[go: up one dir, main page]

US20190032445A1 - Isolation Tool and Method - Google Patents

Isolation Tool and Method Download PDF

Info

Publication number
US20190032445A1
US20190032445A1 US16/148,814 US201816148814A US2019032445A1 US 20190032445 A1 US20190032445 A1 US 20190032445A1 US 201816148814 A US201816148814 A US 201816148814A US 2019032445 A1 US2019032445 A1 US 2019032445A1
Authority
US
United States
Prior art keywords
slip
composite
adjacent
nut
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/148,814
Inventor
Alex DEMPSEY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conquest Completion Services LLC
Original Assignee
Crusader Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/992,317 external-priority patent/US20170198544A1/en
Application filed by Crusader Technologies LLC filed Critical Crusader Technologies LLC
Priority to US16/148,814 priority Critical patent/US20190032445A1/en
Publication of US20190032445A1 publication Critical patent/US20190032445A1/en
Assigned to CONQUEST COMPLETION SERVICES, LLC reassignment CONQUEST COMPLETION SERVICES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Crusader Technologies, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/128Packers; Plugs with a member expanded radially by axial pressure
    • E21B33/1285Packers; Plugs with a member expanded radially by axial pressure by fluid pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/129Packers; Plugs with mechanical slips for hooking into the casing
    • E21B33/1293Packers; Plugs with mechanical slips for hooking into the casing with means for anchoring against downward and upward movement

Definitions

  • the invention disclosed and taught herein relates generally to isolation tools for use in completion of an oil or gas well.
  • zones in the well that should be treated or f racked in order to improve production. These zones are at multiple depths in the wellbore and are designed to be treated individually or separate from one another. This separation of zones is accomplished by using some type of isolation tool that is lowered into the wellbore using various methods such as e-line or coiled tubing.
  • the isolation tool As the isolation tool is being lowered to the desired depth, it is subjected to opposing forces in the well bore that can sometimes cause the tool to pre-set if the opposing forces are not distributed evenly around the tool.
  • the tool When successful depth is achieved, the tool is activated. Once activated, this isolation tool should be able to stay anchored in the desired position. A seal is then completed using various options of isolation tools and the zones are effectively isolated from each other and can then be treated. Once all zones are treated, these isolation tools are drilled back out and debris from the drill out flows to the surface.
  • the present invention is an isolation tool known as a frac plug.
  • This frac plug 100 has the capability to eliminate the risk of pre-sets by allowing opposing fluid and pressures to be dispersed evenly around the tool as it is running downhole due to the design of the nose cone end 1 b , which is screwed onto the outer diameter threads 14 of end 1 b of mandrel 1 .
  • This invention has the capability to have positive lockup engagement with the nose cone threads 12 screwing onto threads 9 of end 1 a on mandrel 1 , which saves time and money during drillout process.
  • the present invention has the capability of becoming a ball in place tool by placing a frac ball 11 b in the seating area 11 a of mandrel 1 , end 1 a , and then securing setting adapter onto end 1 a with shear screws in shear pin holes 10 of mandrel 1 .
  • the operator can pressure up on the invention to ensure positive set before perforating or fracing.
  • This invention can perform multiple functions by making minimal changes to the same tool on location when a different design and function is needed.
  • the present invention reduces the risk of coil or e-line getting stuck in the well due to the buildup of heavy debris from the drillout. By having coated slips this invention minimizes metal build up.
  • the present invention relates to a multifunctional frac plug for use in isolating zones in a well bore.
  • a frac plug designed for multiple functions on location. It is desired that this frac plug be designed in a manner that eliminates the need to purchase multiple types of frac plugs to complete necessary operations in the field. It is also a desire in the industry to create a frac plug designed to lessen the necessity of presets by designing a nose cone capable of displacing fluids and pressure evenly while pumping down.
  • the current invention may be converted into various designs such as Ball In Place, Top Set Caged Ball, Bridge Plug or Ball Drop or Bottom Set Caged Ball, Bridge Plug, or Ball Drop simply by making changes to the invention using various inserts and setting adapters right on location.
  • the isolation tool and the method of forming it includes a mandrel 1 , with threads 9 , and shear pin holes 10 on the outer diameter of end 1 a , and threads 14 on end 1 b of the outer diameter of the mandrel 1 .
  • the mandrel 1 also has: frac ball seating area 11 a in the inner diameter of end 1 a ; threads 13 a in end 1 a of the mandrel 1 ; threads 13 b in the inner diameter of the end 1 b of mandrel 1 ; a nut 7 screwed into the inner diameter of the end 1 b ; a load ring 2 ; a slip 3 a ; a slip backup 4 a ; a first seal 5 a ; a second seal 6 ; a third seal 5 b ; a second slip backup 4 b ; a second slip 3 b ; and a nose cone 8 screwed onto the outer diameter of the threads 14 of end 1 b of the mandrel 1 .
  • the tool may include a slip backup, a bevel, a groove, slip segments, a drilled hole, a nut such as a bridge plug nut, an interior flat section, an interior beveled section, and/or gripping material.
  • the isolation tool is preferably a frac plug and the slip is preferably a coated composite slip.
  • FIG. 1 shows a perspective view of a preferred embodiment of an isolation tool in the form of a frac plug.
  • FIG. 2 shows a cross-sectional, side view of a frac plug.
  • FIG. 3 is a cross-sectional, side view of a mandrel.
  • FIG. 4 is a cross-sectional, side view of a load ring.
  • FIG. 5 is a cross-sectional, side view of a slip.
  • FIG. 6 is a cross-sectional, side view of a slip backup.
  • FIG. 7 is a cross-sectional, side view of a first and third seal.
  • FIG. 8 is a cross-sectional, side view of a second seal.
  • FIG. 9 is a cross-sectional, side view of a nose cone.
  • FIG. 10 is a cross-sectional, side view of an embodiment of a nut 7 a.
  • FIG. 11 is a cross-sectional, side view of an embodiment of a nut 7 b.
  • FIG. 12 is a cross-sectional, side view of an embodiment of a nut 7 c.
  • FIG. 13 is a partial, perspective view of the gripping member in the form of a preferred embodiment of a composite slip.
  • FIG. 14 is a side view of a composite slip segment.
  • FIG. 15 is a front view of a composite slip segment.
  • FIG. 16 shows a cross sectional view of the composite slip coated with gripping material.
  • FIG. 17 shows a top view of the composite slip coated with gripping material.
  • FIG. 18 shows a side view of a preferred embodiment of an isolation tool.
  • FIG. 19 shows a cross-sectional, side view of the isolation tool.
  • FIG. 20 shows a cross-sectional, side view of a slip backup.
  • FIG. 21 shows a cross-sectional, side view of a slip ring.
  • FIG. 22 shows a side view of a slip backup engaging a slip ring.
  • FIG. 23 shows a perspective view of a slip backup engaged to a slip ring.
  • FIG. 1 shows a perspective view of a preferred embodiment of an isolation tool in the form of a frac plug 100 with components fully assembled.
  • a frac plug 100 may include a variety of fiber and resin, metal alloys, epoxy, plastic or a combination of the listed materials.
  • a mandrel 1 of the frac plug includes threads 9 on the outside diameter at end 1 a of the mandrel 1 , with holes 10 bored in that end 1 a to accommodate shear screws.
  • the mandrel 1 is preferably designed to receive a frac ball 11 b , in ball seat area 11 a of end 1 a and has threads 13 a in end 1 a , to receive a caged ball or bridge plug nut 7 c (shown in FIG. 12 ), and threads 13 b in the inner diameter of the end 1 b to receive a nut 7 a or 7 b (shown in FIGS. 10 and 11 , respectively) in the end 1 b.
  • the mandrel 1 preferably has a through bore completely through an inside diameter and is threaded in the inside diameter 13 a of the end 1 a and threaded in inside diameter 13 b of the end 1 b to receive a nut 7 a , 7 b such as a ball drop nut or bridge plug nut.
  • the mandrel 1 is also threaded on the outside diameter 14 of the end 1 b of the mandrel 1 to receive the threaded nose cone 8 .
  • Also shown in FIG. 2 are threads 9 and shear pin holes 10 on the outer diameter of the end 1 a of the mandrel 1 .
  • a load ring 2 is engaged by sliding onto the mandrel 1 at the end 1 b and is slid down to rest on a bevel of determined degree.
  • a slip 3 a is adjacent to the load ring 2 .
  • a slip backup 4 a is adjacent to the slip 3 a .
  • a first seal 5 a is adjacent to the slip backup 4 a .
  • a second seal 6 is adjacent to the first seal 5 a and a third seal 5 b is adjacent to seal 6 .
  • a slip backup 4 b is adjacent to the third seal 5 b .
  • a slip 3 b is adjacent to the slip backup 4 b .
  • a ball drop nut 7 b is threaded into threads 13 b of the end 1 b , of mandrel 1 .
  • a nose cone 8 is threaded onto threads 14 of the end 1 b and engaged onto the end 1 b of mandrel 1 and is adjacent to the slip 3 b.
  • FIG. 3 is a cross-sectional, side view of the mandrel 1 .
  • the mandrel 1 preferably has a trough bore completely through an inside diameter and is threaded in the inside diameter 13 b of the end 1 b to receive a nut 7 a , 7 b such as a ball drop nut or bridge plug nut shown in FIGS. 10 and 11 .
  • the mandrel 1 is also threaded on the outside diameter 14 of the end 1 b to receive the threaded nose cone 8 shown in FIGS. 1 and 2 .
  • FIGS. 1, 2, and 3 there are also threads 9 on the outer diameter of the end 1 a of the mandrel 1 that are shown as end of frac plug 100 in FIGS. 1, 2, and 3 .
  • the holes 10 that may be formed or drilled in mandrel 1 , end 1 a are shown in FIGS. 1, 2, and 3 .
  • FIG. 4 is a cross-sectional, side view of the load ring 2 .
  • the load ring 2 may be round in shape and can have a flat space on the inside diameter 15 of the load ring 2 as well as having an angled surface 16 on the inside diameter of the load ring 2 .
  • the load ring 2 can engage with the mandrel 1 by sliding onto the outer diameter of the end 1 b .
  • the load ring 2 may be designed to withstand the force applied by a desired setting tool to compress the components during the setting process.
  • the load ring 2 may also have a number of holes 17 a , 17 b drilled through the thickness of the load ring 2 to receive a set screw.
  • FIG. 5 is a cross-sectional, side view of the slip, shown as slips 3 a , 3 b in FIGS. 1 and 2 .
  • Each slip 3 a , 3 b may have an outside diameter of preferably about 2.5 inches to preferably about 7 inches.
  • the slip 3 a , 3 b may also have an inside diameter of preferably about 2 inches to preferably about 6.5 inches.
  • the slip 3 a , 3 b may have bevels milled into the slip 3 a , 3 b to allow the slip to separate into sections and expand.
  • the slip 3 a , 3 b as depicted can have beveled edges 19 on the outer surface of the outer diameter at varying angles that are designed to engage with the casing and secure the frac plug 100 inside the casing.
  • the slip 3 a , 3 b may have holes 20 drilled into the slip 3 a , 3 b which may have a diameter of preferably about 0.125 inches to preferably about 0.5 inches with a depth completely through the center body of the slip 3 a , 3 b or a depth of preferably about 0.290 inches as shown herein.
  • the slips also may have relief grooves 18 a , 18 b milled radially into the inside diameter of the slip 3 a , 3 b at determined depths and locations.
  • the slips 3 a , 3 b may have a flat surface 21 on the inside diameter of a determined length and a beveled surface 22 on the inside diameter with an angle ranging from preferably about 45 degrees to preferably about 20 degrees.
  • the slip 3 a , 3 b may also have second relief grooves 18 c , 18 d milled into the surface of the slips, and into the milled areas 18 e between the slips 3 a , 3 b segments to allow to break into smaller pieces during the drill out process.
  • FIG. 6 is a cross-sectional, side view of the slip backup shown as slip backups 4 a , 4 b in FIGS. 1 and 2 .
  • the slip backup 4 may have an outside diameter of preferably about 2 inches to preferably about 7 inches and an inside diameter of preferably about 1.5 inches to preferably about 6.5 inches.
  • the slip backup 4 may have a length of preferably about 2 inches to preferably about 6 inches.
  • the slip backup 4 can have a flat surface 24 on the outside diameter and a beveled surface 25 on the end with angles ranging from preferably about 20 degrees to preferably about 45 degrees.
  • the slip backup 4 may have slots cut 26 a into the body with a depth of preferably about 1 inch to preferably about 2 inches and a width of preferably about 0.05 to preferably about 0.25 inches and may have as many as preferably about 4 to preferably about 12 slots.
  • the slip backup 4 may have a number of holes 27 with a diameter of preferably about 0.125 inches to preferably about 0.25 inches drilled through the body to receive a set screw.
  • the beveled surface 25 of the slip backups 4 a , 4 b are adjacent to the slips 3 a , 3 b shown in FIGS. 1 and 2 .
  • the slip backups may have a counter bore 26 b with a width of about 0.125 inches to about 1.00 inch and a depth of about 0.125 to about 0.500 inches.
  • FIG. 7 is a cross-sectional, side view of a seal shown as first and third seals 5 a , 5 b in FIGS. 1 and 2 .
  • the seal 5 a or 5 b is preferably a seal made of an elastomer, a polytetrafluoroethylene material including synthetic fluoropolymer of tetrafluoroethylene materials such as but not limited to the product sold under the trade name Teflon®, plastic, or other malleable material.
  • the seal 5 a , 5 b may have an outside diameter of preferably about 2 inches to preferably about 7 inches and an inside diameter of preferably about 1.5 inches to preferably about 6.5 inches.
  • the first or third seals 5 b , 5 c may have a flat surface 28 on the surface of the seal and a beveled surface 29 with angles ranging from preferably about 20 degrees to preferably about 40 degrees on the outside diameter.
  • the seals 5 a , 5 b may also have an overall length of preferably about 1.5 inches to preferably about 6 inches.
  • the seal may have a flat surface 31 in the inside diameter adjacent to the beveled surface 30 of the inside diameter. From that flat surface 31 on the inside diameter, the seals 5 a , 5 b may have the beveled area 30 on the inside diameter at angles ranging from preferably about 20 degrees to preferably about 45 degrees, extending outwardly.
  • FIG. 8 is a cross-sectional, side view of the seal 6 .
  • Seal 6 may be made from an elastomer, a polytetrafluoroethylene material including synthetic fluoropolymer of tetrafluoroethylene materials such as but not limited to the product sold under the trade name Teflon®, plastic, or another malleable material.
  • the large seal 6 may be preferably about 2 inches to preferably about 7 inches in length and may have an outside diameter of preferably about 2 inches to preferably about 7 inches along with an inside diameter of preferably about 1.5 inches to preferably about 6.5 inches.
  • the seal 6 may have a flat surface 32 on the outside diameter, extending preferably about 2 inches to preferably about 6 inches in the center of the outside diameter, adjacent to a beveled portion 33 of the seal 6 .
  • Seal 6 may have a beveled areas 33 on the outside diameter with angles ranging from preferably about 20 degrees to preferably about 45 degrees.
  • the seal 6 illustrates a flat portion 34 on the inside diameter of seal 6 , extending to the beveled portion 35 in the inside diameter.
  • the beveled portion 35 of the inside diameter on seal 6 may have a bevel or radius of preferably about 20 degrees to preferably about 45 degrees.
  • FIG. 9 is a cross-sectional, side view of the nose cone 8 .
  • the nose cone 8 is detachable, and is threaded 39 and capable of engaging with the mandrel 1 shown in FIGS. 1, 2, and 3 .
  • the nose cone 8 is preferably conical in shape and can be preferably about 2 inches to preferably about 7 inches in diameter.
  • the nose cone 8 has a flat section 36 on the surface and a tapered off section 37 to a bevel of preferably about 60 degrees to preferably about 90 degrees.
  • the outside diameter of the nose cone 8 may have a recessed area 38 to accommodate a pump down ring.
  • the nose cone 8 depicts threads 39 in the inside diameter that can be engaged with the outside diameter threads 14 of the end 1 b of the mandrel 1 .
  • the inside diameter of the nose cone 8 also has threads 40 designed to engage with the threads 9 of end 1 a of the mandrel 1 .
  • the nose cone 8 may also have preferably about 2 to preferably about 4 holes 41 drilled in the nose cone. These holes 41 may have a diameter of preferably about 0.25 to preferably about 0.5 inches.
  • FIG. 10 is a cross-sectional, side view of the nut 7 a .
  • the nut 7 a is a bridge plug nut.
  • the nut 7 a can be made of brass, aluminum, composite, bronze, or a mixture of the listed materials.
  • the nut 7 a may be preferably about 2 inches to preferably about 4 inches in length and have an outside diameter measuring preferably about 1 inch to preferably about 4 inches.
  • the nut 7 a has threads on the outside diameter of end 42 of the nut 7 a and is solid on end 43 of the nut 7 a .
  • the nut 7 a may have threads in the inside 44 .
  • the nut 7 a preferably has a first chamber 45 extending past the inside 44 .
  • the first chamber 45 typically has a larger inside diameter than that of the inside 44 .
  • the nut 7 a preferably also has a second chamber 46 a containing smaller inside diameter that extends past the first chamber 45 , creating a stopping point for a setting rod.
  • FIG. 11 is a cross-sectional, side view of a different embodiment of the nut. 7 b . As depicted, FIG. 11 shows a ball drop nut.
  • the nut 7 b can be made of brass, aluminum, composite, bronze, or a mixture of the listed materials.
  • the nut 7 b may be preferably about 2 inches to preferably about 4 inches in length and can have an outside diameter of preferably about 1 inch to preferably about 4 inches.
  • the nut 7 b has threads on the outside diameter of end 47 and has a hole drilled through the body 50 , to receive a threaded rod composed of composite, aluminum, brass, or a mixture of the listed materials. This rod is screwed into position after placing preferably about 0.625 inches or preferably about 5 ⁇ 8-inch ball into the inside diameter of the nut, creating a ball drop nut.
  • the ball drop nut 7 b has threads that can be sheared on the inside diameter of the nut, extending to a first chamber 48 that has a larger inside diameter.
  • the first chamber 48 extends to a second chamber 49 with a smaller inside diameter, creating a stopping area for the setting rod. Adjacent to the second chamber 49 , the caged ball nut 7 b has a hole 50 bored completely through the inside diameter to allow fluid to flow through the nut 7 b.
  • FIG. 12 is a cross-sectional, side view of a different embodiment of the nut.
  • the nut 7 c is a caged ball nut that can be made of composite, brass, aluminum, or a mixture of the listed materials.
  • the caged ball nut 7 c can be preferably about 2 to preferably about 6 inches in length and preferably about 1 to preferably about 4 inches in diameter.
  • the nut 7 c has a smaller outside diameter of preferably about 1.220 inches which extends preferably about 0.790 inches in length
  • the caged ball nut 7 c has a trough bore completely through the body of the nut 7 c creating a flow passage for fluid.
  • the inside diameter of the nut can be preferably about 0.531 to preferably about 1 inch in the first chamber
  • the second chamber 58 Adjacent to the first chamber 59 , the second chamber 58 has a smaller inside diameter of preferably about 0.75 inches. This creates a stopping area for the setting rod. Adjacent to the second chamber 58 , the third chamber 57 closes to an inside diameter of preferably about 0.175 inches. The caged ball nut 7 c can also be converted into a bridge plug nut by leaving the third chamber 57 solid.
  • FIG. 13 is a partial, perspective view of the gripping member.
  • the gripping member is a composite slip 3 c , 3 d .
  • the composite slip 3 c , 3 d includes segments 61 that are connected together to form a full composite slip 3 c , 3 d as shown in FIGS. 16 and 17 .
  • FIG. 14 is a side view of a composite slip segment 61 . It is preferable for each composite slip 3 c , 3 d to be coated with a gripping material 69 b .
  • the composite slip segment 61 shown in FIG. 14 is coated with about 0.055 inches of a gripping material 69 b .
  • Suitable gripping materials include coatings, bonding agents, or encasement particles that may be formed from a nondestructive material such as abrasive powders, grains, elastomers, hard stones, or other materials.
  • Gripping members or slips can be singular, or have a multitude on one tool. a couple of examples would be the slips on liner hangers or a packer that uses a slip or type of gripping member to hold it in a desired place.
  • Other tools that could benefit from the gripping members might be an isolation tool capable of running through a very small inside diameter and once in place, then having the capability to expand and be secured in a much larger inside diameter.
  • this non-destructive slip or gripping member be incorporated into a process that is used to lower coiled tubing, conventional pipe downhole so as to lessen the destruction done to the pipe in the process.
  • FIG. 15 is a front view of a composite slip segment 61 .
  • Holes 62 are drilled in at a desired depth on the exterior surface 63 of the composite slip segment 61 . These holes 62 are drilled for the gripping material to penetrate the composite slip surface 63 to desired depth and create anchors into the composite slip segment 61 .
  • FIG. 16 shows a cross sectional view of the composite slip 3 c , 3 d .
  • the composite slip 3 c , 3 d shows the composite slip exterior surface 69 a of the composite slip segments 61 having a flat surface and the gripping material 69 b applied to the surface.
  • the right end 64 of the composite slip 3 c , 3 d as displayed is shown with an interior flat surface section 65 .
  • this flat surface section 65 has a diameter of about 3.125 inches.
  • the interior flat surface section 65 is adjacent to an interior beveled area 66 that flares to the left end 67 of the composite slip 3 c , 3 d as shown. In a preferred embodiment, this beveled area 66 can have an angle ranging from about 20 to about 45 degrees.
  • the outside diameter of the composite slip 3 c , 3 d is about 3.627 inches but can have an outside diameter of about 2 inches to about 7 inches.
  • the composite slip exterior surface 69 a of the outside diameter of the composite slip 3 c , 3 d preferably has three flat surfaces spaced with relief grooves 68 between each section.
  • FIG. 17 shows a top view of the composite slip 3 c , 3 d .
  • the composite slip 3 c , 3 d preferably includes drilled shear pin holes 70 drilled in each segment 61 to be desired depth that accommodate shear pins.
  • the shear pins used in each section may be made of composite, brass, bronze, aluminum, or a mixture of the listed materials.
  • FIGS. 18 and 19 show the isolation tool 100 using this preferred embodiment of the gripping member as composite slips 3 c and 3 d and are similar to the embodiment of the isolation tool 100 depicted in FIGS. 1 and 2 , respectfully
  • FIG. 20 is a cross-sectional, side view of another embodiment of the slip backup 4 c that may be used in place of slip backups 4 a , 4 b as shown in FIGS. 1 and 2 .
  • the slip backup 4 c may have an outside diameter of preferably about 2 inches to preferably about 7 inches and an inside diameter of preferably about 1.5 inches to preferably about 6.5 inches.
  • the slip backup 4 c may have a length of preferably about 2 inches to preferably about 6 inches.
  • the slip backup 4 c can have a flat surface 24 c on the outside diameter and a beveled surface 25 c on the end with angles ranging from preferably about 20 degrees to preferably about 45 degrees.
  • the slip backup 4 c may have slots cut 26 c into the body with a depth of preferably about 1 inch to preferably about 2 inches and a width of preferably about 0.05 to preferably about 0.25 inches and may have as many as preferably about 4 to preferably about 12 slots.
  • the slip backups may have a counter bore 26 d with a width of about 0.125 inches to about 1.00 inch and a depth of about 0.125 to about 0.500 inches.
  • slip backup 4 c comprises inserts 71 that are attached or bonded to the slip backup 4 c in backup indentations 72 formed in the slip backup 4 c .
  • the area between inserts 71 are valleys 73 that allow for better interfacing when engaging slip ring 2 c (shown in FIG. 21 ).
  • FIG. 21 shows a cross-sectional view of another embodiment of the slip ring 2 c .
  • the slip ring 2 c may be round in shape and can have a flat space on the inside diameter 15 c of the slip ring 2 c as well as having an angled surface 16 c on the inside diameter of the slip ring 2 c .
  • the slip ring 2 c can engage with the mandrel 1 by sliding onto the outer diameter of the end 1 b .
  • the slip ring 2 c may be designed to withstand the force applied by a desired setting tool to compress the components during the setting process.
  • the slip ring 2 c may also have connector tabs 74 that hold together adjacent segments of the slip ring 2 c together.
  • a number of O-ring grooves 76 can be formed in the slip ring 2 c such that O-rings 75 (shown in FIG. 23 ) may be placed in the O-ring grooves 76 , preferably in grit, to assist in maintaining the slip ring 2 c when engaged to a slip backup 4 c.
  • FIG. 22 shows a side view of a slip backup 4 c engaging a slip ring 2 c in operation.
  • the slip backup 4 c has inserts 71 that will approach and shear the connector tabs 74 in engagement.
  • the slip ring 2 c segments will move up the valleys 73 in engagement.
  • FIG. 23 shows a perspective view of the slip backup 4 c engaged to a slip ring 2 c .
  • the slip backup 4 c has inserts 71 that have sheared the connector tabs 74 of the slip ring 2 c and the slip backup 4 c and the slip ring 2 c are fully engaged.
  • the slip ring 2 c segments are fully engaged in the valleys 73 of the slip backup 4 c .
  • the O-rings 75 are preferably set down in grit to provide a more gripping connection.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

An isolation tool and method including a mandrel, a load ring, a first seal, a second seal, a third seal, at least one composite slip, and a nose cone. The tool may include a slip backup, a bevel, a groove, slip segments, a drilled hole, a nut such as a bridge plug nut, an interior flat section, an interior beveled section, and/or gripping material. The isolation tool is preferably a frac plug and the slip is preferably a coated composite slip.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application for patent is a continuation-in-part application that claims priority to U.S. patent application Ser. No. 14/992,317, entitled “Isolation Tool and Method,” filed Jan. 11, 2016.
  • BACKGROUND OF THE INVENTION Technical Field of Invention
  • The invention disclosed and taught herein relates generally to isolation tools for use in completion of an oil or gas well.
  • Background of the Invention
  • In the completions process of an oil or gas well, there are multiple zones in the well that should be treated or f racked in order to improve production. These zones are at multiple depths in the wellbore and are designed to be treated individually or separate from one another. This separation of zones is accomplished by using some type of isolation tool that is lowered into the wellbore using various methods such as e-line or coiled tubing.
  • As the isolation tool is being lowered to the desired depth, it is subjected to opposing forces in the well bore that can sometimes cause the tool to pre-set if the opposing forces are not distributed evenly around the tool. When successful depth is achieved, the tool is activated. Once activated, this isolation tool should be able to stay anchored in the desired position. A seal is then completed using various options of isolation tools and the zones are effectively isolated from each other and can then be treated. Once all zones are treated, these isolation tools are drilled back out and debris from the drill out flows to the surface.
  • A need exists for an isolation tool that has the design capabilities to allow pressure and fluid to be dispersed evenly around the tool as it is run down hole. Also, there is a need to perform multiple functions by making minimal changes to the same tool while on location when a different design and function is needed to prevent a shutdown from having to switch to a different tool.
  • SUMMARY OF THE INVENTION
  • The present invention is an isolation tool known as a frac plug. This frac plug 100 has the capability to eliminate the risk of pre-sets by allowing opposing fluid and pressures to be dispersed evenly around the tool as it is running downhole due to the design of the nose cone end 1 b, which is screwed onto the outer diameter threads 14 of end 1 b of mandrel 1. This invention has the capability to have positive lockup engagement with the nose cone threads 12 screwing onto threads 9 of end 1 a on mandrel 1, which saves time and money during drillout process. The present invention has the capability of becoming a ball in place tool by placing a frac ball 11 b in the seating area 11 a of mandrel 1, end 1 a, and then securing setting adapter onto end 1 a with shear screws in shear pin holes 10 of mandrel 1. By doing this, the operator can pressure up on the invention to ensure positive set before perforating or fracing. This invention can perform multiple functions by making minimal changes to the same tool on location when a different design and function is needed. The present invention reduces the risk of coil or e-line getting stuck in the well due to the buildup of heavy debris from the drillout. By having coated slips this invention minimizes metal build up.
  • The present invention relates to a multifunctional frac plug for use in isolating zones in a well bore. There is a need in the industry for a frac plug designed for multiple functions on location. It is desired that this frac plug be designed in a manner that eliminates the need to purchase multiple types of frac plugs to complete necessary operations in the field. It is also a desire in the industry to create a frac plug designed to lessen the necessity of presets by designing a nose cone capable of displacing fluids and pressure evenly while pumping down. The current invention may be converted into various designs such as Ball In Place, Top Set Caged Ball, Bridge Plug or Ball Drop or Bottom Set Caged Ball, Bridge Plug, or Ball Drop simply by making changes to the invention using various inserts and setting adapters right on location.
  • In the preferred embodiment, the isolation tool and the method of forming it includes a mandrel 1, with threads 9, and shear pin holes 10 on the outer diameter of end 1 a, and threads 14 on end 1 b of the outer diameter of the mandrel 1. The mandrel 1 also has: frac ball seating area 11 a in the inner diameter of end 1 a; threads 13 a in end 1 a of the mandrel 1; threads 13 b in the inner diameter of the end 1 b of mandrel 1; a nut 7 screwed into the inner diameter of the end 1 b; a load ring 2; a slip 3 a; a slip backup 4 a; a first seal 5 a; a second seal 6; a third seal 5 b; a second slip backup 4 b; a second slip 3 b; and a nose cone 8 screwed onto the outer diameter of the threads 14 of end 1 b of the mandrel 1. The tool may include a slip backup, a bevel, a groove, slip segments, a drilled hole, a nut such as a bridge plug nut, an interior flat section, an interior beveled section, and/or gripping material.
  • The isolation tool is preferably a frac plug and the slip is preferably a coated composite slip.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a perspective view of a preferred embodiment of an isolation tool in the form of a frac plug.
  • FIG. 2 shows a cross-sectional, side view of a frac plug.
  • FIG. 3 is a cross-sectional, side view of a mandrel.
  • FIG. 4 is a cross-sectional, side view of a load ring.
  • FIG. 5 is a cross-sectional, side view of a slip.
  • FIG. 6 is a cross-sectional, side view of a slip backup.
  • FIG. 7 is a cross-sectional, side view of a first and third seal.
  • FIG. 8 is a cross-sectional, side view of a second seal.
  • FIG. 9 is a cross-sectional, side view of a nose cone.
  • FIG. 10 is a cross-sectional, side view of an embodiment of a nut 7 a.
  • FIG. 11 is a cross-sectional, side view of an embodiment of a nut 7 b.
  • FIG. 12 is a cross-sectional, side view of an embodiment of a nut 7 c.
  • FIG. 13 is a partial, perspective view of the gripping member in the form of a preferred embodiment of a composite slip.
  • FIG. 14 is a side view of a composite slip segment.
  • FIG. 15 is a front view of a composite slip segment.
  • FIG. 16 shows a cross sectional view of the composite slip coated with gripping material.
  • FIG. 17 shows a top view of the composite slip coated with gripping material.
  • FIG. 18 shows a side view of a preferred embodiment of an isolation tool.
  • FIG. 19 shows a cross-sectional, side view of the isolation tool.
  • FIG. 20 shows a cross-sectional, side view of a slip backup.
  • FIG. 21 shows a cross-sectional, side view of a slip ring.
  • FIG. 22 shows a side view of a slip backup engaging a slip ring.
  • FIG. 23 shows a perspective view of a slip backup engaged to a slip ring.
  • DESCRIPTION OF THE DISCLOSED EMBODIMENTS
  • The drawings described above and the written description of specific structures and functions below are presented for illustrative purposes and not to limit the scope of what has been invented or the scope of the appended claims. Nor are the drawings drawn to any particular scale or fabrication standards, or intended to serve as blueprints, manufacturing parts list, or the like. Rather, the drawings and written description are provided to teach any person skilled in the art to make and use the inventions for which patent protection is sought. Those skilled in the art will appreciate that not all features of a commercial embodiment of the inventions are described or shown for the sake of clarity and understanding.
  • Persons of skill in this art will also appreciate that the development of an actual, real world commercial embodiment incorporating aspects of the inventions will require numerous implementation specific decisions to achieve the developer's ultimate goal for the commercial embodiment. Such implementation specific decisions may include, and likely are not limited to, compliance with system related, business related, government related and other constraints, which may vary by specific implementation, location from time to time. While a developer's efforts might be complex and time consuming in an absolute sense, such efforts would nevertheless be a routine undertaking for those of skill in this art having the benefit of this disclosure.
  • It should also be understood that the embodiments disclosed and taught herein are susceptible to numerous and various modifications and alternative forms. Thus, the use of a singular term, such as, but not limited to, “a” and the like, is not intended as limiting of the number of items. Similarly, any relational terms, such as, but not limited to, “top,” “bottom,” “left,” “right,” “upper,” “lower,” “down,” “up,” “side,” and the like, used in the written description are for clarity in specific reference to the drawings and are not intended to limit the scope of the invention or the appended claims.
  • FIG. 1 shows a perspective view of a preferred embodiment of an isolation tool in the form of a frac plug 100 with components fully assembled. A frac plug 100 may include a variety of fiber and resin, metal alloys, epoxy, plastic or a combination of the listed materials. As shown, a mandrel 1 of the frac plug includes threads 9 on the outside diameter at end 1 a of the mandrel 1, with holes 10 bored in that end 1 a to accommodate shear screws.
  • As shown in FIG. 2, the mandrel 1 is preferably designed to receive a frac ball 11 b, in ball seat area 11 a of end 1 a and has threads 13 a in end 1 a, to receive a caged ball or bridge plug nut 7 c (shown in FIG. 12), and threads 13 b in the inner diameter of the end 1 b to receive a nut 7 a or 7 b (shown in FIGS. 10 and 11, respectively) in the end 1 b.
  • A cross-sectional, side view of the frac plug 100, the mandrel 1 preferably has a through bore completely through an inside diameter and is threaded in the inside diameter 13 a of the end 1 a and threaded in inside diameter 13 b of the end 1 b to receive a nut 7 a, 7 b such as a ball drop nut or bridge plug nut. The mandrel 1 is also threaded on the outside diameter 14 of the end 1 b of the mandrel 1 to receive the threaded nose cone 8. Also shown in FIG. 2 are threads 9 and shear pin holes 10 on the outer diameter of the end 1 a of the mandrel 1.
  • As shown in FIGS. 1 and 2, a load ring 2 is engaged by sliding onto the mandrel 1 at the end 1 b and is slid down to rest on a bevel of determined degree. A slip 3 a is adjacent to the load ring 2. A slip backup 4 a is adjacent to the slip 3 a. A first seal 5 a is adjacent to the slip backup 4 a. A second seal 6 is adjacent to the first seal 5 a and a third seal 5 b is adjacent to seal 6. A slip backup 4 b is adjacent to the third seal 5 b. A slip 3 b is adjacent to the slip backup 4 b. A ball drop nut 7 b is threaded into threads 13 b of the end 1 b, of mandrel 1. A nose cone 8 is threaded onto threads 14 of the end 1 b and engaged onto the end 1 b of mandrel 1 and is adjacent to the slip 3 b.
  • FIG. 3 is a cross-sectional, side view of the mandrel 1. The mandrel 1 preferably has a trough bore completely through an inside diameter and is threaded in the inside diameter 13 b of the end 1 b to receive a nut 7 a, 7 b such as a ball drop nut or bridge plug nut shown in FIGS. 10 and 11. The mandrel 1 is also threaded on the outside diameter 14 of the end 1 b to receive the threaded nose cone 8 shown in FIGS. 1 and 2.
  • As shown, there are also threads 9 on the outer diameter of the end 1 a of the mandrel 1 that are shown as end of frac plug 100 in FIGS. 1, 2, and 3. The holes 10 that may be formed or drilled in mandrel 1, end 1 a are shown in FIGS. 1, 2, and 3.
  • FIG. 4 is a cross-sectional, side view of the load ring 2. The load ring 2 may be round in shape and can have a flat space on the inside diameter 15 of the load ring 2 as well as having an angled surface 16 on the inside diameter of the load ring 2. The load ring 2 can engage with the mandrel 1 by sliding onto the outer diameter of the end 1 b. The load ring 2 may be designed to withstand the force applied by a desired setting tool to compress the components during the setting process. The load ring 2 may also have a number of holes 17 a, 17 b drilled through the thickness of the load ring 2 to receive a set screw.
  • FIG. 5 is a cross-sectional, side view of the slip, shown as slips 3 a, 3 b in FIGS. 1 and 2. Each slip 3 a, 3 b may have an outside diameter of preferably about 2.5 inches to preferably about 7 inches. The slip 3 a, 3 b may also have an inside diameter of preferably about 2 inches to preferably about 6.5 inches. The slip 3 a, 3 b may have bevels milled into the slip 3 a, 3 b to allow the slip to separate into sections and expand.
  • The slip 3 a, 3 b as depicted can have beveled edges 19 on the outer surface of the outer diameter at varying angles that are designed to engage with the casing and secure the frac plug 100 inside the casing. The slip 3 a, 3 b may have holes 20 drilled into the slip 3 a, 3 b which may have a diameter of preferably about 0.125 inches to preferably about 0.5 inches with a depth completely through the center body of the slip 3 a, 3 b or a depth of preferably about 0.290 inches as shown herein. The slips also may have relief grooves 18 a, 18 b milled radially into the inside diameter of the slip 3 a, 3 b at determined depths and locations.
  • The slips 3 a, 3 b may have a flat surface 21 on the inside diameter of a determined length and a beveled surface 22 on the inside diameter with an angle ranging from preferably about 45 degrees to preferably about 20 degrees. The slip 3 a, 3 b may also have second relief grooves 18 c, 18 d milled into the surface of the slips, and into the milled areas 18 e between the slips 3 a, 3 b segments to allow to break into smaller pieces during the drill out process.
  • FIG. 6 is a cross-sectional, side view of the slip backup shown as slip backups 4 a, 4 b in FIGS. 1 and 2. The slip backup 4 may have an outside diameter of preferably about 2 inches to preferably about 7 inches and an inside diameter of preferably about 1.5 inches to preferably about 6.5 inches. The slip backup 4 may have a length of preferably about 2 inches to preferably about 6 inches.
  • The slip backup 4 can have a flat surface 24 on the outside diameter and a beveled surface 25 on the end with angles ranging from preferably about 20 degrees to preferably about 45 degrees. The slip backup 4 may have slots cut 26 a into the body with a depth of preferably about 1 inch to preferably about 2 inches and a width of preferably about 0.05 to preferably about 0.25 inches and may have as many as preferably about 4 to preferably about 12 slots. The slip backup 4 may have a number of holes 27 with a diameter of preferably about 0.125 inches to preferably about 0.25 inches drilled through the body to receive a set screw. The beveled surface 25 of the slip backups 4 a, 4 b are adjacent to the slips 3 a, 3 b shown in FIGS. 1 and 2. The slip backups may have a counter bore 26 b with a width of about 0.125 inches to about 1.00 inch and a depth of about 0.125 to about 0.500 inches.
  • FIG. 7 is a cross-sectional, side view of a seal shown as first and third seals 5 a, 5 b in FIGS. 1 and 2. The seal 5 a or 5 b is preferably a seal made of an elastomer, a polytetrafluoroethylene material including synthetic fluoropolymer of tetrafluoroethylene materials such as but not limited to the product sold under the trade name Teflon®, plastic, or other malleable material. The seal 5 a, 5 b may have an outside diameter of preferably about 2 inches to preferably about 7 inches and an inside diameter of preferably about 1.5 inches to preferably about 6.5 inches.
  • The first or third seals 5 b, 5 c may have a flat surface 28 on the surface of the seal and a beveled surface 29 with angles ranging from preferably about 20 degrees to preferably about 40 degrees on the outside diameter. The seals 5 a, 5 b may also have an overall length of preferably about 1.5 inches to preferably about 6 inches. The seal may have a flat surface 31 in the inside diameter adjacent to the beveled surface 30 of the inside diameter. From that flat surface 31 on the inside diameter, the seals 5 a, 5 b may have the beveled area 30 on the inside diameter at angles ranging from preferably about 20 degrees to preferably about 45 degrees, extending outwardly.
  • FIG. 8 is a cross-sectional, side view of the seal 6. Seal 6 may be made from an elastomer, a polytetrafluoroethylene material including synthetic fluoropolymer of tetrafluoroethylene materials such as but not limited to the product sold under the trade name Teflon®, plastic, or another malleable material. The large seal 6 may be preferably about 2 inches to preferably about 7 inches in length and may have an outside diameter of preferably about 2 inches to preferably about 7 inches along with an inside diameter of preferably about 1.5 inches to preferably about 6.5 inches.
  • The seal 6 may have a flat surface 32 on the outside diameter, extending preferably about 2 inches to preferably about 6 inches in the center of the outside diameter, adjacent to a beveled portion 33 of the seal 6. Seal 6 may have a beveled areas 33 on the outside diameter with angles ranging from preferably about 20 degrees to preferably about 45 degrees. The seal 6 illustrates a flat portion 34 on the inside diameter of seal 6, extending to the beveled portion 35 in the inside diameter. The beveled portion 35 of the inside diameter on seal 6 may have a bevel or radius of preferably about 20 degrees to preferably about 45 degrees.
  • FIG. 9 is a cross-sectional, side view of the nose cone 8. In a preferred embodiment, the nose cone 8 is detachable, and is threaded 39 and capable of engaging with the mandrel 1 shown in FIGS. 1, 2, and 3. The nose cone 8 is preferably conical in shape and can be preferably about 2 inches to preferably about 7 inches in diameter.
  • The nose cone 8 has a flat section 36 on the surface and a tapered off section 37 to a bevel of preferably about 60 degrees to preferably about 90 degrees. The outside diameter of the nose cone 8 may have a recessed area 38 to accommodate a pump down ring. The nose cone 8 depicts threads 39 in the inside diameter that can be engaged with the outside diameter threads 14 of the end 1 b of the mandrel 1. The inside diameter of the nose cone 8 also has threads 40 designed to engage with the threads 9 of end 1 a of the mandrel 1. The nose cone 8 may also have preferably about 2 to preferably about 4 holes 41 drilled in the nose cone. These holes 41 may have a diameter of preferably about 0.25 to preferably about 0.5 inches.
  • FIG. 10 is a cross-sectional, side view of the nut 7 a. As depicted, the nut 7 a is a bridge plug nut. The nut 7 a can be made of brass, aluminum, composite, bronze, or a mixture of the listed materials. The nut 7 a may be preferably about 2 inches to preferably about 4 inches in length and have an outside diameter measuring preferably about 1 inch to preferably about 4 inches.
  • The nut 7 a has threads on the outside diameter of end 42 of the nut 7 a and is solid on end 43 of the nut 7 a. The nut 7 a may have threads in the inside 44. The nut 7 a preferably has a first chamber 45 extending past the inside 44. The first chamber 45 typically has a larger inside diameter than that of the inside 44. The nut 7 a preferably also has a second chamber 46 a containing smaller inside diameter that extends past the first chamber 45, creating a stopping point for a setting rod.
  • FIG. 11 is a cross-sectional, side view of a different embodiment of the nut. 7 b. As depicted, FIG. 11 shows a ball drop nut. The nut 7 b can be made of brass, aluminum, composite, bronze, or a mixture of the listed materials. The nut 7 b may be preferably about 2 inches to preferably about 4 inches in length and can have an outside diameter of preferably about 1 inch to preferably about 4 inches.
  • The nut 7 b has threads on the outside diameter of end 47 and has a hole drilled through the body 50, to receive a threaded rod composed of composite, aluminum, brass, or a mixture of the listed materials. This rod is screwed into position after placing preferably about 0.625 inches or preferably about ⅝-inch ball into the inside diameter of the nut, creating a ball drop nut. The ball drop nut 7 b has threads that can be sheared on the inside diameter of the nut, extending to a first chamber 48 that has a larger inside diameter. The first chamber 48 extends to a second chamber 49 with a smaller inside diameter, creating a stopping area for the setting rod. Adjacent to the second chamber 49, the caged ball nut 7 b has a hole 50 bored completely through the inside diameter to allow fluid to flow through the nut 7 b.
  • FIG. 12 is a cross-sectional, side view of a different embodiment of the nut. As depicted, the nut 7 c is a caged ball nut that can be made of composite, brass, aluminum, or a mixture of the listed materials. The caged ball nut 7 c can be preferably about 2 to preferably about 6 inches in length and preferably about 1 to preferably about 4 inches in diameter. The nut 7 c has a smaller outside diameter of preferably about 1.220 inches which extends preferably about 0.790 inches in length
  • There are shown two grooves 51 cut into this flat area 52 to receive 0 rings. From the stopping point of the smaller inside diameter of end 53, there is a bevel 54 angled at preferably about 20 to preferably about 24 degrees that extends to the outside diameter of the nut 7 c. There are threads 55 on the outside diameter of the nut that match the threads on the inside diameter of the end 1 a of the mandrel 1 depicted in FIGS. 1-3. The caged ball nut 7 c has a hole 56 drilled completely through the body of the nut 7 c.
  • After inserting a ball made of composite, brass, aluminum, or a mixture of the listed materials, a rod is placed through the body to hold the ball in place. The caged ball nut 7 c has a trough bore completely through the body of the nut 7 c creating a flow passage for fluid. The inside diameter of the nut can be preferably about 0.531 to preferably about 1 inch in the first chamber
  • Adjacent to the first chamber 59, the second chamber 58 has a smaller inside diameter of preferably about 0.75 inches. This creates a stopping area for the setting rod. Adjacent to the second chamber 58, the third chamber 57 closes to an inside diameter of preferably about 0.175 inches. The caged ball nut 7 c can also be converted into a bridge plug nut by leaving the third chamber 57 solid.
  • FIG. 13 is a partial, perspective view of the gripping member. In this preferred embodiment, the gripping member is a composite slip 3 c, 3 d. As shown, the composite slip 3 c, 3 d includes segments 61 that are connected together to form a full composite slip 3 c, 3 d as shown in FIGS. 16 and 17.
  • FIG. 14 is a side view of a composite slip segment 61. It is preferable for each composite slip 3 c, 3 d to be coated with a gripping material 69 b. The composite slip segment 61 shown in FIG. 14 is coated with about 0.055 inches of a gripping material 69 b. Suitable gripping materials include coatings, bonding agents, or encasement particles that may be formed from a nondestructive material such as abrasive powders, grains, elastomers, hard stones, or other materials.
  • Gripping members or slips can be singular, or have a multitude on one tool. a couple of examples would be the slips on liner hangers or a packer that uses a slip or type of gripping member to hold it in a desired place. Other tools that could benefit from the gripping members might be an isolation tool capable of running through a very small inside diameter and once in place, then having the capability to expand and be secured in a much larger inside diameter. The possibility also exists that this non-destructive slip or gripping member be incorporated into a process that is used to lower coiled tubing, conventional pipe downhole so as to lessen the destruction done to the pipe in the process.
  • FIG. 15 is a front view of a composite slip segment 61. Holes 62 are drilled in at a desired depth on the exterior surface 63 of the composite slip segment 61. These holes 62 are drilled for the gripping material to penetrate the composite slip surface 63 to desired depth and create anchors into the composite slip segment 61.
  • FIG. 16 shows a cross sectional view of the composite slip 3 c, 3 d. The composite slip 3 c, 3 d shows the composite slip exterior surface 69 a of the composite slip segments 61 having a flat surface and the gripping material 69 b applied to the surface. The right end 64 of the composite slip 3 c, 3 d as displayed is shown with an interior flat surface section 65. In a preferred embodiment, this flat surface section 65 has a diameter of about 3.125 inches. The interior flat surface section 65 is adjacent to an interior beveled area 66 that flares to the left end 67 of the composite slip 3 c, 3 d as shown. In a preferred embodiment, this beveled area 66 can have an angle ranging from about 20 to about 45 degrees. In a preferred embodiment, the outside diameter of the composite slip 3 c, 3 d is about 3.627 inches but can have an outside diameter of about 2 inches to about 7 inches. The composite slip exterior surface 69 a of the outside diameter of the composite slip 3 c, 3 d preferably has three flat surfaces spaced with relief grooves 68 between each section.
  • FIG. 17 shows a top view of the composite slip 3 c, 3 d. The composite slip 3 c, 3 d preferably includes drilled shear pin holes 70 drilled in each segment 61 to be desired depth that accommodate shear pins. The shear pins used in each section may be made of composite, brass, bronze, aluminum, or a mixture of the listed materials.
  • FIGS. 18 and 19 show the isolation tool 100 using this preferred embodiment of the gripping member as composite slips 3 c and 3 d and are similar to the embodiment of the isolation tool 100 depicted in FIGS. 1 and 2, respectfully
  • FIG. 20 is a cross-sectional, side view of another embodiment of the slip backup 4 c that may be used in place of slip backups 4 a, 4 b as shown in FIGS. 1 and 2. The slip backup 4 c may have an outside diameter of preferably about 2 inches to preferably about 7 inches and an inside diameter of preferably about 1.5 inches to preferably about 6.5 inches. The slip backup 4 c may have a length of preferably about 2 inches to preferably about 6 inches.
  • The slip backup 4 c can have a flat surface 24 c on the outside diameter and a beveled surface 25 c on the end with angles ranging from preferably about 20 degrees to preferably about 45 degrees. The slip backup 4 c may have slots cut 26 c into the body with a depth of preferably about 1 inch to preferably about 2 inches and a width of preferably about 0.05 to preferably about 0.25 inches and may have as many as preferably about 4 to preferably about 12 slots. The slip backups may have a counter bore 26 d with a width of about 0.125 inches to about 1.00 inch and a depth of about 0.125 to about 0.500 inches.
  • Additionally, slip backup 4 c comprises inserts 71 that are attached or bonded to the slip backup 4 c in backup indentations 72 formed in the slip backup 4 c. The area between inserts 71 are valleys 73 that allow for better interfacing when engaging slip ring 2 c (shown in FIG. 21).
  • FIG. 21 shows a cross-sectional view of another embodiment of the slip ring 2 c. The slip ring 2 c may be round in shape and can have a flat space on the inside diameter 15 c of the slip ring 2 c as well as having an angled surface 16 c on the inside diameter of the slip ring 2 c. The slip ring 2 c can engage with the mandrel 1 by sliding onto the outer diameter of the end 1 b. The slip ring 2 c may be designed to withstand the force applied by a desired setting tool to compress the components during the setting process. The slip ring 2 c may also have connector tabs 74 that hold together adjacent segments of the slip ring 2 c together. As shown, a number of O-ring grooves 76 can be formed in the slip ring 2 c such that O-rings 75 (shown in FIG. 23) may be placed in the O-ring grooves 76, preferably in grit, to assist in maintaining the slip ring 2 c when engaged to a slip backup 4 c.
  • FIG. 22 shows a side view of a slip backup 4 c engaging a slip ring 2 c in operation. The slip backup 4 c has inserts 71 that will approach and shear the connector tabs 74 in engagement. The slip ring 2 c segments will move up the valleys 73 in engagement.
  • FIG. 23 shows a perspective view of the slip backup 4 c engaged to a slip ring 2 c. The slip backup 4 c has inserts 71 that have sheared the connector tabs 74 of the slip ring 2 c and the slip backup 4 c and the slip ring 2 c are fully engaged. The slip ring 2 c segments are fully engaged in the valleys 73 of the slip backup 4 c. The O-rings 75 are preferably set down in grit to provide a more gripping connection.
  • While the invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the description. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention.

Claims (20)

What is claimed is:
1. An isolation tool comprising:
a mandrel having a mandrel first end and a mandrel second end;
a load ring on the mandrel;
a first composite slip adjacent to the load ring;
a slip backup adjacent to the slip;
a first seal adjacent to the slip backup;
a second seal adjacent to the first seal;
a third seal adjacent to the second seal;
a second slip backup adjacent to the third seal;
a second composite slip adjacent to the second slip backup;
a nut secured onto the mandrel second end; and
a nose cone adjacent to the second composite slip.
2. The isolation tool of claim 1 wherein the isolation tool is a frac plug.
3. The isolation tool of claim 1 wherein the first composite slip is a coated composite slip.
4. The isolation tool of claim 1 wherein the second composite slip is a coated composite slip.
5. The isolation tool of claim 1 wherein the first composite slip further comprises at least one bevel milled into the slip.
6. The isolation tool of claim 1 wherein the first composite slip further comprises at least one second relief groove milled into a surface of the first composite slip.
7. The isolation tool of claim 1, wherein the nut is selected from the group consisting of a bridge plug nut, a ball drop nut, and a caged ball nut.
8. The isolation tool of claim 1 further comprising gripping material on the first composite slip.
9. The isolation tool of claim 1, wherein the first composite slip further comprises at least two segments;
wherein each segment comprises an interior segment surface; and
wherein each interior segment surface further comprises at least one groove.
10. The isolation tool of claim 1, wherein the first composite slip further comprises at least two segments;
wherein each segment comprises an exterior segment surface; and
wherein each exterior segment surface further comprises at least one groove.
11. The isolation tool of claim 1, wherein the first composite slip further comprises: an interior flat surface; and
at least one interior beveled surface.
12. The isolation tool of claim 1, wherein the first composite slip further comprises drilled shear pin holes.
13. The isolation tool of claim 1, wherein the slip backup comprises a plurality of inserts attached or bonded to the slip backup, wherein the isolation tool further comprises a slip ring formed of a plurality of slip ring segments connected by a plurality of connector tabs.
14. A method of forming an isolation tool comprising the steps of:
(a) connecting a load ring on a mandrel, wherein the mandrel has a first mandrel end and a second mandrel end;
(b) connecting a first composite slip adjacent to the load ring;
(c) connecting a slip backup adjacent to the first composite slip;
(d) connecting a first seal adjacent to the slip backup;
(e) connecting a second seal adjacent to the first seal;
connecting a third seal adjacent to the second seal;
(g) connecting a second slip backup adjacent to the third seal;
(h) connecting a second composite slip adjacent to second slip backup;
(i) connecting a nut to the second mandrel end; and
(j) connecting a nose cone adjacent to the second composite slip.
15. The method of claim 14 further comprising the step of connecting the cone by threading the nose cone onto the second mandrel end.
16. The method of claim 14 wherein the nut is selected from the group consisting of a bridge plug nut, a ball drop nut, and a caged ball nut.
17. The method of claim 14 wherein the first composite slip is a coated composite slip.
18. The method of claim 14 wherein the second composite slip is a coated composite slip.
19. The method of claim 14 further comprising applying gripping material to the first composite slip before the step of connecting a first composite slip adjacent to the load ring.
20. The method of claim 14, wherein the slip backup comprises a plurality of inserts attached or bonded to the slip backup, further comprising the steps of:
moving the slip backup into a slip ring, wherein the slip ring is formed of a plurality slip ring segments connected by a plurality of connector tabs, and
shearing the connector tabs.
US16/148,814 2016-01-11 2018-10-01 Isolation Tool and Method Abandoned US20190032445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/148,814 US20190032445A1 (en) 2016-01-11 2018-10-01 Isolation Tool and Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/992,317 US20170198544A1 (en) 2016-01-11 2016-01-11 Isolation Tool and Method
US16/148,814 US20190032445A1 (en) 2016-01-11 2018-10-01 Isolation Tool and Method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/992,317 Continuation-In-Part US20170198544A1 (en) 2016-01-11 2016-01-11 Isolation Tool and Method

Publications (1)

Publication Number Publication Date
US20190032445A1 true US20190032445A1 (en) 2019-01-31

Family

ID=65037726

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/148,814 Abandoned US20190032445A1 (en) 2016-01-11 2018-10-01 Isolation Tool and Method

Country Status (1)

Country Link
US (1) US20190032445A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299957B2 (en) * 2018-08-30 2022-04-12 Avalon Research Ltd. Plug for a coiled tubing string
WO2025174389A1 (en) * 2024-02-16 2025-08-21 Halliburton Energy Services, Inc. Expandable tubular structure for maintaining differential pressure integrity in a wellbore
WO2025174390A1 (en) * 2024-02-16 2025-08-21 Halliburton Energy Services, Inc. Expandable frac plug

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299957B2 (en) * 2018-08-30 2022-04-12 Avalon Research Ltd. Plug for a coiled tubing string
WO2025174389A1 (en) * 2024-02-16 2025-08-21 Halliburton Energy Services, Inc. Expandable tubular structure for maintaining differential pressure integrity in a wellbore
WO2025174390A1 (en) * 2024-02-16 2025-08-21 Halliburton Energy Services, Inc. Expandable frac plug
US12480374B2 (en) 2024-02-16 2025-11-25 Halliburton Energy Services, Inc. Expandable tubular structure for maintaining differential pressure integrity in a wellbore

Similar Documents

Publication Publication Date Title
US10907441B2 (en) Downhole tool and method of use
US8839855B1 (en) Modular changeable fractionation plug
US8496052B2 (en) Bottom set down hole tool
US8783341B2 (en) Composite cement retainer
US8490689B1 (en) Bridge style fractionation plug
US6945326B2 (en) Non-rotating cement wiper plugs
US20180016864A1 (en) Borehole plug with spiral cut slip and integrated sealing element
US20210317717A1 (en) Downhole tool with bottom composite slip
US9404337B1 (en) Caged ball fractionation plug
US9181778B2 (en) Multiple ball-ball seat for hydraulic fracturing with reduced pumping pressure
US20190032445A1 (en) Isolation Tool and Method
AU2020366213B2 (en) Downhole tool and method of use
US10801298B2 (en) Downhole tool with tethered ball
US9512689B2 (en) Combination plug and setting tool with centralizers
US20210017834A1 (en) Downhole plug assemblies with collet adapters and methods thereof
US20200224504A1 (en) Downhole Release Mechanism
US20170198544A1 (en) Isolation Tool and Method
CN103080470B (en) For with the many ball-ball seats of pumping pressure fracturing reduced
US11634965B2 (en) Downhole tool and method of use
US20180066496A1 (en) Drillable Oilfield Tubular Plug
US12158051B2 (en) Drill string circulation apparatus
US1684678A (en) Sealing casing head

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CONQUEST COMPLETION SERVICES, LLC, LOUISIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CRUSADER TECHNOLOGIES, LLC;REEL/FRAME:053456/0660

Effective date: 20200811