US20190119339A1 - Novel human ulip/crmp protein and use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes - Google Patents
Novel human ulip/crmp protein and use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes Download PDFInfo
- Publication number
- US20190119339A1 US20190119339A1 US16/129,279 US201816129279A US2019119339A1 US 20190119339 A1 US20190119339 A1 US 20190119339A1 US 201816129279 A US201816129279 A US 201816129279A US 2019119339 A1 US2019119339 A1 US 2019119339A1
- Authority
- US
- United States
- Prior art keywords
- polypeptide
- ulip6
- protein
- sequence seq
- diagnosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 37
- 206010072106 Paraneoplastic neurological syndrome Diseases 0.000 title claims abstract description 27
- 238000003745 diagnosis Methods 0.000 title claims description 9
- 108090000623 proteins and genes Proteins 0.000 title description 39
- 102000004169 proteins and genes Human genes 0.000 title description 38
- 238000011282 treatment Methods 0.000 title description 9
- 101001053501 Homo sapiens Dihydropyrimidinase-related protein 3 Proteins 0.000 title description 3
- 102000056260 human DPYSL3 Human genes 0.000 title description 3
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 49
- 101001053479 Homo sapiens Dihydropyrimidinase-related protein 5 Proteins 0.000 claims abstract description 45
- 102100024441 Dihydropyrimidinase-related protein 5 Human genes 0.000 claims abstract description 44
- 229920001184 polypeptide Polymers 0.000 claims abstract description 40
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 26
- 239000012634 fragment Substances 0.000 claims abstract description 15
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 13
- 238000013399 early diagnosis Methods 0.000 claims abstract description 7
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 4
- 239000000427 antigen Substances 0.000 claims description 14
- 108091007433 antigens Proteins 0.000 claims description 14
- 102000036639 antigens Human genes 0.000 claims description 14
- 239000012472 biological sample Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000008194 pharmaceutical composition Substances 0.000 claims description 6
- 229940127121 immunoconjugate Drugs 0.000 claims description 5
- 230000004770 neurodegeneration Effects 0.000 claims description 5
- 239000003814 drug Substances 0.000 claims description 4
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 3
- 229940124597 therapeutic agent Drugs 0.000 claims description 2
- 150000007523 nucleic acids Chemical group 0.000 abstract description 12
- 239000002773 nucleotide Substances 0.000 description 25
- 125000003729 nucleotide group Chemical group 0.000 description 25
- 239000000523 sample Substances 0.000 description 18
- 210000002966 serum Anatomy 0.000 description 16
- 230000014509 gene expression Effects 0.000 description 15
- 210000004556 brain Anatomy 0.000 description 14
- 238000001262 western blot Methods 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 12
- 239000012528 membrane Substances 0.000 description 12
- 210000004248 oligodendroglia Anatomy 0.000 description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 10
- 150000001413 amino acids Chemical group 0.000 description 9
- 201000011510 cancer Diseases 0.000 description 9
- 239000000284 extract Substances 0.000 description 8
- 238000009396 hybridization Methods 0.000 description 7
- 210000002569 neuron Anatomy 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 101150029156 Dpysl4 gene Proteins 0.000 description 6
- 210000003169 central nervous system Anatomy 0.000 description 6
- 238000003364 immunohistochemistry Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 101710132383 66 kDa protein Proteins 0.000 description 5
- 230000000692 anti-sense effect Effects 0.000 description 5
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 108020001507 fusion proteins Proteins 0.000 description 5
- 102000037865 fusion proteins Human genes 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 210000000278 spinal cord Anatomy 0.000 description 5
- 241001492222 Epicoccum Species 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 238000007901 in situ hybridization Methods 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- 208000011580 syndromic disease Diseases 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 101100443945 Mus musculus Dpysl3 gene Proteins 0.000 description 3
- 108091092724 Noncoding DNA Proteins 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 206010041067 Small cell lung cancer Diseases 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 230000001363 autoimmune Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 210000000653 nervous system Anatomy 0.000 description 3
- 230000000926 neurological effect Effects 0.000 description 3
- 210000001428 peripheral nervous system Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 208000000587 small cell lung carcinoma Diseases 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 206010003694 Atrophy Diseases 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 102100024443 Dihydropyrimidinase-related protein 4 Human genes 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000011394 anticancer treatment Methods 0.000 description 2
- 230000037444 atrophy Effects 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000001638 cerebellum Anatomy 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 201000002491 encephalomyelitis Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 208000010325 limbic encephalitis Diseases 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 239000013615 primer Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 208000014929 Brown syndrome Diseases 0.000 description 1
- 101100048439 Caenorhabditis elegans unc-33 gene Proteins 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 206010008805 Chromosomal abnormalities Diseases 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- 108050002475 Dihydropyrimidinase-related protein 4 Proteins 0.000 description 1
- 206010018341 Gliosis Diseases 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101001053490 Homo sapiens Dihydropyrimidinase-related protein 4 Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 201000010743 Lambert-Eaton myasthenic syndrome Diseases 0.000 description 1
- 101710175243 Major antigen Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 208000001089 Multiple system atrophy Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 206010034620 Peripheral sensory neuropathy Diseases 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006472 autoimmune response Effects 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 230000008335 axon cargo transport Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 210000001947 dentate gyrus Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 230000007387 gliosis Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229940126601 medicinal product Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 230000007472 neurodevelopment Effects 0.000 description 1
- 230000006576 neuronal survival Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 208000028780 ocular motility disease Diseases 0.000 description 1
- 210000000956 olfactory bulb Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 210000000449 purkinje cell Anatomy 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 201000005572 sensory peripheral neuropathy Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 208000008732 thymoma Diseases 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 230000007484 viral process Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4713—Autoimmune diseases, e.g. Insulin-dependent diabetes mellitus, multiple sclerosis, rheumathoid arthritis, systemic lupus erythematosus; Autoantigens
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4748—Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6854—Immunoglobulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention is a divisional application of U.S. application Ser. No. 13/741,876, filed Jan. 15, 2013, which is a divisional of U.S. application Ser. No. 12/068,686, filed Feb. 11, 2008, now U.S. Pat. No. 8,377,645, which is a divisional of U.S. application Ser. No. 10/220,042, filed Nov. 19, 2002, now U.S. Pat. No. 7,329,499, which is a 371 application of PCT/FR01/00589, filed Feb. 28, 2001, and claims priority from French patent application 00/05005, filed Apr. 18, 2000, and French patent application 00/02566, filed Feb. 29, 2000, all of said applications incorporated herein by reference.
- the invention relates to a novel human ULIP/CRMP protein and to the use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes.
- PNSs Paraneoplastic neurological syndromes
- Their frequency is estimated to be, overall, approximately 1% of cancers.
- Several clinical pictures have been individualized for a long time (encephalomyelitis, Denny-Brown sensory neuropathy, cerebella atrophy, limbic encephalitis, opsoclonus, etc.) corresponding in fact to the either elective or preferential attack of certain groups of neurons.
- anti-Yo antibodies are found in the serum and the CSF of women having paraneoplastic cerebella atrophy and a gynecological cancer (ovary, breast or uterus) (Greenlee et al., 1983; Jaeckle et al., 1985).
- Anti-Ri antibodies are found in the serum and the CSF of patients (mainly women) having opsomyoclonus, a cerebella syndrome and breast cancer.
- Anti-Hu antibodies are most commonly encountered in the course of PNSs. They are found in the serum and the CSF of patients having Denny-Brown's syndrome or encephalomyeloneuritis and small-cell lung cancer (Graus et al., 1985; Dalmau et al., 1992). These autoantibodies recognize several proteins, of 37 to 45 kDa, expressed specifically by all the neurons of the nervous system.
- anti-CV2 antibodies Another type of autoantibody has been identified in patients having PNS: anti-CV2 antibodies (Antoine et al., 1993; Honnorat et al., 1996).
- the latter are atypical, in the sense that the antigenic target recognized in adulthood is essentially non-neuronal, although post-mortem analysis of the brain of four patients makes it possible to observe neuronal loss, gliosis and an inflammatory process characteristic of PNSs.
- the anti-CV2 autoantibodies present in the sera of patients suffering from paraneoplastic neurological syndrome have been defined by their ability to recognize, by indirect immunohistochemistry, a cytoplasmic antigen expressed specifically, in adult rat brain, by a subpopulation of oligodendrocytes of the brain stem, of the medulla and of the cerebellum.
- this antigen In adult brain, this antigen is located in a subpopulation of oligodendrocytes or in cells which retain differentiation capacities in the adult brain (olfactory bulb, dentate gyrus). The antigen recognized is thought to play a role in neuronal survival, via neuron/oligodendrocyte interactions, as suggested by the loss of neurons observed in the post-mortem brain of patients suffering from PNS.
- the target antigen of the anti-CV2 autoantibodies which corresponds to a protein designated “POP-66” for “paraneoplastic oligodendrocyte protein 66 kDa”, was identified as being the human form of the ULIP-4 protein.
- the ULIP (for “Unc-33 like phosphoprotein”) proteins are involved in the control of neuronal development and axonal transport (Byk et al., 1996).
- Four members of this family had been identified by three different teams (Byk et al., 1998, Wang and Slingermatter, 1996; and Hamajima et al., 1996). A thorough search for possible other members of this family had come to nothing.
- ULIP 6 comprises, in its C-terminal portion, a major epitope recognized by anti-CV2 antibodies in Western blotting.
- a subject of the present invention is therefore a purified ULIP 6 polypeptide comprising the amino acid sequence SEQ ID No. 2.
- An epitopic fragment of the polypeptide mentioned above, comprising the sequence SEQ ID No. 4, is also included in the present invention. More particularly, a subject of the invention is the purified peptide of sequence SEQ ID No. 4.
- a subject of the present invention is also an isolated nucleic acid encoding the ULIP6 polypeptide as defined above, preferably comprising the nucleotide sequence SEQ ID No. 1.
- the sequence SEQ ID No. 1 has a 5′ noncoding region (nucleotides 1 to 162), an open reading frame (nucleotides 163 to 1854) and a 3′ noncoding region (nucleotides 1855 to 3074).
- a subject of the present invention is also an isolated nucleic acid comprising the nucleotide sequence SEQ ID No. 3, which corresponds to the noncoding region in 3′ of the human coding sequence SEQ ID No. 1.
- This noncoding sequence, as well as the 5′ noncoding portion may in particular be used for preparing specific probes.
- FIG. 1 represents a Western blot performed on protein extracts of E. coli expressing the fusion protein GST-ULIP6 C-term. These extracts were separated by SDS-12.5% PAGE, transferred onto a PVDF membrane and incubated with human sera. Lanes 1 to 14: anti-CV2 sera; lanes 15 to 17: control sera.
- FIG. 2 represents a Western blot performed on GST-ULIP6 C-term fusion proteins after purification on agarose-glutathione beads.
- the protein is recognized by two anti-CV2 sera (lane 1: serum 94-822, lane 2: serum 95-590) but not by a control serum (lane 3).
- polypeptide of the present invention may be synthesized by all the methods well known to those skilled in the art.
- the polypeptide of the invention may, for example, be synthesized by synthetic chemistry techniques, such as synthesis of the Merrifield type, which is advantageous for reasons of purity, of antigenic specificity and of lack of unwanted by-products, and for its ease of production.
- a recombinant ULIP6 protein can also be produced using a method in which a vector containing a nucleic acid comprising the sequence SEQ ID No. 1 is transferred into a host cell, which is cultured under conditions which allow expression of the corresponding polypeptide.
- the protein produced can then be recovered and purified.
- the purification methods used are known to those skilled in the art.
- the recombinant polypeptide obtained can be purified from cell lysates and extracts, and from the culture medium supernatant, using methods employed individually or in combination, such as fractionation, chromatography methods, immunoaffinity techniques using specific mono- or polyclonal antibodies, etc.
- the nucleic acid sequence of interest, encoding the ULIP6 polypeptide, may be inserted into an expression vector, in which it is functionally linked to elements for regulating its expression, such as in particular transcription promoters, activators and/or terminators.
- the signals controlling the expression of the nucleotide sequences are chosen as a function of the cellular host used.
- the nucleotide sequences according to the invention may be inserted into vectors which replicate autonomously in the chosen host, or vectors which integrate in the chosen host.
- vectors will be prepared according to the methods commonly used by those skilled in the art, and the clones resulting therefrom can be introduced into a suitable host using standard methods, such as, for example, electroporation or calcium phosphate precipitation.
- cloning and/or expression vectors as described above, containing a nucleotide sequence defined according to the invention, are also part of the present invention.
- the invention is also directed toward the host cells transfected, transiently or stably, with these expression vectors.
- These cells can be obtained by introducing into host cells a nucleotide sequence inserted into a vector as defined above, and then culturing said cells under conditions which allow replication and/or expression of the transfected nucleotide sequence.
- the cellular host may be chosen from prokaryotic systems, such as bacteria, or eukaryotic systems, such as, for example, yeasts, insect cells, CHO cells (Chinese hamster ovary cells) or any other system advantageously available.
- prokaryotic systems such as bacteria
- eukaryotic systems such as, for example, yeasts, insect cells, CHO cells (Chinese hamster ovary cells) or any other system advantageously available.
- a preferred cellular host for expressing the proteins of the invention consists of the bacterium E. coli.
- nucleotide sequences of the invention may or may not be of artificial origin. They may be DNA or RNA sequences obtained by screening sequence libraries using probes developed on the basis of the sequence SEQ ID No. 1 or 3. Such libraries may be prepared by conventional molecular biology techniques known to those skilled in the art.
- nucleotide sequences according to the invention may also be prepared by chemical synthesis, or else by mixed methods which include chemical or enzymatic modification of sequences obtained by screening libraries.
- This nucleic acid makes it possible to prepare nucleotide probes capable of hybridizing strongly and specifically with a nucleic acid sequence, a genomic DNA sequence or a messenger RNA sequence, encoding a polypeptide according to the invention or a biologically active fragment thereof.
- Suitable hybridization conditions correspond to the temperature and ionic strength conditions usually used by those skilled in the art (Sambrook et al., 1989), preferably to temperature conditions of between (T m minus 5° C.) and (T m minus 30° C.) and even more preferably to temperature conditions of between (T m minus 5° C.) and (T m minus 10° C.) (high stringency), T m being the theoretical melting temperature, defined as being the temperature at which 50% of the paired strands separate. Such probes are also part of the invention.
- transcripts specific for the polypeptides of the invention may be used as a diagnostic tool in vitro for detecting, via hybridization experiments, transcripts specific for the polypeptides of the invention in biological samples, or for demonstrating aberrant syntheses or genetic abnormalities resulting from a polymorphism, from mutations or from incorrect splicing.
- the probes of the invention comprise a minimum of 10 nucleotides, and as a maximum comprise all of a nucleotide sequence SEQ ID No. 1 or 3, or of the strand complementary thereto.
- the nucleic acid of the invention may also be used to prepare oligonucleotide primers which hybridize, under high stringency conditions, to the sequence SEQ ID No. 1 or 3.
- sense and/or antisense oligonucleotide primers may be of use for sequencing reactions or specific amplification reactions according to the “PCR” (polymerization chain reaction) technique or any other variant thereof.
- the probes or primers of the invention are labeled prior to their use.
- several techniques are within the scope of those skilled in the art, such as, for example, fluorescent, radioactive, chemiluminescent or enzymatic labeling.
- nucleotide probes for diagnosis in vitro in which these nucleotide probes are used for detecting aberrant syntheses or genetic abnormalities, such as loss of heterozygosity and genetic rearrangement, in the nucleic acid sequences encoding a ULIP6 polypeptide according to the invention, are included in the present invention.
- Such a type of method comprises:
- the probes of the invention can also advantageously be used for detecting chromosomal abnormalities.
- nucleotide sequences according to the invention are, moreover, useful in the therapeutic field, for preparing antisense sequences capable of hybridizing specifically with a nucleic acid sequence, including a messenger RNA, which can be used in gene therapy.
- a subject of the invention is thus antisense sequences capable of inhibiting, at least partially, the production of a polypeptide according to the invention, as defined above.
- recombinant ULIP6 protein makes it possible to produce a rapid and reliable test (of the Elisa or Western blotting type) for detecting anti-CV2 antibodies.
- the invention is therefore also directed toward a method for the diagnosis of paraneoplastic neurological syndromes and/or for the early diagnosis of the formation of tumors of cancerous origin, wherein antibodies directed against a ULIP6 protein are demonstrated in a biological sample (such as blood, serum, CSF, etc.) taken from an individual, by
- a subject of the invention is therefore a composition useful for the diagnosis of paraneoplastic neurological syndromes and/or for the early diagnosis of the formation of tumors, that comprises a ULIP6 polypeptide or an epitopic fragment of said polypeptide.
- the C-terminal portion comprising the dominant epitope (for example the fragment ranging from amino acid No. 475 to amino acid 564) may be used.
- An epitopic fragment of the ULIP 6 polypeptide, comprising the sequence SEQ ID No. 4, may in particular be used.
- the peptide of sequence SEQ ID No. 4 has thus made it possible to produce antibodies which are very specific for ULIP6.
- a subject of the invention is also a kit for the diagnosis of paraneoplastic neurological syndromes and for the early diagnosis of the formation of tumors, using a biological specimen, comprising:
- a subject of the invention is also the mono- or polyclonal antibodies or fragments, chimeric antibodies or immunoconjugates thereof, obtained using a purified ULIP polypeptide or peptide comprising an amino acid sequence SEQ ID No. 2 or No. 4, and use thereof, for purifying or detecting a ULIP protein in a biological sample.
- Polyclonal antibodies may be obtained from the serum of an animal immunized against the protein, produced, for example, by genetic recombination following the method described above, according to usual procedures.
- the monoclonal antibodies may be obtained according to the conventional method of culturing hybridomas described by Köhler and Milstein.
- the antibodies may be chimeric antibodies, humanized antibodies, and Fab and F(ab′)2 fragments. They may also be in the form of immunoconjugates or of labeled antibodies.
- the invention also relates to the use of antibodies directed against the ULIP6 protein, for demonstrating a ULIP6 protein in neoplasms and paraneoplastic neurological syndromes, for diagnostic purposes.
- the invention relates to the use of monoclonal antibodies obtained from the polyclonal anti-CV2 serum of patients by immortalization of lymphocytes, according to the usual techniques known to those skilled in the art.
- the antibodies directed against a protein of the ULIP family are of use for detecting abnormal expression of ULIP protein in patients having neurological syndromes, in whom no cancer has been diagnosed using conventional methods.
- This abnormal expression of ULIP6 protein may be correlated with the existence of a cancer which had not been detected.
- the antibodies directed against the ULIP6 protein are of use for the early diagnosis of a cancer.
- Human or nonhuman antibodies obtained from patients or obtained after immunization with all or part of the ULIP6 protein, as defined above, may also be labeled in a detectable manner, for example by association with a radioactive element, and may be injected into an individual. Using imaging processes well known to those skilled in the art, they may make it possible to detect or diagnose a cancerous tumor after antigenic reaction of these antibodies with the cells of the tumor.
- a subject of the invention is therefore also a method for detecting or diagnosing a cancerous tumor, comprising the administration to a patient of an antibody as defined above, labeled in a detectable manner, and the visualization by imaging of the site of attachment of this antibody.
- a subject of the invention is also a pharmaceutical composition
- a pharmaceutical composition comprising at least one therapeutic agent chosen from a purified ULIP6 protein, or a nucleic acid encoding said protein, an antisense sequence capable of hybridizing specifically with a nucleotide sequence SEQ ID No. 1 or No. 3, or an antibody directed against said protein, combined with a pharmaceutically acceptable vehicle.
- the invention preferentially comprises pharmaceutical compositions comprising, as active principle, a purified ULIP6 polypeptide, preferentially in soluble form, combined with a pharmaceutically acceptable vehicle.
- compositions offer a novel approach for treating disorders of the central and peripheral nervous system and of vision, and in particular paraneoplastic neurological syndromes. Moreover, they are of use for treating neurological disorders linked to neuronal loss and/or underexpression of the ULIP6 protein in the nervous system.
- ULIP6 also proves to be of value in neurodegenerative pathological conditions, such as multisystemic atrophies which are disorders similar to those of PNSs and for which an abnormality of an oligodendrocytic subpopulation has been detected (Papp et al., 1992).
- compositions according to the invention are, moreover, of use in anticancer treatment.
- the antibodies directed against the ULIP6 protein may be combined with antineoplastic agents, thus allowing targeting of the medicinal products to the tumor cells.
- hydrophilic chemical group chosen so as to cross or so as not to cross the blood-brain barrier, depending on the type of tumor.
- the ULIP6 protein and also the nucleotide sequences described above, and the antisense sequences or oligonucleotides, may be of use in the treatment of any type of cancer in which a gene encoding the ULIP6 protein is involved.
- cancers mention may be made of peripheral tumors, such as small-cell lung cancer, thymoma, breast cancer and ovarian cancer, and also brain tumors, preferably primary brain tumors of glial origin.
- ULIP6 may be a tumor suppressor gene.
- a compound or a mixture of compounds of synthetic or natural origin, which inhibits the action of ULIP 6, may also be used.
- stimulation of ULIP 6 may be desired.
- a compound or a mixture of compounds of synthetic or natural origin which activates the expression or the action of the ULIP 6 protein may then be used.
- activating or inhibiting compounds may be included in pharmaceutical compositions.
- compositions according to the invention may be administered systemically, preferably intravenously, intramuscularly, intradermally or orally.
- a therapeutic treatment suitable for a patient such as, for example, the age or bodyweight of the patient, the seriousness of his or her general condition, the tolerance to the treatment and the side effects observed, etc.
- the invention also comprises the use of a purified ULIP6 protein, a nucleic acid encoding said protein or belonging to the noncoding regions of the ULIP6 gene, an antisense sequence capable of hybridizing specifically with a nucleotide sequence SEQ ID No. 1 or No. 3, or an antibody directed against said protein, combined with a pharmaceutically acceptable vehicle, for manufacturing a medicament intended to treat neurodegenerative diseases and neoplasms.
- a subject of the invention is a method for treating neurodegenerative diseases and neoplasms, comprising the administration of a therapeutically effective amount of a pharmaceutical composition as defined above to an individual requiring such a treatment.
- an anti-CV2 serum which did not recognize recombinant Ulip4 by Western blotting, was used to screen an expression library.
- the membranes were then saturated in PBS-Tween-skimmed milk, and then incubated overnight with the serum diluted to 1/100. The membranes were then washed in PBS-Tween and then incubated with a peroxidase-labeled anti-human immunoglobulin antiserum. After washing, the membranes were revealed by the diaminobenzidine method. The clones giving a positive signal were purified by successive subculturing until 100% of positive clones was obtained. Four cDNAs of 1400 to 1700 base pairs and encoding the C-terminal portion of the same protein were identified.
- the clone having the largest coding sequence contained 1490 base pairs (nucleotides 1585 to 3074 of sequence ID No. 1) with an open reading frame of 270 nucleotides encoding a 90 amino acid polypeptide (amino acids 475 to 564 of sequence ID No. 2).
- this polypeptide (named in the remainder of the study Ulip6 C-Term) exhibited a homology of 35% with the C-terminal portion of each of the already known members of the Ulip family, and that no homology existed with other protein families.
- the Ulip6 C-Term polypeptide has a molecular weight of 10 kDa, which represents approximately 15% of a 66 kDa protein. None of these sera recognized GST alone. 100 control sera were also tested. None showed any reactivity with respect to the GST-Ulip6 C-Term fusion protein. With the aim of having as specific a test as possible, the authors of the invention also tested the anti-CV2 sera on the GST-Ulip6 C-Term fusion protein purified on agarose-glutathione beads. FIG. 2 shows an example of the results obtained by Western blotting.
- RNAs extracted from human spinal cord (Clontech, Palo Alto, USA).
- the probe corresponded to the entire clone 97 labeled with alpha 32 P dCTP.
- the RNAs were separated on a 1.2% agarose formaldehyde electrophoresis gel and transferred onto a nylon membrane. After prehybridization with the rapid hybridization solution (Clontech, Palo Alto, USA), the membrane was incubated with the probe for one hour. After washing, the membrane was exposed on a film overnight at ⁇ 80° C. A single band corresponding to a 5 kb transcript was revealed.
- RNA probe obtained by transcription of clone 97 subcloned into pBluescript SK (Stratagene) and labeled with digoxigenin. A sense probe was used as negative control. Specific labeling of oligodendrocytes could be observed.
- the peptide was synthesized on a peptide synthesizer (432A Peptide Synthesizer SYNERGY, Applied Biosystems), by the company COVALAB (Lyon, France).
- the purity of the samples was controlled by HPLC and mass spectrometry.
- One milligram of peptide coupled to hemocyanine and with complete Freund's adjuvant was injected into rabbits (COVALAB, Lyon, France). Every 3 weeks, a further injection of 0.5 mg was given.
- the production of antibodies and their specificity were analyzed by Western blotting and immunohistochemistry, using preimmune sera as a control.
- the antibodies obtained recognized the GST-Ulip6 C-Term protein by Western blotting, a 66 kDa protein on brain extracts, and specifically labeled oligodendrocytes by immunohistochemistry on rat medulla sections.
- the human spinal cord cDNA library cloned into the lambda gt11 phage (Clontech, Palo Alto, USA), was screened with a radioactive probe.
- This probe obtained by PCR, was labeled with alpha 32 P dCTP, and corresponded to nucleotides 1585 to 1854 of the sequence ID No. 1.
- the phages were screened at a density of 2 ⁇ 10 4 pfu per 150 mm-diameter dish. After incubation for 6 hours at 37° C., a replica was obtained on a nylon membrane. This membrane was treated so as to denature the phages, and the DNA was then fixed overnight at 42° C.
- the membrane was incubated for one hour with the radioactive probe. After washing, the membrane was exposed on a film overnight at ⁇ 80° C. Clones giving a positive signal were purified by successive subculturing until 100% of positive clones was obtained.
- the largest cDNA obtained comprised 3074 nucleotides (SEQ ID No. 1) and comprised an open reading frame of 1692 nucleotides (nucleotides No. 163 to 1854 of SEQ ID No. 1). It encoded a 564 amino acid protein (SEQ ID No.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Rehabilitation Therapy (AREA)
- Rheumatology (AREA)
- Diabetes (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
Abstract
A purified polypeptide, designated ULIP6, comprising the amino acid sequence SED ID No. 2 or an epitopic fragment of said polypeptide, comprising the sequence SEQ ID No. 4, is provided along with its nucleic acid sequences. In addition, antibodies to the polypeptide and methods of diagnosing paraneoplastic neurological syndromes and/or for the early diagnosis of the formation of cancerous tumors are also provided.
Description
- The present invention is a divisional application of U.S. application Ser. No. 13/741,876, filed Jan. 15, 2013, which is a divisional of U.S. application Ser. No. 12/068,686, filed Feb. 11, 2008, now U.S. Pat. No. 8,377,645, which is a divisional of U.S. application Ser. No. 10/220,042, filed Nov. 19, 2002, now U.S. Pat. No. 7,329,499, which is a 371 application of PCT/FR01/00589, filed Feb. 28, 2001, and claims priority from French patent application 00/05005, filed Apr. 18, 2000, and French patent application 00/02566, filed Feb. 29, 2000, all of said applications incorporated herein by reference.
- The invention relates to a novel human ULIP/CRMP protein and to the use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes.
- Paraneoplastic neurological syndromes (PNSs) occur in the instance of a cancer, often before its discovery, and are not connected to either the tumor proliferation itself (direct invasion, metastases) or the treatment. Their frequency is estimated to be, overall, approximately 1% of cancers. Several clinical pictures have been individualized for a long time (encephalomyelitis, Denny-Brown sensory neuropathy, cerebella atrophy, limbic encephalitis, opsoclonus, etc.) corresponding in fact to the either elective or preferential attack of certain groups of neurons. The frequency of inflammatory cells in the vicinity of the lesions for many years brought to mind the possibility of an autoimmune or viral process. The more recent demonstration of autoantibodies in the serum and in the cerebrospinal fluid (CSF) of patients suffering from PNS, specific for the type of tumor and for the type of neurons which degenerate, has revived the hypothesis that autoimmunity contributes to generating this pathological condition (Graus et al., 1985; Greenlee et al., 1983).
- Besides the presence of a high titer of these antibodies in the blood and the CSF of patients, there are several arguments suggesting that PNSs are the product of autoimmune mechanisms. Thus, the antigens recognized in the central nervous system are also present in the tumors of patients (Anderson et al., 1987). Antibodies specifically directed against these antigens and also B and T lymphocytes are found within the tumor tissue (Hetzel et al., 1990).
- These data suggest that the autoimmune process could be triggered by the expression of tumor antigens. A crossed immunity process could cause the lesions in the central nervous system. Other arguments also indicate that the cerebral lesions result from the autoimmune response. Thus, in the brain of the patients, the specific antibody titer is higher than that of the serum and of the CSF (Dalmau et al., 1991). In addition, in the case of encephalomyelitis associated with anti-Hu antibodies, there is an intense lymphocytic reaction, made up of B and T cells, located in proximity to neurons undergoing destruction (Dalmau et al., 1991; Graus et al., 1990).
- Several types of autoantibody allowing precise syndromic groupings as a function of immunological, neurological and cancer-related criteria have been described.
- Thus, anti-Yo antibodies are found in the serum and the CSF of women having paraneoplastic cerebella atrophy and a gynecological cancer (ovary, breast or uterus) (Greenlee et al., 1983; Jaeckle et al., 1985).
- These antibodies recognize two cytoplasmic proteins, of 34 and 62 kDa, specific for Purkinje cells of the cerebellum.
- Anti-Ri antibodies are found in the serum and the CSF of patients (mainly women) having opsomyoclonus, a cerebella syndrome and breast cancer.
- These antibodies recognize two proteins, of 50 and 80 kDa, specific for central nervous system neurons (Luque et al., 1991).
- Anti-Hu antibodies are most commonly encountered in the course of PNSs. They are found in the serum and the CSF of patients having Denny-Brown's syndrome or encephalomyeloneuritis and small-cell lung cancer (Graus et al., 1985; Dalmau et al., 1992). These autoantibodies recognize several proteins, of 37 to 45 kDa, expressed specifically by all the neurons of the nervous system.
- Another type of autoantibody has been identified in patients having PNS: anti-CV2 antibodies (Antoine et al., 1993; Honnorat et al., 1996). The latter are atypical, in the sense that the antigenic target recognized in adulthood is essentially non-neuronal, although post-mortem analysis of the brain of four patients makes it possible to observe neuronal loss, gliosis and an inflammatory process characteristic of PNSs.
- The originality of the discovery of these autoantibodies lies, firstly, in their demonstration. The latter had evaded all the usual investigations which consisted in revealing the antigens recognized, by immunohistochemistry on post-mortem brain. The antigen recognized is in fact soluble and disappears from post-mortem brain under the majority of conditions for fixing. Only fixing of human post-mortem tissue by immersion in paraformaldehyde, or fixing in situ by perfusion of paraformaldehyde in animals, has made it possible to reveal the presence of these antibodies in the CSF or the serum of patients suffering from PNS (Antoine et al., 1993; Honnorat et al., 1996).
- The anti-CV2 autoantibodies present in the sera of patients suffering from paraneoplastic neurological syndrome (PNS) have been defined by their ability to recognize, by indirect immunohistochemistry, a cytoplasmic antigen expressed specifically, in adult rat brain, by a subpopulation of oligodendrocytes of the brain stem, of the medulla and of the cerebellum.
- The originality of these autoantibodies lies, secondly, in their diagnostic value. Their presence in the serum or the CSF of patients is of diagnostic value since it makes it possible to specify the paraneoplastic origin of a neurological syndrome. The discovery of these antibodies, when it precedes that of cancer, directs the search for this cancer and enables it to be discovered. Such was the case for six patients out of 19 having anti-CV2 antibodies. The clinical disorders were different depending on the patients, some of them exhibiting a picture of limbic encephalitis, others encephalomyeloneuritis and others Lambert-Eaton syndrome. Nevertheless, in more than 60% of cases, the cerebella syndrome was predominant. The most commonly associated tumor was small-cell lung cancer (60% of cases).
- Experiments on newborn rat brains have shown that these anti-CV2 antibodies react with a 66 kDa protein (Honnorat et al., 1996).
- In adult brain, this antigen is located in a subpopulation of oligodendrocytes or in cells which retain differentiation capacities in the adult brain (olfactory bulb, dentate gyrus). The antigen recognized is thought to play a role in neuronal survival, via neuron/oligodendrocyte interactions, as suggested by the loss of neurons observed in the post-mortem brain of patients suffering from PNS.
- It's very restricted expression in adulthood contrasts with very strong and transient expression in the central and peripheral nervous system in development, suggesting the probable role of this antigen in the development of the nervous system.
- In application WO 98/37192 and the article by Honnorat et al. from 1999, the target antigen of the anti-CV2 autoantibodies, which corresponds to a protein designated “POP-66” for “paraneoplastic oligodendrocyte protein 66 kDa”, was identified as being the human form of the ULIP-4 protein. The ULIP (for “Unc-33 like phosphoprotein”) proteins are involved in the control of neuronal development and axonal transport (Byk et al., 1996). Four members of this family had been identified by three different teams (Byk et al., 1998, Wang and Strittmatter, 1996; and Hamajima et al., 1996). A thorough search for possible other members of this family had come to nothing.
- The authors of the present invention were then confronted with new results, which were not coherent with the identification established by application WO 98/37192; although all the anti-CV2 sera tested on Hela cells unquestionably recognized the
recombinant ULIP 4 protein in immunohistochemistry, only 20% of these sera recognized theULIP 4 protein by Western blotting on these same cell extracts. Now, all the anti-CV2 sera tested recognized, moreover, by Western blotting, the same 66 kDa protein after immunoprecipitation, on brain extracts. In addition, the ULIP4 mRNA was only very weakly expressed in oligodendrocytes by in situ hybridization. Based on these data, the authors of the present invention supposed that a new member of the ULIP family, unidentified to date, strongly expressed by oligodendrocytes and recognized in Western blotting by all the anti-CV2 sera, could exist. - The authors of the present invention have now demonstrated that, contrary to what was proposed by application WO 96/37192, POP-66, the major target antigen of the anti-CV2 autoantibodies, is not the
ULIP 4 protein but another protein. They have succeeded in characterizing this protein. It is a novel human protein of the ULIP family, designated ULIP6. - ULIP 6 comprises, in its C-terminal portion, a major epitope recognized by anti-CV2 antibodies in Western blotting.
- A subject of the present invention is therefore a purified
ULIP 6 polypeptide comprising the amino acid sequence SEQ ID No. 2. - An epitopic fragment of the polypeptide mentioned above, comprising the sequence SEQ ID No. 4, is also included in the present invention. More particularly, a subject of the invention is the purified peptide of sequence SEQ ID No. 4.
- A subject of the present invention is also an isolated nucleic acid encoding the ULIP6 polypeptide as defined above, preferably comprising the nucleotide sequence SEQ ID No. 1. The sequence SEQ ID No. 1 has a 5′ noncoding region (
nucleotides 1 to 162), an open reading frame (nucleotides 163 to 1854) and a 3′ noncoding region (nucleotides 1855 to 3074). - A subject of the present invention is also an isolated nucleic acid comprising the nucleotide sequence SEQ ID No. 3, which corresponds to the noncoding region in 3′ of the human coding sequence SEQ ID No. 1. This noncoding sequence, as well as the 5′ noncoding portion (
nucleotides 1 to 162 of SEQ ID No. 1), may in particular be used for preparing specific probes. -
FIG. 1 represents a Western blot performed on protein extracts of E. coli expressing the fusion protein GST-ULIP6 C-term. These extracts were separated by SDS-12.5% PAGE, transferred onto a PVDF membrane and incubated with human sera.Lanes 1 to 14: anti-CV2 sera;lanes 15 to 17: control sera. -
FIG. 2 represents a Western blot performed on GST-ULIP6 C-term fusion proteins after purification on agarose-glutathione beads. The protein is recognized by two anti-CV2 sera (lane 1: serum 94-822, lane 2: serum 95-590) but not by a control serum (lane 3). - The polypeptide of the present invention may be synthesized by all the methods well known to those skilled in the art. The polypeptide of the invention may, for example, be synthesized by synthetic chemistry techniques, such as synthesis of the Merrifield type, which is advantageous for reasons of purity, of antigenic specificity and of lack of unwanted by-products, and for its ease of production.
- A recombinant ULIP6 protein can also be produced using a method in which a vector containing a nucleic acid comprising the sequence SEQ ID No. 1 is transferred into a host cell, which is cultured under conditions which allow expression of the corresponding polypeptide.
- The protein produced can then be recovered and purified.
- The purification methods used are known to those skilled in the art. The recombinant polypeptide obtained can be purified from cell lysates and extracts, and from the culture medium supernatant, using methods employed individually or in combination, such as fractionation, chromatography methods, immunoaffinity techniques using specific mono- or polyclonal antibodies, etc.
- The nucleic acid sequence of interest, encoding the ULIP6 polypeptide, may be inserted into an expression vector, in which it is functionally linked to elements for regulating its expression, such as in particular transcription promoters, activators and/or terminators.
- The signals controlling the expression of the nucleotide sequences (promoters, activators, termination sequences, etc.) are chosen as a function of the cellular host used. To this effect, the nucleotide sequences according to the invention may be inserted into vectors which replicate autonomously in the chosen host, or vectors which integrate in the chosen host. Such vectors will be prepared according to the methods commonly used by those skilled in the art, and the clones resulting therefrom can be introduced into a suitable host using standard methods, such as, for example, electroporation or calcium phosphate precipitation.
- The cloning and/or expression vectors as described above, containing a nucleotide sequence defined according to the invention, are also part of the present invention.
- The invention is also directed toward the host cells transfected, transiently or stably, with these expression vectors. These cells can be obtained by introducing into host cells a nucleotide sequence inserted into a vector as defined above, and then culturing said cells under conditions which allow replication and/or expression of the transfected nucleotide sequence.
- The cellular host may be chosen from prokaryotic systems, such as bacteria, or eukaryotic systems, such as, for example, yeasts, insect cells, CHO cells (Chinese hamster ovary cells) or any other system advantageously available. A preferred cellular host for expressing the proteins of the invention consists of the bacterium E. coli.
- The nucleotide sequences of the invention may or may not be of artificial origin. They may be DNA or RNA sequences obtained by screening sequence libraries using probes developed on the basis of the sequence SEQ ID No. 1 or 3. Such libraries may be prepared by conventional molecular biology techniques known to those skilled in the art.
- The nucleotide sequences according to the invention may also be prepared by chemical synthesis, or else by mixed methods which include chemical or enzymatic modification of sequences obtained by screening libraries.
- This nucleic acid makes it possible to prepare nucleotide probes capable of hybridizing strongly and specifically with a nucleic acid sequence, a genomic DNA sequence or a messenger RNA sequence, encoding a polypeptide according to the invention or a biologically active fragment thereof. Suitable hybridization conditions correspond to the temperature and ionic strength conditions usually used by those skilled in the art (Sambrook et al., 1989), preferably to temperature conditions of between (Tm minus 5° C.) and (Tm minus 30° C.) and even more preferably to temperature conditions of between (Tm minus 5° C.) and (Tm minus 10° C.) (high stringency), Tm being the theoretical melting temperature, defined as being the temperature at which 50% of the paired strands separate. Such probes are also part of the invention. They may be used as a diagnostic tool in vitro for detecting, via hybridization experiments, transcripts specific for the polypeptides of the invention in biological samples, or for demonstrating aberrant syntheses or genetic abnormalities resulting from a polymorphism, from mutations or from incorrect splicing.
- The probes of the invention comprise a minimum of 10 nucleotides, and as a maximum comprise all of a nucleotide sequence SEQ ID No. 1 or 3, or of the strand complementary thereto.
- The nucleic acid of the invention may also be used to prepare oligonucleotide primers which hybridize, under high stringency conditions, to the sequence SEQ ID No. 1 or 3.
- These sense and/or antisense oligonucleotide primers may be of use for sequencing reactions or specific amplification reactions according to the “PCR” (polymerization chain reaction) technique or any other variant thereof.
- Preferentially, the probes or primers of the invention are labeled prior to their use. For this, several techniques are within the scope of those skilled in the art, such as, for example, fluorescent, radioactive, chemiluminescent or enzymatic labeling.
- The methods for diagnosis in vitro in which these nucleotide probes are used for detecting aberrant syntheses or genetic abnormalities, such as loss of heterozygosity and genetic rearrangement, in the nucleic acid sequences encoding a ULIP6 polypeptide according to the invention, are included in the present invention. Such a type of method comprises:
-
- contacting a nucleotide probe of the invention with a biological sample under conditions which allow the formation of a hybridization complex between said probe and the abovementioned nucleotide sequence, optionally after a prior step of amplification of the abovementioned nucleotide sequence;
- detecting the hybridization complex possibly formed;
- optionally sequencing the nucleotide sequence which forms the hybridization complex with the probe of the invention.
- The probes of the invention can also advantageously be used for detecting chromosomal abnormalities.
- The nucleotide sequences according to the invention are, moreover, useful in the therapeutic field, for preparing antisense sequences capable of hybridizing specifically with a nucleic acid sequence, including a messenger RNA, which can be used in gene therapy. A subject of the invention is thus antisense sequences capable of inhibiting, at least partially, the production of a polypeptide according to the invention, as defined above.
- They are of more particular use in the treatment of disorders of the central and peripheral nervous system and of vision, in particular in the treatment of paraneoplastic neurological syndromes, and also in anticancer treatment, in particular for tumors associated with paraneoplastic neurological syndromes.
- The exploitation of the ULIP proteins, and in particular ULIP6, and also of the antibodies directed against these proteins, is promising in various fields.
- Thus, detection of the anti-CV2 autoantibody by immunofluorescence on fixed animal brain is currently used as a diagnostic test.
- The production of recombinant ULIP6 protein according to the invention makes it possible to produce a rapid and reliable test (of the Elisa or Western blotting type) for detecting anti-CV2 antibodies.
- Such tests already exist for anti-Hu, anti-Yo and anti-Ri antibodies. The test for detecting anti-CV2s in the serum of patients could be prescribed in the case of suspicion of paraneoplastic neurological syndrome and would, consequently, include anti-CV2 antibodies as well as the other antibodies identified in PNSs as mentioned above.
- The invention is therefore also directed toward a method for the diagnosis of paraneoplastic neurological syndromes and/or for the early diagnosis of the formation of tumors of cancerous origin, wherein antibodies directed against a ULIP6 protein are demonstrated in a biological sample (such as blood, serum, CSF, etc.) taken from an individual, by
-
- contacting a biological sample taken from an individual with a purified ULIP6 polypeptide optionally attached to a support, under conditions which allow the formation of specific immunocomplexes between said polypeptide and the autoantibodies possibly present in the biological sample, and
- detecting the specific immunocomplexes possibly formed.
- A subject of the invention is therefore a composition useful for the diagnosis of paraneoplastic neurological syndromes and/or for the early diagnosis of the formation of tumors, that comprises a ULIP6 polypeptide or an epitopic fragment of said polypeptide.
- Advantageously, instead of the complete polypeptide, the C-terminal portion comprising the dominant epitope (for example the fragment ranging from amino acid No. 475 to amino acid 564) may be used. An epitopic fragment of the
ULIP 6 polypeptide, comprising the sequence SEQ ID No. 4, may in particular be used. The peptide of sequence SEQ ID No. 4 has thus made it possible to produce antibodies which are very specific for ULIP6. - A subject of the invention is also a kit for the diagnosis of paraneoplastic neurological syndromes and for the early diagnosis of the formation of tumors, using a biological specimen, comprising:
-
- at least one purified ULIP6 polypeptide, optionally attached to a support,
- means for revealing the formation of specific antigen/antibody complexes between an anti-ULIP6 autoantibody and said purified ULIP6 polypeptide, or polypeptide derivative or fragment, and/or means for quantifying these complexes.
- A subject of the invention is also the mono- or polyclonal antibodies or fragments, chimeric antibodies or immunoconjugates thereof, obtained using a purified ULIP polypeptide or peptide comprising an amino acid sequence SEQ ID No. 2 or No. 4, and use thereof, for purifying or detecting a ULIP protein in a biological sample.
- Polyclonal antibodies may be obtained from the serum of an animal immunized against the protein, produced, for example, by genetic recombination following the method described above, according to usual procedures.
- The monoclonal antibodies may be obtained according to the conventional method of culturing hybridomas described by Köhler and Milstein.
- The antibodies may be chimeric antibodies, humanized antibodies, and Fab and F(ab′)2 fragments. They may also be in the form of immunoconjugates or of labeled antibodies.
- The invention also relates to the use of antibodies directed against the ULIP6 protein, for demonstrating a ULIP6 protein in neoplasms and paraneoplastic neurological syndromes, for diagnostic purposes.
- Preferentially, the invention relates to the use of monoclonal antibodies obtained from the polyclonal anti-CV2 serum of patients by immortalization of lymphocytes, according to the usual techniques known to those skilled in the art.
- Thus, the antibodies directed against a protein of the ULIP family are of use for detecting abnormal expression of ULIP protein in patients having neurological syndromes, in whom no cancer has been diagnosed using conventional methods. This abnormal expression of ULIP6 protein may be correlated with the existence of a cancer which had not been detected. Thus, the antibodies directed against the ULIP6 protein are of use for the early diagnosis of a cancer.
- Human or nonhuman antibodies, obtained from patients or obtained after immunization with all or part of the ULIP6 protein, as defined above, may also be labeled in a detectable manner, for example by association with a radioactive element, and may be injected into an individual. Using imaging processes well known to those skilled in the art, they may make it possible to detect or diagnose a cancerous tumor after antigenic reaction of these antibodies with the cells of the tumor.
- A subject of the invention is therefore also a method for detecting or diagnosing a cancerous tumor, comprising the administration to a patient of an antibody as defined above, labeled in a detectable manner, and the visualization by imaging of the site of attachment of this antibody.
- A subject of the invention is also a pharmaceutical composition comprising at least one therapeutic agent chosen from a purified ULIP6 protein, or a nucleic acid encoding said protein, an antisense sequence capable of hybridizing specifically with a nucleotide sequence SEQ ID No. 1 or No. 3, or an antibody directed against said protein, combined with a pharmaceutically acceptable vehicle.
- The invention preferentially comprises pharmaceutical compositions comprising, as active principle, a purified ULIP6 polypeptide, preferentially in soluble form, combined with a pharmaceutically acceptable vehicle.
- Such compositions offer a novel approach for treating disorders of the central and peripheral nervous system and of vision, and in particular paraneoplastic neurological syndromes. Moreover, they are of use for treating neurological disorders linked to neuronal loss and/or underexpression of the ULIP6 protein in the nervous system.
- Thus, ULIP6 also proves to be of value in neurodegenerative pathological conditions, such as multisystemic atrophies which are disorders similar to those of PNSs and for which an abnormality of an oligodendrocytic subpopulation has been detected (Papp et al., 1992).
- The compositions according to the invention are, moreover, of use in anticancer treatment.
- The antibodies directed against the ULIP6 protein may be combined with antineoplastic agents, thus allowing targeting of the medicinal products to the tumor cells.
- They may also be combined with a hydrophilic chemical group chosen so as to cross or so as not to cross the blood-brain barrier, depending on the type of tumor.
- The ULIP6 protein and also the nucleotide sequences described above, and the antisense sequences or oligonucleotides, may be of use in the treatment of any type of cancer in which a gene encoding the ULIP6 protein is involved. Among examples of cancers, mention may be made of peripheral tumors, such as small-cell lung cancer, thymoma, breast cancer and ovarian cancer, and also brain tumors, preferably primary brain tumors of glial origin. The expression of ULIP6 in the nonproliferative cells of normal brain, its absence in normal tissues, such as lung or thymus, for example, its differential reexpression during tumorigenesis in these tissues, and the modulation of its expression in a tumor line during differentiation suggest, in this regard, that
ULIP 6 may be a tumor suppressor gene. - A compound or a mixture of compounds of synthetic or natural origin, which inhibits the action of
ULIP 6, may also be used. - Alternatively, stimulation of
ULIP 6 may be desired. A compound or a mixture of compounds of synthetic or natural origin which activates the expression or the action of theULIP 6 protein may then be used. - These activating or inhibiting compounds may be included in pharmaceutical compositions.
- Preferentially, the pharmaceutical compositions according to the invention may be administered systemically, preferably intravenously, intramuscularly, intradermally or orally.
- Their optimal methods of administration, dosages and pharmaceutical forms may be determined according to the criteria generally taken into account in establishing a therapeutic treatment suitable for a patient, such as, for example, the age or bodyweight of the patient, the seriousness of his or her general condition, the tolerance to the treatment and the side effects observed, etc.
- The invention also comprises the use of a purified ULIP6 protein, a nucleic acid encoding said protein or belonging to the noncoding regions of the ULIP6 gene, an antisense sequence capable of hybridizing specifically with a nucleotide sequence SEQ ID No. 1 or No. 3, or an antibody directed against said protein, combined with a pharmaceutically acceptable vehicle, for manufacturing a medicament intended to treat neurodegenerative diseases and neoplasms.
- Finally, a subject of the invention is a method for treating neurodegenerative diseases and neoplasms, comprising the administration of a therapeutically effective amount of a pharmaceutical composition as defined above to an individual requiring such a treatment.
- The examples and figures, for which the legends are presented below, are given by way of illustration.
- After expression of the recombinant proteins of the Ulip family in HeLa cells, the authors of the invention were able to show that the anti-CV2 sera then in their possession all recognized Ulip4 by immunohistochemistry. This result would suggest that Ulip4 could be the major antigen recognized by the anti-CV2 sera (Honnorat et al., 1999). On the other hand, when a larger group of sera was tested by Western blotting on the Ulip4 protein expressed in E. coli, they noticed that while several anti-CV2 sera unquestionably recognized the recombinant Ulip4 protein, some did not recognize it, although all the anti-CV2 sera recognized, by Western blotting, the same 66 kDa protein after immunoprecipitation of protein extracts from brains (Honnorat et al., 1996). In addition, by in situ hybridization, the oligodendrocytes did not express the Ulip4 messenger RNA. The authors of the invention then put forward the hypothesis of the existence of another protein homologous to the Ulip proteins, which had not yet been described, and which was expressed by oligodendrocytes.
- In order to search for this protein, an anti-CV2 serum, which did not recognize recombinant Ulip4 by Western blotting, was used to screen an expression library. A cDNA library of human spinal cord, the site of maximum expression of the CV2 antigen in adults, cloned into the lambda gt11 phage was chosen (Clontech, Palo Alto, USA). The phages were screened at a density of 2×104 pfu per 150 mm-diameter dish. After incubation for 3 hours 30 minutes at 42° C., the dishes were covered with a nitrocellulose membrane incubated in IPTG (10 mM), and reincubated for 3 hours at 37° C. The membranes were then saturated in PBS-Tween-skimmed milk, and then incubated overnight with the serum diluted to 1/100. The membranes were then washed in PBS-Tween and then incubated with a peroxidase-labeled anti-human immunoglobulin antiserum. After washing, the membranes were revealed by the diaminobenzidine method. The clones giving a positive signal were purified by successive subculturing until 100% of positive clones was obtained. Four cDNAs of 1400 to 1700 base pairs and encoding the C-terminal portion of the same protein were identified. The clone having the largest coding sequence (clone 97) contained 1490 base pairs (nucleotides 1585 to 3074 of sequence ID No. 1) with an open reading frame of 270 nucleotides encoding a 90 amino acid polypeptide (amino acids 475 to 564 of sequence ID No. 2). After a homology search in databanks, it was noted that this polypeptide (named in the remainder of the study Ulip6 C-Term) exhibited a homology of 35% with the C-terminal portion of each of the already known members of the Ulip family, and that no homology existed with other protein families.
- To confirm that this polypeptide was indeed the antigen recognized by the anti-CV2 sera, the coding phase of clone 97 was cloned into a bacterial expression vector, pGex 2T (Pharmacia Amersham Biotech, Sweden). This vector allows expression, in E. coli, of the protein of interest as a fusion with glutathione-S-transferase (GST, 26 kDa). By Western blotting, 16 of the 18 anti-CV2 sera tested recognized the GST-Ulip6-CTerm fusion protein in a bacterial protein extract, i.e. 89% positives (
FIG. 1 ). It should be noted that the Ulip6 C-Term polypeptide has a molecular weight of 10 kDa, which represents approximately 15% of a 66 kDa protein. None of these sera recognized GST alone. 100 control sera were also tested. None showed any reactivity with respect to the GST-Ulip6 C-Term fusion protein. With the aim of having as specific a test as possible, the authors of the invention also tested the anti-CV2 sera on the GST-Ulip6 C-Term fusion protein purified on agarose-glutathione beads.FIG. 2 shows an example of the results obtained by Western blotting. - To determine the size of the transcript of the Ulip6 gene, a Northern blotting analysis was carried out on purified polyA+ RNAs extracted from human spinal cord (Clontech, Palo Alto, USA). The probe corresponded to the entire clone 97 labeled with alpha 32P dCTP. The RNAs were separated on a 1.2% agarose formaldehyde electrophoresis gel and transferred onto a nylon membrane. After prehybridization with the rapid hybridization solution (Clontech, Palo Alto, USA), the membrane was incubated with the probe for one hour. After washing, the membrane was exposed on a film overnight at −80° C. A single band corresponding to a 5 kb transcript was revealed.
- To verify the presence of the Ulip6 messenger RNA in oligodendrocytes, an in situ hybridization analysis was carried out on frontal sections of medulla. The probe used was a cold RNA probe obtained by transcription of clone 97 subcloned into pBluescript SK (Stratagene) and labeled with digoxigenin. A sense probe was used as negative control. Specific labeling of oligodendrocytes could be observed.
- Polyclonal antibodies were produced by immunizing rabbits against a peptide specific to the Ulip6 protein (peptide Pep Ulip6=“KEMGTPLADTPTRPVTRHGG” of sequence SEQ ID No. 4, corresponding to amino acid fragment 505 to 524 on SEQ ID No. 2). The peptide was synthesized on a peptide synthesizer (432A Peptide Synthesizer SYNERGY, Applied Biosystems), by the company COVALAB (Lyon, France). The purity of the samples was controlled by HPLC and mass spectrometry. One milligram of peptide coupled to hemocyanine and with complete Freund's adjuvant was injected into rabbits (COVALAB, Lyon, France). Every 3 weeks, a further injection of 0.5 mg was given. The production of antibodies and their specificity were analyzed by Western blotting and immunohistochemistry, using preimmune sera as a control.
- The antibodies obtained recognized the GST-Ulip6 C-Term protein by Western blotting, a 66 kDa protein on brain extracts, and specifically labeled oligodendrocytes by immunohistochemistry on rat medulla sections.
- In order to obtain a complete Ulip6 cDNA, the human spinal cord cDNA library, cloned into the lambda gt11 phage (Clontech, Palo Alto, USA), was screened with a radioactive probe. This probe, obtained by PCR, was labeled with alpha 32P dCTP, and corresponded to nucleotides 1585 to 1854 of the sequence ID No. 1. The phages were screened at a density of 2×104 pfu per 150 mm-diameter dish. After incubation for 6 hours at 37° C., a replica was obtained on a nylon membrane. This membrane was treated so as to denature the phages, and the DNA was then fixed overnight at 42° C. After prehybridization with the rapid hybridization solution (Clontech, Palo Alto, USA), the membrane was incubated for one hour with the radioactive probe. After washing, the membrane was exposed on a film overnight at −80° C. Clones giving a positive signal were purified by successive subculturing until 100% of positive clones was obtained. The largest cDNA obtained comprised 3074 nucleotides (SEQ ID No. 1) and comprised an open reading frame of 1692 nucleotides (nucleotides No. 163 to 1854 of SEQ ID No. 1). It encoded a 564 amino acid protein (SEQ ID No. 2), the C-terminal portion of which was strictly identical to the ULIP6 C-term polypeptide (amino acids 475 to 564 on SEQ ID No. 2). After alignment of the protein obtained with the four known human ULIP/CRMP proteins, 50% homology was observed.
-
- Anderson et al., CRC Crit. Rev. Neurobiol., 1987, vol. 3, pp 245-99
- Antoine J. C. et al., Journal of the Neurological Sciences, 1993, vol. 117, pp 215-223
- Byk et al., Journal of Neuroscience, 1996, vol. 16(2), pp 688-701
- Byk T., Ozon S., Sobel A., (1998). Eur. J. Biochem, 254:14-24
- Dalmau et al., Neurology, 1991, vol. 41, pp 1757-64
- Graus et al., Neurology, 1985, vol. 35, pp 538-543
- Greenlee et al., Ann. Neurol., 1983, vol. 14, pp 609-13
- Hamajima N., Matsuda K., Sakata S., Tamaki M., Nonaka M., (1996). Gene, 180:157-163
- Hetzel et al., Mayo Clin. Proc., 1990, vol. 65, pp 1558-63
- Honnorat J. et al., Journal of Neurology, Neurosurgery and Psychiatry, 1996, vol. 61, pp 270-278
- Jaeckle et al., Ann. Neurol., 1985, vol. 18, pp 592-600
- Köhler and Milstein, Nature, 1975, vol. 256, pp 495-497
- Levy N., Mattei M. G., 1995, Geneprobs II, a practical approach, B. D. Hames and S. J. Higgins, Oxford University Press, pp 211-243
- Luque et al., Ann. Neurol., 1991, vol. 29, pp 241-51
- Sambrook et al., Molecular Cloning, a laboratory manual, 1989, 9.47-9.62
- Wang L. H. and Strittmatter S. M., (1996). J. Neurosci., 16:6197-6207.
Claims (6)
1. A method for the diagnosis of paraneoplastic neurological syndromes and/or for the early diagnosis of the formation of cancerous tumors, in which autoantibodies directed against a ULIP6 protein are demonstrated in a biological sample taken from an individual, the method comprising:
contacting a biological sample taken from an individual with a polypeptide designated ULIP6, comprising the amino acid sequence SEQ ID NO. 2, or an epitopic fragment of the polypeptide, comprising the sequence SEQ ID NO. 4, optionally attached to a support, under conditions which allow the formation of specific immunocomplexes between the polypeptide and the autoantibodies possibly present in the biological sample, and
detecting the specific immunocomplexes possibly formed;
wherein if specific immunocomplexes are formed, there is a diagnosis of paraneoplastic neurological syndrome and/or formation of cancerous tumors.
2. A mono- or polyclonal antibody obtained using a polypeptide designated ULIP6, comprising the amino acid sequence SEQ ID NO. 2, or an epitopic fragment of the polypeptide, comprising the sequence SEQ ID NO. 4, and also the fragments, chimeric antibodies or immunoconjugates of the mono- or polyclonal antibody.
3. The use of mono- or polyclonal antibodies or fragments, chimeric antibodies or immunoconjugates thereof as claimed in claim 2 , for purifying or detecting the ULIP6 protein in a biological sample.
4. A kit for the diagnosis of paraneoplastic neurological syndromes and for the early diagnosis of the formation of tumors, using a biological specimen, comprising:
at least one ULIP6 polypeptide comprising the amino acid sequence SEQ ID NO. 2, or an epitopic fragment of the polypeptide, comprising the sequence SEQ ID NO. 4, optionally attached to a support,
means for revealing the formation of specific antigen/antibody complexes between an anti-ULIP6 autoantibody and the ULIP6 polypeptide, and/or means for quantifying these complexes.
5. A pharmaceutical composition comprising an antibody directed specifically against the polypeptide including the fragments, chimeric antibodies or immunoconjugates of the mono- or polyclonal antibody as claimed in claim 2 ; in combination with a pharmaceutically acceptable vehicle.
6. The use of a therapeutic agent as defined in claim 5 , for manufacturing a medicament intended to treat neurodegenerative diseases and neoplasms.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/129,279 US20190119339A1 (en) | 2000-02-29 | 2018-09-12 | Novel human ulip/crmp protein and use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes |
Applications Claiming Priority (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR00/02566 | 2000-02-29 | ||
| FR0002566A FR2805540B1 (en) | 2000-02-29 | 2000-02-29 | NOVEL HUMAN ULIP PROTEIN AND ITS USE IN THE DIAGNOSIS AND THERAPY OF CANCER AND NEUROLOGICAL PARANEOPLASTIC SYNDROMES |
| FR00/05005 | 2000-04-18 | ||
| FR0005005A FR2807757B1 (en) | 2000-04-18 | 2000-04-18 | NOVEL HUMAN ULIP / CRMP PROTEIN AND ITS USE IN THE DIAGNOSIS AND THERAPY OF CANCERS AND NEUROLOGICAL AND PARANEOPLASTIC SYNDROMES |
| PCT/FR2001/000589 WO2001064737A1 (en) | 2000-02-29 | 2001-02-28 | Novel human ulip/crmp protein and use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes |
| US10/220,042 US7329499B2 (en) | 2000-02-29 | 2001-02-28 | Use of a novel human ULIP6/CRMP protein in diagnosis of paraneoplastic neurological syndromes |
| US12/068,686 US8377645B2 (en) | 2000-02-29 | 2008-02-11 | Diagnosis of cancers and paraneoplastic neurological syndromes with novel human ULIP/CRMP protein |
| US13/741,876 US10087220B2 (en) | 2000-02-29 | 2013-01-15 | Human ULIP/CRMP protein and use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes |
| US16/129,279 US20190119339A1 (en) | 2000-02-29 | 2018-09-12 | Novel human ulip/crmp protein and use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/741,876 Division US10087220B2 (en) | 2000-02-29 | 2013-01-15 | Human ULIP/CRMP protein and use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190119339A1 true US20190119339A1 (en) | 2019-04-25 |
Family
ID=26212215
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/220,042 Expired - Lifetime US7329499B2 (en) | 2000-02-29 | 2001-02-28 | Use of a novel human ULIP6/CRMP protein in diagnosis of paraneoplastic neurological syndromes |
| US12/068,686 Expired - Fee Related US8377645B2 (en) | 2000-02-29 | 2008-02-11 | Diagnosis of cancers and paraneoplastic neurological syndromes with novel human ULIP/CRMP protein |
| US13/741,876 Expired - Fee Related US10087220B2 (en) | 2000-02-29 | 2013-01-15 | Human ULIP/CRMP protein and use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes |
| US16/129,279 Abandoned US20190119339A1 (en) | 2000-02-29 | 2018-09-12 | Novel human ulip/crmp protein and use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/220,042 Expired - Lifetime US7329499B2 (en) | 2000-02-29 | 2001-02-28 | Use of a novel human ULIP6/CRMP protein in diagnosis of paraneoplastic neurological syndromes |
| US12/068,686 Expired - Fee Related US8377645B2 (en) | 2000-02-29 | 2008-02-11 | Diagnosis of cancers and paraneoplastic neurological syndromes with novel human ULIP/CRMP protein |
| US13/741,876 Expired - Fee Related US10087220B2 (en) | 2000-02-29 | 2013-01-15 | Human ULIP/CRMP protein and use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes |
Country Status (8)
| Country | Link |
|---|---|
| US (4) | US7329499B2 (en) |
| EP (1) | EP1263784B1 (en) |
| JP (1) | JP4990459B2 (en) |
| AT (1) | ATE334145T1 (en) |
| CA (1) | CA2401438C (en) |
| DE (2) | DE60121735D1 (en) |
| ES (1) | ES2269353T3 (en) |
| WO (1) | WO2001064737A1 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002002620A2 (en) * | 2000-06-29 | 2002-01-10 | Mayo Foundation For Medical Education And Research | Crmp-5 (collapsin response-mediator protein) encoding nucleic acid, polypeptide and uses thereof |
| DE102009033281B4 (en) | 2009-07-15 | 2018-12-13 | Euroimmun Medizinische Labordiagnostika Ag | Method for the detection of autoantibodies in paraneoplastic neurological syndromes |
| EP3914296A4 (en) * | 2019-01-25 | 2022-11-30 | Mayo Foundation for Medical Education and Research | EVALUATION AND TREATMENT OF GERM CELL TUMORS AND PARANEOPLASTIC AUTOIMMUNITY |
| CA3153217A1 (en) | 2019-09-13 | 2021-03-18 | Euroimmun Medizinische Labordiagnostika Ag | Improved detection of nmda receptor autoantibodies |
| CN112270684B (en) * | 2020-12-25 | 2021-04-06 | 宁波兰茜生物科技有限公司 | Microscopic image immunohistochemical virtual multiple labeling and analyzing method and system |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2759701B1 (en) * | 1997-02-19 | 1999-06-04 | Inst Nat Sante Rech Med | USE OF ULIP PROTEINS IN THE DIAGNOSIS AND THERAPY OF CANCER AND PARANEOPLASTIC NEUROLOGICAL SYNDROMES |
| AU2001241511A1 (en) * | 2000-02-28 | 2001-09-12 | Hyseq, Inc. | Novel nucleic acids and polypeptides |
| US20050175607A1 (en) * | 2000-02-28 | 2005-08-11 | Tang Y T. | Novel nucleic acids and polypeptides |
-
2001
- 2001-02-28 AT AT01911811T patent/ATE334145T1/en not_active IP Right Cessation
- 2001-02-28 CA CA2401438A patent/CA2401438C/en not_active Expired - Lifetime
- 2001-02-28 JP JP2001564230A patent/JP4990459B2/en not_active Expired - Lifetime
- 2001-02-28 DE DE60121735A patent/DE60121735D1/en not_active Expired - Lifetime
- 2001-02-28 ES ES01911811T patent/ES2269353T3/en not_active Expired - Lifetime
- 2001-02-28 DE DE60121735T patent/DE60121735T4/en not_active Expired - Lifetime
- 2001-02-28 EP EP01911811A patent/EP1263784B1/en not_active Expired - Lifetime
- 2001-02-28 WO PCT/FR2001/000589 patent/WO2001064737A1/en not_active Ceased
- 2001-02-28 US US10/220,042 patent/US7329499B2/en not_active Expired - Lifetime
-
2008
- 2008-02-11 US US12/068,686 patent/US8377645B2/en not_active Expired - Fee Related
-
2013
- 2013-01-15 US US13/741,876 patent/US10087220B2/en not_active Expired - Fee Related
-
2018
- 2018-09-12 US US16/129,279 patent/US20190119339A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| CA2401438C (en) | 2011-11-29 |
| EP1263784B1 (en) | 2006-07-26 |
| US20130243755A1 (en) | 2013-09-19 |
| JP2003525059A (en) | 2003-08-26 |
| US8377645B2 (en) | 2013-02-19 |
| ATE334145T1 (en) | 2006-08-15 |
| CA2401438A1 (en) | 2001-09-07 |
| ES2269353T3 (en) | 2007-04-01 |
| DE60121735T4 (en) | 2010-07-08 |
| JP4990459B2 (en) | 2012-08-01 |
| US10087220B2 (en) | 2018-10-02 |
| WO2001064737A1 (en) | 2001-09-07 |
| DE60121735T2 (en) | 2007-08-30 |
| DE60121735D1 (en) | 2006-09-07 |
| US20030176336A1 (en) | 2003-09-18 |
| US20080226636A1 (en) | 2008-09-18 |
| US7329499B2 (en) | 2008-02-12 |
| EP1263784A1 (en) | 2002-12-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20190119339A1 (en) | Novel human ulip/crmp protein and use thereof in diagnosis and treatment of cancers and paraneoplastic neurological syndromes | |
| JP2002533058A (en) | 97 human secreted proteins | |
| JP4402223B2 (en) | Ma family polypeptides and anti-Ma antibodies | |
| US7183400B1 (en) | Use of ULIP proteins in the diagnosis and therapy of cancers and paraneoplastic neurological syndromes | |
| JP2003524366A (en) | 64 human secreted proteins | |
| US6194171B1 (en) | Nucleic acids encoding ataxin-2 binding proteins | |
| AU2001248840B2 (en) | Novel collectins | |
| US20040214763A1 (en) | Method for determining the ability of a compound to modify the interaction between parkin and the p38 protein | |
| JP2003521215A (en) | 83 human secreted proteins | |
| CA2321266A1 (en) | Anti-dnase-gamma antibody, and production and use thereof | |
| US7544481B1 (en) | Nucleic acids encoding CD40 binding protein | |
| US20030108554A1 (en) | GIPs, a family of polypeptides with transcription factor activity that interact with goodpasture antigen binding protein | |
| EP1367123A1 (en) | Neurotonin and use thereof | |
| FR2805540A1 (en) | NOVEL HUMAN ULIP PROTEIN AND ITS USE IN THE DIAGNOSIS AND THERAPY OF CANCER AND PARANEOPLASTIC NEUROLOGICAL SYNDROMES | |
| JP2003532424A (en) | RH116 polypeptides and fragments thereof, and polynucleotides encoding said polypeptides and therapeutic uses | |
| JP4236852B2 (en) | TRAF3-binding B cell specific receptor | |
| JP4219808B2 (en) | A novel gene with a guanine nucleotide exchange factor-like sequence | |
| JP2003116562A (en) | TSLL2 gene | |
| WO2005033308A1 (en) | Schizophrenia-associated protein and gene coding for the same | |
| WO2001019864A1 (en) | Polynucleotides encoding novel human angiotensin ii-1 receptor proteins and the method of preparation and its use | |
| EP1357181A1 (en) | Novel atopic dermatitis-associated gene and proteins | |
| US20040170997A1 (en) | Traf3-binding b-cell-specific receptor | |
| JPWO2002062852A1 (en) | Receptor protein expressed on cells | |
| FR2807757A1 (en) | NOVEL HUMAN ULIP / CRMP PROTEIN AND ITS USE IN DIAGNOSIS AND THERAPY OF CANCERS AND NEUROLOGICAL AND PARANEOPLASTIC SYNDROMES | |
| JPWO2004001038A1 (en) | Novel genes and proteins involved in neuronalization of cells or tissues and use thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |