US20190031923A1 - Backing for adhesive tape with thermal resistance - Google Patents
Backing for adhesive tape with thermal resistance Download PDFInfo
- Publication number
- US20190031923A1 US20190031923A1 US16/042,192 US201816042192A US2019031923A1 US 20190031923 A1 US20190031923 A1 US 20190031923A1 US 201816042192 A US201816042192 A US 201816042192A US 2019031923 A1 US2019031923 A1 US 2019031923A1
- Authority
- US
- United States
- Prior art keywords
- backing film
- core layer
- film according
- backing
- ethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002390 adhesive tape Substances 0.000 title claims abstract description 27
- 239000010410 layer Substances 0.000 claims abstract description 108
- 239000012792 core layer Substances 0.000 claims abstract description 76
- 229920002725 thermoplastic elastomer Polymers 0.000 claims abstract description 32
- 229920000098 polyolefin Polymers 0.000 claims abstract description 17
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 34
- 229920001155 polypropylene Polymers 0.000 claims description 24
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 21
- 239000005977 Ethylene Substances 0.000 claims description 21
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 16
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 15
- 239000004925 Acrylic resin Substances 0.000 claims description 10
- 229920001038 ethylene copolymer Polymers 0.000 claims description 9
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 8
- 229920006225 ethylene-methyl acrylate Polymers 0.000 claims description 7
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 7
- 238000007789 sealing Methods 0.000 abstract description 7
- 238000010276 construction Methods 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 description 15
- 229920013665 Ampacet Polymers 0.000 description 12
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 10
- 229920003313 Bynel® Polymers 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000035515 penetration Effects 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000012790 adhesive layer Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 229920003314 Elvaloy® Polymers 0.000 description 3
- 101000618467 Hypocrea jecorina (strain ATCC 56765 / BCRC 32924 / NRRL 11460 / Rut C-30) Endo-1,4-beta-xylanase 2 Proteins 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000012963 UV stabilizer Substances 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 238000009435 building construction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- JLZIIHMTTRXXIN-UHFFFAOYSA-N 2-(2-hydroxy-4-methoxybenzoyl)benzoic acid Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1C(O)=O JLZIIHMTTRXXIN-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- IULGYNXPKZHCIA-UHFFFAOYSA-N octadecyl carbamate Chemical compound CCCCCCCCCCCCCCCCCCOC(N)=O IULGYNXPKZHCIA-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 229920002397 thermoplastic olefin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
- B29C48/10—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/185—Articles comprising two or more components, e.g. co-extruded layers the components being layers comprising six or more components, i.e. each component being counted once for each time it is present, e.g. in a layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/21—Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
- C09J7/24—Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C09J7/241—Polyolefin, e.g.rubber
- C09J7/243—Ethylene or propylene polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/29—Laminated material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
- B29C48/9135—Cooling of flat articles, e.g. using specially adapted supporting means
- B29C48/9175—Cooling of flat articles, e.g. using specially adapted supporting means by interposing a fluid layer between the supporting means and the flat article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
- B32B2250/246—All polymers belonging to those covered by groups B32B27/32 and B32B27/30
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
- B32B2255/102—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer synthetic resin or rubber layer being a foamed layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/107—Ceramic
- B32B2264/108—Carbon, e.g. graphite particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2274/00—Thermoplastic elastomer material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/41—Opaque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/51—Elastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/582—Tearability
- B32B2307/5825—Tear resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/744—Non-slip, anti-slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2405/00—Adhesive articles, e.g. adhesive tapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- C09J2201/622—
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/10—Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
- C09J2301/16—Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer
- C09J2301/162—Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer the carrier being a laminate constituted by plastic layers only
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/30—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
- C09J2301/302—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/30—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
- C09J2301/312—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/40—Additional features of adhesives in the form of films or foils characterized by the presence of essential components
- C09J2301/414—Additional features of adhesives in the form of films or foils characterized by the presence of essential components presence of a copolymer
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2423/00—Presence of polyolefin
- C09J2423/04—Presence of homo or copolymers of ethene
- C09J2423/046—Presence of homo or copolymers of ethene in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2423/00—Presence of polyolefin
- C09J2423/10—Presence of homo or copolymers of propene
- C09J2423/106—Presence of homo or copolymers of propene in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2431/00—Presence of polyvinyl acetate
- C09J2431/006—Presence of polyvinyl acetate in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2433/00—Presence of (meth)acrylic polymer
- C09J2433/006—Presence of (meth)acrylic polymer in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
- C09J7/24—Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C09J7/241—Polyolefin, e.g.rubber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2848—Three or more layers
Definitions
- This disclosure relates to backing films for adhesive tapes, in particular adhesive tapes used in construction such as seam sealing tapes, roofing tapes, and flashing tapes such as may be used around windows, doors, and other wall penetrations.
- the present disclosure provides a backing film for an adhesive tape comprising: a) a core layer, having a first major surface opposite a second major surface, and having a core layer thickness of between 10.0 and 4,500 microns; and b) a first skin layer having a different composition from the core layer, having a first skin layer thickness of between 3.0 and 1,500 microns but not more than 50% of the core layer thickness, bonded directly to the first major surface of the core layer; where the backing film has a coefficient of thermal expansion of less than 90 ppm/° C. as measured in at least one direction within the plane of the film (e.g., down-web, cross-web, or some diagonal in between).
- the backing film has a coefficient of thermal expansion of less than 79.2 ppm/° C. as measured in at least one direction within the plane of the film. In some embodiments, the backing film has a coefficient of thermal expansion of not more than 91.8 ppm/° C. as measured in any direction within the plane of the film. Additional embodiments are described below under “Selected Embodiments.” In some embodiments, the backing film has a Young's modulus of less than 550 MPa as measured in at least one direction within the plane of the film. In some embodiments, the backing film has a Young's modulus of less than 470 MPa as measured in at least one direction within the plane of the film.
- the backing film has a Young's modulus of not more than 540 MPa as measured in any direction within the plane of the film. Additional embodiments are described below under “Selected Embodiments.”
- the core layer comprises a polyolefin, which in some embodiments may be a propylene/ethylene copolymer comprising propylene and ethylene in a weight ratio of at least 2:1 propylene/ethylene, at least 3:1 propylene/ethylene, or at least 4:1 propylene/ethylene.
- the first skin layer comprises a first thermoplastic elastomer, which in some embodiments may be a copolymer of ethylene, in some embodiments may be an ethylene vinyl acetate copolymer, and in some embodiments may be an ethylene methyl acrylate copolymer.
- the backing film may, in some embodiments, additionally comprise: c) a second skin layer having a different composition from the core layer, having a second skin layer thickness of between 3.0 and 1,500 microns but not more than 50% of the core layer thickness, bonded directly to the second major surface of the core layer.
- the second skin layer has the same composition as the first skin layer, whereas in other embodiments the second skin layer has a different composition. Additional embodiments of the backing film of the present disclosure are described below under “Selected Embodiments.”
- the present disclosure provides an adhesive tape comprising any of the backing films presented herein.
- a pressure sensitive adhesive layer is bonded directly to the second major surface of the core layer.
- a pressure sensitive adhesive layer is bonded directly to the second skin layer on a surface opposite the core layer.
- the pressure sensitive adhesive layer comprises at least 50 wt % of an acrylate resin. Additional embodiments of the adhesive tape of the present disclosure are described below under “Selected Embodiments.”
- FIG. 1 is a cross-section of a tape according to the present disclosure that includes a two-layer (skin, core) backing film.
- FIG. 2 is a cross-section of a tape according to the present disclosure that includes a three-layer (skin, core, skin) backing film.
- the present disclosure provides backing films for adhesive tapes, in some embodiments including adhesive tapes used in construction as seam sealing tapes, roofing tapes, and flashing tapes such as may be used around windows, doors, and other wall penetrations.
- the present backing films may be used in manufacturing adhesive tapes which simultaneously demonstrate good tensile strength, tear resistance, slip resistance (static friction performance), ability to seal over nails with resistance to water penetration, resistance to wrinkling under hot weather conditions.
- tapes made using the backing films of the present disclosure demonstrate high resistance to wrinkling under hot weather conditions, while maintaining other characteristics desirable in adhesive tapes used in construction.
- backing film 10 comprise two layers: core layer 20 and skin layer 30 .
- Backing film 10 may bear a layer of pressure sensitive adhesive 40 so as to comprise tape 50 .
- an optional low adhesion backsizing layer 60 is borne on the outermost surface of backing film 10 .
- backing film 15 comprise three layers: core layer 20 , first skin layer 30 , and second skin layer 35 .
- Backing film 15 may bear a layer of pressure sensitive adhesive 40 so as to comprise tape 55 .
- an optional low adhesion backsizing layer 60 is borne on the outermost surface of backing film 15 .
- First skin layer 30 and second skin layer 35 may be of the same or different skin layer composition.
- the backing film of the present disclosure has a reduced coefficient of thermal expansion, and in some embodiments, both a reduced coefficient of thermal expansion and a reduced Young's modulus.
- the reduced coefficient of thermal expansion contributes to the resistance to wrinkling under hot weather conditions demonstrated herein.
- a reduced Young's modulus allows the tape to stretch during application and thereafter reside on its substrate under tension, and thus heat expansion is less apt to put the tape into compression sufficient to result in wrinkles.
- the core layer may be made of any suitable material.
- the core layer principally comprises a polyolefin.
- the polyolefin is a propylene/ethylene copolymer.
- the core layer additionally comprises a pigment.
- the core layer additionally comprises carbon black.
- the core layer additionally comprises a UV stabilizer.
- the skin layer(s) may be made of any suitable material.
- the skin layer(s) principally comprise a thermoplastic elastomer.
- the thermoplastic elastomer is a copolymer of ethylene.
- the thermoplastic elastomer is an ethylene vinyl acetate copolymer.
- the thermoplastic elastomer is an ethylene methyl acrylate copolymer.
- the adhesive layer may be made of any suitable pressure sensitive adhesive.
- the adhesive layer principally comprises an elastomeric resin.
- the adhesive layer principally comprises an acrylate resin.
- the adhesive layer additionally comprises a tackifier.
- the backing film is substantially opaque. In some such embodiments the backing film demonstrates a visible light transmission rate of less than 2%. In some embodiments, the backing film is at least partially transparent. In some such embodiments the backing film demonstrates a visible light transmission rate of greater than 15%, in others greater than 25%.
- the backing film may bear an additional thin layer of a low adhesion backsizing, such as a silicone coating or a coating of a polyvinyl octadecyl carbamate such as ESCOAT P-20.
- a low adhesion backsizing such as a silicone coating or a coating of a polyvinyl octadecyl carbamate such as ESCOAT P-20.
- the backing film may be made by any suitable method, including the two-layer embodiments and the three-layer embodiments. In some embodiments, the backing film may be made by blown film methods. In some embodiments, the backing film may be made by coating methods. Adhesive may be added by any suitable method. In some embodiments, adhesive may be added by coating methods.
- a core layer having a first major surface opposite a second major surface, and having a core layer thickness of between 10.0 and 4,500 microns;
- a first skin layer having a different composition from the core layer having a first skin layer thickness of between 3.0 and 1,500 microns but not more than 50% of the core layer thickness, bonded directly to the first major surface of the core layer;
- the backing film has a coefficient of thermal expansion of less than 90 ppm/° C. as measured in at least one direction within the plane of the film.
- a second skin layer having a different composition from the core layer having a second skin layer thickness of between 3.0 and 1,500 microns but not more than 50% of the core layer thickness, bonded directly to the second major surface of the core layer.
- thermoplastic polyolefin being a 90/10 LyondellBasell propylene/ethylene copolymer, available under the Industries, N.V., trade designation “ADFLEX X500 F” Houston, TX CARBON BLACK A black polypropylene masterbatch (30 weight Ampacet Corp., percent of carbon black in polypropylene), available Tarrytown, NY under the trade designation “19370 BLACK PP MB” AMPACET 400943 UV AO PP MB (10 weight percent of UV antioxidant Ampacet Corp., in polypropylene), available under the trade Tarrytown, NY designation “AMPACET 400943” BYNEL 3101 An ethylene vinyl acetate (EVA) polymer adhesive DuPont, resin available under the trade designation “BYNEL Wilmington, DE 3101 RESIN” INFUSE 9507 An olefin block copolymer available under the trade Dow, Midland, MI designation “INFUSE 9507 BLOCK COPOLY
- CTE coefficient of thermal expansion
- ⁇ is the coefficient of thermal expansion and reported as ppm/° C.
- ⁇ T is the change in temperature
- the tensile test was done according to ASTM D412-15a, 2016, including the following details.
- the material to be tested was conditioned at room temperature and humidity conditions 73.4 ⁇ 3.6° F. (23 ⁇ 2° C.) and 50 ⁇ 5% R.H. for at least 24 hours.
- Test specimens were die cut, using ASTM D412 dumbbell die “C” and arbor press or a heavy mallet with the longitudinal direction of the specimen aligned in the down-web direction. Each specimen was inspected by the naked eye, and any specimens with nicked or otherwise flawed edges in the “neck” area were discarded.
- the thickness of each specimen was measured at three (3) locations in the “neck” area using a digital thickness gauge (e.g., a MITUTOYO DIGIMATIC INDICATOR) and the average thickness (to the nearest 0.001 inch ( ⁇ 25 micrometers)) was recorded.
- the ends of the sample were wrapped with 1 inch ( ⁇ 25 mm) wide 3M 202 tape (or a soft aluminum tape), leaving 2 to 21 ⁇ 2 inches ( ⁇ 64 mm) in the center of the sample exposed.
- test results were discarded if the specimen ruptured outside of the “neck” area.
- Tensile Strength (psi) (load (pounds) at break)/((0.25 inch)*(thickness of the film in inches)). Tensile Strangth is also reported in MPa.
- Elongation (%) (elongation (inches) at break/1.00 inch) ⁇ 100
- % T Visible light transmission values
- the Elmendorf tear test was carried out at constant temperature and humidity conditions using an ELMENDORF TEAR TESTER, with a 1600 gram range. Test samples were cut to 2.5 inches ( ⁇ 6.4 cm) by 2 to 3 inches ( ⁇ 5.1 cm to ⁇ 7.6 cm), and torn in the 2.5 inches direction. The tear line should occurred in the 2.5 inches direction (so the knife cut and tear added up to 2.5 inches). For downweb (“DW”) tears, the tear line was in the DW direction, and the crossweb (“CD”) tear line was in the CD direction. The number of layers was that number which gave the result closest to 40. The number of layers was a power of two (i.e., 1, 2, 4, 8, etc.). The layers were stacked making sure all the layers have the machine direction aligned in the same direction.
- DW downweb
- CD crossweb
- the ELMENDORF TEAR TESTER's pendulum was lifted until held in its raised or starting position by the pendulum stop.
- the test sample was placed securely in the jaws, making sure the bottom edge rested evenly on the bottom of the two jaws.
- the initial slit was made by pressing the handle of the knife blade.
- the length of the specimen left uncut above the jaws was 1.713+/ ⁇ 0.006 inch (4.351 cm ⁇ ⁇ 0.02 cm).
- the pendulum stop was quickly depressed, making sure it did not rub on the pendulum while the tear was being made.
- the pendulum was stopped on the return swing without disturbing the position of the pointer. The reading indicated on the scale was recorded. If the tear line deviated more than 0.25 inch (0.64 cm) on either side of a vertical line starting at the initial slit, the results were discarded and the material retested.
- AAMA 711 was a modified version of ASTM D1970/D1970M-15a with Section 5.2 of AAMA 711, with modifications described as follows. Linerless tape samples and other comparative samples were laminated to 6 inch by 6 inch (15 cm by 15 cm) piece of oriented strand (“OSB”) boards. The samples were then rolled down with a hand roller and firm human pressure. Zinc galvanized roofing nails were then driven through the taped OSB 50 mm apart and to a depth of 3 mm UP from the board surface.
- OSB oriented strand
- the film samples were produced on a three-layer spiral mandrel (2 inch (5.1 cm) mandrel) blown film die, using materials according to Table 2, to generate a two-layer construct of core and skin at the indicated thickness values.
- the feed to the three layer spiral mandrel was adjusted to obtain the airflow to achieve a blow up ratio of approximately 3.5:1.
- the resulting bubble was subsequently collapsed approximately 4 feet (1.2 m) above the die, and rolled up.
- the feed materials were supplied by two 3 ⁇ 4′′ (19 mm) BRABENDER SINGLE SCREW EXTRUDERS (available from C.W.
- Examples 8 and 9 were produced on a BRAMPTON 9 LAYER BLOWN FILM system (available from Brampton Engineering, 8031 Dixie Rd, Brampton ON, Canada) using materials according to Table 2.
- the extrusion temperatures ranged from 340° F. (171° C.) to 380° F. (193° C.).
- the two inside and outside extruders were 2.5′′ (6.4 cm) single screws with the remaining five center layers were fed with 2′′ (5.1 cm) single screws.
- a blow-up ratio of approximately 3:1 was used on the BRAMPTON 9 LAYER BLOWN FILM system.
- the resulting core and skin thickness values were as listed in Table 2.
- Static coefficient of friction was measured using an ARES-G2 rotational rheometer with a stainless steel ring-on-plate tribology fixture.
- the ring side of the fixture was coated with polyurethane in order to simulate a shoe material.
- the polyurethane and film started in contact with one another, using a fixed downward (axial) force.
- the film then started rotating relative to the ring, while torque on the ring was measured as a function of time.
- the torque could be converted to a friction force, dependent on the fixture geometry.
- the static coefficient of friction was reported as the first local maximum in friction force (directly after start-up) divided by the downward force.
- the test was conducted at 152.5 mm/s sliding speed.
- Example 9 A sample of the film of Example 9 was coated on the core side with an 8 mil ( ⁇ 203 micrometers) thick adhesive layer of a cured monomer mixture containing 90 wt. % isooctyl acrylate and 10 wt. % acrylic acid. Following the Water Penetration Test procedure for nail sealability, the results were as summarized in Table 5.
- CE-3 was a commercially available ZIPSYSTEM sealing tape (available from Huber Engineered Woods, Charlotte, N.C.).
- CE-3 and EX-10 were applied to a construction panel and the panel was aged in an oven for 3 hours at 180° F. (82° C.). As noted in Table 5, sample CE-3 wrinkled and sample EX-10 did not wrinkle.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Laminated Bodies (AREA)
Abstract
Description
- This disclosure relates to backing films for adhesive tapes, in particular adhesive tapes used in construction such as seam sealing tapes, roofing tapes, and flashing tapes such as may be used around windows, doors, and other wall penetrations.
- The following references may be relevant to the general field of technology of the present disclosure: US 2007/196610 A1, EP 2439062, US 2010/0307658 A1, CA 2159276 A1.
- Briefly, the present disclosure provides a backing film for an adhesive tape comprising: a) a core layer, having a first major surface opposite a second major surface, and having a core layer thickness of between 10.0 and 4,500 microns; and b) a first skin layer having a different composition from the core layer, having a first skin layer thickness of between 3.0 and 1,500 microns but not more than 50% of the core layer thickness, bonded directly to the first major surface of the core layer; where the backing film has a coefficient of thermal expansion of less than 90 ppm/° C. as measured in at least one direction within the plane of the film (e.g., down-web, cross-web, or some diagonal in between). In some embodiments, the backing film has a coefficient of thermal expansion of less than 79.2 ppm/° C. as measured in at least one direction within the plane of the film. In some embodiments, the backing film has a coefficient of thermal expansion of not more than 91.8 ppm/° C. as measured in any direction within the plane of the film. Additional embodiments are described below under “Selected Embodiments.” In some embodiments, the backing film has a Young's modulus of less than 550 MPa as measured in at least one direction within the plane of the film. In some embodiments, the backing film has a Young's modulus of less than 470 MPa as measured in at least one direction within the plane of the film. In some embodiments, the backing film has a Young's modulus of not more than 540 MPa as measured in any direction within the plane of the film. Additional embodiments are described below under “Selected Embodiments.” In some embodiments of the backing film, the core layer comprises a polyolefin, which in some embodiments may be a propylene/ethylene copolymer comprising propylene and ethylene in a weight ratio of at least 2:1 propylene/ethylene, at least 3:1 propylene/ethylene, or at least 4:1 propylene/ethylene. In some embodiments of the backing film, the first skin layer comprises a first thermoplastic elastomer, which in some embodiments may be a copolymer of ethylene, in some embodiments may be an ethylene vinyl acetate copolymer, and in some embodiments may be an ethylene methyl acrylate copolymer. The backing film may, in some embodiments, additionally comprise: c) a second skin layer having a different composition from the core layer, having a second skin layer thickness of between 3.0 and 1,500 microns but not more than 50% of the core layer thickness, bonded directly to the second major surface of the core layer. In some embodiments, the second skin layer has the same composition as the first skin layer, whereas in other embodiments the second skin layer has a different composition. Additional embodiments of the backing film of the present disclosure are described below under “Selected Embodiments.”
- In another aspect, the present disclosure provides an adhesive tape comprising any of the backing films presented herein. In some embodiments including a two-layer backing film, a pressure sensitive adhesive layer is bonded directly to the second major surface of the core layer. In some embodiments including a three-layer backing film, a pressure sensitive adhesive layer is bonded directly to the second skin layer on a surface opposite the core layer. In some embodiments, the pressure sensitive adhesive layer comprises at least 50 wt % of an acrylate resin. Additional embodiments of the adhesive tape of the present disclosure are described below under “Selected Embodiments.”
- All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified.
- As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise.
- As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
- As used herein, “have”, “having”, “include”, “including”, “comprise”, “comprising” or the like are used in their open ended sense, and generally mean “including, but not limited to.” It will be understood that the terms “consisting of” and “consisting essentially of” are subsumed in the term “comprising,” and the like.
-
FIG. 1 is a cross-section of a tape according to the present disclosure that includes a two-layer (skin, core) backing film. -
FIG. 2 is a cross-section of a tape according to the present disclosure that includes a three-layer (skin, core, skin) backing film. - The present disclosure provides backing films for adhesive tapes, in some embodiments including adhesive tapes used in construction as seam sealing tapes, roofing tapes, and flashing tapes such as may be used around windows, doors, and other wall penetrations. The present backing films may be used in manufacturing adhesive tapes which simultaneously demonstrate good tensile strength, tear resistance, slip resistance (static friction performance), ability to seal over nails with resistance to water penetration, resistance to wrinkling under hot weather conditions. In particular, tapes made using the backing films of the present disclosure demonstrate high resistance to wrinkling under hot weather conditions, while maintaining other characteristics desirable in adhesive tapes used in construction.
- With reference to
FIG. 1 , some embodiments ofbacking film 10 comprise two layers:core layer 20 andskin layer 30. Backingfilm 10 may bear a layer of pressure sensitive adhesive 40 so as to comprisetape 50. In some embodiments, an optional lowadhesion backsizing layer 60 is borne on the outermost surface ofbacking film 10. - With reference to
FIG. 2 , some embodiments ofbacking film 15 comprise three layers:core layer 20,first skin layer 30, andsecond skin layer 35. Backingfilm 15 may bear a layer of pressuresensitive adhesive 40 so as to comprisetape 55. In some embodiments, an optional lowadhesion backsizing layer 60 is borne on the outermost surface ofbacking film 15.First skin layer 30 andsecond skin layer 35 may be of the same or different skin layer composition. - The backing film of the present disclosure has a reduced coefficient of thermal expansion, and in some embodiments, both a reduced coefficient of thermal expansion and a reduced Young's modulus. Without wishing to be bound by theory, it is believed that the reduced coefficient of thermal expansion contributes to the resistance to wrinkling under hot weather conditions demonstrated herein. In addition, since tapes are typically applied under mild tension, it is believed that a reduced Young's modulus allows the tape to stretch during application and thereafter reside on its substrate under tension, and thus heat expansion is less apt to put the tape into compression sufficient to result in wrinkles.
- The core layer may be made of any suitable material. In some embodiments, the core layer principally comprises a polyolefin. In some embodiments, the polyolefin is a propylene/ethylene copolymer. In some embodiments, the core layer additionally comprises a pigment. In some embodiments, the core layer additionally comprises carbon black. In some embodiments, the core layer additionally comprises a UV stabilizer.
- The skin layer(s) may be made of any suitable material. In some embodiments, the skin layer(s) principally comprise a thermoplastic elastomer. In some embodiments, the thermoplastic elastomer is a copolymer of ethylene. In some embodiments, the thermoplastic elastomer is an ethylene vinyl acetate copolymer. In some embodiments, the thermoplastic elastomer is an ethylene methyl acrylate copolymer.
- The adhesive layer may be made of any suitable pressure sensitive adhesive. In some embodiments, the adhesive layer principally comprises an elastomeric resin. In some embodiments, the adhesive layer principally comprises an acrylate resin. In some embodiments, the adhesive layer additionally comprises a tackifier.
- In some embodiments, the backing film is substantially opaque. In some such embodiments the backing film demonstrates a visible light transmission rate of less than 2%. In some embodiments, the backing film is at least partially transparent. In some such embodiments the backing film demonstrates a visible light transmission rate of greater than 15%, in others greater than 25%.
- In some embodiments, the backing film may bear an additional thin layer of a low adhesion backsizing, such as a silicone coating or a coating of a polyvinyl octadecyl carbamate such as ESCOAT P-20.
- The backing film may be made by any suitable method, including the two-layer embodiments and the three-layer embodiments. In some embodiments, the backing film may be made by blown film methods. In some embodiments, the backing film may be made by coating methods. Adhesive may be added by any suitable method. In some embodiments, adhesive may be added by coating methods.
- The following embodiments, designated by letter and number, are intended to further illustrate the present disclosure but should not be construed to unduly limit this disclosure.
- A1. A backing film for an adhesive tape comprising:
- a) a core layer, having a first major surface opposite a second major surface, and having a core layer thickness of between 10.0 and 4,500 microns; and
- b) a first skin layer having a different composition from the core layer, having a first skin layer thickness of between 3.0 and 1,500 microns but not more than 50% of the core layer thickness, bonded directly to the first major surface of the core layer;
- wherein the backing film has a coefficient of thermal expansion of less than 90 ppm/° C. as measured in at least one direction within the plane of the film.
- A2. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of less than 88.2 ppm/° C. as measured in at least one direction within the plane of the film.
- A3. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of less than 86.4 ppm/° C. as measured in at least one direction within the plane of the film.
- A4. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of less than 82.8 ppm/° C. as measured in at least one direction within the plane of the film.
- A5. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of less than 79.2 ppm/° C. as measured in at least one direction within the plane of the film.
- A6. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of less than 75.6 ppm/° C. as measured in at least one direction within the plane of the film.
- A7. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of less than 72 ppm/° C. as measured in at least one direction within the plane of the film.
- A8. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of not more than 99 ppm/° C. as measured in any direction within the plane of the film.
- A9. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of not more than 95.4 ppm/° C. as measured in any direction within the plane of the film.
- A10. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of not more than 91.8 ppm/° C. as measured in any direction within the plane of the film.
- A11. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of not more than 88.2 ppm/° C. as measured in any direction within the plane of the film.
- A12. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of not more than 84.6 ppm/° C. as measured in any direction within the plane of the film.
- A13. The backing film according to any of the preceding embodiments, wherein the backing film has a coefficient of thermal expansion of not more than 82.8 ppm/° C. as measured in any direction within the plane of the film.
- A14. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of less than 550 MPa as measured in at least one direction within the plane of the film.
- A15. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of less than 510 MPa as measured in at least one direction within the plane of the film.
- A16. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of less than 470 MPa as measured in at least one direction within the plane of the film.
- A17. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of less than 430 MPa as measured in at least one direction within the plane of the film.
- A18. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of less than 390 MPa as measured in at least one direction within the plane of the film.
- A19. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of not more than 750 MPa as measured in any direction within the plane of the film.
- A20. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of not more than 680 MPa as measured in any direction within the plane of the film.
- A21. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of not more than 600 MPa as measured in any direction within the plane of the film.
- A22. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of not more than 540 MPa as measured in any direction within the plane of the film.
- A23. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of not more than 490 MPa as measured in any direction within the plane of the film.
- A24. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of not more than 440 MPa as measured in any direction within the plane of the film.
- A25. The backing film according to any of the preceding embodiments, wherein the backing film has a Young's modulus of not more than 390 MPa as measured in any direction within the plane of the film.
- A26. The backing film according to any of the preceding embodiments, wherein the core layer thickness is greater than 30 microns.
- A27. The backing film according to any of the preceding embodiments, wherein the core layer thickness is greater than 55 microns.
- A28. The backing film according to any of the preceding embodiments, wherein the core layer thickness is less than 2,000 microns.
- A29. The backing film according to any of the preceding embodiments, wherein the core layer thickness is less than 700 microns.
- A30. The backing film according to any of the preceding embodiments, wherein the core layer thickness is less than 270 microns.
- A31. The backing film according to any of the preceding embodiments, wherein the core layer thickness is less than 120 microns.
- A32. The backing film according to any of the preceding embodiments, wherein the first skin layer thickness is greater than 7 microns.
- A33. The backing film according to any of the preceding embodiments, wherein the first skin layer thickness is greater than 11 microns.
- A34. The backing film according to any of the preceding embodiments, wherein the first skin layer thickness is not more than 30% of the core layer thickness.
- A35. The backing film according to any of the preceding embodiments, wherein the first skin layer thickness is not more than 20% of the core layer thickness.
- A36. The backing film according to any of the preceding embodiments, wherein the core layer comprises at least 50 wt % of a polyolefin.
- A37. The backing film according to any of the preceding embodiments, wherein the core layer comprises at least 60 wt % of a polyolefin.
- A38. The backing film according to any of the preceding embodiments, wherein the core layer comprises at least 70 wt % of a polyolefin.
- A39. The backing film according to any of the preceding embodiments, wherein the core layer comprises at least 75 wt % of a polyolefin.
- A40. The backing film according to any of the preceding embodiments, wherein the core layer comprises at least 80 wt % of a polyolefin.
- A41. The backing film according to any of the preceding embodiments, wherein the core layer comprises at least 85 wt % of a polyolefin.
- A42. The backing film according to any of the preceding embodiments, wherein the core layer comprises at least 90 wt % of a polyolefin.
- A43. The backing film according to any of the preceding embodiments, wherein the core layer comprises at least 95 wt % of a polyolefin.
- A44. The backing film according to any of embodiments A36-A43, wherein the polyolefin is a propylene/ethylene copolymer comprising propylene and ethylene in a weight ratio of at least 2:1 propylene/ethylene.
- A45. The backing film according to any of embodiments A36-A43, wherein the polyolefin is a propylene/ethylene copolymer comprising propylene and ethylene in a weight ratio of at least 3:1 propylene/ethylene.
- A46. The backing film according to any of embodiments A36-A43, wherein the polyolefin is a propylene/ethylene copolymer comprising propylene and ethylene in a weight ratio of at least 4:1 propylene/ethylene.
- A47. The backing film according to any of the preceding embodiments, wherein the first skin layer comprises at least 50 wt % of a first thermoplastic elastomer.
- A48. The backing film according to any of the preceding embodiments, wherein the first skin layer comprises at least 60 wt % of a first thermoplastic elastomer.
- A49. The backing film according to any of the preceding embodiments, wherein the first skin layer comprises at least 70 wt % of a first thermoplastic elastomer.
- A50. The backing film according to any of the preceding embodiments, wherein the first skin layer comprises at least 75 wt % of a first thermoplastic elastomer.
- A51. The backing film according to any of the preceding embodiments, wherein the first skin layer comprises at least 80 wt % of a first thermoplastic elastomer.
- A52. The backing film according to any of the preceding embodiments, wherein the first skin layer comprises at least 85 wt % of a first thermoplastic elastomer.
- A53. The backing film according to any of the preceding embodiments, wherein the first skin layer comprises at least 90 wt % of a first thermoplastic elastomer.
- A54. The backing film according to any of the preceding embodiments, wherein the first skin layer comprises at least 95 wt % of a first thermoplastic elastomer.
- A55. The backing film according to any of embodiments A47-A54, wherein the first thermoplastic elastomer is a copolymer of ethylene.
- A56. The backing film according to any of embodiments A47-A54, wherein the first thermoplastic elastomer is an ethylene vinyl acetate copolymer.
- A57. The backing film according to any of embodiments A47-A54, wherein the first thermoplastic elastomer is an ethylene methyl acrylate copolymer.
- A58. The backing film according to any of the preceding embodiments, wherein the core layer additionally comprises a pigment.
- A59. The backing film according to any of the preceding embodiments, wherein the core layer additionally comprises carbon black.
- A60. The backing film according to any of the preceding embodiments, wherein the core layer additionally comprises a UV stabilizer.
- B1. A backing film according to any of embodiments A1-A60, additionally comprising
- c) a second skin layer having a different composition from the core layer, having a second skin layer thickness of between 3.0 and 1,500 microns but not more than 50% of the core layer thickness, bonded directly to the second major surface of the core layer.
- B2. The backing film according to embodiment B1, wherein the second skin layer thickness is greater than 7 microns.
- B3. The backing film according to embodiment B 1, wherein the second skin layer thickness is greater than 11 microns.
- B4. The backing film according to any of embodiments B1-B3, wherein the second skin layer thickness is not more than 30% of the core layer thickness.
- B5. The backing film according to any of embodiments B1-B3, wherein the second skin layer thickness is not more than 20% of the core layer thickness.
- B6. The backing film according to any of embodiments B1-B5, wherein the second skin layer comprises at least 50 wt % of a thermoplastic elastomer.
- B7. The backing film according to any of embodiments B1-B5, wherein the second skin layer comprises at least 60 wt % of a thermoplastic elastomer.
- B8. The backing film according to any of embodiments B1-B5, wherein the second skin layer comprises at least 70 wt % of a second thermoplastic elastomer.
- B9. The backing film according to any of embodiments B1-B5, wherein the second skin layer comprises at least 75 wt % of a second thermoplastic elastomer.
- B10. The backing film according to any of embodiments B1-B5, wherein the second skin layer comprises at least 80 wt % of a second thermoplastic elastomer.
- B11. The backing film according to any of embodiments B1-B5, wherein the second skin layer comprises at least 85 wt % of a second thermoplastic elastomer.
- B12. The backing film according to any of embodiments B1-B5, wherein the second skin layer comprises at least 90 wt % of a second thermoplastic elastomer.
- B13. The backing film according to any of embodiments B1-B5, wherein the second skin layer comprises at least 95 wt % of a second thermoplastic elastomer.
- B14. The backing film according to any of embodiments B6-B13, wherein the second thermoplastic elastomer is a copolymer of ethylene.
- B15. The backing film according to any of embodiments B6-B13, wherein the second thermoplastic elastomer is an ethylene vinyl acetate copolymer.
- B16. The backing film according to any of embodiments B6-B13, wherein the second thermoplastic elastomer is an ethylene methyl acrylate copolymer.
- B17. The backing film according to any of embodiments B1-B17, wherein the second skin layer has the same composition as the first skin layer.
- T1. An adhesive tape comprising the backing film according to any of embodiments A1-A60 and a pressure sensitive adhesive layer bonded directly to the second major surface of the core layer.
- T2. An adhesive tape comprising the backing film according to any of embodiments B1-B16 and a pressure sensitive adhesive layer bonded directly to the second skin layer on a surface opposite the core layer.
- T3. An adhesive tape according to any of embodiments T1-T2 wherein the pressure sensitive adhesive layer comprises at least 50 wt % of an acrylate resin.
- T4. An adhesive tape according to any of embodiments T1-T2 wherein the pressure sensitive adhesive layer comprises at least 80 wt % of an acrylate resin.
- T5. An adhesive tape according to any of embodiments T1-T2 wherein the pressure sensitive adhesive layer comprises at least 90 wt % of an acrylate resin.
- T6. An adhesive tape according to any of embodiments T1-T2 wherein the pressure sensitive adhesive layer comprises at least 95 wt % of an acrylate resin.
- T7. An adhesive tape according to any of embodiments T1-T6 additionally comprising a low adhesion backsizing layer bonded directly to the first skin layer on a surface opposite the core layer.
- M1. A method of sealing seams between panels in building construction, comprising the steps of:
- 1) providing an adhesive tape according to any of embodiments T1-T7;
- 2) applying the adhesive side of the tape to a seam.
- M2. A method of sealing seams between panels in building construction, comprising the steps of:
- 1) providing an adhesive tape according to any of embodiments T1-T7;
- 2) applying the adhesive side of the tape to a seam while maintaining the tape in tension.
- Objects and advantages of this disclosure are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this disclosure.
- Unless otherwise noted, all reagents were obtained or are available from Aldrich Chemical Co., Milwaukee, Wis., or may be synthesized by known methods.
- All percentages and ratios are by weight, unless otherwise specified.
-
TABLE 1 Materials Designation Description Source X500F POLYPROP A thermoplastic polyolefin, being a 90/10 LyondellBasell propylene/ethylene copolymer, available under the Industries, N.V., trade designation “ADFLEX X500 F” Houston, TX CARBON BLACK A black polypropylene masterbatch (30 weight Ampacet Corp., percent of carbon black in polypropylene), available Tarrytown, NY under the trade designation “19370 BLACK PP MB” AMPACET 400943 UV AO PP MB (10 weight percent of UV antioxidant Ampacet Corp., in polypropylene), available under the trade Tarrytown, NY designation “AMPACET 400943” BYNEL 3101 An ethylene vinyl acetate (EVA) polymer adhesive DuPont, resin available under the trade designation “BYNEL Wilmington, DE 3101 RESIN” INFUSE 9507 An olefin block copolymer available under the trade Dow, Midland, MI designation “INFUSE 9507 BLOCK COPOLYMER” ELVALOY 1609 An ethylene and methyl acrylate copolymer available DuPont, under the trade designation “ELVALOY 1609” Wilmington, DE ANTIBLOCK An anti-block masterbatch containing 20 weight Ampacet Corp., 10063 percent of an anti-block agent in polyethylene, Tarrytown, NY available under the trade designation “10063 ANTIBLOCK PE MB” R350 Stabilizers, available under the trade designation CYTEC, “CYASORB CYNERGY SOLUTIONS R350 Woodland Park, STABILIZER,” used as a 7 wt % MB in X500 F. NJ - The coefficient of thermal expansion (CTE) of the test film was determined with a shrinkage tester device (Perbix Machine Co.) by heating the film at 76.7° C. for four minutes. Once the test was completed, the % length change was read from the instrument and recorded. CTE (α) values were then calculated as follows:
-
α=(ΔL/L)/ΔT - where,
- α is the coefficient of thermal expansion and reported as ppm/° C.
- ΔL/L is recorded as % length change from the instrument
- ΔT is the change in temperature
- ΔT for this test was obtained using the difference in the room temperature and the measurement temperature; ΔT=76.7−21.1=55.6° C.
- The tensile test was done according to ASTM D412-15a, 2016, including the following details. The material to be tested was conditioned at room temperature and humidity conditions 73.4±3.6° F. (23±2° C.) and 50±5% R.H. for at least 24 hours. Test specimens were die cut, using ASTM D412 dumbbell die “C” and arbor press or a heavy mallet with the longitudinal direction of the specimen aligned in the down-web direction. Each specimen was inspected by the naked eye, and any specimens with nicked or otherwise flawed edges in the “neck” area were discarded.
- The thickness of each specimen was measured at three (3) locations in the “neck” area using a digital thickness gauge (e.g., a MITUTOYO DIGIMATIC INDICATOR) and the average thickness (to the nearest 0.001 inch (˜25 micrometers)) was recorded. The ends of the sample were wrapped with 1 inch (˜25 mm) wide 3M 202 tape (or a soft aluminum tape), leaving 2 to 2½ inches (˜64 mm) in the center of the sample exposed.
- The sample was aligned and clamped into the upper and lower jaws of an INSTRON, and the upper jaw of the INSTRON was started in motion at a crosshead speed of 20 inches/min. (50.8 cm/min.). Test conditions were 73.4° F.±3.6° F. (23° C.±2° C.) and 50±5% R.H. The sample was pulled rupture. Test results were discarded if the specimen ruptured outside of the “neck” area.
- The tensile strength (lbs/inch width) and elongation (%) were obtained for each sample, and the average of all like samples, as provided by the TESTWORKS program. Tensile strength values were calculated as follows:
-
Tensile Strength (psi)=(load (pounds) at break)/((0.25 inch)*(thickness of the film in inches)). Tensile Strangth is also reported in MPa. - Elongation values were calculated as follows:
-
Elongation (%)=(elongation (inches) at break/1.00 inch)×100 - Young's Modulus values are reported in MPa.
- Visible light transmission values (“% T”) were obtained using a HAZE-GARD PLUS haze meter (BYK-Gardiner, Silver Springs, Md.).
- The Elmendorf tear test was carried out at constant temperature and humidity conditions using an ELMENDORF TEAR TESTER, with a 1600 gram range. Test samples were cut to 2.5 inches (˜6.4 cm) by 2 to 3 inches (˜5.1 cm to ˜7.6 cm), and torn in the 2.5 inches direction. The tear line should occurred in the 2.5 inches direction (so the knife cut and tear added up to 2.5 inches). For downweb (“DW”) tears, the tear line was in the DW direction, and the crossweb (“CD”) tear line was in the CD direction. The number of layers was that number which gave the result closest to 40. The number of layers was a power of two (i.e., 1, 2, 4, 8, etc.). The layers were stacked making sure all the layers have the machine direction aligned in the same direction.
- The ELMENDORF TEAR TESTER's pendulum was lifted until held in its raised or starting position by the pendulum stop. The test sample was placed securely in the jaws, making sure the bottom edge rested evenly on the bottom of the two jaws. The initial slit was made by pressing the handle of the knife blade. The length of the specimen left uncut above the jaws was 1.713+/−0.006 inch (4.351 cm±˜0.02 cm). The pendulum stop was quickly depressed, making sure it did not rub on the pendulum while the tear was being made. The pendulum was stopped on the return swing without disturbing the position of the pointer. The reading indicated on the scale was recorded. If the tear line deviated more than 0.25 inch (0.64 cm) on either side of a vertical line starting at the initial slit, the results were discarded and the material retested.
- The testing was conducted using a test method in accordance with the International Code Council (ICC) Acceptance Criteria for Flexible Flashing Materials (AC-148) and the American Architectural Manufacturers Association document AAMA 711. The test method listed in AAMA 711 was a modified version of ASTM D1970/D1970M-15a with Section 5.2 of AAMA 711, with modifications described as follows. Linerless tape samples and other comparative samples were laminated to 6 inch by 6 inch (15 cm by 15 cm) piece of oriented strand (“OSB”) boards. The samples were then rolled down with a hand roller and firm human pressure. Zinc galvanized roofing nails were then driven through the taped
OSB 50 mm apart and to a depth of 3 mm UP from the board surface. The end of a 4 inch (100 mm) ID by 6 inch (150 mm) long section of polyvinyl chloride (“PVC”) pipe was caulked and placed over the nail penetrations and sealed to the tape surface. The caulk was allowed to be fully cured for 24 h. The entire assembly was placed over the open top of a 1 gallon (˜3.8 liters) paint can to capture any water leakage. A circular piece of filter paper was placed in the bottom of the 1 gallon can for positive leak detection. The water column container was filled with red dyed water to a depth of 31 mm (1.2 in) and dwelled for 24 h at 40° F. (˜4.4° C.). The resulting sample boards were then inspected for leaks. If no leak was identified, Nail Sealability=PASS; If a leak was identified, Nail Sealability=FAILURE. - For each of Examples 1 to 7, the film samples were produced on a three-layer spiral mandrel (2 inch (5.1 cm) mandrel) blown film die, using materials according to Table 2, to generate a two-layer construct of core and skin at the indicated thickness values. The feed to the three layer spiral mandrel was adjusted to obtain the airflow to achieve a blow up ratio of approximately 3.5:1. The resulting bubble was subsequently collapsed approximately 4 feet (1.2 m) above the die, and rolled up. The feed materials were supplied by two ¾″ (19 mm) BRABENDER SINGLE SCREW EXTRUDERS (available from C.W. Brabender Instruments, 50 East Wesley Street, South Hackensack, N.J.) on the inside and outside layers, and one KILLION 1″ (2.54 cm) SINGLE SCREW EXTRUDER (Davis-Standard, 1 Extrusion Drive, Pawcatuck, Conn.) on the center layer.
- Process temperatures were as follows:
-
- Outside, Center and Inside Skin Layers Extruder Temperatures: Zone 1: 360° F. (180° C.), Zone 2: 370° F. (188° C.), Zone 3: 380° F. (193° C.).
- Adaptor temperature: 380° F. (193° C.); Die temperature: 380° F. (193° C.).
-
TABLE 2 Film Compositions Core Skin Thickness mil Thickness mil ID# Core (micrometers) Skin (micrometers) EX-1 X500F POLYPROP/CARBON 3.5 (89) BYNEL 3101/ 0.5 (13) BLACK/AMPACET 400943 ANTIBLOCK 10063 (97/2/1) (98/2) EX-2 X500F POLYPROP/CARBON 3.5 (89) INFUSE 9507/ 0.5 (13) BLACK/AMPACET 400943 ANTIBLOCK 10063 (97/2/1) (98/2) EX-3 X500F POLYPROP/CARBON 3.5 (89) INFUSE 9507/X500 0.5 (13) BLACK/AMPACET 400943 FPOLYPROP/ (97/2/1) ANTIBLOCK 10063 (49/49/2) EX-4 X500F POLYPROP/CARBON 3.5 (89) ELVALOY 1609/ 0.5 (13) BLACK/AMPACET 400943 ANTIBLOCK 10063 (97/2/1) (98/2) EX-5 X500F POLYPROP/CARBON 3.5 (89) BYNEL 3101/ 0.5 (13) BLACK/R350 ANTIBLOCK 10063 (97.5/0.5/2.0) (98/2) EX-6 X500F POLYPROP/CARBON 3.5 (89) BYNEL 3101/ 0.5 (13) BLACK/R350 ANTIBLOCK 10063 (97.25/0.75/2.0) (98/2) EX-7 X500F POLYPROP/CARBON 3.5 (89) BYNEL 3101/ 0.5 (13) BLACK/R350 ANTIBLOCK 10063 (97/1/2) (98/2) EX-8 X500F POLYPROP/CARBON 3.5 (89) BYNEL 3101/ 0.5 (13) BLACK/AMPACET 400943 ANTIBLOCK 10063 (97.5/0.5/2.0) (98/2) EX-9 X500F POLYPROP/CARBON 3.5 (89) BYNEL 3101/ 0.5 (13) BLACK/AMPACET 400943 ANTIBLOCK 10063 (96/2/2) (98/2) CE-1 X500F POLYPROP/CARBON 3.5 (89) X500F POLYPROP/ 0.5 (13) BLACK/AMPACET 400943 ANTIBLOCK 10063 (97/2/1) (98/2) - Examples 8 and 9 were produced on a BRAMPTON 9 LAYER BLOWN FILM system (available from Brampton Engineering, 8031 Dixie Rd, Brampton ON, Canada) using materials according to Table 2. The extrusion temperatures ranged from 340° F. (171° C.) to 380° F. (193° C.). Of the nine layers in the extrusion system, the two inside and outside extruders were 2.5″ (6.4 cm) single screws with the remaining five center layers were fed with 2″ (5.1 cm) single screws. A blow-up ratio of approximately 3:1 was used on the BRAMPTON 9 LAYER BLOWN FILM system. The resulting core and skin thickness values were as listed in Table 2.
- Properties of the multilayer films of EX-1 to EX-9 were tested, with results as summarized in Table 3. To quantify the thermal resistance of the film backings, coefficient of thermal expansion (“CTE”) was measured for both downweb (“DW”) and crossweb (“CW”) directions. Comparative Example 2 (“CE-2”) was a backing film from a commercially available ZIPSYSTEM sealing tape. In Table 3, “ND” signifies “not determined”.
-
TABLE 3 % Young's Tensile CTE Elmendorf Peak Elongation at Modulus, Strength at (ppm/° C.) Tear, grams Load, lbf (N) break MPa break, psi (MPa) ID# DW CW DW CW DW CW DW CW DW CW DW CW % T EX-1 69.7 79.5 359 536 3.271 2.667 1066 1015 561 495 2907 2668 ND (14.5) (11.9) (20.0) (18.4) EX-2 71.5 74.2 347 327 2.760 2.846 997 1126 583 441 2454 2846 ND (12.3) (12.7) (16.9) (19.6) EX-3 68.9 80.4 168 383 3.254 2.887 1188 1090 703 544 3254 2887 ND (14.5) (12.8) (22.4) (19.9) EX-4 73.4 82.7 221 443 3.204 2.834 1116 1095 708 531 3214 2834 ND (14.3) (12.6) (22.2) (19.5) EX-5 59.8 ND ND ND ND ND ND ND ND ND ND ND 50.5 EX-6 49.6 ND ND ND ND ND ND ND ND ND ND ND 18.2 EX-7 59.8 ND ND ND ND ND ND ND ND ND ND ND 16.0 EX-8 71.4 86.4 277 287 3.768 3.688 1194 1275 456 382 3727 3673 33.6 (16.8) (16.4) (25.7) (25.3) EX-9 74.6 82.6 237 265 3.573 3.438 1156 1193 386 383 3516 3383 1.1 (15.9) (15.3) (24.2) (23.3) CE-1 71.3 81.9 189 191 3.586 3.129 1096 1026 707 622 2988 3129 ND (16.0) (13.9) (20.6) (21.6) CE-2 129.9 136.4 211 212 4.233 3.267 1030 860 994 1086 3980 3085 1.0 (18.8) (14.5) (27.4) (21.3) - Several of the films were assessed for static friction performance, with results as summarized in Table 4. Static coefficient of friction was measured using an ARES-G2 rotational rheometer with a stainless steel ring-on-plate tribology fixture. The ring side of the fixture was coated with polyurethane in order to simulate a shoe material. For the testing procedure, the polyurethane and film started in contact with one another, using a fixed downward (axial) force. The film then started rotating relative to the ring, while torque on the ring was measured as a function of time. The torque could be converted to a friction force, dependent on the fixture geometry. The static coefficient of friction was reported as the first local maximum in friction force (directly after start-up) divided by the downward force. The test was conducted at 152.5 mm/s sliding speed.
-
TABLE 4 ID# Static Friction EX-1 Outstanding EX-2 Acceptable EX-3 Outstanding EX-4 Acceptable EX-8 Outstanding EX-9 Outstanding CE-1 Acceptable CE-2 Acceptable - A sample of the film of Example 9 was coated on the core side with an 8 mil (˜203 micrometers) thick adhesive layer of a cured monomer mixture containing 90 wt. % isooctyl acrylate and 10 wt. % acrylic acid. Following the Water Penetration Test procedure for nail sealability, the results were as summarized in Table 5. CE-3 was a commercially available ZIPSYSTEM sealing tape (available from Huber Engineered Woods, Charlotte, N.C.). CE-3 and EX-10 were applied to a construction panel and the panel was aged in an oven for 3 hours at 180° F. (82° C.). As noted in Table 5, sample CE-3 wrinkled and sample EX-10 did not wrinkle.
-
TABLE 5 ID# Nail Sealability Wrinkling EX-10 Pass Pass CE-3 Pass Fail - Various modifications and alterations of this disclosure will become apparent to those skilled in the art without departing from the scope and principles of this disclosure, and it should be understood that this disclosure is not to be unduly limited to the illustrative embodiments set forth hereinabove.
Claims (20)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/042,192 US20190031923A1 (en) | 2017-07-26 | 2018-07-23 | Backing for adhesive tape with thermal resistance |
| US17/521,324 US12195652B2 (en) | 2017-07-26 | 2021-11-08 | Backing for adhesive tape with thermal resistance |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762537042P | 2017-07-26 | 2017-07-26 | |
| US16/042,192 US20190031923A1 (en) | 2017-07-26 | 2018-07-23 | Backing for adhesive tape with thermal resistance |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/521,324 Division US12195652B2 (en) | 2017-07-26 | 2021-11-08 | Backing for adhesive tape with thermal resistance |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190031923A1 true US20190031923A1 (en) | 2019-01-31 |
Family
ID=65138752
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/042,192 Abandoned US20190031923A1 (en) | 2017-07-26 | 2018-07-23 | Backing for adhesive tape with thermal resistance |
| US17/521,324 Active US12195652B2 (en) | 2017-07-26 | 2021-11-08 | Backing for adhesive tape with thermal resistance |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/521,324 Active US12195652B2 (en) | 2017-07-26 | 2021-11-08 | Backing for adhesive tape with thermal resistance |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20190031923A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021033111A1 (en) * | 2019-08-19 | 2021-02-25 | 3M Innovative Properties Company | Adhesive tapes and methods of use in construction |
| US20220056318A1 (en) * | 2017-07-26 | 2022-02-24 | 3M Innovative Properties Company | Backing for adhesive tape with thermal resistance |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6106982A (en) * | 1998-05-11 | 2000-08-22 | Avery Dennison Corporation | Imaged receptor laminate and process for making same |
| US6316120B1 (en) * | 1999-02-20 | 2001-11-13 | 3M Innovative Properties Company | Image receptor medium containing ethylene vinyl acetate carbon monoxide terpolymer |
| US20170348949A1 (en) * | 2016-06-01 | 2017-12-07 | 3M Innovative Properties Company | Backing for adhesive tape with thermal resistance |
| US20180010018A1 (en) * | 2015-02-27 | 2018-01-11 | 3M Innovative Properties Company | Double coated tape |
Family Cites Families (178)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3092250A (en) | 1963-06-04 | Pressure sensitive adhesive tape in which the adhesive | ||
| US2925174A (en) | 1956-11-02 | 1960-02-16 | Minnesota Mining & Mfg | Solvent-resistant pressure-sensitive adhesive tape |
| NL253734A (en) | 1959-07-13 | |||
| US3290206A (en) | 1965-06-14 | 1966-12-06 | Minnesota Mining & Mfg | Curl resistant laminate |
| US3406820A (en) | 1966-06-23 | 1968-10-22 | Minnesota Mining & Mfg | Passive pressure-sensitive adhesive tape and process of making same |
| USRE29663E (en) | 1970-06-20 | 1978-06-06 | Minnesota Mining And Manufacturing Company | Moisture-resistant solar control film |
| US3769071A (en) | 1971-06-04 | 1973-10-30 | Minnesota Mining & Mfg | Pressure sensitive adhesive tape comprising 5-fluorouracil |
| GB1327847A (en) | 1971-07-20 | 1973-08-22 | Minnesota Mining & Mfg | Adhesive sheet material |
| US4271223A (en) | 1978-11-02 | 1981-06-02 | Minnesota Mining And Manufacturing Company | Plastic film label stock |
| US4522870A (en) | 1982-11-04 | 1985-06-11 | Minnesota Mining And Manufacturing Company | Linerless double-coated pressure-sensitive adhesive tape |
| DE3374944D1 (en) | 1982-11-04 | 1988-01-28 | Minnesota Mining & Mfg | Removable pressure-sensitive adhesive tape |
| US4977003A (en) | 1985-02-20 | 1990-12-11 | Minnesota Mining And Manufacturing Company | Nontacky acrylonitrile/butadiene adhesive tape |
| US4609208A (en) | 1985-09-16 | 1986-09-02 | Minnesota Mining And Manufacturing Company | Wire identification label pad |
| MX168535B (en) | 1986-08-29 | 1993-05-31 | Grace W R & Co | SEMIPERMEABLE, NON-ADSORTIVE FILTRATION MEMBRANE |
| US4895738A (en) | 1986-08-29 | 1990-01-23 | Minnesota Mining And Manufacturing Company | Method of making a unified pressure-sensitive adhesive tape |
| US4769024A (en) | 1987-04-06 | 1988-09-06 | Century Adhesives Corp. | Repositional adhesive garment closure tabs and components therefor |
| DE8710305U1 (en) | 1987-07-28 | 1987-11-05 | Hoechst Ag, 65929 Frankfurt | Laminate composition for covering flat structures |
| US4959265A (en) | 1989-04-17 | 1990-09-25 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive tape fastener for releasably attaching an object to a fabric |
| TW226406B (en) | 1991-04-12 | 1994-07-11 | Minnesota Mining & Mfg | |
| US5087494A (en) | 1991-04-12 | 1992-02-11 | Minnesota Mining And Manufacturing Company | Electrically conductive adhesive tape |
| DE4214507A1 (en) | 1992-05-01 | 1993-11-04 | Minnesota Mining & Mfg | ADHESIVE ADHESIVE WITH FUEL |
| US5277971A (en) | 1992-05-22 | 1994-01-11 | Tredegar Industries, Inc. | Tamper-evident pressure sensitive facestock labels |
| DE4222832A1 (en) | 1992-07-11 | 1994-01-13 | Dietmar Auch | Thermally-adhesive multilayer film - has oriented thermoplastic film laminated with at least transparent or opaque coloured polymer and thermoplastic adhesive layer |
| US7575653B2 (en) | 1993-04-15 | 2009-08-18 | 3M Innovative Properties Company | Melt-flowable materials and method of sealing surfaces |
| CA2172034A1 (en) | 1993-10-29 | 1995-05-04 | Charles E. Boyer, Iii | Structured adhesive closure systems |
| WO1995013315A1 (en) | 1993-11-10 | 1995-05-18 | Minnesota Mining And Manufacturing Company | Melt-flowable materials and method of sealing surfaces |
| WO1995019393A1 (en) | 1994-01-14 | 1995-07-20 | Minnesota Mining And Manufacturing Company | Acrylate-containing polymer blends |
| US5602202A (en) | 1994-01-14 | 1997-02-11 | Minnesota Mining And Manufacturing Company | Methods of using acrylate-containing polymer blends |
| US5677376A (en) | 1994-01-14 | 1997-10-14 | Minnesota Mining And Manufacturing Company | Acrylate-containing polymer blends |
| DE4402444C2 (en) | 1994-01-27 | 1996-08-29 | Minnesota Mining & Mfg | Tear-resistant adhesive tape based on monoaxially oriented polyethylene and its use |
| AU2614095A (en) | 1994-05-16 | 1995-12-05 | Shell Internationale Research Maatschappij B.V. | Process for upgrading residual hydrocarbon oils |
| WO1996005262A1 (en) | 1994-08-15 | 1996-02-22 | Minnesota Mining And Manufacturing Company | Laminate for precise application of graphics to a substrate |
| US5804610A (en) | 1994-09-09 | 1998-09-08 | Minnesota Mining And Manufacturing Company | Methods of making packaged viscoelastic compositions |
| TW304178B (en) | 1994-09-28 | 1997-05-01 | Grace W R & Co | |
| DE69511843T2 (en) | 1995-04-03 | 2000-06-29 | Minnesota Mining And Mfg. Co., Saint Paul | Pressure sensitive adhesive |
| CA2230048C (en) | 1995-09-26 | 2008-07-15 | The Dow Chemical Company | Clear monolayer label filmstock |
| US5866249A (en) | 1995-12-18 | 1999-02-02 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive based on partially oriented and partially crystallized elastomer |
| CN1085713C (en) | 1996-03-13 | 2002-05-29 | 美国3M公司 | Method for preparing viscoelastic composition |
| ES2180857T3 (en) | 1996-07-06 | 2003-02-16 | Tesa Ag | USE OF A STRIP OF AN ADHESIVE TAPE. |
| EP1569188A3 (en) | 1996-09-27 | 2012-09-19 | Avery Dennison Corporation | Prelaminate pressure-sensitive adhesive constructions |
| US6197397B1 (en) | 1996-12-31 | 2001-03-06 | 3M Innovative Properties Company | Adhesives having a microreplicated topography and methods of making and using same |
| US5846619A (en) | 1997-02-06 | 1998-12-08 | Sonoco Products Company | Polymeric liner ply for tubular containers and methods and apparatus for manufacturing same |
| DE19707046A1 (en) | 1997-02-21 | 1998-08-27 | Rolf Prof Dr Ing Eckmiller | Learnable "Active Vision" implant encoder |
| GB9707211D0 (en) | 1997-04-09 | 1997-05-28 | Turner Intellect Property Ltd | Hand tool |
| US6982107B1 (en) | 1997-09-15 | 2006-01-03 | 3M Innovative Properties Company | Release liner for pressure sensitive adhesives |
| US6174578B1 (en) | 1997-10-24 | 2001-01-16 | Rexam Industries Corp. | Radiation deactivatable adhesive tape |
| US6129964A (en) | 1997-11-06 | 2000-10-10 | 3M Innovative Properties Company | Nonwoven pressure sensitive adhesive tape |
| CN1298431A (en) | 1998-03-11 | 2001-06-06 | 陶氏化学公司 | Deformable pressure sensitive adhesive tape |
| EP1091852B1 (en) | 1998-06-12 | 2007-08-15 | Avery Dennison Corporation | Multilayered thermoplastic film and sign cutting method using the same |
| US6203885B1 (en) | 1998-06-18 | 2001-03-20 | 3M Innovative Properties Company | Cling films having a microreplicated topography and methods of making and using same |
| DE19860833C1 (en) | 1998-12-30 | 2000-09-07 | Albrecht E Sippel | Method for cellular high-throughput detection of receptor-ligand interactions |
| US6299945B1 (en) | 1999-01-28 | 2001-10-09 | Loparex Inc. | Processes for making release liners |
| US7622159B2 (en) | 1999-01-28 | 2009-11-24 | Loparex, Inc. | Release liners and processes for making the same |
| EP1026215A1 (en) | 1999-02-02 | 2000-08-09 | Avery Dennison Corporation | Dry peel label laminates and processes of making same |
| CN1370116A (en) | 1999-03-19 | 2002-09-18 | 3M创新有限公司 | Image graphic adhesive system using non-tacky adhesive |
| JP4376345B2 (en) | 1999-03-30 | 2009-12-02 | 三菱伸銅株式会社 | Cover tape for carrier tape and tape carrier |
| DE60029673T2 (en) | 1999-04-22 | 2007-10-18 | Ricoh Co., Ltd. | Activation and recording of a heat-sensitive adhesive label by heat |
| JP2002544320A (en) | 1999-05-05 | 2002-12-24 | スリーエム イノベイティブ プロパティズ カンパニー | Silicone adhesives, products, and methods |
| DE19939073A1 (en) | 1999-08-18 | 2001-02-22 | Beiersdorf Ag | Process for the continuous, solvent and mastication-free production of pressure-sensitive self-adhesive compositions based on non-thermoplastic elastomers and their coating for the production of self-adhesive articles |
| US6630531B1 (en) | 2000-02-02 | 2003-10-07 | 3M Innovative Properties Company | Adhesive for bonding to low surface energy surfaces |
| EP1712603B1 (en) | 2000-04-24 | 2008-12-03 | Avery Dennison Corporation | Adhesive articles with improved air egress and methods of making the same |
| DE10036705A1 (en) | 2000-07-27 | 2002-03-28 | Tesa Ag | Adhesive tape, in particular for packaging purposes |
| US6655281B1 (en) | 2000-08-08 | 2003-12-02 | 3M Innovative Properties Company | Flexographic printing elements with improved air bleed |
| US6759110B1 (en) | 2000-08-15 | 2004-07-06 | 3M Innovative Properties Company | Structured release liners with improved adhesion to adhesive articles |
| DE10059875A1 (en) | 2000-12-01 | 2002-10-24 | Tesa Ag | Adhesive tape, in particular for packaging purposes |
| ATE317881T1 (en) | 2000-12-01 | 2006-03-15 | 3M Innovative Properties Co | CROSS-LINKED ADHESIVE COMPOSITIONS AND ADHESIVE OBJECTS BASED THEREOF USABLE FOR HIGH TEMPERATURE APPLICATIONS |
| US6780484B2 (en) | 2001-02-02 | 2004-08-24 | 3M Innovative Properties Company | Adhesive article and method of preparing |
| US20030017291A1 (en) | 2001-03-14 | 2003-01-23 | Fleming Danny L. | Adhesive layers and release liners with pyramidal structures |
| EP1394231A1 (en) | 2001-04-17 | 2004-03-03 | Lintec Corporation | Adhesive sheet and production method therefor |
| US7122235B2 (en) | 2001-06-11 | 2006-10-17 | Eastman Kodak Company | Tack free cauterized edge for pressure sensitive adhesive web |
| DE10130049A1 (en) | 2001-06-21 | 2003-01-30 | Tesa Ag | Adhesive tape, in particular for packaging purposes |
| DE10137405A1 (en) | 2001-07-31 | 2003-02-20 | Beiersdorf Ag | Drug-containing self-adhesive composition production, e.g. for use in plasters, from styrene block copolymer by continuous, solvent-free and mastication-free process based on extrusion |
| DE10137620A1 (en) | 2001-08-03 | 2003-09-11 | Tesa Ag | Adhesive tape, in particular for packaging purposes |
| US6614728B2 (en) | 2001-09-14 | 2003-09-02 | 3M Innovative Properties Company | Time-temperature integrating indicator |
| DE10146270A1 (en) | 2001-09-19 | 2003-04-03 | Tesa Ag | Use of a security tape to indicate unauthorized attempts to open shipping packages |
| US8323773B2 (en) | 2001-10-09 | 2012-12-04 | 3M Innovative Properties Company | Laminates with structured layers |
| DE10157883A1 (en) | 2001-11-26 | 2003-06-05 | Tesa Ag | coating process |
| DE10163545A1 (en) | 2001-12-21 | 2003-07-10 | Tesa Ag | Process for crosslinking and polymerizing sheet material by means of electron beams and / or UV rays |
| US6566024B1 (en) | 2001-12-21 | 2003-05-20 | Eastman Kodak Company | Quintessential pictorial label and its distribution |
| DE10212889A1 (en) | 2002-03-22 | 2003-10-02 | Epurex Films Gmbh & Co Kg | Copolyamide mixture for production of flexible hot melt adhesive film contains a copolyamide based on piperazine and higher dicarboxylic acid and a copolyamide with polyether sequences |
| US6939936B2 (en) | 2002-04-25 | 2005-09-06 | 3M Innovative Properties Company | Iodine/iodide-containing hot melt coatable adhesive, methods and uses therefor |
| US20040095244A1 (en) | 2002-05-10 | 2004-05-20 | Kevin Conwell | Tire identification label and tire label film with integrated barrier |
| AU2003247735B2 (en) | 2002-06-26 | 2010-03-11 | Avery Dennison Corporation | Oriented films comprising polypropylene / olefin elastomer blends |
| MXPA05000686A (en) | 2002-07-19 | 2005-04-08 | Avery Dennison Corp | Labeling method employing two-part curable adhesives. |
| US7595104B2 (en) | 2002-09-11 | 2009-09-29 | John Romanowski | NBC barrier adhesive tape structure |
| US20040112514A1 (en) | 2002-12-16 | 2004-06-17 | Xyron, Inc. | Device and method for performing a master processing operation |
| JP2006517881A (en) | 2003-02-14 | 2006-08-03 | エーブリー デニソン コーポレイション | Dry paint transfer laminate |
| US20050196607A1 (en) | 2003-06-09 | 2005-09-08 | Shih Frank Y. | Multi-layer dry paint decorative laminate having discoloration prevention barrier |
| US7087279B2 (en) | 2003-07-17 | 2006-08-08 | 3M Innovative Properties Company | Adhesives and release liners with pyramidal structures |
| KR100849612B1 (en) | 2003-11-24 | 2008-07-31 | 인터테이프 폴리머 코포레이션 | How to Make Adhesive Using Planetary Extruder |
| KR101495972B1 (en) | 2004-04-30 | 2015-02-26 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Roll Stabilized Double-Sided Pressure Sensitive Adhesive Tape Assembly |
| US20060057367A1 (en) | 2004-09-14 | 2006-03-16 | Sherman Audrey A | Optical film |
| US20060228480A1 (en) | 2005-03-30 | 2006-10-12 | David Lin | Method of manufacturing a release liner |
| BRPI0609989A2 (en) | 2005-04-22 | 2011-10-18 | 3M Innovative Properties Co | masking article and methods of masking a substrate and producing a masking article |
| EP1719809A3 (en) | 2005-05-06 | 2007-05-30 | Eastman Chemical Company | Pressure sensitive adhesive (PSA) laminates |
| US7892649B2 (en) | 2005-09-08 | 2011-02-22 | 3M Innovative Properties Company | Microstructured adhesive article and articles made therefrom |
| DE102006023935A1 (en) | 2006-02-07 | 2007-11-29 | Tesa Ag | Filament reinforced adhesive tape |
| US7641952B2 (en) | 2006-02-21 | 2010-01-05 | E.I. Du Pont De Nemours And Company | Durable metallized self-adhesive laminates |
| US20070231571A1 (en) | 2006-04-04 | 2007-10-04 | Richard Lane | Pressure sensitive adhesive (PSA) laminates |
| US20070248810A1 (en) | 2006-04-25 | 2007-10-25 | Mcgee Dennis E | Coated polymeric film |
| CN103121320B (en) | 2006-06-14 | 2015-06-24 | 艾利丹尼森公司 | Conformable and die-cuttable machine direction oriented labelstocks and labels, and process for preparing |
| US20080081142A1 (en) | 2006-10-03 | 2008-04-03 | Zeik Douglas B | Articles and methods for applying color on surfaces |
| DE102006061812A1 (en) | 2006-12-21 | 2008-07-03 | Tesa Ag | Multi-layered adhesive tape |
| DE102007008889A1 (en) | 2007-02-21 | 2008-08-28 | Tesa Ag | Process for producing nano- and / or microstructured surfaces in an adhesive, in particular self-adhesive layer |
| DE102007010171A1 (en) | 2007-02-28 | 2008-09-04 | Tesa Ag | Heat-activated adhesive surface element |
| DE102007031224A1 (en) | 2007-07-04 | 2009-01-08 | Tesa Ag | Adhesive tape and use of the adhesive tape as bandage tape for cables |
| US7910646B1 (en) | 2007-11-16 | 2011-03-22 | Daniel Berg | Molding composition with reduced coefficient of friction and improved release properties |
| JP4628416B2 (en) | 2007-11-30 | 2011-02-09 | 日東電工株式会社 | Viscoelastic member having an unevenly distributed elastomer layer |
| US20090162674A1 (en) | 2007-12-20 | 2009-06-25 | Brett Allen Boutwell | Tapes comprising barrier coating compositions and components comprising the same |
| CN101909884A (en) | 2007-12-21 | 2010-12-08 | 3M创新有限公司 | Multi-layer waterproof strip |
| DE102008004388A1 (en) | 2008-01-14 | 2009-07-16 | Tesa Ag | Foamed, in particular pressure-sensitive adhesive, method of production and use thereof |
| DE102008005565A1 (en) | 2008-01-22 | 2009-07-23 | Tesa Ag | Polypropylene film, use thereof, and method of making the film |
| EP2085446A1 (en) | 2008-01-22 | 2009-08-05 | tesa SE | Liner and application of the same |
| DE102008021842A1 (en) | 2008-04-30 | 2009-11-05 | Tesa Se | Polyolefin film and use thereof |
| CN102076800A (en) | 2008-04-30 | 2011-05-25 | 德莎欧洲公司 | Adhesive tape |
| DE102008026672A1 (en) | 2008-06-04 | 2009-12-10 | Tesa Se | Polypropylene resin adhesive |
| DE102008038595A1 (en) | 2008-08-21 | 2010-02-25 | Tesa Se | Process for the production of band-shaped laminates |
| EP2328694A2 (en) | 2008-09-08 | 2011-06-08 | Eastman Chemical Company | Washable psa laminates |
| DE102008056980A1 (en) | 2008-11-12 | 2010-05-20 | Tesa Se | Radiation crosslinkable, foamed self-adhesive based on vinylaromatic block copolymers |
| CN102171109B (en) | 2008-11-12 | 2014-07-16 | 电气化学工业株式会社 | Cover tape |
| EP2226369A1 (en) | 2009-03-05 | 2010-09-08 | 3M Innovative Properties Company | Adhesive article comprising an acrylic foam layer |
| DE102009015233A1 (en) | 2009-04-01 | 2010-10-14 | Tesa Se | Process for producing a foamed mass system |
| JP2010254916A (en) | 2009-04-28 | 2010-11-11 | Nitto Denko Corp | Protective film for automobile wheels |
| JP5601790B2 (en) | 2009-04-28 | 2014-10-08 | 日東電工株式会社 | Protective film for automobile wheels |
| JP5601791B2 (en) | 2009-04-28 | 2014-10-08 | 日東電工株式会社 | Protective film for automobile wheels |
| WO2010147047A1 (en) | 2009-06-18 | 2010-12-23 | 日東電工株式会社 | Optical adhesive sheet |
| CA2768507C (en) | 2009-08-31 | 2014-05-27 | Asahi Kasei Chemicals Corporation | Cover tape, method for manufacturing cover tape, and electronic part package |
| DE102009046362A1 (en) | 2009-11-03 | 2011-05-05 | Tesa Se | Pressure-sensitive adhesive made of a crosslinkable polyolefin and an adhesive resin |
| BR112012016332A2 (en) | 2009-12-29 | 2018-04-03 | 3M Innovative Properties Co | coextrusion system and matrix and method for coextruding articles and coextruded articles produced in this way |
| TW201134911A (en) | 2010-03-03 | 2011-10-16 | Nitto Denko Corp | Protective sheet and use thereof |
| US20110293871A1 (en) | 2010-05-28 | 2011-12-01 | Nathan Storfer-Isser | Laminating film and method of using same |
| DE102011017689A1 (en) | 2010-08-13 | 2012-05-10 | Tesa Se | Method for producing an adhesive tape with a protruding liner |
| EP2439062B1 (en) | 2010-10-11 | 2014-12-10 | Coroplast Fritz Müller GmbH & Co. KG | Technical adhesive strip and use of same to stick films or non-woven fabrics in construction |
| DE102011009510A1 (en) | 2011-01-26 | 2012-07-26 | Tesa Se | Adhesive tape, which can be used in particular for transport safety |
| DE102011075313A1 (en) | 2011-05-05 | 2012-11-08 | Tesa Se | Adhesive tape system for forming a tear strip |
| EP2729312A2 (en) | 2011-07-08 | 2014-05-14 | Contra Vision Ltd. | Open perforated material and method of imaging to form a vision control panel |
| FI20115764A0 (en) | 2011-07-20 | 2011-07-20 | Upm Raflatac Oy | Label laminates as well as the procedure and system for manufacturing a label laminate |
| FI20115763A0 (en) | 2011-07-20 | 2011-07-20 | Upm Raflatac Oy | Label laminates as well as the procedure and system for manufacturing a label laminate |
| FI20115765A0 (en) | 2011-07-20 | 2011-07-20 | Upm Raflatac Oy | A label laminate and a method and system for producing a label laminate |
| DE102011080760A1 (en) | 2011-08-10 | 2013-02-14 | Tesa Se | Method for producing an adhesive tape with a protruding liner |
| US8789338B2 (en) | 2011-10-03 | 2014-07-29 | Johns Manville | Methods and systems for sealing a wall |
| WO2013055461A1 (en) * | 2011-10-11 | 2013-04-18 | Exxonmobil Oil Corporation | Squeezable and conformable oriented polypropylene label |
| SG10201602865TA (en) | 2011-10-14 | 2016-05-30 | Denki Kagaku Kogyo Kk | Cover tape |
| US8912119B2 (en) | 2011-10-31 | 2014-12-16 | Intertape Polymer Corp. | Pressure-chromic tape and methods of making same |
| JP6114004B2 (en) | 2011-11-10 | 2017-04-12 | 日東電工株式会社 | Adhesive composition and adhesive sheet |
| KR20140103137A (en) * | 2011-12-06 | 2014-08-25 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Monolithic multilayer article |
| BR112014013706B1 (en) | 2011-12-07 | 2021-11-30 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | PRESSURE SENSITIVE ADHESIVE CONSTRUCTION AND PROCESS FOR PRODUCING A PRESSURE SENSITIVE CONSTRUCTION OR COMPOSITION |
| DE102011089565A1 (en) | 2011-12-22 | 2013-06-27 | Tesa Se | Liner for the protection of adhesives |
| DE102011089566A1 (en) | 2011-12-22 | 2013-06-27 | Tesa Se | Liner for the protection of adhesives |
| JP5827584B2 (en) | 2012-03-09 | 2015-12-02 | 積水化成品工業株式会社 | Adhesive hydrogel and its use |
| JP2013142138A (en) | 2012-01-12 | 2013-07-22 | Nitto Denko Corp | Surface protective film |
| US9605188B2 (en) | 2012-02-06 | 2017-03-28 | Basf Se | Aqueous polymer dispersion suitable for application as tackifier for adhesives and preparable by emulsion polymerization based on C1 to C20 alkyl (meth)acrylates |
| CN104093807B (en) | 2012-02-06 | 2017-09-12 | 巴斯夫欧洲公司 | The tackifier for adhesive and the aqueous polymer dispersions that can be prepared by the emulsion polymerization based on (methyl) acrylic acid C1 to C20 Arrcostabs can be used as |
| FI123724B (en) | 2012-03-27 | 2013-10-15 | Upm Raflatac Oy | Labeling of products with washable labels |
| DE102012103586A1 (en) | 2012-04-24 | 2013-10-24 | Leonhard Kurz Stiftung & Co. Kg | Method and device for connecting a first film web and a second film web |
| US20150166846A1 (en) | 2012-07-17 | 2015-06-18 | Upm Raflatac Oy | Label facestock |
| EP2879874B1 (en) | 2012-08-01 | 2019-02-20 | Avery Dennison Corporation | Adhesive articles utilizing release agents free of silicon and fluorine, and related methods |
| DE212013000198U1 (en) | 2012-09-11 | 2015-04-15 | Upm Raflatac Oy | Linerless label web and label |
| US9481484B2 (en) | 2012-09-12 | 2016-11-01 | Nulabel Technologies, Inc. | Two-component hybrid labeling system for use in repeat labeling |
| CA2885047A1 (en) | 2012-10-01 | 2014-04-10 | Outlook Group Corp. | Method of manufacturing reverse-printed, pressure sensitive cut labels |
| JP6046500B2 (en) | 2013-01-17 | 2016-12-14 | 日東電工株式会社 | Protection sheet for chemical treatment |
| CA2902202A1 (en) | 2013-03-13 | 2014-10-09 | Outlook Group Corp. | Temporarily removable reverse-printed label assembly |
| WO2014140056A1 (en) | 2013-03-15 | 2014-09-18 | Akzo Nobel Coatings International B.V. | Dry primer film composite and use thereof |
| USD746265S1 (en) | 2013-04-17 | 2015-12-29 | Zagg Intellectual Property Holding Co., Inc. | Assembly for applying a protective film to an electronic device |
| WO2014177754A1 (en) | 2013-04-30 | 2014-11-06 | Upm Raflatac Oy | A film for a label, a label laminate and a method for manufacturing a label laminate |
| WO2014179675A1 (en) | 2013-05-03 | 2014-11-06 | Ibacos, Inc. | Water-management system |
| US10316226B2 (en) | 2013-06-06 | 2019-06-11 | 3M Innovative Properties Company | Method for preparing structured laminating adhesive articles |
| CN203582783U (en) | 2013-06-21 | 2014-05-07 | 上海华舟压敏胶制品有限公司 | Medical low-unwind-force transparent polyethylene adhesive tape |
| WO2015118212A1 (en) | 2014-02-10 | 2015-08-13 | Upm Raflatac Oy | Linerless washable label, apparatus and method for preparing a label |
| WO2015118214A1 (en) | 2014-02-10 | 2015-08-13 | Upm Raflatac Oy | Washable label and method for preparing thereof |
| WO2015118211A1 (en) | 2014-02-10 | 2015-08-13 | Upm Raflatac Oy | Washable label, method and apparatus for preparing said label |
| EP3105054B1 (en) | 2014-02-10 | 2021-07-07 | UPM Raflatac Oy | Linerless washable label, apparatus and method for preparing a label |
| WO2015118213A1 (en) | 2014-02-10 | 2015-08-13 | Upm Raflatac Oy | Method for preparing a label web and labels obtained with said method |
| WO2015118210A1 (en) | 2014-02-10 | 2015-08-13 | Upm Raflatac Oy | Washable label, method and apparatus for preparing said label |
| US10704254B2 (en) | 2014-02-18 | 2020-07-07 | 3M Innovative Properties Company | Easy to apply air and water barrier articles |
| GB2523390B (en) | 2014-02-24 | 2017-11-29 | Essentra Packaging & Security Ltd | Method and apparatus for manufacturing a tape |
| DE102014206349A1 (en) | 2014-04-02 | 2015-10-08 | Tesa Se | duct tape |
| US20190031923A1 (en) * | 2017-07-26 | 2019-01-31 | 3M Innovative Properties Company | Backing for adhesive tape with thermal resistance |
-
2018
- 2018-07-23 US US16/042,192 patent/US20190031923A1/en not_active Abandoned
-
2021
- 2021-11-08 US US17/521,324 patent/US12195652B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6106982A (en) * | 1998-05-11 | 2000-08-22 | Avery Dennison Corporation | Imaged receptor laminate and process for making same |
| US6316120B1 (en) * | 1999-02-20 | 2001-11-13 | 3M Innovative Properties Company | Image receptor medium containing ethylene vinyl acetate carbon monoxide terpolymer |
| US20180010018A1 (en) * | 2015-02-27 | 2018-01-11 | 3M Innovative Properties Company | Double coated tape |
| US20170348949A1 (en) * | 2016-06-01 | 2017-12-07 | 3M Innovative Properties Company | Backing for adhesive tape with thermal resistance |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220056318A1 (en) * | 2017-07-26 | 2022-02-24 | 3M Innovative Properties Company | Backing for adhesive tape with thermal resistance |
| US12195652B2 (en) * | 2017-07-26 | 2025-01-14 | 3M Innovative Properties Company | Backing for adhesive tape with thermal resistance |
| WO2021033111A1 (en) * | 2019-08-19 | 2021-02-25 | 3M Innovative Properties Company | Adhesive tapes and methods of use in construction |
| US20220298390A1 (en) * | 2019-08-19 | 2022-09-22 | 3M Innovative Properties Company | Adhesive tapes and methods of use in construction |
| US12404427B2 (en) * | 2019-08-19 | 2025-09-02 | 3M Innovative Properties Company | Adhesive tapes and methods of use in construction |
Also Published As
| Publication number | Publication date |
|---|---|
| US12195652B2 (en) | 2025-01-14 |
| US20220056318A1 (en) | 2022-02-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9486982B2 (en) | Method of manufacturing adhesive articles | |
| US12195652B2 (en) | Backing for adhesive tape with thermal resistance | |
| US20170267897A1 (en) | Pressure-sensitive adhesive sheet | |
| CN101040095B (en) | High elongation, low retraction self-adhesive tape system | |
| US7927712B2 (en) | Polymeric film | |
| US20130139953A1 (en) | Multilayer Flashing Tape | |
| AU2008340350B2 (en) | Stretchable, hand-tearable, conformable, and cinchable reinforced adhesive tape articles | |
| JP6828437B2 (en) | Adhesive film and adhesive film roll | |
| EP2559745A1 (en) | Surface protective film | |
| US10647095B2 (en) | Surface treatment for tape adhesion and ultraviolet stability | |
| KR20110013435A (en) | Polyolefin Release Film, and Uses thereof | |
| US20120028524A1 (en) | Duct tape with foam film backing layer | |
| US20150056442A1 (en) | Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and moisture-permeable waterproof pressure-sensitive adhesive sheet | |
| US20170348949A1 (en) | Backing for adhesive tape with thermal resistance | |
| EP2700688B1 (en) | Technical adhesive strip and use of same to stick films or non-woven fabrics in construction | |
| US20110293871A1 (en) | Laminating film and method of using same | |
| EP2581424A1 (en) | Adhesive sheet | |
| KR102260182B1 (en) | coating composition of building membrane structures | |
| US20200399510A1 (en) | Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet | |
| KR102265627B1 (en) | building membrane structures with improvement of anti-soiling and weatherability, durability, adhesion force | |
| TW202204157A (en) | Safety window film including polyurethane | |
| WO2016084948A1 (en) | Adhesive sheet | |
| JP7604132B2 (en) | Laminate, film for structure, membrane structure, structure, method for constructing membrane structure, and method for repairing membrane structure | |
| US10647891B2 (en) | Pressure-sensitive adhesive sheet and magnetic disc device | |
| JP2002309227A (en) | Release agent, release liner and adhesive sheet |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KHURANA, RACHNA;ROTHER, CHRISTOPHER J.;EMSLANDER, JEFFREY O;SIGNING DATES FROM 20180718 TO 20180719;REEL/FRAME:046427/0651 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |