US20190162407A1 - Enclosed combustor - Google Patents
Enclosed combustor Download PDFInfo
- Publication number
- US20190162407A1 US20190162407A1 US16/203,331 US201816203331A US2019162407A1 US 20190162407 A1 US20190162407 A1 US 20190162407A1 US 201816203331 A US201816203331 A US 201816203331A US 2019162407 A1 US2019162407 A1 US 2019162407A1
- Authority
- US
- United States
- Prior art keywords
- polygonal
- panels
- interchangeable
- enclosed
- combustor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000446 fuel Substances 0.000 claims abstract description 40
- 238000002485 combustion reaction Methods 0.000 claims abstract description 36
- 230000006378 damage Effects 0.000 claims abstract description 7
- 231100000331 toxic Toxicity 0.000 claims abstract description 5
- 230000002588 toxic effect Effects 0.000 claims abstract description 5
- 230000008878 coupling Effects 0.000 claims description 21
- 238000010168 coupling process Methods 0.000 claims description 21
- 238000005859 coupling reaction Methods 0.000 claims description 21
- 235000003642 hunger Nutrition 0.000 claims description 9
- 230000037351 starvation Effects 0.000 claims description 9
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- 239000010935 stainless steel Substances 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 description 32
- 239000007789 gas Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 10
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 238000010276 construction Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 235000009781 Myrtillocactus geometrizans Nutrition 0.000 description 1
- 240000009125 Myrtillocactus geometrizans Species 0.000 description 1
- RSPISYXLHRIGJD-UHFFFAOYSA-N OOOO Chemical compound OOOO RSPISYXLHRIGJD-UHFFFAOYSA-N 0.000 description 1
- 244000171022 Peltophorum pterocarpum Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M5/00—Casings; Linings; Walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/02—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
- F23D14/04—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner
- F23D14/045—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner with a plurality of burner bars assembled together, e.g. in a grid-like arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/02—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
- F23D14/04—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner
- F23D14/08—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner with axial outlets at the burner head
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/20—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
- F23D14/22—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/06—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
- F23G7/08—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks
- F23G7/085—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks in stacks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M9/00—Baffles or deflectors for air or combustion products; Flame shields
- F23M9/02—Baffles or deflectors for air or combustion products; Flame shields in air inlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/00017—Assembled burner modules
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/14—Special features of gas burners
- F23D2900/14003—Special features of gas burners with more than one nozzle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M2700/00—Constructional details of combustion chambers
- F23M2700/005—Structures of combustion chambers or smoke ducts
Definitions
- the technology described herein relates generally to combustors, flares, and gas burners, such as those used by oil and gas companies that desire to further reduce emissions and costs related to combustor equipment installation. More specifically, the technology described herein relates to an improved, low-cost enclosed combustor to destruct vapors that are harmful to the environment such as hydrocarbons. Additionally, the technology described herein relates to an interchangeable, modular panel structure for the enclosed combustor and to a burner manifold and nozzles to regulate the ratio of air and gas to achieve stoichiometric combustion.
- Enclosed Combustors are used to destruct vapors that are harmful to the environment. There is a variety of applications where these enclosed combustor devices are used. One example is the use of combustors for the destruction of hydrocarbons that are produced from crude oil storage tanks.
- WO Patent Publication No. 2008/055829 filed by NV Bekaert SA et al. and published on May 15, 2008, discloses a modular flare stack and method of flaring waste gas.
- WO Patent Publication No. 2006/010693 filed by NV Bekaert SA and published on Feb. 2, 2006, discloses a flare stack having enclosed flame combustion.
- the technology described herein provides an improved, low-cost enclosed combustor to destruct vapors that are harmful to the environment such as hydrocarbons. Additionally, the technology described herein provides an interchangeable, modular panel structure for the enclosed combustor and to a burner manifold and nozzles to regulate the ratio of air and gas to achieve stoichiometric combustion.
- the technology described herein provides an interchangeable, modular enclosed combustor for enclosed flame combustion of combustible vapors.
- the enclosed combustor includes: a first plurality of interchangeable, sectional panels of a first predetermined height configured for coupling one to another to form a first polygonal tier of the first predetermined height; a second plurality of interchangeable, sectional panels of a second predetermined height configured for coupling one to another to form a second polygonal tier of the second predetermined height, wherein the second plurality of panels is disposed on top of the first plurality of panels, vertically extending the enclosed combustor; a plurality of fasteners to couple interchangeably in modular form the second polygonal tier to the first polygonal tier; wherein the first and second polygonal tiers collectively form a vertical, columnar, polygonal stack within which to flame combust combustible vapors; wherein the enclosed combustor is expandable in diameter through the addition of more panels
- the enclosed combustor also includes: a third plurality of interchangeable, sectional panels of a third predetermined height configured for coupling one to another to form a third polygonal tier of the third predetermined height, wherein the third plurality of panels is disposed on top of the second plurality of panels, vertically extending the enclosed combustor; and a plurality of fasteners to couple interchangeably in modular form the third polygonal tier to the second polygonal tier.
- the enclosed combustor also includes: a fourth plurality of interchangeable, sectional panels of a fourth predetermined height configured for coupling one to another to form a fourth polygonal tier of the fourth predetermined height, wherein the fourth plurality of panels is disposed on top of the third plurality of panels, vertically extending the enclosed combustor; and a plurality of fasteners to couple interchangeably in modular form the fourth polygonal tier to the third polygonal tier.
- the first plurality of interchangeable, sectional panels of a first predetermined height configured for coupling one to another to form a first polygonal tier of the first predetermined height comprises vented panels.
- the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise a number of panels that varies based upon an application of the enclosed combustor and capacity requirements.
- the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise interchangeable, lightweight stainless-steel panels that are precision cut for accuracy and repeatability and formed to add strength and rigidity.
- the enclosed combustor further includes a burner management system to control a gas train and the burner manifold.
- the burner manifold disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors further comprises a plurality of burners and nozzles; the burner manifold comprises natural draft burners and is configured to mix air with fuel through a natural draft; and the nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
- the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise laser-cut, stainless steel panels thereby to provide a precise, rigid, and lightweight structure.
- the burner manifold further comprises at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure.
- the burner manifold further comprises a plurality of natural draft burners that are spaced in a predetermined pattern thereby to eliminate air starvation.
- the enclosed combustor includes: an interchangeable multi-paneled, multi-tiered combustor housing comprising a plurality of panels coupled together and arranged in a polygonal form and further arranged in multiple tiers of polygonal forms, thereby to form a vertical, columnar, polygonal stack to flame combust combustible vapors; and a burner manifold disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors within the housing and to reduce toxic emissions.
- the burner manifold further comprises a plurality of burners and nozzles; and the burner manifold is configured to mix air with fuel through a natural draft.
- the nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
- the burner manifold and nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
- the burner manifold and nozzles are configured to the ratio of air and fuel to mix to achieve stoichiometric combustion and reduce harmful emissions at a rate >98% destruction efficiency and inlet pressure of ⁇ 1 oz./in ⁇ 2.
- the burner manifold further comprises at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure.
- the burner manifold further comprises a plurality of natural draft burners that are spaced in a predetermined pattern thereby to eliminate air starvation.
- the technology described herein provides an interchangeable, modular enclosed combustor for enclosed flame combustion of combustible vapors.
- the enclosed combustor includes: a first plurality of interchangeable, sectional panels of a first predetermined height configured for coupling one to another to form a first polygonal tier of the first predetermined height; a second plurality of interchangeable, sectional panels of a second predetermined height configured for coupling one to another to form a second polygonal tier of the second predetermined height, wherein the second plurality of panels is disposed on top of the first plurality of panels, vertically extending the enclosed combustor; a plurality of fasteners to couple interchangeably in modular form the second polygonal tier to the first polygonal tier; a third plurality of interchangeable, sectional panels of a third predetermined height configured for coupling one to another to form a third polygonal tier of the third predetermined height, wherein the third plurality of panels is disposed on top of the second plurality
- the burner manifold of natural draft burners and nozzles are configured to the ratio of air and fuel to mix to achieve stoichiometric combustion and reduce harmful emissions at a rate >98% destruction efficiency and inlet pressure of ⁇ 1 oz./in ⁇ 2; and the burner manifold further comprises at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure.
- FIG. 1 is a front perspective view of an enclosed combustor, illustrating, in particular, the portable, interchangeable, modular design of the enclosed combustor that enables the entire assembly to be easily expanded or downsized as needed for a particular application, with a multi-panel, multi-tier assembly design, according to an embodiment of the technology described herein;
- FIG. 2 is an exploded view of the enclosed combustor depicted in FIG. 1 , further illustrating the burner manifold contain within, according to an embodiment of the technology described herein;
- FIG. 3 is a close-up view of the enclosed combustor depicted in FIG. 1 , further illustrating the fasteners with which to couple the multiple panels and multiple tiers of panels together, that enables the entire assembly to be easily expanded or downsized as needed for a particular application, according to an embodiment of the technology described herein;
- FIG. 4 is a front perspective view of a burner manifold having a multiplicity of burners, illustrating, in particular, the gas orifice and the multi-stage air intake ports located on the individual mixing chambers, according to an embodiment of the technology described herein;
- FIG. 5 is a front perspective view of the burner manifold, illustrating a close-up view of the multiple burners, the gas orifice and the multi-stage air intake ports located on the individual mixing chambers, according to an embodiment of the technology described herein;
- FIG. 6 is a front perspective view of the enclosed combustor depicted in FIG. 1 , further illustrating a close-up of the lower tiers of panels in the multi-panel, multi-tier assembly;
- FIG. 7 is a front perspective view of the enclosed combustor depicted in FIG. 1 , further illustrating a close-up of the upper tiers of panels in the multi-panel, multi-tier assembly.
- the technology described herein provides an improved, low-cost enclosed combustor to destruct vapors that are harmful to the environment such as hydrocarbons. Additionally, the technology described herein provides an interchangeable, modular panel structure for the enclosed combustor and to a burner manifold and nozzles to regulate the ratio of air and gas to achieve stoichiometric combustion.
- the technology disclosed herein has a unique construction design, is lower cost, lightweight, efficient, with interchangeable panels and burners for varying the capacity and is easily installed by two technicians with basic hand tools.
- the system is made of several interchangeable, lightweight stainless-steel panels that are precision cut for accuracy and repeatability and formed to add strength and rigidity.
- These panels, along with the gas train, burner manifold, and burner management system (items required to be a complete combustor system) are shipped in a crate that can be delivered in the back of a standard full-size pickup truck.
- the lightweight panels can be handled by two men and the entire system can be assembled in about one hour with hand tools.
- the technology disclosed herein is designed with combustion efficiency as a top priority.
- This technology uses a burner manifold with multiple natural draft burners. Each individual burner on the manifold was engineered to draw in the proper amount of air to mix with fuel to provide stoichiometric combustion.
- the technology described herein provides an interchangeable, modular enclosed combustor 100 for enclosed flame combustion of combustible vapors.
- the enclosed combustor 100 includes a first plurality of interchangeable, sectional panels 108 .
- the first plurality of interchangeable, sectional panels 116 are of a first predetermined height configured for coupling one to another to form a first polygonal tier 108 of the first predetermined height.
- the panels 116 of the first polygonal tier 108 are vented with a plurality of vents 118 .
- panels 110 that do not include vents are utilized.
- the enclosed combustor 100 includes a second plurality of interchangeable, sectional panels 110 .
- the second plurality of interchangeable, sectional panels 110 are of a second predetermined height configured for coupling one to another to form a second polygonal tier 106 of the second predetermined height.
- the second plurality of panels, the second polygonal tier 106 is disposed on top of the first plurality of panels, the first polygonal tier 108 .
- This modular, interchangeable assembly vertically extends the enclosed combustor 100 .
- the tiers 108 , 106 , 104 , 102 can include rims or lips formed in the panels 110 , 116 , such as 112 on both lower and upper powers that provide an area to contact the next adjacent tier for securing tiers together.
- Additional corner supports, such as 120 can be utilized to secure tiers together and to secure the lowest tier 108 to a base surface.
- Panels 110 , 116 may also include one or more handles 114 .
- a plurality of fasteners 200 are used to couple interchangeably in modular form the second polygonal tier 106 to the first polygonal tier 108 .
- the first and second polygonal tiers 108 , 106 collectively form a vertical, columnar, polygonal stack within which to flame combust combustible vapors.
- the enclosed combustor 100 is expandable in diameter through the addition of more panels to extend an outer perimeter of the first and second polygonal tiers 108 , 106 , and any subsequently added tiers.
- the enclosed combustor 100 is expandable vertically in height by the addition of more polygonal tiers 108 , 106 , and subsequent stacks tiers, in stacked form.
- the enclosed combustor 100 includes a burner manifold 300 disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors.
- the enclosed combustor also includes a third plurality of interchangeable, sectional panels of a third predetermined height configured for coupling one to another to form a third polygonal tier 104 of the third predetermined height.
- the third plurality of panels is disposed on top of the second plurality of panels, vertically extending the enclosed combustor 100 .
- a plurality of fasteners is used to couple interchangeably in modular form the third polygonal tier to the second polygonal tier.
- the enclosed combustor also includes a fourth plurality of interchangeable, sectional panels of a fourth predetermined height configured for coupling one to another to form a fourth polygonal tier 102 of the fourth predetermined height.
- the fourth plurality of panels is disposed on top of the third plurality of panels, vertically extending the enclosed combustor 100 .
- a plurality of fasteners is used to couple interchangeably in modular form the fourth polygonal tier to the third polygonal tier.
- the first plurality of interchangeable, sectional panels of a first predetermined height configured for coupling one to another to form a first polygonal tier of the first predetermined height comprises vented panels 118 .
- the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise a number of panels that varies based upon an application of the enclosed combustor and capacity requirements.
- the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise interchangeable, lightweight stainless-steel panels that are precision cut for accuracy and repeatability and formed to add strength and rigidity.
- the enclosed combustor further includes a burner management system to control a gas train and the burner manifold.
- the burner manifold 300 disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors further comprises a plurality of burners and air nozzles 302 and gas nozzles 306 .
- the burner manifold 300 comprises natural draft burners and is configured to mix air with fuel through a natural draft.
- the air and gas nozzles 302 , 306 are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
- the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise laser-cut, stainless steel panels thereby to provide a precise, rigid, and lightweight structure.
- the burner manifold further comprises at least one gas orifice 310 of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports (for example, and not of limitation, primary air intake(s) 308 and secondary air intake(s) 304 ) that are sized based upon fuel type and pressure.
- air intake ports for example, and not of limitation, primary air intake(s) 308 and secondary air intake(s) 304
- the burner manifold 300 further comprises a plurality of natural draft burners that are spaced in a predetermined pattern thereby to eliminate air starvation.
- the burner manifold and nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
- the burner manifold and nozzles are configured to the ratio of air and fuel to mix to achieve stoichiometric combustion and reduce harmful emissions at a rate >98% destruction efficiency and inlet pressure of ⁇ 1 oz./in ⁇ 2.
- the burner manifold further comprises at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure.
- the burner manifold 300 further comprises a plurality of natural draft burners that are spaced in a predetermined pattern thereby to eliminate air starvation.
- a predetermined pattern thereby to eliminate air starvation.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Environmental & Geological Engineering (AREA)
- Gas Burners (AREA)
Abstract
An interchangeable enclosed combustor for combustion of vapors includes: an interchangeable multi-paneled, multi-tiered combustor housing having a plurality of panels coupled together in polygonal form and further arranged in multiple tiers of polygonal forms, thereby to form a vertical, columnar, polygonal stack to flame combust combustible vapors; and a burner manifold disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors to reduce toxic emissions. The burner manifold natural draft burners and nozzles are configured to the ratio of air and fuel to mix to achieve stoichiometric combustion and reduce harmful emissions at a rate >98% destruction efficiency and inlet pressure of <1 oz./in̂2. The burner manifold includes at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure.
Description
- The present non-provisional patent application claims the benefit of priority of U.S. Provisional Patent Application No. 62/591,734, which is entitled “THRUSTER TECHNOLOGIES V1 ENCLOSED COMBUSTOR”, which was filed on Nov. 28, 2017, and which is incorporated in full by reference herein.
- The technology described herein relates generally to combustors, flares, and gas burners, such as those used by oil and gas companies that desire to further reduce emissions and costs related to combustor equipment installation. More specifically, the technology described herein relates to an improved, low-cost enclosed combustor to destruct vapors that are harmful to the environment such as hydrocarbons. Additionally, the technology described herein relates to an interchangeable, modular panel structure for the enclosed combustor and to a burner manifold and nozzles to regulate the ratio of air and gas to achieve stoichiometric combustion.
- Enclosed Combustors are used to destruct vapors that are harmful to the environment. There is a variety of applications where these enclosed combustor devices are used. One example is the use of combustors for the destruction of hydrocarbons that are produced from crude oil storage tanks.
- There are various known devices and systems such as combustors, flares, and gas burners and associated methods that are utilized to reduce emissions. However, there are numerous deficiencies and shortcomings in these known devices, systems, and methods that are utilized to reduce emissions such as hydrocarbons.
- Related US utility patents known in the art include the following:
- U.S. Pat. No. 9,151,495, issued to The Archer Company, Inc. on Oct. 6, 2015, discloses a method for reducing volatile organic compounds from gases with hydrocarbons.
- U.S. Pat. No. 6,394,792, issued to McDonald et al. on Mar. 2, 2002, discloses a low NOx burner apparatus.
- U.S. Pat. No. D518,169, issued to Hans Verbauwhede on Mar. 28, 2006, discloses the ornamental design for a gas burner.
- Related US published patent applications known in the art include the following:
- U.S. Patent Application Publication No. 2009/0181334, filed by Moore and published on Jul. 16, 2009, discloses a burner ignition control system.
- U.S. Patent Application Publication No. 2013/0122440, filed by Zink et al. and published on May 16, 2013, discloses a low NOx burner apparatus and method.
- Related foreign patents and applications known in the art include the following:
- EP Patent Publication No. 2,636,951, filed by Flare Industries, LLC and published on Sep. 11, 2013, discloses an apparatus and method for flaring waste gas.
- WO Patent Publication No. 2008/055829, filed by NV Bekaert SA et al. and published on May 15, 2008, discloses a modular flare stack and method of flaring waste gas.
- WO Patent Publication No. 2006/010693, filed by NV Bekaert SA and published on Feb. 2, 2006, discloses a flare stack having enclosed flame combustion.
- The foregoing patent and other information reflect the state of the art of which the inventor is aware and are tendered with a view toward discharging the inventor's acknowledged duty of candor in disclosing information that may be pertinent to the patentability of the technology described herein. It is respectfully stipulated, however, that the foregoing patent and other information do not teach or render obvious, singly or when considered in combination, the inventors' claimed invention.
- In various exemplary embodiments, the technology described herein provides an improved, low-cost enclosed combustor to destruct vapors that are harmful to the environment such as hydrocarbons. Additionally, the technology described herein provides an interchangeable, modular panel structure for the enclosed combustor and to a burner manifold and nozzles to regulate the ratio of air and gas to achieve stoichiometric combustion.
- In one exemplary embodiment, the technology described herein provides an interchangeable, modular enclosed combustor for enclosed flame combustion of combustible vapors. The enclosed combustor includes: a first plurality of interchangeable, sectional panels of a first predetermined height configured for coupling one to another to form a first polygonal tier of the first predetermined height; a second plurality of interchangeable, sectional panels of a second predetermined height configured for coupling one to another to form a second polygonal tier of the second predetermined height, wherein the second plurality of panels is disposed on top of the first plurality of panels, vertically extending the enclosed combustor; a plurality of fasteners to couple interchangeably in modular form the second polygonal tier to the first polygonal tier; wherein the first and second polygonal tiers collectively form a vertical, columnar, polygonal stack within which to flame combust combustible vapors; wherein the enclosed combustor is expandable in diameter through the addition of more panels to extend an outer perimeter of the first and second polygonal tiers; wherein the enclosed combustor is expandable vertically in height by the addition of more polygonal tiers in stacked form; and a burner manifold disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors.
- In at least one embodiment of the interchangeable, modular enclosed combustor, the enclosed combustor also includes: a third plurality of interchangeable, sectional panels of a third predetermined height configured for coupling one to another to form a third polygonal tier of the third predetermined height, wherein the third plurality of panels is disposed on top of the second plurality of panels, vertically extending the enclosed combustor; and a plurality of fasteners to couple interchangeably in modular form the third polygonal tier to the second polygonal tier.
- In at least one embodiment of the interchangeable, modular enclosed combustor, the enclosed combustor also includes: a fourth plurality of interchangeable, sectional panels of a fourth predetermined height configured for coupling one to another to form a fourth polygonal tier of the fourth predetermined height, wherein the fourth plurality of panels is disposed on top of the third plurality of panels, vertically extending the enclosed combustor; and a plurality of fasteners to couple interchangeably in modular form the fourth polygonal tier to the third polygonal tier.
- In at least one embodiment of the interchangeable, modular enclosed combustor, the first plurality of interchangeable, sectional panels of a first predetermined height configured for coupling one to another to form a first polygonal tier of the first predetermined height comprises vented panels.
- In at least one embodiment of the interchangeable, modular enclosed combustor, the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise a number of panels that varies based upon an application of the enclosed combustor and capacity requirements.
- In at least one embodiment of the interchangeable, modular enclosed combustor, the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise interchangeable, lightweight stainless-steel panels that are precision cut for accuracy and repeatability and formed to add strength and rigidity.
- In at least one embodiment of the interchangeable, modular enclosed combustor, the enclosed combustor further includes a burner management system to control a gas train and the burner manifold.
- In at least one embodiment of the interchangeable, modular enclosed combustor, the burner manifold disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors further comprises a plurality of burners and nozzles; the burner manifold comprises natural draft burners and is configured to mix air with fuel through a natural draft; and the nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
- In at least one embodiment of the interchangeable, modular enclosed combustor, the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise laser-cut, stainless steel panels thereby to provide a precise, rigid, and lightweight structure.
- In at least one embodiment of the interchangeable, modular enclosed combustor, the burner manifold further comprises at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure.
- In at least one embodiment of the interchangeable, modular enclosed combustor, the burner manifold further comprises a plurality of natural draft burners that are spaced in a predetermined pattern thereby to eliminate air starvation.
- In yet another exemplary embodiment, technology described herein provides an interchangeable enclosed combustor for enclosed flame combustion of combustible vapors. The enclosed combustor includes: an interchangeable multi-paneled, multi-tiered combustor housing comprising a plurality of panels coupled together and arranged in a polygonal form and further arranged in multiple tiers of polygonal forms, thereby to form a vertical, columnar, polygonal stack to flame combust combustible vapors; and a burner manifold disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors within the housing and to reduce toxic emissions.
- In at least one embodiment of the interchangeable enclosed combustor, the burner manifold further comprises a plurality of burners and nozzles; and the burner manifold is configured to mix air with fuel through a natural draft.
- In at least one embodiment of the interchangeable enclosed combustor, the nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
- In at least one embodiment of the interchangeable enclosed combustor, the burner manifold and nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
- In at least one embodiment of the interchangeable enclosed combustor, the burner manifold and nozzles are configured to the ratio of air and fuel to mix to achieve stoichiometric combustion and reduce harmful emissions at a rate >98% destruction efficiency and inlet pressure of <1 oz./in̂2.
- In at least one embodiment of the interchangeable enclosed combustor, the burner manifold further comprises at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure.
- In at least one embodiment of the interchangeable enclosed combustor, the burner manifold further comprises a plurality of natural draft burners that are spaced in a predetermined pattern thereby to eliminate air starvation.
- In yet another exemplary embodiment, the technology described herein provides an interchangeable, modular enclosed combustor for enclosed flame combustion of combustible vapors. The enclosed combustor includes: a first plurality of interchangeable, sectional panels of a first predetermined height configured for coupling one to another to form a first polygonal tier of the first predetermined height; a second plurality of interchangeable, sectional panels of a second predetermined height configured for coupling one to another to form a second polygonal tier of the second predetermined height, wherein the second plurality of panels is disposed on top of the first plurality of panels, vertically extending the enclosed combustor; a plurality of fasteners to couple interchangeably in modular form the second polygonal tier to the first polygonal tier; a third plurality of interchangeable, sectional panels of a third predetermined height configured for coupling one to another to form a third polygonal tier of the third predetermined height, wherein the third plurality of panels is disposed on top of the second plurality of panels, vertically extending the enclosed combustor; and a plurality of fasteners to couple interchangeably in modular form the third polygonal tier to the second polygonal tier; wherein the first, second, and third polygonal tiers collectively form a vertical, columnar, polygonal stack within which to flame combust combustible vapors; wherein the enclosed combustor is expandable in diameter through the additional of more panels to extend an outer perimeter of the first and second polygonal tiers; wherein the enclosed combustor is expandable vertically in height by the addition of more polygonal tiers in stacked form; a burner manifold disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors within the housing and to reduce toxic emissions; wherein the burner manifold further comprises a plurality of natural draft burners and nozzles that are spaced in a predetermined pattern thereby to eliminate air starvation; and wherein the burner manifold and nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
- In at least one embodiment of the interchangeable, modular enclosed combustor, the burner manifold of natural draft burners and nozzles are configured to the ratio of air and fuel to mix to achieve stoichiometric combustion and reduce harmful emissions at a rate >98% destruction efficiency and inlet pressure of <1 oz./in̂2; and the burner manifold further comprises at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure.
- There has thus been outlined, rather broadly, the more important features of the technology in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the technology that will be described hereinafter and which will form the subject matter of the claims appended hereto. In this respect, before explaining at least one embodiment of the technology in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The technology described herein is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
- As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the technology described herein.
- Further objects and advantages of the technology described herein will be apparent from the following detailed description of a presently preferred embodiment which is illustrated schematically in the accompanying drawings.
- The technology described herein is illustrated with reference to the various drawings, in which like reference numbers denote like device components and/or method steps, respectively, and in which:
-
FIG. 1 is a front perspective view of an enclosed combustor, illustrating, in particular, the portable, interchangeable, modular design of the enclosed combustor that enables the entire assembly to be easily expanded or downsized as needed for a particular application, with a multi-panel, multi-tier assembly design, according to an embodiment of the technology described herein; -
FIG. 2 is an exploded view of the enclosed combustor depicted inFIG. 1 , further illustrating the burner manifold contain within, according to an embodiment of the technology described herein; -
FIG. 3 is a close-up view of the enclosed combustor depicted inFIG. 1 , further illustrating the fasteners with which to couple the multiple panels and multiple tiers of panels together, that enables the entire assembly to be easily expanded or downsized as needed for a particular application, according to an embodiment of the technology described herein; -
FIG. 4 is a front perspective view of a burner manifold having a multiplicity of burners, illustrating, in particular, the gas orifice and the multi-stage air intake ports located on the individual mixing chambers, according to an embodiment of the technology described herein; -
FIG. 5 is a front perspective view of the burner manifold, illustrating a close-up view of the multiple burners, the gas orifice and the multi-stage air intake ports located on the individual mixing chambers, according to an embodiment of the technology described herein; -
FIG. 6 is a front perspective view of the enclosed combustor depicted inFIG. 1 , further illustrating a close-up of the lower tiers of panels in the multi-panel, multi-tier assembly; and -
FIG. 7 is a front perspective view of the enclosed combustor depicted inFIG. 1 , further illustrating a close-up of the upper tiers of panels in the multi-panel, multi-tier assembly. - Before describing the disclosed embodiments of this technology in detail, it is to be understood that the technology is not limited in its application to the details of the particular arrangement shown here since the technology described is capable of other embodiments. In addition, the terminology used herein is for the purpose of description and not of limitation.
- In various exemplary embodiments, the technology described herein provides an improved, low-cost enclosed combustor to destruct vapors that are harmful to the environment such as hydrocarbons. Additionally, the technology described herein provides an interchangeable, modular panel structure for the enclosed combustor and to a burner manifold and nozzles to regulate the ratio of air and gas to achieve stoichiometric combustion.
- Known manufacturers of enclosed combustion devices include Flare Industries, ABUTEC, Zeeco, and Cimarron Energy. There are numerous deficiencies and shortcomings in these known devices, systems, and methods that are utilized to reduce emissions such as hydrocarbons. By way of example, these devices cannot change capacity, and require heavy equipment and specialized teams to install and start them up. Also, by way of example, a major issue is the cost and time it takes install one of these enclosed combustion systems. The current combustors are typically shipped on large flatbed trucks to remote locations in multiple large pieces that require a crane and an operator to offload. These large pieces require several men and heavy equipment to set in place. Due to the remote locations of the typical installation the cost for labor and heavy equipment is at a premium. Thus, there are numerous deficiencies and shortcomings in these known devices, systems, and methods.
- The technology disclosed herein has a unique construction design, is lower cost, lightweight, efficient, with interchangeable panels and burners for varying the capacity and is easily installed by two technicians with basic hand tools. For example, the system is made of several interchangeable, lightweight stainless-steel panels that are precision cut for accuracy and repeatability and formed to add strength and rigidity. These panels, along with the gas train, burner manifold, and burner management system (items required to be a complete combustor system) are shipped in a crate that can be delivered in the back of a standard full-size pickup truck. The lightweight panels can be handled by two men and the entire system can be assembled in about one hour with hand tools.
- Also, by way of example, another issue that is a common concern among current enclosed combustion systems is their efficiency. The Environmental Protection Agency (EPA) ruling NSPS OOOO & OOOOa 60.5413(d) requires that and emissions control device must be tested using Propylene gas. Propylene is used due to its nature of being heavier than air and very difficult to destruct through a natural draft combustion at low inlet pressures. The majority of the applications where these combustion devices are used are low pressures typically <2-4 oz./in̂2. The majority of the combustors on the market today have difficulty completely destructing this gas at this low-pressure range. This is witnessed by dark smoke exiting the outlet of the combustion stack.
- The technology disclosed herein is designed with combustion efficiency as a top priority. This technology uses a burner manifold with multiple natural draft burners. Each individual burner on the manifold was engineered to draw in the proper amount of air to mix with fuel to provide stoichiometric combustion.
- Referring now to the Figures, the technology described herein provides an interchangeable, modular
enclosed combustor 100 for enclosed flame combustion of combustible vapors. - The
enclosed combustor 100 includes a first plurality of interchangeable,sectional panels 108. The first plurality of interchangeable, sectional panels 116 (vented) are of a first predetermined height configured for coupling one to another to form a firstpolygonal tier 108 of the first predetermined height. - As depicted in the Figures the
panels 116 of the firstpolygonal tier 108 are vented with a plurality ofvents 118. Depending on the application,panels 110 that do not include vents are utilized. - The
enclosed combustor 100 includes a second plurality of interchangeable,sectional panels 110. The second plurality of interchangeable,sectional panels 110 are of a second predetermined height configured for coupling one to another to form a secondpolygonal tier 106 of the second predetermined height. - The second plurality of panels, the second
polygonal tier 106, is disposed on top of the first plurality of panels, the firstpolygonal tier 108. This modular, interchangeable assembly vertically extends theenclosed combustor 100. The 108, 106, 104, 102 can include rims or lips formed in thetiers 110, 116, such as 112 on both lower and upper powers that provide an area to contact the next adjacent tier for securing tiers together. Additional corner supports, such as 120, can be utilized to secure tiers together and to secure thepanels lowest tier 108 to a base surface. 110, 116 may also include one or more handles 114.Panels - A plurality of
fasteners 200 are used to couple interchangeably in modular form the secondpolygonal tier 106 to the firstpolygonal tier 108. The first and second 108, 106 collectively form a vertical, columnar, polygonal stack within which to flame combust combustible vapors.polygonal tiers - The
enclosed combustor 100 is expandable in diameter through the addition of more panels to extend an outer perimeter of the first and second 108, 106, and any subsequently added tiers.polygonal tiers - The
enclosed combustor 100 is expandable vertically in height by the addition of more 108, 106, and subsequent stacks tiers, in stacked form.polygonal tiers - The
enclosed combustor 100 includes aburner manifold 300 disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors. - In at least one embodiment of the interchangeable, modular
enclosed combustor 100, the enclosed combustor also includes a third plurality of interchangeable, sectional panels of a third predetermined height configured for coupling one to another to form a thirdpolygonal tier 104 of the third predetermined height. The third plurality of panels is disposed on top of the second plurality of panels, vertically extending theenclosed combustor 100. A plurality of fasteners is used to couple interchangeably in modular form the third polygonal tier to the second polygonal tier. - In at least one embodiment of the interchangeable, modular enclosed combustor, the enclosed combustor also includes a fourth plurality of interchangeable, sectional panels of a fourth predetermined height configured for coupling one to another to form a fourth
polygonal tier 102 of the fourth predetermined height. The fourth plurality of panels is disposed on top of the third plurality of panels, vertically extending theenclosed combustor 100. A plurality of fasteners is used to couple interchangeably in modular form the fourth polygonal tier to the third polygonal tier. - In at least one embodiment of the interchangeable, modular
enclosed combustor 100, the first plurality of interchangeable, sectional panels of a first predetermined height configured for coupling one to another to form a first polygonal tier of the first predetermined height comprises ventedpanels 118. - In at least one embodiment of the interchangeable, modular
enclosed combustor 100, the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise a number of panels that varies based upon an application of the enclosed combustor and capacity requirements. - In at least one embodiment of the interchangeable, modular
enclosed combustor 100, the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise interchangeable, lightweight stainless-steel panels that are precision cut for accuracy and repeatability and formed to add strength and rigidity. - In at least one embodiment of the interchangeable, modular
enclosed combustor 100, the enclosed combustor further includes a burner management system to control a gas train and the burner manifold. - In at least one embodiment of the interchangeable, modular
enclosed combustor 100, theburner manifold 300 disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors further comprises a plurality of burners andair nozzles 302 andgas nozzles 306. Theburner manifold 300 comprises natural draft burners and is configured to mix air with fuel through a natural draft. The air and 302, 306 are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.gas nozzles - In at least one embodiment of the interchangeable, modular
enclosed combustor 100, the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise laser-cut, stainless steel panels thereby to provide a precise, rigid, and lightweight structure. - In at least one embodiment of the interchangeable, modular enclosed combustor, the burner manifold further comprises at least one
gas orifice 310 of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports (for example, and not of limitation, primary air intake(s) 308 and secondary air intake(s) 304) that are sized based upon fuel type and pressure. - In at least one embodiment of the interchangeable, modular
enclosed combustor 100, theburner manifold 300 further comprises a plurality of natural draft burners that are spaced in a predetermined pattern thereby to eliminate air starvation. - In at least one embodiment of the interchangeable, modular
enclosed combustor 100, the burner manifold and nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion. The burner manifold and nozzles are configured to the ratio of air and fuel to mix to achieve stoichiometric combustion and reduce harmful emissions at a rate >98% destruction efficiency and inlet pressure of <1 oz./in̂2. - In at least one embodiment of the interchangeable, modular
enclosed combustor 100, the burner manifold further comprises at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure. - In at least one embodiment of the interchangeable, modular
enclosed combustor 100, theburner manifold 300 further comprises a plurality of natural draft burners that are spaced in a predetermined pattern thereby to eliminate air starvation. By way of example, it is beneficial to have the burners close together, but if they are too close, air starvation can occur. This can be observed, for example, by the flame, such as a low blue flame preferred over a large yellow flame. These indications of flame color and flame size aid on the determination of the ideal spacing. - Although this technology has been illustrated and described herein with reference to preferred embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples can perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the invention and are intended to be covered by the following claims.
Claims (20)
1. An interchangeable, modular enclosed combustor for enclosed flame combustion of combustible vapors, the enclosed combustor comprising:
a first plurality of interchangeable, sectional panels of a first predetermined height configured for coupling one to another to form a first polygonal tier of the first predetermined height;
a second plurality of interchangeable, sectional panels of a second predetermined height configured for coupling one to another to form a second polygonal tier of the second predetermined height, wherein the second plurality of panels is disposed on top of the first plurality of panels, vertically extending the enclosed combustor;
a plurality of fasteners to couple interchangeably in modular form the second polygonal tier to the first polygonal tier;
wherein the first and second polygonal tiers collectively form a vertical, columnar, polygonal stack within which to flame combust combustible vapors;
wherein the enclosed combustor is expandable in diameter through the addition of more panels to extend an outer perimeter of the first and second polygonal tiers;
wherein the enclosed combustor is expandable vertically in height by the addition of more polygonal tiers in stacked form; and
a burner manifold disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors.
2. The enclosed combustor of claim 1 , further comprising:
a third plurality of interchangeable, sectional panels of a third predetermined height configured for coupling one to another to form a third polygonal tier of the third predetermined height, wherein the third plurality of panels is disposed on top of the second plurality of panels, vertically extending the enclosed combustor; and
a plurality of fasteners to couple interchangeably in modular form the third polygonal tier to the second polygonal tier.
3. The enclosed combustor of claim 2 , further comprising:
a fourth plurality of interchangeable, sectional panels of a fourth predetermined height configured for coupling one to another to form a fourth polygonal tier of the fourth predetermined height, wherein the fourth plurality of panels is disposed on top of the third plurality of panels, vertically extending the enclosed combustor; and
a plurality of fasteners to couple interchangeably in modular form the fourth polygonal tier to the third polygonal tier.
4. The enclosed combustor of claim 1 , wherein the first plurality of interchangeable, sectional panels of a first predetermined height configured for coupling one to another to form a first polygonal tier of the first predetermined height comprises vented panels.
5. The enclosed combustor of claim 1 , wherein the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise a number of panels that varies based upon an application of the enclosed combustor and capacity requirements.
6. The enclosed combustor of claim 1 , wherein the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise interchangeable, lightweight stainless-steel panels that are precision cut for accuracy and repeatability and formed to add strength and rigidity.
7. The enclosed combustor of claim 1 , further comprising:
a burner management system to control a gas train and the burner manifold.
8. The enclosed combustor of claim 1 ,
wherein the burner manifold disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors further comprises a plurality of burners and nozzles;
wherein the burner manifold comprises natural draft burners and is configured to mix air with fuel through a natural draft; and
wherein the nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
9. The enclosed combustor of claim 1 ,
wherein the first plurality of interchangeable, sectional panels and the second plurality of interchangeable, sectional panels comprise laser-cut, stainless steel panels thereby to provide a precise, rigid, and lightweight structure.
10. The enclosed combustor of claim 1 , wherein the burner manifold further comprises at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure.
11. The enclosed combustor of claim 1 , wherein the burner manifold further comprises a plurality of natural draft burners that are spaced in a predetermined pattern thereby to eliminate air starvation.
12. An interchangeable enclosed combustor for enclosed flame combustion of combustible vapors, the enclosed combustor comprising:
an interchangeable multi-paneled, multitiered combustor housing comprising a plurality of panels coupled together and arranged in a polygonal form and further arranged in multiple tiers of polygonal forms, thereby to form a vertical, columnar, polygonal stack to flame combust combustible vapors; and
a burner manifold disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors within the housing and to reduce toxic emissions.
13. The enclosed combustor of claim 12 ,
wherein the burner manifold further comprises a plurality of burners and nozzles; and
wherein the burner manifold is configured to mix air with fuel through a natural draft.
14. The enclosed combustor of claim 13 ,
wherein the nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
15. The enclosed combustor of claim 12 ,
wherein the burner manifold and nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
16. The enclosed combustor of claim 12 , wherein the
wherein the burner manifold and nozzles are configured to the ratio of air and fuel to mix to achieve stoichiometric combustion and reduce harmful emissions at a rate >98% destruction efficiency and inlet pressure of <1 oz/in̂2.
17. The enclosed combustor of claim 12 , wherein the burner manifold further comprises at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure.
18. The enclosed combustor of claim 12 , wherein the burner manifold further comprises a plurality of natural draft burners that are spaced in a predetermined pattern thereby to eliminate air starvation.
19. An interchangeable, modular enclosed combustor for enclosed flame combustion of combustible vapors, the enclosed combustor comprising:
a first plurality of interchangeable, sectional panels of a first predetermined height configured for coupling one to another to form a first polygonal tier of the first predetermined height;
a second plurality of interchangeable, sectional panels of a second predetermined height configured for coupling one to another to form a second polygonal tier of the second predetermined height, wherein the second plurality of panels is disposed on top of the first plurality of panels, vertically extending the enclosed combustor;
a plurality of fasteners to couple interchangeably in modular form the second polygonal tier to the first polygonal tier;
a third plurality of interchangeable, sectional panels of a third predetermined height configured for coupling one to another to form a third polygonal tier of the third predetermined height, wherein the third plurality of panels is disposed on top of the second plurality of panels, vertically extending the enclosed combustor; and
a plurality of fasteners to couple interchangeably in modular form the third polygonal tier to the second polygonal tier.
wherein the first, second, and third polygonal tiers collectively form a vertical, columnar, polygonal stack within which to flame combust combustible vapors;
wherein the enclosed combustor is expandable in diameter through the additional of more panels to extend an outer perimeter of the first and second polygonal tiers;
wherein the enclosed combustor is expandable vertically in height by the addition of more polygonal tiers in stacked form;
a burner manifold disposed within the vertical, columnar, polygonal stack to flame combust combustible vapors within the housing and to reduce toxic emissions;
wherein the burner manifold further comprises a plurality of natural draft burners and nozzles that are spaced in a predetermined pattern thereby to eliminate air starvation; and
wherein the burner manifold and nozzles are configured to allow a correct ratio of air and fuel to mix to achieve stoichiometric combustion.
20. The interchangeable, modular enclosed combustor of claim 19 ,
wherein the burner manifold of natural draft burners and nozzles are configured to the ratio of air and fuel to mix to achieve stoichiometric combustion and reduce harmful emissions at a rate >98% destruction efficiency and inlet pressure of <1 oz./in̂2; and
wherein the burner manifold further comprises at least one orifice of a predetermined size through which to draw fuel into a plurality of mixing chambers where air is drawn in through multiple stages of air intake ports that are sized based upon fuel type and pressure.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/203,331 US20190162407A1 (en) | 2017-11-28 | 2018-11-28 | Enclosed combustor |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762591734P | 2017-11-28 | 2017-11-28 | |
| US16/203,331 US20190162407A1 (en) | 2017-11-28 | 2018-11-28 | Enclosed combustor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190162407A1 true US20190162407A1 (en) | 2019-05-30 |
Family
ID=66634414
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/203,331 Abandoned US20190162407A1 (en) | 2017-11-28 | 2018-11-28 | Enclosed combustor |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20190162407A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210071907A1 (en) * | 2019-09-11 | 2021-03-11 | Kyungdong Navien Co., Ltd. | Gas distribution assembly and water-heating device including the same |
-
2018
- 2018-11-28 US US16/203,331 patent/US20190162407A1/en not_active Abandoned
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210071907A1 (en) * | 2019-09-11 | 2021-03-11 | Kyungdong Navien Co., Ltd. | Gas distribution assembly and water-heating device including the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9739481B2 (en) | Venturi nozzle for a gas combustor | |
| CA2293848C (en) | Enclosed ground-flare incinerator | |
| US8196411B2 (en) | Swirler with wedge shaped vanes having split trailing edge | |
| US10376999B2 (en) | Alternative-fuel gas orifice having principal-fuel gas orifice temperature profile and a heating, ventilation and air conditioning system incorporating the same | |
| WO2009158237A3 (en) | Cooktop swirl burner | |
| US20190162407A1 (en) | Enclosed combustor | |
| US9127837B2 (en) | Low pressure drop, low NOx, induced draft gas heaters | |
| CN107208901A (en) | Fuel gas buring device assembly | |
| WO2009019140A3 (en) | Burner | |
| PL1741977T3 (en) | Pulverized coal burner for low NOx emissions | |
| CA2555687A1 (en) | Smokeless liquid dual-phase burner system | |
| WO2005114051A3 (en) | Starved air inclined hearth combustor | |
| CA2502130A1 (en) | Remote staged furnace burner configurations and methods | |
| CN100338394C (en) | Infrared metal honeycomb burner used on gas burning range and its producing method | |
| US20150338088A1 (en) | Furnace combustion system and method | |
| US10634342B2 (en) | Modular octagon burner | |
| CN205782995U (en) | There is the container-type burner increasing air injection volume | |
| US20040072113A1 (en) | Multi-flame type lighter | |
| CN219414753U (en) | Jet entrainment type full-premix gas burner | |
| US20160186990A1 (en) | Furnace inducer choke and a gas furnace employing the same | |
| JPS5934249B2 (en) | Gas burner combustion equipment | |
| WO2008081271A3 (en) | Burner with diffuser resistant to high operating temperatures | |
| CN220870863U (en) | Upper-drawing type thick-thin burner structure and wall-mounted furnace | |
| US11754283B1 (en) | Flare gas system | |
| CN105333436B (en) | Improve the injection type burner of air injection volume |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |