[go: up one dir, main page]

US20190106857A1 - Frame positioning device for positioning a frame over an inlet of a catch basin or manhole and method for positioning the same - Google Patents

Frame positioning device for positioning a frame over an inlet of a catch basin or manhole and method for positioning the same Download PDF

Info

Publication number
US20190106857A1
US20190106857A1 US16/156,352 US201816156352A US2019106857A1 US 20190106857 A1 US20190106857 A1 US 20190106857A1 US 201816156352 A US201816156352 A US 201816156352A US 2019106857 A1 US2019106857 A1 US 2019106857A1
Authority
US
United States
Prior art keywords
frame
receiving
positioning
grate
leveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/156,352
Inventor
Denis Fournier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canada Pipe Co ULC
Original Assignee
Canada Pipe Co ULC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canada Pipe Co ULC filed Critical Canada Pipe Co ULC
Priority to US16/156,352 priority Critical patent/US20190106857A1/en
Assigned to Canada Pipe Company ULC reassignment Canada Pipe Company ULC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOURNIER, DENIS
Publication of US20190106857A1 publication Critical patent/US20190106857A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/12Manhole shafts; Other inspection or access chambers; Accessories therefor
    • E02D29/14Covers for manholes or the like; Frames for covers
    • E02D29/1409Covers for manholes or the like; Frames for covers adjustable in height or inclination
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/22Gutters; Kerbs ; Surface drainage of streets, roads or like traffic areas
    • E01C11/224Surface drainage of streets
    • E01C11/225Paving specially adapted for through-the-surfacing drainage, e.g. perforated, porous; Preformed paving elements comprising, or adapted to form, passageways for carrying off drainage
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0004Synthetics
    • E02D2300/0006Plastics
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0026Metals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0026Metals
    • E02D2300/0029Steel; Iron
    • E02D2300/0031Steel; Iron in cast iron form
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0085Geotextiles

Definitions

  • the invention relates to a positioning device and more particularly to a positioning device for installing a frame over an inlet of a catch basin or a manhole.
  • catch basins and sewer inlets are disposed at various locations on concrete or paved roads to evacuate excess rain water and ground water or small debris, and to give access to the drainage system below.
  • side inlets There are two main types of water drainage systems: side inlets and covered inlets.
  • Side inlets are usually located at the curb of a street or under the sidewalk, and the pavement of the street is often angled towards the curb to direct the flow of water and small debris by gravity towards the curb.
  • Covered inlets are typically installed in a concrete or paved street or road and comprise a grate or cover which prevents large debris from accessing the inlet.
  • Covered inlets are usually mounted onto a frame for covering an inlet of a manhole or catch basin. The manhole or catch basin often connects to a sewage system having a plurality of interconnected pipes.
  • covered inlets may sometimes not be properly leveled with the concrete or paved road which can create problems for vehicles.
  • snow removal vehicles are needed to remove snow and/or ice from the streets.
  • a mechanical shovel is usually mounted in front of the snow removing vehicle and scrapes the snow and/or ice laterally to the side of the street.
  • the covered inlets may inadvertently be removed during a snow removal process. This situation may create significant circulation problems or could even create a danger for pedestrians or even vehicles circulating on the street.
  • vehicles such as long haul trucks and cars may repetitively travel on covered inlets.
  • the repetitive pressure of vehicles on covered inlets may in certain situations lift the covered inlets from the frame, which may create significant traffic problems and may also endanger pedestrians.
  • a device for positioning a frame over a head of one of a catch basin and a manhole comprising: an elongated body extending between a first end and a second end, the elongated body having an adjustable length, the first end second ends of the elongated body being adapted to abut opposite sections of a top face of the head; and a first leveling member and a second leveling member each secured to the elongated member such that a distance between the first and second leveling members varies when the length of the elongated body varies, the first and second leveling members each comprising: a guide member extending from the elongated member; and a frame receiving member slidably and rotatably secured to the elongated member, the frame receiving member being configured for receiving and supporting a lower end of the frame in order to position and orient the frame relative to the head.
  • the elongated body comprises a tubular section and a male section slidably inserted into the tubular section, the first leveling member being secured to the tubular section and the second leveling member being secured to the male section.
  • the device further comprises a securing mechanism for securing the tubular section and the male section together.
  • the guide member of the first and second leveling members is removably secured to the elongated body.
  • the frame receiving member comprises a first plate provided with an aperture for receiving the guide member therein, and a second plate and a third plate each extending form the first plate to form a U-shaped space for receiving the lower end of the frame therein.
  • first leveling member and the second leveling member each further comprise a locking mechanism for securing the frame receiving member to the guide member.
  • first end and the second end of the elongated body each comprise a cantilevered section for abutting the opposite sections of the top face of the head.
  • a frame positioning device for positioning a frame in a desired position over an inlet of one of a catch basin and a manhole, the inlet including an opening and a rim surrounding the opening, the positioning device comprising: an elongated body having a first end portion adapted to be supported on the rim and a second end portion adapted to be supported on the rim opposite the first portion such that the body extends across the opening; first and second leveling members extending upwardly from the body, the first leveling assembly being located towards the first end portion and the second leveling assembly being located towards the second end portion, each leveling assembly including a guide member attached to the body and a receiving member movably connected to the guide member for receiving a lower end portion of the frame, the receiving member being movable generally vertically towards and away from the body to allow the frame to be positioned and angled in a desired position relative to the inlet.
  • each one of the first and second abutment portions includes a cantilevered section which extends away from the other one of the first and second abutment portions.
  • each receiving member includes a pair of vertical walls for receiving the lower edge of the frame therebetween.
  • the body includes a first tube and a second tube telescopically mounted within the first tube, the first end portion being defined on the first tube and the second end portion being defined on the second tube, the first and second tube being movable relative to each other between a closed position in which the first end portion and the second end portion are spaced by a first distance and a deployed position in which the first end portion and the second end portion are spaced by a second distance greater than the first distance.
  • the device further comprises a locking handle for locking the first and second tubes together in the deployed position.
  • a method for positioning a frame over an inlet of a catch basin or manhole comprising: providing at least one frame positioning device as described above; positioning the first end portion of the at least one frame positioning device on a rim of a concrete head and the second end portion of the at least one frame positioning device on the rim opposite the first end portion such that the body extends across the opening; moving a lower edge of the frame and a corresponding receiving member towards each other until the lower edge is received in the receiving member; vertically moving the at least one supporting member along a displacement member to a desired vertical location.
  • positioning the lower edge of the frame onto the supporting members comprises aligning each recess of the lower edge of the frame with each supporting members.
  • the method further comprises positioning a covering layer around the frame and a guide.
  • the covering layer is a geotextile membrane.
  • the method further comprises installing a cover or grate on the frame.
  • installing a cover or grate on the frame comprises deforming the cover or grate by elastic deformation to fit the cover or grate on a cover receiving shoulder of the frame.
  • the method further comprises locking the cover or grate on the frame.
  • locking the cover or grate on the frame comprises inserting a locking member in an opening for pressure fitting the cover or grate against the cover receiving contour of the frame.
  • FIG. 1 is an exploded perspective view of a cover or grate assembly disposed over a concrete head of a catch basin or a manhole and maintained in a desired position and orientation using a pair of positioning devices, in accordance with one embodiment;
  • FIG. 2 is a top front perspective view of a guide of the grate assembly illustrated in FIG. 1 ;
  • FIG. 3 is a bottom front perspective view of the guide illustrated in FIG. 2 ;
  • FIG. 4 is a perspective view of one of the positioning devices illustrated in FIG. 1 ;
  • FIG. 5 is an enlarged perspective view of area A of FIG. 4 ;
  • FIG. 6 is a side elevation view of the positioning device illustrated in FIG. 4 ;
  • FIG. 7 is a top perspective view of a frame of the grate assembly illustrated in FIG. 1 ;
  • FIG. 8 is a perspective view of a grate of the grate assembly illustrated in FIG. 1 ;
  • FIG. 9 is a cross-section view taken along cross-section line D of the grate of FIG. 8 ;
  • FIG. 10 is a perspective view illustrating the positioning of the guide illustrated FIG. 2 onto a concrete head
  • FIG. 11 is a top view illustrating the positioning devices illustrated in FIG. 1 in their deployed position in the corresponding recesses of the guide and on the concrete head;
  • FIG. 12 is a cross-section view illustrating the positioning of the leveling assemblies onto one of the positioning devices illustrated in FIG. 1 , during the installation of the frame;
  • FIG. 13 is a cross-section view illustrating the positioning of the frame of FIG. 7 onto the positioning device of FIG. 4 ;
  • FIG. 14 is an enlarged view of the positioning of the frame of FIG. 7 onto the positioning device of FIG. 4 ;
  • FIG. 15 is a schematic side view showing the grate assembly of FIG. 1 installed over the catch basin or manhole;
  • FIG. 16 is a top perspective view of the grate assembly of FIG. 1 , showing the grate being compressed and installed in the frame;
  • FIG. 17 is a perspective view of a further positioning device, in accordance with another embodiment.
  • FIG. 1 shows a cover or grate assembly 100 disposed over a concrete head 104 , such as a concrete head for a catch basin or a manhole, and maintained in a desired position and orientation using a pair of positioning devices 300 a and 300 b, in accordance with one embodiment.
  • a head such as the head 104 is to be installed and secured within a hole such as a catch basin or a manhole.
  • the concrete head 104 includes an opening or inlet 102 and a rim or upper edge surrounding the inlet 102 on its upper face, i.e. on the face of the head 104 to face the grate or cover.
  • the grate assembly 100 includes a frame 400 to be disposed above the concrete head 104 .
  • the grate assembly 100 further comprises a guide 200 to be positioned on top of the head 104 for guiding the frame 400 with respect to the head 104 as illustrated in FIG. 1 and further described below.
  • a grate 500 is further to be positioned onto the frame 400 for allowing passage of excess water and small debris which can be found in streets into the catch basin or manhole while preventing the passage of larger debris.
  • the cover or grate assembly 100 could comprise a cover.
  • the frame 400 When the grate assembly 100 is properly installed, the frame 400 is positioned and angled in a desired position and angle such that a top surface of the frame 400 generally lies in a plane corresponding to the current or desired top surface of the road above the concrete head 104 .
  • the top surface of the grate or cover may be substantially coplanar with the top surface of the road.
  • a concrete road layer is further poured around the frame 400 to define the road surface above the concrete head 104 , as well as to maintain the frame 400 in its desired position and angle.
  • the cover or grate assembly 100 further comprises a positioning system or apparatus to be positioned on top of the head 104 and configured for supporting the frame 400 .
  • the positioning system is configured for adjusting an orientation of the frame 400 relative to the head 104 and a distance between the frame 400 and the head 104 .
  • the positioning system comprises two positioning devices 300 a and 300 b which are generally elongated and are received on top of the rim or upper edge of the head 104 .
  • the positioning devices 300 a and 300 b are used to help position the frame to its desired position and/or angle relative to the head 104 during the creation of the road surface around the frame 400 , and can be removed once the road surface is set and the frame 400 is held into position.
  • FIGS. 2 and 3 illustrate one embodiment of the guide 200 which is designed and shaped to be positioned on the upper edge of head 104 and help to secure the frame 400 over the head 104 .
  • the guide 200 has an asymmetrical truncated circular shape and comprises a bottom mounting end 210 for mounting to the head 104 and a top receiving end 218 adapted to receive the frame 400 .
  • the bottom mounting end 210 includes a base 202 which has an outer edge 206 , an inner edge 208 and a bottom mounting surface 204 defined between the outer and inner edges 206 , 208 and adapted to be placed against the head 104 .
  • the guide 200 further comprises a first straight wall portion 212 , a second straight wall portion 214 opposed to the first wall portion 212 , and a pair of outwardly convex walls 216 a and 216 b extending between the first wall portion 212 and the second wall portion 214 .
  • the first wall portion 212 , the second wall portion 214 , and the pair of outwardly convex walls 216 a and 216 b extend upwardly from the inner edge 208 of the base 202 to the top receiving end 218 of the guide 200 .
  • the first wall portion 212 and the second wall portion 214 are parallel to each other and the first wall portion 212 is shorter than the second wall portion 214 .
  • the first wall portion 212 , the second wall portion 214 and the pair of outwardly convex walls 216 a and 216 b thereby define an opening 220 which may be sized and shaped generally similarly to the inlet 102 such that when the guide 200 is mounted on the catch basin or manhole 100 , the opening 220 is in vertical alignment with the inlet 102 .
  • the wall portions could be configured differently.
  • first wall portion 212 , the second wall portion 214 and the pair of outwardly convex walls 216 a and 216 b are slightly angled inwardly so as to center the frame 400 once received in the top receiving end 218 of the guide relative to the inlet 102 .
  • the wall portions could instead be vertical instead of being angled.
  • the base 202 further comprises a plurality of recesses 222 a, 222 b, 222 c and 222 d defined in the bottom mounting surface 204 of the base 202 .
  • pockets or chambers are defined between the recesses 222 a, 222 b, 222 c and 222 d and the top face of the head 104 .
  • the chambers are sized and shaped so as to each receive a respective end of the one of the positioning devices 300 a and 300 b, which are supported by the concrete head 104 .
  • recesses 222 a and 222 d are located on opposite sides of the opening 220 and are adapted to receive the first positioning device 300 a, as will be further explained below.
  • recesses 222 b and 222 c are also located on opposite sides of the opening 220 and are adapted to receive the second positioning device 300 b, as will also be explained further below.
  • each outwardly convex wall 216 a and 216 b comprises opposed ribs 224 and 226 which extend away from the convex wall 216 a and 216 b towards the outer edge 206 of the base 202 , and are secured to the base 202 .
  • the first wall portion 212 also comprises a central rib 228 which extends away from the first wall portion 212 towards the outer edge 206 of the base 202 , and is secured to the base 202 .
  • the ribs 224 , 226 and 228 may provide structural reinforcement to the guide 200 , as well as provide stability when multiple guides are stacked on top of each other and further facilitate the packaging of multiple guides together.
  • the guide 200 also includes a circular hole 230 defined in the base 202 , generally between the central rib 228 and the recess 222 c. Alternatively, the guide 200 may not include the hole 230 .
  • the guide 200 is made of cast iron. Alternately, the guide 200 may be made of another robust material such as reinforced polymer or another metal.
  • FIGS. 4 to 6 illustrate one embodiment of the positioning device 300 a adapted for the installation of the frame 400 within the guide 200 over the inlet 102 .
  • the positioning devices 300 a and 300 b being generally identically construed, only positioning device 300 a will be described. The person skilled in the art will appreciate that a similar description also applies to positioning device 300 b.
  • the positioning device 300 a comprises an elongated body 302 which extends between a first end portion 304 and an opposed second end portion 306 . As described below, the elongated body 302 is provided with an adjustable length.
  • first end portion 304 and the second end portion 306 are adapted to abut the upper edge of the head 104 so as to engage the head 104 . Furthermore, the first end portion 304 and the second end portion 306 are sized and shaped to be received in the recesses 222 a and 222 d of the guide 200 , respectively. Alternatively, the first end portion 304 and the second end portion 306 could be received in the recesses 222 c and 222 d of the guide 200 .
  • the body 302 comprises a first elongated tube 308 having a generally rectangular section.
  • the first tube 308 extends between a first end 310 and a second end 312 located opposite to the first end 310 .
  • the first elongated tube 308 comprises a top wall 314 , a bottom wall 316 and a pair of lateral walls 318 a and 318 b.
  • the first end portion 304 of the elongated member 302 comprises a first abutment member 320 having a generally rectangular shape.
  • the first abutment member 320 comprises a securing section 322 secured to the top wall 314 of the first elongated tube 308 and a cantilevered section 324 extending longitudinally away from the securing section 322 .
  • the cantilevered section 324 is sized and shaped so as to be received by in one of the chambers defined by one of the recesses 222 a, 222 b, 222 c and 222 d and the top surface of the head 104 .
  • the securing section 322 may be secured to the top wall 314 of the first elongated tube 308 by welding, by using fasteners or by any other appropriate fastening technique.
  • the first abutment member 320 could even be integrally formed within the first elongated tube 308 .
  • the cantilevered section 324 of the first abutment member 320 is adapted to be received in recess 222 a of the guide 200 and to be supported by the upper edge of the head 104 . It should be understood that the cantilevered section 324 may also be sized and shaped so as to be received by in one of the chambers defined by one of the recesses 222 b, 222 c and 222 d and the top surface of the head 104 .
  • the cantilevered section 324 extends two inches away from the first end 310 of the first elongate tube 308 .
  • the cantilevered section 324 could have a different size and/or configuration.
  • the first elongated tube 308 further comprises a first leveling assembly 326 adapted to receive a lower end of the frame 400 .
  • the first leveling assembly 326 is secured to the securing section 322 of the first abutment member 320 .
  • the first leveling assembly 326 may be removably secured to the securing section 322 by a bushing 328 .
  • the first leveling assembly 326 comprises a first guide or displacement member 330 , extending vertically from the first abutment member 320 .
  • the first leveling assembly 326 further comprises a first receiving or supporting member 332 adapted to receive the lower end of the frame 400 .
  • the first supporting member 332 is movably connected to the displacement member 330 and is adapted to selectively move vertically along the displacement member 330 .
  • the first supporting member 332 may also be rotatably connected to the displacement member 330 so that the first supporting member 322 may rotate about the displacement member 330 .
  • the first supporting member 332 is sandwiched between an upper locking member 334 a and a lower locking member 334 b to maintain the first supporting member 332 at a desired vertical location along the first displacement member 330 .
  • the first displacement member 330 is an elongated bolt removably secured to the bushing 328 .
  • the first displacement member 330 could include another type of threaded rod.
  • the first displacement member 330 could instead include a ball stud bolt comprising an O-ring (not shown) removably secured to the securing section 322 of the first abutment member 320 .
  • each locking member 334 a and 334 b includes a nut adapted to be screwed on the first displacement member 330 .
  • the locking members 334 a and 334 b are configured for vertically positioning and locking the first supporting member 332 at a desired vertical height for receiving the lower end of the frame 400 .
  • the first supporting member 332 comprises a mounting section 336 adapted to be positioned on the first displacement member 330 and a receiving section 338 adapted to receive the lower end of the frame 400 .
  • the receiving section 338 has a generally U-shaped cross-section and includes a pair of generally parallel vertical walls 340 a and 340 b which each extend from the mounting section 336 and are spaced apart by a distance adequate for receiving the lower end of the frame 400 between the walls 340 a and 340 b. It will therefore be understood that the distance between the walls 340 a and 340 b is substantially equal to or greater than the thickness of the lower end of the frame 400 .
  • the mounting section 336 has a generally rectangular shape and comprises a plate provided with an aperture therethrough sized and shaped so as to receive the first displacement member 330 therein.
  • the aperture may be threaded.
  • the mounting section 336 is rotatable about the first displacement member 330 to position the vertical walls 340 a and 340 b of the receiving section 338 generally parallel with the sidewall of the frame 400 , such that the lower end of the frame 400 may be received between the vertical walls 340 a and 340 b.
  • the elongated body 302 of the positioning device 300 a further comprises a second elongated member 340 which may be a tube.
  • the second elongated tube 340 has a generally rectangular section and has a first end 342 and a second end 344 located opposite the first end 342 .
  • the second elongated tube 340 comprises a top wall 346 , a bottom wall 348 and a pair of lateral walls 350 a and 350 b.
  • the second elongated tube 340 has a smaller cross-section than that of the first elongated tube 308 and is adapted to be slidably received within the first elongated tube 308 .
  • the first and second elongated tubes 308 , 340 are adapted to slide relative to each other to thereby increase or reduce the length of the body 302 .
  • the first and second elongated tubes 308 , 340 are adapted to slide relative to each other between a closed position in which the first end portion 304 and the second end portion 306 are spaced by a first distance and a deployed position in which the first end portion 304 and the second end portion 306 are spaced by a second distance greater than the first distance.
  • the positioning device 300 a may comprise a pair of flat bars 352 a and 352 b which are positioned within the aperture defined by the first elongated tube 308 between the first and second elongated tubes 308 and 340 for providing a flush fit between the first and second elongated tubes 308 and 340 .
  • This configuration allows standard-sized tubes to be used.
  • the second elongated tube 340 could be sized and shaped to form a flush fit with the first elongated tube 308 without requiring flat bars.
  • the second end portion 306 of the elongated body 302 comprises a second abutment member 354 which is generally similar to the first abutment member 320 .
  • the second abutment member 354 comprises a securing section 356 secured to the top wall 346 of the second elongate tube 340 .
  • the second abutment member 354 further comprises a cantilevered section 358 extending longitudinally away from the securing section 356 .
  • the cantilevered section 356 of the second abutment member 354 is adapted to be received on the upper edge of the sleeve 104 , within the recess the 222 b of the guide 200 for example.
  • the second elongated tube 340 further comprises a second leveling assembly 360 adapted to receive a lower end of the frame 400 for leveling it relative a concrete or paved road.
  • the second leveling assembly 360 is secured to the securing section 356 of the second abutment member 354 .
  • the second leveling assembly 360 is removably secured to the securing section 356 by a bushing 362 .
  • the second leveling assembly 360 comprises a second guide or displacement member 364 , extending vertically from the second abutment member 354 .
  • the second leveling assembly 360 further comprises a second receiving or supporting member 366 adapted to receive the lower end of the frame 400 .
  • the supporting member 366 is slidably and rotatably connected to the displacement member 364 and is adapted to selectively move vertically along the displacement member 364 and rotate about the displacement member 364 .
  • the second supporting member 366 is sandwiched between an upper locking member 368 c and a lower locking member 368 d to vertically maintain the second supporting member 366 at a desired vertical location on the second displacement member 364 .
  • the second displacement member 364 is an elongated bolt removably secured to the bushing 362 .
  • the second displacement member 364 could instead include a ball stud bolt comprising an O-ring (not shown) removably secured to the securing section 356 of the second abutment member 354 .
  • each locking member 368 c and 368 d includes a pair of nuts adapted to be screwed on the second displacement member 364 .
  • the locking members 368 c and 368 d are configured for vertically positioning and locking the second supporting member 366 at a desired vertical height for receiving the lower end of the frame 400 .
  • the second supporting member 366 comprises a mounting section 370 adapted to be positioned on the second displacement member 364 and a receiving section 372 adapted to receive the lower end of the frame 400 .
  • the receiving section 372 has a generally U-shaped cross-section and includes a pair of spaced apart vertical walls 374 c and 374 d which are spaced apart to receive the lower end of the frame 400 .
  • the mounting section 370 has a generally rectangular shape and comprises a plate provided with an aperture therethrough sized and shaped so as to receive the second displacement member 364 therein.
  • the aperture may be threaded.
  • the mounting section 370 is adapted to rotate around the second displacement member 364 to position the vertical walls 374 c and 374 d of the receiving section 372 generally parallel with the sidewall of the frame 400 , such that the lower end of the frame 400 may be received between the vertical walls 374 c and 374 d.
  • the positioning device 300 a further includes a locking mechanism 376 for locking the first and second tubes 308 , 340 relative to each other in the deployed position. Specifically, the locking mechanism 376 prevents the first and second tubes 308 , 340 from longitudinally moving relative to each other.
  • the locking mechanism 376 comprises a locking handle 378 including a rod extending through a bushing 380 secured to the top wall 314 of the first elongated tube 308 and through the top wall 314 .
  • the rod of the locking handle 378 is further adapted to extend through a corresponding hole defined in the second tube 340 near its first end 342 . In this embodiment, when the positioning device 300 a is in the deployed position, the rod of the handle 378 is aligned with the hole defined in the second tube 340 .
  • the positioning device 300 a is made of steel.
  • positioning device 300 a could be made of another rigid material such as another metal or reinforced polymers.
  • the frame 400 comprises a hollow body 402 including a closed sidewall 410 defining a passageway 406 and a flange 428 extending generally perpendicularly to the sidewall 410 .
  • the sidewall 410 has a generally asymmetrical truncated circular shape, similar to the general shape of the opening 220 of the guide 200 .
  • the hollow body 402 is adapted to be received in the opening 220 of the guide 200 through the top receiving end 218 of the guide 200 .
  • the hollow body 402 is positioned onto the supporting members of the pair of positioning devices 300 a and 300 b.
  • the hollow body 402 has a smaller section than the opening 220 of the guide 200 for enabling a tilt of the frame 400 relative the guide 200 during leveling with a concrete or paved road.
  • the hollow body 402 has an upper end 404 which defines an inlet of the passageway 406 , and a lower end 408 which defines an outlet of the passageway 406 .
  • the sidewall 410 which includes first straight wall portion 412 , a second straight wall portion 414 opposite the first straight wall portion 412 , and a pair of opposed outwardly convex elongated wall portions 416 a and 416 b extending between the first and second straight wall portions 412 and 414 .
  • the hollow body 402 could be shaped differently so as to match the shape of the guide 200 and of the inlet 102 .
  • the cross-section of the hollow body 402 may be circular, square, etc..
  • the sidewall 410 has an inner surface 418 and an outer surface 420 .
  • the sidewall 410 may be slightly tapered.
  • the inner surface 418 may be generally perpendicular to the flange 428 and the outer surface 420 may be slightly angled relative to the inner surface 418 .
  • the inner and outer surfaces 418 , 420 could be parallel to each other and both generally perpendicular to the flange 428 .
  • the upper end 404 of the hollow body 402 comprises opposed steps 422 a and 422 b located on the inner surface 418 of the pair of opposed outwardly convex elongate wall portions 416 a and 416 b.
  • the opposed steps 422 a and 422 b define a grate receiving shoulder 424 for receiving the grate 500 .
  • the grate receiving shoulder 424 comprises a plurality of tabs 426 a, 426 b, 426 c (not shown) and 426 d (not shown) projecting radially inwardly into the passageway 406 for securing the grate 500 on the grate receiving shoulder 424 , as it will be explained in more details further.
  • the flange 428 extends laterally outwardly from the upper end 404 of the hollow body 402 .
  • the flange 428 comprises a first flange portion 430 adjacent the first elongate wall portion 412 at the upper end thereof and a pair of opposed side flange portions 432 a and 432 b adjacent the pair of opposed outwardly convex elongate wall portions 416 a and 416 b.
  • the flange 428 could further comprise an additional flange portion adjacent the second elongate wall portion 414 .
  • the flange 428 and the upper end of the second elongated wall portion 414 include a plurality of grooves 434 .
  • the grooves 434 are slightly sloped with respect to the horizontal toward the passageway 406 so as to facilitate water to flow from the concrete or paved road toward the passageway 406 of the frame 400 .
  • the flange 428 may only have one groove 434 .
  • the grooves 434 could have a different shape than the one shown in the FIG. 7 .
  • the grooves 434 may be larger.
  • the lower end 408 of the hollow body 402 comprises a pair of opposed recesses 436 a, 436 b and 436 c, 436 d for positioning the frame 400 onto the supporting members of the positioning devices 300 a and 300 b. It will be appreciated that positioning the recesses 436 a, 436 b, 436 c and 436 d onto the supporting members of the positioning devices 300 a and 300 b prevents the frame 400 from laterally moving when the frame 400 is positioned in the guide 200 .
  • recess 436 a is located at the lower end of the first elongate wall portion 412 proximate the outwardly convex elongate wall portion 416 a while recess 436 c is located at the lower end of the first elongate wall portion 412 , proximate the outwardly convex elongate wall portions 416 b.
  • recess 436 b is located at the lower end of the second elongate wall portion 414 proximate the outwardly convex elongate wall portion 416 a while recess 436 d is located at the lower end of the second elongate wall portion 414 , proximate the outwardly convex elongate wall portions 416 b.
  • the frame 400 is made of ductile iron.
  • the frame 400 could be made of cast iron, or a polymer, or hard rubber, or any suitable material.
  • the configuration described above is merely provided as an example, and that multiple alternative configurations are possible.
  • the inlet 102 of the concrete head 104 , the guide 200 and the frame 400 could be circular, or have any other shape considered suitable by a skilled person.
  • FIGS. 8 and 9 illustrate one embodiment of the grate 500 which includes a grate frame 502 which has a shape matching the shape of the grate receiving shoulder 424 of the frame 400 .
  • the grate frame 502 includes a first longitudinal side 504 , a second longitudinal side 506 , and two curved lateral sides 508 a and 508 b.
  • the grate 500 is made of ductile iron which allows some elastic deformation. As such, the grate frame 502 can be deformed to fit onto the grate receiving shoulder 424 of the frame 400 , under the tabs 426 a, 426 b, 426 c and 426 d. For instance, if the grate receiving shoulder 424 has a perimeter slightly smaller than the perimeter of the grate frame 502 , the grate 500 is deformed by compressing its sides for positioning onto the grate receiving shoulder 424 . Alternatively, the grate receiving shoulder 424 could have a perimeter slightly larger than the perimeter of the grate frame 502 .
  • the grate frame 502 is expanded by elastic deformation to tighten the grate 500 against the frame 400 .
  • the tabs 426 a, 426 b, 426 c and 426 d of the frame 400 prevent vertical movement of the grate 500 .
  • the grate frame 502 may have a different shape depending on the shape of the grate receiving shoulder 424 of the frame 400 .
  • the grate frame 502 comprises a plurality of bars 510 that together form a substantially crisscrossed arrangement.
  • the grate frame 502 further comprises two openings 512 a and 512 b disposed on the curved lateral sides 508 a and 508 b of the grate frame 502 .
  • the openings 512 a and 512 b allow elastic deformation of the grate 500 for positioning onto the grate receiving shoulder 424 of the frame 400 .
  • the grate frame 502 could have only one or more than two openings. It is also contemplated that some or all of the openings could be disposed on the first and second longitudinal sides 504 and 506 of the grate frame 502 .
  • openings 512 a and 512 b being identically construed, only opening 512 b, shown in FIG. 9 , will be described. A person skilled in the art will understand that a similar description applies to opening 512 a.
  • the opening 512 b has a funneled upper portion 514 and a slightly funneled lower portion 516 .
  • the opening 512 b is adapted to receive a locking mechanism 518 for locking the grate 500 , by elastic deformation, onto the frame 400 .
  • the locking mechanism 518 comprises a bolt 520 having a conical or tapered head 522 adapted to engage the funneled upper portion 514 of the opening 512 b.
  • the locking mechanism 518 further comprises a nut 524 for abutting the lower portion 516 of the opening 512 b.
  • FIGS. 10 to 16 there is shown steps of one embodiment of a method for positioning the frame 400 relative a road such as a concrete or paved road.
  • the guide 200 is positioned onto the upper edge of the head 104 by aligning the opening 220 with the inlet 102 .
  • the guide 220 and/or the head 104 may be provided with alignment elements for helping engaging the guide 200 with the head 104 .
  • the positioning devices 300 a and 300 b are positioned onto the upper edge of the sleeve 104 into the chambers defined by the recesses 222 a, 222 b and 222 c, 222 d of the guide 200 and the top surface of the head 104 .
  • the positioning devices 300 a and 300 b are extended from a closed position to a deployed position wherein each cantilevered section of each abutment member extends a given distance onto the upper edge of the concrete head 104 such as at least two inches onto the upper edge of the concrete head 104 .
  • each positioning devices 300 a and 300 b is locked into the deployed position by their respective locking handle of their respective locking mechanism.
  • the leveling assemblies 326 and 360 of the positioning device 300 a are secured to their respective abutment members and the supporting members 322 and 366 are positioned at a given longitudinal position along their respective abutment member 330 , 364 and at a given angular position relative to their respective abutment member 330 , 364 .
  • the supporting members may be positioned at the same vertical level relative to each other for receiving the lower end 408 of the frame 400 with the frame 400 being generally horizontal.
  • the leveling assemblies of the positioning device 300 b are also secured to their respective abutment members. The supporting members may then be positioned at the same vertical level relative to each other and relative to the supporting members of the positioning device 300 a, for receiving the lower end 408 of the frame 400 .
  • the lower end 408 of the frame 400 is positioned onto the leveling assemblies of the positioning devices 300 a and 300 b.
  • the lower end 408 of the frame 400 is positioned onto the supporting members 332 and 366 of the positioning device 300 a by aligning the recesses 436 a, 436 b with the receiving sections 338 , 372 .
  • the lower end 408 of the frame 400 is similarly positioned onto the supporting members of the positioning device 300 b by aligning the recesses 436 c, 436 d of the frame 400 with the receiving sections thereof.
  • the frame 400 is leveled relative to the top surface of the road, such as the top surface of the concrete layer of the concrete paved road.
  • the leveling assemblies of the positioning devices 300 a and 300 b are alternatively screwed/unscrewed for adjusting the distance and the angle of the flange 428 of the frame 400 relative the concrete paved road. For instance, in the case of an inclined road, the frame 400 may need to be sufficiently tilted to be leveled therewith.
  • the supporting members of the positioning devices 300 a and 300 b are locked using their respective locking members.
  • the first supporting member 332 is vertically locked between the nuts 334 a and 334 b by screwing the lower nut 334 b onto the first supporting member 332 .
  • the lower nut 334 b is at least one inches away from the first abutment member 320 for enabling the removal of the first supporting member 320 from its respective recess of the frame 400 .
  • the other supporting members of the positioning devices 300 a and 300 b are vertically locked and the lower nut thereof is at least one inches away from its respective supporting member.
  • the supporting members could be set to their desired vertical location before the frame 400 is received in the supporting members, such that no additional adjustment of the positioning devices 300 a and 300 b is necessary once the frame 400 has been received on the supporting members.
  • a covering layer 700 is positioned around the guide 200 and the frame 400 for preventing gravel from being introduced in the gap located therebetween during the pouring and setting of the concrete.
  • the covering layer 700 is a geotextile membrane.
  • other types of covering layers may be used.
  • the frame 400 is tightly secured and leveled relative the road.
  • the positioning devices 300 a and 300 b may then be removed from the head 104 .
  • the leveling assemblies may be removed from the positioning devices 300 a and 300 b, the locking mechanisms may be unlocked and the positioning devices 300 a and 300 b may be moved to the closed position.
  • the positioning devices 300 a and 300 b are then removed from the guide 200 .
  • the grate 500 is positioned onto the grate receiving shoulder 424 of the frame 400 .
  • the grate frame 502 is compressed by elastic deformation for being positioned under the tabs 426 a, 426 b, 426 c and 426 d of the grate receiving shoulder 424 .
  • the curved lateral side 508 b is compressed inwardly towards the opposed curved lateral side 508 a by elastic deformation for installation on the grate receiving shoulder 424 .
  • the grate frame 502 shifts back to an uncompressed state by elastic deformation.
  • the grate frame 502 is then tightened against frame 400 using the locking mechanism 518 in the openings 512 a and 512 b.
  • the tapered head engages with the funneled upper portion of the opening, thus outwardly expanding the grate frame 502 by elastic deformation.
  • the grate frame 502 is uniformly expanded and exerts a uniform pressure on the frame 400 .
  • FIG. 17 illustrates a positioning device 300 c that comprises a first elongated tube 308 ′ and a second elongated tube 340 ′ which are each provided with a square cross-sectional shape.
  • the positioning device 300 c comprises no pair of flat bars 352 a and 352 b.
  • the positioning device 300 c comprises a first leveling member 332 ′ and a second leveling member 360 ′ which are secured to the first elongated tube 308 ′ and the second elongated tube 340 ′, respectively, via an elastomer ring.
  • the first leveling member 332 ′ comprises a first guide member 330 and a frame receiving or supporting member 332 ′.
  • the frame receiving member 332 ′ is slidably and rotatably secured to the first guide member 330 .
  • the frame receiving member 332 ′ comprises a mounting section in the shape of a plate provided with an aperture therethrough sized and shaped so as to receive the first displacement member 330 therein.
  • the frame receiving member 332 ′ further comprises two plates 341 a and 341 b which each project from the plate to define a substantially U-shape space for receiving the frame therein.
  • the plates 341 a and 341 b are slightly angled one towards the other.
  • the leveling member 332 ′ comprises a first guide member 330 and a frame receiving or supporting member 332 ′.
  • the frame receiving member 332 ′ is slidably and rotatably secured to the first guide member 330 .
  • the frame receiving member 332 ′ comprises a mounting section 336 in the shape of a plate provided with an aperture therethrough sized and shaped so as to receive the first displacement member 330 therein.
  • the frame receiving member 332 ′ further comprises two plates 341 a and 341 b which each project from the plate to define a substantially U-shape space for receiving the frame therein. In the illustrated embodiment, the plates 341 a and 341 b are slightly angled one towards the other.
  • the second leveling member 360 ′ comprises a first guide member 364 and a frame receiving or supporting member 366 ′.
  • the frame receiving member 366 ′ is slidably and rotatably secured to the first guide member 364 .
  • the frame receiving member 366 ′ comprises a mounting section in the shape of a plate provided with an aperture therethrough sized and shaped so as to receive the first displacement member 364 therein.
  • the frame receiving member 366 ′ further comprises two plates 375 a and 375 b which each project from the plate to define a substantially U-shape space for receiving the frame therein. In the illustrated embodiment, the plates 375 a and 375 b are slightly angled one towards the other.
  • the positioning device 300 c comprises a locking mechanism 376 ′ which comprises a locking handle 378 ′ (different from the locking handle 378 ) including a rod extending through a bushing 380 ′ secured to the top wall of the first elongated tube 308 ′ and through the top wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Road Paving Structures (AREA)

Abstract

A device for positioning a frame over a head of a catch basin or manhole, comprising: an elongated body extending between a first end and a second end, the elongated body having an adjustable length, the first end second ends of the elongated body being adapted to abut opposite sections of a top face of the head; and a first leveling member and a second leveling member each secured to the elongated member such that a distance between the first and second leveling members varies when the length of the elongated body varies, the first and second leveling members each comprising: a guide member extending from the elongated member; and a frame receiving member slidably and rotatably secured to the elongated member, the frame receiving member being configured for receiving and supporting a lower end of the frame in order to position and orient the frame relative to the head.

Description

    TECHNICAL FIELD
  • The invention relates to a positioning device and more particularly to a positioning device for installing a frame over an inlet of a catch basin or a manhole.
  • BACKGROUND
  • During road construction, catch basins and sewer inlets are disposed at various locations on concrete or paved roads to evacuate excess rain water and ground water or small debris, and to give access to the drainage system below.
  • There are two main types of water drainage systems: side inlets and covered inlets. Side inlets are usually located at the curb of a street or under the sidewalk, and the pavement of the street is often angled towards the curb to direct the flow of water and small debris by gravity towards the curb. Covered inlets are typically installed in a concrete or paved street or road and comprise a grate or cover which prevents large debris from accessing the inlet. Covered inlets are usually mounted onto a frame for covering an inlet of a manhole or catch basin. The manhole or catch basin often connects to a sewage system having a plurality of interconnected pipes.
  • Installing a frame and a covered inlet onto an inlet of a catch basin or manhole can be challenging and requires industrial equipment adapted to lift heavy loads. Furthermore, covered inlets may sometimes not be properly leveled with the concrete or paved road which can create problems for vehicles. For example, in cold countries where temperature can reach below freezing, snow removal vehicles are needed to remove snow and/or ice from the streets. During the removal of snow, a mechanical shovel is usually mounted in front of the snow removing vehicle and scrapes the snow and/or ice laterally to the side of the street. If the covered inlets are not well leveled with the concrete or paved road, the covered inlets may inadvertently be removed during a snow removal process. This situation may create significant circulation problems or could even create a danger for pedestrians or even vehicles circulating on the street.
  • In other situations, such as on busy traffic arteries of big cities or even on highways, vehicles such as long haul trucks and cars may repetitively travel on covered inlets. The repetitive pressure of vehicles on covered inlets may in certain situations lift the covered inlets from the frame, which may create significant traffic problems and may also endanger pedestrians.
  • Given the above drawbacks, there is therefore a need for a positioning device adapted to position a frame over an inlet of a catch or a manhole and/or a grate locking system which overcomes at least one of the previously identified drawbacks.
  • SUMMARY
  • According to a first broad aspect, there is provided a device for positioning a frame over a head of one of a catch basin and a manhole, the device comprising: an elongated body extending between a first end and a second end, the elongated body having an adjustable length, the first end second ends of the elongated body being adapted to abut opposite sections of a top face of the head; and a first leveling member and a second leveling member each secured to the elongated member such that a distance between the first and second leveling members varies when the length of the elongated body varies, the first and second leveling members each comprising: a guide member extending from the elongated member; and a frame receiving member slidably and rotatably secured to the elongated member, the frame receiving member being configured for receiving and supporting a lower end of the frame in order to position and orient the frame relative to the head.
  • In one embodiment, the elongated body comprises a tubular section and a male section slidably inserted into the tubular section, the first leveling member being secured to the tubular section and the second leveling member being secured to the male section.
  • In one embodiment, the device further comprises a securing mechanism for securing the tubular section and the male section together.
  • In one embodiment, the guide member of the first and second leveling members is removably secured to the elongated body.
  • In one embodiment, the frame receiving member comprises a first plate provided with an aperture for receiving the guide member therein, and a second plate and a third plate each extending form the first plate to form a U-shaped space for receiving the lower end of the frame therein.
  • In one embodiment, the first leveling member and the second leveling member each further comprise a locking mechanism for securing the frame receiving member to the guide member.
  • In one embodiment, the first end and the second end of the elongated body each comprise a cantilevered section for abutting the opposite sections of the top face of the head.
  • According to another broad aspect, there is provided a frame positioning device for positioning a frame in a desired position over an inlet of one of a catch basin and a manhole, the inlet including an opening and a rim surrounding the opening, the positioning device comprising: an elongated body having a first end portion adapted to be supported on the rim and a second end portion adapted to be supported on the rim opposite the first portion such that the body extends across the opening; first and second leveling members extending upwardly from the body, the first leveling assembly being located towards the first end portion and the second leveling assembly being located towards the second end portion, each leveling assembly including a guide member attached to the body and a receiving member movably connected to the guide member for receiving a lower end portion of the frame, the receiving member being movable generally vertically towards and away from the body to allow the frame to be positioned and angled in a desired position relative to the inlet.
  • In one embodiment, each one of the first and second abutment portions includes a cantilevered section which extends away from the other one of the first and second abutment portions.
  • In one embodiment, each receiving member includes a pair of vertical walls for receiving the lower edge of the frame therebetween.
  • In one embodiment, the body includes a first tube and a second tube telescopically mounted within the first tube, the first end portion being defined on the first tube and the second end portion being defined on the second tube, the first and second tube being movable relative to each other between a closed position in which the first end portion and the second end portion are spaced by a first distance and a deployed position in which the first end portion and the second end portion are spaced by a second distance greater than the first distance.
  • In one embodiment, the device further comprises a locking handle for locking the first and second tubes together in the deployed position.
  • According to a further broad aspect, there is also provided a method for positioning a frame over an inlet of a catch basin or manhole, the method comprising: providing at least one frame positioning device as described above; positioning the first end portion of the at least one frame positioning device on a rim of a concrete head and the second end portion of the at least one frame positioning device on the rim opposite the first end portion such that the body extends across the opening; moving a lower edge of the frame and a corresponding receiving member towards each other until the lower edge is received in the receiving member; vertically moving the at least one supporting member along a displacement member to a desired vertical location.
  • In one embodiment, positioning the lower edge of the frame onto the supporting members comprises aligning each recess of the lower edge of the frame with each supporting members.
  • In one embodiment, the method further comprises positioning a covering layer around the frame and a guide.
  • In one embodiment, the covering layer is a geotextile membrane.
  • In one embodiment, the method further comprises installing a cover or grate on the frame.
  • In one embodiment, installing a cover or grate on the frame comprises deforming the cover or grate by elastic deformation to fit the cover or grate on a cover receiving shoulder of the frame.
  • In one embodiment, the method further comprises locking the cover or grate on the frame.
  • In one embodiment, locking the cover or grate on the frame comprises inserting a locking member in an opening for pressure fitting the cover or grate against the cover receiving contour of the frame.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exploded perspective view of a cover or grate assembly disposed over a concrete head of a catch basin or a manhole and maintained in a desired position and orientation using a pair of positioning devices, in accordance with one embodiment;
  • FIG. 2 is a top front perspective view of a guide of the grate assembly illustrated in FIG. 1;
  • FIG. 3 is a bottom front perspective view of the guide illustrated in FIG. 2;
  • FIG. 4 is a perspective view of one of the positioning devices illustrated in FIG. 1;
  • FIG. 5 is an enlarged perspective view of area A of FIG. 4;
  • FIG. 6 is a side elevation view of the positioning device illustrated in FIG. 4;
  • FIG. 7 is a top perspective view of a frame of the grate assembly illustrated in FIG. 1;
  • FIG. 8 is a perspective view of a grate of the grate assembly illustrated in FIG. 1;
  • FIG. 9 is a cross-section view taken along cross-section line D of the grate of FIG. 8;
  • FIG. 10 is a perspective view illustrating the positioning of the guide illustrated FIG. 2 onto a concrete head;
  • FIG. 11 is a top view illustrating the positioning devices illustrated in FIG. 1 in their deployed position in the corresponding recesses of the guide and on the concrete head;
  • FIG. 12 is a cross-section view illustrating the positioning of the leveling assemblies onto one of the positioning devices illustrated in FIG. 1, during the installation of the frame;
  • FIG. 13 is a cross-section view illustrating the positioning of the frame of FIG. 7 onto the positioning device of FIG. 4;
  • FIG. 14 is an enlarged view of the positioning of the frame of FIG. 7 onto the positioning device of FIG. 4;
  • FIG. 15 is a schematic side view showing the grate assembly of FIG. 1 installed over the catch basin or manhole;
  • FIG. 16 is a top perspective view of the grate assembly of FIG. 1, showing the grate being compressed and installed in the frame; and
  • FIG. 17 is a perspective view of a further positioning device, in accordance with another embodiment.
  • It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a cover or grate assembly 100 disposed over a concrete head 104, such as a concrete head for a catch basin or a manhole, and maintained in a desired position and orientation using a pair of positioning devices 300 a and 300 b, in accordance with one embodiment. As known in the art, a head such as the head 104 is to be installed and secured within a hole such as a catch basin or a manhole. The concrete head 104 includes an opening or inlet 102 and a rim or upper edge surrounding the inlet 102 on its upper face, i.e. on the face of the head 104 to face the grate or cover.
  • The grate assembly 100 includes a frame 400 to be disposed above the concrete head 104. In one embodiment, the grate assembly 100 further comprises a guide 200 to be positioned on top of the head 104 for guiding the frame 400 with respect to the head 104 as illustrated in FIG. 1 and further described below.
  • A grate 500 is further to be positioned onto the frame 400 for allowing passage of excess water and small debris which can be found in streets into the catch basin or manhole while preventing the passage of larger debris. Alternatively, instead of a grate 500, the cover or grate assembly 100 could comprise a cover.
  • When the grate assembly 100 is properly installed, the frame 400 is positioned and angled in a desired position and angle such that a top surface of the frame 400 generally lies in a plane corresponding to the current or desired top surface of the road above the concrete head 104. For example, once installed, the top surface of the grate or cover may be substantially coplanar with the top surface of the road. In the illustrated embodiment, a concrete road layer, best shown in FIG. 15, is further poured around the frame 400 to define the road surface above the concrete head 104, as well as to maintain the frame 400 in its desired position and angle.
  • The cover or grate assembly 100 further comprises a positioning system or apparatus to be positioned on top of the head 104 and configured for supporting the frame 400. The positioning system is configured for adjusting an orientation of the frame 400 relative to the head 104 and a distance between the frame 400 and the head 104.
  • In the illustrated embodiment, the positioning system comprises two positioning devices 300 a and 300 b which are generally elongated and are received on top of the rim or upper edge of the head 104. The positioning devices 300 a and 300 b are used to help position the frame to its desired position and/or angle relative to the head 104 during the creation of the road surface around the frame 400, and can be removed once the road surface is set and the frame 400 is held into position.
  • FIGS. 2 and 3 illustrate one embodiment of the guide 200 which is designed and shaped to be positioned on the upper edge of head 104 and help to secure the frame 400 over the head 104.
  • In the illustrated embodiment, the guide 200 has an asymmetrical truncated circular shape and comprises a bottom mounting end 210 for mounting to the head 104 and a top receiving end 218 adapted to receive the frame 400. The bottom mounting end 210 includes a base 202 which has an outer edge 206, an inner edge 208 and a bottom mounting surface 204 defined between the outer and inner edges 206, 208 and adapted to be placed against the head 104.
  • The guide 200 further comprises a first straight wall portion 212, a second straight wall portion 214 opposed to the first wall portion 212, and a pair of outwardly convex walls 216 a and 216 b extending between the first wall portion 212 and the second wall portion 214. The first wall portion 212, the second wall portion 214, and the pair of outwardly convex walls 216 a and 216 b extend upwardly from the inner edge 208 of the base 202 to the top receiving end 218 of the guide 200. In the illustrated embodiment, the first wall portion 212 and the second wall portion 214 are parallel to each other and the first wall portion 212 is shorter than the second wall portion 214. Still in the illustrated embodiment, the first wall portion 212, the second wall portion 214 and the pair of outwardly convex walls 216 a and 216 b thereby define an opening 220 which may be sized and shaped generally similarly to the inlet 102 such that when the guide 200 is mounted on the catch basin or manhole 100, the opening 220 is in vertical alignment with the inlet 102. Alternatively, the wall portions could be configured differently.
  • In the illustrated embodiment, the first wall portion 212, the second wall portion 214 and the pair of outwardly convex walls 216 a and 216 b are slightly angled inwardly so as to center the frame 400 once received in the top receiving end 218 of the guide relative to the inlet 102. Alternatively, the wall portions could instead be vertical instead of being angled.
  • Still in the illustrated embodiment, the base 202 further comprises a plurality of recesses 222 a, 222 b, 222 c and 222 d defined in the bottom mounting surface 204 of the base 202. As best shown in FIG. 1, when the guide 200 is placed on the head 104, pockets or chambers are defined between the recesses 222 a, 222 b, 222 c and 222 d and the top face of the head 104. The chambers are sized and shaped so as to each receive a respective end of the one of the positioning devices 300 a and 300 b, which are supported by the concrete head 104. Specifically, recesses 222 a and 222 d are located on opposite sides of the opening 220 and are adapted to receive the first positioning device 300 a, as will be further explained below. Similarly, recesses 222 b and 222 c are also located on opposite sides of the opening 220 and are adapted to receive the second positioning device 300 b, as will also be explained further below.
  • In one embodiment, each outwardly convex wall 216 a and 216 b comprises opposed ribs 224 and 226 which extend away from the convex wall 216 a and 216 b towards the outer edge 206 of the base 202, and are secured to the base 202. The first wall portion 212 also comprises a central rib 228 which extends away from the first wall portion 212 towards the outer edge 206 of the base 202, and is secured to the base 202. It will be appreciated that the ribs 224, 226 and 228 may provide structural reinforcement to the guide 200, as well as provide stability when multiple guides are stacked on top of each other and further facilitate the packaging of multiple guides together.
  • In one embodiment and as illustrated in FIGS. 2 and 3, the guide 200 also includes a circular hole 230 defined in the base 202, generally between the central rib 228 and the recess 222 c. Alternatively, the guide 200 may not include the hole 230.
  • In one embodiment, the guide 200 is made of cast iron. Alternately, the guide 200 may be made of another robust material such as reinforced polymer or another metal.
  • FIGS. 4 to 6 illustrate one embodiment of the positioning device 300 a adapted for the installation of the frame 400 within the guide 200 over the inlet 102. The positioning devices 300 a and 300 b being generally identically construed, only positioning device 300 a will be described. The person skilled in the art will appreciate that a similar description also applies to positioning device 300 b.
  • In one embodiment, the positioning device 300 a comprises an elongated body 302 which extends between a first end portion 304 and an opposed second end portion 306. As described below, the elongated body 302 is provided with an adjustable length.
  • In the illustrated embodiment, the first end portion 304 and the second end portion 306 are adapted to abut the upper edge of the head 104 so as to engage the head 104. Furthermore, the first end portion 304 and the second end portion 306 are sized and shaped to be received in the recesses 222 a and 222 d of the guide 200, respectively. Alternatively, the first end portion 304 and the second end portion 306 could be received in the recesses 222 c and 222 d of the guide 200.
  • Still in the illustrated embodiment, the body 302 comprises a first elongated tube 308 having a generally rectangular section. The first tube 308 extends between a first end 310 and a second end 312 located opposite to the first end 310. The first elongated tube 308 comprises a top wall 314, a bottom wall 316 and a pair of lateral walls 318 a and 318 b.
  • In one embodiment, the first end portion 304 of the elongated member 302 comprises a first abutment member 320 having a generally rectangular shape. The first abutment member 320 comprises a securing section 322 secured to the top wall 314 of the first elongated tube 308 and a cantilevered section 324 extending longitudinally away from the securing section 322. The cantilevered section 324 is sized and shaped so as to be received by in one of the chambers defined by one of the recesses 222 a, 222 b, 222 c and 222 d and the top surface of the head 104.
  • The securing section 322 may be secured to the top wall 314 of the first elongated tube 308 by welding, by using fasteners or by any other appropriate fastening technique. In one embodiment, the first abutment member 320 could even be integrally formed within the first elongated tube 308.
  • In one embodiment, the cantilevered section 324 of the first abutment member 320 is adapted to be received in recess 222 a of the guide 200 and to be supported by the upper edge of the head 104. It should be understood that the cantilevered section 324 may also be sized and shaped so as to be received by in one of the chambers defined by one of the recesses 222 b, 222 c and 222 d and the top surface of the head 104.
  • In one embodiment, the cantilevered section 324 extends two inches away from the first end 310 of the first elongate tube 308. Alternatively, the cantilevered section 324 could have a different size and/or configuration.
  • In the illustrated embodiment, the first elongated tube 308 further comprises a first leveling assembly 326 adapted to receive a lower end of the frame 400. In the illustrated embodiment, the first leveling assembly 326 is secured to the securing section 322 of the first abutment member 320. In one embodiment, the first leveling assembly 326 may be removably secured to the securing section 322 by a bushing 328.
  • In one embodiment, the first leveling assembly 326 comprises a first guide or displacement member 330, extending vertically from the first abutment member 320. The first leveling assembly 326 further comprises a first receiving or supporting member 332 adapted to receive the lower end of the frame 400. The first supporting member 332 is movably connected to the displacement member 330 and is adapted to selectively move vertically along the displacement member 330. The first supporting member 332 may also be rotatably connected to the displacement member 330 so that the first supporting member 322 may rotate about the displacement member 330.
  • In one embodiment, the first supporting member 332 is sandwiched between an upper locking member 334 a and a lower locking member 334 b to maintain the first supporting member 332 at a desired vertical location along the first displacement member 330.
  • In one embodiment, the first displacement member 330 is an elongated bolt removably secured to the bushing 328. Alternatively, the first displacement member 330 could include another type of threaded rod.
  • In yet another embodiment, the first displacement member 330 could instead include a ball stud bolt comprising an O-ring (not shown) removably secured to the securing section 322 of the first abutment member 320.
  • In one embodiment, each locking member 334 a and 334 b includes a nut adapted to be screwed on the first displacement member 330. In use, the locking members 334 a and 334 b are configured for vertically positioning and locking the first supporting member 332 at a desired vertical height for receiving the lower end of the frame 400.
  • The first supporting member 332 comprises a mounting section 336 adapted to be positioned on the first displacement member 330 and a receiving section 338 adapted to receive the lower end of the frame 400.
  • In the illustrated embodiment, the receiving section 338 has a generally U-shaped cross-section and includes a pair of generally parallel vertical walls 340 a and 340 b which each extend from the mounting section 336 and are spaced apart by a distance adequate for receiving the lower end of the frame 400 between the walls 340 a and 340 b. It will therefore be understood that the distance between the walls 340 a and 340 b is substantially equal to or greater than the thickness of the lower end of the frame 400.
  • In one embodiment, the mounting section 336 has a generally rectangular shape and comprises a plate provided with an aperture therethrough sized and shaped so as to receive the first displacement member 330 therein. In one embodiment, the aperture may be threaded. As a result, the mounting section 336 is rotatable about the first displacement member 330 to position the vertical walls 340 a and 340 b of the receiving section 338 generally parallel with the sidewall of the frame 400, such that the lower end of the frame 400 may be received between the vertical walls 340 a and 340 b.
  • In the illustrated embodiment, the elongated body 302 of the positioning device 300 a further comprises a second elongated member 340 which may be a tube. Similarly to the first elongated tube 308, the second elongated tube 340 has a generally rectangular section and has a first end 342 and a second end 344 located opposite the first end 342. The second elongated tube 340 comprises a top wall 346, a bottom wall 348 and a pair of lateral walls 350 a and 350 b.
  • In one embodiment, the second elongated tube 340 has a smaller cross-section than that of the first elongated tube 308 and is adapted to be slidably received within the first elongated tube 308. The first and second elongated tubes 308, 340 are adapted to slide relative to each other to thereby increase or reduce the length of the body 302. Specifically, the first and second elongated tubes 308, 340 are adapted to slide relative to each other between a closed position in which the first end portion 304 and the second end portion 306 are spaced by a first distance and a deployed position in which the first end portion 304 and the second end portion 306 are spaced by a second distance greater than the first distance.
  • As illustrated in FIG. 5, the positioning device 300 a may comprise a pair of flat bars 352 a and 352 b which are positioned within the aperture defined by the first elongated tube 308 between the first and second elongated tubes 308 and 340 for providing a flush fit between the first and second elongated tubes 308 and 340. This configuration allows standard-sized tubes to be used. Alternatively, the second elongated tube 340 could be sized and shaped to form a flush fit with the first elongated tube 308 without requiring flat bars.
  • In one embodiment, the second end portion 306 of the elongated body 302 comprises a second abutment member 354 which is generally similar to the first abutment member 320. The second abutment member 354 comprises a securing section 356 secured to the top wall 346 of the second elongate tube 340. The second abutment member 354 further comprises a cantilevered section 358 extending longitudinally away from the securing section 356. The cantilevered section 356 of the second abutment member 354 is adapted to be received on the upper edge of the sleeve 104, within the recess the 222 b of the guide 200 for example.
  • The second elongated tube 340 further comprises a second leveling assembly 360 adapted to receive a lower end of the frame 400 for leveling it relative a concrete or paved road. In this configuration, the second leveling assembly 360 is secured to the securing section 356 of the second abutment member 354. In one embodiment, the second leveling assembly 360 is removably secured to the securing section 356 by a bushing 362.
  • In one embodiment, the second leveling assembly 360 comprises a second guide or displacement member 364, extending vertically from the second abutment member 354. The second leveling assembly 360 further comprises a second receiving or supporting member 366 adapted to receive the lower end of the frame 400. The supporting member 366 is slidably and rotatably connected to the displacement member 364 and is adapted to selectively move vertically along the displacement member 364 and rotate about the displacement member 364.
  • In one embodiment, the second supporting member 366 is sandwiched between an upper locking member 368 c and a lower locking member 368 d to vertically maintain the second supporting member 366 at a desired vertical location on the second displacement member 364.
  • In one embodiment, the second displacement member 364 is an elongated bolt removably secured to the bushing 362.
  • Alternatively, the second displacement member 364 could instead include a ball stud bolt comprising an O-ring (not shown) removably secured to the securing section 356 of the second abutment member 354.
  • In one embodiment, each locking member 368 c and 368 d includes a pair of nuts adapted to be screwed on the second displacement member 364. In use, the locking members 368 c and 368 d are configured for vertically positioning and locking the second supporting member 366 at a desired vertical height for receiving the lower end of the frame 400.
  • The second supporting member 366 comprises a mounting section 370 adapted to be positioned on the second displacement member 364 and a receiving section 372 adapted to receive the lower end of the frame 400.
  • In the illustrated embodiment, the receiving section 372 has a generally U-shaped cross-section and includes a pair of spaced apart vertical walls 374 c and 374 d which are spaced apart to receive the lower end of the frame 400.
  • In one embodiment, the mounting section 370 has a generally rectangular shape and comprises a plate provided with an aperture therethrough sized and shaped so as to receive the second displacement member 364 therein. In one embodiment, the aperture may be threaded. As a result, the mounting section 370 is adapted to rotate around the second displacement member 364 to position the vertical walls 374 c and 374 d of the receiving section 372 generally parallel with the sidewall of the frame 400, such that the lower end of the frame 400 may be received between the vertical walls 374 c and 374 d.
  • In one embodiment, the positioning device 300 a further includes a locking mechanism 376 for locking the first and second tubes 308, 340 relative to each other in the deployed position. Specifically, the locking mechanism 376 prevents the first and second tubes 308, 340 from longitudinally moving relative to each other.
  • In one embodiment, the locking mechanism 376 comprises a locking handle 378 including a rod extending through a bushing 380 secured to the top wall 314 of the first elongated tube 308 and through the top wall 314. The rod of the locking handle 378 is further adapted to extend through a corresponding hole defined in the second tube 340 near its first end 342. In this embodiment, when the positioning device 300 a is in the deployed position, the rod of the handle 378 is aligned with the hole defined in the second tube 340.
  • In one embodiment, the positioning device 300 a is made of steel. Alternatively, positioning device 300 a could be made of another rigid material such as another metal or reinforced polymers.
  • Turning now to FIG. 7, the frame 400 comprises a hollow body 402 including a closed sidewall 410 defining a passageway 406 and a flange 428 extending generally perpendicularly to the sidewall 410.
  • In the illustrated embodiment, the sidewall 410 has a generally asymmetrical truncated circular shape, similar to the general shape of the opening 220 of the guide 200. The hollow body 402 is adapted to be received in the opening 220 of the guide 200 through the top receiving end 218 of the guide 200. The hollow body 402 is positioned onto the supporting members of the pair of positioning devices 300 a and 300 b.
  • In one embodiment, the hollow body 402 has a smaller section than the opening 220 of the guide 200 for enabling a tilt of the frame 400 relative the guide 200 during leveling with a concrete or paved road.
  • The hollow body 402 has an upper end 404 which defines an inlet of the passageway 406, and a lower end 408 which defines an outlet of the passageway 406. The sidewall 410 which includes first straight wall portion 412, a second straight wall portion 414 opposite the first straight wall portion 412, and a pair of opposed outwardly convex elongated wall portions 416 a and 416 b extending between the first and second straight wall portions 412 and 414.
  • Alternatively, if the guide 200 and/or the inlet 102 have a different shape or configuration, the hollow body 402 could be shaped differently so as to match the shape of the guide 200 and of the inlet 102. For example, the cross-section of the hollow body 402 may be circular, square, etc..
  • Still referring to FIG. 7, the sidewall 410 has an inner surface 418 and an outer surface 420. In one embodiment, the sidewall 410 may be slightly tapered. Specifically, the inner surface 418 may be generally perpendicular to the flange 428 and the outer surface 420 may be slightly angled relative to the inner surface 418. Alternatively, the inner and outer surfaces 418, 420 could be parallel to each other and both generally perpendicular to the flange 428.
  • In one embodiment, the upper end 404 of the hollow body 402 comprises opposed steps 422 a and 422 b located on the inner surface 418 of the pair of opposed outwardly convex elongate wall portions 416 a and 416 b. The opposed steps 422 a and 422 b define a grate receiving shoulder 424 for receiving the grate 500. Furthermore, the grate receiving shoulder 424 comprises a plurality of tabs 426 a, 426 b, 426 c (not shown) and 426 d (not shown) projecting radially inwardly into the passageway 406 for securing the grate 500 on the grate receiving shoulder 424, as it will be explained in more details further.
  • In one embodiment, the flange 428 extends laterally outwardly from the upper end 404 of the hollow body 402. The flange 428 comprises a first flange portion 430 adjacent the first elongate wall portion 412 at the upper end thereof and a pair of opposed side flange portions 432 a and 432 b adjacent the pair of opposed outwardly convex elongate wall portions 416 a and 416 b. In one embodiment, the flange 428 could further comprise an additional flange portion adjacent the second elongate wall portion 414.
  • In one embodiment, the flange 428 and the upper end of the second elongated wall portion 414 include a plurality of grooves 434. The grooves 434 are slightly sloped with respect to the horizontal toward the passageway 406 so as to facilitate water to flow from the concrete or paved road toward the passageway 406 of the frame 400.
  • In one embodiment, the flange 428 may only have one groove 434. Alternatively, the grooves 434 could have a different shape than the one shown in the FIG. 7. For instance, the grooves 434 may be larger.
  • In one embodiment, the lower end 408 of the hollow body 402 comprises a pair of opposed recesses 436 a, 436 b and 436 c, 436 d for positioning the frame 400 onto the supporting members of the positioning devices 300 a and 300 b. It will be appreciated that positioning the recesses 436 a, 436 b, 436 c and 436 d onto the supporting members of the positioning devices 300 a and 300 b prevents the frame 400 from laterally moving when the frame 400 is positioned in the guide 200.
  • In one embodiment, recess 436 a is located at the lower end of the first elongate wall portion 412 proximate the outwardly convex elongate wall portion 416 a while recess 436 c is located at the lower end of the first elongate wall portion 412, proximate the outwardly convex elongate wall portions 416 b. In a similar manner, recess 436 b is located at the lower end of the second elongate wall portion 414 proximate the outwardly convex elongate wall portion 416 a while recess 436 d is located at the lower end of the second elongate wall portion 414, proximate the outwardly convex elongate wall portions 416 b.
  • In one embodiment, the frame 400 is made of ductile iron. Alternatively, the frame 400 could be made of cast iron, or a polymer, or hard rubber, or any suitable material. It will also be understood that the configuration described above is merely provided as an example, and that multiple alternative configurations are possible. For example, instead of having an asymmetrical truncated circular shape, the inlet 102 of the concrete head 104, the guide 200 and the frame 400 could be circular, or have any other shape considered suitable by a skilled person.
  • FIGS. 8 and 9 illustrate one embodiment of the grate 500 which includes a grate frame 502 which has a shape matching the shape of the grate receiving shoulder 424 of the frame 400. The grate frame 502 includes a first longitudinal side 504, a second longitudinal side 506, and two curved lateral sides 508 a and 508 b.
  • The grate 500 is made of ductile iron which allows some elastic deformation. As such, the grate frame 502 can be deformed to fit onto the grate receiving shoulder 424 of the frame 400, under the tabs 426 a, 426 b, 426 c and 426 d. For instance, if the grate receiving shoulder 424 has a perimeter slightly smaller than the perimeter of the grate frame 502, the grate 500 is deformed by compressing its sides for positioning onto the grate receiving shoulder 424. Alternatively, the grate receiving shoulder 424 could have a perimeter slightly larger than the perimeter of the grate frame 502. In this configuration, once the grate 500 is positioned onto the grate receiving shoulder 424, the grate frame 502 is expanded by elastic deformation to tighten the grate 500 against the frame 400. In these configurations, the tabs 426 a, 426 b, 426 c and 426 d of the frame 400 prevent vertical movement of the grate 500.
  • Alternatively, the grate frame 502 may have a different shape depending on the shape of the grate receiving shoulder 424 of the frame 400.
  • In one embodiment, the grate frame 502 comprises a plurality of bars 510 that together form a substantially crisscrossed arrangement. The grate frame 502 further comprises two openings 512 a and 512 b disposed on the curved lateral sides 508 a and 508 b of the grate frame 502. The openings 512 a and 512 b allow elastic deformation of the grate 500 for positioning onto the grate receiving shoulder 424 of the frame 400. It is contemplated that the grate frame 502 could have only one or more than two openings. It is also contemplated that some or all of the openings could be disposed on the first and second longitudinal sides 504 and 506 of the grate frame 502.
  • The openings 512 a and 512 b being identically construed, only opening 512 b, shown in FIG. 9, will be described. A person skilled in the art will understand that a similar description applies to opening 512 a.
  • In the embodiment shown in FIG. 9, the opening 512 b has a funneled upper portion 514 and a slightly funneled lower portion 516. The opening 512 b is adapted to receive a locking mechanism 518 for locking the grate 500, by elastic deformation, onto the frame 400.
  • In one embodiment, the locking mechanism 518 comprises a bolt 520 having a conical or tapered head 522 adapted to engage the funneled upper portion 514 of the opening 512 b. The locking mechanism 518 further comprises a nut 524 for abutting the lower portion 516 of the opening 512 b. By screwing the bolt 520 into the nut 524, the tapered head 522 engages with the funneled upper portion 514 of the opening 512 b, thus outwardly expanding the grate frame 502 by elastic deformation.
  • In a similar way, by screwing a tapered bolt into a nut at the opening 512 a, the grate frame 502 outwardly expands by elastic deformation to tighten against the frame 400.
  • Referring to FIGS. 10 to 16, there is shown steps of one embodiment of a method for positioning the frame 400 relative a road such as a concrete or paved road.
  • At step 602 illustrated in FIG. 10, the guide 200 is positioned onto the upper edge of the head 104 by aligning the opening 220 with the inlet 102.
  • In one embodiment, the guide 220 and/or the head 104 may be provided with alignment elements for helping engaging the guide 200 with the head 104.
  • At step 604 illustrated in FIG. 11, the positioning devices 300 a and 300 b are positioned onto the upper edge of the sleeve 104 into the chambers defined by the recesses 222 a, 222 b and 222 c, 222 d of the guide 200 and the top surface of the head 104. In this step, the positioning devices 300 a and 300 b are extended from a closed position to a deployed position wherein each cantilevered section of each abutment member extends a given distance onto the upper edge of the concrete head 104 such as at least two inches onto the upper edge of the concrete head 104. In this configuration, each positioning devices 300 a and 300 b is locked into the deployed position by their respective locking handle of their respective locking mechanism.
  • At step 606 illustrated in FIG. 12, the leveling assemblies 326 and 360 of the positioning device 300 a are secured to their respective abutment members and the supporting members 322 and 366 are positioned at a given longitudinal position along their respective abutment member 330, 364 and at a given angular position relative to their respective abutment member 330, 364. For example, the supporting members may be positioned at the same vertical level relative to each other for receiving the lower end 408 of the frame 400 with the frame 400 being generally horizontal. Although not shown in FIG. 12, the leveling assemblies of the positioning device 300 b are also secured to their respective abutment members. The supporting members may then be positioned at the same vertical level relative to each other and relative to the supporting members of the positioning device 300 a, for receiving the lower end 408 of the frame 400.
  • At step 608 illustrated in FIG. 13, the lower end 408 of the frame 400 is positioned onto the leveling assemblies of the positioning devices 300 a and 300 b. The lower end 408 of the frame 400 is positioned onto the supporting members 332 and 366 of the positioning device 300 a by aligning the recesses 436 a, 436 b with the receiving sections 338, 372. Although not shown in FIG. 13, the lower end 408 of the frame 400 is similarly positioned onto the supporting members of the positioning device 300 b by aligning the recesses 436 c, 436 d of the frame 400 with the receiving sections thereof.
  • At step 610 illustrated in FIG. 14, the frame 400 is leveled relative to the top surface of the road, such as the top surface of the concrete layer of the concrete paved road. The leveling assemblies of the positioning devices 300 a and 300 b are alternatively screwed/unscrewed for adjusting the distance and the angle of the flange 428 of the frame 400 relative the concrete paved road. For instance, in the case of an inclined road, the frame 400 may need to be sufficiently tilted to be leveled therewith. Once the appropriate position and/or angle of the frame 400 has been reached, the supporting members of the positioning devices 300 a and 300 b are locked using their respective locking members. For instance, the first supporting member 332 is vertically locked between the nuts 334 a and 334 b by screwing the lower nut 334 b onto the first supporting member 332. In this configuration, the lower nut 334 b is at least one inches away from the first abutment member 320 for enabling the removal of the first supporting member 320 from its respective recess of the frame 400. Similarly, the other supporting members of the positioning devices 300 a and 300 b are vertically locked and the lower nut thereof is at least one inches away from its respective supporting member.
  • Alternatively, the supporting members could be set to their desired vertical location before the frame 400 is received in the supporting members, such that no additional adjustment of the positioning devices 300 a and 300 b is necessary once the frame 400 has been received on the supporting members.
  • At step 612 illustrated in FIG. 15, a covering layer 700 is positioned around the guide 200 and the frame 400 for preventing gravel from being introduced in the gap located therebetween during the pouring and setting of the concrete.
  • In one embodiment, the covering layer 700 is a geotextile membrane. Alternatively, other types of covering layers may be used.
  • Once the concreting is done, the frame 400 is tightly secured and leveled relative the road. The positioning devices 300 a and 300 b may then be removed from the head 104. For example, the leveling assemblies may be removed from the positioning devices 300 a and 300 b, the locking mechanisms may be unlocked and the positioning devices 300 a and 300 b may be moved to the closed position. The positioning devices 300 a and 300 b are then removed from the guide 200.
  • At step 614 illustrated in FIG. 16, the grate 500 is positioned onto the grate receiving shoulder 424 of the frame 400. The grate frame 502 is compressed by elastic deformation for being positioned under the tabs 426 a, 426 b, 426 c and 426 d of the grate receiving shoulder 424. For instance, the curved lateral side 508 b is compressed inwardly towards the opposed curved lateral side 508 a by elastic deformation for installation on the grate receiving shoulder 424. Once positioned on the grate receiving shoulder 424, the grate frame 502 shifts back to an uncompressed state by elastic deformation. The grate frame 502 is then tightened against frame 400 using the locking mechanism 518 in the openings 512 a and 512 b. By screwing the bolt in the nut, the tapered head engages with the funneled upper portion of the opening, thus outwardly expanding the grate frame 502 by elastic deformation. The grate frame 502 is uniformly expanded and exerts a uniform pressure on the frame 400.
  • The person skilled in the art will understand that some components of the above system may vary. For example, some of the characteristics of the positioning device 300 a, 300 b may vary. For example, while the first and second elongated members 308 and 340 of the positioning device 300 a, 300 b each have a rectangular cross-section, FIG. 17 illustrates a positioning device 300 c that comprises a first elongated tube 308′ and a second elongated tube 340′ which are each provided with a square cross-sectional shape. In comparison to the positioning device 300 a, 300 b, the positioning device 300 c comprises no pair of flat bars 352 a and 352 b.
  • The positioning device 300 c comprises a first leveling member 332′ and a second leveling member 360′ which are secured to the first elongated tube 308′ and the second elongated tube 340′, respectively, via an elastomer ring. The first leveling member 332′ comprises a first guide member 330 and a frame receiving or supporting member 332′. The frame receiving member 332′ is slidably and rotatably secured to the first guide member 330. The frame receiving member 332′ comprises a mounting section in the shape of a plate provided with an aperture therethrough sized and shaped so as to receive the first displacement member 330 therein. The frame receiving member 332′ further comprises two plates 341 a and 341 b which each project from the plate to define a substantially U-shape space for receiving the frame therein. In the illustrated embodiment, the plates 341 a and 341 b are slightly angled one towards the other.
  • The leveling member 332′ comprises a first guide member 330 and a frame receiving or supporting member 332′. The frame receiving member 332′ is slidably and rotatably secured to the first guide member 330. The frame receiving member 332′ comprises a mounting section 336 in the shape of a plate provided with an aperture therethrough sized and shaped so as to receive the first displacement member 330 therein. The frame receiving member 332′ further comprises two plates 341 a and 341 b which each project from the plate to define a substantially U-shape space for receiving the frame therein. In the illustrated embodiment, the plates 341 a and 341 b are slightly angled one towards the other.
  • Similarly, the second leveling member 360′ comprises a first guide member 364 and a frame receiving or supporting member 366′. The frame receiving member 366′ is slidably and rotatably secured to the first guide member 364. The frame receiving member 366′ comprises a mounting section in the shape of a plate provided with an aperture therethrough sized and shaped so as to receive the first displacement member 364 therein. The frame receiving member 366′ further comprises two plates 375 a and 375 b which each project from the plate to define a substantially U-shape space for receiving the frame therein. In the illustrated embodiment, the plates 375 a and 375 b are slightly angled one towards the other.
  • It should be understood that any adequate locking mechanism to removably secure the first elongated tube 308′ and the second elongated tube 340′ together may be used. For example, the positioning device 300 c comprises a locking mechanism 376′ which comprises a locking handle 378′ (different from the locking handle 378) including a rod extending through a bushing 380′ secured to the top wall of the first elongated tube 308′ and through the top wall.
  • The embodiments of the invention described above are intended to be exemplary only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.

Claims (20)

1. A device for positioning a frame over a head of one of a catch basin and a manhole, the device comprising:
an elongated body extending between a first end and a second end, the elongated body having an adjustable length, the first end second ends of the elongated body being adapted to abut opposite sections of a top face of the head; and
a first leveling member and a second leveling member each secured to the elongated member such that a distance between the first and second leveling members varies when the length of the elongated body varies, the first and second leveling members each comprising:
a guide member extending from the elongated member; and
a frame receiving member slidably and rotatably secured to the elongated member, the frame receiving member being configured for receiving and supporting a lower end of the frame in order to position and orient the frame relative to the head.
2. The device of claim 1, wherein the elongated body comprises a tubular section and a male section slidably inserted into the tubular section, the first leveling member being secured to the tubular section and the second leveling member being secured to the male section.
3. The device of claim 2, further comprising a securing mechanism for securing the tubular section and the male section together.
4. The device of claim 1, wherein the guide member of the first and second leveling members is removably secured to the elongated body.
5. The device of claim 1, wherein the frame receiving member comprises a first plate provided with an aperture for receiving the guide member therein, and a second plate and a third plate each extending form the first plate to form a U-shaped space for receiving the lower end of the frame therein.
6. The device of claim 1, wherein the first leveling member and the second leveling member each further comprise a locking mechanism for securing the frame receiving member to the guide member.
7. The device of claim 1, wherein the first end and the second end of the elongated body each comprise a cantilevered section for abutting the opposite sections of the top face of the head.
8. A frame positioning device for positioning a frame in a desired position over an inlet of one of a catch basin and a manhole, the inlet including an opening and a rim surrounding the opening, the positioning device comprising:
an elongated body having a first end portion adapted to be supported on the rim and a second end portion adapted to be supported on the rim opposite the first portion such that the body extends across the opening; and
first and second leveling members extending upwardly from the body, the first leveling assembly being located towards the first end portion and the second leveling assembly being located towards the second end portion, each leveling assembly including a guide member attached to the body and a receiving member movably connected to the guide member for receiving a lower end portion of the frame, the receiving member being movable generally vertically towards and away from the body to allow the frame to be positioned and angled in a desired position relative to the inlet.
9. The frame positioning device of claim 8, wherein each one of the first and second abutment portions includes a cantilevered section which extends away from the other one of the first and second abutment portions.
10. The frame positioning device of claim 8, wherein each receiving member includes a pair of vertical walls for receiving the lower edge of the frame therebetween.
11. The frame positioning device of claim 8, wherein the body includes a first tube and a second tube telescopically mounted within the first tube, the first end portion being defined on the first tube and the second end portion being defined on the second tube, the first and second tube being movable relative to each other between a closed position in which the first end portion and the second end portion are spaced by a first distance and a deployed position in which the first end portion and the second end portion are spaced by a second distance greater than the first distance.
12. The frame positioning device of claim 8, further comprising a locking handle for locking the first and second tubes together in the deployed position.
13. A method for positioning a frame over an inlet of a catch basin or manhole, the method comprising:
providing the frame positioning device of claim 8;
positioning the first end portion of the at least one frame positioning device on a rim of a concrete head and the second end portion of the at least one frame positioning device on the rim opposite the first end portion such that the body extends across the opening;
moving a lower edge of the frame and a corresponding receiving member towards each other until the lower edge is received in the receiving member; and
vertically moving the at least one supporting member along a displacement member to a desired vertical location.
14. The method of claim 13, wherein said positioning the lower edge of the frame onto the supporting members comprises aligning each recess of the lower edge of the frame with each supporting members.
15. The method of claim 13, further comprising positioning a covering layer around the frame and a guide.
16. The method of claim 15, wherein the covering layer is a geotextile membrane.
17. The method of claim 13, further comprising installing a cover or grate on the frame.
18. The method of claim 17, wherein said installing a cover or grate on the frame comprises deforming the cover or grate by elastic deformation to fit the cover or grate on a cover receiving shoulder of the frame.
19. The method of claim 13, further comprising locking the cover or grate on the frame.
20. The method of claim 19, wherein said locking the cover or grate on the frame comprises inserting a locking member in an opening for pressure fitting the cover or grate against the cover receiving contour of the frame.
US16/156,352 2017-10-10 2018-10-10 Frame positioning device for positioning a frame over an inlet of a catch basin or manhole and method for positioning the same Abandoned US20190106857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/156,352 US20190106857A1 (en) 2017-10-10 2018-10-10 Frame positioning device for positioning a frame over an inlet of a catch basin or manhole and method for positioning the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762570400P 2017-10-10 2017-10-10
US16/156,352 US20190106857A1 (en) 2017-10-10 2018-10-10 Frame positioning device for positioning a frame over an inlet of a catch basin or manhole and method for positioning the same

Publications (1)

Publication Number Publication Date
US20190106857A1 true US20190106857A1 (en) 2019-04-11

Family

ID=65273840

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/156,352 Abandoned US20190106857A1 (en) 2017-10-10 2018-10-10 Frame positioning device for positioning a frame over an inlet of a catch basin or manhole and method for positioning the same

Country Status (2)

Country Link
US (1) US20190106857A1 (en)
CA (1) CA3020452C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2603767A (en) * 2021-02-11 2022-08-17 Northstone Ni Ltd A cover location system for a modular in-ground chamber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11053658B2 (en) 2019-09-19 2021-07-06 Trevor Brien Height adjustment mechanism for a manhole assembly and manhole assembly comprising the same

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1076386A (en) * 1912-02-23 1913-10-21 Thomas F O'day Manhole structure.
US3773428A (en) * 1971-03-12 1973-11-20 Nat Utility Prod Co Adjustable manhole cover support
US3847339A (en) * 1972-09-25 1974-11-12 L Farrell Apparatus for installing manhole rings
US3960357A (en) * 1974-02-20 1976-06-01 T. L. James Company, Inc. Form support means for use with performed girders
US4123031A (en) * 1976-09-14 1978-10-31 Hyre Robert W Improvements in concrete roadway-slab forming and form-elevation adjusting means
US4536103A (en) * 1982-09-28 1985-08-20 Prescott Everett J Adjustable manhole frame and method of construction and installation
US4774386A (en) * 1982-07-12 1988-09-27 Dennis Goodwin Spanning device
US5058854A (en) * 1990-02-16 1991-10-22 Bravo Sergio M Containment box installation tool
US5271596A (en) * 1988-10-19 1993-12-21 Holcomb Grove R Method and apparatus for bracing elevated concrete forms
US5299884A (en) * 1991-09-10 1994-04-05 Poly-Tec Products, Inc. Water lock method and apparatus
US5306062A (en) * 1993-04-21 1994-04-26 Dodge John P Adjustable lifting device for sewer frame or the like
US5328294A (en) * 1991-11-01 1994-07-12 Rex Miller Manhole casting setting fixture
US5344253A (en) * 1993-09-01 1994-09-06 Cesare Sacchetti Adjustable manhole cover
US5476300A (en) * 1993-04-21 1995-12-19 Dodge; John P. Adjustable lifting device for sewer frame or the like
US5490367A (en) * 1992-07-08 1996-02-13 Lee; Wen-Yuan Apparatus for supporting and moving vertically an erected form assembly
US5660422A (en) * 1996-08-20 1997-08-26 Knisley; Jon C. Adjustable lifting device
US5695222A (en) * 1996-01-31 1997-12-09 James Bruno Ratchet type closet flange
US6311433B1 (en) * 2000-09-05 2001-11-06 David J. Zdroik Adjustable manhole/catch basin structure
US6464431B1 (en) * 2001-05-31 2002-10-15 Mcnulty Edward Apparatus and method for raising buried housings
US20040112811A1 (en) * 2002-12-16 2004-06-17 Jim Lindemulder Protector for sewer system inlet
US20080267702A1 (en) * 2007-04-27 2008-10-30 Greg Dunbar Manhole leveler
US7703856B1 (en) * 2006-08-31 2010-04-27 Duncan C Warren Manhole cover frame removal saw
US20100178106A1 (en) * 2009-01-13 2010-07-15 Mitchell Andrew C Method and apparatus for raising manhole castings
US20110084540A1 (en) * 2009-10-14 2011-04-14 Cochran Gary L Manhole remover
US20120061632A1 (en) * 2010-09-13 2012-03-15 Panio Michael T Hydraulic Lifting Apparatus
US20130089373A1 (en) * 2011-10-11 2013-04-11 Ameren Corporation Systems and methods for venting gas in the event of an explosion in a space covered by a manhole cover
US20130299402A1 (en) * 2012-05-14 2013-11-14 United Sorbents Seattle, Llc. Stormwater filtering device for catch basins
US20140255098A1 (en) * 2013-03-05 2014-09-11 Canada Pipe Company ULC Eccentric frame for an inlet of a catch basin or manhole
US9290370B1 (en) * 2010-09-13 2016-03-22 Hlbp Design Corp. Hydraulic lifting apparatus

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1076386A (en) * 1912-02-23 1913-10-21 Thomas F O'day Manhole structure.
US3773428A (en) * 1971-03-12 1973-11-20 Nat Utility Prod Co Adjustable manhole cover support
US3847339A (en) * 1972-09-25 1974-11-12 L Farrell Apparatus for installing manhole rings
US3960357A (en) * 1974-02-20 1976-06-01 T. L. James Company, Inc. Form support means for use with performed girders
US4123031A (en) * 1976-09-14 1978-10-31 Hyre Robert W Improvements in concrete roadway-slab forming and form-elevation adjusting means
US4774386A (en) * 1982-07-12 1988-09-27 Dennis Goodwin Spanning device
US4536103A (en) * 1982-09-28 1985-08-20 Prescott Everett J Adjustable manhole frame and method of construction and installation
US5271596A (en) * 1988-10-19 1993-12-21 Holcomb Grove R Method and apparatus for bracing elevated concrete forms
US5058854A (en) * 1990-02-16 1991-10-22 Bravo Sergio M Containment box installation tool
US5299884A (en) * 1991-09-10 1994-04-05 Poly-Tec Products, Inc. Water lock method and apparatus
US5328294A (en) * 1991-11-01 1994-07-12 Rex Miller Manhole casting setting fixture
US5490367A (en) * 1992-07-08 1996-02-13 Lee; Wen-Yuan Apparatus for supporting and moving vertically an erected form assembly
US5476300A (en) * 1993-04-21 1995-12-19 Dodge; John P. Adjustable lifting device for sewer frame or the like
US5306062A (en) * 1993-04-21 1994-04-26 Dodge John P Adjustable lifting device for sewer frame or the like
US5344253A (en) * 1993-09-01 1994-09-06 Cesare Sacchetti Adjustable manhole cover
US5695222A (en) * 1996-01-31 1997-12-09 James Bruno Ratchet type closet flange
US5660422A (en) * 1996-08-20 1997-08-26 Knisley; Jon C. Adjustable lifting device
US6311433B1 (en) * 2000-09-05 2001-11-06 David J. Zdroik Adjustable manhole/catch basin structure
US6464431B1 (en) * 2001-05-31 2002-10-15 Mcnulty Edward Apparatus and method for raising buried housings
US20040112811A1 (en) * 2002-12-16 2004-06-17 Jim Lindemulder Protector for sewer system inlet
US7703856B1 (en) * 2006-08-31 2010-04-27 Duncan C Warren Manhole cover frame removal saw
US20080267702A1 (en) * 2007-04-27 2008-10-30 Greg Dunbar Manhole leveler
US20100178106A1 (en) * 2009-01-13 2010-07-15 Mitchell Andrew C Method and apparatus for raising manhole castings
US9127430B2 (en) * 2009-01-13 2015-09-08 Andrew C. Mitchell Method and apparatus for raising manhole castings
US20110084540A1 (en) * 2009-10-14 2011-04-14 Cochran Gary L Manhole remover
US20120061632A1 (en) * 2010-09-13 2012-03-15 Panio Michael T Hydraulic Lifting Apparatus
US9290370B1 (en) * 2010-09-13 2016-03-22 Hlbp Design Corp. Hydraulic lifting apparatus
US20130089373A1 (en) * 2011-10-11 2013-04-11 Ameren Corporation Systems and methods for venting gas in the event of an explosion in a space covered by a manhole cover
US20130299402A1 (en) * 2012-05-14 2013-11-14 United Sorbents Seattle, Llc. Stormwater filtering device for catch basins
US20140255098A1 (en) * 2013-03-05 2014-09-11 Canada Pipe Company ULC Eccentric frame for an inlet of a catch basin or manhole

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2603767A (en) * 2021-02-11 2022-08-17 Northstone Ni Ltd A cover location system for a modular in-ground chamber
GB2603767B (en) * 2021-02-11 2025-04-16 Cubis Systems Ltd A cover location system for a modular in-ground chamber

Also Published As

Publication number Publication date
CA3020452C (en) 2020-01-21
CA3020452A1 (en) 2019-02-04

Similar Documents

Publication Publication Date Title
CA2151069C (en) Manhole adjusting extension ring section
US5344253A (en) Adjustable manhole cover
US9157213B2 (en) Eccentric frame for an inlet of a catch basin or manhole
KR102664006B1 (en) Fall arrest safety net for manhole
US8858114B2 (en) Adjustable support apparatus for a utility access cover
US20120297691A1 (en) Adjustable support apparatus for a utility access cover
US20190106857A1 (en) Frame positioning device for positioning a frame over an inlet of a catch basin or manhole and method for positioning the same
US20190203457A1 (en) Expansion ring mountable in a storm drain for supporting a filtering apparatus
KR20170017194A (en) Cut and cover retain of earth using light weight decking panel and support plate, and method for constructing this same
US20140166561A1 (en) Locking mechanism for a cover
US9127447B2 (en) Frame for an inlet of a catch basin or manhole
KR100336293B1 (en) manhole
US20130195549A1 (en) Inclined manhole cover riser assembly
US20240287783A1 (en) Drainage apparatus with locking mechanism
US20040007655A1 (en) Device and method for setting a frame
WO2024178243A1 (en) Drainage apparatus with locking mechanism
PT1380691E (en) Wide channel drainage system
US5290006A (en) Expanding form for pouring mixed cement to reposition manhole castings
JP6200390B2 (en) Buried structure
KR100912899B1 (en) Manhole structure with easy height adjustment and construction method
US20170073955A1 (en) Storm drain system
CA2840696C (en) Frame for an inlet of a catch basin or manhole
RU210602U1 (en) curb rainwater inlet
JP5013294B2 (en) Drainage structure
JP3973042B2 (en) Widening method of bridge footpath and bridge footpath structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: CANADA PIPE COMPANY ULC, ONTARIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOURNIER, DENIS;REEL/FRAME:047367/0523

Effective date: 20181025

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION