotor is rotated about the driving-side rotational axis CL1 by a motor, the driving-side shaft portion 7 c connected to the driving shaft also rotates. As a result, the driving-side scroll member 70 rotates about the driving-side rotational axis CL1. When the driving-side scroll member 70 rotates, the driving force is transmitted from the supporting members 33 and 35 to the driven-side scroll member 90 via the pin ring mechanism 15, and the driven-side scroll member 90 rotates about the driven-side rotational axis CL2. At this time, the pin member 15 b of the pin ring mechanism 15 moves while being in contact with the ring member 15 a, and hence both of the scroll members 70 and 90 rotationally move in the same direction at the same angular velocity.
  • When both of the scroll members 70 and 90 rotationally move in the same direction at the same angular velocity, the air sucked from the suction opening in the housing 3 is sucked from the outer periphery side of both of the scroll members 70 and 90, and is taken into the compression chamber formed by both of the scroll members 70 and 90. Further, the compression chamber formed by the first driving-side wall 71 b and the first driven-side wall 91 b and the compression chamber formed by the second driving-side wall 72 b and the second driven-side wall 92 b are separately compressed. The capacity of the compression chambers decreases as the compression chambers approach the center side, and the air is compressed accordingly. The air compressed by the first driving-side wall 71 b and the first driven-side wall 91 b flows through a through hole 90 h formed in the driven-side end plate 90 a, and is merged with air compressed by the second driving-side wall 72 b and the second driven-side wall 92 b. The merged air flows through the exhaust port 72 d and is exhausted to the outside from the exhaust opening 3 d in the housing 3. The exhausted compressed air is guided to an internal combustion engine (not shown) and is used as combustion air.
  • Also in the co-rotating scroll compressor 1B of this embodiment, as with the first embodiment, the fixing portions 91 f and 92 f are provided in places separated from the radially outside end portions of the driven- side walls 91 b and 92 b in the inner circumferential direction, and hence the stress generated on the fixing portions 91 f and 92 f can be reduced. As a result, the speed up and the high acceleration can be responded to.
  • Note that, in the abovementioned embodiments, the co-rotating scroll compressor is used as the supercharger, but the present invention is not limited thereto, and the co-rotating scroll compressor can be widely used as long as fluid is compressed. For example, the co-rotating scroll compressor can be used as a refrigerant compressor used in an air conditioning unit.
  • Further, as a “predetermined angular interval” by which the three lines of walls are separated about the center of the end plate, an equiangular interval that is 120° is preferred, but the present invention is not limited thereto. The angle tolerance for the equiangular interval is ±10°, and the interval may preferably be a substantially equiangular interval of which angle tolerance is ±1°.
  • Further, the pin ring mechanism 15 is used as a synchronous driving mechanism, but the present invention is not limited thereto, and the pin ring mechanism 15 may be used as a crank pin mechanism, for example.
  • REFERENCE SIGNS LIST
    • 1A, 1B co-rotating scroll compressor
    • 3 housing
    • 3 b scroll accommodation portion
    • 3 d exhaust opening
    • 7 driving-side scroll member
    • 7 a driving-side end plate
    • 7 b driving-side wall
    • 7 c driving-side shaft portion
    • 7 e radially outside end portion
    • 7 f driving-side fixing portion
    • 9 driven-side scroll member
    • 9 a driven-side end plate
    • 9 b driven-side wall
    • 9 c driven-side shaft portion
    • 9 d exhaust port
    • 9 e radially outside end portion
    • 9 f driven-side fixing portion
    • 11 driving-side bearing
    • 13 driven-side bearing
    • 15 pin ring mechanism (synchronous driving mechanism)
    • 15 a ring member
    • 15 b pin member
    • 20 driving-side supporting member
    • 20 a shaft portion
    • 20 b radially extending portion
    • 22 driven-side supporting member
    • 24 a fastening member
    • 24 b fastening member
    • 25 a fastening member
    • 25 b fastening member
    • 26 bearing for driving-side supporting member
    • 28 bearing for driven-side supporting member
    • 31 bolt (wall fixing portion)
    • 32 bolt
    • 33 first supporting member
    • 33 a shaft portion
    • 35 second supporting member
    • 35 a shaft portion
    • 37 bearing for first supporting member
    • 38 bearing for second supporting member
    • 70 driving-side scroll member
    • 71 first driving-side scroll portion
    • 71 a first driving-side end plate
    • 71 b first driving-side wall
    • 72 second driving-side scroll portion
    • 72 a second driving-side end plate
    • 72 b second driving-side wall
    • 72 c second driving-side shaft portion
    • 72 d exhaust port
    • 73 flange part
    • 90 driven-side scroll member
    • 90 a driven-side end plate
    • 90 h through hole
    • 91 b first driven-side wall
    • 91 f first fixing portion
    • 92 b second driven-side wall
    • 92 f second fixing portion

Claims (4)

1. A co-rotating scroll compressor, comprising:
a driving-side scroll member driven by a drive unit so as to rotate, and comprising a plurality of spiral driving-side walls provided about a center of a driving-side end plate at predetermined angular intervals;
a driven-side scroll member comprising spiral driven-side walls, the driven-side walls being provided about a center of a driven-side end plate at predetermined angular intervals and in a number corresponding to the driving-side walls, the driven-side walls being engaged with the corresponding driving-side walls so as to form a compression space;
a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member so that the driving-side scroll member and the driven-side scroll member rotationally move in a same direction at a same angular velocity; and
a driving-side supporting member arranged across the driven-side end plate, fixed to free end sides of the driving-side walls in an arrangement direction, and rotated together with the driving-side scroll member, and/or a driven-side supporting member arranged across the driving-side end plate, fixed to a distal end side of the driven-side walls, and rotated together with the driven-side scroll member,
wherein a fixing portion of each of the driving-side walls to which the driving-side supporting member is fixed is provided in a position close to a radially outside end portion of the driving-side wall and separated from the radially outside end portion in an inner circumferential direction of the driving-side wall, and/or a fixing portion of each of the driven-side walls to which the driven-side supporting member is fixed is provided in a position close to a radially outside end portion of the driven-side wall and separated from the radially outside end portion in an inner circumferential direction of the driven-side wall.
2. The co-rotating scroll compressor according to claim 1, wherein:
an angle formed by a line connecting a center of the driving-side wall and the radially outside end portion to each other and a line connecting the center of the driving-side wall and a middle of the fixing portion to each other is 10° or more and 40° or less when the driving-side wall is seen in planar view; and/or
an angle formed by a line connecting a center of the driven-side wall and the radially outside end portion to each other and a line connecting the center of the driven-side wall and a middle of the fixing portion to each other is 10° or more and 40° or less when the driven-side wall is seen in planar view.
3. The co-rotating scroll compressor according to claim 1, wherein:
the driving-side scroll member comprises:
a first driving-side scroll portion comprising a first driving-side end plate and a first driving-side wall, the first driving-side scroll portion being driven by the drive unit;
a second driving-side scroll member comprising a second driving-side end plate and a second driving-side wall; and
a wall fixing portion that performs fixing in a state in which distal ends of the first driving-side wall and the second driving-side wall in a rotation axis direction face each other;
the driven-side scroll member comprises:
a first driven-side wall provided on one side surface of the driven-side end plate, the first driven-side wall being engaged with the first driving-side wall; and
a second driven-side wall provided on another side surface of the driven-side end plate, the second driven-side wall being engaged with the second driving-side wall; and
the driven-side supporting member comprises:
a first supporting member arranged across the first driving-side end plate, fixed on a distal end side of the first driven-side wall in a rotation axis direction, and rotated together with the first driven-side wall; and
a second supporting member arranged across the second driving-side end plate, fixed to a distal end side of the second driven-side wall in a rotation axis direction, and rotated together with the second driven-side wall.
4. The co-rotating scroll compressor according to claim 2, wherein:
the driving-side scroll member comprises:
a first driving-side scroll portion comprising a first driving-side end plate and a first driving-side wall, the first driving-side scroll portion being driven by the drive unit;
a second driving-side scroll member comprising a second driving-side end plate and a second driving-side wall; and
a wall fixing portion that performs fixing in a state in which distal ends of the first driving-side wall and the second driving-side wall in a rotation axis direction face each other;
the driven-side scroll member comprises:
a first driven-side wall provided on one side surface of the driven-side end plate, the first driven-side wall being engaged with the first driving-side wall; and
a second driven-side wall provided on another side surface of the driven-side end plate, the second driven-side wall being engaged with the second driving-side wall; and
the driven-side supporting member comprises:
a first supporting member arranged across the first driving-side end plate, fixed on a distal end side of the first driven-side wall in a rotation axis direction, and rotated together with the first driven-side wall; and
a second supporting member arranged across the second driving-side end plate, fixed to a distal end side of the second driven-side wall in a rotation axis direction, and rotated together with the second driven-side wall.
US16/321,920 2016-08-01 2017-08-01 Co-rotating scroll compressor Abandoned US20190178249A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-151542 2016-08-01
JP2016151542A JP6727978B2 (en) 2016-08-01 2016-08-01 Double rotary scroll compressor
PCT/JP2017/027944 WO2018025879A1 (en) 2016-08-01 2017-08-01 Double rotating scroll-type compressor

Publications (1)

Publication Number Publication Date
US20190178249A1 true US20190178249A1 (en) 2019-06-13

Family

ID=61072731

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/321,920 Abandoned US20190178249A1 (en) 2016-08-01 2017-08-01 Co-rotating scroll compressor

Country Status (5)

Country Link
US (1) US20190178249A1 (en)
EP (1) EP3480466B1 (en)
JP (1) JP6727978B2 (en)
CN (1) CN109661518B (en)
WO (1) WO2018025879A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171448A1 (en) * 2018-03-06 2019-09-12 三菱重工業株式会社 Double-rotating scroll compressor
JP6698726B2 (en) * 2018-03-12 2020-05-27 三菱重工業株式会社 Double rotary scroll compressor
KR102668142B1 (en) * 2019-11-15 2024-05-23 코프랜드 엘피 Co-rotating scroll compressor
US12104594B2 (en) 2021-11-05 2024-10-01 Copeland Lp Co-rotating compressor
US11624366B1 (en) 2021-11-05 2023-04-11 Emerson Climate Technologies, Inc. Co-rotating scroll compressor having first and second Oldham couplings

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360443A (en) 1976-11-10 1978-05-31 Hitachi Ltd Shaft bearing device
US6884047B1 (en) * 2003-10-20 2005-04-26 Varian, Inc. Compact scroll pump
JP5812693B2 (en) * 2011-05-09 2015-11-17 アネスト岩田株式会社 Scroll type fluid machine
US20130236344A1 (en) * 2012-03-09 2013-09-12 RichStone Limited (Korea) Scroll fluid machine
JP5925578B2 (en) * 2012-04-25 2016-05-25 アネスト岩田株式会社 Scroll expander
JP5931564B2 (en) * 2012-04-25 2016-06-08 アネスト岩田株式会社 Double-rotating scroll expander and power generation device including the expander
JP6185297B2 (en) * 2013-06-14 2017-08-23 アネスト岩田株式会社 Scroll type fluid machine
JP6441645B2 (en) * 2014-11-07 2018-12-19 アネスト岩田株式会社 Scroll fluid machinery

Also Published As

Publication number Publication date
JP2018021463A (en) 2018-02-08
CN109661518A (en) 2019-04-19
EP3480466A4 (en) 2019-06-26
EP3480466A1 (en) 2019-05-08
WO2018025879A1 (en) 2018-02-08
EP3480466B1 (en) 2020-09-30
JP6727978B2 (en) 2020-07-22
CN109661518B (en) 2021-01-01

Similar Documents

Publication Publication Date Title
US20190178249A1 (en) Co-rotating scroll compressor
US11015599B2 (en) Co-rotating scroll compressor and method for designing the same
US11041494B2 (en) Co-rotating scroll compressor
US20190178247A1 (en) Co-rotating scroll compressor
US20190376513A1 (en) Co-rotating scroll compressor and method of assembling the same
JP6108967B2 (en) Rotary compression mechanism
US8157553B2 (en) Scroll compressor having a shifted gravity center
US20200378383A1 (en) Co-rotating scroll compressor
EP3567252B1 (en) Two-way-rotating scroll compressor
US10995755B2 (en) Co-rotating scroll compressor
JP2018059462A (en) Double rotation scroll-type compressor
JP2011179374A (en) Scroll compressor
JP2020186660A (en) Rotary compressor
US20180328361A1 (en) Scroll fluid machine
US20190368486A1 (en) Co-rotating scroll compressor
WO2019171448A1 (en) Double-rotating scroll compressor
JP2018132034A (en) Bidirectional rotation scroll type compressor

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMASHITA, TAKUMA;ITO, TAKAHIDE;TAKEUCHI, MAKOTO;AND OTHERS;REEL/FRAME:048203/0018

Effective date: 20190115

Owner name: MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMASHITA, TAKUMA;ITO, TAKAHIDE;TAKEUCHI, MAKOTO;AND OTHERS;REEL/FRAME:048203/0018

Effective date: 20190115

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD.;REEL/FRAME:049597/0534

Effective date: 20190521

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION