US20190157717A1 - Electrolyte formulations for electrochemical cells containing a silicon electrode - Google Patents
Electrolyte formulations for electrochemical cells containing a silicon electrode Download PDFInfo
- Publication number
- US20190157717A1 US20190157717A1 US16/250,977 US201916250977A US2019157717A1 US 20190157717 A1 US20190157717 A1 US 20190157717A1 US 201916250977 A US201916250977 A US 201916250977A US 2019157717 A1 US2019157717 A1 US 2019157717A1
- Authority
- US
- United States
- Prior art keywords
- groups
- substituted
- electrochemical cell
- silicon
- unsubstituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 54
- 239000010703 silicon Substances 0.000 title claims abstract description 54
- 239000003792 electrolyte Substances 0.000 title abstract description 42
- 239000000203 mixture Substances 0.000 title description 30
- 238000009472 formulation Methods 0.000 title description 29
- 239000000654 additive Substances 0.000 claims abstract description 88
- -1 organo-metallic hydride Chemical class 0.000 claims abstract description 27
- 230000000996 additive effect Effects 0.000 claims description 43
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 229910002804 graphite Inorganic materials 0.000 claims description 11
- 239000010439 graphite Substances 0.000 claims description 11
- 229910001416 lithium ion Inorganic materials 0.000 claims description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 9
- 125000003806 alkyl carbonyl amino group Chemical group 0.000 claims description 8
- 125000005088 alkynylcarbonylamino group Chemical group 0.000 claims description 8
- 125000004658 aryl carbonyl amino group Chemical class 0.000 claims description 8
- 239000011149 active material Substances 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical class [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 4
- GZDFHIJNHHMENY-UHFFFAOYSA-N Dimethyl dicarbonate Chemical compound COC(=O)OC(=O)OC GZDFHIJNHHMENY-UHFFFAOYSA-N 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- 229910000676 Si alloy Inorganic materials 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 125000005091 alkenylcarbonylamino group Chemical class 0.000 claims description 4
- 125000005193 alkenylcarbonyloxy group Chemical group 0.000 claims description 4
- 125000005108 alkenylthio group Chemical group 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 claims description 4
- 125000004414 alkyl thio group Chemical group 0.000 claims description 4
- 125000000304 alkynyl group Chemical group 0.000 claims description 4
- 125000005198 alkynylcarbonyloxy group Chemical group 0.000 claims description 4
- 125000005109 alkynylthio group Chemical group 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 125000005199 aryl carbonyloxy group Chemical group 0.000 claims description 4
- 125000005110 aryl thio group Chemical group 0.000 claims description 4
- 125000004104 aryloxy group Chemical group 0.000 claims description 4
- FHRRJZZGSJXPRQ-UHFFFAOYSA-N benzyl phenylmethoxycarbonyl carbonate Chemical compound C=1C=CC=CC=1COC(=O)OC(=O)OCC1=CC=CC=C1 FHRRJZZGSJXPRQ-UHFFFAOYSA-N 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 4
- 235000010300 dimethyl dicarbonate Nutrition 0.000 claims description 4
- 239000004316 dimethyl dicarbonate Substances 0.000 claims description 4
- 125000005843 halogen group Chemical group 0.000 claims description 4
- 150000004678 hydrides Chemical group 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- 125000005298 iminyl group Chemical group 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- XVSSGIXTKVRGAR-UHFFFAOYSA-N prop-2-enoxycarbonyl prop-2-enyl carbonate Chemical compound C=CCOC(=O)OC(=O)OCC=C XVSSGIXTKVRGAR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 125000004149 thio group Chemical group *S* 0.000 claims description 4
- 229910002992 LiNi0.33Mn0.33Co0.33O2 Inorganic materials 0.000 claims description 3
- FFYPMLJYZAEMQB-UHFFFAOYSA-N diethyl pyrocarbonate Chemical compound CCOC(=O)OC(=O)OCC FFYPMLJYZAEMQB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 238000009830 intercalation Methods 0.000 claims description 3
- 229910003002 lithium salt Inorganic materials 0.000 claims description 3
- 159000000002 lithium salts Chemical class 0.000 claims description 3
- 239000006182 cathode active material Substances 0.000 claims description 2
- 230000002687 intercalation Effects 0.000 claims description 2
- 239000011244 liquid electrolyte Substances 0.000 claims description 2
- 230000002441 reversible effect Effects 0.000 claims description 2
- 229910013710 LiNixMnyCozO2 Inorganic materials 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 9
- ZFTFAPZRGNKQPU-UHFFFAOYSA-N dicarbonic acid Chemical group OC(=O)OC(O)=O ZFTFAPZRGNKQPU-UHFFFAOYSA-N 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 28
- 230000006872 improvement Effects 0.000 description 11
- 230000014759 maintenance of location Effects 0.000 description 10
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 8
- 230000001351 cycling effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000002000 Electrolyte additive Substances 0.000 description 6
- 150000002738 metalloids Chemical class 0.000 description 6
- 229940021013 electrolyte solution Drugs 0.000 description 5
- 229910052752 metalloid Inorganic materials 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000032798 delamination Effects 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000013101 initial test Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- PARWUHTVGZSQPD-UHFFFAOYSA-N phenylsilane Chemical compound [SiH3]C1=CC=CC=C1 PARWUHTVGZSQPD-UHFFFAOYSA-N 0.000 description 3
- 229910001848 post-transition metal Inorganic materials 0.000 description 3
- 239000011856 silicon-based particle Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000016507 interphase Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- DBGVGMSCBYYSLD-UHFFFAOYSA-N tributylstannane Chemical compound CCCC[SnH](CCCC)CCCC DBGVGMSCBYYSLD-UHFFFAOYSA-N 0.000 description 2
- JUHLJPNKMLPGMH-UHFFFAOYSA-N undec-10-enylsilane Chemical compound [SiH3]CCCCCCCCCC=C JUHLJPNKMLPGMH-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- 229910013717 LiNixMnyCozOw Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000006138 lithiation reaction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention is in the field of battery technology and, more particularly, electrolyte formulations that address challenges encountered during the use of silicon anodes in lithium ion batteries.
- Lithium ion batteries enjoy relatively widespread use, but research continues into improving the energy density, capacity, and cycle life of these batteries.
- silicon has been used as an anode material to improve the energy density of lithium ion cells.
- Silicon anodes can provide high energy density to lithium ion batteries due to the high theoretical capacity of silicon, which is 4200 mAh/g.
- the silicon particles that make up the anode can undergo larges changes in their volume during battery cycling. The volumetric changes on lithiation and delithiation cycles can be as large as about 300%.
- silicon particles can fracture due to the large stresses in the material brought on by the large changes in volume during cycling. These fractures can result in electrically isolated particle fragments that can no longer contribute to the capacity during cycling. Even when silicon particles do not completely fracture, the large stresses in the anode material can result in cracks in the particle and delamination of the particle surface. These cracks and delaminations can result in portions of the active material being electrically isolated and unable to contribute to the capacity during cycling.
- SEI solid-electrolyte interphase
- the solid-electrolyte interphase (SEI) that forms on the surface of silicon anode particles tends to not be mechanically robust. The result is cracking and delamination of this thin SEI layer on the particles as the large volume changes occur. Therefore, more SEI must be formed on each cycle to replace the cracked or delaminated SEI. But, this is not ideal because forming SEI irreversibly consumes battery capacity and creates gas products. Generally, a stable SEI should be formed on the initial cycles and should not need to be reformed.
- Embodiments of the present invention are additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes.
- the SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives.
- Embodiments of the present invention include the methods of making such electrolytes using the additives disclosed herein, the methods of assembling batteries including such electrolytes using the additives disclosed herein, and using batteries including such electrolytes using the additives disclosed herein.
- Embodiments of the present invention include an electrochemical cell having a silicon based anode and a liquid electrolyte solution comprising a soluble additive.
- the additive may include an organo-metallic hydride additive, and the organo-metallic hydride additive may include a metalloid or a post-transition metal.
- the additive is represented by the chemical structural formula (I):
- R 1 is selected from the group consisting of hydrogen, substituted and unsubstituted C 1 -C 20 alkyl groups, substituted and unsubstituted C 1 -C 20 alkenyl groups, substituted and unsubstituted C 1 -C 20 alkynyl groups, substituted and unsubstituted C 5 -C 20 aryl groups, hydride groups, halo groups, hydroxy groups, thio groups, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, iminyl groups, alkoxy groups, alkenoxy groups, alkynoxy groups, aryloxy groups, carboxy groups, alkylcarbonyloxy groups, alkenylcarbonyloxy groups, alkynylcarbonyloxy groups, arylcarbonyloxy groups, alkylthio groups, alkenylthio groups, alkynylthio groups, arylthio groups, cyano groups, N-substituted amino groups,
- FIG. 1 illustrates a lithium ion battery implemented according to an embodiment of the invention.
- a rate “C” refers to either (depending on context) the discharge current as a fraction or multiple relative to a “1 C” current value under which a battery (in a substantially fully charged state) would substantially fully discharge in one hour, or the charge current as a fraction or multiple relative to a “1 C” current value under which the battery (in a substantially fully discharged state) would substantially fully charge in one hour.
- Ranges presented herein are inclusive of their endpoints.
- the range 1 to 3 includes the values 1 and 3 as well as the intermediate values.
- electrolyte solutions formulated to contain specific additive types can improve energy density, capacity, and cycle life of these batteries.
- FIG. 1 illustrates a lithium ion battery 100 implemented in accordance with an embodiment of the invention.
- the battery 100 includes an anode 102 , a cathode 106 , and a separator 108 that is disposed between the anode 102 and the cathode 106 .
- the battery 100 also includes a high voltage electrolyte 104 , which is disposed within and between the anode 102 and the cathode 106 and remains stable during high voltage battery cycling.
- the operation of the battery 100 is based upon reversible intercalation and de-intercalation of lithium ions into and from host materials of the anode 102 and the cathode 106 .
- Other implementations of the battery 100 are contemplated, such as those based on conversion chemistry.
- the voltage of the battery 100 is based on redox potentials of the anode 102 and the cathode 106 , where lithium ions are accommodated or released at a lower potential in the former and a higher potential in the latter.
- the cathode 106 includes an active cathode material for high voltage operations at or above 4.3V.
- Silicon-containing anodes can provide a higher energy density than carbon-based anodes. While the theoretical capacity of a silicon anode is on the order of 4200 mAh/g, it is necessary to balance the high capacity of a silicon anode with the undesirable properties that a silicon anode can have. For example, a silicon anode can have relatively high changes in volume during a charge/discharge cycle. The volumetric changes in a silicon anode can be from 70% to 300% over the range of desired anode capacities. That is, for an anode where only a small portion of the silicon capacity is utilized, the silicon may experience a volumetric change on the order of about 70%.
- silicon anodes with capacities in the range of about 600 mAh/g to about 1200 mAh/g are matched with cathode materials having a similar capacity to yield a battery that demonstrates stable cycle life in the presence of an electrolyte containing additives discloses herein.
- the electrolyte additives disclosed herein provide an unexpected improvement in the capacity fade during cycling compared to the baseline formulations without such additives in batteries containing a silicon-based anode.
- Known batteries containing silicon anodes experience limited cycle life and poor coulombic efficiency.
- the deficiencies of known batteries containing silicon-based anode can be due to a loss of connectivity in the anode of the active silicon material.
- the loss of connectivity can be due to structural defects in the anode related to the large change in volume experienced by the anode.
- the large volumetric changes can result in cracking and/or delamination of the electrode.
- the large volumetric changes may be related to an unstable or ineffective SEI on the active silicon electrode.
- the SEI formed from an ethylene carbonate based electrolyte on a silicon anode may also be unstable or ineffective regardless of the volumetric changes experiences by a silicon-based anode.
- Certain additives disclosed herein improve the mechanical stability of the SEI formed in the presence of common electrolyte solvents such as ethylene carbonate.
- the additives disclosed herein provide surprising improvements to the performance of batteries containing silicon-based anodes. Unexpectedly, the additives do not demonstrate similar performance improvements in batteries having graphite anodes.
- the additives disclosed herein yield an electrolyte solution that provides an electrochemically and mechanically robust SEI.
- the additives disclosed herein yield an electrolyte solution that enables the SEI to withstand the relatively large volumetric expansions and contractions known to occur in silicon-based anodes. These additives enable both the anode and cathode to be chemically, electrochemically, and mechanically stable through multiple battery cycles.
- Certain additives disclosed in electrolyte formulations described herein are capable of enabling the formation of stable SEI with organic solvents such as ethylene carbonate. Based on prior uses of silicon anodes, it appears that electrolytes based on ethylene carbonate are inadequate for forming a stable SEI. Surprisingly, the additives disclosed herein can yield a stable SEI on a silicon-based anode when used in electrolyte formulations based on ethylene carbonate. Further, other solvent types may be used in conjunction with, or instead of, ethylene carbonate. For example, solvents including lactone, nitrile, sulfone, and carbonates groups may be useful.
- EC ethylene carbonate
- EC is understood to play an important role in the formation of a stable SEI on carbon anodes.
- EC also participates in SEI formation on silicon, but, as discussed above, the SEI formed on silicon anodes using conventional electrolytes (including EC) is not mechanically robust.
- the lack of mechanical robustness is evidenced by poor electrochemical performance, such as poor coulombic efficiency and poor cycle life.
- films that lack mechanical robustness may appear to be inhomogeneous and/or may appear to have physical defects.
- Mechanically robust SEI forms a stable film at the electrode/electrolyte interface.
- electrolyte additives disclosed herein improvement was demonstrated in full cells containing NMC cathodes and silicon alloy based anodes.
- the electrolyte formulations preferably contain EC.
- Certain additives can improve coulombic efficiency and cycle life by forming a more mechanically robust SEI layer on the silicon anode. This may be due to a more polymeric nature of the resulting SEI or a modified ratio of organic components as compared to inorganic components in the SEI.
- additives disclosed herein may react with the EC to increase the molecular weight of the SEI that forms on the anode.
- Certain additives may act in a way analogous to chain extenders in the context of polymer formulation and processing, thereby increasing the molecular weight and film forming capability of the SEI that is typically generated from the EC in a conventional electrolyte solution.
- the amount of additive can be expressed as a weight percent (wt %) of the total weight of the electrolyte formulation.
- the additive is present at an amount that is significantly lower than the amount of electrolyte salt present in the electrolyte formulation of the electrochemical cell.
- the concentration of additive in the electronic formulation is less than or equal to about 5 weight percent, more preferably less than or equal to about 4 weight percent, more preferably less than or equal to about 3 weight percent, and still more preferably less than or equal to about 2 weight percent.
- the concentration of additive in the electronic formulation is equal to about 6.0 wt %, 5.9 wt %, 5.8 wt %, 5.7 wt %, 5.6 wt %, 5.5 wt %, 5.4 wt %, 5.3 wt %, 5.2 wt %, 5.1 wt %, 5.0 wt %, 4.9 wt %, 4.8 wt %, 4.7 wt %, 4.6 wt %, 4.5 wt %, 4.4 wt %, 4.3 wt %, 4.2 wt %, 4.1 wt %, 4.0 wt %, 3.9 wt %, 3.8 wt %, 3.7 wt %, 3.6 wt %, 3.5 wt %, 3.4 wt %, 3.3 wt %, 3.2 wt %, 3.1
- organo-metallic hydride additives include organic chemical structures, including but not limited to, substituted and unsubstituted C 1 -C 20 alkyl groups, substituted and unsubstituted C 1 -C 20 alkenyl groups, substituted and unsubstituted C 1 -C 20 alkynyl groups, substituted and unsubstituted C 5 -C 20 aryl groups, hydride groups, halo groups, hydroxy groups, thio groups, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, iminyl groups, alkoxy groups, alkenoxy groups, alkynoxy groups, aryloxy groups, carboxy groups, alkylcarbonyloxy groups, alkenylcarbonyloxy groups, alkynylcarbonyloxy groups, arylcarbonyloxy groups, alkylthio groups,
- the organo-metallic hydride additive is an anion-cation pair. In other embodiments, the organo-metallic hydride additive is a single molecule rather than an anion-cation pair.
- the metalloid is boron.
- the organo-metallic hydride additive comprises sodium cyanoborohydride, which can be represented by formula (a):
- the organo-metallic hydride additive is an anion-cation pair.
- the organo-metallic hydride additive comprises sodium tris(1,1,1,3,3,3-hexafluoroisopropoxy)borohydride, which can be represented by formula (b):
- the organo-metallic hydride additive is an anion-cation pair.
- the metalloid is silicon.
- the organo-metallic hydride additive comprises phenylsilane, which can be represented by formula (c):
- the organo-metallic hydride additive is a single molecule rather than an anion-cation pair.
- the organo-metallic hydride additive comprises 10-undecenylsilane, which can be represented by formula (d):
- the organo-metallic hydride additive is a single molecule rather than an anion-cation pair.
- the organo-metallic hydride additive comprises a post transition metal.
- the post transition metal is tin.
- the organo-metallic hydride additive comprises tributyl tin hydride, which can be represented by formula (e):
- the additive comprises a dicarbonate group represented by formula (f):
- R 1 and R 2 are each independently selected from the group consisting of hydrogen, substituted and unsubstituted C 1 -C 20 alkyl groups, substituted and unsubstituted C 1 -C 20 alkenyl groups, substituted and unsubstituted C 1 -C 20 alkynyl groups, substituted and unsubstituted C 5 -C 20 aryl groups, hydride groups, halo groups, hydroxy groups, thio groups, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, iminyl groups, alkoxy groups, alkenoxy groups, alkynoxy groups, aryloxy groups, carboxy groups, alkylcarbonyloxy groups, alkenylcarbonyloxy groups, alkynylcarbonyloxy groups, arylcarbonyloxy groups, alkylthio groups, alkenylthio groups, alkynylthio groups, arylthio groups, cyano groups, N-substit
- R 1 and R 2 are each unsubstituted alkyl groups. In other preferred embodiments, R 1 and R 2 are each unsubstituted alkenyl groups. In other preferred embodiments, R 1 and R 2 are each unsubstituted aryl groups. In some preferred embodiments, R 1 and R 2 are the same group.
- the dicarbonate additive comprises diallyl dicarbonate, which can be represented by formula (g):
- the dicarbonate additive comprises dimethyl dicarbonate, which can be represented by formula (h):
- the dicarbonate additive comprises diethyl dicarbonate, which can be represented by formula (i):
- the dicarbonate additive comprises dibenzyl dicarbonate, which can be represented by formula (j):
- the additive is substantially soluble in conventional electrolyte solvents.
- Battery cells were assembled in a high purity argon filled glove box (M-Braun, O 2 and humidity content ⁇ 0.1 ppm).
- a LiNi 0.33 Mn 0.33 Co 0.33 O 2 (NMC) cathode electrode and a silicon alloy anode electrode was used.
- NMC cathode electrode and a graphite anode electrode were used.
- Each battery cell includes a cathode film, a polypropylene separator, and composite anode film. Electrolyte components were formulated and added to the battery cell.
- Electrolyte formulations used as controls were made from one or more organic solvents and a lithium salt.
- Organic solvents ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were blended at a 1:2 ratio, by volume, of EC:EMC.
- the lithium salt was LiPF 6 at a concentration of 1M.
- the electrolyte formulations containing additives were made from 1:2 ratio, by volume, of EC:EMC with 1M LiPF 6 at a variety of additive weight percentages.
- Solid-electrolyte interphase is formed during a formation cycle.
- the formation cycle was 12 hours open circuit voltage (OCV) hold, followed by a C/10 charge to 4.2 V with a constant voltage (CV) hold to C/20, and then a C/10 discharge to 2.8 V.
- OCV open circuit voltage
- CV constant voltage
- Table 1 presents the electrochemical performance of electrolyte formulations containing various organo-metallic hydride additives as compared to a control electrolyte formulation.
- the organo-metallic hydride additives were tested at formulations including 2 weight percent of the additive and 0.5 weight percent of the additive, in each case with EC/EMC organic solvents.
- the cathode included NMC as the active material.
- the capacity retention at the two hundredth discharge cycle is presented in the far right column as a percentage of the capacity at the initial test cycle.
- Table 1 demonstrates that certain organo-metallic hydride additives in EC-containing formulations result in much improved cycle life at cycle 200 as compared to an EC-based carbonate electrolyte (EC/EMC) without the additives.
- the electrolyte formulations containing the additives resulted in up to a 26% improvement in capacity retention at cycle 200 compared to EC/EMC control without the additives. This is a substantial improvement in the cycle life (that is, capacity retention) as compared to the prior art silicon anode systems.
- Table 3 presents the electrochemical performance of electrolyte formulations containing various dicarbonate additives as compared to a control electrolyte formulation.
- the dicarbonate additives were tested at formulations including 2 weight percent of the additive and 0.5 weight percent of the additive, in each case with EC/EMC organic solvents.
- the cathode included NMC as the active material.
- the capacity retention at the two hundredth discharge cycle is presented in the far right column as a percentage of the capacity at the initial test cycle.
- Tables 2 and 4 provide important insights into the additives.
- the control that is, the electrolyte formulation without any additives
- the control performs significantly better on graphite anodes (Tables 2 & 4) than silicon anodes (Tables 1 & 3).
- Formulations containing the additives perform worse than the control on graphite (Tables 2 & 4), but better than the control on silicon (Tables 1 & 3).
- the silicon-based anode is actually a composite with greater than 50% graphite.
- the results in Tables 1 and 3 demonstrate that the additives improve the performance on the silicon-based composite anode even in the presence of graphite, which shows no improvement.
- the additives disclosed herein may accomplish the formation of tougher, more mechanically robust SEI on silicon anodes. Further, the additives aid in balancing the inorganic and organic content of the SEI, which can promote a stable and robust SEI.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
- The present application claims the benefit of and priority to U.S. non-provisional patent application Ser. No. 15/251,763 filed on Aug. 30, 2016 entitled “Electrolyte Formulations for Electrochemical Cells Containing a Silicon Electrode,” the content of which is hereby incorporated by reference in its entirety.
- This invention was made with government support under DOE EE0006453 awarded by the Department of Energy. The government has certain rights in the invention.
- The present invention is in the field of battery technology and, more particularly, electrolyte formulations that address challenges encountered during the use of silicon anodes in lithium ion batteries.
- Lithium ion batteries enjoy relatively widespread use, but research continues into improving the energy density, capacity, and cycle life of these batteries. For example, silicon has been used as an anode material to improve the energy density of lithium ion cells. Silicon anodes can provide high energy density to lithium ion batteries due to the high theoretical capacity of silicon, which is 4200 mAh/g. However, the silicon particles that make up the anode can undergo larges changes in their volume during battery cycling. The volumetric changes on lithiation and delithiation cycles can be as large as about 300%.
- These large volumetric changes in the silicon anode material can have negative effects on battery cycle life. A number of mechanisms may contribute to poor cycle life. For example, silicon particles can fracture due to the large stresses in the material brought on by the large changes in volume during cycling. These fractures can result in electrically isolated particle fragments that can no longer contribute to the capacity during cycling. Even when silicon particles do not completely fracture, the large stresses in the anode material can result in cracks in the particle and delamination of the particle surface. These cracks and delaminations can result in portions of the active material being electrically isolated and unable to contribute to the capacity during cycling.
- As another example of a failure mechanism, the solid-electrolyte interphase (SEI) that forms on the surface of silicon anode particles tends to not be mechanically robust. The result is cracking and delamination of this thin SEI layer on the particles as the large volume changes occur. Therefore, more SEI must be formed on each cycle to replace the cracked or delaminated SEI. But, this is not ideal because forming SEI irreversibly consumes battery capacity and creates gas products. Generally, a stable SEI should be formed on the initial cycles and should not need to be reformed.
- Thus, there exists a need for an electrolyte formulation for silicon anodes in a lithium ion battery that improves cycle life by forming a more mechanically robust SEI. These and other challenges can be addressed by certain embodiments of the invention described herein.
- Embodiments of the present invention are additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives.
- Embodiments of the present invention include the methods of making such electrolytes using the additives disclosed herein, the methods of assembling batteries including such electrolytes using the additives disclosed herein, and using batteries including such electrolytes using the additives disclosed herein.
- Embodiments of the present invention include an electrochemical cell having a silicon based anode and a liquid electrolyte solution comprising a soluble additive. In some embodiments, the additive may include an organo-metallic hydride additive, and the organo-metallic hydride additive may include a metalloid or a post-transition metal. In some embodiments, the additive is represented by the chemical structural formula (I):
- where R1 is selected from the group consisting of hydrogen, substituted and unsubstituted C1-C20 alkyl groups, substituted and unsubstituted C1-C20 alkenyl groups, substituted and unsubstituted C1-C20 alkynyl groups, substituted and unsubstituted C5-C20 aryl groups, hydride groups, halo groups, hydroxy groups, thio groups, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, iminyl groups, alkoxy groups, alkenoxy groups, alkynoxy groups, aryloxy groups, carboxy groups, alkylcarbonyloxy groups, alkenylcarbonyloxy groups, alkynylcarbonyloxy groups, arylcarbonyloxy groups, alkylthio groups, alkenylthio groups, alkynylthio groups, arylthio groups, cyano groups, N-substituted amino groups, alkylcarbonylamino groups, N-substituted alkylcarbonylamino groups, alkenylcarbonylamino groups, N-substituted alkenyl carbonylamino groups, alkynylcarbonyl amino groups, N-substituted alkynylcarbonylamino groups, arylcarbonylamino groups, N-substituted arylcarbonylamino groups, boron-containing groups, aluminum-containing groups, silicon-containing groups, phosphorus-containing groups, and sulfur-containing groups.
-
FIG. 1 illustrates a lithium ion battery implemented according to an embodiment of the invention. - The following definitions apply to some of the aspects described with respect to some embodiments of the invention. These definitions may likewise be expanded upon herein. Each term is further explained and exemplified throughout the description, figures, and examples. Any interpretation of the terms in this description should take into account the full description, figures, and examples presented herein.
- The singular terms “a,” “an,” and “the” include the plural unless the context clearly dictates otherwise. Thus, for example, reference to an object can include multiple objects unless the context clearly dictates otherwise.
- The terms “substantially” and “substantial” refer to a considerable degree or extent. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation, such as accounting for typical tolerance levels or variability of the embodiments described herein.
- The term “about” refers to the range of values approximately near the given value in order to account for typical tolerance levels, measurement precision, or other variability of the embodiments described herein.
- A rate “C” refers to either (depending on context) the discharge current as a fraction or multiple relative to a “1 C” current value under which a battery (in a substantially fully charged state) would substantially fully discharge in one hour, or the charge current as a fraction or multiple relative to a “1 C” current value under which the battery (in a substantially fully discharged state) would substantially fully charge in one hour.
- The term “NMC” refers generally to cathode materials containing LiNixMnyCozOw and includes, but is not limited to, cathode materials containing LiNi0.33Mn0.33Co0.33O2. Typically, x+y+z=1.
- Ranges presented herein are inclusive of their endpoints. Thus, for example, the range 1 to 3 includes the values 1 and 3 as well as the intermediate values.
- In some embodiments disclosed herein, electrolyte solutions formulated to contain specific additive types can improve energy density, capacity, and cycle life of these batteries.
-
FIG. 1 illustrates alithium ion battery 100 implemented in accordance with an embodiment of the invention. Thebattery 100 includes ananode 102, acathode 106, and aseparator 108 that is disposed between theanode 102 and thecathode 106. In the illustrated embodiment, thebattery 100 also includes ahigh voltage electrolyte 104, which is disposed within and between theanode 102 and thecathode 106 and remains stable during high voltage battery cycling. - The operation of the
battery 100 is based upon reversible intercalation and de-intercalation of lithium ions into and from host materials of theanode 102 and thecathode 106. Other implementations of thebattery 100 are contemplated, such as those based on conversion chemistry. Referring toFIG. 1 , the voltage of thebattery 100 is based on redox potentials of theanode 102 and thecathode 106, where lithium ions are accommodated or released at a lower potential in the former and a higher potential in the latter. To allow both a higher energy density and a higher voltage platform to deliver that energy, thecathode 106 includes an active cathode material for high voltage operations at or above 4.3V. - Silicon-containing anodes can provide a higher energy density than carbon-based anodes. While the theoretical capacity of a silicon anode is on the order of 4200 mAh/g, it is necessary to balance the high capacity of a silicon anode with the undesirable properties that a silicon anode can have. For example, a silicon anode can have relatively high changes in volume during a charge/discharge cycle. The volumetric changes in a silicon anode can be from 70% to 300% over the range of desired anode capacities. That is, for an anode where only a small portion of the silicon capacity is utilized, the silicon may experience a volumetric change on the order of about 70%. In contrast, for an anode where a comparatively high portion of the silicon capacity is utilized, the silicon may experience a volumetric change on the order of about 300%. In certain embodiments disclosed herein, silicon anodes with capacities in the range of about 600 mAh/g to about 1200 mAh/g are matched with cathode materials having a similar capacity to yield a battery that demonstrates stable cycle life in the presence of an electrolyte containing additives discloses herein. The electrolyte additives disclosed herein provide an unexpected improvement in the capacity fade during cycling compared to the baseline formulations without such additives in batteries containing a silicon-based anode.
- Known batteries containing silicon anodes experience limited cycle life and poor coulombic efficiency. The deficiencies of known batteries containing silicon-based anode can be due to a loss of connectivity in the anode of the active silicon material. The loss of connectivity can be due to structural defects in the anode related to the large change in volume experienced by the anode. The large volumetric changes can result in cracking and/or delamination of the electrode. Also, the large volumetric changes may be related to an unstable or ineffective SEI on the active silicon electrode. Further, the SEI formed from an ethylene carbonate based electrolyte on a silicon anode may also be unstable or ineffective regardless of the volumetric changes experiences by a silicon-based anode.
- Certain additives disclosed herein improve the mechanical stability of the SEI formed in the presence of common electrolyte solvents such as ethylene carbonate. The additives disclosed herein provide surprising improvements to the performance of batteries containing silicon-based anodes. Unexpectedly, the additives do not demonstrate similar performance improvements in batteries having graphite anodes.
- The additives disclosed herein yield an electrolyte solution that provides an electrochemically and mechanically robust SEI. The additives disclosed herein yield an electrolyte solution that enables the SEI to withstand the relatively large volumetric expansions and contractions known to occur in silicon-based anodes. These additives enable both the anode and cathode to be chemically, electrochemically, and mechanically stable through multiple battery cycles.
- Certain additives disclosed in electrolyte formulations described herein are capable of enabling the formation of stable SEI with organic solvents such as ethylene carbonate. Based on prior uses of silicon anodes, it appears that electrolytes based on ethylene carbonate are inadequate for forming a stable SEI. Surprisingly, the additives disclosed herein can yield a stable SEI on a silicon-based anode when used in electrolyte formulations based on ethylene carbonate. Further, other solvent types may be used in conjunction with, or instead of, ethylene carbonate. For example, solvents including lactone, nitrile, sulfone, and carbonates groups may be useful.
- Prior art electrolyte formulations for silicon anodes, and for the more common carbon anodes, contain ethylene carbonate (EC). EC is understood to play an important role in the formation of a stable SEI on carbon anodes. EC also participates in SEI formation on silicon, but, as discussed above, the SEI formed on silicon anodes using conventional electrolytes (including EC) is not mechanically robust. The lack of mechanical robustness is evidenced by poor electrochemical performance, such as poor coulombic efficiency and poor cycle life. Physically, films that lack mechanical robustness may appear to be inhomogeneous and/or may appear to have physical defects. Mechanically robust SEI forms a stable film at the electrode/electrolyte interface.
- Using electrolyte additives disclosed herein, improvement was demonstrated in full cells containing NMC cathodes and silicon alloy based anodes. The electrolyte formulations preferably contain EC. Certain additives can improve coulombic efficiency and cycle life by forming a more mechanically robust SEI layer on the silicon anode. This may be due to a more polymeric nature of the resulting SEI or a modified ratio of organic components as compared to inorganic components in the SEI.
- Without being bound to any particular hypothesis or mechanism of action, some of the additives disclosed herein may react with the EC to increase the molecular weight of the SEI that forms on the anode. Certain additives may act in a way analogous to chain extenders in the context of polymer formulation and processing, thereby increasing the molecular weight and film forming capability of the SEI that is typically generated from the EC in a conventional electrolyte solution.
- The amount of additive can be expressed as a weight percent (wt %) of the total weight of the electrolyte formulation. In certain embodiments of the invention, the additive is present at an amount that is significantly lower than the amount of electrolyte salt present in the electrolyte formulation of the electrochemical cell. In certain embodiments of the invention, the concentration of additive in the electronic formulation is less than or equal to about 5 weight percent, more preferably less than or equal to about 4 weight percent, more preferably less than or equal to about 3 weight percent, and still more preferably less than or equal to about 2 weight percent.
- In certain embodiments of the invention, the concentration of additive in the electronic formulation is equal to about 6.0 wt %, 5.9 wt %, 5.8 wt %, 5.7 wt %, 5.6 wt %, 5.5 wt %, 5.4 wt %, 5.3 wt %, 5.2 wt %, 5.1 wt %, 5.0 wt %, 4.9 wt %, 4.8 wt %, 4.7 wt %, 4.6 wt %, 4.5 wt %, 4.4 wt %, 4.3 wt %, 4.2 wt %, 4.1 wt %, 4.0 wt %, 3.9 wt %, 3.8 wt %, 3.7 wt %, 3.6 wt %, 3.5 wt %, 3.4 wt %, 3.3 wt %, 3.2 wt %, 3.1 wt %, 3.0 wt %, 2.9 wt %, 2.8 wt %, 2.7 wt %, 2.6 wt %, 2.5 wt %, 2.4 wt %, 2.3 wt %, 2.2 wt %, 2.1 wt %, 2.0 wt %, 1.9 wt %, 1.8 wt %, 1.7 wt %, 1.6 wt %, 1.5 wt %, 1.4 wt %, 1.3 wt %, 1.2 wt %, 1.1 wt %, 1.0 wt %, 0.9 wt %, 0.8 wt %, 0.7 wt %, 0.6 wt %, 0.5 wt %, 0.4 wt %, 0.3 wt %, 0.2 wt %, or 0.1 wt %.
- In certain embodiments, useful additives share common chemical features, such as being a certain class of organo-metallic hydride. Certain organo-metallic hydride additives include organic chemical structures, including but not limited to, substituted and unsubstituted C1-C20 alkyl groups, substituted and unsubstituted C1-C20 alkenyl groups, substituted and unsubstituted C1-C20 alkynyl groups, substituted and unsubstituted C5-C20 aryl groups, hydride groups, halo groups, hydroxy groups, thio groups, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, iminyl groups, alkoxy groups, alkenoxy groups, alkynoxy groups, aryloxy groups, carboxy groups, alkylcarbonyloxy groups, alkenylcarbonyloxy groups, alkynylcarbonyloxy groups, arylcarbonyloxy groups, alkylthio groups, alkenylthio groups, alkynylthio groups, arylthio groups, cyano groups, N-substituted amino groups, alkylcarbonylamino groups, N-substituted alkylcarbonylamino groups, alkenylcarbonylamino groups, N-substituted alkenyl carbonylamino groups, alkynylcarbonyl amino groups, N-substituted alkynylcarbonylamino groups, arylcarbonylamino groups, N-substituted arylcarbonylamino groups, boron-containing groups, aluminum-containing groups, silicon-containing groups, phosphorus-containing groups, and sulfur-containing groups. Additionally, the organo-metallic hydride additives include metals selected from the metalloid group of metals or the post-transition group of metals.
- Further, in some embodiments the organo-metallic hydride additive is an anion-cation pair. In other embodiments, the organo-metallic hydride additive is a single molecule rather than an anion-cation pair.
- In certain embodiments, the metalloid is boron. In one embodiment, the organo-metallic hydride additive comprises sodium cyanoborohydride, which can be represented by formula (a):
- In this embodiment, the organo-metallic hydride additive is an anion-cation pair.
- In another embodiment in which the metalloid is boron, the organo-metallic hydride additive comprises sodium tris(1,1,1,3,3,3-hexafluoroisopropoxy)borohydride, which can be represented by formula (b):
- In this embodiment, the organo-metallic hydride additive is an anion-cation pair.
- In certain embodiments, the metalloid is silicon. In one embodiment, the organo-metallic hydride additive comprises phenylsilane, which can be represented by formula (c):
- In this embodiment, the organo-metallic hydride additive is a single molecule rather than an anion-cation pair.
- In another embodiment in which the metalloid is silicon, the organo-metallic hydride additive comprises 10-undecenylsilane, which can be represented by formula (d):
- In this embodiment, the organo-metallic hydride additive is a single molecule rather than an anion-cation pair.
- In certain embodiments, the organo-metallic hydride additive comprises a post transition metal. In certain embodiments, the post transition metal is tin. In one embodiment, the organo-metallic hydride additive comprises tributyl tin hydride, which can be represented by formula (e):
- According to certain embodiments of the invention, the additive comprises a dicarbonate group represented by formula (f):
- where R1 and R2 are each independently selected from the group consisting of hydrogen, substituted and unsubstituted C1-C20 alkyl groups, substituted and unsubstituted C1-C20 alkenyl groups, substituted and unsubstituted C1-C20 alkynyl groups, substituted and unsubstituted C5-C20 aryl groups, hydride groups, halo groups, hydroxy groups, thio groups, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, iminyl groups, alkoxy groups, alkenoxy groups, alkynoxy groups, aryloxy groups, carboxy groups, alkylcarbonyloxy groups, alkenylcarbonyloxy groups, alkynylcarbonyloxy groups, arylcarbonyloxy groups, alkylthio groups, alkenylthio groups, alkynylthio groups, arylthio groups, cyano groups, N-substituted amino groups, alkylcarbonylamino groups, N-substituted alkylcarbonylamino groups, alkenylcarbonylamino groups, N-substituted alkenyl carbonylamino groups, alkynylcarbonyl amino groups, N-substituted alkynylcarbonylamino groups, arylcarbonylamino groups, N-substituted arylcarbonylamino groups, boron-containing groups, aluminum-containing groups, silicon-containing groups, phosphorus-containing groups, and sulfur-containing groups.
- In certain preferred embodiments, R1 and R2 are each unsubstituted alkyl groups. In other preferred embodiments, R1 and R2 are each unsubstituted alkenyl groups. In other preferred embodiments, R1 and R2 are each unsubstituted aryl groups. In some preferred embodiments, R1 and R2 are the same group.
- In one embodiment, the dicarbonate additive comprises diallyl dicarbonate, which can be represented by formula (g):
- In another embodiment, the dicarbonate additive comprises dimethyl dicarbonate, which can be represented by formula (h):
- In another embodiment, the dicarbonate additive comprises diethyl dicarbonate, which can be represented by formula (i):
- In another embodiment, the dicarbonate additive comprises dibenzyl dicarbonate, which can be represented by formula (j):
- In preferred embodiments, the additive is substantially soluble in conventional electrolyte solvents.
- Battery Cell Assembly.
- Battery cells were assembled in a high purity argon filled glove box (M-Braun, O2 and humidity content <0.1 ppm). A LiNi0.33Mn0.33Co0.33O2 (NMC) cathode electrode and a silicon alloy anode electrode was used. For control cells, an NMC cathode electrode and a graphite anode electrode were used. Each battery cell includes a cathode film, a polypropylene separator, and composite anode film. Electrolyte components were formulated and added to the battery cell.
- Electrolyte Formulations.
- Electrolyte formulations used as controls were made from one or more organic solvents and a lithium salt. Organic solvents ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were blended at a 1:2 ratio, by volume, of EC:EMC. The lithium salt was LiPF6 at a concentration of 1M. The electrolyte formulations containing additives were made from 1:2 ratio, by volume, of EC:EMC with 1M LiPF6 at a variety of additive weight percentages.
- SEI Formation.
- Solid-electrolyte interphase (SEI) is formed during a formation cycle. For the cells tested herein, the formation cycle was 12 hours open circuit voltage (OCV) hold, followed by a C/10 charge to 4.2 V with a constant voltage (CV) hold to C/20, and then a C/10 discharge to 2.8 V.
- Cycle Life Testing.
- For cycle life testing, cycling was continued at C/3 charge to 4.2 V with a CV hold to C/20 followed by a C/3 discharge to 2.8 V. In the tables presented herein, the performance metrics are calculated from the average of two tested cells.
- Table 1 presents the electrochemical performance of electrolyte formulations containing various organo-metallic hydride additives as compared to a control electrolyte formulation. The organo-metallic hydride additives were tested at formulations including 2 weight percent of the additive and 0.5 weight percent of the additive, in each case with EC/EMC organic solvents. The cathode included NMC as the active material. The capacity retention at the two hundredth discharge cycle is presented in the far right column as a percentage of the capacity at the initial test cycle.
-
TABLE 1 Performance of electrolyte additives in EC based electrolyte with silicon anode Initial Cycle 200 Capacity Cycle 200 Capacity Conc. at 0.33 C Capacity retention Additive (%) (mAh/g) (mAh/g) (%) None 0.0 139 70 53.0 Sodium cyanoborohydride 0.5 131 85 64.9 Sodium tris(1,1,1,3,3,3- 2 140 110 79 hexafluoroisopropoxy)- borohydride Tributyl tin hydride 0.5 139 84 60.4 Phenylsilane 2 134 86 64.4 10-undecenylsilane 0.5 135 90 66.8 - Table 1 demonstrates that certain organo-metallic hydride additives in EC-containing formulations result in much improved cycle life at cycle 200 as compared to an EC-based carbonate electrolyte (EC/EMC) without the additives. The electrolyte formulations containing the additives resulted in up to a 26% improvement in capacity retention at cycle 200 compared to EC/EMC control without the additives. This is a substantial improvement in the cycle life (that is, capacity retention) as compared to the prior art silicon anode systems.
- As described herein, certain organo-metallic hydride additives demonstrated improvement when used in batteries having a silicon-based anode, but did not show comparable improvement in batteries have a graphite anode. Table 2 presents the electrochemical performance of electrolyte formulations containing the certain of the same additives as Table 1. The cathode included NMC as the active material. The capacity retention at the two hundredth discharge cycle is presented in the far right column as a percentage of the capacity at the initial test cycle.
-
TABLE 2 Performance of electrolyte additives in EC based electrolyte with graphite anode Initial Cycle 200 Capacity Cycle 200 Capacity at 0.33 C Capacity retention Additive Conc. (%) (mAh/g) (mAh/g) (%) None 0.0 136.8 122.3 90.0 Sodium tris(1,1,1,3,3,3- 2 145.7 107.7 74.0 hexafluoroisopropoxy)- borohydride Phenylsilane 2 130.2 100.7 77.6 - Table 3 presents the electrochemical performance of electrolyte formulations containing various dicarbonate additives as compared to a control electrolyte formulation. The dicarbonate additives were tested at formulations including 2 weight percent of the additive and 0.5 weight percent of the additive, in each case with EC/EMC organic solvents. The cathode included NMC as the active material. The capacity retention at the two hundredth discharge cycle is presented in the far right column as a percentage of the capacity at the initial test cycle.
-
TABLE 3 Performance of electrolyte additives in EC based electrolyte with silicon anode Initial Cycle 200 Capacity at Cycle 200 Capacity 0.33 C Capacity retention Additive Conc. (%) (mAh/g) (mAh/g) (%) None 0.0 139 70 53.0 Diallyl dicarbonate 2 133 107 80 Dimethyl dicarbonate 2 140 118 84 Diethyl dicarbonate 2 136 117 86 Dibenzyl dicarbonate 2 139 114 82 - As described herein, certain dicarbonate additives demonstrated improvement when used in batteries having a silicon-based anode, but did not show comparable improvement in batteries have a graphite anode. Table 4 presents the electrochemical performance of electrolyte formulations containing the certain of the same additives as Table 3. The cathode included NMC as the active material. The capacity retention at the two hundredth discharge cycle is presented in the far right column as a percentage of the capacity at the initial test cycle.
-
TABLE 4 Performance of electrolyte additives in EC based electrolyte with graphite anode Initial Cycle 200 Capacity at Cycle 200 Capacity 0.33 C Capacity retention Additive Conc. (%) (mAh/g) (mAh/g) (%) None 0.0 136.8 122.3 90.0 Diallyl dicarbonate 2 139.8 119.0 85.1 Dimethyl dicarbonate 2 145.8 129.9 89.1 Dibenzyl dicarbonate 2 144.7 113.1 78.1 - Tables 2 and 4 provide important insights into the additives. First, the control (that is, the electrolyte formulation without any additives) performs significantly better on graphite anodes (Tables 2 & 4) than silicon anodes (Tables 1 & 3). Formulations containing the additives perform worse than the control on graphite (Tables 2 & 4), but better than the control on silicon (Tables 1 & 3).
- The silicon-based anode is actually a composite with greater than 50% graphite. Unexpectedly, the results in Tables 1 and 3 demonstrate that the additives improve the performance on the silicon-based composite anode even in the presence of graphite, which shows no improvement. Thus, there appears to be unique synergies between the additives of the invention and silicon-based anodes.
- Finally, the data demonstrate that the additives showed no negative effect on initial discharge capacity compared to the control electrolytes.
- Without being bound to any particular hypothesis or mechanism of action, the additives disclosed herein may accomplish the formation of tougher, more mechanically robust SEI on silicon anodes. Further, the additives aid in balancing the inorganic and organic content of the SEI, which can promote a stable and robust SEI.
- While the invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention as defined by the appended claims. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, method, or process to the objective, spirit and scope of the invention. All such modifications are intended to be within the scope of the claims appended hereto. In particular, while the methods disclosed herein have been described with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the invention. Accordingly, unless specifically indicated herein, the order and grouping of the operations are not limitations of the invention.
Claims (11)
LiNixMnyCozO2 (ii)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/250,977 US20190157717A1 (en) | 2016-08-30 | 2019-01-17 | Electrolyte formulations for electrochemical cells containing a silicon electrode |
| US17/870,460 US20230155175A1 (en) | 2016-08-30 | 2022-07-21 | Electrolyte formulations for electrochemical cells containing a silicon electrode |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/251,763 US10199687B2 (en) | 2016-08-30 | 2016-08-30 | Electrolyte formulations for electrochemical cells containing a silicon electrode |
| US16/250,977 US20190157717A1 (en) | 2016-08-30 | 2019-01-17 | Electrolyte formulations for electrochemical cells containing a silicon electrode |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/251,763 Continuation US10199687B2 (en) | 2016-08-30 | 2016-08-30 | Electrolyte formulations for electrochemical cells containing a silicon electrode |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/870,460 Continuation-In-Part US20230155175A1 (en) | 2016-08-30 | 2022-07-21 | Electrolyte formulations for electrochemical cells containing a silicon electrode |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190157717A1 true US20190157717A1 (en) | 2019-05-23 |
Family
ID=61243593
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/251,763 Active US10199687B2 (en) | 2016-08-30 | 2016-08-30 | Electrolyte formulations for electrochemical cells containing a silicon electrode |
| US16/250,977 Abandoned US20190157717A1 (en) | 2016-08-30 | 2019-01-17 | Electrolyte formulations for electrochemical cells containing a silicon electrode |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/251,763 Active US10199687B2 (en) | 2016-08-30 | 2016-08-30 | Electrolyte formulations for electrochemical cells containing a silicon electrode |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US10199687B2 (en) |
| WO (1) | WO2018044882A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11973189B2 (en) | 2019-04-29 | 2024-04-30 | Lg Energy Solution, Ltd. | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including the same |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11075408B2 (en) | 2017-12-07 | 2021-07-27 | Enevate Corporation | Silicon-based energy storage devices with fluorinated polymer containing electrolyte additives |
| US10811727B2 (en) | 2017-12-07 | 2020-10-20 | Enevate Corporation | Silicon-based energy storage devices with ether containing electrolyte additives |
| US10978739B2 (en) | 2017-12-07 | 2021-04-13 | Enevate Corporation | Silicon-based energy storage devices with carboxylic ether, carboxylic acid based salt, or acrylate electrolyte containing electrolyte additives |
| US10957898B2 (en) | 2018-12-21 | 2021-03-23 | Enevate Corporation | Silicon-based energy storage devices with anhydride containing electrolyte additives |
| US11165099B2 (en) | 2018-12-21 | 2021-11-02 | Enevate Corporation | Silicon-based energy storage devices with cyclic organosilicon containing electrolyte additives |
| WO2019113532A1 (en) | 2017-12-07 | 2019-06-13 | Enevate Corporation | Silicon-based energy storage devices with fluorinated cyclic compound containing electrolyte additives |
| US11411249B2 (en) | 2017-12-07 | 2022-08-09 | Enevate Corporation | Silicon-based energy storage devices with cyclic carbonate containing electrolyte additives |
| WO2020054866A1 (en) * | 2018-09-14 | 2020-03-19 | 旭化成株式会社 | Nonaqueous secondary battery |
| KR20200040375A (en) * | 2018-10-10 | 2020-04-20 | 순천대학교 산학협력단 | A electrolyte for lithium ion battery and lithium ion battery |
| US11398641B2 (en) | 2019-06-05 | 2022-07-26 | Enevate Corporation | Silicon-based energy storage devices with silicon containing electrolyte additives |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6221534B1 (en) * | 1998-11-25 | 2001-04-24 | Wilson Greatbatch Ltd. | Alkali metal electrochemical cell having an improved cathode activated with a nonaqueous electrolyte having a carbonate additive |
| US20120052388A1 (en) * | 2009-11-12 | 2012-03-01 | Lg Chem, Ltd. | Anode active material for lithium secondary battery and lithium secondary battery having the same |
| US20130288085A1 (en) * | 2010-12-28 | 2013-10-31 | Panasonic Corporation | Non-aqueous electrolyte secondary battery and method for producing the same |
Family Cites Families (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3073884A (en) * | 1959-08-03 | 1963-01-15 | Ethyl Corp | High energy batteries |
| DE4026881A1 (en) | 1990-08-25 | 1992-02-27 | Bayer Ag | ELECTROVISCOSE LIQUIDS BASED ON POLYMER DISPERSIONS WITH ELECTROLYTE DISPERSER PHASE |
| US5549987A (en) | 1994-07-22 | 1996-08-27 | Motorola, Inc. | Polyurethane based electrolytes for electrochemical cells and electrochemical cells using same |
| US6350542B1 (en) | 1999-01-25 | 2002-02-26 | Wilson Greatbatch Ltd. | Sulfite additives for nonaqueous electrolyte rechargeable cells |
| JP3730491B2 (en) | 1999-07-28 | 2006-01-05 | 三菱化学株式会社 | Battery having control electrode surface |
| US6174629B1 (en) * | 1999-09-10 | 2001-01-16 | Wilson Greatbatch Ltd. | Dicarbonate additives for nonaqueous electrolyte rechargeable cells |
| JP3512021B2 (en) | 2001-05-15 | 2004-03-29 | 株式会社日立製作所 | Lithium secondary battery |
| KR100458568B1 (en) | 2002-04-03 | 2004-12-03 | 삼성에스디아이 주식회사 | An electrolyte for a lithium battery and a lithium battery comprising the same |
| JP4792919B2 (en) * | 2005-10-28 | 2011-10-12 | ソニー株式会社 | battery |
| KR100709218B1 (en) | 2005-12-30 | 2007-04-18 | 삼성에스디아이 주식회사 | Lithium secondary battery |
| JP5318766B2 (en) | 2006-09-25 | 2013-10-16 | エルジー・ケム・リミテッド | Non-aqueous electrolyte and electrochemical device including the same |
| JP5331333B2 (en) * | 2007-01-16 | 2013-10-30 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery |
| KR20230116958A (en) * | 2007-04-05 | 2023-08-04 | 미쯔비시 케미컬 주식회사 | Nonaqueous electrolyte for rechargeable battery, and rechargeable battery with nonaqueous electrolyte |
| JP5474785B2 (en) | 2007-08-09 | 2014-04-16 | エルジー・ケム・リミテッド | Non-aqueous electrolyte and secondary battery equipped with the same |
| JP5235404B2 (en) | 2007-12-28 | 2013-07-10 | 三洋電機株式会社 | Polymer electrolyte secondary battery |
| US8187746B2 (en) * | 2008-05-16 | 2012-05-29 | Uchicago Argonne, Llc | Surface modification agents for lithium batteries |
| US8358213B2 (en) * | 2008-07-15 | 2013-01-22 | Covidien Lp | Systems and methods for evaluating a physiological condition using a wavelet transform and identifying a band within a generated scalogram |
| CN102479973B (en) | 2010-11-24 | 2015-02-04 | 比亚迪股份有限公司 | Silicon cathode lithium ion battery |
| US20120141870A1 (en) * | 2010-12-07 | 2012-06-07 | E. I. Du Pont De Nemours And Company | Multifunctional sulfone/fluorinated ester solvents |
| US20120315523A1 (en) * | 2011-06-09 | 2012-12-13 | Michael Pozin | Electrochemical cells with improved spiral-wound electrode assembly |
| EP2770572B1 (en) | 2011-10-17 | 2018-12-05 | Ube Industries, Ltd. | Non-aqueous electrolyte solution and electricity-storage device using same |
| EP2771938B1 (en) | 2011-10-28 | 2017-08-09 | Lubrizol Advanced Materials, Inc. | Polyurethane based electrolyte systems for electrochemical cells |
| KR101911431B1 (en) | 2011-11-25 | 2018-10-25 | 삼성전자주식회사 | Electrolyte Composition, Gel polymer electrolyte and Lithium battery comprising gel polymer electrolyte |
| US20150037667A1 (en) | 2012-01-30 | 2015-02-05 | Nec Corporation | Nonaqueous electrolyte solution and secondary battery using same |
| JP6011077B2 (en) * | 2012-07-04 | 2016-10-19 | 株式会社豊田中央研究所 | Non-aqueous battery |
| JP5727985B2 (en) * | 2012-10-25 | 2015-06-03 | 株式会社日本触媒 | Battery electrode and battery using the same |
| JP6081392B2 (en) | 2013-04-04 | 2017-02-15 | 本田技研工業株式会社 | Electrolyte-positive electrode structure and lithium ion secondary battery including the same |
| IN2015DN00810A (en) | 2013-05-30 | 2015-06-12 | Lg Chemical Ltd | |
| US9806338B2 (en) | 2013-08-23 | 2017-10-31 | Ut-Battele, Llc | Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries |
| JP5709231B1 (en) | 2014-02-20 | 2015-04-30 | Necエナジーデバイス株式会社 | Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same |
| WO2016076145A1 (en) | 2014-11-11 | 2016-05-19 | 新日鉄住金化学株式会社 | Nonaqueous electrolyte secondary battery |
| FI126390B (en) * | 2015-09-30 | 2016-11-15 | Broadbit Batteries Oy | Electrochemical accumulators for high energy or high power battery use |
-
2016
- 2016-08-30 US US15/251,763 patent/US10199687B2/en active Active
-
2017
- 2017-08-29 WO PCT/US2017/049107 patent/WO2018044882A1/en not_active Ceased
-
2019
- 2019-01-17 US US16/250,977 patent/US20190157717A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6221534B1 (en) * | 1998-11-25 | 2001-04-24 | Wilson Greatbatch Ltd. | Alkali metal electrochemical cell having an improved cathode activated with a nonaqueous electrolyte having a carbonate additive |
| US20120052388A1 (en) * | 2009-11-12 | 2012-03-01 | Lg Chem, Ltd. | Anode active material for lithium secondary battery and lithium secondary battery having the same |
| US20130288085A1 (en) * | 2010-12-28 | 2013-10-31 | Panasonic Corporation | Non-aqueous electrolyte secondary battery and method for producing the same |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11973189B2 (en) | 2019-04-29 | 2024-04-30 | Lg Energy Solution, Ltd. | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including the same |
Also Published As
| Publication number | Publication date |
|---|---|
| US10199687B2 (en) | 2019-02-05 |
| US20180062202A1 (en) | 2018-03-01 |
| WO2018044882A1 (en) | 2018-03-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10199687B2 (en) | Electrolyte formulations for electrochemical cells containing a silicon electrode | |
| US10797349B2 (en) | Electrolyte formulations for electrochemical cells containing a silicon electrode | |
| US10651504B2 (en) | Electrolyte formulations for electrochemical cells containing a silicon electrode | |
| US11133530B2 (en) | Electrolyte formulations for electrochemical cells containing a silicon electrode | |
| JP6637110B2 (en) | Electrolyte formulation | |
| Jeschull et al. | A stable graphite negative electrode for the lithium–sulfur battery | |
| US9985318B2 (en) | Electrolyte formulations | |
| CN107534182A (en) | Electrolyte system for high-voltage lithium ion battery | |
| US10547083B2 (en) | Electrolyte formulations for lithium ion batteries | |
| EP2973834A1 (en) | Electrolyte solutions for high energy cathode materials and methods for use | |
| EP3547434A1 (en) | Non-aqueous electrolyte of lithium-ion battery and lithium-ion battery | |
| US20230155175A1 (en) | Electrolyte formulations for electrochemical cells containing a silicon electrode | |
| US9287586B1 (en) | Electrolyte solutions for high energy cathode materials and methods for use | |
| US9425485B1 (en) | Electrolyte formulations for gas suppression and methods of use | |
| US20160285126A1 (en) | Electrolyte formulations for gas suppression and methods of use | |
| US20240396084A1 (en) | Electrolyte additive for lithium-ion battery and preparation method and application thereof | |
| Venkateswarlu et al. | Optimizing the Performance, Safety, and Efficiency: Dimethoxy Ethane-Based Electrolytes Revolutionize Sodium-Ion Battery Technology | |
| US20240162476A1 (en) | Lithium metal battery | |
| JP2005251469A (en) | Nonaqueous electrolyte battery | |
| CN120600930A (en) | Lithium-rich manganese-based lithium-ion battery and its electrolyte |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: WILDCAT DISCOVERY TECHNOLOGIES, INC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHU, YE;CHENG, GANG;STRAND, DEIDRE;AND OTHERS;SIGNING DATES FROM 20161010 TO 20161012;REEL/FRAME:048984/0369 |
|
| AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:WILDCAT DISCOVERY TECHNOLOGIES, INC.;REEL/FRAME:050438/0231 Effective date: 20160926 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| AS | Assignment |
Owner name: WILDCAT DISCOVERY TECHNOLOGIES, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:060063/0733 Effective date: 20220512 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |