[go: up one dir, main page]

US20190071601A1 - SOL-GEL PROCESS FOR SYNTHESISING A LUMINESCENT MATERIAL WITH GENERAL FORMULATION: AxByFz:Mn - Google Patents

SOL-GEL PROCESS FOR SYNTHESISING A LUMINESCENT MATERIAL WITH GENERAL FORMULATION: AxByFz:Mn Download PDF

Info

Publication number
US20190071601A1
US20190071601A1 US15/775,524 US201615775524A US2019071601A1 US 20190071601 A1 US20190071601 A1 US 20190071601A1 US 201615775524 A US201615775524 A US 201615775524A US 2019071601 A1 US2019071601 A1 US 2019071601A1
Authority
US
United States
Prior art keywords
acid
liquid precursor
precursor
combination
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/775,524
Other versions
US11505741B2 (en
Inventor
Anthony BARROS
Rodolphe DELONCLE
Jérôme DESCHAMPS
Geneviève Chadeyron
Damien BOYER
Philippe BOUTINAUD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Linxens Holding SAS
Universite Clermont Auvergne
Sigma Clermont
Original Assignee
Centre National de la Recherche Scientifique CNRS
Linxens Holding SAS
Universite Clermont Auvergne
Sigma Clermont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Linxens Holding SAS, Universite Clermont Auvergne, Sigma Clermont filed Critical Centre National de la Recherche Scientifique CNRS
Publication of US20190071601A1 publication Critical patent/US20190071601A1/en
Application granted granted Critical
Publication of US11505741B2 publication Critical patent/US11505741B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/615Halogenides
    • C09K11/616Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/617Silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • This invention refers to a sol-gel process for synthesising a luminescent material with general formulation: AxByFz: Mn.
  • A represents an element belonging to one of the following groups of the periodic table of elements also known as the Mendeleev's table: groups 1, 2, 4, NR 4 or a combination of elements, given that R is hydrogen or an alkyl chain, either alone or in combination.
  • B represents an element belonging to one of groups 5, 6, 13, 14, x is a value greater than zero and less than or equal to five, y is a value greater than zero and less than or equal to two and z is greater than or equal five and less than or equal to seven.
  • Luminescent materials i.e. materials that emit light under the effect of excitation, are used in the field of lighting, lasers, medical imaging among others. Luminescent materials are particularly used in the production of Light-Emitting Diodes or LED, the commonly used acronym. For environmental reasons, cost, lifespan, consumption and ease of use, LEDs are increasingly being used for “traditional” lighting, in replacement of, for example, the halogen or incandescent lamps. White LEDs, in particular, provide lighting similar to natural light.
  • white LEDs are manufactured by combining a semi-conductor emitting between 400 nm and 500 nm with a yellow/green phosphor emitting between 480 nm and 650 nm.
  • a red component is required to be added for strengthening the emission between 600 nm and 700 nm.
  • compounds of the nitrides family doped with europium are the solution of choice for this red component. They are characterised by an intense red emission and thermal stability. However, these compounds are expensive and difficult to produce.
  • an emerging solution comprises using complex fluoro compounds of the general formula AxByFz: Mn 4+ . These materials have a narrow emission range that favour obtaining a high CRI and are less expensive due to the lack of rare earth elements in their composition.
  • sol-gel type processes allow production of luminescent materials at low temperature, i.e. temperature lower than that of conventional ceramisation methods.
  • ceramisation is possible at temperatures below 100° C.
  • This type of process is based on inorganic polymerisation, based on precursors in solution, which results in an organometallic network, precursor of the final solid.
  • colloids are formed along with polymeric gels. After drying and sintering, it is possible to obtain fibres, monoliths or powders.
  • the structure of matrices of these various processes is characterised by crystallographic sites that easily incorporate rare earth elements. These sites are unsuitable for receiving transition ions with a d 3 electron configuration such as Cr 3+ or Mn 4+ .
  • transition ions with a d 3 electron configuration such as Cr 3+ or Mn 4+ .
  • the use of rare earth elements is disadvantageous in terms of costs.
  • the invention specifically aims to propose a sol-gel synthesis process, easy to use, without organic source of fluorine, without hydrofluoric acid and without rare earth elements.
  • the aim of this invention is a sol-gel process for synthesising a luminescent material with general formulation: AxByFz: Mn, where A is an element of the group 1, 2, 4, NR 4 or a combination of elements belonging to these groups, where R ⁇ H or an alkyl chain or a combination of chains, where B is an element of the group 5, 6, 13, 14, and 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 2, 5 ⁇ z ⁇ 7, characterised in that it comprises at least the following steps:
  • metal reagents selected from metal salts such as halides, nitrates, hydrides, amides, acetates, carbonates or alkoxides, with manganese, and the mixing is performed at pH ⁇ 8,
  • step b) obtaining a solid precursor from the liquid precursor obtained in step a) by eliminating the solvent
  • step b) crystallisation of the solid precursor obtained in step b), by heat treatment in fluorine atmosphere,
  • dissolved fluorine source or rare earth element.
  • the fluorine source is introduced only in the penultimate step, thus just before recovery of the final product, at the time of the heat treatment. In other words, the process takes place in the absence of dissolved fluorine. Its safety is improved and the storage and handling also become easier.
  • such a process may comprise one or more of the following characteristics:
  • the pH is maintained below 8 by adding an acid, selected from, but not limited to, carboxylic acids such as formic acid, acetic acid, propionic acid, citric acid, tartaric acid, oxalic acid, sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid, anhydrous forms of acids, hydrochloric acid in solution in ethyl ether, in dioxane or in gaseous form.
  • carboxylic acids such as formic acid, acetic acid, propionic acid, citric acid, tartaric acid, oxalic acid, sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid, anhydrous forms of acids, hydrochloric acid in solution in ethyl ether, in dioxane or in gaseous form.
  • step a the pH is maintained below 8 by adding a carboxylic acid: acetic acid.
  • Step a) is performed at a temperature between 15° C. and the boiling temperature of the solvent used.
  • the liquid precursor, obtained in step a) is, if necessary, stored for subsequent use in step b).
  • step b) The solid precursor, obtained in step b) is, if necessary, stored for subsequent use in step c).
  • the metal reagents used in step a) are all selected from the alkoxides.
  • the metal reagents used in step a) are mixtures of metal salts.
  • Step c) is performed at a temperature between 100° C. and 1,000° C. for at least 30 minutes.
  • the fluorinated agent used in step c) for generating a fluorine atmosphere is selected from: F 2 , HF, BrF 3 , TbF 4 , XeF 2 , XeF4 and XeF 6 , NH 4 F, NH 4 HF 2 , CoF 3 , SbF 3 , SbF 5 , ArF 3 , KrF, BrF 5 , ClF, ClF 3 and ClF 5 , HFO 3 S, AuF 3 , IF 5 , MnF 3 and MnF 4 , NOF and NO 2 F NF 3 , ClO 3 F, PtF 6 , SeF 4 , SiF 4 , AgF 2 , SF 4 , SF 6 , KF, PbF 2 , ZnF 2 , SnF 2 , CdF 2 alone or in combination.
  • the atmosphere contains at least 1% of fluorinated agent.
  • the fluorine atmosphere is static or dynamic.
  • step d the resulting particles are reintroduced in a liquid precursor, at step a).
  • the liquid precursor is selected to provide double luminescence, for magnetic properties or for other characteristics.
  • FIG. 1 is a simplified diagram showing various steps of the process compliant with an embodiment of the invention.
  • the production of a compound will be described based, in general, on transition metals and, in particular, on an advantageous embodiment of the invention, with among others of manganese, given that the invention also finds its application with, for example, chromium, iron or any other transition element of groups 3 to 12 of the periodic table of elements. It is understood that the use of one or the other transition metal provides luminescence in different spectral ranges, and thereby in different colours. In all cases, luminescence is obtained through excitation of the transition member in a range from ultraviolet to infrared, followed by radiative de-excitation.
  • use of manganese as one of the metal reagents provides luminescence in the red range, or between 600 nm and 700 nm.
  • the final fluorinated material thereby the obtained luminescent crystalline powder, is a compound of formulation: AxByFz: Cm m+ .
  • families of matrices used for obtaining a luminescent material are those with:
  • A, B, C are also simple or complex metal reagents.
  • This term means as many metals such as manganese, chromium, iron or any other transition element as salts of these metals or a mixture of these metals.
  • metals such as manganese, chromium, iron or any other transition element as salts of these metals or a mixture of these metals.
  • metal reagents are known as themselves and are either generated in situ prior to implementation of the process or are of commercial origin. In other words, the user procures them upstream, from a supplier.
  • metal alkoxides as metal reagents allows making a heteroatom polymeric network in solution, during step a), which subsequently promotes formation of the desired final matrix.
  • metal reagents other than metal alkoxides, as previously mentioned.
  • the metal sources A, B and manganese are all made to react with alcohol.
  • the alcohol or mixture of alcohols is chosen based on the metal reagents in order to ensure optimum solubilisation.
  • the reaction is carried out under neutral atmosphere, in a stirred reactor and at a temperature between 15° C. and the boiling temperature of the solvent and for a reaction time ranging from a few minutes to several hours. Preferably, the optimal reaction time is close to 4 hours.
  • Manganese in contrast to rare earth elements, is pH sensitive. In a basic medium, manganese may be oxidised by dissolved oxygen and form MnO 2 . Such a property is known, it is also used in a “Winckler” method for measuring dissolved oxygen.
  • the reaction in step a) must be performed in a non-basic medium, i.e. in this case with pH less than 8.
  • the pH is between 1 and 7, preferentially close to 5.
  • the pH is regulated by adding an anhydrous acid, preferably selected from, but not limited to, carboxylic acids such as formic acid, acetic acid, propionic acid, citric acid, tartaric acid, oxalic acid, from sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid, from anhydrous forms of acids, from hydrochloric acid in solution in ethyl ether, in dioxane or in gaseous form.
  • carboxylic acids such as formic acid, acetic acid, propionic acid, citric acid, tartaric acid, oxalic acid
  • sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid
  • hydrochloric acid in solution in ethyl ether, in dioxane or in gaseous form.
  • acetic acid is used.
  • step 1 can be carried out at any time and/or place relative to the remainder of the process.
  • the liquid precursor 2 can be easily stored, as illustrated by reference 3 . It is thus possible to shift production of the liquid precursor 2 .
  • the storage and/or transport conditions should not be able to alter the liquid precursor and the remainder of the process. It should especially be borne in mind that the liquid precursor is flammable and must be stored away from light.
  • the liquid precursor 2 is used as soon as it is produced, either continuously or discontinuously.
  • Second step of the process is then implemented, either based on the produced liquid precursor 2 or from the stored liquid precursor 3 .
  • the liquid precursor will subsequently be referenced 2 if used directly and referenced 3 if it is a previously stored liquid precursor.
  • This step 4 is used to obtain a solid precursor 5 .
  • the alcoholic solvent is removed.
  • the alcohol is evaporated by heating to a temperature corresponding to the boiling temperature of the alcoholic solvent, this temperature has no effect on other components of the liquid precursor.
  • the solvent is eliminated by evaporation under reduced pressure, spray drying, lyophilisation or any other technique known as such.
  • step 4 The purpose of this step 4 is to initiate and solidify a reaction intermediate that comprises elements A, B and C.
  • the step 4 parameters are variable and a function of the solvent used and the elimination method selected.
  • the solid precursor 5 is obtained, and in a manner similar to the liquid precursor 2 , it is possible to store 6 the solid precursor for future use and/or in another location, as is apparent from FIG. 1 .
  • the process did not use fluorinated agent in solution.
  • the fluorine source is not yet present in the process, which allows safe handling, transporting and storing of the various precursors, while managing the time of incorporation of the fluorine source.
  • the next step illustrated by the arrows 7 or 70 depending on whether solid precursor 5 is used immediately or it is a stored 6 solid precursor, consists of a heat treatment to inject fluorine, in an atomic and/or molecular form, to the solid precursor as soon as it is produced, according to reference 5 , or to the stored solid precursor, according to reference 6 . It should be noted that fluorine is injected only in step 7 , 70 and not before.
  • step 7 , 70 is carried out under fluorinated atmosphere.
  • fluorination agent F 2 , HF, BrF 3 , TbF 4 , XeF 2 , XeF 6 , NH 4 F, CoF 3 , SbF 3 , ArF 3 , BrF 5 , ClF, ClF 3 , ClF 5 , HFO 3 S, AuF 3 , IF 5 , MnF 3 , MnF 4 , NOF, NO 2 F, ClO 3 F, PtF 6 , SeF 4 , AgF 2 , SF 4 .
  • Heat treatment carried out during this step 7 , 70 is performed between 100° C. and 1,000° C. for a period of at least 30 minutes under a fluorine atmosphere containing at least 1% fluorine. It is, in fact, not necessary for the atmosphere to be saturated with fluorine; the balance of the atmosphere may be an inert gas such as nitrogen.
  • K 2 SiF 6 Mn(IV) is synthesised from MnCl 2 , metallic K and Tetraethyl orthosilicate (TEOS).
  • the solvent used is anhydrous ethanol.
  • a K solution (3.6432 g) is added to a MnCl 2 solution (0.1713 g).
  • TEOS 9.3272 g
  • acetic acid 11.18 ml
  • salts are removed from the solution and the solution is evaporated until dry.
  • the precursor thus obtained is heat-treated at 500° C. under a F 2 flow for 15 hours.
  • Na 2 TiF 6 Mn(IV) is synthesised from MnCl 2 , metallic Na and Tetraethyl orthotitanate (TEOT).
  • the solvent used is anhydrous isopropanol.
  • a Na solution (0.7268 g) is added to a MnCl 2 solution (0.1817 g).
  • TEOT 3.6801 g
  • acetic acid 3.79 ml
  • salts are removed from the solution and the solution is evaporated until dry.
  • the precursor thus obtained is heat-treated at 500° C. under a F 2 flow for 15 hours.
  • Na 3 AlF 6 is synthesised from metallic Na and aluminium isopropoxide.
  • the solvent used is anhydrous methanol.
  • Aluminium isopropoxide (4.9135 g) is added to a Na solution (1.6675 g).
  • acetic acid (8.71 ml) is added to adjust the pH to 5.
  • the solution is cooled to 25° C.
  • the powder of Na 2 TiF 6 : Mn(IV) obtained in Example 2 is dispersed in a molar ratio of 3:1 of Na 2 TiF 6 : Mn(IV). The dispersion thus obtained is evaporated and then heat-treated at 650° C. under a F 2 flow for 3 hours.
  • LiSrAlF 6 Cr(III) is synthesised from lithium ethoxide, strontium isopropoxide, chromium acetylacetonate and aluminium isopropoxide.
  • the solvent used is anhydrous isopropanol.
  • Example 1 the powder of K 2 SiF 6 : Mn(IV) obtained in Example 1 is dispersed in a molar ratio of 9:1 of K 2 SiF 6 : Mn(IV). The dispersion thus obtained is evaporated and then heat-treated at 600° C. under a F 2 flow for 10 hours.
  • heat treatment is preferably carried out in a dynamic manner, i.e. under fluorinated gas flow.
  • it is carried out in a static manner: step 7 , 70 then takes place in a closed volume, under fluorinated atmosphere.
  • step 7 or 70 depending on the source of the solid precursor, 5 or 6 , we get crystalline powder 8 .
  • Obtained particle size depends on the type of the solid precursor 5 and on the conditions of the heat treatment 7 . Generally, the particle size is close to 200 nm. Particles may be in the form of aggregates whose size is around one micron. Such particle size is especially suited to enable shaping and depositing the phosphor, for example, on a LED 9 .
  • the process is also used to protect the powder from aggression of its immediate environment by depositing a passivation layer during the additional cycle(s). For example, by reintroducing powder 8 in a liquid precursor 2 or 3 of Na 3 AlF 6 , also known as the synthetic cryolite, the particles are coated with a protective layer.
  • Alumina particles Al 2 O 3 coated with K 2 SiF 6 : Mn can be cited as a non-limiting example. In other words, fluorescence characteristics are imparted to the alumina particles.
  • step b For different steps of production of a solid precursor (step b) and of crystallisation (step c), such a process allows using the liquid and solid precursors respectively either directly from the preceding step or from storage, 3 or 6 , or a mixture, in variable proportions, of precursors obtained partly from storage and partly from the preceding step. It is thus possible to regulate production, at each of the steps b) and c), by adjusting, if required, the quantity of the precursors used from stored precursors 3 or 6 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The invention relates to a sol-gel process for synthesising a luminescent material with general formulation: AxByFz:Mn, wherein A is an element of group 1, 2, 4, NR4 or a combination of elements belonging to said groups, with R═H or an alkyl chain or a combination of chains, B being an element of group 5, 6, 13, 14 and 0<x≤5, 0<y≤2, 5≤z≤7, characterised in that it includes at least the following steps: a) producing a liquid precursor (2, 3) in an alcohol solution by mixing metal reagents (1), selected among metal salts such as halogenides, nitrates, hydrides, amidides, acetates, carbonates or alkoxides, with manganese, the mixture being made at pH<8; b) obtaining a solid precursor (5, 6) from the liquid precursor (2, 3) obtained in step a), by eliminating (4) the solvent; c) crystallising (7, 70) the solid precursor (5, 6) obtained in step b), by thermal treatment in fluorinated atmosphere; and d) retrieving the fluorescent crystalline powder (8) obtained at the end of step c).

Description

  • This invention refers to a sol-gel process for synthesising a luminescent material with general formulation: AxByFz: Mn.
  • Here, A represents an element belonging to one of the following groups of the periodic table of elements also known as the Mendeleev's table: groups 1, 2, 4, NR4 or a combination of elements, given that R is hydrogen or an alkyl chain, either alone or in combination. B represents an element belonging to one of groups 5, 6, 13, 14, x is a value greater than zero and less than or equal to five, y is a value greater than zero and less than or equal to two and z is greater than or equal five and less than or equal to seven.
  • Luminescent materials, i.e. materials that emit light under the effect of excitation, are used in the field of lighting, lasers, medical imaging among others. Luminescent materials are particularly used in the production of Light-Emitting Diodes or LED, the commonly used acronym. For environmental reasons, cost, lifespan, consumption and ease of use, LEDs are increasingly being used for “traditional” lighting, in replacement of, for example, the halogen or incandescent lamps. White LEDs, in particular, provide lighting similar to natural light.
  • Most white LEDs are manufactured by combining a semi-conductor emitting between 400 nm and 500 nm with a yellow/green phosphor emitting between 480 nm and 650 nm. For manufacturing white LEDs with high colour rendering index or CRI, a red component is required to be added for strengthening the emission between 600 nm and 700 nm. Presently, compounds of the nitrides family doped with europium are the solution of choice for this red component. They are characterised by an intense red emission and thermal stability. However, these compounds are expensive and difficult to produce. In addition, an emerging solution comprises using complex fluoro compounds of the general formula AxByFz: Mn4+. These materials have a narrow emission range that favour obtaining a high CRI and are less expensive due to the lack of rare earth elements in their composition.
  • From US-A-2015 0166 887, we know of a method for preparing a luminescent material through co-precipitation reactions involving fluorinated precursors in solution in hydrofluoric acid. This acid is considered extremely corrosive and toxic, which requires significant safety constraints during its storage and use.
  • Therefore, other modes of production were explored. Among these, the sol-gel type processes allow production of luminescent materials at low temperature, i.e. temperature lower than that of conventional ceramisation methods. For example, in the case of silica, ceramisation is possible at temperatures below 100° C. This type of process is based on inorganic polymerisation, based on precursors in solution, which results in an organometallic network, precursor of the final solid. During the process, colloids are formed along with polymeric gels. After drying and sintering, it is possible to obtain fibres, monoliths or powders.
  • In the case manufacturing of non-fluorinated luminescent materials, the Audrey Caumond-Potdevin thesis (“synthesis by sol-gel method and characterisation of nanostructured luminescent materials applicable in a new generation of clean lamps” of June 2007) tells us about a method wherein metal alkoxides are used in solution in an organic solvent as a precursor. In general, the method comprises hydrolysis type reactions and then condensation type reactions. These combined reactions lead to the development of molecules having a three-dimensional structure.
  • The Jessica Labèguerie-Egea thesis, (“synthesis of rare earth doped fluorides by soft chemistry for optical applications” 2007), also describes a sol-gel process using isopropanol as solvent and trifluoroacetic acid as a fluorinating agent for obtaining single fluorinated derivatives, such as CaF2, doped with europium. Damien Boyer et al, optical materials 28, 2006, 53-57, also talks about the production of a fluorescent powder, in this case a fluoride of lithium and yttrium doped with europium, from a heterometallic alkoxide solution. Here, the fluorine source is trifluoroacetic acid introduced at the beginning of the process, which is carried out in a basic medium. This powder is used in the field of lasers among others.
  • The structure of matrices of these various processes is characterised by crystallographic sites that easily incorporate rare earth elements. These sites are unsuitable for receiving transition ions with a d3 electron configuration such as Cr3+ or Mn4+. In order to achieve performance levels required for application on LEDs, it is necessary to obtain more fluorinated structures, i.e. containing more than four fluorine atoms, whose crystal field provides optimised luminescence of manganese. In addition, the use of rare earth elements is disadvantageous in terms of costs.
  • In other words, it is worth producing a fluoride without rare earth elements, having at least five fluorine atoms in the matrix structure, easy to produce and to store.
  • The invention specifically aims to propose a sol-gel synthesis process, easy to use, without organic source of fluorine, without hydrofluoric acid and without rare earth elements.
  • For this purpose, the aim of this invention is a sol-gel process for synthesising a luminescent material with general formulation: AxByFz: Mn, where A is an element of the group 1, 2, 4, NR4 or a combination of elements belonging to these groups, where R═H or an alkyl chain or a combination of chains, where B is an element of the group 5, 6, 13, 14, and 0<x≤5, 0<y≤2, 5≤z≤7, characterised in that it comprises at least the following steps:
  • a) production of a liquid precursor, in alcoholic solution, by mixing metal reagents, selected from metal salts such as halides, nitrates, hydrides, amides, acetates, carbonates or alkoxides, with manganese, and the mixing is performed at pH<8,
  • b) obtaining a solid precursor from the liquid precursor obtained in step a) by eliminating the solvent,
  • c) crystallisation of the solid precursor obtained in step b), by heat treatment in fluorine atmosphere,
  • d) recovery of fluorescent crystalline powder obtained at the end of step c).
  • With such a process, we do not use dissolved fluorine source, or rare earth element. Here, the fluorine source is introduced only in the penultimate step, thus just before recovery of the final product, at the time of the heat treatment. In other words, the process takes place in the absence of dissolved fluorine. Its safety is improved and the storage and handling also become easier.
  • According to the aspects of the invention that are advantageous but not mandatory, such a process may comprise one or more of the following characteristics:
  • During step a), the pH is maintained below 8 by adding an acid, selected from, but not limited to, carboxylic acids such as formic acid, acetic acid, propionic acid, citric acid, tartaric acid, oxalic acid, sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid, anhydrous forms of acids, hydrochloric acid in solution in ethyl ether, in dioxane or in gaseous form.
  • During step a), the pH is maintained below 8 by adding a carboxylic acid: acetic acid.
  • Step a) is performed at a temperature between 15° C. and the boiling temperature of the solvent used.
  • The liquid precursor, obtained in step a) is, if necessary, stored for subsequent use in step b).
  • The solid precursor, obtained in step b) is, if necessary, stored for subsequent use in step c).
  • The metal reagents used in step a) are all selected from the alkoxides.
  • The metal reagents used in step a) are mixtures of metal salts.
  • Step c) is performed at a temperature between 100° C. and 1,000° C. for at least 30 minutes.
  • The fluorinated agent used in step c) for generating a fluorine atmosphere is selected from: F2, HF, BrF3, TbF4, XeF2, XeF4 and XeF6, NH4F, NH4HF2, CoF3, SbF3, SbF5, ArF3, KrF, BrF5, ClF, ClF3 and ClF5, HFO3S, AuF3, IF5, MnF3 and MnF4, NOF and NO2F NF3, ClO3F, PtF6, SeF4, SiF4, AgF2, SF4, SF6, KF, PbF2, ZnF2, SnF2, CdF2 alone or in combination.
  • During step c), the atmosphere contains at least 1% of fluorinated agent.
  • During step c), the fluorine atmosphere is static or dynamic.
  • At the end of step d), the resulting particles are reintroduced in a liquid precursor, at step a).
  • During this new step a), the liquid precursor is selected to provide double luminescence, for magnetic properties or for other characteristics.
  • The invention will be better understood and its other advantages will become clearer on reading the description of several embodiments of the invention, given as examples (non-exhaustive) and with reference to the following drawing wherein:
  • FIG. 1 is a simplified diagram showing various steps of the process compliant with an embodiment of the invention.
  • With reference to FIG. 1, the production of a compound will be described based, in general, on transition metals and, in particular, on an advantageous embodiment of the invention, with among others of manganese, given that the invention also finds its application with, for example, chromium, iron or any other transition element of groups 3 to 12 of the periodic table of elements. It is understood that the use of one or the other transition metal provides luminescence in different spectral ranges, and thereby in different colours. In all cases, luminescence is obtained through excitation of the transition member in a range from ultraviolet to infrared, followed by radiative de-excitation.
  • As a preferred example, use of manganese as one of the metal reagents provides luminescence in the red range, or between 600 nm and 700 nm.
  • It should be borne in mind that the final fluorinated material, thereby the obtained luminescent crystalline powder, is a compound of formulation: AxByFz: Cmm+.
  • In general, families of matrices used for obtaining a luminescent material are those with:
    • A=element of the group 1, 2, 4, NR4 or a combination of elements belonging to these groups where R═H or an alkyl chain of small size or a combination of chains. Here, the term “small size” refers to an alkyl chain having from 1 to 4 carbon atoms.
    • B=element of the group 5, 6, 13, 14.
    • Cm+=Transition metal 3dn (where n=[1; 10]) with a degree of oxidation m, transition metals means elements that have an atomic number between 21 and 30.

  • 0<x≤5, 0<y≤2

  • 5≤z≤7.
  • In the invention, A, B, C are also simple or complex metal reagents. This term means as many metals such as manganese, chromium, iron or any other transition element as salts of these metals or a mixture of these metals. As examples, including but not limited to, we can list halides, nitrates, hydrides, amides, acetates, carbonates or, preferably in an embodiment of the invention, alkoxides.
  • These metal reagents are known as themselves and are either generated in situ prior to implementation of the process or are of commercial origin. In other words, the user procures them upstream, from a supplier.
  • The preferable use of metal alkoxides as metal reagents allows making a heteroatom polymeric network in solution, during step a), which subsequently promotes formation of the desired final matrix. In this context, it is possible to use metal reagents other than metal alkoxides, as previously mentioned.
  • Here, the process, which is the subject of the invention, will be described by using metal alkoxides.
  • During a first step, shown under reference 1, the metal sources A, B and manganese are all made to react with alcohol. The alcohol or mixture of alcohols is chosen based on the metal reagents in order to ensure optimum solubilisation.
  • The reaction is carried out under neutral atmosphere, in a stirred reactor and at a temperature between 15° C. and the boiling temperature of the solvent and for a reaction time ranging from a few minutes to several hours. Preferably, the optimal reaction time is close to 4 hours. Manganese, in contrast to rare earth elements, is pH sensitive. In a basic medium, manganese may be oxidised by dissolved oxygen and form MnO2. Such a property is known, it is also used in a “Winckler” method for measuring dissolved oxygen. In other words, the reaction in step a) must be performed in a non-basic medium, i.e. in this case with pH less than 8. Advantageously, the pH is between 1 and 7, preferentially close to 5. Moreover, the reaction must be performed in an anhydrous environment. Therefore, the pH is regulated by adding an anhydrous acid, preferably selected from, but not limited to, carboxylic acids such as formic acid, acetic acid, propionic acid, citric acid, tartaric acid, oxalic acid, from sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid, from anhydrous forms of acids, from hydrochloric acid in solution in ethyl ether, in dioxane or in gaseous form.
  • Preferably, acetic acid is used.
  • When reaction is complete, we get a liquid precursor 2 under normal temperature and pressure conditions. It is understood that step 1 can be carried out at any time and/or place relative to the remainder of the process. Thus, the liquid precursor 2 can be easily stored, as illustrated by reference 3. It is thus possible to shift production of the liquid precursor 2. In this case, the storage and/or transport conditions should not be able to alter the liquid precursor and the remainder of the process. It should especially be borne in mind that the liquid precursor is flammable and must be stored away from light.
  • Alternatively, the liquid precursor 2 is used as soon as it is produced, either continuously or discontinuously.
  • Second step of the process, illustrated by arrows 4, is then implemented, either based on the produced liquid precursor 2 or from the stored liquid precursor 3.
  • The liquid precursor will subsequently be referenced 2 if used directly and referenced 3 if it is a previously stored liquid precursor.
  • This step 4 is used to obtain a solid precursor 5. For this, the alcoholic solvent is removed. As an advantage, but not exclusively, the alcohol is evaporated by heating to a temperature corresponding to the boiling temperature of the alcoholic solvent, this temperature has no effect on other components of the liquid precursor. Alternatively, the solvent is eliminated by evaporation under reduced pressure, spray drying, lyophilisation or any other technique known as such.
  • The purpose of this step 4 is to initiate and solidify a reaction intermediate that comprises elements A, B and C. For this, the step 4 parameters are variable and a function of the solvent used and the elimination method selected.
  • Once the solid precursor 5 is obtained, and in a manner similar to the liquid precursor 2, it is possible to store 6 the solid precursor for future use and/or in another location, as is apparent from FIG. 1.
  • It must be noted that, until now, the process did not use fluorinated agent in solution. In other words, the fluorine source is not yet present in the process, which allows safe handling, transporting and storing of the various precursors, while managing the time of incorporation of the fluorine source.
  • The next step, illustrated by the arrows 7 or 70 depending on whether solid precursor 5 is used immediately or it is a stored 6 solid precursor, consists of a heat treatment to inject fluorine, in an atomic and/or molecular form, to the solid precursor as soon as it is produced, according to reference 5, or to the stored solid precursor, according to reference 6. It should be noted that fluorine is injected only in step 7, 70 and not before.
  • In other words, step 7, 70 is carried out under fluorinated atmosphere. As examples, including but not limited to, we can list the following as fluorination agent: F2, HF, BrF3, TbF4, XeF2, XeF6, NH4F, CoF3, SbF3, ArF3, BrF5, ClF, ClF3, ClF5, HFO3S, AuF3, IF5, MnF3, MnF4, NOF, NO2F, ClO3F, PtF6, SeF4, AgF2, SF4.
  • Heat treatment carried out during this step 7, 70 is performed between 100° C. and 1,000° C. for a period of at least 30 minutes under a fluorine atmosphere containing at least 1% fluorine. It is, in fact, not necessary for the atmosphere to be saturated with fluorine; the balance of the atmosphere may be an inert gas such as nitrogen.
  • Following examples of synthesis illustrate use of the process that is the purpose of the invention.
  • EXAMPLE 1
  • K2SiF6: Mn(IV) is synthesised from MnCl2, metallic K and Tetraethyl orthosilicate (TEOS). The solvent used is anhydrous ethanol. A K solution (3.6432 g) is added to a MnCl2 solution (0.1713 g). After 1 hour of stirring under reflux, TEOS (9.3272 g) is added to the above solution. After 30 minutes of stirring under reflux, acetic acid (11.18 ml) is added to adjust the pH to 5. After 4 hours of reflux, salts are removed from the solution and the solution is evaporated until dry. The precursor thus obtained is heat-treated at 500° C. under a F2 flow for 15 hours.
  • EXAMPLE 2
  • Na2TiF6: Mn(IV) is synthesised from MnCl2, metallic Na and Tetraethyl orthotitanate (TEOT). The solvent used is anhydrous isopropanol. A Na solution (0.7268 g) is added to a MnCl2 solution (0.1817 g). After 1 hour of stirring under reflux, TEOT (3.6801 g) is added to the above solution. After 30 minutes of stirring under reflux, acetic acid (3.79 ml) is added to adjust the pH to 5. After 3 hours of reflux, salts are removed from the solution and the solution is evaporated until dry. The precursor thus obtained is heat-treated at 500° C. under a F2 flow for 15 hours.
  • EXAMPLE 3
  • Na3AlF6 is synthesised from metallic Na and aluminium isopropoxide. The solvent used is anhydrous methanol. Aluminium isopropoxide (4.9135 g) is added to a Na solution (1.6675 g). After 30 minutes of stirring under reflux, acetic acid (8.71 ml) is added to adjust the pH to 5. After 2 hours of reflux, the solution is cooled to 25° C. Into this, the powder of Na2TiF6: Mn(IV) obtained in Example 2 is dispersed in a molar ratio of 3:1 of Na2TiF6: Mn(IV). The dispersion thus obtained is evaporated and then heat-treated at 650° C. under a F2 flow for 3 hours.
  • EXAMPLE 4
  • LiSrAlF6: Cr(III) is synthesised from lithium ethoxide, strontium isopropoxide, chromium acetylacetonate and aluminium isopropoxide. The solvent used is anhydrous isopropanol. To a solution of lithium ethoxide (0.7171 g), strontium isopropoxide (2.6132 g) and chromium acetylacetonate (0.1336 g), aluminium isopropoxide (2.5408 g) is added. After 30 minutes of stirring under reflux, acetic acid (3.18 ml) is added to adjust the pH to 5. After 6 hours of reflux, the solution is cooled to 25° C. Into this, the powder of K2SiF6: Mn(IV) obtained in Example 1 is dispersed in a molar ratio of 9:1 of K2SiF6: Mn(IV). The dispersion thus obtained is evaporated and then heat-treated at 600° C. under a F2 flow for 10 hours.
  • Since the percentage of gaseous fluorine stays low, it helps in improving safety. Moreover, heat treatment is preferably carried out in a dynamic manner, i.e. under fluorinated gas flow. Alternatively, it is carried out in a static manner: step 7, 70 then takes place in a closed volume, under fluorinated atmosphere.
  • At the end of step 7 or 70, depending on the source of the solid precursor, 5 or 6, we get crystalline powder 8. Obtained particle size depends on the type of the solid precursor 5 and on the conditions of the heat treatment 7. Generally, the particle size is close to 200 nm. Particles may be in the form of aggregates whose size is around one micron. Such particle size is especially suited to enable shaping and depositing the phosphor, for example, on a LED 9.
  • It is possible to increase the particle size if necessary, by depositing one or more additional layers. To do this, just bring the solid particles 8 in contact with the liquid precursor 2 or 3, by dispersing the former within the latter, and by performing at least one other step 4 of eliminating the solvent followed by a heat treatment step 7, 70. In this case, this additional cycle is performed on a mixture of liquid precursor 2 or 3 and particles 8, therefore under conditions which are not necessarily the same as those of the initial step 7, 70. It is understood that the cycle is repeated several times, as necessary.
  • The addition of at least one more cycle, or even several, makes it possible to introduce other characteristics to powder 8, by modifying the nature of the liquid precursor 2 or 3. It is thus possible to introduce other functional properties to powder 8, for example a second luminescence in a spectral range different from the original one of powder 8. Thus, one can achieve double luminescence, i.e. in a colour range other as red, for example yellow, by introducing a liquid precursor which does not contain manganese. Examples include a mixture of fluorinated chromium and fluorinated manganese.
  • The process is also used to protect the powder from aggression of its immediate environment by depositing a passivation layer during the additional cycle(s). For example, by reintroducing powder 8 in a liquid precursor 2 or 3 of Na3AlF6, also known as the synthetic cryolite, the particles are coated with a protective layer.
  • It is also possible to deposit one or more layers on the particles imparting other characteristics to them, such as, but not limited to, magnetic properties or a characteristic that ensures identification and traceability of the final product.
  • It is also possible to coat other particles, whether or not luminescent, and to impregnate ceramic preform type objects by dispersing them in the liquid precursor 2 or 3 and by carrying out at least one evaporation 4 and heat treatment 7 cycle. Alumina particles Al2O3 coated with K2SiF6: Mn can be cited as a non-limiting example. In other words, fluorescence characteristics are imparted to the alumina particles.
  • Such a process is therefore flexible and easy to use, which allows making different phosphors under fully safe conditions.
  • For different steps of production of a solid precursor (step b) and of crystallisation (step c), such a process allows using the liquid and solid precursors respectively either directly from the preceding step or from storage, 3 or 6, or a mixture, in variable proportions, of precursors obtained partly from storage and partly from the preceding step. It is thus possible to regulate production, at each of the steps b) and c), by adjusting, if required, the quantity of the precursors used from stored precursors 3 or 6.

Claims (14)

1. A sol-gel process for synthesising a luminescent material comprising a general formulation of AxByFz:Mn,
wherein A is an element of groups 1, 2, 4, NR4,or a combination of elements belonging to these groups, with R═H or an alkyl chain or a combination of chains,
wherein B is an element of groups 5, 6, 13, 14, and 0<x≤5, 0<y≤2, 5≤z≤7, further comprising:
a) production of a liquid precursor (2, 3), in alcoholic solution, by mixing metal reagents (1), selected from metal salts such as halides, nitrates, hydrides, amides, acetates, carbonates or alkoxides, with manganese, and the mixing is carried out at pH<8,
b) obtaining a solid precursor (5, 6) from the liquid precursor (2, 3) obtained in step a) by eliminating (4) the solvent,
c) crystallisation (7, 70) of the solid precursor (5, 6) obtained in step b), by heat treatment in fluorine atmosphere, and
d) recovery of the fluorescent crystalline powder (8) obtained at the end of step c).
2. The process of claim 1, wherein during step a) the pH is maintained below 8 by adding an acid, selected from carboxylic acids such as formic acid, acetic acid, propionic acid, citric acid, tartaric acid, oxalic acid, from sulfonic acids such as benzenesulfonic acid, paratoluenesulfonic acid, from anhydrous forms of acids, from hydrochloric acid in solution in ethyl ether, in dioxane or in gaseous form.
3. The process of claim 2, wherein during step a) the pH is maintained below 8 by adding a carboxylic acid: acetic acid.
4. The process of claim 1, wherein step a) is carried out at a temperature between 15° C. and the boiling temperature of the solvent used.
5. The process of claim 1, wherein the liquid precursor obtained in step a) is, if necessary, stored (3) for subsequent use in step b).
6. The process of claim 1, wherein the solid precursor obtained in step b) is, if necessary, stored (6) for subsequent use in step c).
7. The process of claim 1, wherein the metal reagents used in step a) are all selected from alkoxides.
8. The process of claim 1, wherein the metal reagents used in step a) are mixtures of metal salts.
9. The process of claim 1, wherein step c) is carried out at a temperature between 100° C. and 1,000° C. for at least 30 minutes.
10. The process of claim 1, wherein the fluorinating agent used in step c) for generating a fluorine atmosphere is selected from: F2, HF, BrF3, TbF4, XeF2, XeF4 and XeF6, NH4F, NH4HF2, CoF3, SbF3, SbF5, ArF3, KrF, BrF5, ClF, ClF3 and ClF5, HFO3S, AuF3, IF5, MnF3 and MnF4, NOF and NO2F NF3, ClO3F, PtF6, SeF4, SiF4, AgF2, SF4, SF6, KF, PbF2, ZnF2, SnF2, CdF2 alone or in combination.
11. The process of claim 8, wherein during step c) the atmosphere contains at least 1% of fluorinated agent.
12. The process of claim 8, wherein during step c), the fluorine atmosphere is static or dynamic.
13. The process of claim 1, wherein at the end of step d) the resulting particles (8) are reintroduced in a liquid precursor at step a).
14. The process of claim 13, wherein during step a) the liquid precursor is selected to provide double luminescence for magnetic properties or for other characteristics.
US15/775,524 2015-11-13 2016-11-10 Sol-gel process for synthesising a luminescent material with general formulation: AxByFz:Mn Active 2040-03-04 US11505741B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1560857A FR3043687B1 (en) 2015-11-13 2015-11-13 SOL-GEL PROCESS FOR THE SYNTHESIS OF A LUMINESCENT MATERIAL OF GENERAL FORMULATION AXBYFZ: MN
FR1560857 2015-11-13
PCT/FR2016/052938 WO2017081428A1 (en) 2015-11-13 2016-11-10 Sol-gel process for synthesising a luminescent material with general formulation: axbyfz:mn

Publications (2)

Publication Number Publication Date
US20190071601A1 true US20190071601A1 (en) 2019-03-07
US11505741B2 US11505741B2 (en) 2022-11-22

Family

ID=55345984

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/775,524 Active 2040-03-04 US11505741B2 (en) 2015-11-13 2016-11-10 Sol-gel process for synthesising a luminescent material with general formulation: AxByFz:Mn

Country Status (8)

Country Link
US (1) US11505741B2 (en)
EP (1) EP3374466A1 (en)
JP (1) JP2019500312A (en)
KR (1) KR102132757B1 (en)
CN (1) CN108699439B (en)
CA (1) CA3004389C (en)
FR (1) FR3043687B1 (en)
WO (1) WO2017081428A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110240895B (en) * 2019-07-16 2022-08-19 江西理工大学 Mn 4+ Method for repairing performance of fluoride or oxyfluoride doped fluorescent material
FR3106832B1 (en) 2020-02-03 2022-04-29 Centre Nat Rech Scient Process for the dry synthesis of a phosphor by treatment under a fluorine atmosphere
KR102796339B1 (en) * 2022-03-25 2025-04-15 전남대학교산학협력단 Lithium disilicate powder manufacturing method using sol-gel method, lthium disilicate powder prepared by the method, and photocurable composition for 3D printing containing the powder

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891361A (en) * 1997-05-02 1999-04-06 Sarnoff Corporation Method for preparing small particle size fluoride up-converting phosphors
EP2242119A4 (en) * 2008-02-07 2012-03-07 Mitsubishi Chem Corp SEMICONDUCTOR LIGHT EMITTING DEVICE, BACKLIGHT DEVICE, COLOR AND LUMINOPHORE IMAGE DISPLAY DEVICE USED FOR THESE DEVICES
US9197029B2 (en) * 2010-12-21 2015-11-24 Mitsubishi Electric Corporation Mode control waveguide-type laser device
US8252613B1 (en) * 2011-03-23 2012-08-28 General Electric Company Color stable manganese-doped phosphors
CN104114671B (en) * 2012-02-16 2016-10-26 皇家飞利浦有限公司 Coated narrow-band red-emitting fluorosilicates for semiconductor LEDs
US9698314B2 (en) * 2013-03-15 2017-07-04 General Electric Company Color stable red-emitting phosphors
US9580648B2 (en) * 2013-03-15 2017-02-28 General Electric Company Color stable red-emitting phosphors
AU2014362239B2 (en) * 2013-12-13 2018-06-07 Current Lightning Solutions, LLC Processes for preparing color stable manganese-doped complex fluoride phosphors
JP6094532B2 (en) * 2013-12-27 2017-03-15 日亜化学工業株式会社 Method for producing fluoride phosphor
JP5804149B2 (en) * 2014-01-30 2015-11-04 信越化学工業株式会社 Manufacturing method and processing method of double fluoride phosphor
SG10201800007UA (en) * 2014-02-11 2018-02-27 Univation Tech Llc Producing polyolefin products
US9512356B2 (en) * 2014-05-01 2016-12-06 General Electric Company Process for preparing red-emitting phosphors
KR101809793B1 (en) * 2014-09-30 2017-12-15 니치아 카가쿠 고교 가부시키가이샤 Fluoride fluorescent material, method for producing the same, and light emitting device
US10047286B2 (en) * 2014-10-27 2018-08-14 General Electric Company Color stable red-emitting phosphors
KR102355081B1 (en) * 2014-12-26 2022-01-26 삼성전자주식회사 Method of manufacturing fluoride phosphor, light emitting device, display apparatus and illumination apparatus
US9982190B2 (en) * 2015-02-20 2018-05-29 General Electric Company Color stable red-emitting phosphors
US11193059B2 (en) * 2016-12-13 2021-12-07 Current Lighting Solutions, Llc Processes for preparing color stable red-emitting phosphor particles having small particle size

Also Published As

Publication number Publication date
EP3374466A1 (en) 2018-09-19
KR102132757B1 (en) 2020-07-13
WO2017081428A1 (en) 2017-05-18
CN108699439A (en) 2018-10-23
CN108699439B (en) 2022-02-18
US11505741B2 (en) 2022-11-22
FR3043687B1 (en) 2020-07-03
CA3004389A1 (en) 2017-05-18
JP2019500312A (en) 2019-01-10
CA3004389C (en) 2020-11-03
FR3043687A1 (en) 2017-05-19
KR20180100112A (en) 2018-09-07

Similar Documents

Publication Publication Date Title
US8168085B2 (en) White light phosphors for fluorescent lighting
CN102827601B (en) Fluoride fluorescent powder material and semiconductor light-emitting device thereof
CN1743363A (en) Matrix materials doped with rare earth elements
US11505741B2 (en) Sol-gel process for synthesising a luminescent material with general formulation: AxByFz:Mn
KR101854114B1 (en) Metal fluoride-based red phosphors and light emitting device containing the same
WO2011053455A1 (en) Solid solution phosphors based on oxyfluoride and white light emitting diodes including the phosphors for solid state white lighting applications
US20200332182A1 (en) Phosphor Particles with a Protective Layer, and Method for Producing the Phosphor Particles with the Protective Layer
CN112251219A (en) Moisture-resistant fluoride red phosphor and preparation method thereof
Fujihara Sol-gel processing of fluoride and oxyfluoride materials
Neto et al. Tunable luminescence of Ce3+-doped calcium boroaluminate glasses for light emitting devices
Deng et al. The use of a single ammonium acidic salt towards simple green co-precipitation synthesis for Mn 4+-activated fluorides
US20070254981A1 (en) Layered nanoparticles with controlled energy transfer between dopants
KR101529405B1 (en) Composition containing a core-shell aluminate, phosphor obtained from said composition, and preparation methods
JP2007131843A (en) Silicate-based orange fluorophor
CN114958351A (en) Ultraviolet excited bluish violet fluorescent powder, preparation method and luminescent device
WO2016127843A1 (en) Fluorescent material used for solid light source, manufacturing method therefor and composition containing same
Liu et al. Phosphor-aluminosilicate CsPbX3 perovskite fluorescent glass with low formation temperature for photoluminescence display applications
CN103396798B (en) A kind of near ultraviolet excitated nitric oxide fluorescent powder and preparation method thereof
JPWO2006132188A1 (en) Method for producing inorganic crystals
Zhou et al. Plasma-assisted synthesis and photoluminescence properties of amorphous SiO2 nanowires doped with optically active ions
CN118414403A (en) A nitride deep red light material and preparation method and device
EP4527904A1 (en) Method for treating luminescent nanoparticles
EP4610230A1 (en) Synthesis of high-quality garnet nanoparticles
KR101270080B1 (en) High luminescent silicon based nitride phosphors, their fabrication method and light emitting devide comprising such a phosphor
Castro et al. Lanthanide-doped oxyfluoride transparent glass–ceramics prepared by sol–gel

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE