US20190119236A1 - Compounds for binding proprotein convertase subtilisin/kexin type 9 (pcsk9) - Google Patents
Compounds for binding proprotein convertase subtilisin/kexin type 9 (pcsk9) Download PDFInfo
- Publication number
- US20190119236A1 US20190119236A1 US16/078,578 US201716078578A US2019119236A1 US 20190119236 A1 US20190119236 A1 US 20190119236A1 US 201716078578 A US201716078578 A US 201716078578A US 2019119236 A1 US2019119236 A1 US 2019119236A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- compound
- hydrogen
- cycloalkyl
- tert
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 227
- 102100038955 Proprotein convertase subtilisin/kexin type 9 Human genes 0.000 title claims abstract description 83
- 101710180553 Proprotein convertase subtilisin/kexin type 9 Proteins 0.000 title description 77
- 239000000203 mixture Substances 0.000 claims abstract description 151
- 238000000034 method Methods 0.000 claims abstract description 135
- 230000000694 effects Effects 0.000 claims abstract description 21
- 101001098868 Homo sapiens Proprotein convertase subtilisin/kexin type 9 Proteins 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 133
- 239000001257 hydrogen Substances 0.000 claims description 133
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 87
- 150000002431 hydrogen Chemical class 0.000 claims description 82
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 72
- 125000003118 aryl group Chemical group 0.000 claims description 65
- 125000000623 heterocyclic group Chemical group 0.000 claims description 65
- -1 cyano, amino Chemical group 0.000 claims description 64
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 61
- 201000010099 disease Diseases 0.000 claims description 55
- 229910052757 nitrogen Inorganic materials 0.000 claims description 51
- 125000001072 heteroaryl group Chemical group 0.000 claims description 45
- 150000003839 salts Chemical class 0.000 claims description 45
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 40
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 35
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 34
- 229940002612 prodrug Drugs 0.000 claims description 34
- 239000000651 prodrug Substances 0.000 claims description 34
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 33
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 33
- 125000003342 alkenyl group Chemical group 0.000 claims description 30
- 125000000304 alkynyl group Chemical group 0.000 claims description 29
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 27
- 229910052799 carbon Inorganic materials 0.000 claims description 27
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 24
- 208000035150 Hypercholesterolemia Diseases 0.000 claims description 22
- 125000001424 substituent group Chemical group 0.000 claims description 22
- 125000006376 (C3-C10) cycloalkyl group Chemical group 0.000 claims description 20
- 230000001404 mediated effect Effects 0.000 claims description 19
- 125000006716 (C1-C6) heteroalkyl group Chemical group 0.000 claims description 18
- 108010028554 LDL Cholesterol Proteins 0.000 claims description 17
- 150000002148 esters Chemical class 0.000 claims description 16
- 125000004043 oxo group Chemical group O=* 0.000 claims description 16
- 206010012601 diabetes mellitus Diseases 0.000 claims description 15
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 claims description 15
- 125000001188 haloalkyl group Chemical group 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 13
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 claims description 12
- 125000002252 acyl group Chemical group 0.000 claims description 12
- 230000002401 inhibitory effect Effects 0.000 claims description 12
- 150000001721 carbon Chemical group 0.000 claims description 11
- 239000008194 pharmaceutical composition Substances 0.000 claims description 11
- 208000030159 metabolic disease Diseases 0.000 claims description 10
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 10
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 9
- 125000003386 piperidinyl group Chemical group 0.000 claims description 9
- MEWQMRDHAHYEPC-UHFFFAOYSA-N 4-methyl-1-naphthalen-1-ylpiperidine Chemical compound C1CC(C)CCN1C1=CC=CC2=CC=CC=C12 MEWQMRDHAHYEPC-UHFFFAOYSA-N 0.000 claims description 8
- 201000001320 Atherosclerosis Diseases 0.000 claims description 8
- CZIAQMVPAYTNPA-UHFFFAOYSA-N BrC=1C=NC2=C(C=CC=C2C=1)N1CCC(CC1)C Chemical compound BrC=1C=NC2=C(C=CC=C2C=1)N1CCC(CC1)C CZIAQMVPAYTNPA-UHFFFAOYSA-N 0.000 claims description 8
- 208000029078 coronary artery disease Diseases 0.000 claims description 8
- 125000004438 haloalkoxy group Chemical group 0.000 claims description 8
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 8
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 7
- 125000002619 bicyclic group Chemical group 0.000 claims description 7
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 7
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 6
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 claims description 6
- 206010020772 Hypertension Diseases 0.000 claims description 6
- 206010020961 Hypocholesterolaemia Diseases 0.000 claims description 6
- 230000036470 plasma concentration Effects 0.000 claims description 5
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 3
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 claims description 3
- 125000001475 halogen functional group Chemical group 0.000 claims 16
- 208000016097 disease of metabolism Diseases 0.000 claims 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 309
- 239000000243 solution Substances 0.000 description 158
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 135
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 108
- 235000019439 ethyl acetate Nutrition 0.000 description 107
- 239000011541 reaction mixture Substances 0.000 description 107
- 230000002829 reductive effect Effects 0.000 description 100
- 229940093499 ethyl acetate Drugs 0.000 description 95
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 89
- 239000002904 solvent Substances 0.000 description 87
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 78
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 76
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 72
- 239000007858 starting material Substances 0.000 description 68
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 67
- 239000000706 filtrate Substances 0.000 description 65
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 59
- 239000000284 extract Substances 0.000 description 59
- 238000006243 chemical reaction Methods 0.000 description 58
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 57
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 54
- 125000005843 halogen group Chemical group 0.000 description 48
- 239000012299 nitrogen atmosphere Substances 0.000 description 48
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 47
- 239000012267 brine Substances 0.000 description 43
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 43
- 108010001831 LDL receptors Proteins 0.000 description 41
- 102000000853 LDL receptors Human genes 0.000 description 40
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 40
- 238000003756 stirring Methods 0.000 description 40
- 239000003814 drug Substances 0.000 description 38
- 229910052938 sodium sulfate Inorganic materials 0.000 description 37
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 36
- 125000000217 alkyl group Chemical group 0.000 description 35
- 125000004432 carbon atom Chemical group C* 0.000 description 34
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 33
- 238000003818 flash chromatography Methods 0.000 description 33
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 32
- 239000012043 crude product Substances 0.000 description 32
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 30
- 239000007832 Na2SO4 Substances 0.000 description 30
- 238000005160 1H NMR spectroscopy Methods 0.000 description 27
- 235000012000 cholesterol Nutrition 0.000 description 27
- 239000000741 silica gel Substances 0.000 description 27
- 229910002027 silica gel Inorganic materials 0.000 description 27
- 229960001866 silicon dioxide Drugs 0.000 description 27
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 26
- 239000006286 aqueous extract Substances 0.000 description 25
- 238000011282 treatment Methods 0.000 description 25
- 239000012298 atmosphere Substances 0.000 description 23
- 239000003480 eluent Substances 0.000 description 23
- 125000005842 heteroatom Chemical group 0.000 description 21
- 229940124597 therapeutic agent Drugs 0.000 description 21
- 125000000753 cycloalkyl group Chemical group 0.000 description 20
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 20
- 108010007622 LDL Lipoproteins Proteins 0.000 description 19
- 102000007330 LDL Lipoproteins Human genes 0.000 description 19
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 19
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 18
- 210000004369 blood Anatomy 0.000 description 18
- 239000008280 blood Substances 0.000 description 18
- 239000012141 concentrate Substances 0.000 description 18
- 235000008504 concentrate Nutrition 0.000 description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 17
- 230000001965 increasing effect Effects 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- 150000001502 aryl halides Chemical class 0.000 description 16
- VVDCRJGWILREQH-UHFFFAOYSA-N tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-2h-pyridine-1-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCC(B2OC(C)(C)C(C)(C)O2)=C1 VVDCRJGWILREQH-UHFFFAOYSA-N 0.000 description 16
- 239000002253 acid Substances 0.000 description 15
- 125000004429 atom Chemical group 0.000 description 15
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 15
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 14
- 239000000725 suspension Substances 0.000 description 14
- 208000024891 symptom Diseases 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- SNRCKKQHDUIRIY-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloromethane;dichloropalladium;iron(2+) Chemical compound [Fe+2].ClCCl.Cl[Pd]Cl.C1=C[CH-]C(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.C1=C[CH-]C(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 SNRCKKQHDUIRIY-UHFFFAOYSA-L 0.000 description 13
- 229910000029 sodium carbonate Inorganic materials 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- 150000001412 amines Chemical class 0.000 description 12
- 238000005859 coupling reaction Methods 0.000 description 12
- UDKJOXLBVXZYEW-UHFFFAOYSA-N tert-butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate Chemical compound C1CN(C(=O)OC(C)(C)C)CCN1C1=CC=C(Br)C2=CC=CC=C12 UDKJOXLBVXZYEW-UHFFFAOYSA-N 0.000 description 12
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 12
- CBSFHDZBXUIXGK-UHFFFAOYSA-N 4-(4-methoxynaphthalen-1-yl)piperidine Chemical compound C12=CC=CC=C2C(OC)=CC=C1C1CCNCC1 CBSFHDZBXUIXGK-UHFFFAOYSA-N 0.000 description 11
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 11
- 108010010234 HDL Lipoproteins Proteins 0.000 description 11
- 102000015779 HDL Lipoproteins Human genes 0.000 description 11
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 11
- MUALRAIOVNYAIW-UHFFFAOYSA-N binap Chemical compound C1=CC=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MUALRAIOVNYAIW-UHFFFAOYSA-N 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 239000012044 organic layer Substances 0.000 description 11
- 229920006395 saturated elastomer Polymers 0.000 description 11
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 11
- UBWRINYVSQTMGY-UHFFFAOYSA-N 1-(4-piperidin-4-yloxynaphthalen-1-yl)piperazine Chemical compound C1CC(CCN1)OC1=CC=C(N2CCNCC2)C2=CC=CC=C12 UBWRINYVSQTMGY-UHFFFAOYSA-N 0.000 description 10
- WMFVDNQGJMHLIM-UHFFFAOYSA-N 1-(4-piperidin-4-ylsulfonylnaphthalen-1-yl)piperazine Chemical compound O=S(=O)(C1CCNCC1)C1=CC=C(N2CCNCC2)C2=CC=CC=C12 WMFVDNQGJMHLIM-UHFFFAOYSA-N 0.000 description 10
- DCRLGEDPWFWKOC-UHFFFAOYSA-N 4-(8-piperidin-4-yloxyisoquinolin-5-yl)piperazin-2-one Chemical compound N1CCC(CC1)OC=1C=CC(=C2C=CN=CC=12)N1CC(NCC1)=O DCRLGEDPWFWKOC-UHFFFAOYSA-N 0.000 description 10
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 10
- 102000004877 Insulin Human genes 0.000 description 10
- 108090001061 Insulin Proteins 0.000 description 10
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 10
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 10
- 238000004440 column chromatography Methods 0.000 description 10
- 229910052805 deuterium Inorganic materials 0.000 description 10
- 125000000524 functional group Chemical group 0.000 description 10
- 229940125396 insulin Drugs 0.000 description 10
- CZHLCTUJNDTXFK-UHFFFAOYSA-N piperazin-1-yl-(4-piperazin-1-ylnaphthalen-1-yl)methanone Chemical compound N1(CCNCC1)C(=O)C1=CC=C(C2=CC=CC=C12)N1CCNCC1 CZHLCTUJNDTXFK-UHFFFAOYSA-N 0.000 description 10
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 10
- AXRYFXRVVFBFFN-UHFFFAOYSA-N 1-[4-(trifluoromethyl)naphthalen-1-yl]piperazine Chemical compound FC(F)(F)C1=CC=C(N2CCNCC2)C2=CC=CC=C12 AXRYFXRVVFBFFN-UHFFFAOYSA-N 0.000 description 9
- 102000004895 Lipoproteins Human genes 0.000 description 9
- 108090001030 Lipoproteins Proteins 0.000 description 9
- ZICLRUJEPOCKJL-UHFFFAOYSA-N N-(4-piperazin-1-ylnaphthalen-1-yl)piperidin-4-amine Chemical compound N1(CCNCC1)C1=CC=C(C2=CC=CC=C12)NC1CCNCC1 ZICLRUJEPOCKJL-UHFFFAOYSA-N 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 238000002648 combination therapy Methods 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 9
- 229910052717 sulfur Chemical group 0.000 description 9
- GHVLPNKVONLXAQ-UHFFFAOYSA-N 1-[4-(piperidin-4-ylmethyl)naphthalen-1-yl]piperazine Chemical compound C(C1CCNCC1)C1=CC=C(N2CCNCC2)C2=CC=CC=C12 GHVLPNKVONLXAQ-UHFFFAOYSA-N 0.000 description 8
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 8
- LIUKLAQDPKYBCP-UHFFFAOYSA-N 4-bromonaphthalen-1-amine Chemical compound C1=CC=C2C(N)=CC=C(Br)C2=C1 LIUKLAQDPKYBCP-UHFFFAOYSA-N 0.000 description 8
- HIRMLHSTPQFBCU-UHFFFAOYSA-N 5-piperazin-1-yl-8-piperidin-4-yloxyisoquinoline Chemical compound N1(CCNCC1)C1=C2C=CN=CC2=C(C=C1)OC1CCNCC1 HIRMLHSTPQFBCU-UHFFFAOYSA-N 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 210000001367 artery Anatomy 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 239000002876 beta blocker Substances 0.000 description 8
- 229910000024 caesium carbonate Inorganic materials 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 150000002632 lipids Chemical class 0.000 description 8
- 239000012074 organic phase Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Chemical group 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 235000000346 sugar Nutrition 0.000 description 8
- MUOYNIDBCUMRNP-UHFFFAOYSA-N 1-piperidin-4-ylisoquinoline Chemical compound C1CNCCC1C1=NC=CC2=CC=CC=C12 MUOYNIDBCUMRNP-UHFFFAOYSA-N 0.000 description 7
- RHAYGFUBOLSEOE-UHFFFAOYSA-N 4-(4-fluoronaphthalen-1-yl)piperidine Chemical compound FC1=CC=C(C2=CC=CC=C12)C1CCNCC1 RHAYGFUBOLSEOE-UHFFFAOYSA-N 0.000 description 7
- FSQIRUSPFALZEV-UHFFFAOYSA-N 4-naphthalen-1-ylpiperazine-1-carboximidamide Chemical compound C1CN(C(=N)N)CCN1C1=CC=CC2=CC=CC=C12 FSQIRUSPFALZEV-UHFFFAOYSA-N 0.000 description 7
- SBFDRFAVCUTPAM-UHFFFAOYSA-N 4-piperazin-1-yl-1,3-benzothiazole Chemical compound C1CNCCN1C1=CC=CC2=C1N=CS2 SBFDRFAVCUTPAM-UHFFFAOYSA-N 0.000 description 7
- BBOBNVGZTQLKAM-UHFFFAOYSA-N 4-piperazin-1-yl-1h-benzimidazole Chemical compound C1CNCCN1C1=CC=CC2=C1N=CN2 BBOBNVGZTQLKAM-UHFFFAOYSA-N 0.000 description 7
- YZFXYLUYGZKXIZ-UHFFFAOYSA-N 4-piperidin-4-yl-1,3-benzothiazole Chemical compound C1CNCCC1C1=CC=CC2=C1N=CS2 YZFXYLUYGZKXIZ-UHFFFAOYSA-N 0.000 description 7
- FTVXKGATUAMAAD-UHFFFAOYSA-N 4-piperidin-4-yl-1h-benzimidazole Chemical compound C1CNCCC1C1=CC=CC2=C1N=CN2 FTVXKGATUAMAAD-UHFFFAOYSA-N 0.000 description 7
- OQATYONTMJYUMK-UHFFFAOYSA-N 4-piperidin-4-yl-7-piperidin-4-yloxy-1,3-dihydroindol-2-one Chemical compound N1CCC(CC1)C1=C2CC(NC2=C(C=C1)OC1CCNCC1)=O OQATYONTMJYUMK-UHFFFAOYSA-N 0.000 description 7
- GHDNZIXDBLDBKN-UHFFFAOYSA-N 4-piperidin-4-ylisoquinoline Chemical compound C1CNCCC1C1=CN=CC2=CC=CC=C12 GHDNZIXDBLDBKN-UHFFFAOYSA-N 0.000 description 7
- BDMIHHTUXCBGOB-UHFFFAOYSA-N 4-piperidin-4-ylquinazoline Chemical compound C1CNCCC1C1=NC=NC2=CC=CC=C12 BDMIHHTUXCBGOB-UHFFFAOYSA-N 0.000 description 7
- NIEOHKIPLZAOFU-UHFFFAOYSA-N 4-piperidin-4-ylquinoline Chemical compound C1CNCCC1C1=CC=NC2=CC=CC=C12 NIEOHKIPLZAOFU-UHFFFAOYSA-N 0.000 description 7
- UYVMGYFGXDKLMI-UHFFFAOYSA-N 5-piperidin-4-yl-8-piperidin-4-yloxyisoquinoline-3-carboxylic acid Chemical compound N1CCC(CC1)C1=C2C=C(N=CC2=C(C=C1)OC1CCNCC1)C(=O)O UYVMGYFGXDKLMI-UHFFFAOYSA-N 0.000 description 7
- NMYBOPTUTLBONE-UHFFFAOYSA-N 7-piperazin-1-yl-1,3-benzothiazole Chemical compound C1CNCCN1C1=CC=CC2=C1SC=N2 NMYBOPTUTLBONE-UHFFFAOYSA-N 0.000 description 7
- UKDXTFRJRWEKTH-UHFFFAOYSA-N 8-fluoro-5-piperidin-4-ylisoquinoline Chemical compound FC=1C=CC(=C2C=CN=CC=12)C1CCNCC1 UKDXTFRJRWEKTH-UHFFFAOYSA-N 0.000 description 7
- AOEIWNGTQZRHPM-UHFFFAOYSA-N 8-fluoro-5-piperidin-4-ylquinoline Chemical compound FC=1C=CC(=C2C=CC=NC=12)C1CCNCC1 AOEIWNGTQZRHPM-UHFFFAOYSA-N 0.000 description 7
- 206010019280 Heart failures Diseases 0.000 description 7
- 208000000563 Hyperlipoproteinemia Type II Diseases 0.000 description 7
- 208000019693 Lung disease Diseases 0.000 description 7
- ZMANZCXQSJIPKH-UHFFFAOYSA-N N,N-Diethylethanamine Substances CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 7
- 239000004480 active ingredient Substances 0.000 description 7
- 125000003545 alkoxy group Chemical group 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000010828 elution Methods 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 235000011152 sodium sulphate Nutrition 0.000 description 7
- 125000003107 substituted aryl group Chemical group 0.000 description 7
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 7
- CWXPZXBSDSIRCS-UHFFFAOYSA-N tert-butyl piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCNCC1 CWXPZXBSDSIRCS-UHFFFAOYSA-N 0.000 description 7
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 7
- YTHHXZDZDISIFB-UHFFFAOYSA-N 1-bromo-4-(trifluoromethyl)naphthalene Chemical compound C1=CC=C2C(C(F)(F)F)=CC=C(Br)C2=C1 YTHHXZDZDISIFB-UHFFFAOYSA-N 0.000 description 6
- SGUAFYQXFOLMHL-UHFFFAOYSA-N 2-hydroxy-5-{1-hydroxy-2-[(4-phenylbutan-2-yl)amino]ethyl}benzamide Chemical compound C=1C=C(O)C(C(N)=O)=CC=1C(O)CNC(C)CCC1=CC=CC=C1 SGUAFYQXFOLMHL-UHFFFAOYSA-N 0.000 description 6
- OEDJBLJCQSHTJW-UHFFFAOYSA-N 4-(8-piperidin-4-yloxyisoquinolin-5-yl)piperidin-2-one Chemical compound N1CCC(CC1)OC=1C=CC(=C2C=CN=CC=12)C1CC(NCC1)=O OEDJBLJCQSHTJW-UHFFFAOYSA-N 0.000 description 6
- NXBOWFIOGDHPMN-UHFFFAOYSA-N 4-[4-(trifluoromethyl)naphthalen-1-yl]piperidine Chemical compound FC(C1=CC=C(C2=CC=CC=C12)C1CCNCC1)(F)F NXBOWFIOGDHPMN-UHFFFAOYSA-N 0.000 description 6
- MNBFYZPSEJKTFA-UHFFFAOYSA-N 4-bromonaphthalene-1-sulfonyl chloride Chemical compound C1=CC=C2C(S(=O)(=O)Cl)=CC=C(Br)C2=C1 MNBFYZPSEJKTFA-UHFFFAOYSA-N 0.000 description 6
- KUBURMFZZJVFCM-UHFFFAOYSA-N 4-naphthalen-1-ylpiperazine-1-carboxamide Chemical compound C1(=CC=CC2=CC=CC=C12)N1CCN(CC1)C(=O)N KUBURMFZZJVFCM-UHFFFAOYSA-N 0.000 description 6
- WECNJRGURYVDLY-UHFFFAOYSA-N 4-piperazin-1-yl-7-piperidin-4-yloxy-1,3-dihydroindol-2-one Chemical compound N1(CCNCC1)C1=C2CC(NC2=C(C=C1)OC1CCNCC1)=O WECNJRGURYVDLY-UHFFFAOYSA-N 0.000 description 6
- HPARQCHPBICXSO-UHFFFAOYSA-N 4-piperazin-1-yl-7-piperidin-4-yloxy-2,3-dihydroisoindol-1-one Chemical compound N1(CCNCC1)C1=C2CNC(C2=C(C=C1)OC1CCNCC1)=O HPARQCHPBICXSO-UHFFFAOYSA-N 0.000 description 6
- FWZMWNJOBLFQKK-UHFFFAOYSA-N 5-(3-oxopiperazin-1-yl)-8-piperidin-4-yloxyisoquinoline-3-carboxamide Chemical compound O=C1CN(CCN1)C1=C2C=C(N=CC2=C(C=C1)OC1CCNCC1)C(=O)N FWZMWNJOBLFQKK-UHFFFAOYSA-N 0.000 description 6
- NLDNJADEQVJPNJ-UHFFFAOYSA-N 5-piperazin-1-yl-8-piperidin-4-yloxyisoquinoline-3-carboxylic acid Chemical compound N1(CCNCC1)C1=C2C=C(N=CC2=C(C=C1)OC1CCNCC1)C(=O)O NLDNJADEQVJPNJ-UHFFFAOYSA-N 0.000 description 6
- RWKZEWOPMRXZBH-UHFFFAOYSA-N 5-piperidin-4-ylisoquinoline Chemical compound C1CNCCC1C1=CC=CC2=CN=CC=C12 RWKZEWOPMRXZBH-UHFFFAOYSA-N 0.000 description 6
- ZKJRHADWKSWKFO-UHFFFAOYSA-N 5-piperidin-4-ylquinoline Chemical compound C1CNCCC1C1=CC=CC2=NC=CC=C12 ZKJRHADWKSWKFO-UHFFFAOYSA-N 0.000 description 6
- GBMAQXIAQFNYEB-UHFFFAOYSA-N 8-piperidin-4-ylisoquinoline Chemical compound C1CNCCC1C1=CC=CC2=CC=NC=C12 GBMAQXIAQFNYEB-UHFFFAOYSA-N 0.000 description 6
- 229940127291 Calcium channel antagonist Drugs 0.000 description 6
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 description 6
- RPTUSVTUFVMDQK-UHFFFAOYSA-N Hidralazin Chemical compound C1=CC=C2C(NN)=NN=CC2=C1 RPTUSVTUFVMDQK-UHFFFAOYSA-N 0.000 description 6
- 108010007859 Lisinopril Proteins 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 208000008589 Obesity Diseases 0.000 description 6
- 108010044159 Proprotein Convertases Proteins 0.000 description 6
- 102000006437 Proprotein Convertases Human genes 0.000 description 6
- 229940030600 antihypertensive agent Drugs 0.000 description 6
- 239000002220 antihypertensive agent Substances 0.000 description 6
- 229940097320 beta blocking agent Drugs 0.000 description 6
- 239000000480 calcium channel blocker Substances 0.000 description 6
- 230000009918 complex formation Effects 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- CZRQXSDBMCMPNJ-ZUIPZQNBSA-N lisinopril dihydrate Chemical compound O.O.C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 CZRQXSDBMCMPNJ-ZUIPZQNBSA-N 0.000 description 6
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 6
- 235000020824 obesity Nutrition 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 6
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 6
- PWQLFIKTGRINFF-UHFFFAOYSA-N tert-butyl 4-hydroxypiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(O)CC1 PWQLFIKTGRINFF-UHFFFAOYSA-N 0.000 description 6
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- YKFCISHFRZHKHY-NGQGLHOPSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid;trihydrate Chemical compound O.O.O.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1 YKFCISHFRZHKHY-NGQGLHOPSA-N 0.000 description 5
- ODQGKSJPRACHPC-UHFFFAOYSA-N (5-piperidin-4-ylnaphthalen-1-yl)methanol Chemical compound N1CCC(CC1)C1=C2C=CC=C(C2=CC=C1)CO ODQGKSJPRACHPC-UHFFFAOYSA-N 0.000 description 5
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 5
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 5
- VNICFCQJUVFULD-UHFFFAOYSA-N 1-(1-naphthalenyl)piperazine Chemical compound C1CNCCN1C1=CC=CC2=CC=CC=C12 VNICFCQJUVFULD-UHFFFAOYSA-N 0.000 description 5
- LHYGIUPMGZUHHM-UHFFFAOYSA-N 1-[4-(trifluoromethyl)-5,6,7,8-tetrahydronaphthalen-1-yl]piperazine Chemical compound FC(F)(F)C1=CC=C(N2CCNCC2)C2=C1CCCC2 LHYGIUPMGZUHHM-UHFFFAOYSA-N 0.000 description 5
- REYKEQFXQLXIRU-UHFFFAOYSA-N 4-(4-methylnaphthalen-1-yl)piperidine Chemical compound CC1=CC=C(C2=CC=CC=C12)C1CCNCC1 REYKEQFXQLXIRU-UHFFFAOYSA-N 0.000 description 5
- HDURDJQIBWTQNF-UHFFFAOYSA-N 4-(5-methylnaphthalen-1-yl)piperidine Chemical compound CC1=C2C=CC=C(C2=CC=C1)C1CCNCC1 HDURDJQIBWTQNF-UHFFFAOYSA-N 0.000 description 5
- YCHGSPFOWZOCOO-UHFFFAOYSA-N 4-(6-methylnaphthalen-1-yl)piperidine Chemical compound CC=1C=C2C=CC=C(C2=CC=1)C1CCNCC1 YCHGSPFOWZOCOO-UHFFFAOYSA-N 0.000 description 5
- DMQUNNZSHDASMW-UHFFFAOYSA-N 4-[4-[(2-methylpropan-2-yl)oxycarbonyl]piperazin-1-yl]naphthalene-1-carboxylic acid Chemical compound C(C)(C)(C)OC(=O)N1CCN(CC1)C1=CC=C(C2=CC=CC=C12)C(=O)O DMQUNNZSHDASMW-UHFFFAOYSA-N 0.000 description 5
- OUNQUWORSXHSJN-UHFFFAOYSA-N 4-bromonaphthalen-1-ol Chemical compound C1=CC=C2C(O)=CC=C(Br)C2=C1 OUNQUWORSXHSJN-UHFFFAOYSA-N 0.000 description 5
- QGYYIGFOQWATCI-UHFFFAOYSA-N 4-piperidin-4-ylnaphthalene-1-carboxamide Chemical compound N1CCC(CC1)C1=CC=C(C2=CC=CC=C12)C(=O)N QGYYIGFOQWATCI-UHFFFAOYSA-N 0.000 description 5
- RTVYEZHKMKEZRI-UHFFFAOYSA-N 5-(2-oxopiperidin-4-yl)-8-piperidin-4-yloxyisoquinoline-3-carboxamide Chemical compound O=C1NCCC(C1)C1=C2C=C(N=CC2=C(C=C1)OC1CCNCC1)C(=O)N RTVYEZHKMKEZRI-UHFFFAOYSA-N 0.000 description 5
- UXTVUVDYTMHLIH-UHFFFAOYSA-N 5-piperidin-4-yl-8-(trifluoromethyl)quinoline Chemical compound N1CCC(CC1)C1=C2C=CC=NC2=C(C=C1)C(F)(F)F UXTVUVDYTMHLIH-UHFFFAOYSA-N 0.000 description 5
- CLAUAZRUARRDCR-UHFFFAOYSA-N 8-naphthalen-1-yl-1,3-diazaspiro[4.5]decan-2-one Chemical compound O=C1NCC2(CCC(CC2)C2=CC=CC3=CC=CC=C23)N1 CLAUAZRUARRDCR-UHFFFAOYSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 238000008214 LDL Cholesterol Methods 0.000 description 5
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 5
- GRTWUVXILDMZKX-UHFFFAOYSA-N N-phenyl-4-piperidin-4-ylnaphthalene-1-sulfonamide Chemical compound C1(=CC=CC=C1)NS(=O)(=O)C1=CC=C(C2=CC=CC=C12)C1CCNCC1 GRTWUVXILDMZKX-UHFFFAOYSA-N 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 206010045261 Type IIa hyperlipidaemia Diseases 0.000 description 5
- 108010062497 VLDL Lipoproteins Proteins 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 239000003416 antiarrhythmic agent Substances 0.000 description 5
- 239000003146 anticoagulant agent Substances 0.000 description 5
- 239000003524 antilipemic agent Substances 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 5
- 125000003636 chemical group Chemical group 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- 238000010511 deprotection reaction Methods 0.000 description 5
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 210000003494 hepatocyte Anatomy 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 208000010125 myocardial infarction Diseases 0.000 description 5
- 238000002953 preparative HPLC Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 5
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 5
- 238000013456 study Methods 0.000 description 5
- 125000000547 substituted alkyl group Chemical group 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 239000011593 sulfur Chemical group 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- ANHRJEPTGOIJBJ-UHFFFAOYSA-N tert-butyl 4-[4-[1-[(2-methylpropan-2-yl)oxycarbonyl]piperidin-4-yl]oxynaphthalen-1-yl]piperazine-1-carboxylate Chemical compound C(C)(C)(C)OC(=O)N1CCC(CC1)OC1=CC=C(C2=CC=CC=C12)N1CCN(CC1)C(=O)OC(C)(C)C ANHRJEPTGOIJBJ-UHFFFAOYSA-N 0.000 description 5
- RCUBIBWXHMIALE-UHFFFAOYSA-N tert-butyl 4-[4-[4-[(2-methylpropan-2-yl)oxycarbonyl]piperazine-1-carbonyl]naphthalen-1-yl]piperazine-1-carboxylate Chemical compound C(C)(C)(C)OC(=O)N1CCN(CC1)C1=CC=C(C2=CC=CC=C12)C(=O)N1CCN(CC1)C(=O)OC(C)(C)C RCUBIBWXHMIALE-UHFFFAOYSA-N 0.000 description 5
- 229940124549 vasodilator Drugs 0.000 description 5
- 239000003071 vasodilator agent Substances 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 4
- BEJZAXOHPXKFOD-UHFFFAOYSA-N 4-(4-chloronaphthalen-1-yl)piperidine Chemical compound ClC1=CC=C(C2=CC=CC=C12)C1CCNCC1 BEJZAXOHPXKFOD-UHFFFAOYSA-N 0.000 description 4
- VVTBYGHLJXFWLD-UHFFFAOYSA-N 4-(4-cyclohexylnaphthalen-1-yl)piperidine Chemical compound C1(CCCCC1)C1=CC=C(C2=CC=CC=C12)C1CCNCC1 VVTBYGHLJXFWLD-UHFFFAOYSA-N 0.000 description 4
- UOFJWHYYHCZJQJ-UHFFFAOYSA-N 4-(4-piperidin-4-ylsulfonylnaphthalen-1-yl)piperidine Chemical compound N1CCC(CC1)C1=CC=C(C2=CC=CC=C12)S(=O)(=O)C1CCNCC1 UOFJWHYYHCZJQJ-UHFFFAOYSA-N 0.000 description 4
- CRKVCPCOVYUANF-UHFFFAOYSA-N 4-[4-(oxan-4-yloxy)naphthalen-1-yl]piperidine Chemical compound O1CCC(CC1)OC1=CC=C(C2=CC=CC=C12)C1CCNCC1 CRKVCPCOVYUANF-UHFFFAOYSA-N 0.000 description 4
- RMORGIUZKIWRBA-UHFFFAOYSA-N 4-[4-(piperidin-4-ylmethyl)naphthalen-1-yl]piperidine Chemical compound N1CCC(CC1)C1=CC=C(C2=CC=CC=C12)CC1CCNCC1 RMORGIUZKIWRBA-UHFFFAOYSA-N 0.000 description 4
- OVKVQKJCZBXKJS-UHFFFAOYSA-N 4-piperidin-4-yl-N-(5,6,7,8-tetrahydronaphthalen-2-yl)naphthalene-1-sulfonamide Chemical compound N1CCC(CC1)C1=CC=C(C2=CC=CC=C12)S(=O)(=O)NC1=CC=2CCCCC=2C=C1 OVKVQKJCZBXKJS-UHFFFAOYSA-N 0.000 description 4
- CAKKAUXFSWHJIW-UHFFFAOYSA-N 4-piperidin-4-ylnaphthalen-1-amine Chemical compound N1CCC(CC1)C1=CC=C(C2=CC=CC=C12)N CAKKAUXFSWHJIW-UHFFFAOYSA-N 0.000 description 4
- NZUKVXJODWISBJ-UHFFFAOYSA-N 4-piperidin-4-ylnaphthalene-1-sulfonamide Chemical compound N1CCC(CC1)C1=CC=C(C2=CC=CC=C12)S(=O)(=O)N NZUKVXJODWISBJ-UHFFFAOYSA-N 0.000 description 4
- WQQMZGICCUYBDW-UHFFFAOYSA-N 5-piperidin-4-ylnaphthalene-1-carboxamide Chemical compound N1CCC(CC1)C1=C2C=CC=C(C2=CC=C1)C(=O)N WQQMZGICCUYBDW-UHFFFAOYSA-N 0.000 description 4
- RLXSWFHUJIOCFJ-UHFFFAOYSA-N 5-piperidin-4-ylnaphthalene-2-carboxamide Chemical compound N1CCC(CC1)C1=C2C=CC(=CC2=CC=C1)C(=O)N RLXSWFHUJIOCFJ-UHFFFAOYSA-N 0.000 description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 4
- LAZXOIRPUSHMKH-UHFFFAOYSA-N 8-piperidin-4-yl-5-(trifluoromethyl)quinoline Chemical compound N1CCC(CC1)C=1C=CC(=C2C=CC=NC=12)C(F)(F)F LAZXOIRPUSHMKH-UHFFFAOYSA-N 0.000 description 4
- 239000005541 ACE inhibitor Substances 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- 239000007821 HATU Substances 0.000 description 4
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 4
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 4
- HGIJVEVPYOXEAU-UHFFFAOYSA-N N-(4-piperidin-4-ylnaphthalen-1-yl)oxan-4-amine Chemical compound N1CCC(CC1)C1=CC=C(C2=CC=CC=C12)NC1CCOCC1 HGIJVEVPYOXEAU-UHFFFAOYSA-N 0.000 description 4
- 101150094724 PCSK9 gene Proteins 0.000 description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 4
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000017531 blood circulation Effects 0.000 description 4
- 230000036770 blood supply Effects 0.000 description 4
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 4
- 239000002368 cardiac glycoside Substances 0.000 description 4
- 229940097217 cardiac glycoside Drugs 0.000 description 4
- 230000004087 circulation Effects 0.000 description 4
- 230000035602 clotting Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 235000005911 diet Nutrition 0.000 description 4
- 239000002934 diuretic Substances 0.000 description 4
- 229940030606 diuretics Drugs 0.000 description 4
- 230000002526 effect on cardiovascular system Effects 0.000 description 4
- 201000001386 familial hypercholesterolemia Diseases 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 208000019622 heart disease Diseases 0.000 description 4
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 208000028867 ischemia Diseases 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- IUYHWZFSGMZEOG-UHFFFAOYSA-M magnesium;propane;chloride Chemical compound [Mg+2].[Cl-].C[CH-]C IUYHWZFSGMZEOG-UHFFFAOYSA-M 0.000 description 4
- VWPOSFSPZNDTMJ-UCWKZMIHSA-N nadolol Chemical compound C1[C@@H](O)[C@@H](O)CC2=C1C=CC=C2OCC(O)CNC(C)(C)C VWPOSFSPZNDTMJ-UCWKZMIHSA-N 0.000 description 4
- 150000002823 nitrates Chemical class 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000006187 pill Substances 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 235000017557 sodium bicarbonate Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229930002534 steroid glycoside Natural products 0.000 description 4
- 150000008143 steroidal glycosides Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- CCGFNUPRTNHTSC-UHFFFAOYSA-N tert-butyl 4-[4-(oxan-4-ylamino)naphthalen-1-yl]-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound O1CCC(CC1)NC1=CC=C(C2=CC=CC=C12)C=1CCN(CC=1)C(=O)OC(C)(C)C CCGFNUPRTNHTSC-UHFFFAOYSA-N 0.000 description 4
- ICSAWTHYXTVBED-UHFFFAOYSA-N tert-butyl 4-[4-[1-[(2-methylpropan-2-yl)oxycarbonyl]piperidin-4-yl]sulfonylnaphthalen-1-yl]piperazine-1-carboxylate Chemical compound C(C)(C)(C)OC(=O)N1CCC(CC1)S(=O)(=O)C1=CC=C(C2=CC=CC=C12)N1CCN(CC1)C(=O)OC(C)(C)C ICSAWTHYXTVBED-UHFFFAOYSA-N 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 4
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 4
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 3
- XWTYSIMOBUGWOL-UHFFFAOYSA-N (+-)-Terbutaline Chemical compound CC(C)(C)NCC(O)C1=CC(O)=CC(O)=C1 XWTYSIMOBUGWOL-UHFFFAOYSA-N 0.000 description 3
- IUMTWLLABFPJJW-UHFFFAOYSA-N (1-naphthalen-1-ylpiperidin-4-yl)urea Chemical compound NC(=O)NC1CCN(CC1)C1=CC=CC2=CC=CC=C12 IUMTWLLABFPJJW-UHFFFAOYSA-N 0.000 description 3
- WDNMKRMWJVRTKC-UHFFFAOYSA-N (4-chloronaphthalen-1-yl) trifluoromethanesulfonate Chemical compound C1=CC=C2C(OS(=O)(=O)C(F)(F)F)=CC=C(Cl)C2=C1 WDNMKRMWJVRTKC-UHFFFAOYSA-N 0.000 description 3
- NORNTHXAMOXDKX-UHFFFAOYSA-N (5-bromonaphthalen-1-yl)methanol Chemical compound C1=CC=C2C(CO)=CC=CC2=C1Br NORNTHXAMOXDKX-UHFFFAOYSA-N 0.000 description 3
- WQWYMTQBTFOERJ-UHFFFAOYSA-N (5-bromonaphthalen-2-yl)methanol Chemical compound BrC1=CC=CC2=CC(CO)=CC=C21 WQWYMTQBTFOERJ-UHFFFAOYSA-N 0.000 description 3
- UYYBCDKQJMABTJ-UHFFFAOYSA-N 1-bromo-5-(bromomethyl)naphthalene Chemical compound C1=CC=C2C(CBr)=CC=CC2=C1Br UYYBCDKQJMABTJ-UHFFFAOYSA-N 0.000 description 3
- QFRWNUJVZXCUJG-UHFFFAOYSA-N 1-bromo-5-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1Br QFRWNUJVZXCUJG-UHFFFAOYSA-N 0.000 description 3
- PSVVMNONOHGTFC-UHFFFAOYSA-N 1-bromo-6-(bromomethyl)naphthalene Chemical compound BrC1=CC=CC2=CC(CBr)=CC=C21 PSVVMNONOHGTFC-UHFFFAOYSA-N 0.000 description 3
- BEDPUGSDUDHPMR-UHFFFAOYSA-N 1-bromo-6-methylnaphthalene Chemical compound BrC1=CC=CC2=CC(C)=CC=C21 BEDPUGSDUDHPMR-UHFFFAOYSA-N 0.000 description 3
- HHSDZLLPIXMEIU-UHFFFAOYSA-N 1-bromoheptadecane Chemical compound CCCCCCCCCCCCCCCCCBr HHSDZLLPIXMEIU-UHFFFAOYSA-N 0.000 description 3
- DLKQHBOKULLWDQ-UHFFFAOYSA-N 1-bromonaphthalene Chemical compound C1=CC=C2C(Br)=CC=CC2=C1 DLKQHBOKULLWDQ-UHFFFAOYSA-N 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 3
- GYUPNPHOZCUMSI-UHFFFAOYSA-N 2-(4-chloronaphthalen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(Cl)C2=CC=CC=C12 GYUPNPHOZCUMSI-UHFFFAOYSA-N 0.000 description 3
- YNOUUASLCIDTKC-UHFFFAOYSA-N 4-(4-bromonaphthalen-1-yl)oxyoxane Chemical compound BrC1=CC=C(C2=CC=CC=C12)OC1CCOCC1 YNOUUASLCIDTKC-UHFFFAOYSA-N 0.000 description 3
- CHQAXXOSSWRHQX-UHFFFAOYSA-N 4-bromo-1-tritylbenzimidazole Chemical compound C1=NC=2C(Br)=CC=CC=2N1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 CHQAXXOSSWRHQX-UHFFFAOYSA-N 0.000 description 3
- DLPHANNRPPCRMP-UHFFFAOYSA-N 4-bromo-N-(5,6,7,8-tetrahydronaphthalen-2-yl)naphthalene-1-sulfonamide Chemical compound BrC1=CC=C(C2=CC=CC=C12)S(=O)(=O)NC1=CC=2CCCCC=2C=C1 DLPHANNRPPCRMP-UHFFFAOYSA-N 0.000 description 3
- CZTMGDKMOJRIEI-UHFFFAOYSA-N 4-bromonaphthalene-1-sulfonamide Chemical compound C1=CC=C2C(S(=O)(=O)N)=CC=C(Br)C2=C1 CZTMGDKMOJRIEI-UHFFFAOYSA-N 0.000 description 3
- JVVRCYWZTJLJSG-UHFFFAOYSA-N 4-dimethylaminophenol Chemical compound CN(C)C1=CC=C(O)C=C1 JVVRCYWZTJLJSG-UHFFFAOYSA-N 0.000 description 3
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 3
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-dimethylaminopyridine Substances CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 3
- IMRJYQQJJPTLSL-UHFFFAOYSA-N 4-piperazin-1-yl-1-tritylbenzimidazole Chemical compound C1CNCCN1C1=CC=CC2=C1N=CN2C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 IMRJYQQJJPTLSL-UHFFFAOYSA-N 0.000 description 3
- JFOADSBVCFYEOJ-UHFFFAOYSA-N 4-piperazin-1-yl-N-(5,6,7,8-tetrahydronaphthalen-1-yl)naphthalene-1-sulfonamide Chemical compound N1(CCNCC1)C1=CC=C(C2=CC=CC=C12)S(=O)(=O)NC1=CC=CC=2CCCCC1=2 JFOADSBVCFYEOJ-UHFFFAOYSA-N 0.000 description 3
- KPYRAXGIMOAVAY-UHFFFAOYSA-N 5-[1-[(2-methylpropan-2-yl)oxycarbonyl]piperidin-4-yl]naphthalene-2-carboxylic acid Chemical compound C(C)(C)(C)OC(=O)N1CCC(CC1)C1=C2C=CC(=CC2=CC=C1)C(=O)O KPYRAXGIMOAVAY-UHFFFAOYSA-N 0.000 description 3
- SZFXXNVLSUTKJF-UHFFFAOYSA-N 5-bromonaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1Br SZFXXNVLSUTKJF-UHFFFAOYSA-N 0.000 description 3
- OVWYNMZBRFDXDK-UHFFFAOYSA-N 5-fluoro-8-piperidin-4-ylquinoline Chemical compound FC1=C2C=CC=NC2=C(C=C1)C1CCNCC1 OVWYNMZBRFDXDK-UHFFFAOYSA-N 0.000 description 3
- SLRQZPDPELUOEM-UHFFFAOYSA-N 8-bromo-5-(trifluoromethyl)quinoline Chemical compound C1=CC=C2C(C(F)(F)F)=CC=C(Br)C2=N1 SLRQZPDPELUOEM-UHFFFAOYSA-N 0.000 description 3
- WGZBCSNAZVZXAI-UHFFFAOYSA-N 8-piperidin-4-ylquinoline Chemical compound C1CNCCC1C1=CC=CC2=CC=CN=C12 WGZBCSNAZVZXAI-UHFFFAOYSA-N 0.000 description 3
- XPCFTKFZXHTYIP-PMACEKPBSA-N Benazepril Chemical compound C([C@@H](C(=O)OCC)N[C@@H]1C(N(CC(O)=O)C2=CC=CC=C2CC1)=O)CC1=CC=CC=C1 XPCFTKFZXHTYIP-PMACEKPBSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ASSZWSWBRMPKNY-UHFFFAOYSA-N C1(=CCCCC1)C1=CC=C(C2=CC=CC=C12)O Chemical compound C1(=CCCCC1)C1=CC=C(C2=CC=CC=C12)O ASSZWSWBRMPKNY-UHFFFAOYSA-N 0.000 description 3
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 description 3
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 208000026350 Inborn Genetic disease Diseases 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- ZEMBVFJOOSAPTO-UHFFFAOYSA-N N-(1-naphthalen-1-ylpiperidin-4-yl)methanesulfonamide Chemical compound C1(=CC=CC2=CC=CC=C12)N1CCC(CC1)NS(=O)(=O)C ZEMBVFJOOSAPTO-UHFFFAOYSA-N 0.000 description 3
- SLSCEGSPFCTKLE-UHFFFAOYSA-N N-(4-bromonaphthalen-1-yl)oxan-4-amine Chemical compound BrC1=CC=C(C2=CC=CC=C12)NC1CCOCC1 SLSCEGSPFCTKLE-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229940127355 PCSK9 Inhibitors Drugs 0.000 description 3
- 208000018262 Peripheral vascular disease Diseases 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- GSRRQPYMAPHFSS-UHFFFAOYSA-N [4-(cyclohexen-1-yl)naphthalen-1-yl] trifluoromethanesulfonate Chemical compound FC(S(=O)(=O)OC1=CC=C(C2=CC=CC=C12)C1=CCCCC1)(F)F GSRRQPYMAPHFSS-UHFFFAOYSA-N 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 230000003257 anti-anginal effect Effects 0.000 description 3
- 229940124345 antianginal agent Drugs 0.000 description 3
- 229940127219 anticoagulant drug Drugs 0.000 description 3
- 229960004676 antithrombotic agent Drugs 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 125000002837 carbocyclic group Chemical group 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 229940083181 centrally acting adntiadrenergic agent methyldopa Drugs 0.000 description 3
- 230000031154 cholesterol homeostasis Effects 0.000 description 3
- 235000015165 citric acid Nutrition 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000012954 diazonium Substances 0.000 description 3
- 229960004042 diazoxide Drugs 0.000 description 3
- 230000037213 diet Effects 0.000 description 3
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- IZEKFCXSFNUWAM-UHFFFAOYSA-N dipyridamole Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCO)=NC=1N1CCCCC1 IZEKFCXSFNUWAM-UHFFFAOYSA-N 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000003527 fibrinolytic agent Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000012458 free base Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 150000007529 inorganic bases Chemical class 0.000 description 3
- NIZHERJWXFHGGU-UHFFFAOYSA-N isocyanato(trimethyl)silane Chemical compound C[Si](C)(C)N=C=O NIZHERJWXFHGGU-UHFFFAOYSA-N 0.000 description 3
- 210000005229 liver cell Anatomy 0.000 description 3
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- MGAHYBCONLQGDK-UHFFFAOYSA-N methyl 5-bromonaphthalene-1-carboxylate Chemical compound C1=CC=C2C(C(=O)OC)=CC=CC2=C1Br MGAHYBCONLQGDK-UHFFFAOYSA-N 0.000 description 3
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 125000006574 non-aromatic ring group Chemical group 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 150000007530 organic bases Chemical class 0.000 description 3
- ZEERHWXRRLRIQO-UHFFFAOYSA-N oxan-4-yl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OC1CCOCC1 ZEERHWXRRLRIQO-UHFFFAOYSA-N 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 210000000496 pancreas Anatomy 0.000 description 3
- IWELDVXSEVIIGI-UHFFFAOYSA-N piperazin-2-one Chemical compound O=C1CNCCN1 IWELDVXSEVIIGI-UHFFFAOYSA-N 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- IENZQIKPVFGBNW-UHFFFAOYSA-N prazosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1=CC=CO1 IENZQIKPVFGBNW-UHFFFAOYSA-N 0.000 description 3
- 229960001289 prazosin Drugs 0.000 description 3
- WFXFYZULCQKPIP-UHFFFAOYSA-N prazosin hydrochloride Chemical compound [H+].[Cl-].N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1=CC=CO1 WFXFYZULCQKPIP-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000012279 sodium borohydride Substances 0.000 description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 description 3
- 239000012453 solvate Substances 0.000 description 3
- 125000005017 substituted alkenyl group Chemical group 0.000 description 3
- AARMGWKLAAMMFY-UHFFFAOYSA-N tert-butyl 4-(1,2,3,4-tetrahydroquinolin-8-yl)piperidine-1-carboxylate Chemical compound C1CN(C(=O)OC(C)(C)C)CCC1C1=CC=CC2=C1NCCC2 AARMGWKLAAMMFY-UHFFFAOYSA-N 0.000 description 3
- KKPBSRAZIOUHIK-UHFFFAOYSA-N tert-butyl 4-(4-aminonaphthalen-1-yl)-3,6-dihydro-2h-pyridine-1-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCC(C=2C3=CC=CC=C3C(N)=CC=2)=C1 KKPBSRAZIOUHIK-UHFFFAOYSA-N 0.000 description 3
- OQXAVVYUIYMQJW-UHFFFAOYSA-N tert-butyl 4-(4-aminonaphthalen-1-yl)piperidine-1-carboxylate Chemical compound C1CN(C(=O)OC(C)(C)C)CCC1C1=CC=C(N)C2=CC=CC=C12 OQXAVVYUIYMQJW-UHFFFAOYSA-N 0.000 description 3
- GJSXKWJQJMHEAP-UHFFFAOYSA-N tert-butyl 4-(4-chloronaphthalen-1-yl)piperidine-1-carboxylate Chemical compound ClC1=CC=C(C2=CC=CC=C12)C1CCN(CC1)C(=O)OC(C)(C)C GJSXKWJQJMHEAP-UHFFFAOYSA-N 0.000 description 3
- ZQFRPFWNDJYJCI-UHFFFAOYSA-N tert-butyl 4-(4-cyclohexylnaphthalen-1-yl)piperidine-1-carboxylate Chemical compound C1(CCCCC1)C1=CC=C(C2=CC=CC=C12)C1CCN(CC1)C(=O)OC(C)(C)C ZQFRPFWNDJYJCI-UHFFFAOYSA-N 0.000 description 3
- OKIOTWMPMLYXJM-UHFFFAOYSA-N tert-butyl 4-(4-ethoxycarbonylnaphthalen-1-yl)piperazine-1-carboxylate Chemical compound C(C)OC(=O)C1=CC=C(C2=CC=CC=C12)N1CCN(CC1)C(=O)OC(C)(C)C OKIOTWMPMLYXJM-UHFFFAOYSA-N 0.000 description 3
- LKXUDIVTRRFPNG-UHFFFAOYSA-N tert-butyl 4-(4-formylnaphthalen-1-yl)piperazine-1-carboxylate Chemical compound C(=O)C1=CC=C(C2=CC=CC=C12)N1CCN(CC1)C(=O)OC(C)(C)C LKXUDIVTRRFPNG-UHFFFAOYSA-N 0.000 description 3
- OTUUDQRFPMHWMO-UHFFFAOYSA-N tert-butyl 4-(4-methylnaphthalen-1-yl)-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound CC1=CC=C(C2=CCN(CC2)C(=O)OC(C)(C)C)C2=CC=CC=C12 OTUUDQRFPMHWMO-UHFFFAOYSA-N 0.000 description 3
- HYYBXZKBOUNFBP-UHFFFAOYSA-N tert-butyl 4-(4-methylnaphthalen-1-yl)piperidine-1-carboxylate Chemical compound CC1=CC=C(C2=CC=CC=C12)C1CCN(CC1)C(=O)OC(C)(C)C HYYBXZKBOUNFBP-UHFFFAOYSA-N 0.000 description 3
- ZICBPXBBMQUBEI-UHFFFAOYSA-N tert-butyl 4-(4-sulfamoylnaphthalen-1-yl)-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(=CC1)C1=CC=C(C2=CC=CC=C12)S(N)(=O)=O ZICBPXBBMQUBEI-UHFFFAOYSA-N 0.000 description 3
- CDZTWHSLCBJAJA-UHFFFAOYSA-N tert-butyl 4-(4-sulfamoylnaphthalen-1-yl)piperidine-1-carboxylate Chemical compound S(N)(=O)(=O)C1=CC=C(C2=CC=CC=C12)C1CCN(CC1)C(=O)OC(C)(C)C CDZTWHSLCBJAJA-UHFFFAOYSA-N 0.000 description 3
- QLBVPSWLVCNHRX-UHFFFAOYSA-N tert-butyl 4-(5-fluoro-1,2,3,4-tetrahydroquinolin-8-yl)piperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(CC1)C1=CC=C(F)C2=C1NCCC2 QLBVPSWLVCNHRX-UHFFFAOYSA-N 0.000 description 3
- YMGGJUXJLHHYKC-UHFFFAOYSA-N tert-butyl 4-(5-fluoroquinolin-8-yl)-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound FC1=C2C=CC=NC2=C(C=C1)C=1CCN(CC=1)C(=O)OC(C)(C)C YMGGJUXJLHHYKC-UHFFFAOYSA-N 0.000 description 3
- VTFQSUHTPUKWEH-UHFFFAOYSA-N tert-butyl 4-(5-fluoroquinolin-8-yl)piperidine-1-carboxylate Chemical compound FC1=C2C=CC=NC2=C(C=C1)C1CCN(CC1)C(=O)OC(C)(C)C VTFQSUHTPUKWEH-UHFFFAOYSA-N 0.000 description 3
- JQSQVMCWSWGIFZ-UHFFFAOYSA-N tert-butyl 4-(5-methoxycarbonylnaphthalen-1-yl)-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound COC(=O)C1=C2C=CC=C(C3=CCN(CC3)C(=O)OC(C)(C)C)C2=CC=C1 JQSQVMCWSWGIFZ-UHFFFAOYSA-N 0.000 description 3
- CXHWAGIRINPIMI-UHFFFAOYSA-N tert-butyl 4-(5-methoxycarbonylnaphthalen-1-yl)piperidine-1-carboxylate Chemical compound COC(=O)C1=C2C=CC=C(C2=CC=C1)C1CCN(CC1)C(=O)OC(C)(C)C CXHWAGIRINPIMI-UHFFFAOYSA-N 0.000 description 3
- NTRZZOXEVGKMKG-UHFFFAOYSA-N tert-butyl 4-(5-methylnaphthalen-1-yl)-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound CC1=C2C=CC=C(C3=CCN(CC3)C(=O)OC(C)(C)C)C2=CC=C1 NTRZZOXEVGKMKG-UHFFFAOYSA-N 0.000 description 3
- HJGSLKSEKPYMRP-UHFFFAOYSA-N tert-butyl 4-(5-methylnaphthalen-1-yl)piperidine-1-carboxylate Chemical compound CC1=C2C=CC=C(C2=CC=C1)C1CCN(CC1)C(=O)OC(C)(C)C HJGSLKSEKPYMRP-UHFFFAOYSA-N 0.000 description 3
- PKNQZQCYYKALRT-UHFFFAOYSA-N tert-butyl 4-(5-piperazin-1-ylisoquinolin-8-yl)oxypiperidine-1-carboxylate Chemical compound N1(CCNCC1)C1=C2C=CN=CC2=C(C=C1)OC1CCN(CC1)C(=O)OC(C)(C)C PKNQZQCYYKALRT-UHFFFAOYSA-N 0.000 description 3
- FSBNZQDJBWIRQF-UHFFFAOYSA-N tert-butyl 4-(6-carbamoylnaphthalen-1-yl)piperidine-1-carboxylate Chemical compound C1CN(C(=O)OC(C)(C)C)CCC1C1=CC=CC2=CC(C(N)=O)=CC=C12 FSBNZQDJBWIRQF-UHFFFAOYSA-N 0.000 description 3
- GWKWOXNXKJRURE-UHFFFAOYSA-N tert-butyl 4-(6-methoxycarbonylnaphthalen-1-yl)-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound COC(=O)C1=CC=C2C(C=CC=C2C2=CCN(CC2)C(=O)OC(C)(C)C)=C1 GWKWOXNXKJRURE-UHFFFAOYSA-N 0.000 description 3
- SUBHMCPDWNRIAE-UHFFFAOYSA-N tert-butyl 4-(6-methoxycarbonylnaphthalen-1-yl)piperidine-1-carboxylate Chemical compound COC(=O)C=1C=C2C=CC=C(C2=CC=1)C1CCN(CC1)C(=O)OC(C)(C)C SUBHMCPDWNRIAE-UHFFFAOYSA-N 0.000 description 3
- HPRYLOCLVDOXOA-UHFFFAOYSA-N tert-butyl 4-(6-methylnaphthalen-1-yl)-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound CC1=CC=C2C(C=CC=C2C2=CCN(CC2)C(=O)OC(C)(C)C)=C1 HPRYLOCLVDOXOA-UHFFFAOYSA-N 0.000 description 3
- VCAOKFMQUCPLMG-UHFFFAOYSA-N tert-butyl 4-(6-methylnaphthalen-1-yl)piperidine-1-carboxylate Chemical compound CC=1C=C2C=CC=C(C2=CC=1)C1CCN(CC1)C(=O)OC(C)(C)C VCAOKFMQUCPLMG-UHFFFAOYSA-N 0.000 description 3
- YOQAQRNVUNKUCQ-UHFFFAOYSA-N tert-butyl 4-[(4-methylphenyl)sulfonylhydrazinylidene]piperidine-1-carboxylate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NN=C1CCN(C(=O)OC(C)(C)C)CC1 YOQAQRNVUNKUCQ-UHFFFAOYSA-N 0.000 description 3
- IBKHRTVQFQAJFT-UHFFFAOYSA-N tert-butyl 4-[4-(5,6,7,8-tetrahydronaphthalen-2-ylsulfamoyl)naphthalen-1-yl]piperidine-1-carboxylate Chemical compound C1=C(C=CC=2CCCCC1=2)NS(=O)(=O)C1=CC=C(C2=CC=CC=C12)C1CCN(CC1)C(=O)OC(C)(C)C IBKHRTVQFQAJFT-UHFFFAOYSA-N 0.000 description 3
- NZLYBNVZPWMYHB-UHFFFAOYSA-N tert-butyl 4-[4-(cyclohexen-1-yl)naphthalen-1-yl]-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(=CC1)C1=CC=C(C2=CCCCC2)C2=CC=CC=C12 NZLYBNVZPWMYHB-UHFFFAOYSA-N 0.000 description 3
- KQDGVPBEPRHRBR-UHFFFAOYSA-N tert-butyl 4-[4-(oxan-4-ylamino)naphthalen-1-yl]piperidine-1-carboxylate Chemical compound O1CCC(CC1)NC1=CC=C(C2=CC=CC=C12)C1CCN(CC1)C(=O)OC(C)(C)C KQDGVPBEPRHRBR-UHFFFAOYSA-N 0.000 description 3
- BKWYDBKJXJBXIA-UHFFFAOYSA-N tert-butyl 4-[4-(oxan-4-yloxy)naphthalen-1-yl]-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound O1CCC(CC1)OC1=CC=C(C2=CC=CC=C12)C=1CCN(CC=1)C(=O)OC(C)(C)C BKWYDBKJXJBXIA-UHFFFAOYSA-N 0.000 description 3
- FWWRAQMTUISTOD-UHFFFAOYSA-N tert-butyl 4-[4-(oxan-4-yloxy)naphthalen-1-yl]piperidine-1-carboxylate Chemical compound O1CCC(CC1)OC1=CC=C(C2=CC=CC=C12)C1CCN(CC1)C(=O)OC(C)(C)C FWWRAQMTUISTOD-UHFFFAOYSA-N 0.000 description 3
- IVIRYGNPJKCOGB-UHFFFAOYSA-N tert-butyl 4-[4-[1-[(2-methylpropan-2-yl)oxycarbonyl]piperidin-4-yl]sulfanylnaphthalen-1-yl]piperazine-1-carboxylate Chemical compound C(C)(C)(C)OC(=O)N1CCC(CC1)SC1=CC=C(C2=CC=CC=C12)N1CCN(CC1)C(=O)OC(C)(C)C IVIRYGNPJKCOGB-UHFFFAOYSA-N 0.000 description 3
- BDLBWHCKZMPMPZ-UHFFFAOYSA-N tert-butyl 4-[4-[[1-[(2-methylpropan-2-yl)oxycarbonyl]piperidin-4-yl]amino]naphthalen-1-yl]piperazine-1-carboxylate Chemical compound C(C)(C)(C)OC(=O)N1CCC(CC1)NC1=CC=C(C2=CC=CC=C12)N1CCN(CC1)C(=O)OC(C)(C)C BDLBWHCKZMPMPZ-UHFFFAOYSA-N 0.000 description 3
- JVKUIZIQJUMJEZ-UHFFFAOYSA-N tert-butyl 4-[5-(3-oxopiperazin-1-yl)isoquinolin-8-yl]oxypiperidine-1-carboxylate Chemical compound O=C1CN(CCN1)C1=C2C=CN=CC2=C(C=C1)OC1CCN(CC1)C(=O)OC(C)(C)C JVKUIZIQJUMJEZ-UHFFFAOYSA-N 0.000 description 3
- KFNRXUGVLLOHQH-UHFFFAOYSA-N tert-butyl 4-[5-(hydroxymethyl)naphthalen-1-yl]piperidine-1-carboxylate Chemical compound OCC1=C2C=CC=C(C2=CC=C1)C1CCN(CC1)C(=O)OC(C)(C)C KFNRXUGVLLOHQH-UHFFFAOYSA-N 0.000 description 3
- CTQRCJVNHCFNHE-UHFFFAOYSA-N tert-butyl 4-[5-(trifluoromethyl)quinolin-8-yl]-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(=CC1)C1=C2N=CC=CC2=C(C=C1)C(F)(F)F CTQRCJVNHCFNHE-UHFFFAOYSA-N 0.000 description 3
- RKVCZGTXSKROTO-UHFFFAOYSA-N tert-butyl 4-[5-(trifluoromethyl)quinolin-8-yl]piperidine-1-carboxylate Chemical compound FC(C1=C2C=CC=NC2=C(C=C1)C1CCN(CC1)C(=O)OC(C)(C)C)(F)F RKVCZGTXSKROTO-UHFFFAOYSA-N 0.000 description 3
- WOEQSXAIPTXOPY-UHFFFAOYSA-N tert-butyl 4-methylsulfonyloxypiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(OS(C)(=O)=O)CC1 WOEQSXAIPTXOPY-UHFFFAOYSA-N 0.000 description 3
- SWSYBZJEUSXCHF-UHFFFAOYSA-N tert-butyl 4-naphthalen-1-ylpiperazine-1-carboxylate Chemical compound C1CN(C(=O)OC(C)(C)C)CCN1C1=CC=CC2=CC=CC=C12 SWSYBZJEUSXCHF-UHFFFAOYSA-N 0.000 description 3
- ROUYFJUVMYHXFJ-UHFFFAOYSA-N tert-butyl 4-oxopiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(=O)CC1 ROUYFJUVMYHXFJ-UHFFFAOYSA-N 0.000 description 3
- SGJUPTVIRRPQFD-UHFFFAOYSA-N tert-butyl 4-quinolin-8-yl-3,6-dihydro-2h-pyridine-1-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCC(C=2C3=NC=CC=C3C=CC=2)=C1 SGJUPTVIRRPQFD-UHFFFAOYSA-N 0.000 description 3
- SIHBPFHURKUKJA-UHFFFAOYSA-N tert-butyl 4-quinolin-8-ylpiperidine-1-carboxylate Chemical compound N1=CC=CC2=CC=CC(=C12)C1CCN(CC1)C(=O)OC(C)(C)C SIHBPFHURKUKJA-UHFFFAOYSA-N 0.000 description 3
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 3
- 229960000103 thrombolytic agent Drugs 0.000 description 3
- MWKJTNBSKNUMFN-UHFFFAOYSA-N trifluoromethyltrimethylsilane Chemical compound C[Si](C)(C)C(F)(F)F MWKJTNBSKNUMFN-UHFFFAOYSA-N 0.000 description 3
- LEIMLDGFXIOXMT-UHFFFAOYSA-N trimethylsilyl cyanide Chemical compound C[Si](C)(C)C#N LEIMLDGFXIOXMT-UHFFFAOYSA-N 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 229960001722 verapamil Drugs 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 2
- BIDNLKIUORFRQP-XYGFDPSESA-N (2s,4s)-4-cyclohexyl-1-[2-[[(1s)-2-methyl-1-propanoyloxypropoxy]-(4-phenylbutyl)phosphoryl]acetyl]pyrrolidine-2-carboxylic acid Chemical compound C([P@@](=O)(O[C@H](OC(=O)CC)C(C)C)CC(=O)N1[C@@H](C[C@H](C1)C1CCCCC1)C(O)=O)CCCC1=CC=CC=C1 BIDNLKIUORFRQP-XYGFDPSESA-N 0.000 description 2
- ZGGHKIMDNBDHJB-NRFPMOEYSA-M (3R,5S)-fluvastatin sodium Chemical compound [Na+].C12=CC=CC=C2N(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)=C1C1=CC=C(F)C=C1 ZGGHKIMDNBDHJB-NRFPMOEYSA-M 0.000 description 2
- GXVNNOPZCCOPCU-UHFFFAOYSA-N (5-piperidin-4-ylnaphthalen-1-yl)methanol hydrochloride Chemical compound Cl.OCc1cccc2c(cccc12)C1CCNCC1 GXVNNOPZCCOPCU-UHFFFAOYSA-N 0.000 description 2
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 description 2
- WLRMANUAADYWEA-NWASOUNVSA-N (S)-timolol maleate Chemical compound OC(=O)\C=C/C(O)=O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 WLRMANUAADYWEA-NWASOUNVSA-N 0.000 description 2
- BRIPGNJWPCKDQZ-WXXKFALUSA-N (e)-but-2-enedioic acid;1-[4-(2-methoxyethyl)phenoxy]-3-(propan-2-ylamino)propan-2-ol Chemical compound OC(=O)\C=C\C(O)=O.COCCC1=CC=C(OCC(O)CNC(C)C)C=C1.COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 BRIPGNJWPCKDQZ-WXXKFALUSA-N 0.000 description 2
- UUUHXMGGBIUAPW-UHFFFAOYSA-N 1-[1-[2-[[5-amino-2-[[1-[5-(diaminomethylideneamino)-2-[[1-[3-(1h-indol-3-yl)-2-[(5-oxopyrrolidine-2-carbonyl)amino]propanoyl]pyrrolidine-2-carbonyl]amino]pentanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-methylpentanoyl]pyrrolidine-2-carbon Chemical compound C1CCC(C(=O)N2C(CCC2)C(O)=O)N1C(=O)C(C(C)CC)NC(=O)C(CCC(N)=O)NC(=O)C1CCCN1C(=O)C(CCCN=C(N)N)NC(=O)C1CCCN1C(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C1CCC(=O)N1 UUUHXMGGBIUAPW-UHFFFAOYSA-N 0.000 description 2
- XTBAPWCYTNCZTO-UHFFFAOYSA-N 1H-isoindolone Natural products C1=CC=C2C(=O)N=CC2=C1 XTBAPWCYTNCZTO-UHFFFAOYSA-N 0.000 description 2
- MYWVVVZOAMHLSM-UHFFFAOYSA-N 4-(4-chloronaphthalen-1-yl)piperidine hydrochloride Chemical compound Cl.Clc1ccc(C2CCNCC2)c2ccccc12 MYWVVVZOAMHLSM-UHFFFAOYSA-N 0.000 description 2
- MOMWGYXPCHFDMC-UHFFFAOYSA-N 4-(4-cyclohexylnaphthalen-1-yl)piperidine hydrochloride Chemical compound Cl.C1CCC(CC1)c1ccc(C2CCNCC2)c2ccccc12 MOMWGYXPCHFDMC-UHFFFAOYSA-N 0.000 description 2
- FXJBNMUVOIIKLD-UHFFFAOYSA-N 4-(5-methylnaphthalen-1-yl)piperidine hydrochloride Chemical compound Cl.Cc1cccc2c(cccc12)C1CCNCC1 FXJBNMUVOIIKLD-UHFFFAOYSA-N 0.000 description 2
- TZYSATVECODECB-UHFFFAOYSA-N 4-(6-methylnaphthalen-1-yl)piperidine hydrochloride Chemical compound Cl.Cc1ccc2c(cccc2c1)C1CCNCC1 TZYSATVECODECB-UHFFFAOYSA-N 0.000 description 2
- HPTOEEFKNVDARM-UHFFFAOYSA-N 4-[4-(oxan-4-yloxy)naphthalen-1-yl]piperidine hydrochloride Chemical compound Cl.C1CC(CCN1)c1ccc(OC2CCOCC2)c2ccccc12 HPTOEEFKNVDARM-UHFFFAOYSA-N 0.000 description 2
- SXZKODVCLOIJGX-UHFFFAOYSA-N 4-bromo-1,3-benzothiazole Chemical compound BrC1=CC=CC2=C1N=CS2 SXZKODVCLOIJGX-UHFFFAOYSA-N 0.000 description 2
- MUQFMGBYYAOIJK-UHFFFAOYSA-N 4-bromo-1h-benzimidazole Chemical compound BrC1=CC=CC2=C1N=CN2 MUQFMGBYYAOIJK-UHFFFAOYSA-N 0.000 description 2
- QEFYRYVTYJSUJE-UHFFFAOYSA-N 4-fluoronaphthalene-1-sulfonyl chloride Chemical compound C1=CC=C2C(F)=CC=C(S(Cl)(=O)=O)C2=C1 QEFYRYVTYJSUJE-UHFFFAOYSA-N 0.000 description 2
- BBHYIVDZUMJSCU-UHFFFAOYSA-N 4-piperazin-1-ylnaphthalene-1-sulfonamide Chemical compound N1(CCNCC1)C1=CC=C(C2=CC=CC=C12)S(=O)(=O)N BBHYIVDZUMJSCU-UHFFFAOYSA-N 0.000 description 2
- MFLPBSWUSXPLAW-UHFFFAOYSA-N 4-piperidin-4-yl-N-(5,6,7,8-tetrahydronaphthalen-2-yl)naphthalene-1-sulfonamide hydrochloride Chemical compound Cl.O=S(=O)(Nc1ccc2CCCCc2c1)c1ccc(C2CCNCC2)c2ccccc12 MFLPBSWUSXPLAW-UHFFFAOYSA-N 0.000 description 2
- BZIBSQLWWCMTMY-UHFFFAOYSA-N 4-piperidin-4-ylnaphthalen-1-amine dihydrochloride Chemical compound Cl.Cl.Nc1ccc(C2CCNCC2)c2ccccc12 BZIBSQLWWCMTMY-UHFFFAOYSA-N 0.000 description 2
- KUHJMVPWCOCHND-UHFFFAOYSA-N 4-piperidin-4-ylnaphthalen-1-ol Chemical compound N1CCC(CC1)C1=CC=C(C2=CC=CC=C12)O KUHJMVPWCOCHND-UHFFFAOYSA-N 0.000 description 2
- ASBCFVRMBRNNAM-UHFFFAOYSA-N 4-piperidin-4-ylnaphthalene-1-sulfonamide hydrochloride Chemical compound Cl.NS(=O)(=O)c1ccc(C2CCNCC2)c2ccccc12 ASBCFVRMBRNNAM-UHFFFAOYSA-N 0.000 description 2
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 2
- QPOQPJDDJJNVRY-UHFFFAOYSA-N 5-bromonaphthalene-2-carboxylic acid Chemical compound BrC1=CC=CC2=CC(C(=O)O)=CC=C21 QPOQPJDDJJNVRY-UHFFFAOYSA-N 0.000 description 2
- CAGCMEFCQSOSDL-UHFFFAOYSA-N 5-fluoro-8-piperidin-4-ylquinoline hydrochloride Chemical compound Cl.Fc1ccc(C2CCNCC2)c2ncccc12 CAGCMEFCQSOSDL-UHFFFAOYSA-N 0.000 description 2
- ICFVXFGSXXQDSM-UHFFFAOYSA-N 5-piperidin-4-ylnaphthalene-2-carboxamide hydrochloride Chemical compound Cl.NC(=O)c1ccc2c(cccc2c1)C1CCNCC1 ICFVXFGSXXQDSM-UHFFFAOYSA-N 0.000 description 2
- FLRXILCPLKPBCJ-UHFFFAOYSA-N 8-methoxy-5-piperidin-4-ylisoquinoline-3-carboxylic acid Chemical compound COC=1C=CC(=C2C=C(N=CC=12)C(=O)O)C1CCNCC1 FLRXILCPLKPBCJ-UHFFFAOYSA-N 0.000 description 2
- NJPAIWTXVGAWAZ-UHFFFAOYSA-N 8-naphthalen-1-yl-1,3-diazaspiro[4.5]decane-2,4-dione Chemical compound O=C1NC(=O)C2(CCC(CC2)C2=CC=CC3=CC=CC=C23)N1 NJPAIWTXVGAWAZ-UHFFFAOYSA-N 0.000 description 2
- PSGWKNSGUGZCMV-UHFFFAOYSA-N 8-piperidin-4-yl-5-(trifluoromethyl)quinoline dihydrochloride Chemical compound Cl.Cl.FC(F)(F)c1ccc(C2CCNCC2)c2ncccc12 PSGWKNSGUGZCMV-UHFFFAOYSA-N 0.000 description 2
- BDKZNYYNMDZJCE-UHFFFAOYSA-N 8-piperidin-4-ylquinoline dihydrochloride Chemical compound Cl.Cl.C1CC(CCN1)c1cccc2cccnc12 BDKZNYYNMDZJCE-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- 206010002383 Angina Pectoris Diseases 0.000 description 2
- 206010002388 Angina unstable Diseases 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- 239000005552 B01AC04 - Clopidogrel Substances 0.000 description 2
- 239000002083 C09CA01 - Losartan Substances 0.000 description 2
- 239000004072 C09CA03 - Valsartan Substances 0.000 description 2
- 239000005537 C09CA07 - Telmisartan Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- GHOSNRCGJFBJIB-UHFFFAOYSA-N Candesartan cilexetil Chemical compound C=12N(CC=3C=CC(=CC=3)C=3C(=CC=CC=3)C3=NNN=N3)C(OCC)=NC2=CC=CC=1C(=O)OC(C)OC(=O)OC1CCCCC1 GHOSNRCGJFBJIB-UHFFFAOYSA-N 0.000 description 2
- 206010007559 Cardiac failure congestive Diseases 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- ZNIFSRGNXRYGHF-UHFFFAOYSA-N Clonidine hydrochloride Chemical compound Cl.ClC1=CC=CC(Cl)=C1NC1=NCCN1 ZNIFSRGNXRYGHF-UHFFFAOYSA-N 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 208000032928 Dyslipidaemia Diseases 0.000 description 2
- 108010061435 Enalapril Proteins 0.000 description 2
- 108010066671 Enalaprilat Proteins 0.000 description 2
- 108010056764 Eptifibatide Proteins 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 206010018429 Glucose tolerance impaired Diseases 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- WDZVGELJXXEGPV-YIXHJXPBSA-N Guanabenz Chemical compound NC(N)=N\N=C\C1=C(Cl)C=CC=C1Cl WDZVGELJXXEGPV-YIXHJXPBSA-N 0.000 description 2
- MCSPBPXATWBACD-GAYQJXMFSA-N Guanabenz acetate Chemical compound CC(O)=O.NC(N)=N\N=C\C1=C(Cl)C=CC=C1Cl MCSPBPXATWBACD-GAYQJXMFSA-N 0.000 description 2
- DGFYECXYGUIODH-UHFFFAOYSA-N Guanfacine hydrochloride Chemical compound Cl.NC(N)=NC(=O)CC1=C(Cl)C=CC=C1Cl DGFYECXYGUIODH-UHFFFAOYSA-N 0.000 description 2
- 238000007341 Heck reaction Methods 0.000 description 2
- 208000031226 Hyperlipidaemia Diseases 0.000 description 2
- 206010020850 Hyperthyroidism Diseases 0.000 description 2
- 108010046315 IDL Lipoproteins Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000005577 Kumada cross-coupling reaction Methods 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 description 2
- ZFMITUMMTDLWHR-UHFFFAOYSA-N Minoxidil Chemical compound NC1=[N+]([O-])C(N)=CC(N2CCCCC2)=N1 ZFMITUMMTDLWHR-UHFFFAOYSA-N 0.000 description 2
- UWWDHYUMIORJTA-HSQYWUDLSA-N Moexipril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CC2=CC(OC)=C(OC)C=C2C1)C(O)=O)CC1=CC=CC=C1 UWWDHYUMIORJTA-HSQYWUDLSA-N 0.000 description 2
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- BJOCVSOGOBHVBE-UHFFFAOYSA-N N-(1-naphthalen-1-ylpiperidin-4-yl)acetamide Chemical compound C1(=CC=CC2=CC=CC=C12)N1CCC(CC1)NC(C)=O BJOCVSOGOBHVBE-UHFFFAOYSA-N 0.000 description 2
- XKLMZUWKNUAPSZ-UHFFFAOYSA-N N-(2,6-dimethylphenyl)-2-{4-[2-hydroxy-3-(2-methoxyphenoxy)propyl]piperazin-1-yl}acetamide Chemical compound COC1=CC=CC=C1OCC(O)CN1CCN(CC(=O)NC=2C(=CC=CC=2C)C)CC1 XKLMZUWKNUAPSZ-UHFFFAOYSA-N 0.000 description 2
- JFHIMJMGUAAZHU-UHFFFAOYSA-N N-(4-piperidin-4-ylnaphthalen-1-yl)oxan-4-amine dihydrochloride Chemical compound Cl.Cl.C1CC(CCN1)c1ccc(NC2CCOCC2)c2ccccc12 JFHIMJMGUAAZHU-UHFFFAOYSA-N 0.000 description 2
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Substances BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- 238000006411 Negishi coupling reaction Methods 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 208000031481 Pathologic Constriction Diseases 0.000 description 2
- 102000004270 Peptidyl-Dipeptidase A Human genes 0.000 description 2
- 108090000882 Peptidyl-Dipeptidase A Proteins 0.000 description 2
- 208000005764 Peripheral Arterial Disease Diseases 0.000 description 2
- 208000030831 Peripheral arterial occlusive disease Diseases 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 108010022249 Proprotein Convertase 9 Proteins 0.000 description 2
- 102000012343 Proprotein Convertase 9 Human genes 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- GIIZNNXWQWCKIB-UHFFFAOYSA-N Serevent Chemical compound C1=C(O)C(CO)=CC(C(O)CNCCCCCCOCCCCC=2C=CC=CC=2)=C1 GIIZNNXWQWCKIB-UHFFFAOYSA-N 0.000 description 2
- 238000006619 Stille reaction Methods 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- 238000006069 Suzuki reaction reaction Methods 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- VXFJYXUZANRPDJ-WTNASJBWSA-N Trandopril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](C[C@H]2CCCC[C@@H]21)C(O)=O)CC1=CC=CC=C1 VXFJYXUZANRPDJ-WTNASJBWSA-N 0.000 description 2
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 2
- 208000007814 Unstable Angina Diseases 0.000 description 2
- FKLKJGAXIKTROQ-UHFFFAOYSA-M [1-[(2-methylpropan-2-yl)oxycarbonyl]piperidin-4-yl]-triphenylphosphanium bromide Chemical compound [Br-].C(C)(C)(C)OC(=O)N1CCC(CC1)[P+](C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 FKLKJGAXIKTROQ-UHFFFAOYSA-M 0.000 description 2
- GOEMGAFJFRBGGG-UHFFFAOYSA-N acebutolol Chemical compound CCCC(=O)NC1=CC=C(OCC(O)CNC(C)C)C(C(C)=O)=C1 GOEMGAFJFRBGGG-UHFFFAOYSA-N 0.000 description 2
- 229940062352 aceon Drugs 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229940092980 adalat Drugs 0.000 description 2
- 210000001789 adipocyte Anatomy 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 2
- 229960004539 alirocumab Drugs 0.000 description 2
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 2
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 2
- 125000005466 alkylenyl group Chemical group 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 125000004103 aminoalkyl group Chemical group 0.000 description 2
- IYIKLHRQXLHMJQ-UHFFFAOYSA-N amiodarone Chemical compound CCCCC=1OC2=CC=CC=C2C=1C(=O)C1=CC(I)=C(OCCN(CC)CC)C(I)=C1 IYIKLHRQXLHMJQ-UHFFFAOYSA-N 0.000 description 2
- 229960005260 amiodarone Drugs 0.000 description 2
- HTIQEAQVCYTUBX-UHFFFAOYSA-N amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-UHFFFAOYSA-N 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 150000001499 aryl bromides Chemical class 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- 230000000923 atherogenic effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- UIEATEWHFDRYRU-UHFFFAOYSA-N bepridil Chemical compound C1CCCN1C(COCC(C)C)CN(C=1C=CC=CC=1)CC1=CC=CC=C1 UIEATEWHFDRYRU-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- NWIUTZDMDHAVTP-UHFFFAOYSA-N betaxolol Chemical compound C1=CC(OCC(O)CNC(C)C)=CC=C1CCOCC1CC1 NWIUTZDMDHAVTP-UHFFFAOYSA-N 0.000 description 2
- IIBYAHWJQTYFKB-UHFFFAOYSA-N bezafibrate Chemical compound C1=CC(OC(C)(C)C(O)=O)=CC=C1CCNC(=O)C1=CC=C(Cl)C=C1 IIBYAHWJQTYFKB-UHFFFAOYSA-N 0.000 description 2
- 229960000516 bezafibrate Drugs 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 2
- OIRCOABEOLEUMC-GEJPAHFPSA-N bivalirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)CNC(=O)CNC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 OIRCOABEOLEUMC-GEJPAHFPSA-N 0.000 description 2
- 108010055460 bivalirudin Proteins 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- MCQRPQCQMGVWIQ-UHFFFAOYSA-N boron;methylsulfanylmethane Chemical compound [B].CSC MCQRPQCQMGVWIQ-UHFFFAOYSA-N 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- MAEIEVLCKWDQJH-UHFFFAOYSA-N bumetanide Chemical compound CCCCNC1=CC(C(O)=O)=CC(S(N)(=O)=O)=C1OC1=CC=CC=C1 MAEIEVLCKWDQJH-UHFFFAOYSA-N 0.000 description 2
- 229940088033 calan Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 229940097633 capoten Drugs 0.000 description 2
- 229960000830 captopril Drugs 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000002327 cardiovascular agent Substances 0.000 description 2
- 229940125692 cardiovascular agent Drugs 0.000 description 2
- 229940088029 cardizem Drugs 0.000 description 2
- LWAFSWPYPHEXKX-UHFFFAOYSA-N carteolol Chemical compound N1C(=O)CCC2=C1C=CC=C2OCC(O)CNC(C)(C)C LWAFSWPYPHEXKX-UHFFFAOYSA-N 0.000 description 2
- OGHNVEJMJSYVRP-UHFFFAOYSA-N carvedilol Chemical compound COC1=CC=CC=C1OCCNCC(O)COC1=CC=CC2=C1C1=CC=CC=C1N2 OGHNVEJMJSYVRP-UHFFFAOYSA-N 0.000 description 2
- 229940063628 catapres Drugs 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- KPSRODZRAIWAKH-UHFFFAOYSA-N ciprofibrate Chemical compound C1=CC(OC(C)(C)C(O)=O)=CC=C1C1C(Cl)(Cl)C1 KPSRODZRAIWAKH-UHFFFAOYSA-N 0.000 description 2
- 229960002896 clonidine Drugs 0.000 description 2
- 229960002925 clonidine hydrochloride Drugs 0.000 description 2
- GKTWGGQPFAXNFI-HNNXBMFYSA-N clopidogrel Chemical compound C1([C@H](N2CC=3C=CSC=3CC2)C(=O)OC)=CC=CC=C1Cl GKTWGGQPFAXNFI-HNNXBMFYSA-N 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 229940097488 corgard Drugs 0.000 description 2
- 238000006880 cross-coupling reaction Methods 0.000 description 2
- 239000013058 crude material Substances 0.000 description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 2
- 229960004166 diltiazem Drugs 0.000 description 2
- QMMFVYPAHWMCMS-UHFFFAOYSA-N dimethyl monosulfide Natural products CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 229960002768 dipyridamole Drugs 0.000 description 2
- VJECBOKJABCYMF-UHFFFAOYSA-N doxazosin mesylate Chemical compound [H+].CS([O-])(=O)=O.C1OC2=CC=CC=C2OC1C(=O)N(CC1)CCN1C1=NC(N)=C(C=C(C(OC)=C2)OC)C2=N1 VJECBOKJABCYMF-UHFFFAOYSA-N 0.000 description 2
- ZQTNQVWKHCQYLQ-UHFFFAOYSA-N dronedarone Chemical compound C1=CC(OCCCN(CCCC)CCCC)=CC=C1C(=O)C1=C(CCCC)OC2=CC=C(NS(C)(=O)=O)C=C12 ZQTNQVWKHCQYLQ-UHFFFAOYSA-N 0.000 description 2
- 229960002084 dronedarone Drugs 0.000 description 2
- 230000036267 drug metabolism Effects 0.000 description 2
- 230000008482 dysregulation Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- GBXSMTUPTTWBMN-XIRDDKMYSA-N enalapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 GBXSMTUPTTWBMN-XIRDDKMYSA-N 0.000 description 2
- 229960000873 enalapril Drugs 0.000 description 2
- OYFJQPXVCSSHAI-QFPUQLAESA-N enalapril maleate Chemical compound OC(=O)\C=C/C(O)=O.C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 OYFJQPXVCSSHAI-QFPUQLAESA-N 0.000 description 2
- 230000002121 endocytic effect Effects 0.000 description 2
- 239000012055 enteric layer Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- JUKPWJGBANNWMW-VWBFHTRKSA-N eplerenone Chemical compound C([C@@H]1[C@]2(C)C[C@H]3O[C@]33[C@@]4(C)CCC(=O)C=C4C[C@H]([C@@H]13)C(=O)OC)C[C@@]21CCC(=O)O1 JUKPWJGBANNWMW-VWBFHTRKSA-N 0.000 description 2
- OROAFUQRIXKEMV-LDADJPATSA-N eprosartan Chemical compound C=1C=C(C(O)=O)C=CC=1CN1C(CCCC)=NC=C1\C=C(C(O)=O)/CC1=CC=CS1 OROAFUQRIXKEMV-LDADJPATSA-N 0.000 description 2
- CZKPOZZJODAYPZ-LROMGURASA-N eptifibatide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCCNC(=N)N)NC(=O)CCSSC[C@@H](C(N)=O)NC(=O)[C@@H]2CCCN2C(=O)[C@@H]1CC1=CNC2=CC=CC=C12 CZKPOZZJODAYPZ-LROMGURASA-N 0.000 description 2
- AQNDDEOPVVGCPG-UHFFFAOYSA-N esmolol Chemical compound COC(=O)CCC1=CC=C(OCC(O)CNC(C)C)C=C1 AQNDDEOPVVGCPG-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 229960002027 evolocumab Drugs 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000019000 fluorine Nutrition 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- OCIFZBONRSADGH-UHFFFAOYSA-N fluorooxyboronic acid Chemical compound OB(O)OF OCIFZBONRSADGH-UHFFFAOYSA-N 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 230000010005 growth-factor like effect Effects 0.000 description 2
- ACGDKVXYNVEAGU-UHFFFAOYSA-N guanethidine Chemical compound NC(N)=NCCN1CCCCCCC1 ACGDKVXYNVEAGU-UHFFFAOYSA-N 0.000 description 2
- 229960003602 guanethidine Drugs 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 229960002474 hydralazine Drugs 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 208000003532 hypothyroidism Diseases 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229940095990 inderal Drugs 0.000 description 2
- 230000000053 inderal effect Effects 0.000 description 2
- 150000002476 indolines Chemical class 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 201000004332 intermediate coronary syndrome Diseases 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 229940088024 isoptin Drugs 0.000 description 2
- 230000000155 isotopic effect Effects 0.000 description 2
- 229960001632 labetalol Drugs 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229960002394 lisinopril Drugs 0.000 description 2
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 208000019423 liver disease Diseases 0.000 description 2
- 229940089504 lopressor Drugs 0.000 description 2
- PSIFNNKUMBGKDQ-UHFFFAOYSA-N losartan Chemical compound CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C=2NN=NN=2)C=C1 PSIFNNKUMBGKDQ-UHFFFAOYSA-N 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- VKQFCGNPDRICFG-UHFFFAOYSA-N methyl 2-methylpropyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCC(C)C)C1C1=CC=CC=C1[N+]([O-])=O VKQFCGNPDRICFG-UHFFFAOYSA-N 0.000 description 2
- AQCHWTWZEMGIFD-UHFFFAOYSA-N metolazone Chemical compound CC1NC2=CC(Cl)=C(S(N)(=O)=O)C=C2C(=O)N1C1=CC=CC=C1C AQCHWTWZEMGIFD-UHFFFAOYSA-N 0.000 description 2
- 229960002237 metoprolol Drugs 0.000 description 2
- 229940064639 minipress Drugs 0.000 description 2
- 229960003632 minoxidil Drugs 0.000 description 2
- 210000000663 muscle cell Anatomy 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- NZXOUGBBFQFCLF-UHFFFAOYSA-N n-phenyl-4-piperazin-1-ylnaphthalene-1-sulfonamide Chemical compound C=1C=C(N2CCNCC2)C2=CC=CC=C2C=1S(=O)(=O)NC1=CC=CC=C1 NZXOUGBBFQFCLF-UHFFFAOYSA-N 0.000 description 2
- 229960004255 nadolol Drugs 0.000 description 2
- 229960001597 nifedipine Drugs 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 208000035824 paresthesia Diseases 0.000 description 2
- IPVQLZZIHOAWMC-QXKUPLGCSA-N perindopril Chemical compound C1CCC[C@H]2C[C@@H](C(O)=O)N(C(=O)[C@H](C)N[C@@H](CCC)C(=O)OCC)[C@H]21 IPVQLZZIHOAWMC-QXKUPLGCSA-N 0.000 description 2
- 229960002582 perindopril Drugs 0.000 description 2
- IYNMDWMQHSMDDE-MHXJNQAMSA-N perindopril erbumine Chemical compound CC(C)(C)N.C1CCC[C@@H]2N(C(=O)[C@H](C)N[C@@H](CCC)C(=O)OCC)[C@H](C(O)=O)C[C@@H]21 IYNMDWMQHSMDDE-MHXJNQAMSA-N 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- JZQKKSLKJUAGIC-UHFFFAOYSA-N pindolol Chemical compound CC(C)NCC(O)COC1=CC=CC2=C1C=CN2 JZQKKSLKJUAGIC-UHFFFAOYSA-N 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000004036 potassium channel stimulating agent Substances 0.000 description 2
- DTGLZDAWLRGWQN-UHFFFAOYSA-N prasugrel Chemical compound C1CC=2SC(OC(=O)C)=CC=2CN1C(C=1C(=CC=CC=1)F)C(=O)C1CC1 DTGLZDAWLRGWQN-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229940088953 prinivil Drugs 0.000 description 2
- 229940089949 procardia Drugs 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229960003712 propranolol Drugs 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- LOUPRKONTZGTKE-LHHVKLHASA-N quinidine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@H]2[C@@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-LHHVKLHASA-N 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- HDACQVRGBOVJII-JBDAPHQKSA-N ramipril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](C[C@@H]2CCC[C@@H]21)C(O)=O)CC1=CC=CC=C1 HDACQVRGBOVJII-JBDAPHQKSA-N 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- QEVHRUUCFGRFIF-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C(C5=CC=C(OC)C=C5N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 QEVHRUUCFGRFIF-MDEJGZGSSA-N 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- ZBMZVLHSJCTVON-UHFFFAOYSA-N sotalol Chemical compound CC(C)NCC(O)C1=CC=C(NS(C)(=O)=O)C=C1 ZBMZVLHSJCTVON-UHFFFAOYSA-N 0.000 description 2
- LXMSZDCAJNLERA-ZHYRCANASA-N spironolactone Chemical compound C([C@@H]1[C@]2(C)CC[C@@H]3[C@@]4(C)CCC(=O)C=C4C[C@H]([C@@H]13)SC(=O)C)C[C@@]21CCC(=O)O1 LXMSZDCAJNLERA-ZHYRCANASA-N 0.000 description 2
- 230000036262 stenosis Effects 0.000 description 2
- 208000037804 stenosis Diseases 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- RMMXLENWKUUMAY-UHFFFAOYSA-N telmisartan Chemical compound CCCC1=NC2=C(C)C=C(C=3N(C4=CC=CC=C4N=3)C)C=C2N1CC(C=C1)=CC=C1C1=CC=CC=C1C(O)=O RMMXLENWKUUMAY-UHFFFAOYSA-N 0.000 description 2
- VCKUSRYTPJJLNI-UHFFFAOYSA-N terazosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1CCCO1 VCKUSRYTPJJLNI-UHFFFAOYSA-N 0.000 description 2
- KCWMZAHECWXCMX-UHFFFAOYSA-N tert-butyl 4-(5-bromoisoquinolin-8-yl)oxypiperidine-1-carboxylate Chemical compound BrC1=C2C=CN=CC2=C(C=C1)OC1CCN(CC1)C(=O)OC(C)(C)C KCWMZAHECWXCMX-UHFFFAOYSA-N 0.000 description 2
- OOXFYGKKEDRQQS-UHFFFAOYSA-N tert-butyl 4-[4-(5,6,7,8-tetrahydronaphthalen-2-ylsulfamoyl)naphthalen-1-yl]-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(=CC1)C1=CC=C(C2=CC=CC=C12)S(=O)(=O)NC1=CC2=C(CCCC2)C=C1 OOXFYGKKEDRQQS-UHFFFAOYSA-N 0.000 description 2
- ZIZXZTYMBKZFKJ-UHFFFAOYSA-N tert-butyl 4-[4-(hydroxymethyl)naphthalen-1-yl]piperazine-1-carboxylate Chemical compound OCC1=CC=C(C2=CC=CC=C12)N1CCN(CC1)C(=O)OC(C)(C)C ZIZXZTYMBKZFKJ-UHFFFAOYSA-N 0.000 description 2
- IBXQZWIECNZWIZ-UHFFFAOYSA-N tert-butyl 4-[4-(trifluoromethyl)naphthalen-1-yl]-3,6-dihydro-2H-pyridine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(=CC1)C1=CC=C(C2=CC=CC=C12)C(F)(F)F IBXQZWIECNZWIZ-UHFFFAOYSA-N 0.000 description 2
- XDFSPCNVPCGFCY-UHFFFAOYSA-N tert-butyl 4-[4-(trifluoromethyl)naphthalen-1-yl]piperazine-1-carboxylate Chemical compound FC(C1=CC=C(C2=CC=CC=C12)N1CCN(CC1)C(=O)OC(C)(C)C)(F)F XDFSPCNVPCGFCY-UHFFFAOYSA-N 0.000 description 2
- SAKYEBIDKNUXAZ-UHFFFAOYSA-N tert-butyl 4-[4-[[1-[(2-methylpropan-2-yl)oxycarbonyl]piperidin-4-ylidene]methyl]naphthalen-1-yl]piperazine-1-carboxylate Chemical compound C(C)(C)(C)OC(=O)N1CCC(CC1)=CC1=CC=C(C2=CC=CC=C12)N1CCN(CC1)C(=O)OC(C)(C)C SAKYEBIDKNUXAZ-UHFFFAOYSA-N 0.000 description 2
- LZRDHSFPLUWYAX-UHFFFAOYSA-N tert-butyl 4-aminopiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(N)CC1 LZRDHSFPLUWYAX-UHFFFAOYSA-N 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 229960004605 timolol Drugs 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- 229940108522 trandate Drugs 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 229940099270 vasotec Drugs 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 2
- 229940072252 zestril Drugs 0.000 description 2
- UKSZBOKPHAQOMP-SVLSSHOZSA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 UKSZBOKPHAQOMP-SVLSSHOZSA-N 0.000 description 1
- GKEMHVLBZNVZOI-SJKOYZFVSA-N (1r,2r)-n-methyl-1-oxo-2-pyridin-3-ylthiane-2-carbothioamide Chemical compound C=1C=CN=CC=1[C@@]1(C(=S)NC)CCCC[S@]1=O GKEMHVLBZNVZOI-SJKOYZFVSA-N 0.000 description 1
- DHQMUJSACXTPEA-UHFFFAOYSA-N (2-methoxypyridin-4-yl)boronic acid Chemical compound COC1=CC(B(O)O)=CC=N1 DHQMUJSACXTPEA-UHFFFAOYSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- JCUHKUGRLSZJIU-PPHPATTJSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid;6-chloro-1,1-dioxo-3,4-dihydro-2h-1$l^{6},2,4-benzothiadiazine-7-sulfonamide Chemical compound OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1.C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JCUHKUGRLSZJIU-PPHPATTJSA-N 0.000 description 1
- SCJYBEPFUOGAME-PPHPATTJSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid;6-chloro-1,1-dioxo-4h-1$l^{6},2,4-benzothiadiazine-7-sulfonamide Chemical compound OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1.C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NC=NS2(=O)=O SCJYBEPFUOGAME-PPHPATTJSA-N 0.000 description 1
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 1
- MMSFHQSHXRMPLJ-CVEARBPZSA-N (3s,4r)-3-hydroxy-2,2-dimethyl-4-(2-oxopyridin-1-yl)-3,4-dihydrochromene-6-carbonitrile Chemical compound N1([C@@H]2C3=CC(=CC=C3OC([C@H]2O)(C)C)C#N)C=CC=CC1=O MMSFHQSHXRMPLJ-CVEARBPZSA-N 0.000 description 1
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- 125000006653 (C1-C20) heteroaryl group Chemical group 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- 125000006649 (C2-C20) alkynyl group Chemical group 0.000 description 1
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 description 1
- 125000006650 (C2-C4) alkynyl group Chemical group 0.000 description 1
- 125000006652 (C3-C12) cycloalkyl group Chemical group 0.000 description 1
- 125000006654 (C3-C12) heteroaryl group Chemical group 0.000 description 1
- 125000006651 (C3-C20) cycloalkyl group Chemical group 0.000 description 1
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 1
- 125000006655 (C3-C8) heteroaryl group Chemical group 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- RZPZLFIUFMNCLY-WLHGVMLRSA-N (e)-but-2-enedioic acid;1-(propan-2-ylamino)-3-[4-(2-propan-2-yloxyethoxymethyl)phenoxy]propan-2-ol Chemical compound OC(=O)\C=C\C(O)=O.CC(C)NCC(O)COC1=CC=C(COCCOC(C)C)C=C1 RZPZLFIUFMNCLY-WLHGVMLRSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- 125000004605 1,2,3,4-tetrahydroisoquinolinyl group Chemical group C1(NCCC2=CC=CC=C12)* 0.000 description 1
- 125000005926 1,2-dimethylbutyloxy group Chemical group 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- AGRXIZISKRBWJU-UHFFFAOYSA-N 1-(7-piperidin-4-yloxy-1-benzothiophen-4-yl)piperazine Chemical compound C1CC(CCN1)Oc1ccc(N2CCNCC2)c2ccsc12 AGRXIZISKRBWJU-UHFFFAOYSA-N 0.000 description 1
- QBRBPKYUMJLQDZ-UHFFFAOYSA-N 1-(7-piperidin-4-yloxy-2,3-dihydro-1H-inden-4-yl)piperazine Chemical compound C1Cc2c(C1)c(ccc2OC1CCNCC1)N1CCNCC1 QBRBPKYUMJLQDZ-UHFFFAOYSA-N 0.000 description 1
- JWOHBPPVVDQMKB-UHFFFAOYSA-N 1-[(2-methylpropan-2-yl)oxycarbonyl]piperidine-4-carboxylic acid Chemical compound CC(C)(C)OC(=O)N1CCC(C(O)=O)CC1 JWOHBPPVVDQMKB-UHFFFAOYSA-N 0.000 description 1
- VAUJZKBFENPOCH-UHFFFAOYSA-N 1-bromo-4-fluoronaphthalene Chemical compound C1=CC=C2C(F)=CC=C(Br)C2=C1 VAUJZKBFENPOCH-UHFFFAOYSA-N 0.000 description 1
- XURSAEHRFFSJED-UHFFFAOYSA-N 1-bromo-4-methoxynaphthalene Chemical compound C1=CC=C2C(OC)=CC=C(Br)C2=C1 XURSAEHRFFSJED-UHFFFAOYSA-N 0.000 description 1
- IDRVLLRKAAHOBP-UHFFFAOYSA-N 1-bromo-4-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=C(Br)C2=C1 IDRVLLRKAAHOBP-UHFFFAOYSA-N 0.000 description 1
- YWWZASFPWWPUBN-UHFFFAOYSA-N 1-bromoisoquinoline Chemical compound C1=CC=C2C(Br)=NC=CC2=C1 YWWZASFPWWPUBN-UHFFFAOYSA-N 0.000 description 1
- MICMHFIQSAMEJG-UHFFFAOYSA-N 1-bromopyrrolidine-2,5-dione Chemical compound BrN1C(=O)CCC1=O.BrN1C(=O)CCC1=O MICMHFIQSAMEJG-UHFFFAOYSA-N 0.000 description 1
- IVVNZDGDKPTYHK-JTQLQIEISA-N 1-cyano-2-[(2s)-3,3-dimethylbutan-2-yl]-3-pyridin-4-ylguanidine Chemical compound CC(C)(C)[C@H](C)N=C(NC#N)NC1=CC=NC=C1 IVVNZDGDKPTYHK-JTQLQIEISA-N 0.000 description 1
- CWLKTJOTWITYSI-UHFFFAOYSA-N 1-fluoronaphthalene Chemical compound C1=CC=C2C(F)=CC=CC2=C1 CWLKTJOTWITYSI-UHFFFAOYSA-N 0.000 description 1
- DFPYXQYWILNVAU-UHFFFAOYSA-N 1-hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1.C1=CC=C2N(O)N=NC2=C1 DFPYXQYWILNVAU-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- CGNUEDNXEPINSA-UHFFFAOYSA-N 1-piperidin-4-yl-4-(trifluoromethyl)isoquinoline Chemical compound FC(F)(F)c1cnc(C2CCNCC2)c2ccccc12 CGNUEDNXEPINSA-UHFFFAOYSA-N 0.000 description 1
- VDHWAIQWXOCWFK-UHFFFAOYSA-N 1-piperidin-4-yloxyisoquinoline Chemical compound C1CNCCC1OC1=NC=CC2=CC=CC=C12 VDHWAIQWXOCWFK-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- JTVSKASWNROQQF-UHFFFAOYSA-N 2,2-dimethyl-4-(2-oxopyridin-1-yl)chromene-6-carbonitrile Chemical compound C=1C(C)(C)OC2=CC=C(C#N)C=C2C=1N1C=CC=CC1=O JTVSKASWNROQQF-UHFFFAOYSA-N 0.000 description 1
- HZNVUJQVZSTENZ-UHFFFAOYSA-N 2,3-dichloro-5,6-dicyano-p-benzoquinone Substances ClC1=C(Cl)C(=O)C(C#N)=C(C#N)C1=O HZNVUJQVZSTENZ-UHFFFAOYSA-N 0.000 description 1
- PZDVFXUBTKPFSG-UHFFFAOYSA-N 2-bromo-5-(trifluoromethyl)aniline Chemical compound NC1=CC(C(F)(F)F)=CC=C1Br PZDVFXUBTKPFSG-UHFFFAOYSA-N 0.000 description 1
- JIVPVXMEBJLZRO-CQSZACIVSA-N 2-chloro-5-[(1r)-1-hydroxy-3-oxo-2h-isoindol-1-yl]benzenesulfonamide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC([C@@]2(O)C3=CC=CC=C3C(=O)N2)=C1 JIVPVXMEBJLZRO-CQSZACIVSA-N 0.000 description 1
- AUVALWUPUHHNQV-UHFFFAOYSA-N 2-hydroxy-3-propylbenzoic acid Chemical class CCCC1=CC=CC(C(O)=O)=C1O AUVALWUPUHHNQV-UHFFFAOYSA-N 0.000 description 1
- ZHNGKPYXLQHEBI-UHFFFAOYSA-N 3-(4-chloronaphthalen-1-yl)-6-azabicyclo[3.1.1]heptane Chemical compound Clc1ccc(C2CC3CC(C2)N3)c2ccccc12 ZHNGKPYXLQHEBI-UHFFFAOYSA-N 0.000 description 1
- NKFFCAZOXQZRGJ-UHFFFAOYSA-N 3-(4-methylnaphthalen-1-yl)-6-azabicyclo[3.1.1]heptane Chemical compound Cc1ccc(C2CC3CC(C2)N3)c2ccccc12 NKFFCAZOXQZRGJ-UHFFFAOYSA-N 0.000 description 1
- FKXOOOQUUACRRA-UHFFFAOYSA-N 3-[4-(trifluoromethyl)naphthalen-1-yl]-6-azabicyclo[3.1.1]heptane Chemical compound FC(F)(F)c1ccc(C2CC3CC(C2)N3)c2ccccc12 FKXOOOQUUACRRA-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- CGTHKJCVQXPSMK-UHFFFAOYSA-N 3-naphthalen-1-yl-6-azabicyclo[3.1.1]heptane Chemical compound C1C2CC(CC1N2)c1cccc2ccccc12 CGTHKJCVQXPSMK-UHFFFAOYSA-N 0.000 description 1
- UIAGMCDKSXEBJQ-IBGZPJMESA-N 3-o-(2-methoxyethyl) 5-o-propan-2-yl (4s)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)[C@H]1C1=CC=CC([N+]([O-])=O)=C1 UIAGMCDKSXEBJQ-IBGZPJMESA-N 0.000 description 1
- RTDAMORRDXWYPT-UHFFFAOYSA-N 4,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,2-dicarbonitrile Chemical compound ClC1=C(Cl)C(=O)C(C#N)=C(C#N)C1=O.ClC1=C(Cl)C(=O)C(C#N)=C(C#N)C1=O RTDAMORRDXWYPT-UHFFFAOYSA-N 0.000 description 1
- ROLMZTIHUMKEAI-UHFFFAOYSA-N 4,5-difluoro-2-hydroxybenzonitrile Chemical compound OC1=CC(F)=C(F)C=C1C#N ROLMZTIHUMKEAI-UHFFFAOYSA-N 0.000 description 1
- DFSJCLPSCKNSMN-UHFFFAOYSA-N 4-(4-methylnaphthalen-1-yl)piperidine hydrochloride Chemical compound Cl.Cc1ccc(C2CCNCC2)c2ccccc12 DFSJCLPSCKNSMN-UHFFFAOYSA-N 0.000 description 1
- ZLMFNZWRLGKMKK-UHFFFAOYSA-N 4-(4-phenoxynaphthalen-1-yl)piperidine Chemical compound C1CC(CCN1)c1ccc(Oc2ccccc2)c2ccccc12 ZLMFNZWRLGKMKK-UHFFFAOYSA-N 0.000 description 1
- WDNCIARSLGYYME-UHFFFAOYSA-N 4-(4-phenylnaphthalen-1-yl)piperidine Chemical compound C1CC(CCN1)c1ccc(-c2ccccc2)c2ccccc12 WDNCIARSLGYYME-UHFFFAOYSA-N 0.000 description 1
- NCNFEEAXWGKDAB-UHFFFAOYSA-N 4-[(7-piperidin-4-yl-1,3-benzodioxol-4-yl)oxy]piperidine Chemical compound C1OC2=C(O1)C(=CC=C2OC1CCNCC1)C1CCNCC1 NCNFEEAXWGKDAB-UHFFFAOYSA-N 0.000 description 1
- LJUKBBXWESYSOS-UHFFFAOYSA-N 4-[4-[(4-fluorophenyl)methyl]naphthalen-1-yl]piperidine Chemical compound Fc1ccc(Cc2ccc(C3CCNCC3)c3ccccc23)cc1 LJUKBBXWESYSOS-UHFFFAOYSA-N 0.000 description 1
- HIXAZEXLIWALPZ-UHFFFAOYSA-N 4-[5-(trifluoromethyl)naphthalen-1-yl]piperidine Chemical compound FC(F)(F)c1cccc2c(cccc12)C1CCNCC1 HIXAZEXLIWALPZ-UHFFFAOYSA-N 0.000 description 1
- VTOOQIBQFHIPMC-UHFFFAOYSA-N 4-[6-(trifluoromethyl)naphthalen-1-yl]piperidine Chemical compound FC(F)(F)c1ccc2c(cccc2c1)C1CCNCC1 VTOOQIBQFHIPMC-UHFFFAOYSA-N 0.000 description 1
- CUTFAPGINUFNQM-UHFFFAOYSA-N 4-bromo-2-nitrophenol Chemical compound OC1=CC=C(Br)C=C1[N+]([O-])=O CUTFAPGINUFNQM-UHFFFAOYSA-N 0.000 description 1
- FXWZSXMIGJRMNK-UHFFFAOYSA-N 4-bromo-5,6,7,8-tetrahydronaphthalen-1-amine Chemical compound C1CCCC2=C1C(Br)=CC=C2N FXWZSXMIGJRMNK-UHFFFAOYSA-N 0.000 description 1
- SCRBSGZBTHKAHU-UHFFFAOYSA-N 4-bromoisoquinoline Chemical compound C1=CC=C2C(Br)=CN=CC2=C1 SCRBSGZBTHKAHU-UHFFFAOYSA-N 0.000 description 1
- FIJIPZQZVLCOMB-UHFFFAOYSA-N 4-bromonaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(Br)C2=C1 FIJIPZQZVLCOMB-UHFFFAOYSA-N 0.000 description 1
- JMJFYNGDSABPQR-UHFFFAOYSA-N 4-bromonaphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=C(Br)C2=C1 JMJFYNGDSABPQR-UHFFFAOYSA-N 0.000 description 1
- BQGIJORGYRANHR-UHFFFAOYSA-N 4-bromonaphthalene-1-thiol Chemical compound C1=CC=C2C(S)=CC=C(Br)C2=C1 BQGIJORGYRANHR-UHFFFAOYSA-N 0.000 description 1
- SUXIPCHEUMEUSV-UHFFFAOYSA-N 4-bromoquinoline Chemical compound C1=CC=C2C(Br)=CC=NC2=C1 SUXIPCHEUMEUSV-UHFFFAOYSA-N 0.000 description 1
- VVHJLVGIHYFZDK-UHFFFAOYSA-N 4-chloro-1-piperidin-4-ylisoquinoline Chemical compound Clc1cnc(C2CCNCC2)c2ccccc12 VVHJLVGIHYFZDK-UHFFFAOYSA-N 0.000 description 1
- LVSPDZAGCBEQAV-UHFFFAOYSA-N 4-chloronaphthalen-1-ol Chemical compound C1=CC=C2C(O)=CC=C(Cl)C2=C1 LVSPDZAGCBEQAV-UHFFFAOYSA-N 0.000 description 1
- GVRRXASZZAKBMN-UHFFFAOYSA-N 4-chloroquinazoline Chemical compound C1=CC=C2C(Cl)=NC=NC2=C1 GVRRXASZZAKBMN-UHFFFAOYSA-N 0.000 description 1
- MBVFRSJFKMJRHA-UHFFFAOYSA-N 4-fluoro-1-benzofuran-7-carbaldehyde Chemical compound FC1=CC=C(C=O)C2=C1C=CO2 MBVFRSJFKMJRHA-UHFFFAOYSA-N 0.000 description 1
- MJSVIVILNLSSJR-UHFFFAOYSA-N 4-fluoro-1-piperidin-4-ylisoquinoline Chemical compound Fc1cnc(C2CCNCC2)c2ccccc12 MJSVIVILNLSSJR-UHFFFAOYSA-N 0.000 description 1
- ICGLPKIVTVWCFT-UHFFFAOYSA-N 4-methylbenzenesulfonohydrazide Chemical compound CC1=CC=C(S(=O)(=O)NN)C=C1 ICGLPKIVTVWCFT-UHFFFAOYSA-N 0.000 description 1
- FYHKVPGYOZTVHZ-UHFFFAOYSA-N 4-naphthalen-1-ylcyclohexan-1-one Chemical compound C1CC(=O)CCC1C1=CC=CC2=CC=CC=C12 FYHKVPGYOZTVHZ-UHFFFAOYSA-N 0.000 description 1
- SSSBLYQLIOQJSB-UHFFFAOYSA-N 4-naphthalen-1-ylpiperidine Chemical compound C1CNCCC1C1=CC=CC2=CC=CC=C12 SSSBLYQLIOQJSB-UHFFFAOYSA-N 0.000 description 1
- NAINBOXBTBAZHW-UHFFFAOYSA-N 4-piperazin-1-yl-7-piperidin-4-yloxy-1,3-benzothiazole Chemical compound C1CC(CCN1)Oc1ccc(N2CCNCC2)c2ncsc12 NAINBOXBTBAZHW-UHFFFAOYSA-N 0.000 description 1
- YDNPOVUSJUTSQA-UHFFFAOYSA-N 4-piperazin-1-yl-7-piperidin-4-yloxy-2H-benzotriazole Chemical compound C1CC(CCN1)Oc1ccc(N2CCNCC2)c2n[nH]nc12 YDNPOVUSJUTSQA-UHFFFAOYSA-N 0.000 description 1
- IUUXYLVJJFGGJI-UHFFFAOYSA-N 4-piperidin-4-yl-1-(trifluoromethyl)isoquinoline Chemical compound FC(F)(F)c1ncc(C2CCNCC2)c2ccccc12 IUUXYLVJJFGGJI-UHFFFAOYSA-N 0.000 description 1
- QHPFZDLTEBLQBM-UHFFFAOYSA-N 4-piperidin-4-yl-2-(trifluoromethyl)quinazoline Chemical compound FC(F)(F)c1nc(C2CCNCC2)c2ccccc2n1 QHPFZDLTEBLQBM-UHFFFAOYSA-N 0.000 description 1
- CNBFHVSNNZPIDJ-UHFFFAOYSA-N 4-piperidin-4-ylnaphthalene-2-carboxamide Chemical compound NC(=O)c1cc(C2CCNCC2)c2ccccc2c1 CNBFHVSNNZPIDJ-UHFFFAOYSA-N 0.000 description 1
- MOXOFSFWYLTCFU-UHFFFAOYSA-N 5,6,7,8-tetrahydronaphthalen-2-amine Chemical compound C1CCCC2=CC(N)=CC=C21 MOXOFSFWYLTCFU-UHFFFAOYSA-N 0.000 description 1
- ZCEGFNSDELHBHZ-UHFFFAOYSA-N 5-(2-oxopiperidin-4-yl)-8-piperidin-4-yloxyisoquinoline-3-carboxylic acid Chemical compound O=C1NCCC(C1)C1=C2C=C(N=CC2=C(C=C1)OC1CCNCC1)C(=O)O ZCEGFNSDELHBHZ-UHFFFAOYSA-N 0.000 description 1
- DCHWMNJHSXAPRR-UHFFFAOYSA-N 5-(4-chloronaphthalen-1-yl)-2-azabicyclo[2.1.1]hexane Chemical compound Clc1ccc(C2C3CC2NC3)c2ccccc12 DCHWMNJHSXAPRR-UHFFFAOYSA-N 0.000 description 1
- FNIWVJFCFXJVKS-UHFFFAOYSA-N 5-(4-methylnaphthalen-1-yl)-2-azabicyclo[2.1.1]hexane Chemical compound Cc1ccc(C2C3CC2NC3)c2ccccc12 FNIWVJFCFXJVKS-UHFFFAOYSA-N 0.000 description 1
- AWECSKZJLWLBSJ-UHFFFAOYSA-N 5-[4-(trifluoromethyl)naphthalen-1-yl]-2-azabicyclo[2.1.1]hexane Chemical compound FC(F)(F)c1ccc(C2C3CC2NC3)c2ccccc12 AWECSKZJLWLBSJ-UHFFFAOYSA-N 0.000 description 1
- OLFKWTOKOOPCTQ-UHFFFAOYSA-N 5-bromo-2-(trifluoromethyl)aniline Chemical compound NC1=CC(Br)=CC=C1C(F)(F)F OLFKWTOKOOPCTQ-UHFFFAOYSA-N 0.000 description 1
- VRNWNPVURSCXKC-UHFFFAOYSA-N 5-bromo-8-fluoroisoquinoline Chemical compound C1=NC=C2C(F)=CC=C(Br)C2=C1 VRNWNPVURSCXKC-UHFFFAOYSA-N 0.000 description 1
- KXPOUFUCFZQOQE-UHFFFAOYSA-N 5-bromo-8-fluoroquinoline Chemical compound C1=CN=C2C(F)=CC=C(Br)C2=C1 KXPOUFUCFZQOQE-UHFFFAOYSA-N 0.000 description 1
- DJIWWGKBFXOXOR-UHFFFAOYSA-N 5-bromo-8-methoxyisoquinoline-3-carbonitrile Chemical compound BrC1=C2C=C(N=CC2=C(C=C1)OC)C#N DJIWWGKBFXOXOR-UHFFFAOYSA-N 0.000 description 1
- CYJZJGYYTFQQBY-UHFFFAOYSA-N 5-bromoisoquinoline Chemical compound N1=CC=C2C(Br)=CC=CC2=C1 CYJZJGYYTFQQBY-UHFFFAOYSA-N 0.000 description 1
- CHODTZCXWXCALP-UHFFFAOYSA-N 5-bromoquinoline Chemical compound C1=CC=C2C(Br)=CC=CC2=N1 CHODTZCXWXCALP-UHFFFAOYSA-N 0.000 description 1
- PLAGGXAFUIYKDY-UHFFFAOYSA-N 5-chloro-8-piperidin-4-ylisoquinoline Chemical compound Clc1ccc(C2CCNCC2)c2cnccc12 PLAGGXAFUIYKDY-UHFFFAOYSA-N 0.000 description 1
- JGWHZJAQTDNMSH-UHFFFAOYSA-N 5-chloro-8-piperidin-4-ylquinoline Chemical compound Clc1ccc(C2CCNCC2)c2ncccc12 JGWHZJAQTDNMSH-UHFFFAOYSA-N 0.000 description 1
- PUDBKCYTDUIMKD-UHFFFAOYSA-N 5-fluoro-8-piperidin-4-ylisoquinoline Chemical compound Fc1ccc(C2CCNCC2)c2cnccc12 PUDBKCYTDUIMKD-UHFFFAOYSA-N 0.000 description 1
- CLWFUGXIBLGXAO-UHFFFAOYSA-N 5-naphthalen-1-yl-2-azabicyclo[2.1.1]hexane Chemical compound C1C2CNC1C2c1cccc2ccccc12 CLWFUGXIBLGXAO-UHFFFAOYSA-N 0.000 description 1
- DSQTWEZSQUMIAB-UHFFFAOYSA-N 5-nitroisoquinolin-8-ol Chemical compound Oc1ccc([N+]([O-])=O)c2ccncc12 DSQTWEZSQUMIAB-UHFFFAOYSA-N 0.000 description 1
- RZTAMFZIAATZDJ-HNNXBMFYSA-N 5-o-ethyl 3-o-methyl (4s)-4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OC)[C@@H]1C1=CC=CC(Cl)=C1Cl RZTAMFZIAATZDJ-HNNXBMFYSA-N 0.000 description 1
- YWIICIZYOPSHAB-UHFFFAOYSA-N 5-piperazin-1-yl-8-piperidin-4-yloxyquinoline Chemical compound N1(CCNCC1)C1=C2C=CC=NC2=C(C=C1)OC1CCNCC1 YWIICIZYOPSHAB-UHFFFAOYSA-N 0.000 description 1
- KUYLZAFCRAOTLA-UHFFFAOYSA-N 5-piperidin-4-yl-8-(trifluoromethyl)isoquinoline Chemical compound FC(F)(F)c1ccc(C2CCNCC2)c2ccncc12 KUYLZAFCRAOTLA-UHFFFAOYSA-N 0.000 description 1
- VHRSUDSXCMQTMA-PJHHCJLFSA-N 6alpha-methylprednisolone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)CO)CC[C@H]21 VHRSUDSXCMQTMA-PJHHCJLFSA-N 0.000 description 1
- HIHGDDIOQDNKSV-UHFFFAOYSA-N 7-bromo-1,3-benzothiazole Chemical compound BrC1=CC=CC2=C1SC=N2 HIHGDDIOQDNKSV-UHFFFAOYSA-N 0.000 description 1
- FIQUNYQZUAPTFV-UHFFFAOYSA-N 7-piperazin-1-yl-4-piperidin-4-yloxy-1,3-benzothiazole Chemical compound C1CC(CCN1)Oc1ccc(N2CCNCC2)c2scnc12 FIQUNYQZUAPTFV-UHFFFAOYSA-N 0.000 description 1
- OUZLPGJFGCOKJJ-UHFFFAOYSA-N 8-bromo-5-fluoroquinoline Chemical compound C1=CC=C2C(F)=CC=C(Br)C2=N1 OUZLPGJFGCOKJJ-UHFFFAOYSA-N 0.000 description 1
- VUBVOESPWKJXOQ-UHFFFAOYSA-N 8-bromoisoquinolin-5-amine Chemical compound N1=CC=C2C(N)=CC=C(Br)C2=C1 VUBVOESPWKJXOQ-UHFFFAOYSA-N 0.000 description 1
- DPRIHFQFWWCIGY-UHFFFAOYSA-N 8-bromoisoquinoline Chemical compound C1=NC=C2C(Br)=CC=CC2=C1 DPRIHFQFWWCIGY-UHFFFAOYSA-N 0.000 description 1
- PIWNKSHCLTZKSZ-UHFFFAOYSA-N 8-bromoquinoline Chemical compound C1=CN=C2C(Br)=CC=CC2=C1 PIWNKSHCLTZKSZ-UHFFFAOYSA-N 0.000 description 1
- WEFDBGAJXSKFAN-UHFFFAOYSA-N 8-chloro-5-piperidin-4-ylisoquinoline Chemical compound Clc1ccc(C2CCNCC2)c2ccncc12 WEFDBGAJXSKFAN-UHFFFAOYSA-N 0.000 description 1
- DHJZBHXOEQGEMJ-UHFFFAOYSA-N 8-chloro-5-piperidin-4-ylquinoline Chemical compound Clc1ccc(C2CCNCC2)c2cccnc12 DHJZBHXOEQGEMJ-UHFFFAOYSA-N 0.000 description 1
- CQYFPHVOLJMZOJ-UHFFFAOYSA-N 8-methoxy-5-piperidin-4-ylisoquinoline-3-carboxamide Chemical compound COC=1C=CC(=C2C=C(N=CC=12)C(=O)N)C1CCNCC1 CQYFPHVOLJMZOJ-UHFFFAOYSA-N 0.000 description 1
- HHZGHKIHHIKUHK-UHFFFAOYSA-N 8-methoxyisoquinoline Chemical compound C1=NC=C2C(OC)=CC=CC2=C1 HHZGHKIHHIKUHK-UHFFFAOYSA-N 0.000 description 1
- NUPREJNDLYGZKW-UHFFFAOYSA-N 8-methoxyisoquinoline-3-carbonitrile Chemical compound COC=1C=CC=C2C=C(N=CC=12)C#N NUPREJNDLYGZKW-UHFFFAOYSA-N 0.000 description 1
- VKCYVGCOFXQQME-UHFFFAOYSA-N 8-naphthalen-1-yl-2-azaspiro[4.5]decan-1-one Chemical compound O=C1NCCC11CCC(CC1)c1cccc2ccccc12 VKCYVGCOFXQQME-UHFFFAOYSA-N 0.000 description 1
- KIDUIFOFNSUOJI-UHFFFAOYSA-N 8-naphthalen-1-yl-2-azaspiro[4.5]decan-3-one Chemical compound O=C1CC2(CN1)CCC(CC2)c1cccc2ccccc12 KIDUIFOFNSUOJI-UHFFFAOYSA-N 0.000 description 1
- GXZDMQOROMQFKC-UHFFFAOYSA-N 8-piperazin-1-yl-5-piperidin-4-yloxyisoquinoline-3-carboxylic acid Chemical compound OC(=O)c1cc2c(OC3CCNCC3)ccc(N3CCNCC3)c2cn1 GXZDMQOROMQFKC-UHFFFAOYSA-N 0.000 description 1
- IYPUEDDDAIMBDW-UHFFFAOYSA-N 8-piperazin-1-yl-5-piperidin-4-yloxyquinazoline-2-carboxylic acid Chemical compound OC(=O)c1ncc2c(OC3CCNCC3)ccc(N3CCNCC3)c2n1 IYPUEDDDAIMBDW-UHFFFAOYSA-N 0.000 description 1
- JDDFOEHCBIIZQB-UHFFFAOYSA-N 8-piperazin-1-yl-5-piperidin-4-yloxyquinoline-2-carboxylic acid Chemical compound OC(=O)c1ccc2c(OC3CCNCC3)ccc(N3CCNCC3)c2n1 JDDFOEHCBIIZQB-UHFFFAOYSA-N 0.000 description 1
- ZFUMGGFLZOROIQ-UHFFFAOYSA-N 8-piperidin-4-yl-5-(trifluoromethyl)isoquinoline Chemical compound FC(F)(F)c1ccc(C2CCNCC2)c2cnccc12 ZFUMGGFLZOROIQ-UHFFFAOYSA-N 0.000 description 1
- NMSRWRPUCZDTSH-UHFFFAOYSA-N 8-piperidin-4-ylnaphthalene-2-carboxamide Chemical compound NC(=O)c1ccc2cccc(C3CCNCC3)c2c1 NMSRWRPUCZDTSH-UHFFFAOYSA-N 0.000 description 1
- FIERRWSMIIPJGS-UHFFFAOYSA-N 8-piperidin-4-yloxycinnoline Chemical compound N1CCC(CC1)OC=1C=CC=C2C=CN=NC=12 FIERRWSMIIPJGS-UHFFFAOYSA-N 0.000 description 1
- 230000035502 ADME Effects 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 206010001367 Adrenal insufficiency Diseases 0.000 description 1
- JBMKAUGHUNFTOL-UHFFFAOYSA-N Aldoclor Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NC=NS2(=O)=O JBMKAUGHUNFTOL-UHFFFAOYSA-N 0.000 description 1
- 229940077274 Alpha glucosidase inhibitor Drugs 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 208000000103 Anorexia Nervosa Diseases 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 101150102415 Apob gene Proteins 0.000 description 1
- 102100040202 Apolipoprotein B-100 Human genes 0.000 description 1
- 108010008150 Apolipoprotein B-100 Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- XUKUURHRXDUEBC-UHFFFAOYSA-N Atorvastatin Natural products C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CCC(O)CC(O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-UHFFFAOYSA-N 0.000 description 1
- 239000005528 B01AC05 - Ticlopidine Substances 0.000 description 1
- 239000005465 B01AC22 - Prasugrel Substances 0.000 description 1
- 238000006159 Bartoli reaction Methods 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229940123208 Biguanide Drugs 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 206010005184 Blindness transient Diseases 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- 239000002080 C09CA02 - Eprosartan Substances 0.000 description 1
- 239000002947 C09CA04 - Irbesartan Substances 0.000 description 1
- 239000002053 C09CA06 - Candesartan Substances 0.000 description 1
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 description 1
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 description 1
- 125000004649 C2-C8 alkynyl group Chemical group 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- 206010007556 Cardiac failure acute Diseases 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 206010008479 Chest Pain Diseases 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- KPSRODZRAIWAKH-JTQLQIEISA-N Ciprofibrate Natural products C1=CC(OC(C)(C)C(O)=O)=CC=C1[C@H]1C(Cl)(Cl)C1 KPSRODZRAIWAKH-JTQLQIEISA-N 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- TVZCRIROJQEVOT-CABCVRRESA-N Cromakalim Chemical compound N1([C@@H]2C3=CC(=CC=C3OC([C@H]2O)(C)C)C#N)CCCC1=O TVZCRIROJQEVOT-CABCVRRESA-N 0.000 description 1
- 208000014311 Cushing syndrome Diseases 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 208000003037 Diastolic Heart Failure Diseases 0.000 description 1
- 206010052337 Diastolic dysfunction Diseases 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- 240000001879 Digitalis lutea Species 0.000 description 1
- WDJUZGPOPHTGOT-OAXVISGBSA-N Digitoxin Natural products O([C@H]1[C@@H](C)O[C@@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@@](C)([C@H](C6=CC(=O)OC6)CC5)CC4)CC3)CC2)C[C@H]1O)[C@H]1O[C@@H](C)[C@H](O[C@H]2O[C@@H](C)[C@@H](O)[C@@H](O)C2)[C@@H](O)C1 WDJUZGPOPHTGOT-OAXVISGBSA-N 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 208000002251 Dissecting Aneurysm Diseases 0.000 description 1
- 206010014486 Elevated triglycerides Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 102000010911 Enzyme Precursors Human genes 0.000 description 1
- 108010062466 Enzyme Precursors Proteins 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- 208000002705 Glucose Intolerance Diseases 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 229910004039 HBF4 Inorganic materials 0.000 description 1
- 208000016988 Hemorrhagic Stroke Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101000923835 Homo sapiens Low density lipoprotein receptor adapter protein 1 Proteins 0.000 description 1
- LELOWRISYMNNSU-UHFFFAOYSA-N Hydrocyanic acid Natural products N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 201000004408 Hypobetalipoproteinemia Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010022562 Intermittent claudication Diseases 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 206010023129 Jaundice cholestatic Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 208000017170 Lipid metabolism disease Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000012448 Lithium borohydride Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 206010025476 Malabsorption Diseases 0.000 description 1
- 208000004155 Malabsorption Syndromes Diseases 0.000 description 1
- 208000002720 Malnutrition Diseases 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 208000001826 Marfan syndrome Diseases 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 208000001145 Metabolic Syndrome Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 238000006957 Michael reaction Methods 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 206010060880 Monoclonal gammopathy Diseases 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 206010029164 Nephrotic syndrome Diseases 0.000 description 1
- 238000006174 Newman-Kwart rearrangement reaction Methods 0.000 description 1
- ZBBHBTPTTSWHBA-UHFFFAOYSA-N Nicardipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN(C)CC=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZBBHBTPTTSWHBA-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- 201000005267 Obstructive Jaundice Diseases 0.000 description 1
- 206010033425 Pain in extremity Diseases 0.000 description 1
- 208000002774 Paraproteinemias Diseases 0.000 description 1
- 208000007542 Paresis Diseases 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- CYLWJCABXYDINA-UHFFFAOYSA-N Polythiazide Polymers ClC1=C(S(N)(=O)=O)C=C2S(=O)(=O)N(C)C(CSCC(F)(F)F)NC2=C1 CYLWJCABXYDINA-UHFFFAOYSA-N 0.000 description 1
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 description 1
- 208000001280 Prediabetic State Diseases 0.000 description 1
- 201000001068 Prinzmetal angina Diseases 0.000 description 1
- 206010064911 Pulmonary arterial hypertension Diseases 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 1
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 1
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 1
- AJLFOPYRIVGYMJ-UHFFFAOYSA-N SJ000287055 Natural products C12C(OC(=O)C(C)CC)CCC=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 AJLFOPYRIVGYMJ-UHFFFAOYSA-N 0.000 description 1
- XTZNCVSCVHTPAI-UHFFFAOYSA-N Salmeterol xinafoate Chemical compound C1=CC=CC2=C(O)C(C(=O)O)=CC=C21.C1=C(O)C(CO)=CC(C(O)CNCCCCCCOCCCCC=2C=CC=CC=2)=C1 XTZNCVSCVHTPAI-UHFFFAOYSA-N 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 201000007410 Smith-Lemli-Opitz syndrome Diseases 0.000 description 1
- 208000007718 Stable Angina Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 108010023197 Streptokinase Proteins 0.000 description 1
- 101710135785 Subtilisin-like protease Proteins 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229940100389 Sulfonylurea Drugs 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 108010039185 Tenecteplase Proteins 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 241001061127 Thione Species 0.000 description 1
- DQHNAVOVODVIMG-UHFFFAOYSA-M Tiotropium bromide Chemical compound [Br-].C1C(C2C3O2)[N+](C)(C)C3CC1OC(=O)C(O)(C=1SC=CC=1)C1=CC=CS1 DQHNAVOVODVIMG-UHFFFAOYSA-M 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 208000032109 Transient ischaemic attack Diseases 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229960000446 abciximab Drugs 0.000 description 1
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 1
- 208000004622 abetalipoproteinemia Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 229940077422 accupril Drugs 0.000 description 1
- 229960002122 acebutolol Drugs 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000674 adrenergic antagonist Substances 0.000 description 1
- 239000003043 adrenergic neuron blocking agent Substances 0.000 description 1
- 208000017515 adrenocortical insufficiency Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 229940092229 aldactone Drugs 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 230000003281 allosteric effect Effects 0.000 description 1
- 239000002160 alpha blocker Substances 0.000 description 1
- 239000003888 alpha glucosidase inhibitor Substances 0.000 description 1
- 102000015007 alpha-adrenergic receptor activity proteins Human genes 0.000 description 1
- 108040006816 alpha-adrenergic receptor activity proteins Proteins 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229940077927 altace Drugs 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 229960000528 amlodipine Drugs 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 229940003354 angiomax Drugs 0.000 description 1
- 239000002333 angiotensin II receptor antagonist Substances 0.000 description 1
- 229950006323 angiotensin ii Drugs 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 230000000489 anti-atherogenic effect Effects 0.000 description 1
- 230000002785 anti-thrombosis Effects 0.000 description 1
- 229940065524 anticholinergics inhalants for obstructive airway diseases Drugs 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 206010002895 aortic dissection Diseases 0.000 description 1
- 201000007201 aphasia Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229950005617 aprikalim Drugs 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- KXNPVXPOPUZYGB-XYVMCAHJSA-N argatroban Chemical compound OC(=O)[C@H]1C[C@H](C)CCN1C(=O)[C@H](CCCN=C(N)N)NS(=O)(=O)C1=CC=CC2=C1NC[C@H](C)C2 KXNPVXPOPUZYGB-XYVMCAHJSA-N 0.000 description 1
- 229960003856 argatroban Drugs 0.000 description 1
- 238000005899 aromatization reaction Methods 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 229940058087 atacand Drugs 0.000 description 1
- METKIMKYRPQLGS-UHFFFAOYSA-N atenolol Chemical compound CC(C)NCC(O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-UHFFFAOYSA-N 0.000 description 1
- 229960002274 atenolol Drugs 0.000 description 1
- 229960005370 atorvastatin Drugs 0.000 description 1
- SHZPNDRIDUBNMH-NIJVSVLQSA-L atorvastatin calcium trihydrate Chemical compound O.O.O.[Ca+2].C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC([O-])=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1.C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC([O-])=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 SHZPNDRIDUBNMH-NIJVSVLQSA-L 0.000 description 1
- 229940098165 atrovent Drugs 0.000 description 1
- 229940000201 avapro Drugs 0.000 description 1
- YEESUBCSWGVPCE-UHFFFAOYSA-N azanylidyneoxidanium iron(2+) pentacyanide Chemical compound [Fe++].[C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.N#[O+] YEESUBCSWGVPCE-UHFFFAOYSA-N 0.000 description 1
- 125000002393 azetidinyl group Chemical group 0.000 description 1
- 229960004530 benazepril Drugs 0.000 description 1
- 125000005873 benzo[d]thiazolyl group Chemical group 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229960003665 bepridil Drugs 0.000 description 1
- 229940124748 beta 2 agonist Drugs 0.000 description 1
- 229940099231 betapace Drugs 0.000 description 1
- 229960004324 betaxolol Drugs 0.000 description 1
- 150000004283 biguanides Chemical class 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 229950005453 bimakalim Drugs 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- VHYCDWMUTMEGQY-UHFFFAOYSA-N bisoprolol Chemical compound CC(C)NCC(O)COC1=CC=C(COCCOC(C)C)C=C1 VHYCDWMUTMEGQY-UHFFFAOYSA-N 0.000 description 1
- 229960002781 bisoprolol Drugs 0.000 description 1
- 229940043064 bisoprolol / hydrochlorothiazide Drugs 0.000 description 1
- 229960001500 bivalirudin Drugs 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 229940097683 brevibloc Drugs 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 229940124630 bronchodilator Drugs 0.000 description 1
- 239000000168 bronchodilator agent Substances 0.000 description 1
- 229960004064 bumetanide Drugs 0.000 description 1
- 229940088498 bumex Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 229960003340 calcium silicate Drugs 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229960000932 candesartan Drugs 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229940072282 cardura Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229960001222 carteolol Drugs 0.000 description 1
- 229960004195 carvedilol Drugs 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 1
- KEWHKYJURDBRMN-XSAPEOHZSA-M chembl2134724 Chemical compound O.[Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 KEWHKYJURDBRMN-XSAPEOHZSA-M 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000010568 chiral column chromatography Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229960001523 chlortalidone Drugs 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229960004588 cilostazol Drugs 0.000 description 1
- RRGUKTPIGVIEKM-UHFFFAOYSA-N cilostazol Chemical compound C=1C=C2NC(=O)CCC2=CC=1OCCCCC1=NN=NN1C1CCCCC1 RRGUKTPIGVIEKM-UHFFFAOYSA-N 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 229960002174 ciprofibrate Drugs 0.000 description 1
- 229960003009 clopidogrel Drugs 0.000 description 1
- 229940070395 clorpres Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 229940110933 combipres Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 229940069210 coreg Drugs 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 229940072645 coumadin Drugs 0.000 description 1
- 229940097499 cozaar Drugs 0.000 description 1
- 229940066901 crestor Drugs 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 229950004210 cromakalim Drugs 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- XZWQKJXJNKYMAP-UHFFFAOYSA-N cyclohexen-1-ylboronic acid Chemical compound OB(O)C1=CCCCC1 XZWQKJXJNKYMAP-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 229960003828 danaparoid Drugs 0.000 description 1
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 229960000648 digitoxin Drugs 0.000 description 1
- WDJUZGPOPHTGOT-XUDUSOBPSA-N digitoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)CC5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O WDJUZGPOPHTGOT-XUDUSOBPSA-N 0.000 description 1
- 229960005156 digoxin Drugs 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- 125000004982 dihaloalkyl group Chemical group 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 125000005879 dioxolanyl group Chemical group 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- QGBQGMHXBSLYLZ-UHFFFAOYSA-N ditert-butyl-(1-naphthalen-1-ylnaphthalen-2-yl)phosphane Chemical compound C1=CC=C2C(C3=C4C=CC=CC4=CC=C3P(C(C)(C)C)C(C)(C)C)=CC=CC2=C1 QGBQGMHXBSLYLZ-UHFFFAOYSA-N 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- CETRZFQIITUQQL-UHFFFAOYSA-N dmso dimethylsulfoxide Chemical compound CS(C)=O.CS(C)=O CETRZFQIITUQQL-UHFFFAOYSA-N 0.000 description 1
- 229960000220 doxazosin mesylate Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 229940101638 effient Drugs 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 229950003424 emakalim Drugs 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002662 enteric coated tablet Substances 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 229960001208 eplerenone Drugs 0.000 description 1
- 229960004563 eprosartan Drugs 0.000 description 1
- 229960004468 eptifibatide Drugs 0.000 description 1
- 229960003745 esmolol Drugs 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- OCLXJTCGWSSVOE-UHFFFAOYSA-N ethanol etoh Chemical compound CCO.CCO OCLXJTCGWSSVOE-UHFFFAOYSA-N 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 125000006125 ethylsulfonyl group Chemical group 0.000 description 1
- OJCSPXHYDFONPU-UHFFFAOYSA-N etoac etoac Chemical compound CCOC(C)=O.CCOC(C)=O OJCSPXHYDFONPU-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- RZTAMFZIAATZDJ-UHFFFAOYSA-N felodipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC(Cl)=C1Cl RZTAMFZIAATZDJ-UHFFFAOYSA-N 0.000 description 1
- 229960003580 felodipine Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229960003765 fluvastatin Drugs 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 229960002490 fosinopril Drugs 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 229960003883 furosemide Drugs 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 208000004104 gestational diabetes Diseases 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 229960004553 guanabenz Drugs 0.000 description 1
- 229960003050 guanabenz acetate Drugs 0.000 description 1
- 229960004746 guanfacine hydrochloride Drugs 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 208000038003 heart failure with preserved ejection fraction Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 125000004474 heteroalkylene group Chemical group 0.000 description 1
- 125000004366 heterocycloalkenyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000053786 human PCSK9 Human genes 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 229960002003 hydrochlorothiazide Drugs 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 208000020346 hyperlipoproteinemia Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- MGXWVYUBJRZYPE-YUGYIWNOSA-N incretin Chemical class C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=C(O)C=C1 MGXWVYUBJRZYPE-YUGYIWNOSA-N 0.000 description 1
- 239000000859 incretin Substances 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229940097708 inspra Drugs 0.000 description 1
- 208000021156 intermittent vascular claudication Diseases 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 208000020658 intracerebral hemorrhage Diseases 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 229960001361 ipratropium bromide Drugs 0.000 description 1
- KEWHKYJURDBRMN-ZEODDXGYSA-M ipratropium bromide hydrate Chemical compound O.[Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 KEWHKYJURDBRMN-ZEODDXGYSA-M 0.000 description 1
- 229960002198 irbesartan Drugs 0.000 description 1
- YOSHYTLCDANDAN-UHFFFAOYSA-N irbesartan Chemical compound O=C1N(CC=2C=CC(=CC=2)C=2C(=CC=CC=2)C=2NN=NN=2)C(CCCC)=NC21CCCC2 YOSHYTLCDANDAN-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- OWFXIOWLTKNBAP-UHFFFAOYSA-N isoamyl nitrite Chemical compound CC(C)CCON=O OWFXIOWLTKNBAP-UHFFFAOYSA-N 0.000 description 1
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 229960000201 isosorbide dinitrate Drugs 0.000 description 1
- MOYKHGMNXAOIAT-JGWLITMVSA-N isosorbide dinitrate Chemical compound [O-][N+](=O)O[C@H]1CO[C@@H]2[C@H](O[N+](=O)[O-])CO[C@@H]21 MOYKHGMNXAOIAT-JGWLITMVSA-N 0.000 description 1
- 229960003827 isosorbide mononitrate Drugs 0.000 description 1
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 1
- 230000005445 isotope effect Effects 0.000 description 1
- 229940072289 kerlone Drugs 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229940063711 lasix Drugs 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- OTQCKZUSUGYWBD-BRHMIFOHSA-N lepirudin Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)C(C)C)[C@@H](C)O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 OTQCKZUSUGYWBD-BRHMIFOHSA-N 0.000 description 1
- 229960004408 lepirudin Drugs 0.000 description 1
- 229940095570 lescol Drugs 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229940002661 lipitor Drugs 0.000 description 1
- 108010022197 lipoprotein cholesterol Proteins 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 1
- 229940092923 livalo Drugs 0.000 description 1
- 229960004773 losartan Drugs 0.000 description 1
- 208000018769 loss of vision Diseases 0.000 description 1
- 231100000864 loss of vision Toxicity 0.000 description 1
- 229940080268 lotensin Drugs 0.000 description 1
- 229940080288 lotrel Drugs 0.000 description 1
- 229960004844 lovastatin Drugs 0.000 description 1
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 1
- 239000003055 low molecular weight heparin Substances 0.000 description 1
- 229940127215 low-molecular weight heparin Drugs 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000001115 mace Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- RMGJCSHZTFKPNO-UHFFFAOYSA-M magnesium;ethene;bromide Chemical compound [Mg+2].[Br-].[CH-]=C RMGJCSHZTFKPNO-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 230000001071 malnutrition Effects 0.000 description 1
- 235000000824 malnutrition Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 201000000083 maturity-onset diabetes of the young type 1 Diseases 0.000 description 1
- 229940103179 mavik Drugs 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229940064748 medrol Drugs 0.000 description 1
- COTNUBDHGSIOTA-UHFFFAOYSA-N meoh methanol Chemical compound OC.OC COTNUBDHGSIOTA-UHFFFAOYSA-N 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229960004584 methylprednisolone Drugs 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 125000006216 methylsulfinyl group Chemical group [H]C([H])([H])S(*)=O 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 1
- 229960002817 metolazone Drugs 0.000 description 1
- 229940099246 mevacor Drugs 0.000 description 1
- AJLFOPYRIVGYMJ-INTXDZFKSA-N mevastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=CCC[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 AJLFOPYRIVGYMJ-INTXDZFKSA-N 0.000 description 1
- 229950009116 mevastatin Drugs 0.000 description 1
- BOZILQFLQYBIIY-UHFFFAOYSA-N mevastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CCC=C21 BOZILQFLQYBIIY-UHFFFAOYSA-N 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229940101635 minizide Drugs 0.000 description 1
- 229960005170 moexipril Drugs 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 229940118178 monopril Drugs 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- BXGTVNLGPMZLAZ-UHFFFAOYSA-N n'-ethylmethanediimine;hydrochloride Chemical compound Cl.CCN=C=N BXGTVNLGPMZLAZ-UHFFFAOYSA-N 0.000 description 1
- PEECTLLHENGOKU-UHFFFAOYSA-N n,n-dimethylpyridin-4-amine Chemical compound CN(C)C1=CC=NC=C1.CN(C)C1=CC=NC=C1 PEECTLLHENGOKU-UHFFFAOYSA-N 0.000 description 1
- WOOWBQQQJXZGIE-UHFFFAOYSA-N n-ethyl-n-propan-2-ylpropan-2-amine Chemical compound CCN(C(C)C)C(C)C.CCN(C(C)C)C(C)C WOOWBQQQJXZGIE-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- RMHJJUOPOWPRBP-UHFFFAOYSA-N naphthalene-1-carboxamide Chemical compound C1=CC=C2C(C(=O)N)=CC=CC2=C1 RMHJJUOPOWPRBP-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000004031 neuronal differentiation Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229960001783 nicardipine Drugs 0.000 description 1
- LBHIOVVIQHSOQN-UHFFFAOYSA-N nicorandil Chemical compound [O-][N+](=O)OCCNC(=O)C1=CC=CN=C1 LBHIOVVIQHSOQN-UHFFFAOYSA-N 0.000 description 1
- 229960002497 nicorandil Drugs 0.000 description 1
- UIAGMCDKSXEBJQ-UHFFFAOYSA-N nimodipine Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)C1C1=CC=CC([N+]([O-])=O)=C1 UIAGMCDKSXEBJQ-UHFFFAOYSA-N 0.000 description 1
- 229960000715 nimodipine Drugs 0.000 description 1
- 229940072101 nimotop Drugs 0.000 description 1
- 229960000227 nisoldipine Drugs 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229960002460 nitroprusside Drugs 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229940036132 norvasc Drugs 0.000 description 1
- 231100000862 numbness Toxicity 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 208000015380 nutritional deficiency disease Diseases 0.000 description 1
- 239000012053 oil suspension Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- LMYJGUNNJIDROI-UHFFFAOYSA-N oxan-4-ol Chemical compound OC1CCOCC1 LMYJGUNNJIDROI-UHFFFAOYSA-N 0.000 description 1
- JMJRYTGVHCAYCT-UHFFFAOYSA-N oxan-4-one Chemical compound O=C1CCOCC1 JMJRYTGVHCAYCT-UHFFFAOYSA-N 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229940090007 persantine Drugs 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229960002310 pinacidil Drugs 0.000 description 1
- 229960002508 pindolol Drugs 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- 229960002797 pitavastatin Drugs 0.000 description 1
- VGYFMXBACGZSIL-MCBHFWOFSA-N pitavastatin Chemical compound OC(=O)C[C@H](O)C[C@H](O)\C=C\C1=C(C2CC2)N=C2C=CC=CC2=C1C1=CC=C(F)C=C1 VGYFMXBACGZSIL-MCBHFWOFSA-N 0.000 description 1
- RHGYHLPFVJEAOC-FFNUKLMVSA-L pitavastatin calcium Chemical compound [Ca+2].[O-]C(=O)C[C@H](O)C[C@H](O)\C=C\C1=C(C2CC2)N=C2C=CC=CC2=C1C1=CC=C(F)C=C1.[O-]C(=O)C[C@H](O)C[C@H](O)\C=C\C1=C(C2CC2)N=C2C=CC=CC2=C1C1=CC=C(F)C=C1 RHGYHLPFVJEAOC-FFNUKLMVSA-L 0.000 description 1
- 229940020573 plavix Drugs 0.000 description 1
- 229940090013 plendil Drugs 0.000 description 1
- 230000003234 polygenic effect Effects 0.000 description 1
- 229960005483 polythiazide Drugs 0.000 description 1
- 229920000046 polythiazide Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 230000005195 poor health Effects 0.000 description 1
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 1
- 229960004197 prasugrel Drugs 0.000 description 1
- 229960002965 pravastatin Drugs 0.000 description 1
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 description 1
- VWBQYTRBTXKKOG-IYNICTALSA-M pravastatin sodium Chemical compound [Na+].C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC([O-])=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 VWBQYTRBTXKKOG-IYNICTALSA-M 0.000 description 1
- 229960002386 prazosin hydrochloride Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 201000009104 prediabetes syndrome Diseases 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 201000009395 primary hyperaldosteronism Diseases 0.000 description 1
- 230000009862 primary prevention Effects 0.000 description 1
- REQCZEXYDRLIBE-UHFFFAOYSA-N procainamide Chemical compound CCN(CC)CCNC(=O)C1=CC=C(N)C=C1 REQCZEXYDRLIBE-UHFFFAOYSA-N 0.000 description 1
- 229960000244 procainamide Drugs 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- JWHAUXFOSRPERK-UHFFFAOYSA-N propafenone Chemical compound CCCNCC(O)COC1=CC=CC=C1C(=O)CCC1=CC=CC=C1 JWHAUXFOSRPERK-UHFFFAOYSA-N 0.000 description 1
- 229960000203 propafenone Drugs 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940063566 proventil Drugs 0.000 description 1
- 208000002815 pulmonary hypertension Diseases 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 229960001455 quinapril Drugs 0.000 description 1
- JSDRRTOADPPCHY-HSQYWUDLSA-N quinapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CC2=CC=CC=C2C1)C(O)=O)CC1=CC=CC=C1 JSDRRTOADPPCHY-HSQYWUDLSA-N 0.000 description 1
- IBBLRJGOOANPTQ-JKVLGAQCSA-N quinapril hydrochloride Chemical compound Cl.C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CC2=CC=CC=C2C1)C(O)=O)CC1=CC=CC=C1 IBBLRJGOOANPTQ-JKVLGAQCSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 229960001404 quinidine Drugs 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 229960003401 ramipril Drugs 0.000 description 1
- 229940099099 ranexa Drugs 0.000 description 1
- 229960000213 ranolazine Drugs 0.000 description 1
- 230000033300 receptor internalization Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229960003147 reserpine Drugs 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 1
- 229960000672 rosuvastatin Drugs 0.000 description 1
- BPRHUIZQVSMCRT-VEUZHWNKSA-N rosuvastatin Chemical compound CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC(O)=O BPRHUIZQVSMCRT-VEUZHWNKSA-N 0.000 description 1
- LALFOYNTGMUKGG-BGRFNVSISA-L rosuvastatin calcium Chemical compound [Ca+2].CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O.CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O LALFOYNTGMUKGG-BGRFNVSISA-L 0.000 description 1
- 229960002052 salbutamol Drugs 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 229960004017 salmeterol Drugs 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229940082552 sectral Drugs 0.000 description 1
- 230000000276 sedentary effect Effects 0.000 description 1
- 239000012056 semi-solid material Substances 0.000 description 1
- 229940090585 serevent Drugs 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229960002855 simvastatin Drugs 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 1
- LJRGBERXYNQPJI-UHFFFAOYSA-M sodium;3-nitrobenzenesulfonate Chemical compound [Na+].[O-][N+](=O)C1=CC=CC(S([O-])(=O)=O)=C1 LJRGBERXYNQPJI-UHFFFAOYSA-M 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 229940087854 solu-medrol Drugs 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 229960002370 sotalol Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229940046810 spiriva Drugs 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 229960002256 spironolactone Drugs 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 239000012058 sterile packaged powder Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229960005202 streptokinase Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229940035718 sular Drugs 0.000 description 1
- BUUPQKDIAURBJP-UHFFFAOYSA-N sulfinic acid Chemical compound OS=O BUUPQKDIAURBJP-UHFFFAOYSA-N 0.000 description 1
- 229960003329 sulfinpyrazone Drugs 0.000 description 1
- MBGGBVCUIVRRBF-UHFFFAOYSA-N sulfinpyrazone Chemical compound O=C1N(C=2C=CC=CC=2)N(C=2C=CC=CC=2)C(=O)C1CCS(=O)C1=CC=CC=C1 MBGGBVCUIVRRBF-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N sulfurochloridic acid Chemical compound OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229940066769 systemic antihistamines substituted alkylamines Drugs 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229960005187 telmisartan Drugs 0.000 description 1
- 229960000216 tenecteplase Drugs 0.000 description 1
- 229940065385 tenex Drugs 0.000 description 1
- 229940108485 tenormin Drugs 0.000 description 1
- 229960001909 terazosin hydrochloride Drugs 0.000 description 1
- 229960000195 terbutaline Drugs 0.000 description 1
- OHOYAPFROBUDCA-ONNFQVAWSA-N tert-butyl 4-[(E)-3-oxoprop-1-enoxy]piperidine-1-carboxylate Chemical compound C(=O)(OC(C)(C)C)N1CCC(CC1)O/C=C/C=O OHOYAPFROBUDCA-ONNFQVAWSA-N 0.000 description 1
- SJAKIGKVIJINMY-UHFFFAOYSA-N tert-butyl 4-acetylsulfanylpiperidine-1-carboxylate Chemical compound CC(=O)SC1CCN(C(=O)OC(C)(C)C)CC1 SJAKIGKVIJINMY-UHFFFAOYSA-N 0.000 description 1
- KZBWIYHDNQHMET-UHFFFAOYSA-N tert-butyl 4-bromopiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(Br)CC1 KZBWIYHDNQHMET-UHFFFAOYSA-N 0.000 description 1
- VJAHMDQRVLEOFG-UHFFFAOYSA-N tert-butyl 4-chlorosulfonylpiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(S(Cl)(=O)=O)CC1 VJAHMDQRVLEOFG-UHFFFAOYSA-N 0.000 description 1
- SUXKDDLNGGINQK-UHFFFAOYSA-N tert-butyl 5-nitro-8-piperidin-4-yloxy-1H-isoquinoline-2-carboxylate Chemical compound C(=O)(OC(C)(C)C)N1CC2=C(C=CC(=C2C=C1)[N+](=O)[O-])OC1CCNCC1 SUXKDDLNGGINQK-UHFFFAOYSA-N 0.000 description 1
- FQZLNQAUUMSUHT-UHFFFAOYSA-N tert-butyl n,n-bis(2-chloroethyl)carbamate Chemical compound CC(C)(C)OC(=O)N(CCCl)CCCl FQZLNQAUUMSUHT-UHFFFAOYSA-N 0.000 description 1
- IOGXOCVLYRDXLW-UHFFFAOYSA-N tert-butyl nitrite Chemical compound CC(C)(C)ON=O IOGXOCVLYRDXLW-UHFFFAOYSA-N 0.000 description 1
- 239000012414 tert-butyl nitrite Substances 0.000 description 1
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- 229940078806 teveten Drugs 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 239000003451 thiazide diuretic agent Substances 0.000 description 1
- 230000035922 thirst Effects 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 229940035248 tiazac Drugs 0.000 description 1
- PHWBOXQYWZNQIN-UHFFFAOYSA-N ticlopidine Chemical compound ClC1=CC=CC=C1CN1CC(C=CS2)=C2CC1 PHWBOXQYWZNQIN-UHFFFAOYSA-N 0.000 description 1
- 229960005001 ticlopidine Drugs 0.000 description 1
- LERNTVKEWCAPOY-DZZGSBJMSA-N tiotropium Chemical compound O([C@H]1C[C@@H]2[N+]([C@H](C1)[C@@H]1[C@H]2O1)(C)C)C(=O)C(O)(C=1SC=CC=1)C1=CC=CS1 LERNTVKEWCAPOY-DZZGSBJMSA-N 0.000 description 1
- 229940110309 tiotropium Drugs 0.000 description 1
- COKMIXFXJJXBQG-NRFANRHFSA-N tirofiban Chemical compound C1=CC(C[C@H](NS(=O)(=O)CCCC)C(O)=O)=CC=C1OCCCCC1CCNCC1 COKMIXFXJJXBQG-NRFANRHFSA-N 0.000 description 1
- 229960003425 tirofiban Drugs 0.000 description 1
- 238000003354 tissue distribution assay Methods 0.000 description 1
- 125000005147 toluenesulfonyl group Chemical group C=1(C(=CC=CC1)S(=O)(=O)*)C 0.000 description 1
- 229940041492 toprol Drugs 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 229960002051 trandolapril Drugs 0.000 description 1
- ZSOPPQGHWJVKJB-OWOJBTEDSA-N trans-3-Chloroallyl aldehyde Chemical compound Cl\C=C\C=O ZSOPPQGHWJVKJB-OWOJBTEDSA-N 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 201000010875 transient cerebral ischemia Diseases 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- UCCFRLMNIZMNLQ-UHFFFAOYSA-N triazole-2-carboximidamide hydrochloride Chemical compound Cl.NC(=N)n1nccn1 UCCFRLMNIZMNLQ-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- 125000004385 trihaloalkyl group Chemical group 0.000 description 1
- JBWKIWSBJXDJDT-UHFFFAOYSA-N triphenylmethyl chloride Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 JBWKIWSBJXDJDT-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229940054495 univasc Drugs 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 125000005500 uronium group Chemical group 0.000 description 1
- ACWBQPMHZXGDFX-QFIPXVFZSA-N valsartan Chemical compound C1=CC(CN(C(=O)CCCC)[C@@H](C(C)C)C(O)=O)=CC=C1C1=CC=CC=C1C1=NN=NN1 ACWBQPMHZXGDFX-QFIPXVFZSA-N 0.000 description 1
- 229960004699 valsartan Drugs 0.000 description 1
- 229940055010 verelan Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 229940063670 visken Drugs 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 229960005080 warfarin Drugs 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940087514 zaroxolyn Drugs 0.000 description 1
- 229940052204 zebeta Drugs 0.000 description 1
- 229940117978 ziac Drugs 0.000 description 1
- 229940072168 zocor Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/06—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by halogen atoms or nitro radicals
- C07D295/073—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by halogen atoms or nitro radicals with the ring nitrogen atoms and the substituents separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/18—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/18—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D211/26—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/36—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D211/40—Oxygen atoms
- C07D211/44—Oxygen atoms attached in position 4
- C07D211/46—Oxygen atoms attached in position 4 having a hydrogen atom as the second substituent in position 4
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/36—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D211/54—Sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/36—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D211/56—Nitrogen atoms
- C07D211/58—Nitrogen atoms attached in position 4
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/16—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
- C07D295/18—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
- C07D295/195—Radicals derived from nitrogen analogues of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D407/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
- C07D407/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/08—Bridged systems
Definitions
- the present disclosure relates to novel compounds, methods, and compositions capable of binding to proprotein convertase subtilisin/kexin type 9 (PCSK9), thereby modulating PCSK9 proprotein convertase enzyme activity.
- PCSK9 proprotein convertase subtilisin/kexin type 9
- LDL-C low density lipoprotein cholesterol
- LDLRs low density lipoprotein receptors
- ADH Autosomal dominant hypercholesterolemia
- the low density lipoprotein receptor mediates efficient endocytosis of very low density lipoprotein (VLDL), VLDL remnants, and LDL. As part of the endocytic process, the LDLR releases lipoproteins into hepatic endosomes.
- PCSK9 Proprotein convertase subtilisin/kexin type 9
- EGF-A epidermal growth factor-like repeat A
- LDLR low-density lipoprotein receptor
- PCSK9 A drug that could modulate the activity of PCSK9 would be useful in controlling LDL-cholesterol levels. Therefore, there remains a need for compounds that are effective in the treatment and prevention of conditions and disorders associated with PCSK9, including hypercholesterolemia and hypocholesterolemia.
- the compounds provided herein bind to PCSK9, thereby modulating PCSK9 proprotein convertase enzyme activity, and can be used to treat and prevent PCSK9-associated conditions and disorders.
- compositions including pharmaceutical compositions, kits that include the compounds, and methods of using (or administering) and making the compounds.
- the disclosure further provides compounds or compositions thereof for use in a method of treating a disease, disorder, or condition that is mediated by PCSK9.
- the disclosure provides uses of the compounds or compositions thereof in the manufacture of a medicament for the treatment of a disease, disorder or condition that is mediated, at least in part, by PCSK9.
- n 0, 1, or 2;
- X 1 is absent, CR 2 , CR 2 R 2 , C(O), N, NR 2 , S, SO 2 , or O;
- X 2 , X 3 , and X 4 are each independently CR 2 , CR 2 R 2 , C(O), N, NR 2 , S, SO 2 , or O;
- ring B is a five- or six-membered ring comprising one or more double bonds
- X 5 and X 6 are either CR 2 or N;
- X 7 is C or N
- ring A is selected from:
- L is a bond, C 1-6 -alkylene, —O—, —C(O)—, —SO 2 —, —N(R a )—, —N(R a )SO 2 —, or —SO 2 N(R a )—
- R a is hydrogen, C 1-6 alkyl, or C 1-6 heteroalkyl, wherein the C 1-6 alkyl or C 1-6 heteroalkyl are optionally substituted with 1 to 3 substituents independently selected from halo, oxo, hydroxy, C 1-6 alkyl, or C 1-6 heteroalkyl;
- R 1 in each instance is independently halo, cyano, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, —NR b C(O)NR b R b , or —NR b S(O) 2 R b ;
- R 2 in each instance is independently hydrogen, halo, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, C 2-6 hydroxyalkyl, cyano, —C(O)OR c , or —C(O)NR c R c ;
- R 3 is hydrogen, halo, cyano, amino, C 1-12 alkyl, C 1-12 alkenyl, C 1-12 alkynyl, C 3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl;
- R 4 in each instance is independently hydrogen, C 1-6 alkyl, —C(O)NR d R d , —C(NR d )NR d R d , —C(O)R d , or —S(O) 2 NR d R d ;
- R 4 is hydrogen, X 1 , X 2 , X 3 , X 4 are all CH, then L-R 3 is not CF 3 ;
- L-R 3 is not hydrogen, —CH 2 -aryl, or —CH 2 -heteroaryl
- L-R 3 is not —SO 2 -aryl, wherein the aryl is optionally substituted;
- the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine;
- R 4 is not C(O)NH 2 .
- diseases or conditions include cardiovascular diseases (e.g., coronary disease, hypertension, hypercholesterolemia, or atherosclerosis), a metabolic diseases (e.g., diabetes), hypocholesterolemia, a disease or condition where the mammal has elevated plasma levels of low density lipoprotein cholesterol, and a disease or condition where the mammal has suppressed plasma levels of low density lipoprotein cholesterol. Therefore, in certain embodiments, a compound of Formula I or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof are of use as a medicament for the treatment of the aforementioned diseases or conditions.
- a dash (“-”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, —C(O)NH 2 is attached through the carbon atom.
- a dash at the front or end of a chemical group is a matter of convenience; chemical groups may be depicted with or without one or more dashes without losing their ordinary meaning.
- a wavy line or a dashed line drawn through a line in a structure indicates a specified point of attachment of a group. Unless chemically or structurally required, no directionality or stereochemistry is indicated or implied by the order in which a chemical group is written or named.
- C u-v indicates that the following group has from u to v carbon atoms.
- C 1-6 alkyl indicates that the alkyl group has from 1 to 6 carbon atoms.
- references to “about” a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se.
- the term “about” includes the indicated amount ⁇ 10%.
- the term “about” includes the indicated amount ⁇ 5%.
- the term “about” includes the indicated amount ⁇ 1%.
- to the term “about X” includes description of “X”.
- the singular forms “a” and “the” include plural references unless the context clearly dictates otherwise.
- reference to “the compound” includes a plurality of such compounds and reference to “the assay” includes reference to one or more assays and equivalents thereof known to those skilled in the art.
- Alkyl refers to an unbranched or branched saturated hydrocarbon chain. As used herein, alkyl has 1 to 20 carbon atoms (i.e., C 1-20 alkyl), 1 to 8 carbon atoms (i.e., C 1-8 alkyl), 1 to 6 carbon atoms (i.e., C 1-6 alkyl), or 1 to 4 carbon atoms (i.e., C 1-4 alkyl).
- alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, and 3-methylpentyl.
- alkyl residue having a specific number of carbons is named by chemical name or identified by molecular formula, all positional isomers having that number of carbons may be encompassed; thus, for example, “butyl” includes n-butyl (i.e.
- a divalent group such as a divalent “alkyl” group, a divalent “aryl” group, etc.
- a divalent group such as a divalent “alkyl” group, a divalent “aryl” group, etc.
- combinations of groups are referred to herein as one moiety, e.g. arylalkyl, the last mentioned group contains the atom by which the moiety is attached to the rest of the molecule.
- Alkenyl refers to an alkyl group containing at least one carbon-carbon double bond and having from 2 to 20 carbon atoms (i.e., C 2-20 alkenyl), 2 to 8 carbon atoms (i.e., C 2-8 alkenyl), 2 to 6 carbon atoms (i.e., C 2-6 alkenyl), or 2 to 4 carbon atoms (i.e., C 2-4 alkenyl).
- alkenyl groups include ethenyl, propenyl, butadienyl (including 1,2-butadienyl and 1,3-butadienyl).
- Alkynyl refers to an alkyl group containing at least one carbon-carbon triple bond and having from 2 to 20 carbon atoms (i.e., C 2-20 alkynyl), 2 to 8 carbon atoms (i.e., C 2-8 alkynyl), 2 to 6 carbon atoms (i.e., C 2-6 alkynyl), or 2 to 4 carbon atoms (i.e., C 2-4 alkynyl).
- alkynyl also includes those groups having one triple bond and one double bond.
- Alkoxy refers to the group “alkyl-O—”. Examples of alkoxy groups include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, and 1,2-dimethylbutoxy.
- Alkylthio refers to the group “alkyl-S—”.
- acyl refers to a group —C(O)R, wherein R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- Examples of acyl include formyl, acetyl, cylcohexylcarbonyl, cyclohexylmethyl-carbonyl, and benzoyl.
- “Amido” refers to both a “C-amido” group which refers to the group —C(O)NR y R z and an “N-amido” group which refers to the group —NR y C(O)R z , wherein R y and R z are independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- Amino refers to the group —NR y R z wherein R y and R z are independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- Aryl refers to an aromatic carbocyclic group having a single ring (e.g. monocyclic) or multiple rings (e.g. bicyclic or tricyclic) including fused systems.
- aryl has 6 to 20 ring carbon atoms (i.e., C 6-20 aryl), 6 to 12 carbon ring atoms (i.e., C 6-12 aryl), or 6 to 10 carbon ring atoms (i.e., C 6-10 aryl).
- Examples of aryl groups include phenyl, naphthyl, fluorenyl, and anthryl.
- Aryl does not encompass or overlap in any way with heteroaryl defined below. If one or more aryl groups are fused with a heteroaryl, the resulting ring system is heteroaryl. If one or more aryl groups are fused with a heterocyclyl, the resulting ring system is heterocyclyl.
- Carbamoyl refers to both an “O-carbamoyl” group which refers to the group —O—C(O)NR y R z and an “N-carbamoyl” group which refers to the group —NR y C(O)OR z , wherein R y and R z are independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- Carboxyl ester refers to both —OC(O)R and —C(O)OR, wherein R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- Cycloalkyl refers to a saturated or partially unsaturated cyclic alkyl group having a single ring or multiple rings including fused, bridged, and spiro ring systems.
- the term “cycloalkyl” includes cycloalkenyl groups (i.e. the cyclic group having at least one double bond).
- cycloalkyl has from 3 to 20 ring carbon atoms (i.e., C 3-20 cycloalkyl), 3 to 12 ring carbon atoms (i.e., C 3-12 cycloalkyl), 3 to 10 ring carbon atoms (i.e., C 3-10 cycloalkyl), 3 to 8 ring carbon atoms (i.e., C 3-8 cycloalkyl), or 3 to 6 ring carbon atoms (i.e., C 3-6 cycloalkyl).
- Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
- the term cycloalkyl is intended to encompass any non-aromatic ring which may be fused to an aryl ring, regardless of the attachment to the remainder of the molecule.
- Imino refers to a group —C(NR)R, wherein each R is independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- Halogen or “halo” includes fluoro, chloro, bromo, and iodo.
- Haloalkyl refers to an unbranched or branched alkyl group as defined above, wherein one or more hydrogen atoms are replaced by a halogen. For example, where a residue is substituted with more than one halogen, it may be referred to by using a prefix corresponding to the number of halogen moieties attached.
- Dihaloalkyl and trihaloalkyl refer to alkyl substituted with two (“di”) or three (“tri”) halo groups, which may be, but are not necessarily, the same halogen. Examples of haloalkyl include difluoromethyl (—CHF 2 ) and trifluoromethyl (—CF 3 ).
- Haloalkoxy refers to an alkoxy group as defined above, wherein one or more hydrogen atoms are replaced by a halogen.
- Hydroalkyl refers to an alkyl group as defined above, wherein one or more hydrogen atoms are replaced by a hydroxyl group.
- Heteroalkyl refers to an alkyl group in which one or more of the carbon atoms (and any associated hydrogen atoms) are each independently replaced with the same or different heteroatomic group.
- the term “heteroalkyl” includes unbranched or branched saturated chain having carbon and heteroatoms. By way of example, 1, 2 or 3 carbon atoms may be independently replaced with the same or different heteroatomic group.
- Heteroatomic groups include, but are not limited to, —NR—, —O—, —S—, —S(O)—, —S(O) 2 —, and the like, where hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- heteroalkyl groups include —OCH 3 , —CH 2 OCH 3 , —SCH 3 , —CH 2 SCH 3 , —NRCH 3 , and —CH 2 NRCH 3 , where R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- heteroalkyl includes 1 to 10 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms; and 1 to 3 heteroatoms, 1 to 2 heteroatoms, or 1 heteroatom.
- Heteroaryl refers to an aromatic group having a single ring, multiple rings, or multiple fused rings, with one or more ring heteroatoms independently selected from nitrogen, oxygen, and sulfur.
- heteroaryl includes 1 to 20 ring carbon atoms (i.e., C 1-20 heteroaryl), 3 to 12 ring carbon atoms (i.e., C 3-12 heteroaryl), or 3 to 8 carbon ring atoms (i.e., C 3-8 heteroaryl); and 1 to 5 heteroatoms, 1 to 4 heteroatoms, 1 to 3 ring heteroatoms, 1 to 2 ring heteroatoms, or 1 ring heteroatom independently selected from nitrogen, oxygen, and sulfur.
- heteroaryl groups include pyrimidinyl, purinyl, pyridyl, pyridazinyl, benzothiazolyl, and pyrazolyl.
- fused-heteroaryl rings include, but are not limited to, benzo[d]thiazolyl, quinolinyl, isoquinolinyl, benzo[b]thiophenyl, indazolyl, benzo[d]imidazolyl, pyrazolo[1,5-a]pyridinyl, and imidazo[1,5-a]pyridinyl, where the heteroaryl can be bound via either ring of the fused system.
- Heterocyclyl refers to a saturated or unsaturated cyclic alkyl group, with one or more ring heteroatoms independently selected from nitrogen, oxygen and sulfur.
- the term “heterocyclyl” includes heterocycloalkenyl groups (i.e. the heterocyclyl group having at least one double bond), bridged-heterocyclyl groups, fused-heterocyclyl groups, and spiro-heterocyclyl groups.
- a heterocyclyl may be a single ring or multiple rings wherein the multiple rings may be fused, bridged, or spiro.
- any non-aromatic ring containing at least one heteroatom is considered a heterocyclyl, regardless of the attachment (i.e., can be bound through a carbon atom or a heteroatom).
- heterocyclyl is intended to encompass any non-aromatic ring containing at least one heteroatom, which ring may be fused to an aryl or heteroaryl ring, regardless of the attachment to the remainder of the molecule.
- heterocyclyl has 2 to 20 ring carbon atoms (i.e., C 2-20 heterocyclyl), 2 to 12 ring carbon atoms (i.e., C 2-12 heterocyclyl), 2 to 10 ring carbon atoms (i.e., C 2-10 heterocyclyl), 2 to 8 ring carbon atoms (i.e., C 2-8 heterocyclyl), 3 to 12 ring carbon atoms (i.e., C 3-12 heterocyclyl), 3 to 8 ring carbon atoms (i.e., C 3-8 heterocyclyl), or 3 to 6 ring carbon atoms (i.e., C 3-6 heterocyclyl); having 1 to 5 ring heteroatoms, 1 to 4 ring heteroatoms, 1 to 3 ring heteroatoms, 1 to 2 ring heteroatoms, or 1 ring heteroatom independently selected from nitrogen, sulfur or oxygen.
- ring carbon atoms i.e., C 2-20 heterocyclyl
- 2 to 12 ring carbon atoms i.
- heterocyclyl groups include pyrrolidinyl, piperidinyl, piperazinyl, oxetanyl, dioxolanyl, azetidinyl, and morpholinyl.
- spiro-heterocyclyl refers to a ring system in which a three- to ten-membered heterocyclyl has one or more additional ring, wherein the one or more additional ring is three- to ten-membered cycloalkyl or three- to ten-membered heterocyclyl, where a single atom of the one or more additional ring is also an atom of the three- to ten-membered heterocyclyl.
- spiro-heterocyclyl rings include bicyclic and tricyclic ring systems, such as 2-oxa-7-azaspiro[3.5]nonanyl, 2-oxa-6-azaspiro[3.4]octanyl, and 6-oxa-1-azaspiro[3.3]heptanyl.
- fused-heterocyclyl rings include, but are not limited to, 1,2,3,4-tetrahydroisoquinolinyl, 4,5,6,7-tetrahydrothieno[2,3-c]pyridinyl, indolinyl, and isoindolinyl, where the heterocyclyl can be bound via either ring of the fused system.
- “Sulfonyl” refers to the group —S(O) 2 R, where R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- Examples of sulfonyl are methylsulfonyl, ethylsulfonyl, phenylsulfonyl, and toluenesulfonyl.
- “Sulfinyl” refers to the group —S(O)R, where R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- Examples of sulfinyl are methylsulfinyl, ethylsulfinyl, phenylsulfinyl, and toluenesulfinyl.
- Alkylsulfonyl refers to the group —S(O) 2 R, where R is alkyl.
- Alkylsulfinyl refers to the group —S(O)R, where R is alkyl.
- “Sulfinic acid” refers to the group —S(O)R, where R is alkyl.
- a divalent group such as a divalent “alkyl” group, a divalent “aryl” group, etc.
- a divalent group such as a divalent “alkyl” group, a divalent “aryl” group, etc.
- combinations of groups are referred to herein as one moiety, e.g. arylalkyl, the last mentioned group contains the atom by which the moiety is attached to the rest of the molecule.
- substituted means that any one or more hydrogen atoms on the designated atom or group is replaced with one or more substituents other than hydrogen, provided that the designated atom's normal valence is not exceeded.
- the one or more substituents include, but are not limited to, alkyl, alkenyl, alkynyl, alkoxy, acyl, amino, amido, amidino, aryl, azido, carbamoyl, carboxyl, carboxyl ester, cyano, guanidino, halo, haloalkyl, haloalkoxy, heteroalkyl, heteroaryl, heterocyclyl, hydroxy, hydrazino, imino, oxo, nitro, alkylsulfinyl, sulfonic acid, alkylsulfonyl, thiocyanate, thiol, thione, or combinations thereof.
- impermissible substitution patterns e.g., methyl substituted with 5 fluorines or heteroaryl groups having two adjacent oxygen ring atoms.
- impermissible substitution patterns are well known to the skilled artisan.
- substituted may describe other chemical groups defined herein. Unless specified otherwise, where a group is described as optionally substituted, any substituents of the group are themselves unsubstituted.
- substituted alkyl refers to an alkyl group having one or more substituents including hydroxyl, halo, alkoxy, acyl, oxo, amino, cycloalkyl, heterocyclyl, aryl, and heteroaryl.
- the one or more substituents may be further substituted with halo, alkyl, haloalkyl, hydroxy, alkoxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which is substituted.
- the substituents may be further substituted with halo, alkyl, haloalkyl, alkoxy, hydroxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which is unsubstituted.
- any formula or structure given herein is also intended to represent unlabeled forms as well as isotopically labeled forms of the compounds.
- Isotopically labeled compounds have structures depicted by the formulas given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number.
- isotopes that can be incorporated into compounds of the disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as, but not limited to 2 H (deuterium, D), 3 H (tritium), 11 C, 13 C, 14 C, 15 N, 18 F, 31 P, 32 P, 35 S, 36 Cl and 125 I.
- isotopically labeled compounds of the present disclosure for example those into which radioactive isotopes such as 3 H, 13 C and 14 C are incorporated.
- isotopically labelled compounds may be useful in metabolic studies, reaction kinetic studies, detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays or in radioactive treatment of patients.
- PET positron emission tomography
- SPECT single-photon emission computed tomography
- the disclosure also includes “deuterated analogs” of compounds of Formula I in which from 1 to n hydrogens attached to a carbon atom is/are replaced by deuterium, in which n is the number of hydrogens in the molecule.
- deuterated analogs of compounds of Formula I in which from 1 to n hydrogens attached to a carbon atom is/are replaced by deuterium, in which n is the number of hydrogens in the molecule.
- Such compounds exhibit increased resistance to metabolism and are thus useful for increasing the half-life of any compound of Formula I when administered to a mammal, particularly a human. See, for example, Foster, “Deuterium Isotope Effects in Studies of Drug Metabolism,” Trends Pharmacol. Sci. 5(12):524-527 (1984).
- Such compounds are synthesized by means well known in the art, for example by employing starting materials in which one or more hydrogens have been replaced by deuterium.
- Deuterium labelled or substituted therapeutic compounds of the disclosure may have improved DMPK (drug metabolism and pharmacokinetics) properties, relating to distribution, metabolism and excretion (ADME). Substitution with heavier isotopes such as deuterium may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life, reduced dosage requirements and/or an improvement in therapeutic index.
- An 18 F, 3 H, 11 C labeled compound may be useful for PET or SPECT or other imaging studies.
- Isotopically labeled compounds of this disclosure and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the schemes or in the examples and preparations described below by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent. It is understood that deuterium in this context is regarded as a substituent in the compound of Formula I.
- the concentration of such a heavier isotope, specifically deuterium may be defined by an isotopic enrichment factor.
- any atom not specifically designated as a particular isotope is meant to represent any stable isotope of that atom.
- a position is designated specifically as “H” or “hydrogen”, the position is understood to have hydrogen at its natural abundance isotopic composition.
- any atom specifically designated as a deuterium (D) is meant to represent deuterium.
- the compounds of this disclosure are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.
- “Pharmaceutically acceptable” or “physiologically acceptable” refer to compounds, salts, compositions, dosage forms and other materials which are useful in preparing a pharmaceutical composition that is suitable for veterinary or human pharmaceutical use.
- pharmaceutically acceptable salt of a given compound refers to salts that retain the biological effectiveness and properties of the given compound, and which are not biologically or otherwise undesirable.
- “Pharmaceutically acceptable salts” or “physiologically acceptable salts” include, for example, salts with inorganic acids and salts with an organic acid.
- the free base can be obtained by basifying a solution of the acid salt.
- an addition salt, particularly a pharmaceutically acceptable addition salt may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds.
- Pharmaceutically acceptable acid addition salts may be prepared from inorganic and organic acids. Salts derived from inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
- Salts derived from organic acids include acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene-sulfonic acid, salicylic acid, and the like.
- pharmaceutically acceptable base addition salts can be prepared from inorganic and organic bases. Salts derived from inorganic bases include, by way of example only, sodium, potassium, lithium, ammonium, calcium and magnesium salts.
- Salts derived from organic bases include, but are not limited to, salts of primary, secondary and tertiary amines, such as alkyl amines (i.e., NH 2 (alkyl)), dialkyl amines (i.e., HN(alkyl) 2 ), trialkyl amines (i.e., N(alkyl) 3 ), substituted alkyl amines (i.e., NH 2 (substituted alkyl)), di(substituted alkyl) amines (i.e., HN(substituted alkyl) 2 ), tri(substituted alkyl) amines (i.e., N(substituted alkyl) 3 ), alkenyl amines (i.e., NH 2 (alkenyl)), dialkenyl amines (i.e., HN(alkenyl) 2 ), trialkenyl amines (i.e.,
- Suitable amines include, by way of example only, isopropylamine, trimethyl amine, diethyl amine, tri(iso-propyl) amine, tri(n-propyl) amine, ethanolamine, 2-dimethylaminoethanol, piperazine, piperidine, morpholine, N-ethylpiperidine, and the like.
- hydrate refers to the complex formed by the combining of a compound of Formula I and water.
- a “solvate” refers to an association or complex of one or more solvent molecules and a compound of the disclosure.
- solvents that form solvates include, but are not limited to, water, isopropanol, ethanol, methanol, dimethylsulfoxide, ethylacetate, acetic acid, and ethanolamine.
- Tautomers are in equilibrium with one another.
- amide containing compounds may exist in equilibrium with imidic acid tautomers. Regardless of which tautomer is shown, and regardless of the nature of the equilibrium among tautomers, the compounds are understood by one of ordinary skill in the art to comprise both amide and imidic acid tautomers. Thus, the amide containing compounds are understood to include their imidic acid tautomers. Likewise, the imidic acid containing compounds are understood to include their amide tautomers.
- Stepoisomers are isomers that differ only in the way the atoms are arranged in space and include enantiomers and diastereomers.
- Enantiomers are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a “racemic” mixture.
- “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
- Prodrugs means any compound which releases an active parent drug according to Formula I in vivo when such prodrug is administered to a mammalian subject.
- Prodrugs of a compound of Formula I are prepared by modifying functional groups present in the compound of Formula I in such a way that the modifications may be cleaved in vivo to release the parent compound.
- Prodrugs may be prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds.
- Prodrugs include compounds of Formula I wherein a hydroxy, amino, carboxyl or sulfhydryl group in a compound of Formula I is bonded to any group that may be cleaved in vivo to regenerate the free hydroxyl, amino, or sulfhydryl group, respectively.
- Examples of prodrugs include, but are not limited to esters (e.g., acetate, formate, and benzoate derivatives), amides, guanidines, carbamates (e.g., N,N-dimethylaminocarbonyl) of hydroxy functional groups in compounds of Formula I, and the like. Preparation, selection, and use of prodrugs is discussed in T. Higuchi and V.
- “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” or “excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- n 0, 1, or 2;
- X 1 is absent, CR 2 , CR 2 R 2 , C(O), N, NR 2 , S, SO 2 , or O;
- X 2 , X 3 , and X 4 are each independently CR 2 , CR 2 R 2 , C(O), N, NR 2 , S, SO 2 , or O;
- ring B is a five- or six-membered ring comprising one or more double bonds
- X 5 and X 6 are either CR 2 or N;
- X 7 is C or N
- ring A is selected from:
- L is a bond, C 1-6 -alkylene, —O—, —C(O)—, —SO 2 —, —N(R a )—, —N(R a )SO 2 —, or —SO 2 N(R a )—
- R a is hydrogen, C 1-6 alkyl, or C 1-6 heteroalkyl, wherein the C 1-6 alkyl or C 1-6 heteroalkyl are optionally substituted with 1 to 3 substituents independently selected from halo, oxo, hydroxy, C 1-6 alkyl, or C 1-6 heteroalkyl;
- R 1 in each instance is independently halo, cyano, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, —NR b C(O)NR b R b , or —NR b S(O) 2 R b ;
- R 2 in each instance is independently hydrogen, halo, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, C 2-6 hydroxyalkyl, cyano, —C(O)OR c , or —C(O)NR c R c ;
- R 3 is hydrogen, halo, cyano, amino, C 1-12 alkyl, C 1-12 alkenyl, C 1-12 alkynyl, C 3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl;
- R 4 in each instance is independently hydrogen, C 1-6 alkyl, —C(O)NR d R d , —C(NR d )NR d R d , —C(O)R d , or —S(O) 2 NR d R d ;
- R 4 is hydrogen, X 1 , X 2 , X 3 , X 4 are all CH, then L-R 3 is not CF 3 ;
- L-R 3 is not hydrogen, —CH 2 -aryl, or —CH 2 — heteroaryl
- L-R 3 is not —SO 2 -aryl, wherein the aryl is optionally substituted;
- the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine;
- R 4 is not C(O)NH 2 .
- n 0, 1, or 2;
- n 0, 1, or 2;
- X 1 , X 2 , X 3 , and X 4 are each independently CH, C(O), N, NH, S, SO 2 , or O; or
- X 1 is absent and X 2 , X 3 , and X 4 are each independently CH, C(O), N, NH, S, SO 2 , or O;
- X 5 and X 6 are either CH or N;
- ring A is selected from:
- L is a bond, C 1-6 -alkylene, —O—, —C(O)—, —SO 2 —, or —N(R a )—, where R a is hydrogen, C 1-6 alkyl, or C 1-6 heteroalkyl, wherein the C 1-6 alkyl or C 1-6 heteroalkyl are optionally substituted with 1 to 3 substituents independently selected from halo, oxo, hydroxy, C 1-6 alkyl, or C 1-6 heteroalkyl;
- R 1 in each instance is independently, halo, cyano, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, —NR b C(O)NR b R b , —NR b S(O) 2 R b , —N(R b ) 2 , or —NR b C(O)R b ;
- R 2 in each instance is independently, halo, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, C 2-6 hydroxyalkyl, cyano, —C(O)OR c , or —C(O)NR c R c ;
- R 3 is hydrogen, halo, cyano, C 1-12 alkyl, C 1-12 alkenyl, C 1-12 alkynyl, C 3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl,
- R 4 in each instance is independently, hydrogen, C 1-6 alkyl, —C(O)NR d R d , —C(NR d )NR d R d , —C(O)R d , or —S(O) 2 NR d R d ;
- R 4 is hydrogen, X 1 , X 2 , X 3 , X 4 are all CH, then either L-R 3 is not CF 3 or n is not 0.
- the compound is of Formula (Ia) with the further proviso that when m is 0, n is 0, R 4 is hydrogen, X 1 , X 2 , X 3 , X 4 are all CH, then L-R 3 is not hydrogen.
- the bicyclic ring may be optionally substituted with one or more R 2 selected from the group consisting of hydrogen, halo, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, C 2-6 hydroxyalkyl, cyano, —C(O)OR c , and —C(O)NR c R c .
- the bicyclic ring may be optionally substituted with one or more R 2 selected from the group consisting of hydrogen, halo, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, C 2-6 hydroxyalkyl, cyano, —C(O)OR c , and —C(O)NR c R c .
- ring A is:
- ring A is:
- ring A is:
- m is 0 or 1.
- R 4 is hydrogen, —C(O)NH 2 , or —C(NH)NH 2 . In certain embodiments, R 4 is hydrogen.
- R 1 is —NHC(O)NH 2 , —NHS(O) 2 CH 3 , or —NHC(O)CH 3 . In certain embodiments, R 1 is —NHS(O) 2 CH 3 , or —NHC(O)CH 3 .
- R 2 is hydrogen, C 1-6 alkyl, —CO 2 H or —C(O)NH 2 . In certain embodiments, R 2 is —CO 2 H or —C(O)NH 2 . In certain embodiments, R 2 is hydrogen. In certain embodiments, R 2 is hydrogen or methyl.
- R 4 is hydrogen, —C(O)NH 2 , or —C(NH)NH 2 . In certain embodiments, R 4 is hydrogen.
- L is a bond, —CH 2 —, —O—, —C(O)—, —S(O) 2 —, —S(O) 2 NH—, or —NH—.
- L is —CH 2 —, —O—, —C(O)—, —S(O) 2 —, —S(O) 2 NH—, or —NH—.
- L is —CH 2 —, —O—, —C(O)—, —S(O) 2 —, or —NH—.
- L is a bond.
- R 3 is hydrogen, amino, halo, C 1-6 alkyl, aryl, or C 3-10 heterocyclyl, wherein C 1-6 alkyl, aryl, or C 3-10 heterocyclyl is optionally substituted with one or more halo.
- R 3 is hydrogen, C 1-6 alkyl, or C 3-10 heterocyclyl, wherein C 1-6 alkyl or C 3-10 heterocyclyl is optionally substituted with one or more halo.
- R 3 is hydrogen.
- R 3 is CH 3 .
- R 3 is CF 3 .
- R 3 is F.
- R 3 is Cl.
- R 3 is NH 2 .
- R 3 is cyclohexyl.
- R 3 is aryl.
- R 3 is C 3-10 heterocyclyl.
- L is a bond and R 3 is hydrogen, C 1-6 alkyl, haloalkyl, halo, C 3-10 cycloalkyl, heterocyclyl, or aryl.
- L is a bond and R 3 is hydrogen.
- L is a bond and R 3 is CH 3 .
- L is a bond and R 3 is CF 3 .
- L is a bond and R 3 is F.
- L is a bond and R 3 is Cl.
- L is a bond and R 3 is cyclohexyl.
- L is a bond, and R 3 is phenyl.
- R 3 is:
- Y is —O—, —N(R e )—, —CH((CH 2 ) f OH), or —N((CH 2 ) f OH);
- each R e is independently hydrogen, C 1-6 alkyl, C 3-6 cycloalkyl, or C 2-6 alkyl where the C 2-6 alkyl is substituted with a hydroxy;
- f 0, 1, 2, 3, or 4.
- Y is —N(R e )—.
- n 0, 1, or 2;
- n 0, 1, or 2;
- X 1 , X 2 , X 3 , and X 4 are each independently CH, C(O), N, NH, S, SO 2 , or O; or
- X 1 is absent and X 2 , X 3 , and X 4 are each independently CH, C(O), N, NH, S, SO 2 , or O;
- X 5 and X 6 are either CH or N;
- ring A is selected from:
- R 1 in each instance is independently, halo, cyano, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, —NR b C(O)NR b R b , —NR b S(O) 2 R b , —N(R b ) 2 , or —NR b C(O)R b ;
- R 2 in each instance is independently, halo, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, C 2-6 hydroxyalkyl, cyano, —C(O)OR c , or —C(O)NR c R c ;
- R 4 in each instance is independently, hydrogen, C 1-6 alkyl, —C(O)NR d R d , —C(NR d )NR d R d , —C(O)R d , or —S(O) 2 NR d R d ;
- J is selected from the group consisting of —O—, —CO—, —CH 2 —, —CF 2 —, —SO 2 —;
- Ring C is a 5 or 6 membered saturated or unsaturated aryl, heteroaryl, carbocyclic or heterocyclic ring. And ring C may be fused via R 11 , R 12 to form a 5-6 membered aryl, heteroaryl, carbocyclic or heterocyclic ring;
- E 1 , E 2 , and E 3 are independently selected from C or N;
- R 11 and R 12 are independently selected from the group consisting of lower alkyl, halo, hydroxy, amino, aminoalkyl, hydroxylalkyl, haloalkyl, carboxy, —C(O)NH 2 , nitrile, —S-alkyl, —O-alkyl, acyl, and oxo; and
- R 10 , R 11 , and R 12 are independently selected from the group consisting of lower alkyl, halo, hydroxy, amino, aminoalkyl, hydroxylalky, haloalkyl, carboxy, —C(O)NH 2 , —C(O)N-alkyl, nitrile, —S-alkyl, —O-alkyl, acyl, oxo; and R 10 and R 11 may be joined to form a 5-6 membered fused saturated or unsaturated ring D containing 0-3 heteroatoms where Ring D may further be substituted at positions at least two atoms away from the juncture with Ring C,
- a compound may be selected from those compounds in Table 1 or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof.
- a compound may be selected from those compounds in Table 2 or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof.
- the compounds provided herein are useful for binding to PCSK9 and modulating PCSK9 proprotein convertase enzyme activity.
- Treatment is an approach for obtaining beneficial or desired results including clinical results.
- beneficial or desired clinical results may include one or more of the following: a) inhibiting the disease or condition (e.g., decreasing one or more symptoms resulting from the disease or condition, and/or diminishing the extent of the disease or condition); b) slowing or arresting the development of one or more clinical symptoms associated with the disease or condition (e.g., stabilizing the disease or condition, preventing or delaying the worsening or progression of the disease or condition, and/or preventing or delaying the spread (e.g., metastasis) of the disease or condition); and/or c) relieving the disease, that is, causing the regression of clinical symptoms (e.g., ameliorating the disease state, providing partial or total remission of the disease or condition, enhancing effect of another medication, delaying the progression of the disease, increasing the quality of life, and/or prolonging survival.
- a) inhibiting the disease or condition e.g., decreasing one or more symptoms resulting from the disease or condition
- Prevention means any treatment of a disease or condition that causes the clinical symptoms of the disease or condition not to develop.
- Compounds may, in some embodiments, be administered to a subject (including a human) who is at risk or has a family history of the disease or condition.
- Subject refers to an animal, such as a mammal (including a human), that has been or will be the object of treatment, observation or experiment. The methods described herein may be useful in human therapy and/or veterinary applications.
- the subject is a mammal. In one embodiment, the subject is a human.
- terapéuticaally effective amount or “effective amount” of a compound described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof means an amount sufficient to effect treatment when administered to a subject, to provide a therapeutic benefit such as amelioration of symptoms or slowing of disease progression.
- a therapeutically effective amount may be an amount sufficient to decrease a symptom of a disease or condition of as described herein.
- the therapeutically effective amount may vary depending on the subject, and disease or condition being treated, the weight and age of the subject, the severity of the disease or condition, and the manner of administering, which can readily be determined by one or ordinary skill in the art.
- ex vivo means within a living individual, as within an animal or human. In this context, the methods described herein may be used therapeutically in an individual.
- Ex vivo means outside of a living individual. Examples of ex vivo cell populations include in vitro cell cultures and biological samples including fluid or tissue samples obtained from individuals. Such samples may be obtained by methods well known in the art. Exemplary biological fluid samples include blood, cerebrospinal fluid, urine, and saliva. In this context, the compounds and compositions described herein may be used for a variety of purposes, including therapeutic and experimental purposes.
- the compounds and compositions described herein may be used ex vivo to determine the optimal schedule and/or dosing of administration of a compound of the present disclosure for a given indication, cell type, individual, and other parameters. Information gleaned from such use may be used for experimental purposes or in the clinic to set protocols for in vivo treatment. Other ex vivo uses for which the compounds and compositions described herein may be suited are described below or will become apparent to those skilled in the art.
- the selected compounds may be further characterized to examine the safety or tolerance dosage in human or non-human subjects. Such properties may be examined using commonly known methods to those skilled in the art.
- Proprotein convertase subtilisin/kexin type 9 also known as PCSK9, is an enzyme that in humans is encoded by the PCSK9 gene. Seidah et al., “The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation,” Proc. Natl. Acad. Sci. U.S.A. 100 (3): 928-933 (2003). Similar genes (orthologs) are found across many species. Many enzymes, including PCSK9, are inactive when they are first synthesized, because they have a section of peptide chains that blocks their activity; proprotein convertases remove that section to activate the enzyme.
- the PCSK9 gene encodes a proprotein convertase belonging to the proteinase K subfamily of the secretory subtilase family.
- the encoded protein is synthesized as a soluble zymogen that undergoes autocatalytic intramolecular processing in the endoplasmic reticulum.
- the protein may function as a proprotein convertase.
- a human PCSK9 amino acid sequence is:
- PCSK9 is believed to play a regulatory role in cholesterol homeostasis.
- PCSK9 can bind to the epidermal growth factor-like repeat A (EGF-A) domain of the low-density lipoprotein receptor (LDL-R) resulting in LDL-R internalization and degradation.
- EGF-A epidermal growth factor-like repeat A
- LDL-R low-density lipoprotein receptor
- PCSK9 inhibitors could result in such widespread usage having the potential to replace statins in certain conditions.
- PCSK9 has medical significance because it acts in cholesterol homeostasis. Drugs that block PCSK9 biological actions are believed to lower circulating low-density lipoprotein cholesterol (LDL-C) levels (e.g., by increasing the availability of LDL-Rs and, consequently, LDL-C clearance).
- LDL-C low-density lipoprotein cholesterol
- Evolocumab (trade name RepathaTM from Amgen, Inc.) and Alirocumab (tradename PraluentTM from Sanofi U.S., LLC and Regeneron Pharmaceuticals, Inc.) have been FDA approved, but are still in clinical trials to determine if they can improve outcomes in heart disease.
- Variants of PCSK9 can reduce or increase circulating cholesterol.
- Abifadel et al. “Mutations in PCSK9 cause autosomal dominant hypercholesterolemia” Nat. Genet. 34 (2): 154-156 (2003).
- LDL-C is normally removed from the blood when it binds to an LDL-R on the surface of liver cells, and is internalized within the hepatocyte as a receptor-ligand complex.
- the LDL-R is concomitantly degraded along with the complexed LDL particle.
- the LDL-R is recycled after internalization thereby returning to the surface of the cell for removal of more cholesterol.
- compounds contemplated to have a modulation effect on PCSK9's ability to form an LDL-R/PCSK9 complex may bind to a PCSK9 protein and modulate the protein's biological activity.
- compounds decrease LDL-R/PCSK9 complex formation and are thereby useful to treat various diseases involving lipid dysregulation.
- compounds increase LDL-R/PCSK9 complex formation and are thereby useful in research and development of therapies relevant to LDL dysregulation.
- gain-of-function PCSK9 mutants may result in conditions including, but not limited to, hypercholesterolemia.
- compounds that bind to a PCSK9 and increase the affinity of PCSK9's low density lipoprotein receptor for a low density lipoprotein receptor on the surface of a cell would be expected to increase the symptoms of hypercholesterolemia by increasing low density lipoprotein receptor internalization and degradation.
- LEF loss-of-function
- PCSK9 mutants may result in conditions comprising reduced low density lipoproteins and would be expected to result in hypocholesterolemia thereby reducing the risk of cardiovascular diseases, including but not limited to, coronary heart disease.
- compounds that bind to a PCSK9 that decrease the affinity of PCSK9's low density lipoprotein receptor binding site for a low density lipoprotein receptor on the surface of a cell e.g., a hepatocyte
- the compounds of the present disclosure are therefore useful for treating diseases and conditions mediated, at least in part by, PCSK9, including but not limited to cardiovascular diseases (e.g., a coronary disease) and metabolic diseases.
- cardiovascular diseases e.g., a coronary disease
- metabolic diseases e.g., cardiovascular diseases, e.g., a coronary disease
- the compounds of the present disclosure are useful for treating diseases and conditions including, but not limited to hypercholesterolemia, atherosclerosis, and hypertension.
- the compounds of the present disclosure are useful for reducing symptoms including, but not limited to elevated low density lipoprotein receptor density, reduced low density lipoprotein receptor density, symptoms of liver disease.
- the administration of a compound of the present disclosure induces a conformational shift of the PCSK9 protein such that the affinity of the low density lipoprotein binding site for a low density lipoprotein receptor is decreased, wherein PCSK9/LDL-R complex formation is decreased.
- the decrease in PCSK9/LDL-R complex formation results in an increase in the bioavailability of LDL-R receptors for binding to circulating LDL, thereby increasing the internalization and clearance of LDL by LDL-R.
- administration of the compound may result in increased bioavailability of hepatocyte cell LDL-Rs.
- the administration of a compound of the present disclosure induces a conformational shift of the PCSK9 protein such that the affinity of the low density lipoprotein binding site for a low density lipoprotein receptor is increased, wherein PCSK9/LDL-R complex formation is increased or stabilized.
- the increase or stabilization in PCSK9/LDL-R complex formation results in a decrease in the bioavailability of LDL-R receptors for binding to circulating LDL, thereby decreasing the internalization and clearance of LDL by LDL-R.
- a PCSK9 allosteric activator compound may result in decreased bioavailability of hepatocyte cell LDL-Rs.
- provided herein is a method of treating a disease or condition mediated, at least in part, by PCSK9, the method comprising administering to a patient in need thereof a compound of Formula (I):
- n 0, 1, or 2;
- X 1 is absent, CR 2 , CR 2 R 2 , C(O), N, NR 2 , S, SO 2 , or O;
- X 2 , X 3 , and X 4 are each independently CR 2 , CR 2 R 2 , C(O), N, NR 2 , S, SO 2 , or O;
- ring B is a five- or six-membered ring comprising one or more double bonds
- X 5 and X 6 are either CR 2 or N;
- X 7 is C or N
- ring A is selected from:
- L is a bond, C 1-6 -alkylene, —O—, —C(O)—, —N(R a )—, —N(R a )SO 2 —, or —SO 2 N(R a )-where R a is hydrogen, C 1-6 alkyl, or C 1-6 heteroalkyl, wherein the C 1-6 alkyl or C 1-6 heteroalkyl are optionally substituted with 1 to 3 substituents independently selected from halo, oxo, hydroxy, C 1-6 alkyl, or C 1-6 heteroalkyl;
- R 1 in each instance is independently halo, cyano, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, —NR b C(O)NR b R b , or —NR b S(O) 2 R b ;
- R 2 in each instance is independently hydrogen, halo, C 1-6 alkyl optionally substituted with halo or hydroxy, C 3-6 cycloalkyl, C 2-6 hydroxyalkyl, cyano, —C(O)OR c , or —C(O)NR c R c ;
- R 3 is hydrogen, halo, cyano, amino, C 1-12 alkyl, C 1-12 alkenyl, C 1-12 alkynyl, C 3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl;
- R 4 in each instance is independently hydrogen, C 1-6 alkyl, —C(O)NR d R d , —C(NR d )NR d R d , —C(O)R d , or —S(O) 2 NR d R d ;
- a method of treating a disease or condition mediated, at least in part, by PCSK9 comprising administering to a patient in need thereof a compound of Formula (I), as defined herein, with the following provisos:
- R 4 is hydrogen, X 1 , X 2 , X 3 , X 4 are all CH, then either L-R 3 is not CF 3 or n is not 0;
- L-R 3 is not hydrogen, —CH 2 -aryl, or —CH 2 -heteroaryl
- L-R 3 is not —SO 2 -aryl, wherein the aryl is optionally substituted;
- the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine;
- R 4 is not C(O)NH 2 .
- provided herein is a method of treating a disease or condition mediated, at least in part, by PCSK9, the method comprising administering to a patient in need thereof a compound selected from Table 1 or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof.
- a method of treating a disease or condition mediated, at least in part, by PCSK9 the method comprising administering to a patient in need thereof a compound selected from Table 2 or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof.
- a compound for use in the treatment of a disease or condition mediated, at least in part, by PCSK9 wherein the compound is of Formula (I), as defined herein, with the following provisos:
- R 4 is hydrogen, X 1 , X 2 , X 3 , X 4 are all CH, then either L-R 3 is not CF 3 or n is not 0;
- L-R 3 is not hydrogen, —CH 2 -aryl, or —CH 2 -heteroaryl
- L-R 3 is not —SO 2 -aryl, wherein the aryl is optionally substituted;
- the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine;
- R 4 is not C(O)NH 2 .
- R 4 is hydrogen, X 1 , X 2 , X 3 , X 4 are all CH, then either L-R 3 is not CF 3 or n is not 0;
- L-R 3 is not hydrogen, —CH 2 -aryl, or —CH 2 -heteroaryl
- L-R 3 is not —SO 2 -aryl, wherein the aryl is optionally substituted;
- the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine;
- R 4 is not C(O)NH 2 .
- a compound of Formula (Ia), (Ib) or any other Formula, as defined herein for the treatment of a disease or condition mediated, at least in part, by PCSK9.
- a compound for the manufacture of a medicament for treating a disease or condition mediated, at least in part, by PCSK9 wherein the compound is of Formula (I), as defined herein, with the following provisos:
- R 4 is hydrogen, X 1 , X 2 , X 3 , X 4 are all CH, then either L-R 3 is not CF 3 or n is not 0;
- L-R 3 is not hydrogen, —CH 2 -aryl, or —CH 2 -heteroaryl
- L-R 3 is not —SO 2 -aryl, wherein the aryl is optionally substituted;
- the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine;
- R 4 is not C(O)NH 2 .
- a compound of Formula (Ia), (Ib) or any other Formula, as defined herein for the manufacture of a medicament for treating a disease or condition mediated, at least in part, by PCSK9.
- a method of inhibiting the activity of PCSK9 where the method comprising binding a compound to PCSK9, thereby inhibiting the activity of PCSK9, where the compound is of Formula (I), as defined herein, with the following provisos:
- R 4 is hydrogen, X 1 , X 2 , X 3 , X 4 are all CH, then either L-R 3 is not CF 3 or n is not 0;
- L-R 3 is not hydrogen, —CH 2 -aryl, or —CH 2 -heteroaryl
- L-R 3 is not —SO 2 -aryl, wherein the aryl is optionally substituted;
- the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine;
- R 4 is not C(O)NH 2 .
- Hypercholesterolemia (also spelled hypercholesterolaemia) is the presence of high levels of cholesterol in the blood. It is a form of “hyperlipidemia” (elevated levels of lipids in the blood) and “hyperlipoproteinemia” (elevated levels of lipoproteins in the blood). Durrington, P “Dyslipidaemia” The Lancet 2003; 362(9385):717-731. Hypercholesterolemia is typically due to a combination of environmental and genetic factors. Environmental factors include obesity and dietary choices. Genetic contributions are usually due to the additive effects of multiple genes, though occasionally may be due to a single gene defect such as in the case of familial hypercholesterolaemia.
- Hypercholesterolemia Genetic abnormalities are in some cases completely responsible for hypercholesterolemia, such as in familial hypercholesterolemia where there is one or more genetic mutations in the autosomal dominant APOB gene, the autosomal recessive LDLRAP1 gene, autosomal dominant familial hypercholesterolemia (HCHOLA3) variant of the PCSK9 gene, or the LDL receptor gene.
- Cholesterol is a sterol. It is one of three major classes of lipids which all animal cells utilize to construct their membranes and is thus manufactured by all animal cells. Plant cells do not manufacture cholesterol. It is also the precursor of the steroid hormones, bile acids and vitamin D. Since cholesterol is insoluble in water, it is transported in the blood plasma within protein particles (lipoproteins). Lipoproteins are classified by their density: very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), low density lipoprotein (LDL) and high density lipoprotein (HDL). Biggerstaff et al., (2004). “Understanding lipoproteins as transporters of cholesterol and other lipids” Adv Physiol Educ 28 (1-4): 105-6.
- VLDL very low density lipoprotein
- IDL intermediate density lipoprotein
- LDL low density lipoprotein
- HDL high density lipoprotein
- All the lipoproteins carry cholesterol, but elevated levels of the lipoproteins other than HDL (termed non-HDL cholesterol), particularly LDL-cholesterol are associated with an increased risk of atherosclerosis and coronary heart disease.
- LDL-cholesterol is associated with an increased risk of atherosclerosis and coronary heart disease.
- Cera et al. (2004) “Atherogenic lipoprotein particles in atherosclerosis” Circulation 109(23 Suppl 1): III 2-7.
- higher levels of HDL cholesterol are protective.
- Kontush et al. (2006) “Antiatherogenic small, dense HDL-guardian angel of the arterial wall?” Nat Clin Pract Cardiovasc Med 3(3):144-153.
- Elevated levels of non-HDL cholesterol and LDL in the blood may be a consequence of diet, obesity, inherited (genetic) diseases (such as LDL receptor mutations in familial hypercholesterolemia), or the presence of other diseases such as diabetes and an underactive thyroid.
- Total cholesterol is the amount of all of the fats in your blood. These fats are called lipids.
- LDL low density lipoprotein
- HDL high density lipoprotein
- Cholesterol is measured in milligrams per deciliter (mg/dL). In conditions such as heart disease or diabetes, LDL cholesterol should stay below 100 mg/dL. If there is a risk for heart disease, LDL cholesterol should be lower than 130 mg/dL. In general, LDL cholesterol should be lower than 160-190 mg/dL. Alternative, HDL “good” cholesterol should be high. For example, HDL levels in men should be above 40 mg/dL, while HDL levels should be above 50 mg/dL for women.
- hypercholesterolemia comprises a longstanding elevation of serum cholesterol that can lead to atherosclerosis.
- Chronically elevated serum cholesterol contributes to formation of atheromatous plaques in the arteries. This can lead to progressive stenosis (narrowing) or even complete occlusion (blockage) of the involved arteries.
- smaller plaques may rupture and cause a clot to form and obstruct blood flow.
- tissue ischemia may manifest as specific symptoms including, but not limited to, temporary ischemia of the brain (commonly referred to as a transient ischemic attack) may manifest as temporary loss of vision, dizziness and impairment of balance, aphasia (difficulty speaking), paresis (weakness) and paresthesia (numbness or tingling), usually on one side of the body.
- Insufficient blood supply to the heart may manifest as chest pain
- ischemia of the eye may manifest as transient visual loss in one eye.
- Insufficient blood supply to the legs may manifest as calf pain when walking, while in the intestines it may present as abdominal pain after eating a meal.
- hypocholesterolemia is the presence of abnormally low (hypo-) levels of cholesterol in the blood (-emia). Although the presence of high total cholesterol (hyper-cholesterolemia) correlates with cardiovascular disease, a defect in the body's production of cholesterol can lead to adverse consequences as well. Cholesterol is an essential component of mammalian cell membranes and is required to establish proper membrane permeability and fluidity. It is not clear if a lower than average cholesterol level is directly harmful; it is often encountered in particular illnesses.
- Possible causes of low cholesterol include, but are not limited to, statins, hyperthyroidism, or an overactive thyroid gland, adrenal insufficiency, liver disease, malabsorption (inadequate absorption of nutrients from the intestines), such as in celiac disease, malnutrition, abetalipoproteinemia (a genetic disease that causes cholesterol readings below 50 mg/dl), hypobetalipoproteinemia (a genetic disease that causes cholesterol readings below 50 mg/dl, manganese deficiency, Smith-Lemli-Opitz syndrome, Marfan syndrome, leukemias and other hematological diseases.
- statins a genetic disease that causes cholesterol readings below 50 mg/dl
- hypobetalipoproteinemia a genetic disease that causes cholesterol readings below 50 mg/dl
- manganese deficiency Smith-Lemli-Opitz syndrome
- Marfan syndrome leukemias and other hematological diseases.
- Diabetes affects more than 20 million Americans. Over 40 million Americans have pre-diabetes (which often develops before type 2 diabetes). Diabetes is usually a lifelong (chronic) disease in which there is a high level of sugar in the blood. Insulin is a hormone produced by the pancreas to control blood sugar. Diabetes can be caused by too little insulin, resistance to insulin, or both. To understand diabetes, it is important to first understand the normal process by which food is broken down and used by the body for energy.
- glucose enters the bloodstream.
- Glucose is a source of fuel for the body.
- An organ called the pancreas makes insulin. The role of insulin is to move glucose from the bloodstream into muscle, fat, and liver cells, where it can be used as fuel.
- Type 1 diabetes can occur at any age, but it is most often diagnosed in children, teens, or young adults. In this disease, the body makes little or no insulin. Daily injections of insulin are needed. The exact cause is unknown.
- Type 2 diabetes makes up most diabetes cases. It most often occurs in adulthood. But because of high obesity rates, teens and young adults are now being diagnosed with it. Many people with type 2 diabetes do not know they have it.
- Gestational diabetes is high blood sugar that develops at any time during pregnancy in a woman who does not have diabetes.
- Diabetes symptoms may result from high blood sugar level and include, but are not limited to, blurry vision, excess thirst, fatigue, hunger, urinating often and weight loss.
- diseases or conditions that benefit from treatment with other therapeutic agents.
- diseases or conditions can be of cardiovascular nature or can be related to pulmonary disorders, metabolic disorders, gastrointestinal disorders and the like.
- Cardiovascular related diseases or conditions that can benefit from a combination treatment of the compounds of the disclosure with other therapeutic agents include, without limitation, angina including stable angina, unstable angina (UA), exercised-induced angina, variant angina, arrhythmias, intermittent claudication, myocardial infarction including non-STE myocardial infarction (NSTEMI), pulmonary hypertension including pulmonary arterial hypertension, heart failure including congestive (or chronic) heart failure and diastolic heart failure and heart failure with preserved ejection fraction (diastolic dysfunction), acute heart failure, or recurrent ischemia.
- angina including stable angina, unstable angina (UA), exercised-induced angina, variant angina, arrhythmias, intermittent claudication, myocardial infarction including non-STE myocardial infarction (NSTEMI), pulmonary hypertension including pulmonary arterial hypertension, heart failure including congestive (or chronic) heart failure and diastolic heart failure and heart failure with preserved ejection fraction (dia
- Therapeutic agents suitable for treating cardiovascular related diseases or conditions include anti-anginals, heart failure agents, antithrombotic agents, antiarrhythmic agents, antihypertensive agents, and lipid lowering agents.
- the co-administration of the compounds of the disclosure with therapeutic agents suitable for treating cardiovascular related conditions allows enhancement in the standard of care therapy the patient is currently receiving.
- the compounds of the disclosure are co-administered with ranolazine (RANEXA®).
- Anti-anginals include beta-blockers, calcium channel blockers, and nitrates. Beta blockers reduce the heart's need for oxygen by reducing its workload resulting in a decreased heart rate and less vigorous heart contraction.
- beta-blockers include acebutolol (Sectral®), atenolol (Tenormin®), betaxolol (Kerlone®), bisoprolol/hydrochlorothiazide (Ziac®), bisoprolol (Zebeta®), carteolol (Cartrol®), esmolol (Brevibloc®), labetalol (Normodyne®, Trandate®), metoprolol (Lopressor®, Toprol® XL), nadolol (Corgard®), propranolol (Inderal®), sotalol (Badorece®), and timolol (Blocadren®).
- Nitrates dilate the arteries and veins thereby increasing coronary blood flow and decreasing blood pressure.
- examples of nitrates include nitroglycerin, nitrate patches, isosorbide dinitrate, and isosorbide-5-mononitrate.
- Calcium channel blockers prevent the normal flow of calcium into the cells of the heart and blood vessels causing the blood vessels to relax thereby increasing the supply of blood and oxygen to the heart.
- Examples of calcium channel blockers include amlodipine (Norvasc®, Lotrel®), bepridil (Vascor®), diltiazem (Cardizem®, Tiazac®), felodipine (Plendil®), nifedipine (Adalat®, Procardia®), nimodipine (Nimotop®), nisoldipine (Sular®), verapamil (Calan®, Isoptin®, Verelan®), and nicardipine.
- Diuretics eliminate excess fluids in the tissues and circulation thereby relieving many of the symptoms of heart failure.
- diuretics include hydrochlorothiazide, metolazone (Zaroxolyn®), furosemide (Lasix®), bumetanide (Bumex®), spironolactone (Aldactone®), and eplerenone (Inspra®).
- Angiotensin converting enzyme (ACE) inhibitors reduce the workload on the heart by expanding the blood vessels and decreasing resistance to blood flow.
- ACE inhibitors include benazepril (Lotensin®), captopril (Capoten®), enalapril (Vasotec®), fosinopril (Monopril®), lisinopril (Prinivil®, Zestril®), moexipril (Univasc®), perindopril (Aceon®), quinapril (Accupril®), ramipril (Altace®), and trandolapril (Mavik®).
- Vasodilators reduce pressure on the blood vessels by making them relax and expand.
- vasodilators include hydralazine, diazoxide, prazosin, clonidine, and methyldopa.
- ACE inhibitors, nitrates, potassium channel activators, and calcium channel blockers also act as vasodilators.
- Cardiac glycosides are compounds that increase the force of the heart's contractions. These compounds strengthen the pumping capacity of the heart and improve irregular heartbeat activity. Examples of cardiac glycosides include digitalis, digoxin, and digitoxin.
- Antithrombotics inhibit the clotting ability of the blood.
- Platelet inhibitors inhibit the clotting activity of platelets, thereby reducing clotting in the arteries.
- platelet inhibitors include acetylsalicylic acid (aspirin), ticlopidine, clopidogrel (Plavix®), prasugrel (Effient®), dipyridamole, cilostazol, persantine sulfinpyrazone, dipyridamole, indomethacin, and glycoprotein llb/llla inhibitors, such as abciximab, tirofiban, and eptifibatide (Integrelin®).
- Beta blockers and calcium channel blockers also have a platelet-inhibiting effect.
- Anticoagulants prevent blood clots from growing larger and prevent the formation of new clots.
- anticoagulants include bivalirudin (Angiomax®), warfarin (Coumadin®), unfractionated heparin, low molecular weight heparin, danaparoid, lepirudin, and argatroban.
- Thrombolytic agents act to break down an existing blood clot.
- examples of thrombolytic agents include streptokinase, urokinase, and tenecteplase (TNK), and tissue plasminogen activator (t-PA).
- Antiarrhythmic agents are used to treat disorders of the heart rate and rhythm.
- Examples of antiarrhythmic agents include amiodarone, dronedarone, quinidine, procainamide, lidocaine, and propafenone.
- Cardiac glycosides and beta blockers are also used as antiarrhythmic agents.
- Antihypertensive agents are used to treat hypertension, a condition in which the blood pressure is consistently higher than normal. Hypertension is associated with many aspects of cardiovascular disease, including congestive heart failure, atherosclerosis, and clot formation.
- antihypertensive agents include alpha-1-adrenergic antagonists, such as prazosin (Minipress®), doxazosin mesylate (Cardura®), prazosin hydrochloride (Minipress®), prazosin, polythiazide (Minizide®), and terazosin hydrochloride (Hytrin®); beta-adrenergic antagonists, such as propranolol (Inderal®), nadolol (Corgard®), timolol (Blocadren®), metoprolol (Lopressor®), and pindolol (Visken®); central alpha-adrenoceptor agonists, such as clonidine hydrochloride (Catapres®
- Lipid lowering agents are used to lower the amounts of cholesterol or fatty sugars present in the blood.
- lipid lowering agents include bezafibrate (Bezalip®), ciprofibrate (Modalim®), and statins, such as atorvastatin (Lipitor®), fluvastatin (Lescol®), lovastatin (Mevacor®, Altocor®), mevastatin, pitavastatin (Livalo®, Pitava®) pravastatin (Lipostat®), rosuvastatin (Crestor®), and simvastatin (Zocor®).
- statins such as atorvastatin (Lipitor®), fluvastatin (Lescol®), lovastatin (Mevacor®, Altocor®), mevastatin, pitavastatin (Livalo®, Pitava®) pravastatin (Lipostat®), rosuvastatin (Crestor®), and simvastatin (Z
- LDL-C low-density lipoprotein cholesterol
- Examples include FDA approved Evolocumab (trade name RepathaTM from Amgen, Inc.) and FDA approved Alirocumab (tradename PraluentTM from Sanofi U.S., LLC and Regeneron Pharmaceuticals, Inc.).
- a patient presenting with an acute coronary disease event often suffers from secondary medical conditions such as one or more of a metabolic disorder, a pulmonary disorder, or a peripheral vascular disorder.
- Such patients can benefit from treatment of a combination therapy comprising administering to the patient a compound of the disclosure in combination with at least one therapeutic agent.
- Pulmonary disorder refers to any disease or condition related to the lungs.
- pulmonary disorders include, without limitation, asthma, chronic obstructive pulmonary disease (COPD), bronchitis, and emphysema.
- COPD chronic obstructive pulmonary disease
- bronchitis bronchitis
- emphysema emphysema
- therapeutics agents used to treat pulmonary disorders include bronchodilators including beta2 agonists and anticholinergics, corticosteroids, and electrolyte supplements.
- Specific examples of therapeutic agents used to treat pulmonary disorders include epinephrine, terbutaline (Brethaire®, Bricanyl®), albuterol (Proventil®), salmeterol (Serevent®, Serevent Diskus®), theophylline, ipratropium bromide (Atrovent®), tiotropium (Spiriva®), methylprednisolone (Solu-Medrol®, Medrol®), magnesium, and potassium.
- metabolic disorders include, without limitation, diabetes, including type I and type II diabetes, metabolic syndrome, dyslipidemia, obesity, glucose intolerance, hypertension, elevated serum cholesterol, and elevated triglycerides.
- therapeutic agents used to treat metabolic disorders include antihypertensive agents and lipid lowering agents, as described in the section “Cardiovascular Agent Combination Therapy” above.
- Additional therapeutic agents used to treat metabolic disorders include insulin, sulfonylureas, biguanides, alpha-glucosidase inhibitors, and incretin mimetics.
- Peripheral vascular disorders are disorders related to the blood vessels (arteries and veins) located outside the heart and brain, including, for example peripheral arterial disease (PAD), a condition that develops when the arteries that supply blood to the internal organs, arms, and legs become completely or partially blocked as a result of atherosclerosis.
- PAD peripheral arterial disease
- compositions comprising the compounds of the disclosure and at least one therapeutic agent.
- the composition comprises the compounds of the disclosure and at least two therapeutic agents.
- the composition comprises the compounds of the disclosure and at least three therapeutic agents, the compounds of the disclosure and at least four therapeutic agents, or the compounds of the disclosure and at least five therapeutic agents.
- the methods of combination therapy include co-administration of a single formulation containing the compounds of the disclosure and therapeutic agent or agents, essentially contemporaneous administration of more than one formulation comprising the compounds of the disclosure and therapeutic agent or agents, and consecutive administration of a compound of the disclosure and therapeutic agent or agents, in any order, wherein preferably there is a time period where the compounds of the disclosure and therapeutic agent or agents simultaneously exert their therapeutic effect.
- kits that include a compound of the disclosure, or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof, and suitable packaging.
- a kit further includes instructions for use.
- a kit includes a compound of the disclosure, or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof, and a label and/or instructions for use of the compounds in the treatment of the indications, including the diseases or conditions, described herein.
- articles of manufacture that include a compound described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof in a suitable container.
- the container may be a vial, jar, ampoule, preloaded syringe, and intravenous bag.
- compositions that contain one or more of the compounds described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof and one or more pharmaceutically acceptable vehicles selected from carriers, adjuvants and excipients.
- Suitable pharmaceutically acceptable vehicles may include, for example, inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants.
- Such compositions are prepared in a manner well known in the pharmaceutical art.
- the pharmaceutical compositions may be administered in either single or multiple doses.
- the pharmaceutical composition may be administered by various methods including, for example, rectal, buccal, intranasal and transdermal routes.
- the pharmaceutical composition may be administered by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, orally, topically, or as an inhalant.
- Oral administration may be another route for administration of the compounds described herein. Administration may be via, for example, capsule or enteric coated tablets.
- the active ingredient is usually diluted by an excipient and/or enclosed within such a carrier that can be in the form of a capsule, sachet, paper or other container.
- the excipient serves as a diluent, it can be in the form of a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient.
- compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, sterile injectable solutions, and sterile packaged powders.
- excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose.
- the formulations can additionally include lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
- compositions that include at least one compound described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the subject by employing procedures known in the art.
- Controlled release drug delivery systems for oral administration include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations. Examples of controlled release systems are given in U.S. Pat. Nos. 3,845,770; 4,326,525; 4,902,514; and 5,616,345.
- Another formulation for use in the methods disclosed herein employ transdermal delivery devices (“patches”).
- transdermal patches may be used to provide continuous or discontinuous infusion of the compounds described herein in controlled amounts.
- the construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. Nos. 5,023,252, 4,992,445 and 5,001,139.
- Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
- the principal active ingredient may be mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof.
- a pharmaceutical excipient for preparing solid compositions such as tablets, the principal active ingredient may be mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof.
- the active ingredient may be dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
- the tablets or pills of the compounds described herein may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action, or to protect from the acid conditions of the stomach.
- the tablet or pill can include an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
- the two components can be separated by an enteric layer that serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release.
- enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
- compositions for inhalation or insufflation may include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
- the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described herein.
- the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
- compositions in pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a facemask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices that deliver the formulation in an appropriate manner.
- a dosage may be expressed as a number of milligrams of a compound described herein per kilogram of the subject's body weight (mg/kg). Dosages of between about 0.1 and 150 mg/kg may be appropriate. In some embodiments, about 0.1 and 100 mg/kg may be appropriate. In other embodiments a dosage of between 0.5 and 60 mg/kg may be appropriate.
- Normalizing according to the subject's body weight is particularly useful when adjusting dosages between subjects of widely disparate size, such as occurs when using the drug in both children and adult humans or when converting an effective dosage in a non-human subject such as dog to a dosage suitable for a human subject.
- the daily dosage may also be described as a total amount of a compound described herein administered per dose or per day.
- Daily dosage of a compound of Formula I may be between about 1 mg and 4,000 mg, between about 2,000 to 4,000 mg/day, between about 1 to 2,000 mg/day, between about 1 to 1,000 mg/day, between about 10 to 500 mg/day, between about 20 to 500 mg/day, between about 50 to 300 mg/day, between about 75 to 200 mg/day, or between about 15 to 150 mg/day.
- the total daily dosage for a human subject may be between 1 mg and 1,000 mg, between about 1,000-2,000 mg/day, between about 10-500 mg/day, between about 50-300 mg/day, between about 75-200 mg/day, or between about 100-150 mg/day.
- the compounds of the present application or the compositions thereof may be administered once, twice, three, or four times daily, using any suitable mode described above. Also, administration or treatment with the compounds may be continued for a number of days; for example, commonly treatment would continue for at least 7 days, 14 days, or 28 days, for one cycle of treatment. Treatment cycles are well known in cancer chemotherapy, and are frequently alternated with resting periods of about 1 to 28 days, commonly about 7 days or about 14 days, between cycles. The treatment cycles, in other embodiments, may also be continuous.
- the method comprises administering to the subject an initial daily dose of about 1 to 800 mg of a compound described herein and increasing the dose by increments until clinical efficacy is achieved. Increments of about 5, 10, 25, 50, or 100 mg can be used to increase the dose. The dosage can be increased daily, every other day, twice per week, or once per week.
- the compounds may be prepared using the methods disclosed herein and routine modifications thereof, which will be apparent given the disclosure herein and methods well known in the art. Conventional and well-known synthetic methods may be used in addition to the teachings herein. The synthesis of typical compounds described herein may be accomplished as described in the following examples. If available, reagents may be purchased commercially, e.g., from Sigma Aldrich or other chemical suppliers.
- the compounds of this disclosure can be prepared from readily available starting materials using, for example, the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
- protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions.
- Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in Wuts, P. G. M., Greene, T. W., & Greene, T. W. (2006). Greene's protective groups in organic synthesis. Hoboken, N.J., Wiley-Interscience, and references cited therein.
- the compounds of this disclosure may contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this disclosure, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents, and the like.
- the starting materials for the following reactions are generally known compounds or can be prepared by known procedures or obvious modifications thereof.
- many of the starting materials are available from commercial suppliers such as Aldrich Chemical Co. (Milwaukee, Wis., USA), Bachem (Torrance, Calif., USA), Emka-Chemce or Sigma (St. Louis, Mo., USA).
- solvent refers to a solvent inert under the conditions of the reaction being described in conjunction therewith (including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (“THF”), dimethylformamide (“DMF”), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, pyridine and the like).
- solvent inert including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (“THF”), dimethylformamide (“DMF”), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, pyridine and the like).
- Scheme 1 shows exemplary synthetic routes (Route A and Route B) for preparing compounds of Formula I, wherein ring A, X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , R 1 , R 2 , R 3 , m, n, and L are as defined herein and Z 1 , Z 2 , Z 3 , and Z 4 are functional groups suitable for coupling reactions (e.g., halogen, hydroxyl, etc.).
- compound 1-b can be provided by contacting compound 1-a with compound 1-e under reaction conditions suitable for coupling, where Z 3 and Z 4 are functional groups that are complementary with respect to a particular coupling reaction.
- Compounds of formula I can then be provided from compound 1-b by contacting compound 1-b with compound 1-d under reaction conditions suitable for coupling, where Z 1 and Z 2 are functional groups that are complementary with respect to a particular coupling reaction.
- the coupling can be a cross coupling reaction, such as a Heck reaction, Negishi coupling, Stille coupling, Suzuki reaction, Kumada coupling, and the like.
- compound 1-c can be provided by contacting compound 1-a with compound 1-d under reaction conditions suitable for coupling, where Z 1 and Z 2 are functional groups that are complementary with respect to a particular coupling reaction.
- the coupling can be a cross coupling reaction, such as a Heck reaction, Negishi coupling, Stille coupling, Suzuki reaction, Kumada coupling, and the like.
- Compounds of formula I can then be provided from compound 1-c by contacting compound 1-e with compound 1-e under reaction conditions suitable for coupling, where Z 3 and Z 4 are functional groups that are complementary with respect to a particular coupling reaction.
- each Z 5 is a leaving group (e.g., chloro, bromo, iodo, or any other suitable leaving group) and R 13 is an alkylene or heteroalkylene.
- any one of compounds 1-a, 1-b, 1-c, 1-d, 1-e, or 1-f may be purchased from commercial sources or prepared according to literature methods available to the skilled artisan, and may be optionally further functionalized (e.g., with one or more R 2 moieties) for use in Scheme 1 or Scheme 2.
- 1-(4-(Trifluoromethyl)naphthalen-1-yl)piperazine (1) can also be prepared via the following alternative synthesis.
- the title compound may be synthesized using methods similar to Example 1 using 4-bromo-5,6,7,8-tetrahydronaphthalen-1-amine as the starting material.
- 1-(4-(piperidin-4-yloxy)naphthalen-1-yl)piperazine (4) can also be prepared by the following alternative synthesis.
- the title compound may be synthesized using methods similar to Example 1, except using tert-butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate and tert-butyl 4-aminopiperidine-1-carboxylate as the starting materials.
- N-(4-(Piperazin-1-yl)naphthalen-1-yl)piperidin-4-amine (5) can also be prepared using the following alternative synthesis.
- 1-(4-(Piperidin-4-ylsulfonyl)naphthalen-1-yl)piperazine (7) can also be prepared by the following alternative synthesis.
- Piperazin-1-yl(4-(piperazin-1-yl)naphthalen-1-yl)methanone (8) can also be prepared by the following alternative synthesis.
- tert-Butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate (0.3 g, 0.000765 mol) was dissolved in EtOH (30 mL) in a pressure vessel and NaOAc (0.125 g, 0.00153 mol) and Pd(dppf)Cl 2 (0.0279 g, 0.000038 mol) were added.
- the reaction was degassed with N 2 and the vessel was pressurized with CO gas (2 BAR). The temperature was slowly raised to 110° C. and the resulting solution was stirred overnight. After completion of the reaction the solution was filtered through a small pad of celite and washed with EtOH (3 ⁇ 50 mL).
- the title compound may be synthesized using the same methods similar to of Example 11, except using 8-bromoisoquinolin-5-amine as the starting material.
- the nitro group is reduced to the amine; the amine is converted the diazonium salt using sodium nitrite and, subsequently, to the iodide (Knochel, P. et al Synthesis, 2007, 81-84).
- the iodide may be coupled using palladium catalysts with either 2-ketopiperazine (Ford, D. et al WO 2013096051) or (2-methoxypyridin-4-yl)boronic acid (Marsilje, T. H. et al J. Med. Chem. 2013, 56, 5675-90) to afford, after deprotection, either 4-(8-(piperidin-4-yloxy)isoquinolin-5-yl)piperazin-2-one (16) or 4-(8-(piperidin-4-yloxy)isoquinolin-5-yl)piperidin-2-one (27).
- 2-ketopiperazine Form, D. et al WO 2013096051
- (2-methoxypyridin-4-yl)boronic acid Marsilje, T. H. et al J. Med. Chem. 2013, 56, 5675-90
- 4-(8-(piperidin-4-yloxy)isoquinolin-5-yl)piperazin-2-one can also be prepared by the following alternative synthesis (16).
- 4-bromonaphthalen-1-ol is converted to a dimethyaminoisothiourea intermediate, which rearranges on vigorous heating to give, on hydrolysis, 4-bromonaphthalene-1-thiol.
- the thiol is reacted with N-BOC-piperidine-4-Br and the sulfur oxidized to the corresponding sulfone.
- the aryl bromide is coupled to a second piperidine subunit. Reduction/deprotection leads to the desired 4-bromonaphthalene-1-thiolen-1-yl)sulfonyl)piperidine (23).
- the commercial 8-methoxyisoquinoline is N-oxidized (Dirnberger, D. et al Archiv der Pharmazie 1990, 323, 323) and treated with TMS-CN (Norrby, T. et al Acta Chemica Scand. 1998, 52, 77), affording 8-methoxyisoquinoline-3-carbonitrile.
- the carbonitrile is brominated.
- the key bromide, 5-bromo-8-methoxyisoquinoline-3-carbonitrile may be coupled using palladium reagents and subsequently modified and deprotected to give piperazine (5-(piperazin-1-yl)-8-(piperidin-4-yloxy)isoquinoline-3-carboxylic acid (22)), piperazone (5-(3-oxopiperazin-1-yl)-8-(piperidin-4-yloxy)isoquinoline-3-carboxamide (15)), piperidone (5-(2-oxopiperidin-4-yl)-8-(piperidin-4-yloxy)isoquinoline-3-carboxylic acid (110)), and piperidine (5-(piperidin-4-yl)-8-(piperidin-4-yloxy)isoquinoline-3-carboxylic acid (25)) analogs.
- tert-Butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate is lithiated and reacted with the carboxaldehyde derived from N-BOC-isonipecotic acid.
- the carbinol is cleaved by catalytic reduction, and deprotection affords 1-(4-(piperidin-4-ylmethyl)naphthalen-1-yl)piperazine (22).
- the ultimate indolines 4-(piperidin-4-yl)-7-(piperidin-4-yloxy)indolin-2-one (24) or 4-(piperazin-1-yl)-7-(piperidin-4-yloxy)indolin-2-one (12), can be targeted by oxidizing the indole rings to indolines using, for example, NBS, and performing the appropriate palladium couplings and deprotections according to the scheme.
- 3-Chloroacrolein is condensed with 1-BOC-piperidin-ol by means of a Michael reaction, giving N-BOC-(E)-3-(piperidin-4-yloxy)acrylaldehyde.
- the aldehyde can dibromoolefinated using CBr 4 /PPh 3 , giving a diene which can undergo a thermal or Lewis acid catalyzed Diels-Alder cyclization, followed by aromatization with loss of HBr.
- the aryl bromide may be coupled to BOC-piperazine. Reduction of the nitrile induces cyclization to the indicated lactam affording, on deprotection, the isoindolone, 4-(piperazin-1-yl)-7-(piperidin-4-yloxy)isoindolin-1-one (13).
- the resulting reaction mixture was heated to 110° C. for 4 h.
- the reaction was monitored by TLC and LCMS.
- the reaction mixture was filtered through a celite pad and was washed with ethyl acetate.
- the filtrate was concentrated under reduced pressure and the residue was purified on basic alumina with a gradient elution of 3% MeOH in DCM to furnish 1-(naphthalen-1-yl)piperazine.
- LCMS purity: 93.356%, m/z 213.3 [M+H] + .
- 4-(piperidin-4-yl)-1H-benzo[d]imidazole (20) may be prepared by methods similar to those described in Example 18, using 4-bromo-1H-benzo[d]imidazole as the aryl halide starting material.
- 4-(Piperidin-4-yl)benzo[d]thiazole (21) may be prepared by methods similar to those described in Example 18, using 4-bromobenzo[d]thiazole as the aryl halide starting material.
- 5-(piperidin-4-yl)isoquinoline (109) may be prepared by methods similar to those described in Example 18, using 5-bromoisoquinoline as the aryl halide starting material.
- 4-(4-methoxynaphthalen-1-yl)piperidine (47) may be prepared using similar methods as described in Example 18, except using 1-bromo-4-methoxynaphthalene as the aryl halide starting material.
- 8-(Piperidin-4-yl)isoquinoline (110) may be prepared by methods similar to those described in Example 18, using 8-bromoisoquinoline as the aryl halide starting material.
- 4-(piperidin-4-yl)isoquinoline (45) may be prepared by methods similar to those described in Example 18, using 4-bromoisoquinoline as the aryl halide starting material.
- 1-(piperidin-4-yl)isoquinoline (46) may be prepared by methods similar to those described in Example 18, using 1-bromoisoquinoline as the aryl halide starting material.
- 4-(piperidin-4-yl)naphthalen-1-ol (47) may be prepared by methods similar to those described in Example 18, using 4-bromonaphthalen-1-ol as the aryl halide starting material.
- 4-(piperidin-4-yl)quinazoline (48) may be prepared by methods similar to those described in Example 18, using 4-chloroquinazoline as the aryl halide starting material.
- LCMS m/z 214.2 [M+H] + (Method 1).
- 4-(4-fluoronaphthalen-1-yl)piperidine (49) may be prepared by methods similar to those described in Example 18, using 1-bromo-4-fluoronaphthalene as aryl halide starting material.
- 5-(piperidin-4-yl)quinoline (111) may be prepared by methods similar to those described in Example 18, using 5-bromoquinoline as the aryl halide starting material.
- 4-(piperidin-4-yl)quinoline (50) may be prepared by methods similar to those described in Example 18, using 4-bromoquinoline as the aryl halide starting material.
- 8-fluoro-5-(piperidin-4-yl)quinoline may be prepared by methods similar to those described in Example 18, using 5-bromo-8-fluoroquinoline as the aryl halide starting material.
- 8-fluoro-5-(piperidin-4-yl)isoquinoline may be prepared by methods similar to those described in Example 18, using 5-bromo-8-fluoroisoquinoline as the aryl halide starting material.
- Phosphorus tribromide (0.89 g, 3.3 mmol, 1.2 eq) was added to the solution of (5-bromonaphthalen-1-yl) methanol (0.65 g, 2.75 mmol, 1.0 eq) in CHCl 3 (20 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 2 h. After complete consumption of starting material, the reaction mixture was diluted with dichloromethane and washed with water, saturated aqueous sodium bicarbonate and brine. The organic extract was then dried over anhydrous sodium sulfate, filtered, and solvent evaporated from the filtrate under reduced pressure to afford 1-bromo-5-(bromomethyl)naphthalene.
- Lithium borohydride (0.89 g, 4.12 mmol, 5.0 eq) was added to the solution of tert-butyl 4-(5-(methoxycarbonyl)naphthalen-1-yl)piperidine-1-carboxylate (0.3 g, 0.82 mmol, 1.0 eq) in THF (10 mL) under nitrogen atmosphere at 0° C. and the reaction mixture was stirred under nitrogen atmosphere, at 60° C. for 4 h. After complete consumption of starting material, saturated aqueous ammonium chloride was added drop-wise at 0° C., the mixture was diluted with water and extracted with ethyl acetate.
- Boc anhydride(1.5 g, 6.75 mmol, 1.0 eq) was added to the solution of 4-bromonaphthalen-1-amine (1.0 g, 4.5 mmol, 1.1 eq), Et 3 N (0.68 g, 6.75 mmol, 1.5 eq), DMAP (0.1 g) in dichloromethane (20 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 12 h. After complete consumption of starting material, the reaction mixture was diluted with dichloromethane and washed with water followed by brine. The organic extract was then dried over anhydrous sodium sulfate, filtered, and solvent evaporated from the filtrated under reduced pressure to afford diboc protected 4-bromonaphthalen-1-amine.
- LCMS Purity 48.07%.
- Pd—C (10% w/w, 50% moisture, 0.5 g) was added to the solution of tert-butyl 4-(5-fluoroquinolin-8-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.85 g, 2.59 mmol, 1.0 eq) in mixture of EtOH (1 mL) and THF (3 mL). The reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 12 h.
- DDQ (1.63 g, 7.18 mmol, 3.0 eq) was added to the solution of tert-butyl 4-(5-fluoro-1,2,3,4-tetrahydroquinolin-8-yl)piperidine-1-carboxylate (0.8 g, 2.39 mmol, 1.0 eq) in toluene (10 mL).
- the reaction mixture was heated at 110° C. for 12 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate.
- Triflic anhydride (6.63 g, 23.59 mmol, 1.4 eq) was added dropwise to the solution of 4-chloronaphthalen-1-ol (3.0 g, 16.85 mmol, 1.0 eq) and Et 3 N (6.8 g, 64.41 mmol, 4.0 eq) in dichloromethane (30 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 2 h. After complete consumption of starting material, the reaction mixture was diluted with dichloromethane and washed with water and brine. The organic extract was then dried over anhydrous sodium sulfate, filtered, and solvent evaporated under reduced pressure to afford 4-chloronaphthalen-1-yl trifluoromethanesulfonate.
- LCMS Purity 80.81%.
- Triflic anhydride (1.76 g, 6.25 mmol, 2.0 eq) was added dropwise to the solution of 4-(cyclohex-1-en-1-yl)naphthalen-1-ol (0.7 g, 3.12 mmol, 1.0 eq) in pyridine (5 mL) at 0° C.
- the reaction mixture was stirred under nitrogen atmosphere, at room temperature for 2 h. After complete consumption of starting material, 1N HCl was added to the reaction mixture, diluted with water and extracted with ethyl acetate.
- Pd—C (10% w/w, 50% moisture, 0.6 g) was added to the solution of tert-butyl 4-(4-(cyclohex-1-en-1-yl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.6 g, 1.54 mmol, 1.0 eq) in MeOH (50 mL) and reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 4 h.
- 4-(piperazin-1-yl)benzo[d]thiazole (41) may be prepared by methods similar to those described in Example 41, using 4-bromobenzo[d]thiazole as the aryl halide starting material.
- 7-(piperazin-1-yl)benzo[d]thiazole (42) may be prepared methods similar to those described in Example 41, using 7-bromobenzo[d]thiazole as the aryl halide starting material.
- Pd—C (10% w/w, 50% moisture, 0.1 g) was added to the solution of tert-butyl 4-(4-(N-(5,6,7,8-tetrahydronaphthalen-2-yl)sulfamoyl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.2 g, 0.386 mmol, 1.0 eq) in a mixture of EtOH (5 mL) and THF (10 mL). The reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 16 h.
- N-phenyl-4-(piperidin-4-yl)naphthalene-1-sulfonamide may be prepared by methods similar to those described in Example 44, using aniline as the arylamine in step 2.
- Chlorosulphonic acid (5.63 g, 48.3 mmol, 2.0 eq) was added drop-wise to the solution of 1-bromonaphthalene (5.0 g, 24.1 mmol, 1.0 eq) in chloroform (50 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 1 h. After complete consumption of starting material, the reaction mixture was poured into chilled water and extracted with dichloromethane. The organic extract was separated and the aqueous extract was again extracted with dichloromethane.
- Pd(PPh 3 ) 2 Cl 2 (0.203 g, 0.289 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 100° C. for 16 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate.
- Pd(PPh 3 ) 2 Cl 2 (0.33 g, 0.471 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 85° C. for 16 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate.
- Pd—C (10% w/w, 50% moisture, 0.25 g) was added to the solution of tert-butyl 4-(5-(trifluoromethyl)quinolin-8-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.5 g, 1.29 mmol, 1.0 eq) in MeOH (7 mL). The reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 1 h.
- 5-(piperidin-4-yl)-8-(trifluoromethyl)quinoline may be prepared by methods similar to those described in Example 47, using 5-bromo-2-(trifluoromethyl)aniline as the arylamine starting material in step 1.
- Lithium hydroxide (0.085 g, 2.02 mmol, 1.5 eq) was added to the solution of tert-butyl 4-(6-(methoxycarbonyl)naphthalen-1-yl)piperidine-1-carboxylate (0.3 g, 1.35 mmol, 1.0 eq) in a mixture of THF (2 mL), MeOH (2 mL) and water (2 mL) and the reaction mixture was stirred at room temperature for 4 h. After complete consumption of starting material, the reaction mixture was evaporated under reduced pressure, the residue was dissolved in water, acidified with 10% aqueous citric acid and extracted with ethyl acetate.
- HATU (0.32 g, 0.84 mmol, 1.5 eq) was added to a solution of 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-2-naphthoic acid (0.2 g, 0.56 mmol, 1.0 eq) and DIPEA (0.32 g, 0.84 mmol, 1.5 eq) in DMF (5 mL) at 0° C.
- the reaction mixture was stirred at 0° C. for 15 min.
- Ammonium chloride (0.29 g, 5.6 mmol, 10.0 eq) was added and the reaction mixture was stirred at room temperature for 4 h. After complete consumption of starting material, the reaction mixture was poured into chilled water.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 62/298,920, filed Feb. 23, 2016, the contents of which are hereby incorporated by reference in their entirety.
- The present disclosure relates to novel compounds, methods, and compositions capable of binding to proprotein convertase subtilisin/kexin type 9 (PCSK9), thereby modulating PCSK9 proprotein convertase enzyme activity.
- Elevated plasma levels of low density lipoprotein cholesterol (LDL-C) represent a great risk factor for the development of coronary heart disease. Clearance of LDL-C from the plasma occurs primarily by the liver through the action of low density lipoprotein receptors (LDLRs), which are cell surface glycoproteins that bind to apolipoprotein B100 (apoB100) on LDL particles with high affinity and mediate their endocytic uptake. Goldstein et al., Annu. Rev. Cell Biol. 1:1-39 (1985). Autosomal dominant hypercholesterolemia (ADH) is associated with mutations that reduce plasma LDL clearance that are found in genes encoding the LDLR (familial hypercholesterolemia (FH)) or apoB100 (familial defective apoB100). Hobbs et al., Annu. Rev. Genet. 24, 133-170 (1990); and Innerarity et al., J. Lipid Res. 31:1337-1349 (1990), respectively.
- The low density lipoprotein receptor (LDLR) mediates efficient endocytosis of very low density lipoprotein (VLDL), VLDL remnants, and LDL. As part of the endocytic process, the LDLR releases lipoproteins into hepatic endosomes.
- Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme encoded by the PCSK9 gene in humans. PCSK9 is believed to play a regulatory role in cholesterol homeostasis. For example, PCSK9 can bind to the epidermal growth factor-like repeat A (EGF-A) domain of the low-density lipoprotein receptor (LDLR) resulting in LDLR internalization and degradation.
- A drug that could modulate the activity of PCSK9 would be useful in controlling LDL-cholesterol levels. Therefore, there remains a need for compounds that are effective in the treatment and prevention of conditions and disorders associated with PCSK9, including hypercholesterolemia and hypocholesterolemia. The compounds provided herein bind to PCSK9, thereby modulating PCSK9 proprotein convertase enzyme activity, and can be used to treat and prevent PCSK9-associated conditions and disorders.
- Provided herein are compounds that are useful for binding and modulating PCSK9 enzyme activity. The disclosure also provides compositions, including pharmaceutical compositions, kits that include the compounds, and methods of using (or administering) and making the compounds. The disclosure further provides compounds or compositions thereof for use in a method of treating a disease, disorder, or condition that is mediated by PCSK9. Moreover, the disclosure provides uses of the compounds or compositions thereof in the manufacture of a medicament for the treatment of a disease, disorder or condition that is mediated, at least in part, by PCSK9.
- Accordingly, in one embodiment provided is a compound of Formula (I):
- or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof;
- wherein:
- m is 0, 1, or 2;
- X1 is absent, CR2, CR2R2, C(O), N, NR2, S, SO2, or O;
- X2, X3, and X4 are each independently CR2, CR2R2, C(O), N, NR2, S, SO2, or O;
- ring B is a five- or six-membered ring comprising one or more double bonds;
- X5 and X6 are either CR2 or N;
- X7 is C or N;
- ring A is selected from:
- where the wavy line in ring A indicates the point of attachment to
- L is a bond, C1-6-alkylene, —O—, —C(O)—, —SO2—, —N(Ra)—, —N(Ra)SO2—, or —SO2N(Ra)— where Ra is hydrogen, C1-6 alkyl, or C1-6 heteroalkyl, wherein the C1-6 alkyl or C1-6 heteroalkyl are optionally substituted with 1 to 3 substituents independently selected from halo, oxo, hydroxy, C1-6 alkyl, or C1-6 heteroalkyl;
- R1 in each instance is independently halo, cyano, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, —NRbC(O)NRbRb, or —NRbS(O)2Rb;
-
- wherein each Rb is independently hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- R2 in each instance is independently hydrogen, halo, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, C2-6 hydroxyalkyl, cyano, —C(O)ORc, or —C(O)NRcRc;
-
- wherein each Rc is independently, hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- R3 is hydrogen, halo, cyano, amino, C1-12 alkyl, C1-12 alkenyl, C1-12 alkynyl, C3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl;
-
- wherein each C1-12 alkyl, C1-12 alkenyl, C1-12 alkynyl, C3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl and heteroaryl of R3 is optionally substituted with 1 to 3 substituents independently selected from halo, hydroxy, cyano, C1-6 alkyl, C1-6 alkenyl, C1-6 alkynyl, C1-6 alkoxy, acyl, C3-10 cycloalkyl, heteroalkyl, heteroaryl, heterocyclyl, aryl, oxo, —N3, —NO2, —N(Rf)2, —C(O)N(Rf)2, —C(NRf)(N(Rf)2), —NRfC(O)ORf, —C(O)N(Rf)2, —CO2H, —CO2Rf, —NRfC(NRf)(N(Rf)2), haloalkyl, haloalkoxy, —N(Rf)N(Rf)2, —C(NRf)Rf, —S(O)Rf, —SO2H, —S(O)2Rf, —SCN, —SH, or (═S), and where each Rf is independently H or C1-6 alkyl;
- or when X7 is N, then L-R3 is absent;
- R4 in each instance is independently hydrogen, C1-6 alkyl, —C(O)NRdRd, —C(NRd)NRdRd, —C(O)Rd, or —S(O)2NRdRd;
-
- wherein each Rd is independently, hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- with the following provisos:
- 1) when m is 0, then both R4 and L-R3 cannot be hydrogen;
- 2) when m is 0, R4 is hydrogen, X1, X2, X3, X4 are all CH, then L-R3 is not CF3;
- 3) when X5 and X6 are both nitrogen, then L-R3 is not hydrogen, —CH2-aryl, or —CH2-heteroaryl;
- 4) when X1, X2, X3, and X4 are all CH or X1 is nitrogen and X2, X3, and X4 are all CH, then L-R3 is not —SO2-aryl, wherein the aryl is optionally substituted;
- 5) when A is attached via a carbon atom to the remainder of the molecule and m is other than 0, then R1 is not appended to the same carbon;
- 6) the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine; and
- 7) when A is piperidinyl and L-R3 is hydrogen, then R4 is not C(O)NH2.
- In certain embodiments, provided herein is a method of using a compound of Formula I or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof in the treatment of a disease or condition in a mammal that is mediated, at least in part, by PCSK9. Such diseases or conditions include cardiovascular diseases (e.g., coronary disease, hypertension, hypercholesterolemia, or atherosclerosis), a metabolic diseases (e.g., diabetes), hypocholesterolemia, a disease or condition where the mammal has elevated plasma levels of low density lipoprotein cholesterol, and a disease or condition where the mammal has suppressed plasma levels of low density lipoprotein cholesterol. Therefore, in certain embodiments, a compound of Formula I or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof are of use as a medicament for the treatment of the aforementioned diseases or conditions.
- Before the present compositions and methods are described, it is to be understood that the disclosure is not limited to the particular compounds, compositions, methodologies, protocols, cell lines, assays, and reagents described, as these may vary. It is also to be understood that the terminology used herein is intended to describe particular embodiments of the present disclosure, and is in no way intended to limit the scope of the present disclosure as set forth in the appended claims.
- The following description sets forth exemplary embodiments of the present technology. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.
- As used in the present specification, the following words, phrases and symbols are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.
- A dash (“-”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, —C(O)NH2 is attached through the carbon atom. A dash at the front or end of a chemical group is a matter of convenience; chemical groups may be depicted with or without one or more dashes without losing their ordinary meaning. A wavy line or a dashed line drawn through a line in a structure indicates a specified point of attachment of a group. Unless chemically or structurally required, no directionality or stereochemistry is indicated or implied by the order in which a chemical group is written or named.
- The prefix “Cu-v” indicates that the following group has from u to v carbon atoms. For example, “C1-6 alkyl” indicates that the alkyl group has from 1 to 6 carbon atoms.
- Reference to “about” a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se. In certain embodiments, the term “about” includes the indicated amount±10%. In other embodiments, the term “about” includes the indicated amount±5%. In certain other embodiments, the term “about” includes the indicated amount±1%. Also, to the term “about X” includes description of “X”. Also, the singular forms “a” and “the” include plural references unless the context clearly dictates otherwise. Thus, e.g., reference to “the compound” includes a plurality of such compounds and reference to “the assay” includes reference to one or more assays and equivalents thereof known to those skilled in the art.
- “Alkyl” refers to an unbranched or branched saturated hydrocarbon chain. As used herein, alkyl has 1 to 20 carbon atoms (i.e., C1-20 alkyl), 1 to 8 carbon atoms (i.e., C1-8 alkyl), 1 to 6 carbon atoms (i.e., C1-6 alkyl), or 1 to 4 carbon atoms (i.e., C1-4 alkyl). Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, and 3-methylpentyl. When an alkyl residue having a specific number of carbons is named by chemical name or identified by molecular formula, all positional isomers having that number of carbons may be encompassed; thus, for example, “butyl” includes n-butyl (i.e. —(CH2)3CH3), sec-butyl (i.e. —CH(CH3)CH2CH3), isobutyl (i.e. —CH2CH(CH3)2) and tert-butyl (i.e. —C(CH3)3); and “propyl” includes n-propyl (i.e. —(CH2)2CH3) and isopropyl (i.e. —CH(CH3)2).
- Certain commonly used alternative chemical names may be used. For example, a divalent group such as a divalent “alkyl” group, a divalent “aryl” group, etc., may also be referred to as an “alkylene” group or an “alkylenyl” group, an “arylene” group or an “arylenyl” group, respectively. Also, unless indicated explicitly otherwise, where combinations of groups are referred to herein as one moiety, e.g. arylalkyl, the last mentioned group contains the atom by which the moiety is attached to the rest of the molecule.
- “Alkenyl” refers to an alkyl group containing at least one carbon-carbon double bond and having from 2 to 20 carbon atoms (i.e., C2-20 alkenyl), 2 to 8 carbon atoms (i.e., C2-8 alkenyl), 2 to 6 carbon atoms (i.e., C2-6 alkenyl), or 2 to 4 carbon atoms (i.e., C2-4 alkenyl). Examples of alkenyl groups include ethenyl, propenyl, butadienyl (including 1,2-butadienyl and 1,3-butadienyl).
- “Alkynyl” refers to an alkyl group containing at least one carbon-carbon triple bond and having from 2 to 20 carbon atoms (i.e., C2-20 alkynyl), 2 to 8 carbon atoms (i.e., C2-8 alkynyl), 2 to 6 carbon atoms (i.e., C2-6 alkynyl), or 2 to 4 carbon atoms (i.e., C2-4 alkynyl). The term “alkynyl” also includes those groups having one triple bond and one double bond.
- “Alkoxy” refers to the group “alkyl-O—”. Examples of alkoxy groups include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, and 1,2-dimethylbutoxy.
- “Alkylthio” refers to the group “alkyl-S—”.
- “Acyl” refers to a group —C(O)R, wherein R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein. Examples of acyl include formyl, acetyl, cylcohexylcarbonyl, cyclohexylmethyl-carbonyl, and benzoyl.
- “Amido” refers to both a “C-amido” group which refers to the group —C(O)NRyRz and an “N-amido” group which refers to the group —NRyC(O)Rz, wherein Ry and Rz are independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- “Amino” refers to the group —NRyRz wherein Ry and Rz are independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- “Aryl” refers to an aromatic carbocyclic group having a single ring (e.g. monocyclic) or multiple rings (e.g. bicyclic or tricyclic) including fused systems. As used herein, aryl has 6 to 20 ring carbon atoms (i.e., C6-20 aryl), 6 to 12 carbon ring atoms (i.e., C6-12 aryl), or 6 to 10 carbon ring atoms (i.e., C6-10 aryl). Examples of aryl groups include phenyl, naphthyl, fluorenyl, and anthryl. Aryl, however, does not encompass or overlap in any way with heteroaryl defined below. If one or more aryl groups are fused with a heteroaryl, the resulting ring system is heteroaryl. If one or more aryl groups are fused with a heterocyclyl, the resulting ring system is heterocyclyl.
- “Carbamoyl” refers to both an “O-carbamoyl” group which refers to the group —O—C(O)NRyRz and an “N-carbamoyl” group which refers to the group —NRyC(O)ORz, wherein Ry and Rz are independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- “Carboxyl ester” refers to both —OC(O)R and —C(O)OR, wherein R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- “Cycloalkyl” refers to a saturated or partially unsaturated cyclic alkyl group having a single ring or multiple rings including fused, bridged, and spiro ring systems. The term “cycloalkyl” includes cycloalkenyl groups (i.e. the cyclic group having at least one double bond). As used herein, cycloalkyl has from 3 to 20 ring carbon atoms (i.e., C3-20 cycloalkyl), 3 to 12 ring carbon atoms (i.e., C3-12 cycloalkyl), 3 to 10 ring carbon atoms (i.e., C3-10 cycloalkyl), 3 to 8 ring carbon atoms (i.e., C3-8 cycloalkyl), or 3 to 6 ring carbon atoms (i.e., C3-6 cycloalkyl). Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Further, the term cycloalkyl is intended to encompass any non-aromatic ring which may be fused to an aryl ring, regardless of the attachment to the remainder of the molecule.
- “Imino” refers to a group —C(NR)R, wherein each R is independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
- “Halogen” or “halo” includes fluoro, chloro, bromo, and iodo. “Haloalkyl” refers to an unbranched or branched alkyl group as defined above, wherein one or more hydrogen atoms are replaced by a halogen. For example, where a residue is substituted with more than one halogen, it may be referred to by using a prefix corresponding to the number of halogen moieties attached. Dihaloalkyl and trihaloalkyl refer to alkyl substituted with two (“di”) or three (“tri”) halo groups, which may be, but are not necessarily, the same halogen. Examples of haloalkyl include difluoromethyl (—CHF2) and trifluoromethyl (—CF3).
- “Haloalkoxy” refers to an alkoxy group as defined above, wherein one or more hydrogen atoms are replaced by a halogen.
- “Hydroxyalkyl” refers to an alkyl group as defined above, wherein one or more hydrogen atoms are replaced by a hydroxyl group.
- “Heteroalkyl” refers to an alkyl group in which one or more of the carbon atoms (and any associated hydrogen atoms) are each independently replaced with the same or different heteroatomic group. The term “heteroalkyl” includes unbranched or branched saturated chain having carbon and heteroatoms. By way of example, 1, 2 or 3 carbon atoms may be independently replaced with the same or different heteroatomic group. Heteroatomic groups include, but are not limited to, —NR—, —O—, —S—, —S(O)—, —S(O)2—, and the like, where hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein. Examples of heteroalkyl groups include —OCH3, —CH2OCH3, —SCH3, —CH2SCH3, —NRCH3, and —CH2NRCH3, where R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein. As used herein, heteroalkyl includes 1 to 10 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms; and 1 to 3 heteroatoms, 1 to 2 heteroatoms, or 1 heteroatom.
- “Heteroaryl” refers to an aromatic group having a single ring, multiple rings, or multiple fused rings, with one or more ring heteroatoms independently selected from nitrogen, oxygen, and sulfur. As used herein, heteroaryl includes 1 to 20 ring carbon atoms (i.e., C1-20 heteroaryl), 3 to 12 ring carbon atoms (i.e., C3-12 heteroaryl), or 3 to 8 carbon ring atoms (i.e., C3-8 heteroaryl); and 1 to 5 heteroatoms, 1 to 4 heteroatoms, 1 to 3 ring heteroatoms, 1 to 2 ring heteroatoms, or 1 ring heteroatom independently selected from nitrogen, oxygen, and sulfur. Examples of heteroaryl groups include pyrimidinyl, purinyl, pyridyl, pyridazinyl, benzothiazolyl, and pyrazolyl. Examples of the fused-heteroaryl rings include, but are not limited to, benzo[d]thiazolyl, quinolinyl, isoquinolinyl, benzo[b]thiophenyl, indazolyl, benzo[d]imidazolyl, pyrazolo[1,5-a]pyridinyl, and imidazo[1,5-a]pyridinyl, where the heteroaryl can be bound via either ring of the fused system. Any aromatic ring, having a single or multiple fused rings, containing at least one heteroatom, is considered a heteroaryl regardless of the attachment to the remainder of the molecule (i.e., through any one of the fused rings). Heteroaryl does not encompass or overlap with aryl as defined above.
- “Heterocyclyl” refers to a saturated or unsaturated cyclic alkyl group, with one or more ring heteroatoms independently selected from nitrogen, oxygen and sulfur. The term “heterocyclyl” includes heterocycloalkenyl groups (i.e. the heterocyclyl group having at least one double bond), bridged-heterocyclyl groups, fused-heterocyclyl groups, and spiro-heterocyclyl groups. A heterocyclyl may be a single ring or multiple rings wherein the multiple rings may be fused, bridged, or spiro. Any non-aromatic ring containing at least one heteroatom is considered a heterocyclyl, regardless of the attachment (i.e., can be bound through a carbon atom or a heteroatom). Further, the term heterocyclyl is intended to encompass any non-aromatic ring containing at least one heteroatom, which ring may be fused to an aryl or heteroaryl ring, regardless of the attachment to the remainder of the molecule. As used herein, heterocyclyl has 2 to 20 ring carbon atoms (i.e., C2-20 heterocyclyl), 2 to 12 ring carbon atoms (i.e., C2-12 heterocyclyl), 2 to 10 ring carbon atoms (i.e., C2-10 heterocyclyl), 2 to 8 ring carbon atoms (i.e., C2-8 heterocyclyl), 3 to 12 ring carbon atoms (i.e., C3-12 heterocyclyl), 3 to 8 ring carbon atoms (i.e., C3-8 heterocyclyl), or 3 to 6 ring carbon atoms (i.e., C3-6 heterocyclyl); having 1 to 5 ring heteroatoms, 1 to 4 ring heteroatoms, 1 to 3 ring heteroatoms, 1 to 2 ring heteroatoms, or 1 ring heteroatom independently selected from nitrogen, sulfur or oxygen. Examples of heterocyclyl groups include pyrrolidinyl, piperidinyl, piperazinyl, oxetanyl, dioxolanyl, azetidinyl, and morpholinyl. Also used herein, the term “spiro-heterocyclyl” refers to a ring system in which a three- to ten-membered heterocyclyl has one or more additional ring, wherein the one or more additional ring is three- to ten-membered cycloalkyl or three- to ten-membered heterocyclyl, where a single atom of the one or more additional ring is also an atom of the three- to ten-membered heterocyclyl. Examples of the spiro-heterocyclyl rings include bicyclic and tricyclic ring systems, such as 2-oxa-7-azaspiro[3.5]nonanyl, 2-oxa-6-azaspiro[3.4]octanyl, and 6-oxa-1-azaspiro[3.3]heptanyl. Examples of the fused-heterocyclyl rings include, but are not limited to, 1,2,3,4-tetrahydroisoquinolinyl, 4,5,6,7-tetrahydrothieno[2,3-c]pyridinyl, indolinyl, and isoindolinyl, where the heterocyclyl can be bound via either ring of the fused system.
- “Sulfonyl” refers to the group —S(O)2R, where R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein. Examples of sulfonyl are methylsulfonyl, ethylsulfonyl, phenylsulfonyl, and toluenesulfonyl.
- “Sulfinyl” refers to the group —S(O)R, where R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein. Examples of sulfinyl are methylsulfinyl, ethylsulfinyl, phenylsulfinyl, and toluenesulfinyl.
- “Alkylsulfonyl” refers to the group —S(O)2R, where R is alkyl.
- “Alkylsulfinyl” refers to the group —S(O)R, where R is alkyl.
- “Sulfinic acid” refers to the group —S(O)R, where R is alkyl.
- Certain commonly used alternative chemical names may be used. For example, a divalent group such as a divalent “alkyl” group, a divalent “aryl” group, etc., may also be referred to as an “alkylene” group or an “alkylenyl” group, an “arylene” group or an “arylenyl” group, respectively. Also, unless indicated explicitly otherwise, where combinations of groups are referred to herein as one moiety, e.g. arylalkyl, the last mentioned group contains the atom by which the moiety is attached to the rest of the molecule.
- The terms “optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. Also, the term “optionally substituted” refers to any one or more hydrogen atoms on the designated atom or group may or may not be replaced by a moiety other than hydrogen.
- The term “substituted” means that any one or more hydrogen atoms on the designated atom or group is replaced with one or more substituents other than hydrogen, provided that the designated atom's normal valence is not exceeded. The one or more substituents include, but are not limited to, alkyl, alkenyl, alkynyl, alkoxy, acyl, amino, amido, amidino, aryl, azido, carbamoyl, carboxyl, carboxyl ester, cyano, guanidino, halo, haloalkyl, haloalkoxy, heteroalkyl, heteroaryl, heterocyclyl, hydroxy, hydrazino, imino, oxo, nitro, alkylsulfinyl, sulfonic acid, alkylsulfonyl, thiocyanate, thiol, thione, or combinations thereof.
- Polymers or similar indefinite structures arrived at by defining substituents with further substituents appended ad infinitum (e.g., a substituted aryl having a substituted alkyl which is itself substituted with a substituted aryl group, which is further substituted by a substituted heteroalkyl group, etc.) are not intended for inclusion herein. Unless otherwise noted, the maximum number of serial substitutions in compounds described herein is three. For example, serial substitutions of substituted aryl groups with two other substituted aryl groups are limited to ((substituted aryl)substituted aryl) substituted aryl. Similarly, the above definitions are not intended to include impermissible substitution patterns (e.g., methyl substituted with 5 fluorines or heteroaryl groups having two adjacent oxygen ring atoms). Such impermissible substitution patterns are well known to the skilled artisan. When used to modify a chemical group, the term “substituted” may describe other chemical groups defined herein. Unless specified otherwise, where a group is described as optionally substituted, any substituents of the group are themselves unsubstituted. For example, in some embodiments, the term “substituted alkyl” refers to an alkyl group having one or more substituents including hydroxyl, halo, alkoxy, acyl, oxo, amino, cycloalkyl, heterocyclyl, aryl, and heteroaryl. In other embodiments, the one or more substituents may be further substituted with halo, alkyl, haloalkyl, hydroxy, alkoxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which is substituted. In other embodiments, the substituents may be further substituted with halo, alkyl, haloalkyl, alkoxy, hydroxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which is unsubstituted.
- Any formula or structure given herein, is also intended to represent unlabeled forms as well as isotopically labeled forms of the compounds. Isotopically labeled compounds have structures depicted by the formulas given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number. Examples of isotopes that can be incorporated into compounds of the disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as, but not limited to 2H (deuterium, D), 3H (tritium), 11C, 13C, 14C, 15N, 18F, 31P, 32P, 35S, 36Cl and 125I. Various isotopically labeled compounds of the present disclosure, for example those into which radioactive isotopes such as 3H, 13C and 14C are incorporated. Such isotopically labelled compounds may be useful in metabolic studies, reaction kinetic studies, detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays or in radioactive treatment of patients.
- The disclosure also includes “deuterated analogs” of compounds of Formula I in which from 1 to n hydrogens attached to a carbon atom is/are replaced by deuterium, in which n is the number of hydrogens in the molecule. Such compounds exhibit increased resistance to metabolism and are thus useful for increasing the half-life of any compound of Formula I when administered to a mammal, particularly a human. See, for example, Foster, “Deuterium Isotope Effects in Studies of Drug Metabolism,” Trends Pharmacol. Sci. 5(12):524-527 (1984). Such compounds are synthesized by means well known in the art, for example by employing starting materials in which one or more hydrogens have been replaced by deuterium.
- Deuterium labelled or substituted therapeutic compounds of the disclosure may have improved DMPK (drug metabolism and pharmacokinetics) properties, relating to distribution, metabolism and excretion (ADME). Substitution with heavier isotopes such as deuterium may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life, reduced dosage requirements and/or an improvement in therapeutic index. An 18F, 3H, 11C labeled compound may be useful for PET or SPECT or other imaging studies. Isotopically labeled compounds of this disclosure and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the schemes or in the examples and preparations described below by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent. It is understood that deuterium in this context is regarded as a substituent in the compound of Formula I.
- The concentration of such a heavier isotope, specifically deuterium, may be defined by an isotopic enrichment factor. In the compounds of this disclosure any atom not specifically designated as a particular isotope is meant to represent any stable isotope of that atom. Unless otherwise stated, when a position is designated specifically as “H” or “hydrogen”, the position is understood to have hydrogen at its natural abundance isotopic composition. Accordingly, in the compounds of this disclosure any atom specifically designated as a deuterium (D) is meant to represent deuterium.
- In many cases, the compounds of this disclosure are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.
- Provided are also pharmaceutically acceptable salts, hydrates, solvates, tautomeric forms, stereoisomers, and prodrugs of the compounds described herein. “Pharmaceutically acceptable” or “physiologically acceptable” refer to compounds, salts, compositions, dosage forms and other materials which are useful in preparing a pharmaceutical composition that is suitable for veterinary or human pharmaceutical use.
- The term “pharmaceutically acceptable salt” of a given compound refers to salts that retain the biological effectiveness and properties of the given compound, and which are not biologically or otherwise undesirable. “Pharmaceutically acceptable salts” or “physiologically acceptable salts” include, for example, salts with inorganic acids and salts with an organic acid. In addition, if the compounds described herein are obtained as an acid addition salt, the free base can be obtained by basifying a solution of the acid salt. Conversely, if the product is a free base, an addition salt, particularly a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds. Those skilled in the art will recognize various synthetic methodologies that may be used to prepare nontoxic pharmaceutically acceptable addition salts. Pharmaceutically acceptable acid addition salts may be prepared from inorganic and organic acids. Salts derived from inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Salts derived from organic acids include acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene-sulfonic acid, salicylic acid, and the like. Likewise, pharmaceutically acceptable base addition salts can be prepared from inorganic and organic bases. Salts derived from inorganic bases include, by way of example only, sodium, potassium, lithium, ammonium, calcium and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary and tertiary amines, such as alkyl amines (i.e., NH2(alkyl)), dialkyl amines (i.e., HN(alkyl)2), trialkyl amines (i.e., N(alkyl)3), substituted alkyl amines (i.e., NH2(substituted alkyl)), di(substituted alkyl) amines (i.e., HN(substituted alkyl)2), tri(substituted alkyl) amines (i.e., N(substituted alkyl)3), alkenyl amines (i.e., NH2(alkenyl)), dialkenyl amines (i.e., HN(alkenyl)2), trialkenyl amines (i.e., N(alkenyl)3), substituted alkenyl amines (i.e., NH2(substituted alkenyl)), di(substituted alkenyl) amines (i.e., HN(substituted alkenyl)2), tri(substituted alkenyl) amines (i.e., N(substituted alkenyl)3, mono-, di- or tri-cycloalkyl amines (i.e., NH2(cycloalkyl), HN(cycloalkyl)2, N(cycloalkyl)3), mono-, di- or tri-arylamines (i.e., NH2(aryl), HN(aryl)2, N(aryl)3), or mixed amines, etc. Specific examples of suitable amines include, by way of example only, isopropylamine, trimethyl amine, diethyl amine, tri(iso-propyl) amine, tri(n-propyl) amine, ethanolamine, 2-dimethylaminoethanol, piperazine, piperidine, morpholine, N-ethylpiperidine, and the like.
- The term “hydrate” refers to the complex formed by the combining of a compound of Formula I and water.
- A “solvate” refers to an association or complex of one or more solvent molecules and a compound of the disclosure. Examples of solvents that form solvates include, but are not limited to, water, isopropanol, ethanol, methanol, dimethylsulfoxide, ethylacetate, acetic acid, and ethanolamine.
- Some of the compounds exist as tautomers. Tautomers are in equilibrium with one another. For example, amide containing compounds may exist in equilibrium with imidic acid tautomers. Regardless of which tautomer is shown, and regardless of the nature of the equilibrium among tautomers, the compounds are understood by one of ordinary skill in the art to comprise both amide and imidic acid tautomers. Thus, the amide containing compounds are understood to include their imidic acid tautomers. Likewise, the imidic acid containing compounds are understood to include their amide tautomers.
- “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space and include enantiomers and diastereomers.
- “Enantiomers” are a pair of stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a “racemic” mixture.
- “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
- “Prodrugs” means any compound which releases an active parent drug according to Formula I in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of Formula I are prepared by modifying functional groups present in the compound of Formula I in such a way that the modifications may be cleaved in vivo to release the parent compound. Prodrugs may be prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds. Prodrugs include compounds of Formula I wherein a hydroxy, amino, carboxyl or sulfhydryl group in a compound of Formula I is bonded to any group that may be cleaved in vivo to regenerate the free hydroxyl, amino, or sulfhydryl group, respectively. Examples of prodrugs include, but are not limited to esters (e.g., acetate, formate, and benzoate derivatives), amides, guanidines, carbamates (e.g., N,N-dimethylaminocarbonyl) of hydroxy functional groups in compounds of Formula I, and the like. Preparation, selection, and use of prodrugs is discussed in T. Higuchi and V. Stella, “Pro-drugs as Novel Delivery Systems,” Vol. 14 of the A.C.S. Symposium Series; “Design of Prodrugs,” ed. H. Bundgaard, Elsevier, 1985; and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, each of which are hereby incorporated by reference in their entirety.
- As used herein, “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” or “excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
-
-
- Abbreviation Meaning
- Ac Acetyl
- acid Protic acid or Lewis acid
- ACN Acetonitrile
- AIBN Azobisisobutyronitrile
- aq. Aqueous
- base Organic base (e.g., amine base) or inorganic base
- BINAP (2,2′-bis(diphenylphosphino)-1,1′-binaphthyl)
- BH3-DMS Borane dimethyl sulfide
- BOC Tert-butyloxycarbonyl-
- BuLi n-Butyllithium
- BuOH n-butanol
- DCM Dichloromethane
- DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
- DEAD Diethyl azodicarboxylate
- DIPEA N,N-Diisopropylethylamine
- DMAP 4-dimethylaminopyridine
- DMF Dimethylformamide
- DME Dimethyl ether
- DMSO Dimethylsulfoxide
- dppf 1,1′-Bis(diphenylphosphino)ferrocene
- EDC.HCL N′-ethylcarbodiimide hydrochloride
- Et Ethyl
- EtOAc Ethyl acetate
- EtOH Ethanol
- HA Protic acid
- HATU 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate
- HBTU N,N,N′,N′-Tetramethyl-( )-(1H-benzotriazol-1-yl)uronium hexafluorophosphate
- HOBt 1-hydroxybenzotriazole
- hrs or h Hours
- i-PrMgCl Isopropylmagnesium chloride
- LCMS Liquid chromatography—mass spectrometry
- MCPBA or m-CPBA m-Chloroperoxybenzoic acid
- Me Methyl
- MeCN(CH3CN) Acetonitrile
- MeOH Methanol
- min Minute(s)
- MS Mass spectrometry
- N Normal (Normality)
- NaOAc Sodium acetate
- NBS N-bromosuccinimide
- OAc Acetate
- PCC Pyridinium chlrochromate
- Pd/C Palladium on carbon
- Pd(dba)2 Bis(dibenzylideneacetone)palladium(0)
- Pd(dba)3 Tris(dibenzylideneacetone)dipalladium(0)
- Ph Phosphine
- p-TsOH p-toluenesulfonic acid
- rt Room temperature
- s Second(s)
- TBAI Tetrabutylammonium iodide
- t-Bu (tBu) Tert-butyl
- t-BuOK (tBuOK) Potassium tert-butoxide
- TEA Triethanolamine
- Tf Trifluoromethanesulfonyl
- TFA Trifluoroacetic acid
- THF Tetrahydrofuran
- TLC Thin layer chromotography
- TMS-CN Trimethylsilyl cyanide
- TMSCF3 Trifluoromethyltrimethylsilane
- TMS-NCO Trimethylsilyl isocyanate
- Tr Trityl
- Ts p-Toluenesulphonyl
- Provided herein are compounds that are useful for binding PCSK9. In one embodiment, provided is a compound of Formula (I):
- or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof; wherein:
- m is 0, 1, or 2;
- X1 is absent, CR2, CR2R2, C(O), N, NR2, S, SO2, or O;
- X2, X3, and X4 are each independently CR2, CR2R2, C(O), N, NR2, S, SO2, or O;
- ring B is a five- or six-membered ring comprising one or more double bonds;
- X5 and X6 are either CR2 or N;
- X7 is C or N;
- ring A is selected from:
- where the wavy line in ring A indicates the point of attachment to
- L is a bond, C1-6-alkylene, —O—, —C(O)—, —SO2—, —N(Ra)—, —N(Ra)SO2—, or —SO2N(Ra)— where Ra is hydrogen, C1-6 alkyl, or C1-6 heteroalkyl, wherein the C1-6 alkyl or C1-6 heteroalkyl are optionally substituted with 1 to 3 substituents independently selected from halo, oxo, hydroxy, C1-6 alkyl, or C1-6 heteroalkyl;
- R1 in each instance is independently halo, cyano, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, —NRbC(O)NRbRb, or —NRbS(O)2Rb;
-
- wherein each Rb is independently hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- R2 in each instance is independently hydrogen, halo, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, C2-6 hydroxyalkyl, cyano, —C(O)ORc, or —C(O)NRcRc;
-
- wherein each Rc is independently, hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- R3 is hydrogen, halo, cyano, amino, C1-12 alkyl, C1-12 alkenyl, C1-12 alkynyl, C3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl;
-
- wherein each C1-12 alkyl, C1-12 alkenyl, C1-12 alkynyl, C3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl and heteroaryl of R3 is optionally substituted with 1 to 3 substituents independently selected from halo, hydroxy, cyano, C1-6 alkyl, C1-6 alkenyl, C1-6 alkynyl, C1-6 alkoxy, acyl, C3-10 cycloalkyl, heteroalkyl, heteroaryl, heterocyclyl, aryl, oxo, —N3, —NO2, —N(Rf)2, —C(O)N(Rf)2, —C(NRf)(N(Rf)2), —NRfC(O)ORf, —C(O)N(Rf)2, —CO2H, —CO2Rf, —NRfC(NRf)(N(Rf)2), haloalkyl, haloalkoxy, —N(Rf)N(Rf)2, —C(NRf)Rf, —S(O)Rf, —SO2H, —S(O)2Rf, —SCN, —SH, or (═S), and where each Rf is independently H or C1-6 alkyl;
- or when X7 is N, then L-R3 is absent;
- R4 in each instance is independently hydrogen, C1-6 alkyl, —C(O)NRdRd, —C(NRd)NRdRd, —C(O)Rd, or —S(O)2NRdRd;
-
- wherein each Rd is independently, hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- with the following provisos:
- 1) when m is 0, then both R4 and L-R3 cannot be hydrogen;
- 2) when m is 0, R4 is hydrogen, X1, X2, X3, X4 are all CH, then L-R3 is not CF3;
- 3) when X5 and X6 are both nitrogen, then L-R3 is not hydrogen, —CH2-aryl, or —CH2— heteroaryl;
- 4) when X1, X2, X3, and X4 are all CH or X1 is nitrogen and X2, X3, and X4 are all CH, then L-R3 is not —SO2-aryl, wherein the aryl is optionally substituted;
- 5) when A is attached via a carbon atom to the remainder of the molecule and m is other than 0, then R1 is not appended to the same carbon;
- 6) the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine; and
- 7) when A is piperidinyl and L-R3 is hydrogen, then R4 is not C(O)NH2.
- In certain embodiments, provided is a compound of Formula (Ia):
- wherein:
- m is 0, 1, or 2;
- n is 0, 1, or 2;
- X1, X2, X3, and X4 are each independently CH, C(O), N, NH, S, SO2, or O; or
- X1 is absent and X2, X3, and X4 are each independently CH, C(O), N, NH, S, SO2, or O;
- and the dotted line can represent one or more double bonds;
- X5 and X6 are either CH or N;
- ring A is selected from:
- where the wavy line in ring A indicates the point of attachment to
- L is a bond, C1-6-alkylene, —O—, —C(O)—, —SO2—, or —N(Ra)—, where Ra is hydrogen, C1-6 alkyl, or C1-6 heteroalkyl, wherein the C1-6 alkyl or C1-6 heteroalkyl are optionally substituted with 1 to 3 substituents independently selected from halo, oxo, hydroxy, C1-6 alkyl, or C1-6 heteroalkyl;
- R1 in each instance is independently, halo, cyano, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, —NRbC(O)NRbRb, —NRbS(O)2Rb, —N(Rb)2, or —NRbC(O)Rb;
-
- where each Rb is independently hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- R2 in each instance is independently, halo, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, C2-6 hydroxyalkyl, cyano, —C(O)ORc, or —C(O)NRcRc;
-
- where each Rc is independently, hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- R3 is hydrogen, halo, cyano, C1-12 alkyl, C1-12 alkenyl, C1-12 alkynyl, C3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl,
-
- where each C1-12 alkyl, C1-12 alkenyl, C1-12 alkynyl, C3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl and heteroaryl is optionally substituted with 1 to 3 substituents independently selected from halo, hydroxy, cyano, C1-6 alkyl, C1-6 alkenyl, C1-6 alkynyl, C1-6 alkoxy, acyl, C3-10 cycloalkyl, heteroalkyl, heteroaryl, heterocyclyl, aryl, oxo, —N3, —NO2, —N(Rf)2, —C(O)N(Rf)2, —C(NRf)(N(Rf)2), —NRfC(O)ORf, —C(O)N(Rf)2, —CO2H, —CO2Rf, —NRfC(NRf)(N(Rf)2), haloalkyl, haloalkoxy, —N(Rf)N(Rf)2, —C(NRf)Rf, —S(O)Rf, —SO2H, —S(O)2Rf, —SCN, —SH, or (═S), and where each Rf is independently H or C1-6 alkyl;
- R4 in each instance is independently, hydrogen, C1-6 alkyl, —C(O)NRdRd, —C(NRd)NRdRd, —C(O)Rd, or —S(O)2NRdRd;
-
- where each Rd is independently, hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof, with the following provisos:
- 1) when A is piperazin-4-yl, m is 0, R4 is hydrogen, and L-R3 is hydrogen, then
- is not benzimidazole, benzoxazole, benzothiazole; and
- 2) when m is 0, R4 is hydrogen, X1, X2, X3, X4 are all CH, then either L-R3 is not CF3 or n is not 0.
- In certain embodiments, the compound is of Formula (Ia) with the further proviso that when m is 0, n is 0, R4 is hydrogen, X1, X2, X3, X4 are all CH, then L-R3 is not hydrogen.
- In certain embodiments, the moiety
- is:
- wherein the wavy line indicates the point of attachment to L and the dashed line represents the point of attachment to ring A.
- In certain embodiments, the moiety
- is:
- wherein the wavy line indicates the point of attachment to L and the dashed line represents the point of attachment to ring A, and further wherein the bicyclic ring may be optionally substituted with one or more R2 selected from the group consisting of hydrogen, halo, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, C2-6 hydroxyalkyl, cyano, —C(O)ORc, and —C(O)NRcRc.
- In certain embodiments, the moiety
- is:
- wherein the wavy line indicates the point of attachment to L and the dashed line represents the point of attachment to ring A, and further wherein the bicyclic ring may be optionally substituted with one or more R2 selected from the group consisting of hydrogen, halo, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, C2-6 hydroxyalkyl, cyano, —C(O)ORc, and —C(O)NRcRc.
- In certain embodiments, the moiety
- is:
- optionally substituted with 1, 2, or 3 R2 as described herein.
- In certain embodiments, the moiety
- is:
- wherein the wavy line indicates the point of attachment to L and the dashed line represents the point of attachment to ring A.
- In certain embodiments, the moiety
- is:
- wherein the wavy line indicates the point of attachment to L and the dashed line represents the point of attachment to ring A.
- In certain embodiments, ring A is:
- In certain embodiments, ring A is:
- In certain embodiments, ring A is:
- In certain embodiments, m is 0 or 1.
- In certain embodiments, R4 is hydrogen, —C(O)NH2, or —C(NH)NH2. In certain embodiments, R4 is hydrogen.
- In certain embodiments, R1 is —NHC(O)NH2, —NHS(O)2CH3, or —NHC(O)CH3. In certain embodiments, R1 is —NHS(O)2CH3, or —NHC(O)CH3.
- In certain embodiments, R2 is hydrogen, C1-6 alkyl, —CO2H or —C(O)NH2. In certain embodiments, R2 is —CO2H or —C(O)NH2. In certain embodiments, R2 is hydrogen. In certain embodiments, R2 is hydrogen or methyl.
- In certain embodiments, R4 is hydrogen, —C(O)NH2, or —C(NH)NH2. In certain embodiments, R4 is hydrogen.
- In certain embodiments, L is a bond, —CH2—, —O—, —C(O)—, —S(O)2—, —S(O)2NH—, or —NH—. In certain embodiments, L is —CH2—, —O—, —C(O)—, —S(O)2—, —S(O)2NH—, or —NH—. In certain embodiments, L is —CH2—, —O—, —C(O)—, —S(O)2—, or —NH—. In certain embodiments, L is a bond.
- In certain embodiments, R3 is hydrogen, amino, halo, C1-6alkyl, aryl, or C3-10 heterocyclyl, wherein C1-6alkyl, aryl, or C3-10 heterocyclyl is optionally substituted with one or more halo. In certain embodiments, R3 is hydrogen, C1-6alkyl, or C3-10 heterocyclyl, wherein C1-6alkyl or C3-10 heterocyclyl is optionally substituted with one or more halo. In certain embodiments, R3 is hydrogen. In certain embodiments, R3 is CH3. In certain embodiments, R3 is CF3. In certain embodiments, R3 is F. In certain embodiments, R3 is Cl. In certain embodiments, R3 is NH2. In certain embodiments, R3 is cyclohexyl. In certain embodiments, R3 is aryl. In one embodiment, R3 is C3-10 heterocyclyl.
- In certain embodiments, L is a bond and R3 is hydrogen, C1-6alkyl, haloalkyl, halo, C3-10 cycloalkyl, heterocyclyl, or aryl. In certain embodiments, L is a bond and R3 is hydrogen. In certain embodiments, L is a bond and R3 is CH3. In certain embodiments, L is a bond and R3 is CF3. In certain embodiments, L is a bond and R3 is F. In certain embodiments, L is a bond and R3 is Cl. In certain embodiments, L is a bond and R3 is cyclohexyl. In certain embodiments, L is a bond, and R3 is phenyl.
- In certain embodiments, R3 is:
- wherein:
- Y is —O—, —N(Re)—, —CH((CH2)f OH), or —N((CH2)f OH);
- each Re is independently hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 alkyl where the C2-6 alkyl is substituted with a hydroxy; and
- f is 0, 1, 2, 3, or 4.
- In certain embodiments, Y is —N(Re)—.
- In certain embodiments, provided is a compound of Formula (Ib):
- wherein:
- m is 0, 1, or 2;
- n is 0, 1, or 2;
- X1, X2, X3, and X4 are each independently CH, C(O), N, NH, S, SO2, or O; or
- X1 is absent and X2, X3, and X4 are each independently CH, C(O), N, NH, S, SO2, or O;
- and the dotted line can represent one or more double bonds;
- X5 and X6 are either CH or N;
- ring A is selected from:
- where the wavy line in ring A indicates the point of attachment to
- R1 in each instance is independently, halo, cyano, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, —NRbC(O)NRbRb, —NRbS(O)2Rb, —N(Rb)2, or —NRbC(O)Rb;
-
- where each Rb is independently hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- R2 in each instance is independently, halo, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, C2-6 hydroxyalkyl, cyano, —C(O)ORc, or —C(O)NRcRc;
-
- where each Rc is independently, hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- R4 in each instance is independently, hydrogen, C1-6 alkyl, —C(O)NRdRd, —C(NRd)NRdRd, —C(O)Rd, or —S(O)2NRdRd;
-
- where each Rd is independently, hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl; and
- L-R3 is
- wherein:
- i) J is selected from the group consisting of —O—, —CO—, —CH2—, —CF2—, —SO2—;
- ii) if J is —CH2 or —CF2 then M is nothing, if J is —O— then M is nothing or —CH2, if J is —CO or SO2 then M is —NH—;
- iii) Ring C is a 5 or 6 membered saturated or unsaturated aryl, heteroaryl, carbocyclic or heterocyclic ring. And ring C may be fused via R11, R12 to form a 5-6 membered aryl, heteroaryl, carbocyclic or heterocyclic ring;
- iv) E1, E2, and E3 are independently selected from C or N;
- v) if M is nothing or —CH2— then R11 and R12 are independently selected from the group consisting of lower alkyl, halo, hydroxy, amino, aminoalkyl, hydroxylalkyl, haloalkyl, carboxy, —C(O)NH2, nitrile, —S-alkyl, —O-alkyl, acyl, and oxo; and
- vi) if M is —NH— then R10, R11, and R12 are independently selected from the group consisting of lower alkyl, halo, hydroxy, amino, aminoalkyl, hydroxylalky, haloalkyl, carboxy, —C(O)NH2, —C(O)N-alkyl, nitrile, —S-alkyl, —O-alkyl, acyl, oxo; and R10 and R11 may be joined to form a 5-6 membered fused saturated or unsaturated ring D containing 0-3 heteroatoms where Ring D may further be substituted at positions at least two atoms away from the juncture with Ring C,
- or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof.
- In one embodiment, a compound may be selected from those compounds in Table 1 or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof.
-
TABLE 1 No. Name Structure 1 1-(4- (trifluoromethyl) naphthalen- 1-yl)piperazine 2 4-(4- (trifluoromethyl) naphthalen- 1-yl)piperidine 3 1-(4-(trifluoromethyl)- 5,6,7,8- tetrahydronaphthalen-1- yl)piperazine 4 1-(4-(piperidin-4- yloxy)naphthalen-1- yl)piperazine 5 N-(4-(piperazin-1- yl)naphthalen-1-yl) piperidin-4-amine 6 1-(4-(piperidin-4- ylmethyl)naphthalen-1- yl)piperazine 7 1-(4-(piperidin-4- ylsulfonyl)naphthalen- 1-yl)piperazine 8 piperazin-1-yl(4- (piperazin- 1-yl)naphthalen-1- yl)methanone 9 5-(piperazin-1-yl)-8- (piperidin-4- yloxy)isoquinoline 10 4-(naphthalen-1- yl)piperazine-1- carboximidamide 11 4-(naphthalen-1- yl)piperazine-1- carboxamide 12 4-(piperazin-1-yl)-7- (piperidin-4-yloxy) indolin-2-one 13 4-(piperazin-1-yl)-7- (piperidin-4- yloxy)isoindolin-1-one 14 5-(piperazin-1-yl)-8- (piperidin-4- yloxy)isoquinoline-3- carboxylic acid 15 5-(3-oxopiperazin-1- yl)-8-(piperidin-4- yloxy)isoquinoline-3- carboxamide 16 4-(8-(piperidin-4- yloxy)isoquinolin-5- yl)piperazin-2-one 17 N-(1-(naphthalen-1- yl)piperidin-4- yl)methanesulfonamide 18 N-(1-(naphthalen-1- yl)piperidin-4-yl) acetamide 19 1-(1-(naphthalen-1- yl)piperidin-4-yl)urea 20 4-(piperidin-4-yl)-1H- benzo[d]imidazole 21 4-(piperidin-4- yl)benzo[d]thiazole 22 4-((4-(piperidin-4- yl)naphthalen-1- yl)methyl)piperidine 23 4-((4-(piperidin-4- yl)naphthalen-1- yl)sulfonyl)piperidine 24 4-(piperidin-4-yl)-7- (piperidin-4-yloxy) indolin-2-one 25 5-(piperidin-4-yl)-8- (piperidin-4- yloxy)isoquinoline-3- carboxylic acid 26 5-(2-oxopiperidin-4- yl)-8-(piperidin-4- yloxy)isoquinoline-3- carboxamide 27 4-(8-(piperidin-4- yloxy)isoquinolin-5- yl)piperidin-2-one 28 5-(piperazin-1-yl)-8- (piperidin-4-yloxy) quinoline- 3-carboxylic acid 29 8-(piperazin-1-yl)-5- (piperidin-4-yloxy) quinazoline-2- carboxylic acid 30 8-(piperazin-1-yl)-5- (piperidin-4-yloxy) quinoline-2-carboxylic acid 31 4-(piperazin-1-yl)-7- (piperidin-4- yloxy)benzo[d]thiazole 32 7-(piperazin-1-yl)-4- (piperidin-4- yloxy)benzo[d]thiazole 33 8-(piperazin-1-yl)-5- (piperidin-4-yloxy) isoquinoline-3- carboxylic acid 34 4-(piperazin-1-yl)-7- (piperidin-4-yloxy)-1H- benzo[d][1,2,3]triazole 35 1-(7-(piperidin-4- yloxy)-2,3-dihydro-1H- inden-4-yl)piperazine 36 5-(piperazin-1-yl)-8- (piperidin-4-yloxy) quinoline 37 3-methyl-5-(piperidin- 4-yl)- 8-(piperidin-4- yloxy)cinnoline 38 4-((7-(piperidin-4- yl)benzo[d][1,3]dioxol- 4-yl)oxy)piperidine 39 1-(7-(piperidin-4- yloxy)benzo[b] thiophen-4-yl) piperazine 40 4-(piperazin-1-yl)-1H- benzo[d]imidazole 41 4-(piperazin-1- yl)benzo[d]thiazole 42 7-(piperazin-1- yl)benzo[d]thiazole 43 4-(4-methylnaphthalen- 1-yl)piperidine 44 4-(4-methoxy- naphthalen- 1-yl)piperidine 45 4-(piperidin-4- yl)isoquinoline 46 1-(piperidin-4- yl)isoquinoline 47 4-(piperidin-4-yl) naphthalen-1-ol 48 4-(piperidin-4-yl) quinazoline 49 4-(4-fluoronaphthalen- 1-yl)piperidine 50 4-(piperidin-4-yl) quinoline 51 8-fluoro-5-(piperidin-4- yl)quinoline 52 8-fluoro-5-(piperidin-4- yl)isoquinoline 53 4-(5-methylnaphthalen- 1-yl)piperidine 54 (5-(piperidin-4- yl)naphthalen-1-yl) methanol 55 4-(6-methylnaphthalen- 1-yl)piperidine 56 4-(piperidin-4-yl) naphthalen-1-amine 57 8-(piperidin-4-yl) quinoline 58 5-fluoro-8-(piperidin-4- yl)quinoline 59 4-(4-chloronaphthalen- 1-yl)piperidine 60 4-(4-cyclohexyl- naphthalen- 1-yl)piperidine 61 4-(piperidin-4-yl)-N- (5,6,7,8- tetrahydronaphthalen-2- yl)naphthalene-1- sulfonamide 62 N-phenyl-4-(piperidin- 4-yl)naphthalene-1- sulfonamide 63 4-(piperidin-4- yl)naphthalene-1- sulfonamide 64 8-(piperidin-4-yl)-5- (trifluoromethyl) quinoline 65 5-(piperidin-4-yl)-8- (trifluoromethyl) quinoline 66 5-(piperidin-4-yl)-2- naphthamide 67 5-(piperidin-4-yl)-1- naphthamide 68 4-(piperidin-4-yl)-1- naphthamide 69 8-(naphthalen-1-yl)-1,3- diazaspiro[4.5]decan-2- one 70 N-(4-(piperidin-4- yl)naphthalen-1- yl)tetrahydro-2H-pyran- 4-amine 71 4-(4-((tetrahydro-2H- pyran-4-yl)oxy) naphthalen-1- yl)piperidine 72 4-(piperazin-1-yl)-N- (5,6,7,8- tetrahydronaphthalen-1- yl)naphthalene-1- sulfonamide 73 N-phenyl-4-(piperazin- 1-yl)naphthalene-1- sulfonamide 74 4-(piperazin-1- yl)naphthalene-1- sulfonamide 75 8-methoxy-5-(piperidin- 4-yl)isoquinoline-3- carboxylic acid 76 8-methoxy-5-(piperidin- 4-yl)isoquinoline-3- carboxamide 77 8-(naphthalen-1-yl)-2- azaspiro[4.5]decan-3- one 78 8-(naphthalen-1-yl)-2- azaspiro[4.5]decan-1- one 79 5-fluoro-8-(piperidin-4- yl)isoquinoline 80 4-fluoro-1-(piperidin-4- yl)isoquinoline 81 4-(piperidin-4-yl)-1- (trifluoromethyl) isoquinoline 82 1-(piperidin-4-yl)-4- (trifluoromethyl) isoquinoline 83 8-(piperidin-4-yl)-5- (trifluoromethyl) isoquinoline 84 5-(piperidin-4-yl)-8- (trifluoromethyl) isoquinoline 85 4-chloro-1-(piperidin-4- yl)isoquinoline 86 5-chloro-8-(piperidin-4- yl)quinoline 87 5-chloro-8-(piperidin-4- yl)isoquinoline 88 8-chloro-5-(piperidin-4- yl)isoquinoline 89 8-chloro-5-(piperidin-4- yl)quinoline 90 4-(4-phenoxy- naphthalen- 1-yl)piperidine 91 8-(piperidin-4-yl)-2- naphthamide 92 4-(piperidin-4-yl)-2- naphthamide 93 4-(5- (trifluoromethyl) naphthalen- 1-yl)piperidine 94 4-(6- (trifluoromethyl) naphthalen- 1-yl)piperidine 95 4-(4-phenylnaphthalen- 1-yl)piperidine 96 4-(4-(4- fluorobenzyl) naphthalen- 1-yl)piperidine 97 3-(naphthalen-1-yl)-6- azabicyclo[3.1.1] heptane 98 3-(4- (trifluoromethyl) naphthalen-1-yl)-6- azabicyclo[3.1.1] heptane 99 3-(4-chloronaphthalen- 1-yl)-6-azabicyclo [3.1.1]heptane 100 3-(4-methylnaphthalen- 1-yl)-6-azabicyclo [3.1.1]heptane 101 4-(piperidin-4-yl)-2- (trifluoromethyl) quinazoline 102 5-(naphthalen-1-yl)-2- azabicyclo[2.1.1]hexane 103 5-(4- (trifluoromethyl) naphthalen-1-yl)-2- azabicyclo[2.1.1]hexane 104 5-(4-chloronaphthalen- 1-yl)-2-azabicyclo [2.1.1]hexane 105 5-(2-oxopiperidin-4-yl)- 8-(piperidin-4- yloxy)isoquinoline-3- carboxylic acid 106 5-(4-methylnaphthalen- 1-yl)-2-azabicyclo [2.1.1]hexane - In one embodiment, a compound may be selected from those compounds in Table 2 or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof.
- As discussed herein, the compounds provided herein, such as those provided in Table 1 and Table 2, are useful for binding to PCSK9 and modulating PCSK9 proprotein convertase enzyme activity.
- “Treatment” or “treating” is an approach for obtaining beneficial or desired results including clinical results. Beneficial or desired clinical results may include one or more of the following: a) inhibiting the disease or condition (e.g., decreasing one or more symptoms resulting from the disease or condition, and/or diminishing the extent of the disease or condition); b) slowing or arresting the development of one or more clinical symptoms associated with the disease or condition (e.g., stabilizing the disease or condition, preventing or delaying the worsening or progression of the disease or condition, and/or preventing or delaying the spread (e.g., metastasis) of the disease or condition); and/or c) relieving the disease, that is, causing the regression of clinical symptoms (e.g., ameliorating the disease state, providing partial or total remission of the disease or condition, enhancing effect of another medication, delaying the progression of the disease, increasing the quality of life, and/or prolonging survival.
- “Prevention” or “preventing” means any treatment of a disease or condition that causes the clinical symptoms of the disease or condition not to develop. Compounds may, in some embodiments, be administered to a subject (including a human) who is at risk or has a family history of the disease or condition.
- “Subject” refers to an animal, such as a mammal (including a human), that has been or will be the object of treatment, observation or experiment. The methods described herein may be useful in human therapy and/or veterinary applications. In some embodiments, the subject is a mammal. In one embodiment, the subject is a human.
- The term “therapeutically effective amount” or “effective amount” of a compound described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof means an amount sufficient to effect treatment when administered to a subject, to provide a therapeutic benefit such as amelioration of symptoms or slowing of disease progression. For example, a therapeutically effective amount may be an amount sufficient to decrease a symptom of a disease or condition of as described herein. The therapeutically effective amount may vary depending on the subject, and disease or condition being treated, the weight and age of the subject, the severity of the disease or condition, and the manner of administering, which can readily be determined by one or ordinary skill in the art.
- The methods described herein may be applied to cell populations in vivo or ex vivo. “In vivo” means within a living individual, as within an animal or human. In this context, the methods described herein may be used therapeutically in an individual. “Ex vivo” means outside of a living individual. Examples of ex vivo cell populations include in vitro cell cultures and biological samples including fluid or tissue samples obtained from individuals. Such samples may be obtained by methods well known in the art. Exemplary biological fluid samples include blood, cerebrospinal fluid, urine, and saliva. In this context, the compounds and compositions described herein may be used for a variety of purposes, including therapeutic and experimental purposes. For example, the compounds and compositions described herein may be used ex vivo to determine the optimal schedule and/or dosing of administration of a compound of the present disclosure for a given indication, cell type, individual, and other parameters. Information gleaned from such use may be used for experimental purposes or in the clinic to set protocols for in vivo treatment. Other ex vivo uses for which the compounds and compositions described herein may be suited are described below or will become apparent to those skilled in the art. The selected compounds may be further characterized to examine the safety or tolerance dosage in human or non-human subjects. Such properties may be examined using commonly known methods to those skilled in the art.
- Compounds of Formula (I), Formula (Ia), Formula (Ib), or additional Formulas or compounds described throughout, are contemplated to be useful in treating diseases or conditions meadiated, at least in part by, PCSK9. Proprotein convertase subtilisin/kexin type 9, also known as PCSK9, is an enzyme that in humans is encoded by the PCSK9 gene. Seidah et al., “The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation,” Proc. Natl. Acad. Sci. U.S.A. 100 (3): 928-933 (2003). Similar genes (orthologs) are found across many species. Many enzymes, including PCSK9, are inactive when they are first synthesized, because they have a section of peptide chains that blocks their activity; proprotein convertases remove that section to activate the enzyme.
- The PCSK9 gene encodes a proprotein convertase belonging to the proteinase K subfamily of the secretory subtilase family. The encoded protein is synthesized as a soluble zymogen that undergoes autocatalytic intramolecular processing in the endoplasmic reticulum. The protein may function as a proprotein convertase. For example, a human PCSK9 amino acid sequence is:
- 001 mgtvssrrsw wplpllllll lllgpagara qededgdyee lvlalrseed glaeapehgt
- 061 tatfhrcakd pwrlpgtyvv vlkeethlsq sertarrlqa qaarrgyltk ilhvfhgllp
- 121 gflvkmsgdl lelalklphv dyieedssvf aqsipwnler itppryrade yqppdggslv
- 181 evylldtsiq sdhreiegrv mvtdfenvpe edgtrfhrqa skcdshgthl agvvsgrdag
- 241 vakgasmrsl rvlncqgkgt vsgtliglef irksqlvqpv gplvvllpla ggysrvlnaa
- 301 cqrlaragvv lvtaagnfrd daclyspasa pevitvgatn aqdqpvtlgt lgtnfgrcvd
- 361 lfapgediig assdcstcfv sqsgtsqaaa hvagiaamml saepeltlae lrqrlihfsa
- 421 kdvineawfp edqrvltpnl vaalppsthg agwqlfcrtv wsahsgptrm atavarcapd
- 481 eellscssfs rsgkrrgerm eaqggklvcr ahnafggegv yaiarccllp qancsvhtap
- 541 paeasmgtrv hchqqghvlt gcsshweved lgthkppvlr prgqpnqcvg hreasihasc
- 601 chapgleckv kehgipapqe qvtvaceegw tltgcsalpg tshvlgayav dntcvvrsrd
- 661 vsttgstseg avtavaiccr srhlaqasqe lq (Accession No. NP_777596).
- PCSK9 is believed to play a regulatory role in cholesterol homeostasis. For example, PCSK9 can bind to the epidermal growth factor-like repeat A (EGF-A) domain of the low-density lipoprotein receptor (LDL-R) resulting in LDL-R internalization and degradation. Clearly, it would be expected that reduced LDL-R levels result in decreased metabolism of LDL-C, which could lead to hypercholesterolemia.
- As it is estimated that approximately nine million Americans have a high or very high risk for heart-related problems that could benefit from PCSK9 inhibitors (especially when in combination with statins). PCSK9 inhibitors could result in such widespread usage having the potential to replace statins in certain conditions. PCSK9 has medical significance because it acts in cholesterol homeostasis. Drugs that block PCSK9 biological actions are believed to lower circulating low-density lipoprotein cholesterol (LDL-C) levels (e.g., by increasing the availability of LDL-Rs and, consequently, LDL-C clearance). Some such drugs, such as Evolocumab (trade name Repatha™ from Amgen, Inc.) and Alirocumab (tradename Praluent™ from Sanofi U.S., LLC and Regeneron Pharmaceuticals, Inc.) have been FDA approved, but are still in clinical trials to determine if they can improve outcomes in heart disease.
- Variants of PCSK9 can reduce or increase circulating cholesterol. Abifadel et al., “Mutations in PCSK9 cause autosomal dominant hypercholesterolemia” Nat. Genet. 34 (2): 154-156 (2003). LDL-C is normally removed from the blood when it binds to an LDL-R on the surface of liver cells, and is internalized within the hepatocyte as a receptor-ligand complex. However, when PCSK9 binds to an LDL-R, the LDL-R is concomitantly degraded along with the complexed LDL particle. However, if a PCSK9 is not bound to an LDL-R, the LDL-R is recycled after internalization thereby returning to the surface of the cell for removal of more cholesterol.
- Disclosed herein are compounds contemplated to have a modulation effect on PCSK9's ability to form an LDL-R/PCSK9 complex. In some embodiments, the compounds may bind to a PCSK9 protein and modulate the protein's biological activity. In some embodiments, compounds decrease LDL-R/PCSK9 complex formation and are thereby useful to treat various diseases involving lipid dysregulation. In some embodiments, compounds increase LDL-R/PCSK9 complex formation and are thereby useful in research and development of therapies relevant to LDL dysregulation.
- Without being bound by any particular theory, it is believed that “gain-of-function” (GOF) PCSK9 mutants may result in conditions including, but not limited to, hypercholesterolemia. For example, compounds that bind to a PCSK9 and increase the affinity of PCSK9's low density lipoprotein receptor for a low density lipoprotein receptor on the surface of a cell (e.g., a hepatocyte) would be expected to increase the symptoms of hypercholesterolemia by increasing low density lipoprotein receptor internalization and degradation.
- Further, and without being bound by any particular theory, it is believed that “loss-of-function” (LOF) PCSK9 mutants may result in conditions comprising reduced low density lipoproteins and would be expected to result in hypocholesterolemia thereby reducing the risk of cardiovascular diseases, including but not limited to, coronary heart disease. For example, compounds that bind to a PCSK9 that decrease the affinity of PCSK9's low density lipoprotein receptor binding site for a low density lipoprotein receptor on the surface of a cell (e.g., a hepatocyte) would be expected to reduce the symptoms of hypercholesterolemia by promoting low density lipoprotein internalization and clearance due to concomitant recycling of the low density lipoprotein receptor.
- The compounds of the present disclosure are therefore useful for treating diseases and conditions mediated, at least in part by, PCSK9, including but not limited to cardiovascular diseases (e.g., a coronary disease) and metabolic diseases. For example, the compounds of the present disclosure are useful for treating diseases and conditions including, but not limited to hypercholesterolemia, atherosclerosis, and hypertension. Further, the compounds of the present disclosure are useful for reducing symptoms including, but not limited to elevated low density lipoprotein receptor density, reduced low density lipoprotein receptor density, symptoms of liver disease.
- Without being bound by any particular theory, it is believed that the administration of a compound of the present disclosure, induces a conformational shift of the PCSK9 protein such that the affinity of the low density lipoprotein binding site for a low density lipoprotein receptor is decreased, wherein PCSK9/LDL-R complex formation is decreased. The decrease in PCSK9/LDL-R complex formation results in an increase in the bioavailability of LDL-R receptors for binding to circulating LDL, thereby increasing the internalization and clearance of LDL by LDL-R. It is further believed that administration of the compound may result in increased bioavailability of hepatocyte cell LDL-Rs.
- Further, and also without being bound by any particular theory, it is believed that the administration of a compound of the present disclosure, induces a conformational shift of the PCSK9 protein such that the affinity of the low density lipoprotein binding site for a low density lipoprotein receptor is increased, wherein PCSK9/LDL-R complex formation is increased or stabilized. The increase or stabilization in PCSK9/LDL-R complex formation results in a decrease in the bioavailability of LDL-R receptors for binding to circulating LDL, thereby decreasing the internalization and clearance of LDL by LDL-R. It is further believed that a PCSK9 allosteric activator compound may result in decreased bioavailability of hepatocyte cell LDL-Rs.
- In certain embodiments, provided herein is a method of treating a disease or condition mediated, at least in part, by PCSK9, the method comprising administering to a patient in need thereof a compound of Formula (I):
- or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof; wherein:
- m is 0, 1, or 2;
- X1 is absent, CR2, CR2R2, C(O), N, NR2, S, SO2, or O;
- X2, X3, and X4 are each independently CR2, CR2R2, C(O), N, NR2, S, SO2, or O;
- ring B is a five- or six-membered ring comprising one or more double bonds;
- X5 and X6 are either CR2 or N;
- X7 is C or N;
- ring A is selected from:
- where the wavy line in ring A indicates the point of attachment to
- L is a bond, C1-6-alkylene, —O—, —C(O)—, —N(Ra)—, —N(Ra)SO2—, or —SO2N(Ra)-where Ra is hydrogen, C1-6 alkyl, or C1-6 heteroalkyl, wherein the C1-6 alkyl or C1-6 heteroalkyl are optionally substituted with 1 to 3 substituents independently selected from halo, oxo, hydroxy, C1-6 alkyl, or C1-6 heteroalkyl;
- R1 in each instance is independently halo, cyano, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, —NRbC(O)NRbRb, or —NRbS(O)2Rb;
-
- wherein each Rb is independently hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- R2 in each instance is independently hydrogen, halo, C1-6 alkyl optionally substituted with halo or hydroxy, C3-6 cycloalkyl, C2-6 hydroxyalkyl, cyano, —C(O)ORc, or —C(O)NRcRc;
-
- wherein each Rc is independently, hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl;
- R3 is hydrogen, halo, cyano, amino, C1-12 alkyl, C1-12 alkenyl, C1-12 alkynyl, C3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl, or heteroaryl;
-
- wherein each C1-12 alkyl, C1-12 alkenyl, C1-12 alkynyl, C3-10 cycloalkyl, aryl, heteroalkyl, heterocyclyl and heteroaryl of R3 is optionally substituted with 1 to 3 substituents independently selected from halo, hydroxy, cyano, C1-6 alkyl, C1-6 alkenyl, C1-6 alkynyl, C1-6 alkoxy, acyl, C3-10 cycloalkyl, heteroalkyl, heteroaryl, heterocyclyl, aryl, oxo, —N3, —NO2, —N(Rf)2, —C(O)N(Rf)2, —C(NRf)(N(Rf)2), —NRfC(O)ORf, —C(O)N(Rf)2, —CO2H, —CO2Rf, —NRfC(NRf)(N(Rf)2), haloalkyl, haloalkoxy, —N(Rf)N(Rf)2, —C(NRf)Rf, —S(O)Rf, —SO2H, —S(O)2Rf, —SCN, —SH, or (═S), and where each Rf is independently H or C1-6 alkyl;
- or when X7 is N, then L-R3 is absent;
- R4 in each instance is independently hydrogen, C1-6 alkyl, —C(O)NRdRd, —C(NRd)NRdRd, —C(O)Rd, or —S(O)2NRdRd;
-
- wherein each Rd is independently, hydrogen, C1-6 alkyl, C3-6 cycloalkyl, or C2-6 hydroxyalkyl.
- In certain embodiments, provided herein is a method of treating a disease or condition mediated, at least in part, by PCSK9, the method comprising administering to a patient in need thereof a compound of Formula (I), as defined herein, with the following provisos:
- 1) when m is zero then both R4 and L-R3 cannot be hydrogen;
- 2) when m is 0, R4 is hydrogen, X1, X2, X3, X4 are all CH, then either L-R3 is not CF3 or n is not 0;
- 3) when X5 and X6 are both nitrogen, then L-R3 is not hydrogen, —CH2-aryl, or —CH2-heteroaryl;
- 4) when X1, X2, X3, and X4 are all CH or X1 is nitrogen and X2, X3, and X4 are all CH, then L-R3 is not —SO2-aryl, wherein the aryl is optionally substituted;
- 5) when A is attached via a carbon atom to the remainder of the molecule, R1 is not appended to the same carbon;
- 6) the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine; and
- 7) when L-R3 is hydrogen and A is piperidinyl, then R4 is not C(O)NH2.
- In certain embodiments, provided herein is a method of treating a disease or condition mediated, at least in part, by PCSK9, the method comprising administering to a patient in need thereof a compound selected from Table 1 or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof. In certain embodiments, provided herein is a method of treating a disease or condition mediated, at least in part, by PCSK9, the method comprising administering to a patient in need thereof a compound selected from Table 2 or a pharmaceutically acceptable salt, ester, prodrug, isomer, or mixture of isomers thereof.
- In certain embodiments, provided is a compound of Formula (I), as defined herein, for use in the treatment of a disease or condition mediated, at least in part, by PCSK9. In one embodiment, provided is a compound for use in the treatment of a disease or condition mediated, at least in part, by PCSK9, wherein the compound is of Formula (I), as defined herein, with the following provisos:
- 1) when m is zero then both R4 and L-R3 cannot be hydrogen;
- 2) when m is 0, R4 is hydrogen, X1, X2, X3, X4 are all CH, then either L-R3 is not CF3 or n is not 0;
- 3) when X5 and X6 are both nitrogen, then L-R3 is not hydrogen, —CH2-aryl, or —CH2-heteroaryl;
- 4) when X1, X2, X3, and X4 are all CH or X1 is nitrogen and X2, X3, and X4 are all CH, then L-R3 is not —SO2-aryl, wherein the aryl is optionally substituted;
- 5) when A is attached via a carbon atom to the remainder of the molecule, R1 is not appended to the same carbon;
- 6) the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine; and
- 7) when L-R3 is hydrogen and A is piperidinyl, then R4 is not C(O)NH2.
- In certain embodiments, provided is a compound of Formula (Ia), Formula (Ib), or any other Formula, as defined herein, for use in the treatment of a disease or condition mediated, at least in part, by PCSK9.
- In certain embodiments, provided is use of a compound of Formula (I), as defined herein, for the treatment of a disease or condition mediated, at least in part, by PCSK9. In one embodiment, provided is a use of a compound for the treatment of a disease or condition mediated, at least in part, by PCSK9, wherein the compound is of Formula (I), as defined herein, with the following provisos:
- 1) when m is zero then both R4 and L-R3 cannot be hydrogen;
- 2) when m is 0, R4 is hydrogen, X1, X2, X3, X4 are all CH, then either L-R3 is not CF3 or n is not 0;
- 3) when X5 and X6 are both nitrogen, then L-R3 is not hydrogen, —CH2-aryl, or —CH2-heteroaryl;
- 4) when X1, X2, X3, and X4 are all CH or X1 is nitrogen and X2, X3, and X4 are all CH, then L-R3 is not —SO2-aryl, wherein the aryl is optionally substituted;
- 5) when A is attached via a carbon atom to the remainder of the molecule, R1 is not appended to the same carbon;
- 6) the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine; and
- 7) when L-R3 is hydrogen and A is piperidinyl, then R4 is not C(O)NH2.
- In certain embodiments, provided is use of a compound of Formula (Ia), (Ib) or any other Formula, as defined herein, for the treatment of a disease or condition mediated, at least in part, by PCSK9.
- In certain embodiments, provided is use of a compound of Formula (I), as defined herein, for the manufacture of a medicament for treating a disease or condition mediated, at least in part, by PCSK9. In one embodiment, provided is a use of a compound for the manufacture of a medicament for treating a disease or condition mediated, at least in part, by PCSK9, wherein the compound is of Formula (I), as defined herein, with the following provisos:
- 1) when m is zero then both R4 and L-R3 cannot be hydrogen;
- 2) when m is 0, R4 is hydrogen, X1, X2, X3, X4 are all CH, then either L-R3 is not CF3 or n is not 0;
- 3) when X5 and X6 are both nitrogen, then L-R3 is not hydrogen, —CH2-aryl, or —CH2-heteroaryl;
- 4) when X1, X2, X3, and X4 are all CH or X1 is nitrogen and X2, X3, and X4 are all CH, then L-R3 is not —SO2-aryl, wherein the aryl is optionally substituted;
- 5) when A is attached via a carbon atom to the remainder of the molecule, R1 is not appended to the same carbon;
- 6) the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine; and
- 7) when L-R3 is hydrogen and A is piperidinyl, then R4 is not C(O)NH2.
- In certain embodiments, provided is use of a compound of Formula (Ia), (Ib) or any other Formula, as defined herein, for the manufacture of a medicament for treating a disease or condition mediated, at least in part, by PCSK9.
- In certain embodiments, provided is a method of inhibiting the activity of PCSK9, where the method comprising binding a compound of Formula (I), as defined herein, to PCSK9, thereby inhibiting the activity of PCSK9. In certain embodiments, provided herein is a method of inhibiting the activity of PCSK9, where the method comprising binding a compound to PCSK9, thereby inhibiting the activity of PCSK9, where the compound is of Formula (I), as defined herein, with the following provisos:
- 1) when m is zero then both R4 and L-R3 cannot be hydrogen;
- 2) when m is 0, R4 is hydrogen, X1, X2, X3, X4 are all CH, then either L-R3 is not CF3 or n is not 0;
- 3) when X5 and X6 are both nitrogen, then L-R3 is not hydrogen, —CH2-aryl, or —CH2-heteroaryl;
- 4) when X1, X2, X3, and X4 are all CH or X1 is nitrogen and X2, X3, and X4 are all CH, then L-R3 is not —SO2-aryl, wherein the aryl is optionally substituted;
- 5) when A is attached via a carbon atom to the remainder of the molecule, R1 is not appended to the same carbon;
- 6) the compound is not 3-bromo-8-(4-methylpiperidin-1-yl)quinoline or 4-methyl-1-(naphthalen-1-yl)piperidine; and
- 7) when L-R3 is hydrogen and A is piperidinyl, then R4 is not C(O)NH2.
- In certain embodiments, provided is a method of inhibiting the activity of PCSK9, where the method comprising binding a compound of Formula (Ia), (Ib) or any other Formula, as defined herein, to PCSK9, thereby inhibiting the activity of PCSK9.
- In certain embodiments, provided is a method of inhibiting the activity of PCSK9, where the method comprising binding a compound, as described in Table 1 or Table 2, to PCSK9, thereby inhibiting the activity of PCSK9.
- Hypercholesterolemia (also spelled hypercholesterolaemia) is the presence of high levels of cholesterol in the blood. It is a form of “hyperlipidemia” (elevated levels of lipids in the blood) and “hyperlipoproteinemia” (elevated levels of lipoproteins in the blood). Durrington, P “Dyslipidaemia” The Lancet 2003; 362(9385):717-731. Hypercholesterolemia is typically due to a combination of environmental and genetic factors. Environmental factors include obesity and dietary choices. Genetic contributions are usually due to the additive effects of multiple genes, though occasionally may be due to a single gene defect such as in the case of familial hypercholesterolaemia. A number of secondary causes exist including: diabetes mellitus type 2, obesity, alcohol, monoclonal gammopathy, dialysis, nephrotic syndrome, obstructive jaundice, hypothyroidism, Cushing's syndrome, anorexia nervosa, medications (thiazide diuretics, ciclosporin, glucocorticoids, beta blockers, retinoic acid). Bhatnagar et al., (2008) “Hypercholesterolaemia and its management” BMJ 337: a993. Genetic abnormalities are in some cases completely responsible for hypercholesterolemia, such as in familial hypercholesterolemia where there is one or more genetic mutations in the autosomal dominant APOB gene, the autosomal recessive LDLRAP1 gene, autosomal dominant familial hypercholesterolemia (HCHOLA3) variant of the PCSK9 gene, or the LDL receptor gene. “Hypercholesterolemia” Genetics Home Reference U.S. National Institutes of Health, ghr.nlm.nih.gov/condition=hypercholesterolemia. Even when there is no single mutation responsible for hypercholesterolemia, genetic predisposition still plays a major role in combination with sedentary lifestyle, obesity, or an atherogenic diet. Citkowitz et al., (2010) “Polygenic Hypercholesterolemia”. eMedicine Medscape, emedicine.medscape.com/article/121424-overview.
- Cholesterol is a sterol. It is one of three major classes of lipids which all animal cells utilize to construct their membranes and is thus manufactured by all animal cells. Plant cells do not manufacture cholesterol. It is also the precursor of the steroid hormones, bile acids and vitamin D. Since cholesterol is insoluble in water, it is transported in the blood plasma within protein particles (lipoproteins). Lipoproteins are classified by their density: very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), low density lipoprotein (LDL) and high density lipoprotein (HDL). Biggerstaff et al., (2004). “Understanding lipoproteins as transporters of cholesterol and other lipids” Adv Physiol Educ 28 (1-4): 105-6. All the lipoproteins carry cholesterol, but elevated levels of the lipoproteins other than HDL (termed non-HDL cholesterol), particularly LDL-cholesterol are associated with an increased risk of atherosclerosis and coronary heart disease. Carmena et al., (2004) “Atherogenic lipoprotein particles in atherosclerosis” Circulation 109(23 Suppl 1): III 2-7. In contrast, higher levels of HDL cholesterol are protective. Kontush et al., (2006) “Antiatherogenic small, dense HDL-guardian angel of the arterial wall?” Nat Clin Pract Cardiovasc Med 3(3):144-153. Elevated levels of non-HDL cholesterol and LDL in the blood may be a consequence of diet, obesity, inherited (genetic) diseases (such as LDL receptor mutations in familial hypercholesterolemia), or the presence of other diseases such as diabetes and an underactive thyroid. Total cholesterol is the amount of all of the fats in your blood. These fats are called lipids. There are different types of lipid that make up your total cholesterol. The two most important types are: low density lipoprotein (LDL)—“bad” cholesterol and high density lipoprotein (HDL)—“good” cholesterol. High cholesterol, especially “bad” cholesterol (LDL), can clog your arteries. This may reduce blood flow to your heart. It can lead to heart disease, stroke, or heart attack. Cholesterol is measured in milligrams per deciliter (mg/dL). In conditions such as heart disease or diabetes, LDL cholesterol should stay below 100 mg/dL. If there is a risk for heart disease, LDL cholesterol should be lower than 130 mg/dL. In general, LDL cholesterol should be lower than 160-190 mg/dL. Alternative, HDL “good” cholesterol should be high. For example, HDL levels in men should be above 40 mg/dL, while HDL levels should be above 50 mg/dL for women.
- One symptom of hypercholesterolemia comprises a longstanding elevation of serum cholesterol that can lead to atherosclerosis. Bhatnagar et al., (2008) “Hypercholesterolaemia and its management” BMJ 337: a993. Over a period of decades, chronically elevated serum cholesterol contributes to formation of atheromatous plaques in the arteries. This can lead to progressive stenosis (narrowing) or even complete occlusion (blockage) of the involved arteries. Alternatively smaller plaques may rupture and cause a clot to form and obstruct blood flow. Finn A V, Nakano M, Narula J, Kolodgie F D, Virmani R (July 2010). “Concept of vulnerable/unstable plaque” Arterioscler. Thromb. Vasc. Biol. 30(7): 1282-1292. A sudden occlusion of a coronary artery results in a myocardial infarction or heart attack. An occlusion of an artery supplying the brain can cause a stroke. If the development of the stenosis or occlusion is gradual blood supply to the tissues and organs slowly diminishes until organ function becomes impaired. At this point that tissue ischemia (restriction in blood supply) may manifest as specific symptoms including, but not limited to, temporary ischemia of the brain (commonly referred to as a transient ischemic attack) may manifest as temporary loss of vision, dizziness and impairment of balance, aphasia (difficulty speaking), paresis (weakness) and paresthesia (numbness or tingling), usually on one side of the body. Insufficient blood supply to the heart may manifest as chest pain, and ischemia of the eye may manifest as transient visual loss in one eye. Insufficient blood supply to the legs may manifest as calf pain when walking, while in the intestines it may present as abdominal pain after eating a meal. Grundy et al., (1998) “Primary prevention of coronary heart disease: guidance from Framingham: a statement for healthcare professionals from the AHA Task Force on Risk Reduction. American Heart Association” Circulation 97(18):1876-1887.
- Hypocholesterolemia is the presence of abnormally low (hypo-) levels of cholesterol in the blood (-emia). Although the presence of high total cholesterol (hyper-cholesterolemia) correlates with cardiovascular disease, a defect in the body's production of cholesterol can lead to adverse consequences as well. Cholesterol is an essential component of mammalian cell membranes and is required to establish proper membrane permeability and fluidity. It is not clear if a lower than average cholesterol level is directly harmful; it is often encountered in particular illnesses.
- Possible causes of low cholesterol include, but are not limited to, statins, hyperthyroidism, or an overactive thyroid gland, adrenal insufficiency, liver disease, malabsorption (inadequate absorption of nutrients from the intestines), such as in celiac disease, malnutrition, abetalipoproteinemia (a genetic disease that causes cholesterol readings below 50 mg/dl), hypobetalipoproteinemia (a genetic disease that causes cholesterol readings below 50 mg/dl, manganese deficiency, Smith-Lemli-Opitz syndrome, Marfan syndrome, leukemias and other hematological diseases.
- Demographic studies suggest that low cholesterol is associated with increased mortality, mainly due to depression, cancer, hemorrhagic stroke, aortic dissection and respiratory diseases. Jacobs et al., (1992). “Report of the Conference on Low Blood Cholesterol: Mortality Associations” Circulation 86 (3): 1046-1060; and Suarez E. C., (1999) “Relations of trait depression and anxiety to low lipid and lipoprotein concentrations in healthy young adult women”. Psychosom Med 61(3): 273-279. It is also possible that whatever causes the low cholesterol level also causes mortality, and that the low cholesterol is simply a marker of poor health.
- Diabetes affects more than 20 million Americans. Over 40 million Americans have pre-diabetes (which often develops before type 2 diabetes). Diabetes is usually a lifelong (chronic) disease in which there is a high level of sugar in the blood. Insulin is a hormone produced by the pancreas to control blood sugar. Diabetes can be caused by too little insulin, resistance to insulin, or both. To understand diabetes, it is important to first understand the normal process by which food is broken down and used by the body for energy.
- Several things happen when food is digested. A sugar called glucose enters the bloodstream. Glucose is a source of fuel for the body. An organ called the pancreas makes insulin. The role of insulin is to move glucose from the bloodstream into muscle, fat, and liver cells, where it can be used as fuel.
- People with diabetes have high blood sugar because their body cannot move sugar into fat, liver, and muscle cells to be stored for energy. This is because either their pancreas does not make enough insulin or their cells do not respond to insulin normally.
- There are two major types of diabetes. The causes and risk factors are different for each type. Type 1 diabetes can occur at any age, but it is most often diagnosed in children, teens, or young adults. In this disease, the body makes little or no insulin. Daily injections of insulin are needed. The exact cause is unknown. Type 2 diabetes makes up most diabetes cases. It most often occurs in adulthood. But because of high obesity rates, teens and young adults are now being diagnosed with it. Many people with type 2 diabetes do not know they have it.
- Gestational diabetes is high blood sugar that develops at any time during pregnancy in a woman who does not have diabetes.
- Diabetes symptoms may result from high blood sugar level and include, but are not limited to, blurry vision, excess thirst, fatigue, hunger, urinating often and weight loss.
- Patients being treated by administration of the compounds of the disclosure often exhibit diseases or conditions that benefit from treatment with other therapeutic agents. These diseases or conditions can be of cardiovascular nature or can be related to pulmonary disorders, metabolic disorders, gastrointestinal disorders and the like.
- Cardiovascular related diseases or conditions that can benefit from a combination treatment of the compounds of the disclosure with other therapeutic agents include, without limitation, angina including stable angina, unstable angina (UA), exercised-induced angina, variant angina, arrhythmias, intermittent claudication, myocardial infarction including non-STE myocardial infarction (NSTEMI), pulmonary hypertension including pulmonary arterial hypertension, heart failure including congestive (or chronic) heart failure and diastolic heart failure and heart failure with preserved ejection fraction (diastolic dysfunction), acute heart failure, or recurrent ischemia.
- Therapeutic agents suitable for treating cardiovascular related diseases or conditions include anti-anginals, heart failure agents, antithrombotic agents, antiarrhythmic agents, antihypertensive agents, and lipid lowering agents.
- The co-administration of the compounds of the disclosure with therapeutic agents suitable for treating cardiovascular related conditions allows enhancement in the standard of care therapy the patient is currently receiving. In some embodiments, the compounds of the disclosure are co-administered with ranolazine (RANEXA®).
- Anti-anginals include beta-blockers, calcium channel blockers, and nitrates. Beta blockers reduce the heart's need for oxygen by reducing its workload resulting in a decreased heart rate and less vigorous heart contraction. Examples of beta-blockers include acebutolol (Sectral®), atenolol (Tenormin®), betaxolol (Kerlone®), bisoprolol/hydrochlorothiazide (Ziac®), bisoprolol (Zebeta®), carteolol (Cartrol®), esmolol (Brevibloc®), labetalol (Normodyne®, Trandate®), metoprolol (Lopressor®, Toprol® XL), nadolol (Corgard®), propranolol (Inderal®), sotalol (Betapace®), and timolol (Blocadren®).
- Nitrates dilate the arteries and veins thereby increasing coronary blood flow and decreasing blood pressure. Examples of nitrates include nitroglycerin, nitrate patches, isosorbide dinitrate, and isosorbide-5-mononitrate.
- Calcium channel blockers prevent the normal flow of calcium into the cells of the heart and blood vessels causing the blood vessels to relax thereby increasing the supply of blood and oxygen to the heart. Examples of calcium channel blockers include amlodipine (Norvasc®, Lotrel®), bepridil (Vascor®), diltiazem (Cardizem®, Tiazac®), felodipine (Plendil®), nifedipine (Adalat®, Procardia®), nimodipine (Nimotop®), nisoldipine (Sular®), verapamil (Calan®, Isoptin®, Verelan®), and nicardipine.
- Agents used to treat heart failure include diuretics, ACE inhibitors, vasodilators, and cardiac glycosides. Diuretics eliminate excess fluids in the tissues and circulation thereby relieving many of the symptoms of heart failure. Examples of diuretics include hydrochlorothiazide, metolazone (Zaroxolyn®), furosemide (Lasix®), bumetanide (Bumex®), spironolactone (Aldactone®), and eplerenone (Inspra®).
- Angiotensin converting enzyme (ACE) inhibitors reduce the workload on the heart by expanding the blood vessels and decreasing resistance to blood flow. Examples of ACE inhibitors include benazepril (Lotensin®), captopril (Capoten®), enalapril (Vasotec®), fosinopril (Monopril®), lisinopril (Prinivil®, Zestril®), moexipril (Univasc®), perindopril (Aceon®), quinapril (Accupril®), ramipril (Altace®), and trandolapril (Mavik®).
- Vasodilators reduce pressure on the blood vessels by making them relax and expand. Examples of vasodilators include hydralazine, diazoxide, prazosin, clonidine, and methyldopa. ACE inhibitors, nitrates, potassium channel activators, and calcium channel blockers also act as vasodilators.
- Cardiac glycosides are compounds that increase the force of the heart's contractions. These compounds strengthen the pumping capacity of the heart and improve irregular heartbeat activity. Examples of cardiac glycosides include digitalis, digoxin, and digitoxin.
- Antithrombotics inhibit the clotting ability of the blood. There are three main types of antithrombotics—platelet inhibitors, anticoagulants, and thrombolytic agents.
- Platelet inhibitors inhibit the clotting activity of platelets, thereby reducing clotting in the arteries. Examples of platelet inhibitors include acetylsalicylic acid (aspirin), ticlopidine, clopidogrel (Plavix®), prasugrel (Effient®), dipyridamole, cilostazol, persantine sulfinpyrazone, dipyridamole, indomethacin, and glycoprotein llb/llla inhibitors, such as abciximab, tirofiban, and eptifibatide (Integrelin®). Beta blockers and calcium channel blockers also have a platelet-inhibiting effect.
- Anticoagulants prevent blood clots from growing larger and prevent the formation of new clots. Examples of anticoagulants include bivalirudin (Angiomax®), warfarin (Coumadin®), unfractionated heparin, low molecular weight heparin, danaparoid, lepirudin, and argatroban.
- Thrombolytic agents act to break down an existing blood clot. Examples of thrombolytic agents include streptokinase, urokinase, and tenecteplase (TNK), and tissue plasminogen activator (t-PA).
- Antiarrhythmic agents are used to treat disorders of the heart rate and rhythm. Examples of antiarrhythmic agents include amiodarone, dronedarone, quinidine, procainamide, lidocaine, and propafenone. Cardiac glycosides and beta blockers are also used as antiarrhythmic agents.
- Combinations with amiodarone and dronedarone are of particular interest (see U.S. Patent Application Publication No. 2010/0056536 and U.S. Patent Application Publication No. 2011/0183990, the entirety of which are incorporated herein).
- Antihypertensive agents are used to treat hypertension, a condition in which the blood pressure is consistently higher than normal. Hypertension is associated with many aspects of cardiovascular disease, including congestive heart failure, atherosclerosis, and clot formation. Examples of antihypertensive agents include alpha-1-adrenergic antagonists, such as prazosin (Minipress®), doxazosin mesylate (Cardura®), prazosin hydrochloride (Minipress®), prazosin, polythiazide (Minizide®), and terazosin hydrochloride (Hytrin®); beta-adrenergic antagonists, such as propranolol (Inderal®), nadolol (Corgard®), timolol (Blocadren®), metoprolol (Lopressor®), and pindolol (Visken®); central alpha-adrenoceptor agonists, such as clonidine hydrochloride (Catapres®), clonidine hydrochloride and chlorthalidone (Clorpres®, Combipres®), guanabenz Acetate (Wytensin®), guanfacine hydrochloride (Tenex®), methyldopa (Aldomet®), methyldopa and chlorothiazide (Aldoclor®), methyldopa and hydrochlorothiazide (Aldoril®); combined alpha/beta-adrenergic antagonists, such as labetalol (Normodyne®, Trandate®), carvedilol (Coreg®); adrenergic neuron blocking agents, such as guanethidine (Ismelin®), reserpine (Serpasil®); central nervous system-acting antihypertensives, such as clonidine (Catapres®), methyldopa (Aldomet®), guanabenz (Wytensin®); anti-angiotensin II agents; ACE inhibitors, such as perindopril (Aceon®) captopril (Capoten®), enalapril (Vasotec®), lisinopril (Prinivil®, Zestril®); angiotensin-II receptor antagonists, such as candesartan (Atacand®), eprosartan (Teveten®), irbesartan (Avapro®), losartan (Cozaar®), telmisartan (Micardis®), valsartan (Diovan®); calcium channel blockers, such as verapamil (Calan®, Isoptin®), diltiazem (Cardizem®), nifedipine (Adalat®, Procardia®); diuretics; direct vasodilators, such as nitroprusside (Nipride®), diazoxide (Hyperstat® IV), hydralazine (Apresoline®), minoxidil (Loniten®), verapamil; and potassium channel activators, such as aprikalim, bimakalim, cromakalim, emakalim, nicorandil, and pinacidil.
- Lipid lowering agents are used to lower the amounts of cholesterol or fatty sugars present in the blood. Examples of lipid lowering agents include bezafibrate (Bezalip®), ciprofibrate (Modalim®), and statins, such as atorvastatin (Lipitor®), fluvastatin (Lescol®), lovastatin (Mevacor®, Altocor®), mevastatin, pitavastatin (Livalo®, Pitava®) pravastatin (Lipostat®), rosuvastatin (Crestor®), and simvastatin (Zocor®).
- Drugs that block PCSK9 biological actions are believed to lower circulating low-density lipoprotein cholesterol (LDL-C) levels (e.g., by increasing the availability of LDL-Rs and, consequently, LDL-C clearance). Examples include FDA approved Evolocumab (trade name Repatha™ from Amgen, Inc.) and FDA approved Alirocumab (tradename Praluent™ from Sanofi U.S., LLC and Regeneron Pharmaceuticals, Inc.).
- A patient presenting with an acute coronary disease event often suffers from secondary medical conditions such as one or more of a metabolic disorder, a pulmonary disorder, or a peripheral vascular disorder. Such patients can benefit from treatment of a combination therapy comprising administering to the patient a compound of the disclosure in combination with at least one therapeutic agent.
- Pulmonary disorder refers to any disease or condition related to the lungs. Examples of pulmonary disorders include, without limitation, asthma, chronic obstructive pulmonary disease (COPD), bronchitis, and emphysema.
- Examples of therapeutics agents used to treat pulmonary disorders include bronchodilators including beta2 agonists and anticholinergics, corticosteroids, and electrolyte supplements. Specific examples of therapeutic agents used to treat pulmonary disorders include epinephrine, terbutaline (Brethaire®, Bricanyl®), albuterol (Proventil®), salmeterol (Serevent®, Serevent Diskus®), theophylline, ipratropium bromide (Atrovent®), tiotropium (Spiriva®), methylprednisolone (Solu-Medrol®, Medrol®), magnesium, and potassium.
- Examples of metabolic disorders include, without limitation, diabetes, including type I and type II diabetes, metabolic syndrome, dyslipidemia, obesity, glucose intolerance, hypertension, elevated serum cholesterol, and elevated triglycerides.
- Examples of therapeutic agents used to treat metabolic disorders include antihypertensive agents and lipid lowering agents, as described in the section “Cardiovascular Agent Combination Therapy” above. Additional therapeutic agents used to treat metabolic disorders include insulin, sulfonylureas, biguanides, alpha-glucosidase inhibitors, and incretin mimetics.
- Peripheral vascular disorders are disorders related to the blood vessels (arteries and veins) located outside the heart and brain, including, for example peripheral arterial disease (PAD), a condition that develops when the arteries that supply blood to the internal organs, arms, and legs become completely or partially blocked as a result of atherosclerosis.
- Accordingly, one aspect of the disclosure provides for a composition comprising the compounds of the disclosure and at least one therapeutic agent. In an alternative embodiment, the composition comprises the compounds of the disclosure and at least two therapeutic agents. In further alternative embodiments, the composition comprises the compounds of the disclosure and at least three therapeutic agents, the compounds of the disclosure and at least four therapeutic agents, or the compounds of the disclosure and at least five therapeutic agents.
- The methods of combination therapy include co-administration of a single formulation containing the compounds of the disclosure and therapeutic agent or agents, essentially contemporaneous administration of more than one formulation comprising the compounds of the disclosure and therapeutic agent or agents, and consecutive administration of a compound of the disclosure and therapeutic agent or agents, in any order, wherein preferably there is a time period where the compounds of the disclosure and therapeutic agent or agents simultaneously exert their therapeutic effect.
- These and other embodiments of the present disclosure will readily occur to those of ordinary skill in the art in view of the disclosure herein and are specifically contemplated.
- Provided herein are also kits that include a compound of the disclosure, or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof, and suitable packaging. In one embodiment, a kit further includes instructions for use. In one aspect, a kit includes a compound of the disclosure, or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof, and a label and/or instructions for use of the compounds in the treatment of the indications, including the diseases or conditions, described herein.
- Provided herein are also articles of manufacture that include a compound described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof in a suitable container. The container may be a vial, jar, ampoule, preloaded syringe, and intravenous bag.
- Compounds provided herein are usually administered in the form of pharmaceutical compositions. Thus, provided herein are also pharmaceutical compositions that contain one or more of the compounds described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof and one or more pharmaceutically acceptable vehicles selected from carriers, adjuvants and excipients. Suitable pharmaceutically acceptable vehicles may include, for example, inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants. Such compositions are prepared in a manner well known in the pharmaceutical art. See, e.g., Remington's Pharmaceutical Sciences, Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985); and Modern Pharmaceutics, Marcel Dekker, Inc. 3rd Ed. (G. S. Banker & C. T. Rhodes, Eds.).
- The pharmaceutical compositions may be administered in either single or multiple doses. The pharmaceutical composition may be administered by various methods including, for example, rectal, buccal, intranasal and transdermal routes. In certain embodiments, the pharmaceutical composition may be administered by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, orally, topically, or as an inhalant.
- One mode for administration is parenteral, for example, by injection. The forms in which the pharmaceutical compositions described herein may be incorporated for administration by injection include, for example, aqueous or oil suspensions, or emulsions, with sesame oil, corn oil, cottonseed oil, or peanut oil, as well as elixirs, mannitol, dextrose, or a sterile aqueous solution, and similar pharmaceutical vehicles.
- Oral administration may be another route for administration of the compounds described herein. Administration may be via, for example, capsule or enteric coated tablets. In making the pharmaceutical compositions that include at least one compound described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof, the active ingredient is usually diluted by an excipient and/or enclosed within such a carrier that can be in the form of a capsule, sachet, paper or other container. When the excipient serves as a diluent, it can be in the form of a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, sterile injectable solutions, and sterile packaged powders.
- Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose. The formulations can additionally include lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
- The compositions that include at least one compound described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the subject by employing procedures known in the art. Controlled release drug delivery systems for oral administration include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations. Examples of controlled release systems are given in U.S. Pat. Nos. 3,845,770; 4,326,525; 4,902,514; and 5,616,345. Another formulation for use in the methods disclosed herein employ transdermal delivery devices (“patches”). Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds described herein in controlled amounts. The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. Nos. 5,023,252, 4,992,445 and 5,001,139. Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
- For preparing solid compositions such as tablets, the principal active ingredient may be mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound described herein or a pharmaceutically acceptable salt, tautomer, stereoisomer, mixture of stereoisomers, prodrug, or deuterated analog thereof. When referring to these preformulation compositions as homogeneous, the active ingredient may be dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
- The tablets or pills of the compounds described herein may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action, or to protect from the acid conditions of the stomach. For example, the tablet or pill can include an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer that serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
- Compositions for inhalation or insufflation may include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described herein. In some embodiments, the compositions are administered by the oral or nasal respiratory route for local or systemic effect. In other embodiments, compositions in pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a facemask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices that deliver the formulation in an appropriate manner.
- The specific dose level of a compound of the present application for any particular subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease in the subject undergoing therapy. For example, a dosage may be expressed as a number of milligrams of a compound described herein per kilogram of the subject's body weight (mg/kg). Dosages of between about 0.1 and 150 mg/kg may be appropriate. In some embodiments, about 0.1 and 100 mg/kg may be appropriate. In other embodiments a dosage of between 0.5 and 60 mg/kg may be appropriate. Normalizing according to the subject's body weight is particularly useful when adjusting dosages between subjects of widely disparate size, such as occurs when using the drug in both children and adult humans or when converting an effective dosage in a non-human subject such as dog to a dosage suitable for a human subject.
- The daily dosage may also be described as a total amount of a compound described herein administered per dose or per day. Daily dosage of a compound of Formula I may be between about 1 mg and 4,000 mg, between about 2,000 to 4,000 mg/day, between about 1 to 2,000 mg/day, between about 1 to 1,000 mg/day, between about 10 to 500 mg/day, between about 20 to 500 mg/day, between about 50 to 300 mg/day, between about 75 to 200 mg/day, or between about 15 to 150 mg/day.
- When administered orally, the total daily dosage for a human subject may be between 1 mg and 1,000 mg, between about 1,000-2,000 mg/day, between about 10-500 mg/day, between about 50-300 mg/day, between about 75-200 mg/day, or between about 100-150 mg/day.
- The compounds of the present application or the compositions thereof may be administered once, twice, three, or four times daily, using any suitable mode described above. Also, administration or treatment with the compounds may be continued for a number of days; for example, commonly treatment would continue for at least 7 days, 14 days, or 28 days, for one cycle of treatment. Treatment cycles are well known in cancer chemotherapy, and are frequently alternated with resting periods of about 1 to 28 days, commonly about 7 days or about 14 days, between cycles. The treatment cycles, in other embodiments, may also be continuous.
- In a particular embodiment, the method comprises administering to the subject an initial daily dose of about 1 to 800 mg of a compound described herein and increasing the dose by increments until clinical efficacy is achieved. Increments of about 5, 10, 25, 50, or 100 mg can be used to increase the dose. The dosage can be increased daily, every other day, twice per week, or once per week.
- The compounds may be prepared using the methods disclosed herein and routine modifications thereof, which will be apparent given the disclosure herein and methods well known in the art. Conventional and well-known synthetic methods may be used in addition to the teachings herein. The synthesis of typical compounds described herein may be accomplished as described in the following examples. If available, reagents may be purchased commercially, e.g., from Sigma Aldrich or other chemical suppliers.
- The compounds of this disclosure can be prepared from readily available starting materials using, for example, the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
- Additionally, as will be apparent to those skilled in the art, conventional protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions. Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in Wuts, P. G. M., Greene, T. W., & Greene, T. W. (2006). Greene's protective groups in organic synthesis. Hoboken, N.J., Wiley-Interscience, and references cited therein.
- Furthermore, the compounds of this disclosure may contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this disclosure, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents, and the like.
- The starting materials for the following reactions are generally known compounds or can be prepared by known procedures or obvious modifications thereof. For example, many of the starting materials are available from commercial suppliers such as Aldrich Chemical Co. (Milwaukee, Wis., USA), Bachem (Torrance, Calif., USA), Emka-Chemce or Sigma (St. Louis, Mo., USA). Others may be prepared by procedures or obvious modifications thereof, described in standard reference texts such as Fieser and Fieser's Reagents for Organic Synthesis, Volumes 1-15 (John Wiley, and Sons, 1991), Rodd's Chemistry of Carbon Compounds, Volumes 1-5, and Supplementals (Elsevier Science Publishers, 1989) organic Reactions, Volumes 1-40 (John Wiley, and Sons, 1991), March's Advanced Organic Chemistry, (John Wiley, and Sons, 5th Edition, 2001), Larock's Comprehensive Organic Transformations (VCH Publishers Inc., 1989), Heterocyclic Chemistry (Blackwell Publishing, 4th Edition, 2002), Vogel's Textbook of Practical Organic Chemistry (Prentice Hall, 5th Edition, 1996).
- The terms “solvent,” “inert organic solvent” or “inert solvent” refer to a solvent inert under the conditions of the reaction being described in conjunction therewith (including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (“THF”), dimethylformamide (“DMF”), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, pyridine and the like).
- Scheme 1 shows exemplary synthetic routes (Route A and Route B) for preparing compounds of Formula I, wherein ring A, X1, X2, X3, X4, X5, X6, R1, R2, R3, m, n, and L are as defined herein and Z1, Z2, Z3, and Z4 are functional groups suitable for coupling reactions (e.g., halogen, hydroxyl, etc.).
- In Scheme 1, Route A, compound 1-b can be provided by contacting compound 1-a with compound 1-e under reaction conditions suitable for coupling, where Z3 and Z4 are functional groups that are complementary with respect to a particular coupling reaction. Compounds of formula I can then be provided from compound 1-b by contacting compound 1-b with compound 1-d under reaction conditions suitable for coupling, where Z1 and Z2 are functional groups that are complementary with respect to a particular coupling reaction. For example, the coupling can be a cross coupling reaction, such as a Heck reaction, Negishi coupling, Stille coupling, Suzuki reaction, Kumada coupling, and the like.
- In Scheme 1, Route B, compound 1-c can be provided by contacting compound 1-a with compound 1-d under reaction conditions suitable for coupling, where Z1 and Z2 are functional groups that are complementary with respect to a particular coupling reaction. For example, the coupling can be a cross coupling reaction, such as a Heck reaction, Negishi coupling, Stille coupling, Suzuki reaction, Kumada coupling, and the like. Compounds of formula I can then be provided from compound 1-c by contacting compound 1-e with compound 1-e under reaction conditions suitable for coupling, where Z3 and Z4 are functional groups that are complementary with respect to a particular coupling reaction.
- Alternatively, compounds of formula I where L is a bond and R3 is a heterocyclic ring bound to the core via nitrogen can be prepared according to Scheme 2, where the aminated core is reacted with compound 1-f under alkylation reaction conditions. In Scheme 2, X1, X2, X3, X4, X5, X6, R2, and n are as defined herein, each Z5 is a leaving group (e.g., chloro, bromo, iodo, or any other suitable leaving group) and R13 is an alkylene or heteroalkylene.
- It will be appreciated that any one of compounds 1-a, 1-b, 1-c, 1-d, 1-e, or 1-f may be purchased from commercial sources or prepared according to literature methods available to the skilled artisan, and may be optionally further functionalized (e.g., with one or more R2 moieties) for use in Scheme 1 or Scheme 2.
- The following examples are included to demonstrate specific embodiments of the disclosure. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques to function well in the practice of the disclosure, and thus can be considered to constitute specific modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the disclosure.
- Unless otherwise stated all temperatures are in degrees Celsius (° C.).
- As indicated in certain example below, certain synthetic processes were monitored by at least one of the following LCMS methods.
-
- Method 1 employed an Acquity BEH C-18 (2.1×100 mm, 1.7 um) column eluting with 5 mM ammonium acetate in water (solvent A) and acetonitrile (solvent B) using the following elution gradient: 0-1.0 min 10% B, 1.0-2.0 min 15% B, 2.0-4.5 min 55% B, 4.5-6.0 min 90% B, 6.0-8.0 min 90B, 8.0-9.0 min 10% B, 9.0-10.0 min 10% B at a flow rate of 0.3 ml/min and a column temperature of 30° C.
- Method 2 employedan Acquity BEH C-18 (2.1×100 mm, 1.7 um) column eluting with 5 mM ammonium acetate in water (solvent A) and acetonitrile (solvent B) using the following elution gradient: 0-2.0 min 2% B, 2.0-6.0 min 50% B, 6.0-7.0 min 80% B, 7.0-8.5 min 2% B, 8.5-10.0 min 2% B at a flow rate of 0.3 ml/min and a column temperature of 30° C.
- Method 3 employed a Kinetex C-18 (2.1×100 mm, 1.7 um) column eluting with 0.01% TFA in water (solvent A) and acetonitrile (solvent B) using the following elution gradient: 0-10 min 5% B-90% B, 10.0-15.0 min 90% B, at a flow rate of 0.5 ml/min and a column temperature of 30° C.
-
- Place 4-bromonaphthalen-1-amine (1 mmol), 5-(trifluoromethyl)dibenzothiophenium tetrafluoroborate (1.5 mmol), and copper powder (3.0 mmol) in a Schlenk tube. Evacuate and backfill the Schlenk tube with argon three times and then cool to 0° C. Add acetonitrile and isoamyl nitrite (3.0 mmol) to the resulting mixture and stir for 8 h. Purify the mixture by flash chromatography to prepare the title compound.
-
- Dissolve 1-bromo-4-(trifluoromethyl)naphthalene (1.00 mmol), tert-butyl piperazine-1-carboxylate (1.20 mmol), Pd2(dba)3 (0.05 mmol), BINAP (0.15 mmol), and NaOtBu (1.40 mmol) in toluene and degas the resulting solution under a stream of argon. Heat the reaction mixture to 80° C. for 8 h and subsequently cool to room temperature. Dilute the solution with ethyl acetate and wash with brine. Separate the organic phase, dry over sodium sulfate, filter, and concentrate the filtrate under vacuum. Purify the resulting by flash chromatography to prepare the title compound.
-
- Dissolve tert-butyl 4-(4-(trifluoromethyl)naphthalen-1-yl)piperazine-1-carboxylate (1.00 mmol) in HCl/dioxane (4 N) and stir the resulting solution at room temperature for 2 h. Concentrate the mixture under vacuum and purify the residue by reverse phase chromatography to prepare the title compound.
- 1-(4-(Trifluoromethyl)naphthalen-1-yl)piperazine (1) can also be prepared via the following alternative synthesis.
-
- To a stirred solution of 4-bromonaphthalen-1-amine (500 mg, 2.252 mmol) dissolved in a mixture of EtOH (1 ml) and 50% aq. HBF4 (0.28 mL, 4.504 mmol) was added tert-butyl nitrite (0.53 mL, 4.5 mmol) drop wise at 0° C. The resulting reaction mixture was stirred at RT for 1 h. After completion of the reaction the reaction mixture was diluted and triturated with diethyl ether (15 mL) to give a precipitate. The precipitate was filtered to give the diazonium tetra fluoro borate intermediate, which was used in the next step.
- To a stirred solution of CuSCN (164 mg, 3.37 mmol) and Cs2CO3 (1.1 gr, 3.78 mmol) in acetonitrile (5 mL) was added drop wise TMSCF3 (0.5 mL, 3.37 mmol) under an inert atmosphere. The resulting reaction mixture was stirred at RT for 10 min. A solution of the diazonium tetra fluoro borate intermediate (610 mg, 2.24 mmol) in acetonitrile (5 mL) was added drop wise to the reaction mixture at 0° C. The resulting reaction mixture was cooled to 0-15° C. and stirred for 5 h. The reaction was monitored by TLC and LCMS. The reaction mixture was filtered through a celite pad and washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was purified by silica-gel column chromatography using 2% EtOAc in hexane to furnish 1-bromo-4-(trifluoromethyl)naphthalene. 1H-NMR (400 MHz, DMSO-d6): δ 8.41(d, 1H), 8.30 (d, 1H), 7.85-7.65 (m, 4H).
-
- An oven dried Schlenk flask was evacuated and back filled with inert gas. The flask was charged with BINAP (181 mg, 0.2909 mmol) and Pd2(dba)3 (133 mg, 0.1454 mmol) in toluene (5 mL) at room temperature under an inert atmosphere. The resultant reaction mixture was evacuated on stirring for 5 min and then reaction mixture was heated to 115° C. for 1-2 min to give a catalyst, to which 1-bromo-4-(trifluoromethyl)naphthalene (400 mg, 1.4545 mmol)), piperazine (1.25 g, 14.54 mmol), tBuONa (280 mg, 2.909 mmol) and 15 mL of toluene were added. The resulting reaction mixture was heated to 120° C. for 4 h. The reaction was monitored by TLC and LCMS. The reaction mixture was filtered through a celite pad and washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was purified by preparative HPLC to furnish 1-(4-(trifluoromethyl)naphthalen-1-yl)piperazine product. LCMS purity: 97.892%, RT=5.279 min, m/z=281.2 [M+H]+, (Method 3). 1H-NMR (400 MHz, DMSO-d6): δ 9.05 (brs, 1H), 8.30 (d, 1H), 8.11 (d, 1H), 7.95 (d, 1H), 7.80-7.65 (m, 2H), 7.25 (d, 1H), 3.51-3.41 (m, 4H), 3.31-3.20 (m, 4H).
-
- Dissolve tert-butyl 4-oxopiperidine-1-carboxylate (1.00 mmol), bis(pinacolato)diboron (1.10 mmol), NaOtBu (0.05 mmol), and (ICy)CuCl (0.03 mmol) in toluene and heat the resulting solution to 50° C. After 24 h, cool the reaction mixture to room temperature and filter through celite. Add p-toluenesulfonic acid (2.00 mmol) and methylene chloride to the crude product and heat the resulting mixture to 50° C. After 24 h, concentrate the reaction under vacuum and purify the residue by flash chromatography to prepare the title compound.
-
- Prepare a suspension of tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (1.00 mmol), 1-bromo-4-(trifluoromethyl)naphthalene (1.00 mmol), Pd(PPh3)4 (0.1 mmol), and K2CO3 (2.00 mmol) dioxane/water (2/1, v/v) and degas the resulting solution under a stream of argon. Heat the reaction mixture to 90° C. for 8 h, and subsequently cool to room temperature. Dilute the solution with ethyl acetate and wash with brine. Separate the organic phase, dry over sodium sulfate, filter, and concentrate the filtrate under vacuum. Purify the residue by flash chromatography to prepare the title compound.
-
- Prepare a suspension of tert-butyl 4-(4-(trifluoromethyl)naphthalen-1-yl)-5,6-dihydropyridine-1(2H)-carboxylate (1.00 mmol) and Pd/C (10%) in ethyl acetate and stir the resulting solution under an atmosphere of hydrogen (1 atm) for 8 h. Filter the resulting suspension was filtered through celite and concentrate the filtrate under vacuum. Dissolve the residue in HCl/dioxane (4 N) and stir the resulting solution at room temperature for 2 h. Concentrate the mixture under vacuum and purify the residue by reverse phase chromatography to prepare the title compound.
-
- The title compound may be synthesized using methods similar to Example 1 using 4-bromo-5,6,7,8-tetrahydronaphthalen-1-amine as the starting material.
-
- Dissolve tert-butyl bis(2-chloroethyl)carbamate (1.00 mmol), 4-bromonaphthalen-1-amine (1.00 mmol), and potassium carbonate in DMF and stir the resulting suspension at 90° C. for 18 h. Dilute the solution with ethyl acetate and wash with brine. Separate the organic phase, dry over sodium sulfate, filter and concentrate the filtrate under vacuum. Purify the residue by flash chromatography to prepare the title compound.
-
- Prepare a suspension of tert-butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate (1.00 mmol), tert-butyl 4-hydroxypiperidine-1-carboxylate (1.50 mmol), Pd(OAc)2 (0.10 mmol), [1,1′-binaphthalen]-2-yldi-tert-butylphosphine (0.15 mmol), and Cs2CO3 (2.50 mmol) in toluene and degas under a stream of argon. Heat the reaction mixture to 80° C. for 24 h. Dilute the solution with ethyl acetate and wash with brine. Separate the organic phase, dry over sodium sulfate, filter, and concentrate the filtrate was under vacuum. Purify the residue was purified by flash chromatography to prepare the title compound.
-
- Dissolve tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)oxy)naphthalen-1-yl)piperazine-1-carboxylate in HCl/dioxane (4 N) and stir the resulting solution at room temperature for 2 h. Concentrate the mixture under vacuum and purify the residue by reverse phase chromatography to prepare the title compound.
- 1-(4-(piperidin-4-yloxy)naphthalen-1-yl)piperazine (4) can also be prepared by the following alternative synthesis.
-
- To a stirred solution of piperazine (5.0 g, 0.0580 mol) was added slowly acetic acid (50 mL) at 0° C. under a N2 atmosphere for 20 min and the resulting solution was stirred at RT for a further 20 min. (Boc)2O (13.3 mL dissolved in 40 mL acetic acid) was added drop wise to the reaction mixture at 0° C. for 30 min and stirring was continued for 2 h at RT. The reaction mixture was poured onto ice cold water and basified with saturated aqueous KOH. The material that was formed was separated by filtration and dried under vacuum to give tert-butyl piperazine-1-carboxylate.
-
- To a stirred solution of 1-bromonapthalene (4.3 g, 0.0207 mol) and tert-butyl piperazine-1-carboxylate (5.0 g, 0.0269 mol) in 1,4-dioxane (86 mL) was added BINAP, Pd(OAc)2 and Cs2CO3 under a N2 atmosphere. The reaction mixture was purged with N2 for 30 min and the temperature was slowly raised to 80° C. for 18 h. The reaction was reaction cooled to RT, filtered through small pad of celite, and washed with EtOAc (2×20 mL). The combined organic layers were concentrated under reduced pressure. The crude product was purified by silica gel (60-120 mesh) using 1-2% EtOAc/hexanes to give tert-butyl 4-(naphthalen-1-yl)piperazine-1-carboxylate. LCMS: 92.4%.
-
- To a stirred solution of tert-butyl 4-(naphthalen-1-yl)piperazine-1-carboxylate (0.5 g, 0.001597 mol) in CH3CN (13 mL) was added portion wise NBS (0.25 g, 0.001437 mol) and FeCl3 (0.1 g, 0.001592 mol) at RT under N2 atmosphere. The reaction was slowly heated to 50° C. and stirring continued for 2 h. After completion of the reaction, the reaction mixture was concentrated under reduced pressure. The crude mixture was diluted with water (20 mL) and subsequently extracted with EtOAc (3×20 mL). The combined organic layers were dried, filtered and concentrated under reduced pressure. The crude product was purified by basic Al2O3 column chromatography [elution: 2-3% EtOAc/hexanes] to give tert-butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate. LCMS: 95.49%.
-
- To a stirred solution of tert-butyl 4-hydroxypiperidine-1-carboxylate (0.23 g, 0.001147 mol) in dry toluene (6 mL) was added NaH (0.07 g, 0.00153 mol) at 0° C. under N2 atmosphere. The reaction mixture was slowly raised to 70° C. and stirred for 1 h. tert-Butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate (0.3 g, 0.000765 mol), Pd2(dba)3 and BINAP were added to the reaction at rt under N2 atmosphere and the resulting solution was slowly raised to 80° C. and stirred for 18 h. Ice cold water was added and the mixture was extracted with EtOAc (3×20 mL). The combined organic layers were dried filtered and concentrated under reduced pressure. The crude product was purified by basic Al2O3 column chromatography using 10% EtOAc/hexanes to give tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)oxy)naphthalen-1-yl)piperazine-1-carboxylate. LCMS: 91.9%.
-
- To stirred solution of tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)oxy)naphthalen-1-yl)piperazine-1-carboxylate (0.120 g, 0.234 mol) in dry DCM (2.4 mL) was added HCl in diethyl ether (2.4 mL) at RT under a N2 atmosphere. The reaction was stirred at RT for 3 h and monitored by TLC. After completion of the reaction, solvents were decanted and the resulting material was washed with diethyl ether (3×5 mL). The resulting material was dried under high vacuum to give 1-(4-(piperidin-4-yloxy)naphthalen-1-yl)piperazine. LCMS: 92.58%. RT=2.806 min, m/z=312.3 [M+H]+, (method 3). 1H-NMR (300 MHz, DMSO-d6): δ 9.34 (1H, s), 9.12 (1H, d), 8.23-8.20 (1H, m), 8.17-8.14(1H, m), 7.60-7.52 (2H, m), 7.11 (1H, d), 7.03 (1H, d), 4.84 (1H, m), 4.38-4.21 (8H, m), 3.39-3.16 (6H, m), 2.18 (2H, brs), 2.06-1.92 (2H, m).
-
- The title compound may be synthesized using methods similar to Example 1, except using tert-butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate and tert-butyl 4-aminopiperidine-1-carboxylate as the starting materials.
- N-(4-(Piperazin-1-yl)naphthalen-1-yl)piperidin-4-amine (5) can also be prepared using the following alternative synthesis.
-
- To stirred solution of tert-butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate (0.3 g, 0.000765 mol) and tert-butyl 4-aminopiperidine-1-carboxylate (0.306 g, 0.00153 mol) in 1,4 dioxane (12 mL) were added BINAP and Cs2CO3 at RT under N2 atmosphere. The reaction mixture was purged with N2 for 30 min and Pd(OAc)2 (34 mg, 0.000153 mol) was added. The temperature was slowly raised to 70° C. and the resulting solution stirred for 18 h. The reaction was monitored by TLC, and after completion, filtered through a small pad of celite and washed with EtOAc (3×5 mL). The combined filtrate was concentrated under reduced pressure. The crude was purified by silica gel (60-120 mesh) column chromatography using 10% EtOAc/Hexanes to give tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)amino)naphthalen-1-yl)piperazine-1-carboxylate. LCMS: 93.7%.
-
- To stirred solution of tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)amino)naphthalen-1-yl)piperazine-1-carboxylate (0.120 g, 0.000234 mol) in dry DCM (2.4 mL) was added HCl in diethyl ether (2.4 mL) at RT under a N2 atmosphere and the reaction was stirred at RT for 4 h. The reaction was monitored by TLC, and after completion, solvents were decanted and washed with diethyl ether (3×5 mL). The reaction mixture was dried under high vacuum and the resulting material was washed with hexanes (3×10 mL) to give N-(4-(piperazin-1-yl)naphthalen-1-yl)piperidin-4-amine. LCMS: 97.65%. RT=2.405 min, m/z=311.3 [M+H]+, (method 3) 1H-NMR (300 MHz, DMSO-d6): δ 8.29-8.26(1H, m), δ 7.81(1H, d), δ 7.52-7.46(2H, m), δ 6.99(1H, d), δ 6.60-6.58(1H, m), δ 4.08-4.06(4H, m), δ 3.64-3.53(1H, m), δ 3.01(4H, t), δ 2.13(2H, d), δ 1.62-1.55(4H, m), δ 1.54(1H, bs), δ 1.48-1.45(4H, m).
-
- To a solution of tert-butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate (1.00 mmol) in THF at 0° C., add a solution of iPrMgCl:LiCl in THF (1.50 mmol). Stir the resulting at 0° C. for 0.5 h, then warm to room temperature and stir the resulting mixture for 3 h. Cool the mixture to −10° C. and bubble CO2 gas through the solution for 1 h. Add 1 N aqueous HCl and extract the resulting solution with ethyl acetate to prepare the title compound.
-
- Dissolve 4-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-1-naphthoic acid (1.00 mmol) in THF and add a solution of borane in THF (2.00 mmol). Stir the resulting solution at room temperature for 24 h. Add aqueous HCl and stir the resulting solution for 1 h. Dilute the solution with ethyl acetate and wash with brine. Separate the organic phase, dry over sodium sulfate, filter, and concentrate the filtrate under vacuum. Purify the residue by flash chromatography to prepare the title compound.
-
- Dissolve tert-Butyl 4-(4-(hydroxymethyl)naphthalen-1-yl)piperazine-1-carboxylate (1.00 mmol) in methylene chloride and add PCC (2.00 mmol) and SiO2. Stir the resulting suspension at room temperature for 2 h and subsequently filter through celite to give tert-butyl 4-(4-formylnaphthalen-1-yl)piperazine-1-carboxylate to prepare the title compound.
-
- Dissolve tert-Butyl 4-bromopiperidine-1-carboxylate (1.00 mmol) and triphenylphosphine (1.50 mmol) in toluene and stir the resulting solution at 80° C. for 12 h. Cool the solution to room temperature and filter to remove the precipitate. Concentrate the filtrate to prepare the title compound.
-
- Slowly add n-BuLi (1.20 mmol) to a solution of (1-(tert-butoxycarbonyl)piperidin-4-yl)triphenylphosphonium bromide (1.00 mmol) in THF at −20° C. Stir the resulting suspension was stirred at room temperature for 2 h. To the suspension, add a solution of tert-butyl 4-(4-formylnaphthalen-1-yl)piperazine-1-carboxylate (1.00 mmol) in THF and stir the resulting solution at room temperature for 4 h. Filter the suspension through celite and concentrate the filtrate under vacuum. Purify the residue was purified by flash chromatography to prepare the title compound.
-
- Prepare a suspension of tert-Butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-ylidene) methyl)naphthalen-1-yl)piperazine-1-carboxylate (1.00 mmol) and Pd/C (10%) in ethyl acetate and stir the resulting solution under an atmosphere of hydrogen (1 atm) for 8 h. Filter the resulting suspension through celite and concentrate the filtrate under vacuum. Dissolve the residue in HCl/dioxane (4 N) and stir the resulting solution at room temperature for 2 h. Concentrate the mixture under vacuum and purify the residue by reverse phase chromatography to prepare the title compound.
-
- Add n-BuLi (1.10 mmol) to a solution of tert-butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate (1.00 mmol) in THF at −78° C. and stir the resulting solution at −78° C. for 1 h. To the reaction mixture, add a solution of tert-butyl 4-(chlorosulfonyl)piperidine-1-carboxylate (1.00 mmol) in THF and allow the resulting solution to warm to room temperature. Add aqueous HCl followed by ethyl acetate. Separate the organic phase was separated, dry over sodium sulfate, filter, and concentrate the filtrate under vacuum. Purify the residue by flash chromatography to prepare the title compound.
-
- Dissolve tert-Butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)sulfonyl)naphthalen-1-yl)piperazine-1-carboxylate in HCl/dioxane (4 N) and stir the resulting solution at room temperature for 2 h. Concentrate the mixture under vacuum and purify the residue by reverse phase chromatography to prepare the title compound.
- 1-(4-(Piperidin-4-ylsulfonyl)naphthalen-1-yl)piperazine (7) can also be prepared by the following alternative synthesis.
-
- To a stirred solution of tert-butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate (1.36 g, 0.00347 mol) and tert-butyl 4-(acetylthio)piperidine-1-carboxylate (0.9 g, 0.00344 mol) in 1,4-dioxane (30 mL) was added Pd(dba)2 (0.099 g, 0.008175 mol), dppf (0.135 g, 0.000243 mol) and K3PO4 (0.879 g, 0.004169 mol) at RT under N2 atmosphere. The reaction mixture was purged with N2 for 30 min and slowly raised to 120° C. for 2 days. After completion of the reaction the solution was cooled to RT, and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel (60-120 mesh) column chromatography using 2-8% EtOAc/Hexanes to give tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)thio)naphthalen-1-yl)piperazine-1-carboxylate. LCMS: 52.1%.
-
- To a stirred solution of tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)thio)naphthalen-1-yl)piperazine-1-carboxylate (0.34 g, 0.0006584 mol) in dry DCM (7 mL) was added m-CPBA (0.332 g, 0.3393 mol) at 0° C. under N2 atmosphere. The reaction was stirred at RT overnight. After completion of the reaction, the mixture was quenched with sat. NaHCO3 solution (10 mL) and extracted with DCM (3×20 mL). The combined organic layers were dried and concentrated under reduced pressure. The crude material was purified by neutral Al2O3 using 10-30% EtOAc/Hexanes to give tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)sulfonyl)naphthalen-1-yl)piperazine-1-carboxylate. LCMS: 81.76%.
-
- To stirred solution of compound tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)sulfonyl)naphthalen-1-yl)piperazine-1-carboxylate (0.2 g, 0.0003577 mol) in dry DCM (3.3 mL) was added HCl in diethyl ether (3.3 mL). The reaction was stirred at RT for 4 h under an atmosphere of nitrogen. The reaction was monitored by TLC, and after completion, solvents were decanted and washed with diethyl ether (3×5 mL). The reaction mixture was dried under high vacuum and the resulting material was washed with hexanes (3×10 mL) to give 1-(4-(piperidin-4-ylsulfonyl)naphthalen-1-yl)piperazine. LCMS: 94.36%. RT=2.670 min, m/z=360.3 [M+H]+, (method 3). 1H-NMR (300 MHz, DMSO-d6): δ 9.66 (2H, s), δ 9.39 (1H, d), δ 8.93 (1H, d), δ 8.63 (1H, d), δ 8.27 (1H, d), δ 8.11(1H, d), δ 7.79-7.67 (2H, m), δ 7.34 (1H, d), δ 3.72 (1H, bs), δ 3.37 (8H, m), δ 3.26 (2H, d), δ 2.83 (2H, d), δ 1.89(4H, s).
-
- Dissolve 4-(4-(tert-butoxycarbonyl)piperazin-1-yl)-1-naphthoic acid (1.00 mmol), tert-butyl piperazine-1-carboxylate (1.00 mmol), HATU (1.20 mmol) and DIPEA (2.00 mmol) in DMF and stir the resulting solution at room temperature for 4 h. Dilute the solution with ethyl acetate and wash with brine. Separate the organic phase, dry over sodium sulfate, filter, and concentrate the filtrate under vacuum. Purify the residue by flash chromatography to prepare the title compound.
-
- Dissolve tert-Butyl 4-(4-(4-(tert-butoxycarbonyl)piperazin-1-yl)-1-naphthoyl)piperazine-1-carboxylate in HCl/dioxane (4 N) and stir the resulting solution at room temperature for 2 h. Concentrate the mixture under vacuum and purify the residue by reverse phase chromatography to prepare the title compound.
- Piperazin-1-yl(4-(piperazin-1-yl)naphthalen-1-yl)methanone (8) can also be prepared by the following alternative synthesis.
-
- tert-Butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate (0.3 g, 0.000765 mol) was dissolved in EtOH (30 mL) in a pressure vessel and NaOAc (0.125 g, 0.00153 mol) and Pd(dppf)Cl2 (0.0279 g, 0.000038 mol) were added. The reaction was degassed with N2 and the vessel was pressurized with CO gas (2 BAR). The temperature was slowly raised to 110° C. and the resulting solution was stirred overnight. After completion of the reaction the solution was filtered through a small pad of celite and washed with EtOH (3×50 mL). The solvents were evaporated under reduced pressure and the crude tert-butyl 4-(4-(ethoxycarbonyl)naphthalen-1-yl)piperazine-1-carboxylate (0.180 g, 61.4%) was used without further purification. LCMS: 98.65%.
-
- To a stirred solution of tert-butyl 4-(4-(ethoxycarbonyl)naphthalen-1-yl)piperazine-1-carboxylate (0.5 g, 0.00130 mol) in MeOH/H2O (2:1, 15 mL) was added LiOH.H2O (0.059 g, 0.001432 mol) at RT. After stirring overnight the solvent was evaporated under reduced pressure. The residue was acidified with saturated citric acid solution and extracted with DCM (3×5 mL). The combined organic layers were dried, filtered and concentrated under reduced pressure to give 4-(4-(tert-butoxycarbonyl)piperazin-1-yl)-1-naphthoic. LCMS: 91.95%.
-
- To a stirred solution of 4-(4-(tert-butoxycarbonyl)piperazin-1-yl)-1-naphthoic acid (0.15 g, 0.4216 mmol) in dry DCM (4 mL) at 0° C. was added EDC.HCl (0.097 g, 0.5056 mmol), HOBt (11.3 mg, 0.064 mmol), DMAP (10.2 mg, 0.064 mmol), DIPEA (0.5 mL, 0.82 mmol) and tert-butyl piperazine-1-carboxylate (0.086 g, 0.463 mmol). The resulting solution was stirred at RT overnight. After completion of the reaction ice cold water was added and the resulting solution was extracted with DCM (3×10 mL). The combined organic layers were dried concentrated under reduced pressure. The crude material was purified by silica gel (60-120 mesh) column chromatography using 10-30% EtOAc/hexanes to give tert-butyl 4-(4-(4-(tert-butoxycarbonyl)piperazin-1-yl)-1-naphthoyl)piperazine-1-carboxylate. LCMS: 98.72%.
-
- To stirred solution of tert-butyl 4-(4-(4-(tert-butoxycarbonyl)piperazin-1-yl)-1-naphthoyl)piperazine-1-carboxylate (0.07 g, 0.000133 mol) in dry DCM (1.4 mL) was added HCl in diethyl ether (1.4 mL). The reaction was stirred at RT for 4 h under an atmosphere of nitrogen. The reaction was monitored by TLC, and after completion, solvents were decanted and washed with diethyl ether (3×5 mL). The reaction mixture was dried under high vacuum and the resulting material was washed with hexanes (3×10 mL) to give piperazin-1-yl(4-(piperazin-1-yl)naphthalen-1-yl)methanone. LCMS: 98.8%. RT=1.945 min, m/z=325.3 [M+H]+, (method 3). 1H-NMR (300 MHz, DMSO-d6): δ 9.69(2H, d), δ 8.22-8.19 (1H, m), δ 7.82-7.79 (1H, m), δ 7.61-7.57 (2H, m), δ 7.49 (1H, d), δ 7.19 (1H, d), δ 5.22-5.00 (8H, m), δ 3.99 (2H, s), δ 3.43-3.33 (6H, m), δ 2.92 (2H, d).
-
- The title compound may be synthesized using the same methods similar to of Example 11, except using 8-bromoisoquinolin-5-amine as the starting material.
- 5-(Piperazin-1-yl)-8-(piperidin-4-yloxy)isoquinoline (9) can also be prepared using the following alternative synthesis.
-
- To a stirred solution of tert-butyl 4-oxopiperidine-1-carboxylate (10 g, 0.053 mol) in MeOH (150 mL) was added NaBH4 (4 g, 0.107 mol) at 0° C. and the resulting reaction mixture was stirred for 2 h at room temperature. After completion of the reaction, the reaction mixture was concentrated under reduced pressure. The residue was diluted with water and extracted with ethyl acetate. The collected organic layer was dried over anhydrous sodium sulfate and concentrated to give tert-butyl 4-hydroxypiperidine-1-carboxylate. To a solution of tert-butyl 4-hydroxypiperidine-1-carboxylate in DCM (150 ml) were added TEA (22.3 mL, 0.172 mol) and DMAP (316 mg, 0.0032 mol) and the resulting solution was stirred for 10 min at 0° C. followed by the addition of methyl sulfonyl chloride (4.5 ml, 0.0645 mol). The resulting reaction mixture was stirred for 1 h at RT after which water was added and the solution was extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated to obtain intermediate tert-butyl 4-((methylsulfonyl)oxy)piperidine-1-carboxylate.
-
- To a solution of 4-bromonaphthalen-1-ol (500 mg, 2.232 mmol) in DMF (6 mL) was added tert-butyl 4-(methylsulfonyloxy)piperidine-1-carboxylate (809 mg, 2.901 mmol) and Cs2CO3 (2.18 g, 6.696 mmol) and the resulting mixture was heated to 80° C. for 4 h. The reaction mixture was poured into ice water and extracted with ethyl acetate (3×15 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated. The obtained crude product was purified by basic alumina column chromatography using 30% ethyl acetate in hexane to yield compound tert-butyl 4-((5-bromoisoquinolin-8-yl)oxy)piperidine-1-carboxylate. LCMS Purity: 93.416%.
-
- To a stirred solution of compound tert-butyl 4-((5-bromoisoquinolin-8-yl)oxy)piperidine-1-carboxylate (500 mg, 0.0012 mol) and in toluene (12 mL) was added piperazine (530 mg, 0.0061 mol), Pd2(dba)3 (113 mg, 0.00012 mol), BINAP (15.3 mg, 0.000246 mol) and NaOtBu (355 mg, 0.0037 mol). The resulting reaction mixture was degassed and then heated to 110° C. for 5 h. The reaction was cooled to room temperature and filtered through a celite pad. The collected filtrate was concentrated under reduced pressure and purified by basic alumina column chromatography using 10% methanol in DCM give tert-butyl 4-((5-(piperazin-1-yl)isoquinolin-8-yl)oxy)piperidine-1-carboxylate. LCMS Purity: 81.262%.
-
- To a stirred solution of tert-butyl 4-(5-(piperazin-1-yl)isoquinolin-8-yloxy)piperidine-1-carboxylate (300 mg, 0.72 mmol) in DCM (10 mL) was added TFA (2 ml) and the resulting reaction mixture was stirred for 1 h at room temperature. The reaction mixture was concentrated under vacuum and the crude product was purified by preparative HPLC to yield 5-(piperazin-1-yl)-8-(piperidin-4-yloxy)isoquinoline. LCMS Purity: 97.340%, RT=0.879 min, m/z=313.3 (M+H)+ (Method 3). 1H-NMR (400 MHz, DMSO-d6): δ 9.72 (1H, s), 9.08 (1H, brs), 8.78 (1H, brs), 8.62 (1H, d), 8.18(1H, d), 7.50 (1H, d), 7.26 (1H, d), 4.98 (1H, brs), 3.58-3.02 (12H, m), 2.25-1.92 (1H, m).
-
- The known 5-nitroisoquinolin-8-ol is reacted with triphenylphosphine/DEAD/THF (Johansson, G. et al WO 2004000828) and combined with 1-BOC-4-hydroxypiperidine, giving N-BOC-5-nitro-8-(piperidin-4-yloxy)isoquinoline.
- The nitro group is reduced to the amine; the amine is converted the diazonium salt using sodium nitrite and, subsequently, to the iodide (Knochel, P. et al Synthesis, 2007, 81-84).
- The iodide may be coupled using palladium catalysts with either 2-ketopiperazine (Ford, D. et al WO 2013096051) or (2-methoxypyridin-4-yl)boronic acid (Marsilje, T. H. et al J. Med. Chem. 2013, 56, 5675-90) to afford, after deprotection, either 4-(8-(piperidin-4-yloxy)isoquinolin-5-yl)piperazin-2-one (16) or 4-(8-(piperidin-4-yloxy)isoquinolin-5-yl)piperidin-2-one (27).
- 4-(8-(piperidin-4-yloxy)isoquinolin-5-yl)piperazin-2-one can also be prepared by the following alternative synthesis (16).
-
- To a stirred solution of tert-butyl 4-((5-bromoisoquinolin-8-yl)oxy)piperidine-1-carboxylate (400 mg, 0.98 mmol) and in 1,4 dioxane (10 mL) was added piperazin-2-one (296 mg, 2.96 mmol), Pd2(OAc)2 (22 mg, 0.0987 mmol), BINAP (122 mg, 0.197 mmol), and Cs2CO3 (965 mg, 2.962 mmol). The resulting reaction mixture was degassed and then heated to 110° C. for 36 h. The reaction was cooled to room temperature and filtered through a celite pad. The filtrate was concentrated under reduced pressure and the residue was purified by preparative HPLC to give tert-butyl 4-((5-(3-oxopiperazin-1-yl)isoquinolin-8-yl)oxy)piperidine-1-carboxylate.
-
- To a stirred solution of tert-butyl 4-((5-(3-oxopiperazin-1-yl)isoquinolin-8-yl)oxy)piperidine-1-carboxylate (35 mg, 0.0825 mmol) in DCM (10 mL) was added TFA (2 ml) and the resulting reaction mixture was stirred for 1 h at room temperature. The solvents were removed under reduced pressure and the crude product was recrystallized by using diethyl ether to yield 4-(8-(piperidin-4-yloxy)isoquinolin-5-yl)piperazin-2-one. LCMS Purity: 97.42%, RT=2.242 min, m/z=327.3(M+H)+, (Method 3). 1H-NMR (400 MHz, DMSO-d6): δ 8.8-8.5 (3H, m), 8.05 (1H, s), 7.45 (1H, d), 7.23 (1H, d), 4.96 (1H, s), 3.52-3.26 (6H, m), 3.25-3.08 (4H, m), 2.23-1.94 (4H, m).
-
- Using the Newman-Kwart reaction, 4-bromonaphthalen-1-ol, is converted to a dimethyaminoisothiourea intermediate, which rearranges on vigorous heating to give, on hydrolysis, 4-bromonaphthalene-1-thiol. The thiol is reacted with N-BOC-piperidine-4-Br and the sulfur oxidized to the corresponding sulfone. The aryl bromide is coupled to a second piperidine subunit. Reduction/deprotection leads to the desired 4-bromonaphthalene-1-thiolen-1-yl)sulfonyl)piperidine (23).
-
- The commercial 8-methoxyisoquinoline is N-oxidized (Dirnberger, D. et al Archiv der Pharmazie 1990, 323, 323) and treated with TMS-CN (Norrby, T. et al Acta Chemica Scand. 1998, 52, 77), affording 8-methoxyisoquinoline-3-carbonitrile.
- The carbonitrile is brominated. The key bromide, 5-bromo-8-methoxyisoquinoline-3-carbonitrile, may be coupled using palladium reagents and subsequently modified and deprotected to give piperazine (5-(piperazin-1-yl)-8-(piperidin-4-yloxy)isoquinoline-3-carboxylic acid (22)), piperazone (5-(3-oxopiperazin-1-yl)-8-(piperidin-4-yloxy)isoquinoline-3-carboxamide (15)), piperidone (5-(2-oxopiperidin-4-yl)-8-(piperidin-4-yloxy)isoquinoline-3-carboxylic acid (110)), and piperidine (5-(piperidin-4-yl)-8-(piperidin-4-yloxy)isoquinoline-3-carboxylic acid (25)) analogs.
-
- tert-Butyl 4-(4-bromonaphthalen-1-yl)piperazine-1-carboxylate is lithiated and reacted with the carboxaldehyde derived from N-BOC-isonipecotic acid. The carbinol is cleaved by catalytic reduction, and deprotection affords 1-(4-(piperidin-4-ylmethyl)naphthalen-1-yl)piperazine (22).
-
- 4-Bromo-2-nitrophenol is combined with N-BOC-4-hydroxypiperidine, employing Mitsonubo conditions. Vinyl magnesium bromide at low temperature installs an indole ring via the Bartoli reaction.
- The ultimate indolines, 4-(piperidin-4-yl)-7-(piperidin-4-yloxy)indolin-2-one (24) or 4-(piperazin-1-yl)-7-(piperidin-4-yloxy)indolin-2-one (12), can be targeted by oxidizing the indole rings to indolines using, for example, NBS, and performing the appropriate palladium couplings and deprotections according to the scheme.
-
- 3-Chloroacrolein is condensed with 1-BOC-piperidin-ol by means of a Michael reaction, giving N-BOC-(E)-3-(piperidin-4-yloxy)acrylaldehyde. The aldehyde can dibromoolefinated using CBr4/PPh3, giving a diene which can undergo a thermal or Lewis acid catalyzed Diels-Alder cyclization, followed by aromatization with loss of HBr.
- The aryl bromide may be coupled to BOC-piperazine. Reduction of the nitrile induces cyclization to the indicated lactam affording, on deprotection, the isoindolone, 4-(piperazin-1-yl)-7-(piperidin-4-yloxy)isoindolin-1-one (13).
-
- An oven dried Schlenk flask was evacuated and back filled with inert gas. Then to the flask was charged with BINAP (1.2 g, 1.93 mmol) and palladium (II)-acetate (216 mg, 0.96 mmol) in dioxane (5 mL) at room temperature under an inert atmosphere. The resultant reaction mixture was evacuated on stirring for 5 min and then the reaction mixture was heated to 115° C. for 1-2 min to give a catalyst, to which 1-bromo naphthalene (2 g, 9.65 mmol), piperazine (4.1 g, 48.2 mmol), Cs2CO3 (6.2 g, 19.31 mmol) and also 20 mL of dioxane were added. The resulting reaction mixture was heated to 110° C. for 4 h. The reaction was monitored by TLC and LCMS. The reaction mixture was filtered through a celite pad and was washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was purified on basic alumina with a gradient elution of 3% MeOH in DCM to furnish 1-(naphthalen-1-yl)piperazine. LCMS purity: 93.356%, m/z=213.3 [M+H]+.
-
- To a stirred solution of 1-(naphthalen-1-yl)piperazine (300 mg, 1.41 mmol) and 2H-1,2,3-triazole-2-carboximidamide hydrochloride (207 mg, 1.41 mmol) in DMF (2.5 mL) was added DIPEA (0.26 mL, 0.00141 mol) and the resulting mixture was heated to 80° C. for 10 h. The reaction mixture was monitored by TLC. After completion of the reaction the mixture was concentrated under reduced pressure the crude product was purified by column chromatography on basic alumina with a gradient elution of 20% MeOH in DCM to furnish 4-(naphthalen-1-yl)piperazine-1-carboximidamide. LCMS purity: 97.938%, RT=5.067 min, m/z=255.3 (M+H)+ (Method 3). 1H-NMR (400 MHz, DMSO-d6): δ 8.20 (d, 1H), 7.91 (d, 1H), 7.75-7.60 (m, 4H), 7.55-7.41 (brs, 2H), 7.20 (d, 1H), 3.79-3.60 (m, 4H), 3.09-2.91 (m, 4H).
-
- To a stirred solution of 1-(naphthalen-1-yl)piperazine (200 mg, 0.942 mmol) and TEA (0.16 mL, 1.88 mmol) in DCM (8 mL) was added TMSNCO (0.16 mL, 1.22 mmol) and the resulting solution was stirred at room temperature for 2 h. The reaction mixture was monitored by TLC. After completion of the reaction the mixture was concentrated under reduced pressure and the residue was purified by column chromatography on basic alumina with a gradient elution of 2% MeOH in DCM to furnish 4-(naphthalen-1-yl)piperazine-1-carboxamide. LCMS purity: 90.785%, RT=5.712 min, m/z=256.3 (M+H)+ (Method 3). 1H-NMR (400 MHz, DMSO-d6): δ 8.20 (d, 1H), 7.91 (d, 1H), 7.70-7.39 (m, 4H), 7.1 (d, 1H), 6.1 (brs, 2H), 3.80-3.61(m, 4H), 3.11-2.90 (m, 4H).
-
- A mixture of 1-bromo-4-methylnaphthalene (1.0 g, 4.52 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (2.1 g, 6.78 mmol, 1.5 eq) and Na2CO3 (1.43 g, 13.56 mmol, 3.0 eq) in a mixture of 1,2-DME (15 mL) and water (5 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.36 g, 0.45 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 80° C. for 2 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(4-methylnaphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 82.42%. MS calculated for [M]323.44 and found [M+H]+324.20.
-
- Pd—C (10% w/w, 50% moisture, 0.5 g) was added to the solution of tert-butyl 4-(4-methylnaphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.5 g, 1.54 mmol, 1.0 eq) in MeOH (10 mL) and reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 2 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to afford tert-butyl 4-(4-methylnaphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 86.18%. MS calculated for [M]325.45 and found [M+H]+326.32.
-
- 4M HCl in 1,4-dioxane (2 mL) was added drop-wise to a solution of tert-butyl 4-(4-methylnaphthalen-1-yl)piperidine-1-carboxylate (0.18 g, 0.553 mmol, 1.0 eq) in dichloromethane (4 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 2 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether and dried under vacuum to afford 4-(4-methylnaphthalen-1-yl)piperidine hydrochloride. LCMS: Purity 99.39%. RT=4.66 min (Method 1). MS calculated for [M] 225.34 and found [M+H]−226.17. 1H-NMR (400 MHz, DMSO-d6) δ 8.89 (bs, 2H), 8.25-8.23 (m, 1H), 8.06-8.03 (m, 1H), 7.59-7.56 (m, 2H), 7.35 (d, J=7.08 Hz, 1H), 7.25 (d, J=7.32 Hz,1H),3.72-3.66 (m, 1H), 3.40 (d, J=12.6 Hz, 1H), 3.22-3.16 (m, 2H), 2.62 (s, 3H), 1.98-1.90 (m, 4 H).
-
- 4-(piperidin-4-yl)-1H-benzo[d]imidazole (20) may be prepared by methods similar to those described in Example 18, using 4-bromo-1H-benzo[d]imidazole as the aryl halide starting material. LCMS RT=4.97 min, m/z=202.34 [M+H]+ (Method 1).
-
- 4-(Piperidin-4-yl)benzo[d]thiazole (21) may be prepared by methods similar to those described in Example 18, using 4-bromobenzo[d]thiazole as the aryl halide starting material. LCMS RT=3.61 min, m/z=219.30 [M+H]+ (Method 1).
-
- 5-(piperidin-4-yl)isoquinoline (109) may be prepared by methods similar to those described in Example 18, using 5-bromoisoquinoline as the aryl halide starting material. LCMS RT=5.21 min, m/z=213.12 [M+H]+ (Method 1).
-
- 4-(4-methoxynaphthalen-1-yl)piperidine (47) may be prepared using similar methods as described in Example 18, except using 1-bromo-4-methoxynaphthalene as the aryl halide starting material. LCMS RT=5.21 min, m/z=213.12 [M+H]+ (Method 1).
-
- 8-(Piperidin-4-yl)isoquinoline (110) may be prepared by methods similar to those described in Example 18, using 8-bromoisoquinoline as the aryl halide starting material. LCMS RT=3.42 min, m/z=213.12 [M+H]+ (Method 1).
-
- 4-(piperidin-4-yl)isoquinoline (45) may be prepared by methods similar to those described in Example 18, using 4-bromoisoquinoline as the aryl halide starting material. LCMS RT=3.33 min, m/z=213.14 [M+H]+ (Method 1).
-
- 1-(piperidin-4-yl)isoquinoline (46) may be prepared by methods similar to those described in Example 18, using 1-bromoisoquinoline as the aryl halide starting material. LCMS RT=3.82 min, m/z=213.12 [M+H]+ (Method 1).
-
- 4-(piperidin-4-yl)naphthalen-1-ol (47) may be prepared by methods similar to those described in Example 18, using 4-bromonaphthalen-1-ol as the aryl halide starting material. LCMS RT=3.82 min, m/z=228.12 [M+H]+ (Method 1).
-
- 4-(piperidin-4-yl)quinazoline (48) may be prepared by methods similar to those described in Example 18, using 4-chloroquinazoline as the aryl halide starting material. LCMS m/z=214.2 [M+H]+ (Method 1).
-
- 4-(4-fluoronaphthalen-1-yl)piperidine (49) may be prepared by methods similar to those described in Example 18, using 1-bromo-4-fluoronaphthalene as aryl halide starting material. LCMS RT=4.56 min, m/z=230.28 [M+H]+ (Method 1).
-
- 5-(piperidin-4-yl)quinoline (111) may be prepared by methods similar to those described in Example 18, using 5-bromoquinoline as the aryl halide starting material. LCMS RT=4.48 min, m/z=213.15 [M+H]+ (Method 2).
-
- 4-(piperidin-4-yl)quinoline (50) may be prepared by methods similar to those described in Example 18, using 4-bromoquinoline as the aryl halide starting material. LCMS RT=4.28 min, m/z=212.97 [M+H]+ (Method 2).
-
- 8-fluoro-5-(piperidin-4-yl)quinoline (51) may be prepared by methods similar to those described in Example 18, using 5-bromo-8-fluoroquinoline as the aryl halide starting material. LCMS RT=4.22 min, m/z=231.12 [M+H]+ (Method 2).
-
- 8-fluoro-5-(piperidin-4-yl)isoquinoline (52) may be prepared by methods similar to those described in Example 18, using 5-bromo-8-fluoroisoquinoline as the aryl halide starting material. LCMS RT=3.30 min, m/z=231.04 [M+H]+ (Method 1).
-
- Borane dimethylsulfide (1.51 g, 19.9 mmol, 2.5 eq) was added to the solution of 5-bromo-1-naphthoic acid (2.0 g, 7.96 mmol, 1.0 eq) in THF (50 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 16 h. After complete consumption of starting material, the reaction mixture was quenched with drop-wise addition of MeOH at 0° C., diluted with water and extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to afford (5-bromonaphthalen-1-yl)methanol.
-
- Phosphorus tribromide (0.89 g, 3.3 mmol, 1.2 eq) was added to the solution of (5-bromonaphthalen-1-yl) methanol (0.65 g, 2.75 mmol, 1.0 eq) in CHCl3 (20 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 2 h. After complete consumption of starting material, the reaction mixture was diluted with dichloromethane and washed with water, saturated aqueous sodium bicarbonate and brine. The organic extract was then dried over anhydrous sodium sulfate, filtered, and solvent evaporated from the filtrate under reduced pressure to afford 1-bromo-5-(bromomethyl)naphthalene.
-
- Sodium borohydride (0.56 g, 14.8 mmol, 8.0 eq) was added to the solution of 1-bromo-5-(bromomethyl)naphthalene (0.55 g, 1.85 mmol, 1.0 eq) in DMSO (5 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 2 h. After complete consumption of starting material, the reaction mixture was poured into chilled water. The precipitate was filtered and dried under vacuum to afford 1-bromo-5-methylnaphthalene.
-
- A mixture of 1-bromo-5-methylnaphthalene (0.28 g, 1.24 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.422 g, 1.36 mmol, 1.1 eq) and Na2CO3 (0.395 g, 3.73 mmol, 3.0 eq) in a mixture of 1,2-DME (8 mL) and water (2 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.101 g, 0.124 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 80° C. for 2 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(5-methylnaphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate.
-
- Pd—C (10% w/w, 50% moisture, 0.08 g) was added to the solution of tert-butyl 4-(5-methylnaphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.28 g, 0.866 mmol, 1.0 eq) in MeOH (5 mL) and reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 1 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(5-methylnaphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 97.77%. MS calculated for [M] 325.45 and found [M+H]+326.42.
-
- 4M HCl in 1,4-dioxane (1 mL) was added dropwise to a solution of tert-butyl 4-(5-methylnaphthalen-1-yl)piperidine-1-carboxylate (0.12 g, 0.36 mmol, 1.0 eq) in dichloromethane (2 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 2 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether and dried under vacuum to afford 4-(5-methylnaphthalen-1-yl)piperidine hydrochloride. LCMS: Purity 99.25%. RT=5.02 min (Method 1). MS calculated for [M] 225.34 and found [M+H]+226.09. 1H-NMR (400 MHz, DMSO-d6) δ 8.88 (bs, 2H), 8.10 (d, J=8.56 Hz,1H), 7.93 (d, J=8.36 Hz,1H), 7.54 (t, J=7.48 Hz,1H), 7.46 (t, J=7.04 Hz,1H), 7.39 (d, J=6.88 Hz, 2H), 3.76-3.70 (m,1H), 3.42-3.39 (m, 2H), 3.22-3.16 (m, 2H), 2.65 (s, 3H), 2.00-1.92 (m, 4 H).
-
- Sulfuric acid (0.3 mL) was added to the solution of 5-bromo-1-naphthoic acid (1.5 g, 5.97 mmol, 1.0 eq) in MeOH (50 mL) at room temperature and the solution was stirred under nitrogen atmosphere, at 80° C. for 16 h. After complete consumption of starting material, the reaction mixture was evaporated under reduced pressure, dissolved in ethyl acetate and washed with saturated aqueous sodium bicarbonate. The aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to afford methyl 5-bromo-1-naphthoate. LCMS: Purity 93.15%. MS calculated for [M] 263.98 and found [M+H]+265.05.
-
- A mixture of methyl 5-bromo-1-naphthoate (1.3 g, 4.92 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (1.67 g, 5.41 mmol, 1.1 eq) and Na2CO3 (1.56 g, 14.77 mmol, 3.0 eq) in a mixture of 1,2-DME (16 mL) and water (4 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.4 g, 0.49 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 80° C. for 2 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(5-(methoxycarbonyl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 99.35%. MS calculated for [M] 367.45 and found [M+H]+368.26.
-
- Pd—C (10% w/w, 50% moisture, 0.8 g) was added to the solution of tert-butyl 4-(5-(methoxycarbonyl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (1.3 g, 3.54 mmol, 1.0 eq) in MeOH (50 mL) and reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 4 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to obtain tert-butyl 4-(5-(methoxycarbonyl)naphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 97.77%.
-
- Lithium borohydride (0.89 g, 4.12 mmol, 5.0 eq) was added to the solution of tert-butyl 4-(5-(methoxycarbonyl)naphthalen-1-yl)piperidine-1-carboxylate (0.3 g, 0.82 mmol, 1.0 eq) in THF (10 mL) under nitrogen atmosphere at 0° C. and the reaction mixture was stirred under nitrogen atmosphere, at 60° C. for 4 h. After complete consumption of starting material, saturated aqueous ammonium chloride was added drop-wise at 0° C., the mixture was diluted with water and extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to afford tert-butyl 4-(5-(hydroxymethyl)naphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 99.54%. MS calculated for [M] 341.20 and found [M+H]+342.17.
-
- 4M HCl in 1,4-dioxane (2 mL) was added dropwise to a solution of tert-butyl 4-(5-(hydroxymethyl)naphthalen-1-yl)piperidine-1-carboxylate (0.1 g, 0.29 mmol, 1.0 eq) in dichloromethane (2 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 16 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether and dried under vacuum to afford (5-(piperidin-4-yl)naphthalen-1-yl)methanol hydrochloride. LCMS: Purity 97.08%. RT=3.94 min (Method 1). MS calculated for [M] 241.33 and found [M+H]+242.13. 1H-NMR (400 MHz, DMSO-d6) δ 8.90 (bs, 1H), 8.75 (bs, 1H), 8.16 (d, J=8.2 Hz,1H), 7.98 (d, J=8.48 Hz,1H), 7.59-7.51 (m, 3H), 7.38 (d, J=7.12 Hz,1H), 5.32 (bs,1H), 4.96 (s, 2H),), 3.77-3.71 (m,1H), 3.42-3.39 (m, 2H), 3.24-3.16 (m, 2H), 2.03-1.91 (m, 4 H).
-
- Borane dimethylsulfide (1.51 g, 19.9 mmol, 2.5 eq) was added to the solution of 5-bromo-2-naphthoic acid (2.0 g, 7.96 mmol, 1.0 eq) in THF (20 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 16 h. After complete consumption of starting material, the reaction mixture was quenched by drop-wise addition of MeOH at 0° C., diluted with water and extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to afford (5-bromonaphthalen-2-yl)methanol.
-
- Phosphorus tribromide (2.4 g, 8.89 mmol, 1.2 eq) was added to the solution of (5-bromonaphthalen-2-yl)methanol (1.75 g, 7.4 mmol, 1.0 eq) in CHCl3 (20 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 2 h. After complete consumption of starting material, the reaction mixture was diluted with dichloromethane and washed with water followed by saturated aqueous sodium bicarbonate and brine. The organic extract was then dried over anhydrous sodium sulfate, filtered, and solvent evaporated from the filtrated under reduced pressure to afford 1-bromo-6-(bromomethyl)naphthalene. MS calculated for [M] 299.99.
-
- Sodium borohydride (1.2 g, 31.8 mmol, 8.0 eq) was added to the solution of 1-bromo-6-(bromomethyl)naphthalene (1.89 g, 6.36 mmol, 1.0 eq) in DMSO (15 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 2 h. After complete consumption of starting material, the reaction mixture was partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to afford 1-bromo-6-methylnaphthalene.
-
- A mixture of 1-bromo-6-methylnaphthalene (0.9 g, 4.09 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (1.39 g, 4.49 mmol, 1.1 eq) and Na2CO3 (1.3 g, 12.27 mmol, 3.0 eq) in a mixture of 1,2-DME (16 mL) and water (4 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.33 g, 0.409 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 80° C. for 2 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(6-methylnaphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 91.97%. MS calculated for [M]323.44 and found [M+H]+324.28.
-
- Pd—C (10% w/w, 50% moisture, 0.9 g) was added to the solution of tert-butyl 4-(6-methylnaphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.81 g, 2.5 mmol, 1.0 eq) in MeOH (100 mL) and reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 24 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(6-methylnaphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 99.81%. MS calculated for [M] 325.45 and found [M−56]+270.25.
-
- 4M HCl in 1,4-dioxane (2 mL) was added dropwise to a solution of tert-butyl 4-(6-methylnaphthalen-1-yl)piperidine-1-carboxylate (0.08 g, 0.24 mmol, 1.0 eq) in dichloromethane (2 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 16 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether and dried under vacuum to afford 4-(6-methylnaphthalen-1-yl)piperidine hydrochloride. LCMS: Purity 99.43%. RT=5.05 min (Method 1) MS calculated for [M] 225.34 and found [M+H]+226.14. 1H-NMR (400 MHz, DMSO-d6) δ 8.98 (bs, 1H), 8.84 (bs, 1H), 8.13 (d, J=8.76 Hz,1H), 7.72-7.20 (m, 2H), 7.47-7.40 (m, 2H), 7.29 (d, J=7.04 Hz,1H), 3.71-3.66 (m,1H), 3.41-3.38 (m, 2H), 3.20-3.18 (m, 2H), 1.98-1.91 (m, 4H).
-
- Boc anhydride(1.5 g, 6.75 mmol, 1.0 eq) was added to the solution of 4-bromonaphthalen-1-amine (1.0 g, 4.5 mmol, 1.1 eq), Et3N (0.68 g, 6.75 mmol, 1.5 eq), DMAP (0.1 g) in dichloromethane (20 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 12 h. After complete consumption of starting material, the reaction mixture was diluted with dichloromethane and washed with water followed by brine. The organic extract was then dried over anhydrous sodium sulfate, filtered, and solvent evaporated from the filtrated under reduced pressure to afford diboc protected 4-bromonaphthalen-1-amine. LCMS: Purity 48.07%.
-
- A mixture of diboc protected 4-bromonaphthalen-1-amine (0.5 g, 1.18 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.4 g, 1.3 mmol, 1.1 eq) and Na2CO3 (0.376 g, 3.55 mmol, 3.0 eq) in a mixture of 1,2-DME (15 mL) and water (5 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.96 g, 0.118 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 80° C. for 2 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain diboc protected tert-butyl 4-(4-aminonaphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 72.43%. MS calculated for [M] 524.66 and found [M+H]+525.38.
-
- Pd—C (10% w/w, 50% moisture, 0.3 g) was added to the solution of diboc protected tert-butyl 4-(4-aminonaphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.3 g, 0.572 mmol, 1.0 eq) in MeOH (10 mL) and reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 2 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to afford diboc protected tert-butyl 4-(4-aminonaphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 88.43%. MS calculated for [M] 526.56 and found [M−200]+326.29.
-
- 4M HCl in 1,4-dioxane (2 mL) was added dropwise to a solution of diboc protected tert-butyl 4-(4-aminonaphthalen-1-yl)piperidine-1-carboxylate (0.2 g, 0.38 mmol, 1.0 eq) in dichloromethane (4 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 1 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether and dried under vacuum to afford 4-(piperidin-4-yl)naphthalen-1-amine dihydrochloride. LCMS: Purity 98.72%. RT=5.17 min (Method 2). MS calculated for [M] 226.32 and found [M+H]+227.15. 1H-NMR (400 MHz, DMSO-d6) δ 9.02 (bs, 1H), 8.91-8.89 (m, 2H), 8.30-8.28 (m,1H), 8.10-8.08 (m,1H), 7.66-7.64 (m, 2H),7.44 (m,1H), 7.35 (d, J=7.68 Hz, 1H), 3.77-3.67 (bs,1H), 3.40 (d, J=12 Hz, 2H), 3.20-3.17 (m, 2H), 1.97-1.91(m, 4 H).
-
- A mixture of 8-bromoquinoline (0.5 g, 2.4 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.96 g, 3.12 mmol, 1.3 eq) and Na2CO3 (0.76 g, 7.2 mmol, 3.0 eq) in a mixture of 1,2-DME (5 mL) and water (2 mL) was purged with nitrogen for 20 min. Pd(dppf)Cl2.DCM (0.19 g, 0.24 mmol, 0.1 eq) was added to the reaction mixture and nitrogen was bubbled into it for an additional 5 min. The reaction mixture was stirred under nitrogen atmosphere, at 80° C. for 2 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(quinolin-8-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 91.94%. MS calculated for [M] 310.40 and found [M+H]+311.21.
-
- Pd—C (10% w/w, 50% moisture, 0.5 g) was added to the solution of tert-butyl 4-(quinolin-8-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.5 g, 1.61 mmol, 1.0 eq) in MeOH (5 mL) and reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 2 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to afford tert-butyl 4-(1,2,3,4-tetrahydroquinolin-8-yl)piperidine-1-carboxylate. LCMS: Purity 80.48%. MS calculated for [M] 316.45 and found [M+H]+317.30.
-
- Pd—C (10% w/w, 50% moisture, 0.2 g) was added to the solution of tert-butyl 4-(1,2,3,4-tetrahydroquinolin-8-yl)piperidine-1-carboxylate (0.2 g, 0.63 mmol, 1.0 eq) in MeOH (10 mL) and reaction was allowed to stir at room temperature under oxygen atmosphere (balloon pressure) for 16 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to afford tert-butyl 4-(quinolin-8-yl)piperidine-1-carboxylate. MS calculated for [M] 312.41 and found [M+H]+313.27.
-
- 2M HCl in diethyl ether (2 mL) was added dropwise to a solution of tert-butyl 4-(quinolin-8-yl)piperidine-1-carboxylate (0.1 g, 0.32 mmol, 1.0 eq) in dichloromethane (3 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 4 h. Solvents evaporated under reduced pressure, the residue was triturated with pentane and dried under vacuum to afford 8-(piperidin-4-yl)quinoline dihydrochloride. LCMS: Purity 98.92%. RT=3.74 min (Method 1). MS calculated for [M] 212.30 and found [M+H]+213.12. 1H-NMR (400 MHz, DMSO-d6) δ 9.08-8.98 (m, 3H), 8.59 (d, J=7.28 Hz, 1H),7.99-7.96 (m, 1H), 7.72-7.69 (m, 3H), 4.35-4.15 (m, 1H), 3.43-3.40 (m, 2H),3.20-3.14 (m, 2H), 2.05-1.99 (m, 4 H).
-
- A mixture of 8-bromo-5-fluoroquinoline (0.7 g, 3.09 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (1.4 g, 4.64 mmol, 1.5 eq) and Na2CO3 (0.98 g, 9.29 mmol, 3.0 eq) in a mixture of 1,2-DME (7 mL) and water (3 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.25 g, 0.309 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 85° C. for 4 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(5-fluoroquinolin-8-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 96.19%. MS calculated for [M] 328.39 and found [M+H]+329.26.
-
- Pd—C (10% w/w, 50% moisture, 0.5 g) was added to the solution of tert-butyl 4-(5-fluoroquinolin-8-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.85 g, 2.59 mmol, 1.0 eq) in mixture of EtOH (1 mL) and THF (3 mL).The reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 12 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to afford tert-butyl 4-(5-fluoro-1,2,3,4-tetrahydroquinolin-8-yl)piperidine-1-carboxylate. LCMS: Purity 78.70%. MS calculated for [M] 334.44 and found [M+H]+335.25.
-
- DDQ (1.63 g, 7.18 mmol, 3.0 eq) was added to the solution of tert-butyl 4-(5-fluoro-1,2,3,4-tetrahydroquinolin-8-yl)piperidine-1-carboxylate (0.8 g, 2.39 mmol, 1.0 eq) in toluene (10 mL). The reaction mixture was heated at 110° C. for 12 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(5-fluoroquinolin-8-yl) piperidine-1-carboxylate. LCMS: Purity 99.09%. MS calculated for [M]330.40 and found [M+H]+331.16.
-
- 4M HCl in 1,4-dioxane (2.5 mL) was added dropwise to a solution of tert-butyl 4-(5-fluoroquinolin-8-yl)piperidine-1-carboxylate (0.05 g, 0.156 mmol, 1.0 eq) in dichloromethane (5 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 2 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether followed by pentane and dried under vacuum to afford 5-fluoro-8-(piperidin-4-yl)quinoline hydrochloride. LCMS: Purity 97.11%. RT=3.91 (Method 1). MS calculated for [M] 230.29 and found [M+H]+231.12. 1H-NMR (400 MHz, DMSO-d6) δ 9.04-9.03 (m, 3H), 8.52 (d, J=8.36 Hz, 1H),7.71-7.67 (m, 1H), 7.59 (t, J=8.0 Hz, 1H), 7.46 (t, J=9.72 Hz, 1H), 4.15-4.09 (m, 1H), 3.41-3.38(m, 2H), 3.18-3.08 (m, 2H), 2.03-2.01 (m, 4 H).
-
- To a solution of tosylhydrazine (0.93 g, 5.01 mmol, 1.0 eq) in MeOH (5 mL), a solution of tert-butyl 4-oxopiperidine-1-carboxylate (1.0 g, 5.01 mmol, 1.0 eq) in MeOH (5 mL) was added drop-wise under nitrogen atmosphere and the solution was stirred at ambient temperature for 3 h. After complete consumption of starting material, the reaction mixture was evaporated under reduced pressure to afford tert-butyl 4-(2-tosylhydrazono)piperidine-1-carboxylate. LCMS: Purity 96.84%. MS calculated for [M]367.46 and found [M+H]+368.30.
-
- Triflic anhydride (6.63 g, 23.59 mmol, 1.4 eq) was added dropwise to the solution of 4-chloronaphthalen-1-ol (3.0 g, 16.85 mmol, 1.0 eq) and Et3N (6.8 g, 64.41 mmol, 4.0 eq) in dichloromethane (30 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 2 h. After complete consumption of starting material, the reaction mixture was diluted with dichloromethane and washed with water and brine. The organic extract was then dried over anhydrous sodium sulfate, filtered, and solvent evaporated under reduced pressure to afford 4-chloronaphthalen-1-yl trifluoromethanesulfonate. LCMS: Purity 80.81%.
-
- A mixture of 4-chloronaphthalen-1-yl trifluoromethanesulfonate (3.3 g, 10.61 mmol, 1.0 eq), bis(pinacolato)diboron (5.3 g, 21.29 mmol, 2.0 eq) and KOAc (1.45 g, 14.86 mmol, 1.4 eq) in 1,4-dioxane (30 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.86 g, 1.06 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 100° C. for 12 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain 2-(4-chloronaphthalen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. LCMS: Purity 98.76%. MS calculated for [M]288.11 and found [M+H]+288.99.
-
- Cesium carbonate (1.69 g, 5.2 mmol, 1.5 eq) was added to a mixture of 2-(4-chloronaphthalen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(1.0 g, 3.47 mmol, 1.0 eq) and tert-butyl 4-(2-tosylhydrazono)piperidine-1-carboxylate (1.5 g, 4.16 mmol, 1.2 eq) in 1,4-dioxane (10 mL). The reaction mixture was heated at 110° C. for 12 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain tert-butyl 4-(4-chloronaphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 97.73%. MS calculated for [M]345.87 and found [M+H]+346.17.
-
- 4M HCl in 1,4-dioxane (4 mL) was added dropwise to a solution of tert-butyl 4-(4-chloronaphthalen-1-yl)piperidine-1-carboxylate (0.25 g, 0.724 mmol, 1.0 eq) in dichloromethane (5 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 2 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether and pentane, dried under vacuum to afford 4-(4-chloronaphthalen-1-yl)piperidine hydrochloride. LCMS: Purity 98.99%. RT=4.98 min (Method 1). MS calculated for [M]245.75 and found [M+H]+246.08. 1H-NMR (400 MHz, DMSO-d6) δ 8.92 (bs, 2H), 8.35 (d, J=8.64 Hz, 1H), 8.25 (d, J=9.16 Hz, 1H), 7.74-7.69 (m, 3H), 7.36 (d, J=7.8 Hz, 1H), 3.77-3.72 (m, 1H), 3.42-3.39 (m, 2H), 3.22-3.16 (m, 2H), 2.00-1.91 (m, 4 H).
-
- A mixture of 4-bromonaphthalen-1-ol (2.0 g, 8.96 mmol, 1.0 eq), cyclohex-1-en-1-ylboronic acid (2.42 g, 11.65 mmol, 1.3 eq) and Na2CO3 (2.85 g, 26.9 mmol, 3.0 eq) in a mixture of 1,2-DME (36 mL) and water (4 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (2.92 g, 3.58 mmol, 0.4 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 100° C. for 16 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain 4-(cyclohex-1-en-1-yl)naphthalen-1-ol. LCMS: Purity 92.23%. MS calculated for [M] 224.30 and found [M−H]+223.09.
-
- Triflic anhydride (1.76 g, 6.25 mmol, 2.0 eq) was added dropwise to the solution of 4-(cyclohex-1-en-1-yl)naphthalen-1-ol (0.7 g, 3.12 mmol, 1.0 eq) in pyridine (5 mL) at 0° C. The reaction mixture was stirred under nitrogen atmosphere, at room temperature for 2 h. After complete consumption of starting material, 1N HCl was added to the reaction mixture, diluted with water and extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to afford 4-(cyclohex-1-en-1-yl)naphthalen-1-yl trifluoromethanesulfonate. LCMS: Purity 88.36%. MS calculated for [M] 356.36 and found [M+H]+357.07.
-
- A mixture of 4-(cyclohex-1-en-1-yl)naphthalen-1-yl trifluoromethanesulfonate (0.61 g, 1.7 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.63 g, 2.05 mmol, 1.2 eq) and Na2CO3 (0.54 g, 5.12 mmol, 3.0 eq) in a mixture of 1,2-DME (16 mL) and water (4 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.278 g, 0.34 mmol, 0.2 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 80° C. for 2 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(4-(cyclohex-1-en-1-yl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 91.18%. MS calculated for [M] 389.54 and found [M+H]+390.23.
-
- Pd—C (10% w/w, 50% moisture, 0.6 g) was added to the solution of tert-butyl 4-(4-(cyclohex-1-en-1-yl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.6 g, 1.54 mmol, 1.0 eq) in MeOH (50 mL) and reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 4 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(4-cyclohexylnaphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 98.99%. MS calculated for [M] 393.57 and found [M−56]+338.24.
-
- 4M HCl in 1,4-dioxane (2 mL) was added drop-wise to a solution of tert-butyl 4-(4-cyclohexylnaphthalen-1-yl)piperidine-1-carboxylate (0.15 g, 0.38 mmol, 1.0 eq) in dichloromethane (2 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 4 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether and dried under vacuum to afford 4-(4-cyclohexylnaphthalen-1-yl)piperidine hydrochloride. LCMS: Purity 98.38%. RT=6.17 min (Method 1). MS calculated for [M] 293.45 and found [M+H]+294.21. 1H-NMR (400 MHz, DMSO-d6) δ 8.77 (bs, 2H), 8.26-8.23 (m,1H), 8.20-8.18 (m,1H), 7.58-7.55 (m, 2H), 7.40 (d, J=7.6 Hz,1H), 7.32 (d, J=7.6 Hz,1H), 3.68-3.66 (m,1H), 3.42-4.39 (m,1H), 3.22-3.16 (m, 1H), 2.02-1.77 (m, 10 H), 1.61-1.28 (m, 5 H).
-
- To a stirred solution of 4-bromo-1H-benzo[d]imidazole (150 mg, 0.761 mmol) in THF (5 mL) was added NaH (36 mg, 0.91 mmol) at 0° C. and the resulting mixture was stirred at rt for 30 min. Trityl chloride (275 mg, 0.98 mmol) and a catalytic amount of TBAI were added and the resulting reaction mixture was heated to reflux for 5 h. The reaction mixture was cooled and quenched with ice water and subsequently extracted with ethyl acetate (3×10 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated to obtain 4-bromo-1-trityl-1H-benzo[d]imidazole. LCMS Purity: 92.612%, m/z=441.2 [M+H]+.
-
- To a stirred solution of 4-bromo-1-trityl-1H-benzo[d]imidazole (200 mg, 0.4552 mmol) in toluene (5 mL) was added piperazine (195 mg, 2.27 mmol), Pd2(dba)3 (41 mg, 0.04 mmol), BINAP (56 mg, 0.09 mmol), and NaOtBu (131 mg, 1.365 mmol). The resulting reaction mixture was degassed and heated to 110° C. for 12 h. After completion, the reaction was cooled to room temperature and filtered through a celite pad. The filtrate was concentrated under reduced pressure and the residue was purified by basic alumina column chromatography using 10% methanol in DCM to furnish 4-(piperazin-1-yl)-1-trityl-1H-benzo[d]imidazole. LCMS Purity: 91.821%, m/z=445.4(M+H)+.
-
- To a stirred solution of compound 4-(piperazin-1-yl)-1-trityl-1H-benzo[d]imidazole (40 mg) in THF (0.5 mL) were added AcOH (0.5 mL) and water (0.5 mL) at room temperature and the reaction mixture was heated to 60° C. for 4 h. The reaction was concentrated under reduced pressure and then basified with sat. aq. Na2CO3 and extracted with DCM (2×5 mL). The organic phase was dried over anhydrous sodium sulfate and concentrated. The residue was purified by preparative HPLC to give 4-(piperazin-1-yl)-1H-benzo[d]imidazole. LCMS Purity: 91.821%, RT=1.126, m/z=203.3 [M+H]+ (Method 3). 1H-NMR (400 MHz, DMSO-d6): δ 9.15 (1H, s), 9.01 (2H, s), 7.42-7.37 (2H, m), 6.97 (1H, d), 3.55-3.21 (8H, m).
-
- 4-(piperazin-1-yl)benzo[d]thiazole (41) may be prepared by methods similar to those described in Example 41, using 4-bromobenzo[d]thiazole as the aryl halide starting material. LCMS RT=3.508 min, m/z=220.2 [M+H]+ (Method 3).
-
- 7-(piperazin-1-yl)benzo[d]thiazole (42) may be prepared methods similar to those described in Example 41, using 7-bromobenzo[d]thiazole as the aryl halide starting material. LCMS RT=3.072 min, m/z=220.2 [M+H]+ (Method 3).
-
- Thionyl chloride (1.56 g, 13.11 mmol, 1.5 eq) was added dropwise to the solution of 4-bromonaphthalene-1-sulfonic acid (2.5 g, 8.74 mmol, 1.0 eq) in a mixture of toluene (20 mL) and DMF (2 mL) under nitrogen atmosphere, at room temperature and the solution was at heated at 110° C. for 4 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and evaporated under reduced pressure to afford 4-bromonaphthalene-1-sulfonyl chloride, which was used in the next step without purification.
-
- A solution of 5,6,7,8-tetrahydronaphthalen-2-amine (1.24 g, 4.07 mmol, 1.2 eq) in dichloromethane (5 mL) was added drop-wise to solution of 4-bromonaphthalene-1-sulfonyl chloride (0.5 g, 3.39 mmol, 1.0 eq) and DIPEA (1.31 g, 10.2 mmol, 3.0 eq) in dichloromethane (15 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 2 h. After complete consumption of starting material, the reaction mixture was diluted with dichloromethane and washed with water and brine. The organic extract was then dried over anhydrous sodium sulfate, filtered, and solvent evaporated from the filtrated under reduced pressure to afford 4-bromo-N-(5,6,7,8-tetrahydronaphthalen-2-yl)naphthalene-1-sulfonamide. LCMS: Purity 92.04%. MS calculated for [M] 415.02 and found [M−H]+414.13.
-
- A mixture of 4-bromo-N-(5,6,7,8-tetrahydronaphthalen-2-yl)naphthalene-1-sulfonamide (0.2 g, 0.48 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.222 g, 0.72 mmol, 1.5 eq) and Na2CO3 (0.152 g, 1.44 mmol, 3.0 eq) in a mixture of 1,4-Dioxane (3.2 mL) and H2O (0.8 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.039 g, 0.048 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 90° C. for 1 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(4-((tetrahydro-2H-pyran-4-yl)amino)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 95.72%. MS calculated for [M] 518.67 and found [M−H]+517.36.
-
- Pd—C (10% w/w, 50% moisture, 0.1 g) was added to the solution of tert-butyl 4-(4-(N-(5,6,7,8-tetrahydronaphthalen-2-yl)sulfamoyl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.2 g, 0.386 mmol, 1.0 eq) in a mixture of EtOH (5 mL) and THF (10 mL). The reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 16 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to afford tert-butyl 4-(4-(N-(5,6,7,8-tetrahydronaphthalen-2-yl)sulfamoyl)naphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 90.20%. MS calculated for [M] 520.69 and found [M−H]+519.33.
-
- 4M HCl in 1,4-dioxane (2 mL) was added to a solution of tert-butyl 4-(4-(N-(5,6,7,8-tetrahydronaphthalen-2-yl)sulfamoyl)naphthalen-1-yl)piperidine-1-carboxylate (0.2 g, 0.384 mmol, 1.0 eq) in dichloromethane (2 mL) at 0° C. and the mixture was stirred for 2 h at room temperature. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether, followed by pentane, and dried under vacuum to afford 4-(piperidin-4-yl)-N-(5,6,7,8-tetrahydronaphthalen-2-yl)naphthalene-1-sulfonamide hydrochloride. LCMS: Purity 93.27%. RT=5.24 min (Method 1). MS calculated for [M] 420.57 and found [M+H]+421.03. 1H-NMR (400 MHz, DMSO-d6) δ 10.50 (s, 1H), 8.85 (bs, 1H), 8.78 (d, J=8.6 Hz,1H), 8.68-8.65 (m,1H), 8.38 (d, J=8.44 Hz,1H), 8.19 (d, J=7.84 Hz,1H), 7.76-7.70 (m, 2H), 7.49 (d, J=7.88 Hz,1H), 6.80 (d, J=8.24 Hz, 1H), 6.75 (d, J=8.48 Hz,1H), 6.69 (s,1H), 3.79-3.76 (m,1H), 3.42-3.39 (m, 2H), 3.23-3.17 (m, 2H), 2.02-1.88 (m, 4H), 4.18 (s, 4H).
-
- N-phenyl-4-(piperidin-4-yl)naphthalene-1-sulfonamide may be prepared by methods similar to those described in Example 44, using aniline as the arylamine in step 2. LCMS RT=4.76 min, m/z=367.17 [M+H]− (Method 1).
-
- Chlorosulphonic acid (5.63 g, 48.3 mmol, 2.0 eq) was added drop-wise to the solution of 1-bromonaphthalene (5.0 g, 24.1 mmol, 1.0 eq) in chloroform (50 mL) under nitrogen atmosphere at 0° C. and the solution was stirred at ambient temperature for 1 h. After complete consumption of starting material, the reaction mixture was poured into chilled water and extracted with dichloromethane. The organic extract was separated and the aqueous extract was again extracted with dichloromethane. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain 4-bromonaphthalene-1-sulfonyl chloride, which was used in the next step without purification.
-
- Ammonia gas was purged to a solution of 4-bromonaphthalene-1-sulfonyl chloride (1.0 g, 3.29 mmol, 1.0 eq) in dichloromethane (10 mL) and the solution was stirred at ambient temperature for 2 h. After complete consumption of starting material, the reaction mixture was evaporated under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 234-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain 4-bromonaphthalene-1-sulfonamide. LCMS: Purity 85.83%. MS calculated for [M] 286.14 and found [M−H]+285.97.
-
- A mixture of 4-bromonaphthalene-1-sulfonamide (0.825 g, 2.89 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (2.25 g, 7.23 mmol, 2.5 eq) and K3PO4 (1.84 g, 8.68 mmol, 3.0 eq) in 1,4-Dioxane (10 mL) was purged with nitrogen for 15 min. Pd(PPh3)2Cl2 (0.203 g, 0.289 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 100° C. for 16 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 100-200 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(4-sulfamoylnaphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 96.79%. MS calculated for [M] 388.48 and found [M−H]+387.25.
-
- Pd—C (10% w/w, 50% moisture, 0.25 g) was added to the solution of tert-butyl 4-(4-sulfamoylnaphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.25 g, 0.644 mmol, 1.0 eq) in MeOH (5 mL). The reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 2 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to afford tert-butyl 4-(4-sulfamoylnaphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 99.07%. MS calculated for [M] 390.50 and found [M−H]+389.26.
-
- 4M HCl in 1,4-dioxane (2 mL) was added dropwise to a solution of tert-butyl 4-(4-sulfamoylnaphthalen-1-yl)piperidine-1-carboxylate (0.2 g, 0.512 mmol, 1.0 eq) in dichloromethane (4 mL) and the mixture was stirred for 1 h at room temperature. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether followed by pentane and dried under vacuum to afford 4-(piperidin-4-yl)naphthalene-1-sulfonamide hydrochloride. LCMS: Purity 97.61%. RT=3.84 min (Method 1). MS calculated for [M] 290.38 and found [M+H]+291.07. 1H-NMR (400 MHz, DMSO-d6) δ 8.98 (bs, 1H), 8.80-8.78 (m,1H), 8.71-8.68 (m,1H), 8.41-8.12 (m,1H), 8.13 (d, J=7.68 Hz,1H), 7.72-7.70 (m,1H),7.63 (s, 2H),7.50 (d, J=6.92 Hz,1H), 3.82-3.80 (m,1H), 3.43-3.20 (m, 4H), 2.02-1.93 (m, 4H).
-
- 70% Sulfuric acid (18 mL) was added drop-wise to the solution of 2-bromo-5-(trifluoromethyl)aniline (5.0 g, 21.0 mmol, 1.0 eq), propane-1,2,3-triol (3.8 g, 42.0 mmol, 2.0 eq) and sodium m-Nitrobenzene sulfonate (7.3 g, 32.55 mmol, 1.55 eq) at 0° C. and the mixture was stirred under nitrogen atmosphere, at 150° C. for 4 h. After complete consumption of starting material, the mixture was cooled to ambient temperature, poured into chilled water and filtered through a celite bed. The filtrate was neutralized with 2N aqueous NaOH, which led to a precipitate, which was filtered and dried under vacuum to obtain 8-bromo-5-(trifluoromethyl)quinoline. LCMS: Purity 95.13%. MS calculated for [M] 274.96 and found [M+H]+276.04.
-
- A mixture of 8-bromo-5-(trifluoromethyl)quinoline (1.3 g, 4.71 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (2.9 g, 9.42 mmol, 2.0 eq) and K3PO4 (2.99 g, 14.13 mmol, 3.0 eq) in 1,4-Dioxane (15 mL) was purged with nitrogen for 15 min. Pd(PPh3)2Cl2 (0.33 g, 0.471 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 85° C. for 16 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(5-(trifluoromethyl)quinolin-8-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 61.96%. MS calculated for [M] 378.40 and found [M+H]−379.31.
-
- Pd—C (10% w/w, 50% moisture, 0.25 g) was added to the solution of tert-butyl 4-(5-(trifluoromethyl)quinolin-8-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.5 g, 1.29 mmol, 1.0 eq) in MeOH (7 mL). The reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 1 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(5-(trifluoromethyl)quinolin-8-yl)piperidine-1-carboxylate. LCMS: Purity 97.53%. MS calculated for [M] 380.41 and found [M−100+H+]−281.15.
-
- 4M HCl in 1,4-dioxane (1.0 mL) was added drop-wise to a solution of tert-butyl 4-(5-(trifluoromethyl)quinolin-8-yl)piperidine-1-carboxylate (0.1 g, 0.262 mmol, 1.0 eq) in dichloromethane (2 mL) and the reaction mixture was stirred at ambient temperature for 2 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether and dried under vacuum to afford 8-(piperidin-4-yl)-5-(trifluoromethyl)quinoline dihydrochloride. LCMS: Purity 98.23%. RT=4.48 min (Method 1). MS calculated for [M] 280.29 and found [M+H]+281.29. 1H-NMR (400 MHz, DMSO-d6) δ 9.11-9.10 (m, 1H), 9.00 (bs,1H), 8.51 (d, J=8.56 Hz, 1H), 8.11 (d, J=7.52 Hz, 1H), 7.81-7.78 (m, 1H), 7.74 (d, J=7.44 Hz, 1H), 4.45-4.18 (m, 1H), 3.49-3.43 (m, 2H), 3.25-3.10 (m, 2H), 2.05-2.04 (m, 4 H).
-
- 5-(piperidin-4-yl)-8-(trifluoromethyl)quinoline may be prepared by methods similar to those described in Example 47, using 5-bromo-2-(trifluoromethyl)aniline as the arylamine starting material in step 1. LCMS RT=3.87 min, m/z=281.29 [M+H]+ (Method 1).
-
- Sulfuric acid (0.2 mL) was added to the solution of 5-bromo-2-naphthoic acid (1.0 g, 3.98 mmol, 1.0 eq) in MeOH (10 mL) at room temperature and the solution was stirred under nitrogen atmosphere, at 80° C. for 16 h. After complete consumption of starting material, the reaction mixture was evaporated under reduced pressure, diluted ethyl acetate and washed with saturated aqueous sodium bicarbonate. The aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to afford methyl 5-bromo-2-naphthoate.
-
- A mixture of methyl 5-bromo-2-naphthoate (0.5 g, 1.88 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.64 g, 2.07 mmol, 1.1 eq) and Na2CO3 (0.57 g, 5.4 mmol, 3.0 eq) in a mixture of 1,2-DME (5 mL) and water (1 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.14 g, 0.188 mmol, 0.1 eq) was added to the reaction mixture and the mixture was stirred under nitrogen atmosphere, at 80° C. for 5 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(6-(methoxycarbonyl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 99.14%. MS calculated for [M] 367.45 and found [M+H]+368.28.
-
- Pd—C (10% w/w, 50% moisture, 0.25 g) was added to the solution of tert-butyl 4-(6-(methoxycarbonyl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.5 g, 1.36 mmol, 1.0 eq) in MeOH (5 mL) and reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 10 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to obtain tert-butyl 4-(6-(methoxycarbonyl)naphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 96.12%. MS calculated for [M] 369.46 and found [M+H]+370.35.
-
- Lithium hydroxide (0.085 g, 2.02 mmol, 1.5 eq) was added to the solution of tert-butyl 4-(6-(methoxycarbonyl)naphthalen-1-yl)piperidine-1-carboxylate (0.3 g, 1.35 mmol, 1.0 eq) in a mixture of THF (2 mL), MeOH (2 mL) and water (2 mL) and the reaction mixture was stirred at room temperature for 4 h. After complete consumption of starting material, the reaction mixture was evaporated under reduced pressure, the residue was dissolved in water, acidified with 10% aqueous citric acid and extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to afford 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-2-naphthoic acid. LCMS: Purity 96.88%. MS calculated for [M]355.43 and found [M−H]+354.34.
-
- HATU (0.32 g, 0.84 mmol, 1.5 eq) was added to a solution of 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-2-naphthoic acid (0.2 g, 0.56 mmol, 1.0 eq) and DIPEA (0.32 g, 0.84 mmol, 1.5 eq) in DMF (5 mL) at 0° C. The reaction mixture was stirred at 0° C. for 15 min. Ammonium chloride (0.29 g, 5.6 mmol, 10.0 eq) was added and the reaction mixture was stirred at room temperature for 4 h. After complete consumption of starting material, the reaction mixture was poured into chilled water. The precipitate was filtered, washed with water, pentane and dried under vacuum to afford tert-butyl 4-(6-carbamoylnaphthalen-1-yl)piperidine-1-carboxylate. MS calculated for [M] 354.19 and found [M+H]−355.35.
-
- 4M HCl in 1,4-dioxane (0.4 mL) was added drop-wise to a solution of tert-butyl 4-(6-carbamoylnaphthalen-1-yl)piperidine-1-carboxylate (0.1 g, 0.28 mmol, 1.0 eq) in dichloromethane (5 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 4 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether, pentane and dried under vacuum to afford 5-(piperidin-4-yl)-2-naphthamide hydrochloride. LCMS: Purity 95.49%. RT=3.74 min (Method 1). MS calculated for [M] 254.33 and found [M+H]+255.11. 1H-NMR (400 MHz, DMSO-d6) δ 9.03-8.98 (m, 1H), 8.93-8.84 (m, 1H), 8.51 (s, 1H), 8.29 (d, J=9.0 Hz,1H), 8.17 (bs, 1H), 8.00 (d, J=8.88 Hz,1H), 7.90 (d, J=8.04 Hz,1H), 7.57 (t, J=7.6 Hz,1H), 7.47 (t, J=8.76 Hz,1H), 3.78-3.71 (m,1H), 3.40 (d, J=11.76 Hz, 2H), 3.25-3.16 (m, 2H), 2.04-1.95 (m, 4 H).
-
- 5-(piperidin-4-yl)-1-naphthamide may be prepared by methods similar to those described in Example 49, using 5-bromo-1-naphthoic acid as the starting material. LCMS RT=4.61 min, m/z=255.11 [M+H]− (Method 2).
-
- 4-(piperidin-4-yl)-1-naphthamide may be prepared by methods similar to those described in Example 49, using 4-bromo-1-naphthoic acid as the starting material. LCMS RT=3.41 min, m/z=255.11 [M+H]− (Method 1).
-
- To a stirred solution of ammonium carbonate (3.07 g, 32.00 mmol, 8.0 equiv) and sodium cyanide (784 mg, 16.000 mol, 4.0 equiv) in a solvent mixture of water (10.44 mL, 11.6 vol.) and EtOH (1.04 mL, 1.6 vol.) was added portion wise 4-(naphthalen-1-yl)cyclohexanone (0.9 g, 4.00 mmol, 1.0 eq) at RT. The reaction mixture was slowly heated to 40-50° C. for 3 h and then refluxed for 5 days. The reaction mixture was concentrated under reduced pressure and water was added to the residue to generate a precipitate. The precipitate was isolated by filtration, washed with water (1 mL), and dried under vacuum to give 8-(naphthalen-1-yl)-1,3-diazaspiro[4.5]decane-2,4-dione.
-
- To a solution of 8-(naphthalen-1-yl)-1,3-diazaspiro[4.5]decane-2,4-dione (145 mg, 0.492 mmol, 1.0 equiv) in THF was added portion wise LiAlH4 (55 mg, 1.478 mmol, 3.0 equiv) and then (5×55 mg for a 24 h period) at RT under a N2 atmosphere. The reaction mixture was slowly heated to reflux for 6 days. The reaction mixture was cooled to RT, quenched with a 10% citric acid solution and extracted with DCM (2×10 mL). The aqueous fraction was basified with aq. NH4OH, and subsequently extracted with DCM (2×5 mL). The combined organic layers were washed with water and brine, and concentrated under reduced pressure. The residue was purified by preparative HPLC to yield 8-(naphthalen-1-yl)-1,3-diazaspiro[4.5]decan-2-one. LCMS: 86.105%, m/z=281.3 [M+H]+ (Method 3). 1H-NMR (400 MHz, DMSO-d6): δ 8.11(1H, d), 7.91 (1H, d), 7.74 (1H, d), 7.60-7.41 (4H, m), 5.58 (1H, brs), 4.70 (1H, brs), 3.35 (2H, s), 2.21-2.20 (3H, m), 1.85-1.51 (6H, m).
-
- Tetrahydro-4H-pyran-4-one (0.677 g, 6.75 mmol, 1.5 eq) was added to a mixture of 4-bromonaphthalen-1-amine (1.0 g, 4.5 mmol, 1.0 eq) in 1,2-dichloroethane (10 mL). The reaction mixture was stirred at room temperature for 5 min. Acetic acid (0.1 mL) was added to the reaction mixture and was stirred under nitrogen atmosphere, at room temperature for 1 h. A solution of sodium triacetoxyborohydride (1.43 g, 6.75 mmol, 1.5 eq) in 1,2-dichloroethane (10 mL) and was added drop-wise to the above mixture and stirring continued at room temperature for 16 h. After complete consumption of starting material, the mixture was partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain N-(4-bromonaphthalen-1-yl) tetrahydro-2H-pyran-4-amine. LCMS: Purity 61.71%. MS calculated for [M] 305.04 and found [M−H−]304.05.
-
- A mixture of N-(4-bromonaphthalen-1-yl)tetrahydro-2H-pyran-4-amine (0.5 g, 1.63 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.5 g, 1.63 mmol, 1.0 eq) and K3PO4 (1.03 g, 4.9 mmol, 3.0 eq) in a mixture of 1,2-dichloroethane (5 mL) and water (2 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2 (0.133 g, 0.16 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 80° C. for 8 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(4-((tetrahydro-2H-pyran-4-yl)amino)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate.
-
- Pd—C (10% w/w, 50% moisture, 0.1 g) was added to the solution of tert-butyl 4-(4-((tetrahydro-2H-pyran-4-yl)amino)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.2 g, 0.489 mmol, 1.0 eq) in MeOH (5 mL) and reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 4 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to afford tert-butyl 4-(4-((tetrahydro-2H-pyran-4-yl)amino)naphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 98.35%. MS calculated for [M] 410.56 and found [M+H]+411.30.
-
- 4M HCl in 1,4-dioxane (3 mL) was added dropwise to a solution of tert-butyl 4-(4-((tetrahydro-2H-pyran-4-yl)amino)naphthalen-1-yl)piperidine-1-carboxylate (0.1 g, 0.243 mmol, 1.0 eq) in dichloromethane (5 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 4 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether followed by pentane and dried under vacuum to afford N-(4-(piperidin-4-yl)naphthalen-1-yl)tetrahydro-2H-pyran-4-amine dihydrochloride. LCMS: Purity 99.64%. RT=3.72 min (Method 1). MS calculated for [M] 310.44 and found [M+H]+311.16. 1H-NMR (400 MHz, DMSO-d6) δ 8.94 (bs, 1H), 8.80-8.78 (m, 1H), 8.26 (d, J=8.24 Hz, 1H), 8.18 (bs,1H),7.58-7.57 (m, 2H), 7.31 (bs,1H), 7.00 (bs, 1H), 3.91-3.60 (m, 6H), 3.41-3.38 (m, 4H), 3.21-3.15 (m, 2H), 1.96-1.91 (m, 6H), 1.71 (bs, 2 H).
-
- A solution of tosyl chloride (1.4 g, 7.34 mmol, 1.5 eq) in pyridine (5 mL) was added to a solution of tetrahydro-2H-pyran-4-ol (0.5 g, 4.9 mmol, and 1.0 eq) in pyridine (5 mL) at 0° C. The reaction mixture was stirred under nitrogen atmosphere, at room temperature for 4 h. After complete consumption of starting material, 1N aqueous HCl was added, diluted with water and extracted with ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain tetrahydro-2H-pyran-4-yl 4-methylbenzenesulfonate.
-
- Tetrahydro-2H-pyran-4-yl 4-methylbenzenesulfonate (1.19 g, 4.66 mmol, 1.3 eq) was added to a mixture of 4-bromonaphthalen-1-ol (0.8 g, 3.5 mmol, 1.0 eq) and K2CO3 (0.64 g, 4.6 mmol, 1.3 eq) in DMF (10 mL) at ambient temperature and the mixture was stirred under nitrogen atmosphere, at 80° C. for 16 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain 4-((4-bromonaphthalen-1-yl)oxy)tetrahydro-2H-pyran. LCMS: Purity 90.19%.
-
- A mixture of 4-((4-bromonaphthalen-1-yl)oxy)tetrahydro-2H-pyran (0.27 g, 0.88 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.27 g, 0.88 mmol, 1.0 eq) and Na2CO3 (0.267 g, 2.6 mmol, 3.0 eq) in a mixture of 1,2-DME (5 mL) and water (1 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.071 g, 0.08 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 80° C. for 8 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(4-((tetrahydro-2H-pyran-4-yl)oxy)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 96.36%. MS calculated for [M] 409.53 and found [M+H]+410.34.
-
- Pd—C (10% w/w, 50% moisture, 0.02 g) was added to the solution of tert-butyl 4-(4-((tetrahydro-2H-pyran-4-yl)oxy)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.06 g, 0.146 mmol, 1.0 eq) in MeOH (5 mL) and reaction was allowed to stir at room temperature under hydrogen atmosphere (balloon pressure) for 2 h. Pd—C was filtered off (through celite) and solvent was evaporated from the filtrate under reduced pressure to afford tert-butyl 4-(4-((tetrahydro-2H-pyran-4-yl)oxy)naphthalen-1-yl)piperidine-1-carboxylate, which was utilized in the next step without purification.
-
- 4M HCl in 1,4-dioxane (0.2 mL) was added dropwise to a solution of tert-butyl 4-(4-((tetrahydro-2H-pyran-4-yl)oxy)naphthalen-1-yl)piperidine-1-carboxylate (0.038 g, 0.092 mmol, 1.0 eq) in dichloromethane (5 mL) at 0° C. The reaction mixture was stirred at ambient temperature for 4 h. Solvents evaporated under reduced pressure, the residue was triturated with diethyl ether and pentane, dried under vacuum to afford 4-(4-((tetrahydro-2H-pyran-4-yl)oxy)naphthalen-1-yl)piperidine hydrochloride. LCMS: Purity 99.88%. RT=4.67 min (Method 1). MS calculated for [M] 311.43 and found [M+H]−312.20. 1H-NMR (400 MHz, DMSO-d6) δ 8.68 (bs, 1H), 8.34 (bs, 1H), 8.27 (d, J=8.16 Hz, 1H), 8.16 (d, J=8.4 Hz, 1H), 7.60-7.51 (m, 2H), 7.24 (d, J=8.16 Hz, 1H), 7.05 (d, J=8.08 Hz, 1H), 4.80-4.77 (m, 1H), 3.91-3.88 (m, 2H), 3.63-3.53 (m, 3H), 3.41-3.18 (m, 4H), 2.06-1.86 (m, 6H), 1.76-1.72 (m, 2H).
-
- To a stirred solution of 1-fluoronaphthalene (500 mg, 0.342 mmol) was added TFA (2.43 mL) drop wise at 0° C. under an inert atmosphere. The solution was stirred for 10 min. after which HSO3Cl (0.5 ml) was added drop wise to the reaction mixture. The reaction was stirred at 0° C. for 0.5 h and subsequently warmed to room temperature 2 h. The reaction mixture was quenched with ice cold water and the resulting material was isolated by filtration. The hygroscopic solid was dried in a vacuum desiccator containing P2O5 to provide intermediate 4-fluoronaphthalene-1-sulfonyl chloride. LCMS purity: 90.7%
-
- To a stirred solution of 5,6,7,8-tetrahydronaphthalen-1-amine (100 mg, 0.6802 mmol) in pyridine (0.2 ml) was added drop wise a solution of 4-fluoronaphthalene-1-sulfonyl chloride (2) (140 mg, 0.566 mmol) in DCM (3 mL). The resulting mixture was stirred for 1 h after which the reaction mixture was diluted with ethyl acetate and the organic phase was washed with 1M HCl. The collected organic phase was dried over Na2SO4 and was concentrated to obtain 4-fluoro-N-(5,6,7,8-tetrahydronaphthalen-1-yl)naphthalene-1-sulfonamide. LCMS purity: 94.71%.
-
- To a stirred solution of 4-fluoro-N-(5,6,7,8-tetrahydronaphthalen-1-yl)naphthalene-1-sulfonamide 3 (150 mg, 0.421 mmol) in DMSO (0.5 mL) was added piperazine (36 mg, 0.421 mmol) at room temperature under an inert atmosphere. The resulting reaction mixture was heated to 100° C. and stirred for 3 h. The reaction mixture was diluted with diethyl ether and the solidified product was isolated by filtration. The solid was washed with a sat. NaHCO3 solution and then dissolved in 10% MeOH in DCM. The solution was dried over Na2SO4, concentrated under vacuum and the crude product was purified by column chromatography (elution of product: 5% MeOH in DCM) to furnish 4-(piperazin-1-yl)-N-(5,6,7,8-tetrahydronaphthalen-1-yl)naphthalene-1-sulfonamide. LCMS purity: 88.2%, RT=5.919 min, m/z=422.3 [M+H]+. 1H-NMR (DMSO-d6): δ 8.65(1H, d), 8.20(1H, d), 7.92 (1H, d), 7.92 (1H, d), 7.40-7.72 (4H, m), 7.13 (1H, t), 6.88 (1H, d), 6.80 (1H, d), 6.67(1H, d), 3.20-2.22 (10H, m), 1.58-1.96 (6H, m).
-
- To a stirred solution of 4-fluoronaphthalene-1-sulfonyl chloride (100 mg, 0.409 mol) in DCM (2 mL) were added drop wise pyridine (0.1 mL) and aniline (0.04 mL) under an inert atmosphere. The resulting solution was stirred at room temperature for 3 h. The reaction mixture was diluted with ethyl acetate (10 mL) and then the organic phase was washed with a 1M aqueous HCl solution. The organic fraction was separation, dried over Na2SO4, filtered and concentrated under vacuum to obtain intermediate 4-fluoro-N-phenylnaphthalene-1-sulfonamide. LCMS purity: 69.7%.
-
- To a stirred solution of 4-fluoro-N-phenylnaphthalene-1-sulfonamide (80 mg, 0.264 mmol) in DMSO (0.5 mL) was added piperazine (113 mg, 1.324 mmol) under an inert atmosphere. The resulting reaction mixture was heated to 100° C. and stirring continued for 3 h. After completion of the reaction the reaction mixture was diluted with diethyl ether and the solidified product was filtered, and washed with a Na2CO3 solution. The solid was washed with a sat. NaHCO3 solution and then dissolved in 10% MeOH in DCM. The solution was dried over Na2SO4, concentrated under vacuum and the crude product was purified by column chromatography to furnish N-phenyl-4-(piperazin-1-yl)naphthalene-1-sulfonamide. LCMS purity: 94.6%, RT=5.050 min, m/z=368.3 [M+H]+. 1H-NMR (400 MHz, DMSO-d6): δ 8.71(1H, d), 8.20-8.01(2H, m), 7.75-7.50 (2H, m), 718-6.76 (7H, m), 3.12-2.80(8H, m).
-
- To a stirred solution of 4-fluoronaphthalene-1-sulfonyl chloride (250 mg, 1.024 mmol) in NH4OH solution (5 mL) was added Na2CO3 (543 mg, 5.122 mmol) at room temperature under an inert atmosphere. The resulting reaction mixture was heated to 100° C. and stirring continued for 3 h. The reaction mixture was diluted with water and extracted with EtOAc (2×20 mL). The combined organic layers were dried over Na2SO4 and concentrated under vacuum to obtain intermediate 4-fluoronaphthalene-1-sulfonamide. LCMS purity: 91.98%.
-
- To a stirred solution of 4-fluoronaphthalene-1-sulfonamide (200 mg, 0.888 mmol) in DMSO (0.5 mL) was added piperazine (76 mg, 0.888 mmol) at room temperature under an inert atmosphere. The resulting reaction mixture was heated to 100° C. and stirring was continued for 12 h. The reaction mixture was diluted with diethyl ether and the solidified product mass was filtered, which washed with sat. NaHCO3 solution. The solid was washed with a sat. NaHCO3 solution and then dissolved in 10% MeOH in DCM. The solution was dried over Na2SO4, concentrated under vacuum and the crude product was purified by column chromatography to furnish 4-(piperazin-1-yl)naphthalene-1-sulfonamide. LCMS purity: 94.7%, RT=3.354 min, m/z=292.2 [M+H]+. 1H-NMR [DMSO-d6]: δ 8.61(1H, d), 8.22 (1H, d), 8.05 (1H, d), 7.70-7.58 (2H, m), 7.50 (2H, s), 7.15 (1H, d), 3.12-2.90 (8H, m).
-
- An oven dried Schlenk flask was evacuated and back filled with inert gas. The flask was charged with BINAP (1.2 g, 1.93 mmol) and palladium (II)-acetate (216 mg, 0.96 mmol) in dioxane (10 mL) at room temperature under an inert atmosphere. The resultant reaction mixture was evacuated with stirring for 5 min and then the reaction mixture was heated to 110° C. for 1-2 min to generate a red colored catalyst. 1-Bromonaphthalene (2 g, 9.65 mmol), tert-butyl piperidin-4-ylcarbamate (2.12 g, 10.6 mmol), Cs2CO3 (9.44 g, 28.9 mmol) and 30 mL of dioxane were added and the resulting reaction mixture was heated to 110° C. for 12 h. The reaction mixture was filtered through a celite pad and washed with ethyl acetate. The filtrate, was concentrated under reduced pressure and the residue was purified by basic alumina [elution: ethyl acetate/hexane (10:90)] to furnish tert-butyl 1-(naphthalen-1-yl)piperidin-4-ylcarbamate. LCMS purity: 98.363%. 1H-NMR (400 MHz, DMSO-d6): δ 8.1 (d, 1H), 7.85 (d, 1H), 7.6-7.35 (m, 4H), 7.1 (d, 1H), 6.9(d, 1H), 3.5-3.4 (m, 1H), 3.25 (d, 2H), 2.8-2.7 (t, 2H), 2.0-1.85 (d, 2H), 1.8-1.65 (m, 2H),1.4 (s, 9H).
-
- To a stirred solution of tert-butyl 1-(naphthalen-1-yl)piperidin-4-ylcarbamate (2.4 g) in MeOH (10 mL) was added methanolic HCl (10 mL) at 0° C. and the resulting solution was stirred at RT for 1 h under an inert atmosphere. The reaction was concentrated under vacuum and the crude residue was diluted with EtOAc (25 mL) and basified with aq. Na2CO3 to pH=8. The organic phase was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by basic alumina column chromatography on gradient elution of 3% MeOH in DCM to give 1-(naphthalen-1-yl)piperidin-4-amine. LCMS purity: 96.137%. 1H-NMR (400 MHz, DMSO-d6): δ 8.10 (d, 1H), 7.85 (d, 1H), 7.6-7.35 (m, 4H), 7.15 (d, 1H), 3.35-3.28 (m, 2H), 2.80-2.61 (m, 3H),1.95-1.81 (d, 2H), 1.6-1.45 (m, 2H).
-
- To a solution of 1-(naphthalen-1-yl)piperidin-4-amine (200 mg, 0.884 mmol) and DIPEA (0.3 mL, 1.769 mmol) in DCM (8 mL) was added methane sulfonyl Chloride (0.1 mL, 1.1504 mmol) at 0° C. under an inert atmosphere and the resulting mixture was stirred at 0° C. for 2 h. After completion of the reaction H2O (10 mL) was added and the mixture was extracted with DCM (2×10 mL). The combined organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by basic alumina column chromatography on gradient elution of using 50% EtoAc in hexane to give N-(1-(naphthalen-1-yl)piperidin-4-yl)methanesulfonamide. LCMS purity: 99.183%, RT=6.823 min, m/z=305.3 [M+H]+ (Method 3). 1H-NMR (400 MHz, DMSO-d6): δ 8.10 (d, 1H), 7.85 (d, 1H), 7.61-7.35 (m, 4H), 7.25 (d, 1H), 7.10 (d, 1H), 3.31-3.20 (m, 3H), 3.01 (s, 3H), 2.85-2.75 (t, 2H), 2.05-1.95 (m, 2H), 1.80-1.65 (m, 2H).
-
- To a stirred solution of 1-(naphthalen-1-yl)piperidin-4-amine (200 mg, 0.884 mmol) and TEA (0.24 mL, 1.7699 mmol) in DCM (8 mL) was added acetyl chloride (0.082 mL, 1.1504 mmol) at 0° C. under an inert atmosphere and the resulting mixture was stirred at 0° C. for 1 h. After completion of the reaction H2O (10 mL) was added and the mixture was extracted with DCM (2×10 mL). The combined organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by basic alumina column chromatography of using 100% DCM to give N-(1-(naphthalen-1-yl)piperidin-4-yl)acetamide. LCMS purity: 97.330%, RT=5.884 min, m/z): 269.3 (M+H)+ (Method 3). 1H-NMR (400 MHz, DMSO-d6): δ 8.11 (d, 1H), 8.02-7.85 (m, 2H), 7.60-7.35 (m, 4H), 7.11 (d, 1H), 3.85-3.65 (brs, 1H), 3.30-3.21 (m, 2H), 2.85-2.75 (m, 2H), 2.05-1.9 (m, 2H), 1.8 (s, 3H), 1.80-1.61 (m, 2H).
-
- To a stirred solution of 1-(naphthalen-1-yl)piperidin-4-amine (200 mg, 0.884 mmol), TEA (0.24 mL, 1.7699 mmol) in DCM (8 mL) was added TMSNCO (0.15 mL, 1.1504 mmol) at room temperature under an inert atmosphere and the resulting mixture was stirred at same temperature for 3 h. The reaction mixture was concentrated under reduced pressure the crude product was purified by flash column chromatography of basic alumina on gradient elution of 6% MeOH in DCM to furnish 1-(1-(naphthalen-1-yl)piperidin-4-yl)urea. LCMS purity: 99.330%, RT=5.351 min, m/z=270.3 [M+H]+ (Method 3). 1H-NMR (400 MHz, DMSO-d6): δ 8.10 (d, 1H),7.91 (d, 1H), 7.60-7.35 (m, 4H), 7.11 (d, 1H), 6.10 (d,1H), 5.40 (brs, 2H), 3.65-3.45 (brs, 1H), 3.25-3.21 (d, 2H), 2.85-2.71 (m, 2H), 2.01-1.90 (m, 2H), 1.75-1.55 (m, 2H).
-
- Cs2CO3 (1.64 g, 5.0 mmol, 2.0 eq) was added to a solution of 4-bromonaphthalene-1-thiol (0.6 g, 2.50 mmol, 1.0 eq) and tert-butyl 4-bromopiperidine-1-carboxylate (0.795 g, 3.02 mmol, 1.2 eq) in DMSO (5 mL) under nitrogen atmosphere at room temperature. The mixture was stirred at 120° C. for 15 h. After complete consumption of starting material, the reaction mixture was diluted with ethyl acetate and washed with water. The organic extract was then dried over anhydrous sodium sulfate, filtered, and solvent evaporated from the filtrated under reduced pressure to afford tert-butyl 4-((4-bromonaphthalen-1-yl)thio)piperidine-1-carboxylate. LCMS: Purity 95.04%. MS calculated for [M] 421.07 and found [M+H]+421.99.
-
- m-CPBA (0.572 g, 3.31 mmol, 2.0 eq) was added to a solution of tert-butyl 4-((4-bromonaphthalen-1-yl)thio)piperidine-1-carboxylate (0.7 g, 1.66 mmol, 1.0 eq) in DCM (7 mL) under nitrogen atmosphere at 0° C. The mixture was stirred at RT for 1 h. After complete consumption of starting material, the reaction mixture was diluted with DCM and washed with water. The organic extract was then dried over anhydrous sodium sulfate, filtered, and solvent evaporated from the filtrated under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-((4-bromonaphthalen-1-yl)sulfonyl)piperidine-1-carboxylate. LCMS: Purity 87.64%. MS calculated for [M] 453.06 and found [M+NH4 +] 471.07.
-
- A mixture of tert-butyl 4-((4-bromonaphthalen-1-yl)sulfonyl)piperidine-1-carboxylate (0.78 g, 1.72 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.638 g, 2.06 mmol, 1.2 eq) and Na2CO3 (0.545 g, 5.16 mmol, 3.0 eq) in DMF (8 mL) was purged with nitrogen for 15 min. Pd(PPh3)4 (0.198 g, 0.171 mmol, 0.1 eq) was added to the reaction mixture and the mixture was then stirred under nitrogen atmosphere, at 80° C. for 4 h. After complete consumption of starting material, the mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)sulfonyl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 97.31%. MS calculated for [M] 556.26 and found [M+H]+557.27.
-
- To a solution of tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)sulfonyl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.47 g, 0.84 mmol, 1.0 eq) in MeOH (20 mL) was added Pd—C (0.2 g, 10% w/w Pd on carbon, 50% moisture) at RT. The mixture was stirred at RT under H2 atmosphere (balloon pressure) for 16 h. The progress of reaction was monitored by TLC. The mixture was filtered through celite and washed with MeOH. Solvents evaporated from the mixture of filtrate and washings under reduced pressure to obtain tert-butyl 4-((4-(1-(tert-butoxycarbonyl)piperidin-4-yl)naphthalen-1-yl)sulfonyl)piperidine-1-carboxylate. LCMS: Purity 92.14%. MS calculated for [M] 558.28 and found [M+H]−559.34.
-
- 4M HCl in Dioxane (2.0 mL) was added to a solution of tert-butyl 4-((4-(1-(tert-butoxycarbonyl)piperidin-4-yl)naphthalen-1-yl)sulfonyl)piperidine-1-carboxylate (0.45 g, 0.80 mmol, 1.0 eq) in DCM (40 mL) at RT and stirred for 2 h. After complete consumption of starting material, solvents evaporated from the mixture under reduced pressure, the residue was washed with diethyl ether and dried under vacuum to obtain 4-((4-(piperidin-4-yl)naphthalen-1-yl)sulfonyl)piperidine dihydrochloride. LCMS: Purity 91.25%. RT=3.32 min (Method 1). MS calculated for [M] 358.17 and found [M+H]+359.19. 1H-NMR (400 MHz, DMSO-d6) δ 9.27 (bs, 1H), 9.18 (bs, 2H), 8.79 (bs, 1H), 8.72 (d, J=8.0 Hz, 1H), 8.49 (d, J=8.0 Hz, 1H), 8.22 (d, J=8.0 Hz, 1H), 7.82-7.78 (m, 2H), 7.64 (d, J=8.0 Hz, 1H), 3.95-3.85 (m, 1H), 3.85-3.75 (m, 1H), 3.43-3.40 (m, 2H), 3.28-3.16 (m, 4H), 2.91-2.79 (m, 2H), 2.11-2.00 (m, 4H), 1.98-1.87 (m, 4H).
-
- A solution of bromine (13.26 g, 82.97 mmol, 1.02 eq) in AcOH (700 mL) was added to a solution of 2-amino-3-(3-hydroxyphenyl)propanoic acid (14.6 g, 0.08 mmol, 1.0 eq) in AcOH (700 mL) at RT and stirred for 16 h. The precipitate formed in reaction mixture was collected by filtration, washed with diethyl ether and dried under high vacuum to afford 2-amino-3-(2-bromo-5-hydroxyphenyl)propanoic acid. LCMS: Purity 79.11%. MS calculated for [M] 258.98 and found [M+H]+260.03.
-
- To a solution of 2-amino-3-(2-bromo-5-hydroxyphenyl)propanoic acid (14.0 g, 53.82 mmol, 1.0 eq) in H2O (500 mL) was added 37% formaldehyde (72.5 mL, 807.19 mmol, 15.0 eq) and conc. HCl (44 mL). The mixture was stirred at RT for 1.5 h followed by at 60° C. for 1.5 h. Another lot of conc. HCl (40 mL) was added and stirred at RT for further 30 min. Then the reaction mixture was subjected to heating and stirred at 90° C. for additional 40 min. After complete consumption of starting material, solvent was evaporated to give 5-bromo-8-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid. LCMS: Purity 79.02%. MS calculated for [M] 270.98 and found [M+H]+271.99.
-
- SOCl2 (0.234 g, 66.14 mmol, 2.0 eq) was added to a solution of 5-bromo-8-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (9.0 g, 33.07 mmol, 1.0 eq) in MeOH (90 mL) at 0° C. and the mixture was stirred at RT for 1 h. After complete consumption of starting material, solvent evaporated under reduced pressure. The residue was triturated in DCM and filtered to afford methyl 5-bromo-8-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate. LCMS: Purity 85.20%. MS calculated for [M] 285.00 and found [M−H]+283.99 [M+H]+286.01.
-
- Boc anhydride (6.4 g, 29.3 mmol, 2.0 eq) was added to a solution of methyl 5-bromo-8-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (4.2 g, 14.6 mmol, 1.0 eq) and Na2CO3 (3.11 g, 29.37 mmol, 2.0 eq) in a mixture of 1,4-Dioxane (85 mL) and water (15 mL) at RT and stirred for 3 h. Reaction mixture was then diluted with ethyl acetate and washed with brine. Organic extract was dried over anhydrous Na2SO4, filtered and solvents was evaporated from the filtrate under reduced pressure to afford crude residue, which was subjected to purification by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain to 2-(tert-butyl) 3-methyl 5-bromo-8-hydroxy-3,4-dihydroisoquinoline-2,3(1H)-dicarboxylate. LCMS: Purity 81.83%. MS calculated for [M] 385.05 and found [M+H]+386.06.
-
- MeI (4.4 g, 31.06 mmol, 1.5 eq) was added to a solution of 2-(tert-butyl) 3-methyl 5-bromo-8-hydroxy-3,4-dihydroisoquinoline-2,3(1H)-dicarboxylate (8.0 g, 20.71 mmol, 1.0 eq) and K2CO3 (4.2 g, 31.06 mmol, 1.5 eq) in DMF (85.0 mL) at RT and stirred at 90° C. for 6 h. The reaction mixture was then cooled to ambient temperature, diluted in ethyl acetate and washed with water followed by brine. The organic extract was dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to afford 2-(tert-butyl) 3-methyl 5-bromo-8-hydroxy-3,4-dihydroisoquinoline-2,3(1H)-dicarboxylate. LCMS: Purity 73.85%. MS calculated for [M] 399.07 and found [M+H]+400.12.
-
- 4M HCl in dioxane (8.0 mL) was added to a solution of 2-(tert-butyl) 3-methyl 5-bromo-8-methoxy-3,4-dihydroisoquinoline-2,3(1H)-dicarboxylate (8.0 g, 19.95 mmol, 1.0 eq) in DCM (80 mL) at RT and stirred for 6 h. After complete consumption of starting material, solvent was evaporated under reduced pressure, the residue was washed with diethyl ether and dried under vacuum to afford methyl 5-bromo-8-methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate hydrochloride. LCMS: Purity 83.25%. MS calculated for [M] 299.02 and found [M+H]+300.04.
-
- KMnO4 (13.2 g, 83.6 mmol, 1.0 eq) was added to a solution of methyl 5-bromo-8-methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (5.0 g, 83.61 mmol, 1.0 eq) in THF (50 mL) at RT and stirred for 6 h. The reaction mixture was diluted in ethyl acetate and washed with water followed by brine. The organic extract was dried over anhydrous Na2SO4, filtered and solvents was evaporated from the filtrate under reduced pressure to afford a crude residue, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain methyl 5-bromo-8-methoxyisoquinoline-3-carboxylate. LCMS: Purity 99.16%. MS calculated for [M] 294.98 and found [M−H]+295.99.
-
- A mixture of methyl 5-bromo-8-methoxyisoquinoline-3-carboxylate (0.32 g, 1.08 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.672 g, 2.16 mmol, 2.0 eq) and K3PO4 (0.687 g, 3.24 mmol, 3.0 eq) in 1,4-Dioxane (5 mL) was purged with nitrogen for 15 min. PdCl2(PPh3)2 (0.076 g, 0.108 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 90° C. for 16 h. The mixture was then cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was subjected to purification by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain methyl 5-(1-(tert-butoxycarbonyl)-1,2,3,6-tetrahydropyridin-4-yl)-8-methoxyisoquinoline-3-carboxylate. LCMS: Purity 78.48%. MS calculated for [M] 398.18 and found [M+H]+399.28.
-
- To a solution of methyl 5-(1-(tert-butoxycarbonyl)-1,2,3,6-tetrahydropyridin-4-yl)-8-methoxyisoquinoline-3-carboxylate (0.15 g, 0.376 mmol, 1.0 eq) in MeOH (15 mL) was added Pd—C (0.100 g, 10% w/w Pd on carbon, 50% moisture) at RT. The mixture was stirred at RT under H2 atmosphere (balloon pressure) for 3 h. The progress of reaction was monitored by TLC. The mixture was filtered through celite and washed with MeOH. Solvents evaporated from the mixture of filtrate and washings under reduced pressure to obtain methyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-8-methoxyisoquinoline-3-carboxylate. LCMS: Purity 89.91%. MS calculated for [M] 400.20 and found [M+H]+401.29.
-
- LiOH.H2O (0.034 g, 0.828 mmol, 3.0 eq) was added to a solution of methyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-8-methoxyisoquinoline-3-carboxylate (0.11 g, 0.276 mmol, 1.0 eq) in a mixture of MeOH:THF:H2O (1:1:1; 1.5 mL) at RT and stirred for 2 h. After complete consumption of starting material, the reaction mixture was acidified with saturated aq. citric acid (pH=6), diluted with water and extracted with a mixture of isopropanol:CHCl3 (1:9). The organic extract was dried over anhydrous Na2SO4, filtered and solvents was evaporated from the filtrate under reduced pressure to afford 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-8-methoxyisoquinoline-3-carboxylic acid. LCMS: Purity 95.78%. MS calculated for [M] 386.18 and found [M+H]+387.35
-
- 4M HCl in Dioxane (1.0 mL) was added to a solution of 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-8-methoxyisoquinoline-3-carboxylic acid (0.05 g, 0.129 mmol, 1.0 eq) in DCM (3 mL) at RT and stirred for 2 h. After complete consumption of starting material, solvent was evaporated under reduced pressure, the residue was washed with diethyl ether and dried under vacuum to afford 4-((4-(piperidin-4-yl)naphthalen-1-yl)methyl)piperidine dihydrochloride. LCMS: Purity 98.08%. RT=4.92 min (Method 2). MS calculated for [M] 286.13 and found [M+H]+287.31. 1H-NMR (400 MHz, DMSO-d6) δ ppm 9.57 (s, 1 H), 8.95 (s, 1 H), 8.84 (bs, 1 H), 8.75 (bs, 1 H), 7.70 (d, J=8.0 Hz, 1 H), 7.33 (d, J=8.0 Hz 1 H), 4.05 (s, 3 H), 3.76-3.71 (m, 1 H), 3.41-3.38 (m, 2 H), 3.24-3.22 (m, 2 H), 2.05-1.90 (m, 4 H).
-
- A solution of 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-8-methoxyisoquinoline-3-carboxylic acid (0.05 g, 0.129 mmol, 1.0 eq), EDC.HCl (0.037 g, 0.193 mmol, 1.5 eq), HOBt (0.026 g, 0.194 mmol, 1.5 eq) and Et3N (0.026 g, 0.259 mmol, 2.0 eq) in DCM (2 mL) was purged with ammonia (gas) at 0° C. and the mixture was stirred for 30 min. The progress of reaction was monitored by TLC. After consumption of starting material, the mixture was partitioned between water and DCM. The organic extract was separated and the aqueous extract was again extracted with DCM. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was purified by flash chromatography on silica gel, 230-400 mesh, using gradient of MeOH in DCM as eluent to obtain tert-butyl 4-(3-carbamoyl-8-methoxyisoquinolin-5-yl)piperidine-1-carboxylate. LCMS: Purity 91.81%. MS calculated for [M] 385.20 and found [M+H]+386.30.
-
- 4M HCl in Dioxane (1.0 mL) was added to a solution of tert-butyl 4-(3-carbamoyl-8-methoxyisoquinolin-5-yl)piperidine-1-carboxylate (0.016 g, 0.041 mmol, 1.0 eq) in DCM (1 mL) at RT and stirred for 2 h. After complete consumption of starting material, solvent was removed under reduced pressure, the residue was washed with diethyl ether and dried under vacuum to afford 8-methoxy-5-(piperidin-4-yl)isoquinoline-3-carboxamide hydrochloride. LCMS: Purity 90.89%. RT=3.69 min (Method 1). MS calculated for [M] 285.15 and found [M+H]+286.16. 1H-NMR (400 MHz, DMSO-d6) δ ppm 9.53 (s, 1 H), 8.83 (bs, 1 H), 8.70 (s, 1H), 8.69 (bs, 1 H), 8.35 (s, 1 H), 7.80 (s, 1 H), 7.64 (d, J=8.0 Hz, 1 H), 7.26 (d, J=8.0 Hz, 1 H), 4.03 (s, 3H), 3.662-3.61 (m, 1 H), 3.42-3.39 (m, 2 H), 3.25 (m, 2 H), 1.95-1.89 (m, 4 H).
-
- Freshly crystalized NBS (13.84 g, 77.80 mmol, 1.2 eq) was added to the solution of 1-bromo-4-methylnaphthalene (15.0 g, 67.84 mmol, 1.0 eq) and AIBN (1.11 g, 6.78 mmol, 0.1 eq) in carbon tetrachloride (150 mL) and the mixture was stirred at 80° C. for 16 h under nitrogen atmosphere. After complete consumption of starting material, water was added to the reaction mixture and extracted with DCM. The organic layer was washed with water followed by brine, dried over anhydrous sodium sulfate, filtered, and the solvent evaporated from the filtrated under reduced pressure to obtain 1-bromo-4-(bromomethyl)naphthalene. LCMS: Purity 96.83%.
-
- A mixture of 1-bromo-4-(bromomethyl)naphthalene (1.0 g, 3.34 mmol, 1.0 eq), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate (3.10 g, 10.03 mmol, 1.5 eq) and K2CO3 (2.78 g, 20.07 mmol, 3.0 eq) in 1,2-DME (10 mL) was purged with nitrogen for 15 min. Pd(dppf)Cl2.DCM (0.546 g, 0.669 mmol, 0.1 eq) was added to the reaction mixture and was stirred under nitrogen atmosphere, at 110° C. for 16 h. The mixture was cooled to ambient temperature and partitioned between water and ethyl acetate. The organic extract was separated and the aqueous extract was again extracted with ethyl acetate. The combined organic extract was washed with brine, dried over anhydrous Na2SO4, filtered and solvents evaporated from the filtrate under reduced pressure to obtain a crude product, which was subjected to purification by flash chromatography on silica gel, 230-400 mesh, using gradient of ethyl acetate in hexanes as eluent to obtain tert-butyl 4-(4-((1-(tert-butoxycarbonyl)-1,2,3,6-tetrahydropyridin-4-yl)methyl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate. LCMS: Purity 57.36%. MS calculated for [M] 504.30 and found [M+H]+505.31.
-
- To a solution of tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-ylidene)methyl)naphthalen-1-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.4 g, 0.792 mmol, 1.0 eq) in MeOH (20 mL) was added Pd—C (0.2 g, 10% w/w Pd on carbon, 50% moisture) at RT. The mixture was stirred at ambient temperature, under hydrogen atmosphere (balloon pressure) for 18 h. The progress of reaction was monitored by TLC. After complete consumption of starting material, the mixture was filtered through celite and washed with MeOH. The mixture of filtrate and washings was evaporated under reduced pressure to obtain tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)methyl)naphthalen-1-yl)piperidine-1-carboxylate. LCMS: Purity 95.56%. MS calculated for [M] 508.33 and found [M−H]+509.32.
-
- 4M HCl in Dioxane (2.0 mL) was added to a solution of tert-butyl 4-(4-((1-(tert-butoxycarbonyl)piperidin-4-yl)methyl)naphthalen-1-yl)piperidine-1-carboxylate (0.17 g, 0.354 mmol, 1.0 eq) in DCM (20 mL) at RT and stirred for 2 h. The solvent was removed under reduced pressure, the residue was washed with diethyl ether and dried under vacuum to obtain 4-((4-(piperidin-4-yl)naphthalen-1-yl)methyl)piperidine dihydrochloride. LCMS: Purity 96.72%. RT=3.95 min (Method 1). MS calculated for [M] 308.23 and found [M+H]+309.24. 1H-NMR (400 MHz, DMSO-d6) δ 9.06 (bs, 2 H), 8.89 (bs, 1 H), 8.66 (bs, 1 H), 8.27-8.25 (m, 1 H), 8.13-8.11 (m, 1 H), 7.59-7.56 (m, 2 H), 7.33-7.12 (m, 2H), 3.71-3.66 (m, 1 H), 3.41-3.38 (m, 2 H), 3.21-3.18 (m, 4 H), 2.97-2.96 (m, 2 H), 2.78-2.70 (m, 2 H), 2.01-1.99 (m, 4 H), 1.95-1.85 (m, 1H), 1.75-1.72 (m, 2 H), 1.50-1.41 (m, 2 H).
- The compounds presented in Table 3 can be synthesized according to the Examples or general schemes described herein.
- The compounds of the present disclosure may be tested for binding to, inhibition of, and/or modulation of PCSK9 activity according to the following protocols.
- Cells, such as HepG2, HuH7, FL83B, or a cell line transfected with a short-hairpin PCSK9 knockdown sequence (e.g., HepG2/shPCSK9, HuH7/shPCSK9) can be cultured following routine procedures, such as those described by Benjannet et al., “Effects of the prosegment and pH on the activity of PCSK9: evidence for additional processing events” J Biol Chem. 285(52): 40965-40978 (2010), which is hereby incorporated by reference in its entirety.
- LDLR levels can be measured using flow cytometry or fluorescence activated cell sorting (FACS) using protocols adapted from Benjannet et al., “Effects of the prosegment and pH on the activity of PCSK9: evidence for additional processing events” J Biol Chem. 285(52): 40965-40978 (2010) and “Composition and Methods of Use of Small Molecules as Binding Ligands for the Modulation of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Protein Activity” (WO2016029037), which are incorporated by reference in their entirety.
- Cells, such as HepG2, HuH7, FL83B, or a cell line transfected with a short-hairpin PCSK9 knockdown sequence such as HepG2/shPCSK9, HuH7/shPCSK9, or FL83B/shPCSK9 are cultured in media composed of complete, high glucose DMEM (Invitrogen) with 10% fetal bovine serum (Life Technologies), supplemented with penicillin-streptomycin (Life Technologies). Cells are plated in a 24-well plate, at 125 k cells/well, and cultured at 37° C. for 12-24 h. Culture media is removed and replaced with fresh culture media or culture media plus a predetermined amount of recombinant PCSK9 (final 5 ug/ml). Wells evaluating test compounds are dosed with concentrations ranging from 0 nM to 100 uM.
- Following an incubation period of 4-6 hours at 37° C., the media is removed and the cells are rinsed by adding 0.5 ml of complete D-PBS (i.e., Dulbecco's phosphate buffered saline (D-PBS, Life Technologies) supplemented with 0.5% bovine serum albumin (BSA, Sigma) and 1 g/L glucose (Sigma)). The wash media is carefully aspirated, and cells are released from the plate using 200 uls of TrypLE Express (Life Technologies) by incubating for 5-10 minutes at 37° C. The TyrpLE-Cell suspension is inactivated by adding 100 uls of Fetal Bovine Serum, transferred to a v-bottom plate, and centrifuged at 250× gravity for 5 minutes. Following centrifugation, the supernatant is aspirated and the cell pellet is resuspended in 100 uL of complete D-PBS, and centrifuged at 250× gravity for 5 minutes. Following centrifugation, the supernatant is aspirated and the cell pellet is resuspended in 100 uls of antibody staining solution (600 uls of anti-LDLr-PE in complete D-PBS) and incubated on ice, protected from light, for 30 minutes. The cells are then pelleted by centrifugation, resuspended in 100 uL of 4′,6-Diamidino-2-phenylindole (DAPI, Cayman Chemical) or 7-aminoactinomycin D (7AAD, Life Technologies) staining solution to measure cell viability
- Cells are analyzed for both cell viability marker (dead cells) and LDLR in live cells using a flow cytometer per the manufacturer's operating manual. Cells incubated with small molecule compounds that are inhibitors of PCSK9 will be expected to show increased amounts of LDLR, relative to control (no compound) specimens, and cells incubated with small molecule compounds that are activators of PCSK9 will be expected to show decreased amounts of LDLR relative to control (no compound) specimens.
- Cellular DiI-LDL uptake can be measured using protocols adapted from Benjannet et al., “Effects of the prosegment and pH on the activity of PCSK9: evidence for additional processing events” J Biol Chem. 285(52): 40965-40978 (2010) and “Composition and Methods of Use of Small Molecules as Binding Ligands for the Modulation of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Protein Activity” (WO2016029037), which are incorporated by reference in their entirety.
- Cells, such as HepG2, HuH7, FL83B, or a cell line transfected with a short-hairpin PCSK9 knockdown sequence such as HepG2/shPCSK9, HuH7/shPCSK9, or FL83B/shPCSK9 are plated and cultured at 37° C. for 12-24 h. Culture media is removed and replaced with fresh lipoprotein-depleted culture media supplemented with 5 ug/mL of DiI-LDL (Kalen Biomedical) or lipoprotein-depleted culture media supplemented with 5 ug/mL of DiI-LDL plus a predetermined concentration of recombinant PCSK9, for example a 10 nM final concentration of PCSK9. Lipoprotein-depleted culture media can be composed of DMEM (Invitrogen) with 10% lipoprotein-depleted fetal bovine serum (Kalen Biomedical) and supplemented with penicillin-streptomycin (Life Technologies). Cells are dosed with small molecule test compounds at doses ranging from 0 nM to 100 uM.
- Following an incubation period of specified length, such as 16 hours, Hoechst 33342 (AnaSpec) stain is added to the cell media per manufacturer's instructions and incubated for a specified length (e.g., 30 minutes). The lipoprotein-depleted media is removed and cells rinsed three times with phosphate buffered saline. A final volume of phosphate buffered saline is added back to the wells. The DiI fluorescence is measured with a plate reader using an exciting wavelength of 550 nm and the resulting emission at 590 nm is measured. The Hoechst stain fluorescence is measured with a plate reader using an exciting wavelength of 355 nm and the resulting emission at 460 nm is measured.
- Cells are analyzed by for both Hoechst stain (DNA content) and DiI-LDL fluorescence. Cells incubated with small molecule compounds that are inhibitors of PCSK9 will be expected to show increased amounts of DiI-LDL fluorescence, relative to control (no compound) specimens, and cells incubated with small molecule compounds that are activators of PCSK9 will be expected to show decreased amounts of DiI-LDL fluorescence relative to control (no compound) specimens.
- Results of the LDLR and DiI-LDL uptake assay are set forth in Table 4. As described therein, the percentage recovery in the LDL-R assay at 20 uM concentration is provided as follows: +++=>30% recovery; ++=10-30% recovery; +=0-10% recovery. The percentage uptake of DiI-LDL over the control in the LDL-uptake assay at 20 uM concentration is provided as follows: +++=>150%; ++=100-150%; +=<100%.
-
TABLE 4 Compound No. LDL-R % Recovered LDL-uptake % of control 107 ++ +++ 108 +++ +++ 11 + + 5 ++ + 1 +++ +++ 23 + +++ 62 +++ +++ 43 ++ +++ 44 ++ +++ 73 + ++ 7 + +++ 8 + +++ 4 + +++ 46 + ++ - LDL uptake and LDLR expression can also be measured in cells, such as HepG2 or HuH7 cells, using a commercial kit (Cayman Chemical Co., Catalog # 10011125) and the accompanying protocols provided by the manufacturer.
- Cells, such as HuH7, FL83B, or a cell line transfected with a short-hairpin PCSK9 knockdown sequence such as HuH7/shPCSK9 or FL83B/shPCSK9 are plated and cultured at 37° C. for 12-24 h. Culture media is removed and replaced with fresh lipoprotein-depleted culture media supplemented with 5 ug/mL of fluorescently labeled LDL or lipoprotein-depleted culture media supplemented with 5 ug/mL of fluorescently labeled LDL plus 10 nM recombinant PCSK9. Examples of fluorescently labeled LDL include: DiI-LDL (Kalen Biomedical), or LDL conjugated to Dylight (e.g., LDL-Dylight 488, or LDL-Dylight 550 (Cayman Chemical, Cat. # 10011229)). Lipoprotein-depleted culture media can be composed of DMEM (Invitrogen) with 10% lipoprotein-depleted fetal bovine serum (Kalen Biomedical) and supplemented with penicillin-streptomycin (Life Technologies). Cells are dosed with small molecule test compounds at doses ranging from 0 nM to 100 uM, following a protocol adapted from Benjannet et al., “Effects of the prosegment and pH on the activity of PCSK9: evidence for additional processing events” J Biol Chem. 285(52): 40965-40978 (2010), which is incorporated by reference in its entirety.
- Following an incubation period of specified length, such as 16 hours, the lipoprotein-depleted media is removed and cells rinsed three times with a rinse solution (Dulbecco's phosphate buffered saline (D-PBS, Life Technologies), supplemented with 0.5% bovine serum albumin (BSA, Sigma) and 1 g/L glucose (Sigma)). The fluid is then removed, and cells are released from the plate using TrypLE Express (Life Technologies) per manufacturer's recommended procedures, such as incubation for 5-10 minutes at 37° C. The TyrpLE-Cell suspension is then transferred to 15 mL conical tubes, volume is increased to 2 mL with D-PBS supplemented with 0.5% BSA, and 1 g/mL glucose, and the tubes are centrifuged at 250× gravity for 10 minutes. Following centrifugation, the supernatant is aspirated and the cell pellet is resuspended in 300 uL PBS and counterstained with 4′,6-diamidino-2-phenylindole (DAPI, Cayman Chemical) as a cell viability marker, other cell viability markers such as 7-aminoactinomycin D (7AAD, Life Technologies) have also been described in the art.
- Cells are analyzed by for both 7AAD (dead cells) and fluorescent LDL in live cells using a flow cytometer per the manufacturer's operating manual. Cells incubated with small molecule compounds that are inhibitors of PCSK9 will be expected to show increased amounts of LDL fluorescence, relative to control (no compound) specimens, and cells incubated with small molecule compounds that are activators of PCSK9 will be expected to show decreased amounts of LDL fluorescence relative to control (no compound) specimens.
- Direct binding can be measured using Back-Scattering Interferometry (BSI), which has been previously described in “Interferometric detection system and method” (EP 1210581), “Free solution measurement of molecular interactions by backscattering interferometry” (WO 2009039466), “Temperature-stable interferometer” (WO 2009076372), and “Improved event detection for back-scattering interferometry” (WO 2013158300); each of which are hereby incorporated by reference in their entirety.
- Thus, it should be understood that although the present disclosure has been specifically disclosed by exemplary embodiments and optional features, modification, improvement and variation of the disclosed embodiments may be implemented by those skilled in the art, and that such modifications, improvements and variations are considered to be within the scope of the present disclosure and claims. The materials, methods, and examples provided here are representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the disclosure nor as limitations on the scope of the appended claims.
- All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety, to the same extent as if each were incorporated by reference individually. In case of conflict, the present specification, including definitions, will control.
- It is to be understood that while the disclosure has been described in conjunction with the above embodiments, that the foregoing description and examples are intended to illustrate and not limit the scope of the disclosure. Other aspects, advantages and modifications within the scope of the disclosure will be apparent to those skilled in the art to which the disclosure pertains.
Claims (27)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/078,578 US20190119236A1 (en) | 2016-02-23 | 2017-02-23 | Compounds for binding proprotein convertase subtilisin/kexin type 9 (pcsk9) |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662298920P | 2016-02-23 | 2016-02-23 | |
| PCT/US2017/019189 WO2017147328A1 (en) | 2016-02-23 | 2017-02-23 | Compounds for binding proprotein convertase subtilisin/kexin type 9 (pcsk9) |
| US16/078,578 US20190119236A1 (en) | 2016-02-23 | 2017-02-23 | Compounds for binding proprotein convertase subtilisin/kexin type 9 (pcsk9) |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2017/019189 A-371-Of-International WO2017147328A1 (en) | 2016-02-23 | 2017-02-23 | Compounds for binding proprotein convertase subtilisin/kexin type 9 (pcsk9) |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/861,166 Continuation US11891369B2 (en) | 2016-02-23 | 2020-04-28 | Compounds for binding proprotein convertase subtilisin/kexin type 9 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190119236A1 true US20190119236A1 (en) | 2019-04-25 |
Family
ID=58231764
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/078,578 Abandoned US20190119236A1 (en) | 2016-02-23 | 2017-02-23 | Compounds for binding proprotein convertase subtilisin/kexin type 9 (pcsk9) |
| US16/861,166 Active US11891369B2 (en) | 2016-02-23 | 2020-04-28 | Compounds for binding proprotein convertase subtilisin/kexin type 9 |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/861,166 Active US11891369B2 (en) | 2016-02-23 | 2020-04-28 | Compounds for binding proprotein convertase subtilisin/kexin type 9 |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US20190119236A1 (en) |
| WO (1) | WO2017147328A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023165373A1 (en) * | 2022-03-02 | 2023-09-07 | 复旦大学 | Micromolecular pcsk9 protein degradation agent, preparation method therefor, and use thereof |
| US11891369B2 (en) | 2016-02-23 | 2024-02-06 | Srx Cardio, Llc | Compounds for binding proprotein convertase subtilisin/kexin type 9 |
| US11925637B2 (en) | 2015-08-21 | 2024-03-12 | Srx Cardio, Llc | Phenylpiperazine proprotein convertase subtilisin/kexin type 9 (PCSK9) modulators and their use |
| US11944619B2 (en) | 2015-08-21 | 2024-04-02 | Srx Cardio, Llc | Phenylalanine small organic compounds to directly modulate PCSK9 protein activity |
| US11945782B2 (en) | 2015-08-21 | 2024-04-02 | Srx Cardio, Llc | Composition and methods of use of tetrahydroisoquinoline small molecules to bind and modulate PCSK9 protein activity |
| US20240226098A1 (en) * | 2020-02-28 | 2024-07-11 | Remix Therapeutics Inc. | Compounds and methods for modulating splicing |
| US12115154B2 (en) | 2020-12-16 | 2024-10-15 | Srx Cardio, Llc | Compounds for the modulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) |
| US12304897B2 (en) | 2019-01-31 | 2025-05-20 | Kyorin Pharmaceutical Co., Ltd. | 15-PGDH inhibitors |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2758686C2 (en) | 2016-08-08 | 2021-11-01 | Мерк Патент Гмбх | Tlr7/8 antagonists and their application |
| CN107652226B (en) * | 2017-11-15 | 2020-03-31 | 上海皓伯化工科技有限公司 | Preparation method of N-Boc-4-piperidine formaldehyde |
| CN108033931B (en) * | 2017-12-28 | 2020-03-10 | 山东铂源药业有限公司 | Synthesis method of N-Boc piperazine |
| SG11202108288YA (en) * | 2019-02-01 | 2021-08-30 | Univ Leland Stanford Junior | Enpp1 inhibitors and methods of modulating immune response |
| EP4027995A4 (en) * | 2019-09-13 | 2023-08-23 | Nimbus Saturn, Inc. | Hpk1 antagonists and uses thereof |
| US20230100006A1 (en) * | 2020-01-27 | 2023-03-30 | The Kitasato Institute | Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitor and Pharmaceutical Use Therefor |
| US11926625B2 (en) | 2021-03-05 | 2024-03-12 | Nimbus Saturn, Inc. | HPK1 antagonists and uses thereof |
| EP4313989A4 (en) | 2021-03-29 | 2025-03-05 | Nimbus Saturn, Inc. | HPK1 ANTAGONISTS AND THEIR USES |
| EP4373808A1 (en) * | 2021-07-23 | 2024-05-29 | Institut national de la santé et de la recherche médicale (INSERM) | Gram-negative bacteria efflux pump inhibitors |
| EP4484434A1 (en) * | 2022-02-23 | 2025-01-01 | Chia Tai Tianqing Pharmaceutical Group Co., Ltd | Fused bicyclic compound containing pyrrolinone |
Family Cites Families (73)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3845770A (en) | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
| YU163075A (en) | 1975-07-21 | 1982-05-31 | Science Union & Cie | Process for preparing new phenoxy derivatives |
| US4326525A (en) | 1980-10-14 | 1982-04-27 | Alza Corporation | Osmotic device that improves delivery properties of agent in situ |
| US5364620A (en) | 1983-12-22 | 1994-11-15 | Elan Corporation, Plc | Controlled absorption diltiazem formulation for once daily administration |
| US5023252A (en) | 1985-12-04 | 1991-06-11 | Conrex Pharmaceutical Corporation | Transdermal and trans-membrane delivery of drugs |
| US4992445A (en) | 1987-06-12 | 1991-02-12 | American Cyanamid Co. | Transdermal delivery of pharmaceuticals |
| US5001139A (en) | 1987-06-12 | 1991-03-19 | American Cyanamid Company | Enchancers for the transdermal flux of nivadipine |
| US4902514A (en) | 1988-07-21 | 1990-02-20 | Alza Corporation | Dosage form for administering nilvadipine for treating cardiovascular symptoms |
| JP2969359B2 (en) | 1989-01-13 | 1999-11-02 | 武田薬品工業株式会社 | Cyclic amine compounds |
| IE912760A1 (en) | 1990-08-06 | 1992-02-12 | Smith Kline French Lab | Compounds |
| DE69231854T2 (en) | 1991-04-17 | 2001-10-04 | Pharmacia & Upjohn Co., Kalamazoo | SUBSTITUTED (S) -3-PHENYLPIPERIDINE DERIVATIVES, THEIR PRODUCTION AND THE USE THEREOF AS DOPAMINE AUTORECEPTOR ANTAGONISTS |
| US5236934A (en) | 1992-08-26 | 1993-08-17 | E. I. Du Pont De Nemours And Company | 1,2,3,4-tetrahydroisoquinolines useful in the treatment of CNS disorders |
| CA2165200A1 (en) | 1993-06-18 | 1995-01-05 | Ambikaipakan Balasubramaniam | Neuropeptide y antagonists and agonists |
| US5863903A (en) | 1994-03-09 | 1999-01-26 | Novo Nordisk A/S | Use of hydroxy alkyl piperidine and pyrrolidine compounds to treat diabetes |
| CA2187257A1 (en) | 1995-10-12 | 1997-04-13 | Enrique Luis Michelotti | Aryl-substituted cycloalkanes and cycloalkenes and herbicidal use thereof |
| US5977134A (en) | 1996-12-05 | 1999-11-02 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| EP0994862B1 (en) | 1997-07-11 | 2005-06-01 | SmithKline Beecham plc | Sulphonamide derivatives being 5-ht6 receptor antagonists and process for their preparation |
| US6381025B1 (en) | 1999-08-19 | 2002-04-30 | Texas Tech University | Interferometric detection system and method |
| US6962998B2 (en) | 2000-06-14 | 2005-11-08 | Toray Industries, Inc. | Processes for producing racemic piperidine derivative and for producing optically active piperidine derivative |
| US7148197B2 (en) | 2000-08-24 | 2006-12-12 | The Regents Of The University Of California | Orally administered small peptides synergize statin activity |
| AR031152A1 (en) | 2000-10-31 | 2003-09-10 | Upjohn Co | NEW TREATMENTS FOR THE CONCERNED LEG SYNDROME |
| MXPA04008104A (en) * | 2002-02-22 | 2006-05-25 | Upjohn Co | Arylsulfone derivatives. |
| CN1662521A (en) | 2002-06-20 | 2005-08-31 | 比奥维特罗姆股份公司 | New Compounds May Be Used to Treat Obesity, Type 2 Diabetes and CNS Disorders |
| US20040082641A1 (en) | 2002-10-28 | 2004-04-29 | Rytved Klaus Asger | Use of glycogen phosphorylase inhibitors for treatment of cardiovascular diseases |
| CA2505873A1 (en) | 2002-11-12 | 2004-05-27 | Pfizer Products Inc. | Quinoline derivatives |
| SE0300010D0 (en) | 2003-01-07 | 2003-01-07 | Astrazeneca Ab | Novel Compounds |
| US20040192728A1 (en) | 2003-02-03 | 2004-09-30 | Ellen Codd | Quinoline-derived amide modulators of vanilloid VR1 receptor |
| US20060293298A1 (en) | 2003-04-10 | 2006-12-28 | Bamford Mark J | Compounds |
| WO2005000309A2 (en) | 2003-06-27 | 2005-01-06 | Ionix Pharmaceuticals Limited | Chemical compounds |
| AU2005247405A1 (en) * | 2004-05-17 | 2005-12-08 | Acadia Pharmaceuticals Inc. | Androgen receptor modulators and method of treating disease using the same |
| WO2006049597A1 (en) | 2004-10-27 | 2006-05-11 | Avanir Pharmaceuticals | Amino acid-derived compounds as modulators of the reverse cholesterol transport |
| NZ564758A (en) | 2005-06-30 | 2011-03-31 | Prosidion Ltd | G-protein coupled receptor agonists |
| GB0514812D0 (en) | 2005-07-19 | 2005-08-24 | Glaxo Group Ltd | Compounds |
| DE102005044817A1 (en) | 2005-09-20 | 2007-03-22 | Sanofi-Aventis Deutschland Gmbh | Substituted 4-phenyltetrahydroisoquinolines, process for their preparation, their use as medicament, and medicament containing them |
| EP1968961A2 (en) | 2005-12-21 | 2008-09-17 | Decode Genetics EHF | Biaryl nitrogen heterocycle inhibitors of lta4h for treating inflammation |
| WO2007097289A1 (en) * | 2006-02-20 | 2007-08-30 | Takeda Pharmaceutical Company Limited | Novel pharmaceutical |
| US7834178B2 (en) | 2006-03-01 | 2010-11-16 | Bristol-Myers Squibb Company | Triazine 11-beta hydroxysteroid dehydrogenase type 1 inhibitors |
| US9187485B2 (en) | 2007-02-02 | 2015-11-17 | Baylor College Of Medicine | Methods and compositions for the treatment of cancer and related hyperproliferative disorders |
| CA2690378A1 (en) * | 2007-06-25 | 2008-12-31 | Amgen Inc. | Phthalazine compounds, compositions and methods of use |
| US8445217B2 (en) | 2007-09-20 | 2013-05-21 | Vanderbilt University | Free solution measurement of molecular interactions by backscattering interferometry |
| WO2009076372A2 (en) | 2007-12-10 | 2009-06-18 | Molecular Sensing, Inc. | Temperature-stable interferometer |
| WO2009143633A1 (en) | 2008-05-30 | 2009-12-03 | Institut De Recherches Cliniques De Montreal | Pcsk9 inhibitors and methods of use thereof |
| CA2735653A1 (en) | 2008-09-04 | 2010-03-11 | Gilead Sciences, Inc. | Method of treating atrial fibrillation |
| US8324385B2 (en) | 2008-10-30 | 2012-12-04 | Madrigal Pharmaceuticals, Inc. | Diacylglycerol acyltransferase inhibitors |
| CN102596941A (en) | 2009-10-01 | 2012-07-18 | 卡迪拉保健有限公司 | Compounds for the treatment of dyslipidemia and related diseases |
| TWI508726B (en) | 2009-12-21 | 2015-11-21 | Gilead Sciences Inc | Method of treating atrial fibrillation |
| US20130197032A1 (en) | 2010-09-20 | 2013-08-01 | A. Carlsson Research Ab | Phenylpiperidine compounds for the treatment of neurological and psychiatric disorders |
| JOP20200043A1 (en) | 2011-05-10 | 2017-06-16 | Amgen Inc | Ways to treat or prevent cholesterol disorders |
| TWI510480B (en) | 2011-05-10 | 2015-12-01 | Gilead Sciences Inc | Fused heterocyclic compounds as ion channel modulators |
| EP2794589A1 (en) | 2011-12-23 | 2014-10-29 | Novartis AG | Compounds for inhibiting the interaction of bcl2 with binding partners |
| WO2013158300A1 (en) | 2012-04-19 | 2013-10-24 | Molecular Sensing, Inc. | Improved event detection for back-scattering interferometry |
| CN107243078A (en) | 2012-05-25 | 2017-10-13 | 克塔巴西斯制药有限公司 | Make proprotein convertases subtilisin/types of KEXIN 9(PCSK9)The method of reduction |
| WO2014002105A1 (en) | 2012-06-25 | 2014-01-03 | Cadila Healthcare Limited | Compounds for the treatment of dyslipidemia and other diseases |
| WO2014101120A1 (en) | 2012-12-28 | 2014-07-03 | Merck Sharp & Dohme Corp. | Heterobicyclo-substituted-7-methoxy-[1,2,4]triazolo[1,5-c]quinazolin-5-amine compounds with a2a antagonist properties |
| US10287317B2 (en) | 2013-02-15 | 2019-05-14 | Srx Cardio, Llc | Proprotein convertase subtilisin kexin type 9 (PCSK9) allosteric binding ligands to modulate serum low density lipoprotein (LDL) levels |
| EP2956154A4 (en) | 2013-02-15 | 2016-07-27 | Srx Cardio Llc | Proprotein convertase subtilisin/kexin type 9 (pcsk9) allosteric binding ligands to mudulate serum low density lipoprotein (ldl) levels |
| ES2489815B1 (en) | 2013-02-21 | 2015-08-10 | Centro De Investigación Príncipe Felipe | New hexakis-substituted p-terphenyls with bilateral groups for the treatment of human immunodeficiency virus type 1 (HIV-1) infection and other diseases |
| US20160039945A1 (en) | 2013-03-15 | 2016-02-11 | Amgen Inc. | Human antigen binding proteins that bind to proprotein convertase subtilisin kexin type 9 |
| US10131637B2 (en) * | 2013-03-15 | 2018-11-20 | Shifa Biomedical Corporation | Anti-PCSK9 compounds and methods for the treatment and/or prevention of cardiovascular diseases |
| US9908851B2 (en) | 2013-08-16 | 2018-03-06 | Duke University | 2-piperidinyl substituted N,3-dihydroxybutanamides |
| US9334263B2 (en) | 2013-10-17 | 2016-05-10 | Blueprint Medicines Corporation | Compositions useful for treating disorders related to kit |
| WO2016029037A1 (en) | 2014-08-21 | 2016-02-25 | Srx Cardio, Llc | Composition and methods of use of small molecules as binding ligands for the modulation of proprotein convertase subtilisin/kexin type 9(pcsk9) protein activity |
| US20170267689A1 (en) | 2014-08-25 | 2017-09-21 | The Governors Of The University Of Alberta | Stimuli-switchable moieties, monomers and polymers incorporating stimuli-switchable moieties, and methods of making and using same |
| WO2016107602A1 (en) | 2015-01-01 | 2016-07-07 | 成都贝斯凯瑞生物科技有限公司 | Substituted nitrogen heterocyclic derivatives and use thereof |
| WO2016107603A1 (en) | 2015-01-01 | 2016-07-07 | 成都贝斯凯瑞生物科技有限公司 | Substituted nitrogen-containing heterocyclic derivatives and applications thereof |
| US10568882B2 (en) | 2015-08-21 | 2020-02-25 | Srx Cardio, Llc | Phenylpiperazine proprotein convertase subtilisin/kexin type 9 (PCSK9) modulators and their use |
| HK1260897A1 (en) | 2015-08-21 | 2019-12-27 | Portola Pharmaceuticals, Inc. | Composition and methods of use of tetrahydroisoquinoline small molecules to bind and modulate pcsk9 protein activity |
| US10821106B2 (en) | 2015-08-21 | 2020-11-03 | Srx Cardio, Llc | Composition and methods of use of novel phenylalanine small organic compounds to directly modulate PCSK9 protein activity |
| CN113750101A (en) | 2015-12-10 | 2021-12-07 | Ptc医疗公司 | Methods for treating huntington's disease |
| WO2017147328A1 (en) | 2016-02-23 | 2017-08-31 | Portola Pharmaceuticals, Inc. | Compounds for binding proprotein convertase subtilisin/kexin type 9 (pcsk9) |
| WO2018026866A1 (en) | 2016-08-03 | 2018-02-08 | Neuropore Therapies, Inc. | Lipid-substituted amino 1,2-and 1,3-diol compounds as modulators of tlr2 dimerization |
| US11091466B2 (en) | 2017-03-17 | 2021-08-17 | Cardio Therapeutics Pty Ltd | Heterocyclic inhibitors of PCSK9 |
| WO2020252383A2 (en) | 2019-06-14 | 2020-12-17 | Srx Cardio, Llc | Compounds for the modulation of proprotein convertase subtilisin/kexin type 9 (pcsk9) |
-
2017
- 2017-02-23 WO PCT/US2017/019189 patent/WO2017147328A1/en not_active Ceased
- 2017-02-23 US US16/078,578 patent/US20190119236A1/en not_active Abandoned
-
2020
- 2020-04-28 US US16/861,166 patent/US11891369B2/en active Active
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11925637B2 (en) | 2015-08-21 | 2024-03-12 | Srx Cardio, Llc | Phenylpiperazine proprotein convertase subtilisin/kexin type 9 (PCSK9) modulators and their use |
| US11944619B2 (en) | 2015-08-21 | 2024-04-02 | Srx Cardio, Llc | Phenylalanine small organic compounds to directly modulate PCSK9 protein activity |
| US11945782B2 (en) | 2015-08-21 | 2024-04-02 | Srx Cardio, Llc | Composition and methods of use of tetrahydroisoquinoline small molecules to bind and modulate PCSK9 protein activity |
| US11891369B2 (en) | 2016-02-23 | 2024-02-06 | Srx Cardio, Llc | Compounds for binding proprotein convertase subtilisin/kexin type 9 |
| US12304897B2 (en) | 2019-01-31 | 2025-05-20 | Kyorin Pharmaceutical Co., Ltd. | 15-PGDH inhibitors |
| US20240226098A1 (en) * | 2020-02-28 | 2024-07-11 | Remix Therapeutics Inc. | Compounds and methods for modulating splicing |
| US12115154B2 (en) | 2020-12-16 | 2024-10-15 | Srx Cardio, Llc | Compounds for the modulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) |
| WO2023165373A1 (en) * | 2022-03-02 | 2023-09-07 | 复旦大学 | Micromolecular pcsk9 protein degradation agent, preparation method therefor, and use thereof |
| CN116731005A (en) * | 2022-03-02 | 2023-09-12 | 复旦大学 | A PCSK9 small molecule protein degradation agent and its preparation method and application |
Also Published As
| Publication number | Publication date |
|---|---|
| US11891369B2 (en) | 2024-02-06 |
| WO2017147328A1 (en) | 2017-08-31 |
| US20210032214A1 (en) | 2021-02-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11891369B2 (en) | Compounds for binding proprotein convertase subtilisin/kexin type 9 | |
| USRE48711E1 (en) | Apoptosis signal-regulating kinase inhibitors | |
| US20220267269A1 (en) | Compounds for the modulation of proprotein convertase subtilisin/kexin type 9 (pcsk9) | |
| US12115154B2 (en) | Compounds for the modulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) | |
| USRE48150E1 (en) | Apoptosis signal-regulating kinase inhibitors | |
| US9458132B2 (en) | Therapeutic compounds and compositions and their use as PKM2 modulators | |
| CA2929742A1 (en) | Sulfoximine substituted quinazolines for pharmaceutical compositions | |
| HK40056907A (en) | Apoptosis signal-regulating kinase inhibitors | |
| HK1216426B (en) | Apoptosis signal-regulating kinase inhibitors | |
| HK1170482B (en) | Apoptosis signal-regulating kinase inhibitors |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HCR COLLATERAL MANAGEMENT, LLC, CONNECTICUT Free format text: SECURITY INTEREST;ASSIGNOR:PORTOLA PHARMACEUTICALS, INC.;REEL/FRAME:048633/0673 Effective date: 20190318 |
|
| AS | Assignment |
Owner name: PORTOLA PHARMACEUTICALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PANDEY, ANJALI;BOWERS, SIMEON;BARTA, THOMAS E.;AND OTHERS;SIGNING DATES FROM 20190204 TO 20190221;REEL/FRAME:048664/0152 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| AS | Assignment |
Owner name: PORTOLA PHARMACEUTICALS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HCR COLLATERAL MANAGEMENT, LLC;REEL/FRAME:050262/0163 Effective date: 20190904 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| AS | Assignment |
Owner name: SRX CARDIO, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PORTOLA PHARMACEUTICALS, INC.;REEL/FRAME:051253/0287 Effective date: 20190917 Owner name: SRX CARDIO, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PORTOLA PHARMACEUTICALS, INC.;REEL/FRAME:051253/0245 Effective date: 20190917 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |