US20190010538A1 - Saliva collection, processing, stabilization, and storage method - Google Patents
Saliva collection, processing, stabilization, and storage method Download PDFInfo
- Publication number
- US20190010538A1 US20190010538A1 US16/015,407 US201816015407A US2019010538A1 US 20190010538 A1 US20190010538 A1 US 20190010538A1 US 201816015407 A US201816015407 A US 201816015407A US 2019010538 A1 US2019010538 A1 US 2019010538A1
- Authority
- US
- United States
- Prior art keywords
- sample
- saliva
- protein
- nucleic acid
- filtered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000003296 saliva Anatomy 0.000 title claims abstract description 189
- 238000000034 method Methods 0.000 title claims description 132
- 238000003860 storage Methods 0.000 title abstract description 33
- 230000006641 stabilisation Effects 0.000 title description 25
- 238000011105 stabilization Methods 0.000 title description 25
- 238000012545 processing Methods 0.000 title description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 188
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 150
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 148
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 96
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 94
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 94
- 238000004458 analytical method Methods 0.000 claims abstract description 54
- 238000001914 filtration Methods 0.000 claims abstract description 11
- 108020004999 messenger RNA Proteins 0.000 claims description 55
- 238000011529 RT qPCR Methods 0.000 claims description 34
- 239000012528 membrane Substances 0.000 claims description 32
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 27
- 230000015556 catabolic process Effects 0.000 claims description 19
- 238000006731 degradation reaction Methods 0.000 claims description 19
- 238000002965 ELISA Methods 0.000 claims description 17
- 238000001262 western blot Methods 0.000 claims description 17
- 108091005461 Nucleic proteins Proteins 0.000 claims description 13
- 230000000087 stabilizing effect Effects 0.000 claims description 13
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 12
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 11
- 238000003752 polymerase chain reaction Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 229920001184 polypeptide Polymers 0.000 claims description 8
- 210000000214 mouth Anatomy 0.000 claims description 6
- 238000010839 reverse transcription Methods 0.000 claims description 6
- 238000004949 mass spectrometry Methods 0.000 claims description 5
- 239000003381 stabilizer Substances 0.000 claims description 4
- 238000003757 reverse transcription PCR Methods 0.000 claims description 3
- 108010029987 Salivary Proteins and Peptides Proteins 0.000 abstract description 12
- 102000001848 Salivary Proteins and Peptides Human genes 0.000 abstract description 12
- 230000007774 longterm Effects 0.000 abstract description 4
- 108050001049 Extracellular proteins Proteins 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 141
- 235000018102 proteins Nutrition 0.000 description 131
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 59
- 201000002740 oral squamous cell carcinoma Diseases 0.000 description 59
- 238000001514 detection method Methods 0.000 description 31
- 108020004414 DNA Proteins 0.000 description 28
- 239000000427 antigen Substances 0.000 description 27
- 238000003556 assay Methods 0.000 description 27
- 150000001413 amino acids Chemical class 0.000 description 26
- 239000000090 biomarker Substances 0.000 description 25
- 108091007433 antigens Proteins 0.000 description 23
- 102000036639 antigens Human genes 0.000 description 23
- 238000003018 immunoassay Methods 0.000 description 23
- 210000004379 membrane Anatomy 0.000 description 22
- 102000007469 Actins Human genes 0.000 description 21
- 108010085238 Actins Proteins 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 21
- 238000010561 standard procedure Methods 0.000 description 21
- 235000001014 amino acid Nutrition 0.000 description 20
- -1 e.g. Chemical compound 0.000 description 20
- 239000004382 Amylase Substances 0.000 description 19
- 102000013142 Amylases Human genes 0.000 description 19
- 108010065511 Amylases Proteins 0.000 description 19
- 235000019418 amylase Nutrition 0.000 description 19
- 239000000243 solution Substances 0.000 description 17
- 102000016911 Deoxyribonucleases Human genes 0.000 description 16
- 108010053770 Deoxyribonucleases Proteins 0.000 description 16
- 230000014509 gene expression Effects 0.000 description 16
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 13
- 102000003777 Interleukin-1 beta Human genes 0.000 description 13
- 108090000193 Interleukin-1 beta Proteins 0.000 description 13
- 102000004890 Interleukin-8 Human genes 0.000 description 13
- 108090001007 Interleukin-8 Proteins 0.000 description 13
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 13
- 229940096397 interleukin-8 Drugs 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 238000012340 reverse transcriptase PCR Methods 0.000 description 13
- 208000003445 Mouth Neoplasms Diseases 0.000 description 12
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 12
- 239000013641 positive control Substances 0.000 description 12
- 108010026552 Proteome Proteins 0.000 description 11
- 238000009739 binding Methods 0.000 description 11
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 206010028980 Neoplasm Diseases 0.000 description 10
- 230000027455 binding Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000000499 gel Substances 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 102000010778 Dual Specificity Phosphatase 1 Human genes 0.000 description 9
- 108010038537 Dual Specificity Phosphatase 1 Proteins 0.000 description 9
- 201000011510 cancer Diseases 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 9
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 9
- 238000011002 quantification Methods 0.000 description 9
- 238000012163 sequencing technique Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 101000821881 Homo sapiens Protein S100-P Proteins 0.000 description 8
- 102000016544 Ornithine decarboxylase antizyme 1 Human genes 0.000 description 8
- 108050006086 Ornithine decarboxylase antizyme 1 Proteins 0.000 description 8
- 102100021494 Protein S100-P Human genes 0.000 description 8
- 102000004282 Ribosomal protein S9 Human genes 0.000 description 8
- 108090000878 Ribosomal protein S9 Proteins 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- 239000004677 Nylon Substances 0.000 description 7
- 239000002250 absorbent Substances 0.000 description 7
- 230000002745 absorbent Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229920001778 nylon Polymers 0.000 description 7
- 230000000391 smoking effect Effects 0.000 description 7
- 108700028369 Alleles Proteins 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 230000029087 digestion Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000036541 health Effects 0.000 description 6
- 231100000283 hepatitis Toxicity 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 229940124272 protein stabilizer Drugs 0.000 description 6
- 230000017854 proteolysis Effects 0.000 description 6
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 238000010200 validation analysis Methods 0.000 description 6
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 5
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 5
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 5
- 239000000020 Nitrocellulose Substances 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- 108091005804 Peptidases Proteins 0.000 description 5
- 102000035195 Peptidases Human genes 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000010841 mRNA extraction Methods 0.000 description 5
- 229920001220 nitrocellulos Polymers 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 230000002285 radioactive effect Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 206010006187 Breast cancer Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 208000035473 Communicable disease Diseases 0.000 description 4
- 208000026375 Salivary gland disease Diseases 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003593 chromogenic compound Substances 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 208000002925 dental caries Diseases 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 208000006454 hepatitis Diseases 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 230000029983 protein stabilization Effects 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 238000011222 transcriptome analysis Methods 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- 229920003043 Cellulose fiber Polymers 0.000 description 3
- 206010061818 Disease progression Diseases 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 3
- 238000001793 Wilcoxon signed-rank test Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 230000009260 cross reactivity Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005750 disease progression Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000035622 drinking Effects 0.000 description 3
- 230000007937 eating Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000001808 exosome Anatomy 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000001502 gel electrophoresis Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 201000005202 lung cancer Diseases 0.000 description 3
- 208000020816 lung neoplasm Diseases 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 230000009871 nonspecific binding Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003753 real-time PCR Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- KWGRBVOPPLSCSI-WPRPVWTQSA-N (-)-ephedrine Chemical compound CN[C@@H](C)[C@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WPRPVWTQSA-N 0.000 description 2
- KUWPCJHYPSUOFW-YBXAARCKSA-N 2-nitrophenyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1[N+]([O-])=O KUWPCJHYPSUOFW-YBXAARCKSA-N 0.000 description 2
- NJYVEMPWNAYQQN-UHFFFAOYSA-N 5-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21 NJYVEMPWNAYQQN-UHFFFAOYSA-N 0.000 description 2
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 241001504639 Alcedo atthis Species 0.000 description 2
- 108091093088 Amplicon Proteins 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 208000031886 HIV Infections Diseases 0.000 description 2
- 208000037357 HIV infectious disease Diseases 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 108010058683 Immobilized Proteins Proteins 0.000 description 2
- 206010061598 Immunodeficiency Diseases 0.000 description 2
- 208000029462 Immunodeficiency disease Diseases 0.000 description 2
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 2
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 2
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical group CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 108010004729 Phycoerythrin Proteins 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 208000021386 Sjogren Syndrome Diseases 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 108010046334 Urease Proteins 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 2
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 230000009137 competitive binding Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000003094 enzyme-multiplied immunoassay technique Methods 0.000 description 2
- 238000013401 experimental design Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 2
- 230000000984 immunochemical effect Effects 0.000 description 2
- 230000007813 immunodeficiency Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- XMBWDFGMSWQBCA-YPZZEJLDSA-N iodane Chemical compound [125IH] XMBWDFGMSWQBCA-YPZZEJLDSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 2
- 238000011880 melting curve analysis Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 238000004848 nephelometry Methods 0.000 description 2
- 238000007481 next generation sequencing Methods 0.000 description 2
- 238000007899 nucleic acid hybridization Methods 0.000 description 2
- 239000002853 nucleic acid probe Substances 0.000 description 2
- 201000001245 periodontitis Diseases 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 235000008476 powdered milk Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000006076 specific stabilizer Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 238000004885 tandem mass spectrometry Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- AKNNEGZIBPJZJG-MSOLQXFVSA-N (-)-noscapine Chemical compound CN1CCC2=CC=3OCOC=3C(OC)=C2[C@@H]1[C@@H]1C2=CC=C(OC)C(OC)=C2C(=O)O1 AKNNEGZIBPJZJG-MSOLQXFVSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- SHXWCVYOXRDMCX-UHFFFAOYSA-N 3,4-methylenedioxymethamphetamine Chemical compound CNC(C)CC1=CC=C2OCOC2=C1 SHXWCVYOXRDMCX-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- WQZIDRAQTRIQDX-UHFFFAOYSA-N 6-carboxy-x-rhodamine Chemical compound OC(=O)C1=CC=C(C([O-])=O)C=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 WQZIDRAQTRIQDX-UHFFFAOYSA-N 0.000 description 1
- 101150101112 7 gene Proteins 0.000 description 1
- 101150105875 AZIN1 gene Proteins 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 238000009020 BCA Protein Assay Kit Methods 0.000 description 1
- 102100021521 BPI fold-containing family B member 2 Human genes 0.000 description 1
- 101710145732 BPI fold-containing family B member 2 Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 101100065885 Caenorhabditis elegans sec-15 gene Proteins 0.000 description 1
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102100036369 Carbonic anhydrase 6 Human genes 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 102000005927 Cysteine Proteases Human genes 0.000 description 1
- 108010005843 Cysteine Proteases Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 102100031262 Deleted in malignant brain tumors 1 protein Human genes 0.000 description 1
- 101710091548 Deleted in malignant brain tumors 1 protein Proteins 0.000 description 1
- 102100038199 Desmoplakin Human genes 0.000 description 1
- 108091000074 Desmoplakin Proteins 0.000 description 1
- 102100034274 Diamine acetyltransferase 1 Human genes 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 241000270288 Gekko Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102100027772 Haptoglobin-related protein Human genes 0.000 description 1
- 101710122541 Haptoglobin-related protein Proteins 0.000 description 1
- 108091027305 Heteroduplex Proteins 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101000641077 Homo sapiens Diamine acetyltransferase 1 Proteins 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical group OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical group CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-ZXPFJRLXSA-N L-methionine (R)-S-oxide Chemical group C[S@@](=O)CC[C@H]([NH3+])C([O-])=O QEFRNWWLZKMPFJ-ZXPFJRLXSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-UHFFFAOYSA-N L-methionine sulphoxide Chemical group CS(=O)CCC(N)C(O)=O QEFRNWWLZKMPFJ-UHFFFAOYSA-N 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- 102100032241 Lactotransferrin Human genes 0.000 description 1
- 206010023825 Laryngeal cancer Diseases 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 108700011259 MicroRNAs Proteins 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 102100022492 Mucin-7 Human genes 0.000 description 1
- 101710134550 Mucin-7 Proteins 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- DMULVCHRPCFFGV-UHFFFAOYSA-N N,N-dimethyltryptamine Chemical compound C1=CC=C2C(CCN(C)C)=CNC2=C1 DMULVCHRPCFFGV-UHFFFAOYSA-N 0.000 description 1
- HRNLUBSXIHFDHP-UHFFFAOYSA-N N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide Chemical compound NC1=CC=CC=C1NC(=O)C(C=C1)=CC=C1CNC1=NC=CC(C=2C=NC=CC=2)=N1 HRNLUBSXIHFDHP-UHFFFAOYSA-N 0.000 description 1
- WJJGAKCAAJOICV-UHFFFAOYSA-N N-dimethyltyrosine Natural products CN(C)C(C(O)=O)CC1=CC=C(O)C=C1 WJJGAKCAAJOICV-UHFFFAOYSA-N 0.000 description 1
- 229940122426 Nuclease inhibitor Drugs 0.000 description 1
- ZVOOGERIHVAODX-UHFFFAOYSA-N O-demycinosyltylosin Natural products O=CCC1CC(C)C(=O)C=CC(C)=CC(CO)C(CC)OC(=O)CC(O)C(C)C1OC1C(O)C(N(C)C)C(OC2OC(C)C(O)C(C)(O)C2)C(C)O1 ZVOOGERIHVAODX-UHFFFAOYSA-N 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 102100024620 Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 Human genes 0.000 description 1
- 101710101752 Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 108010046644 Polymeric Immunoglobulin Receptors Proteins 0.000 description 1
- 102100035187 Polymeric immunoglobulin receptor Human genes 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 102100021923 Prolow-density lipoprotein receptor-related protein 1 Human genes 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 238000012341 Quantitative reverse-transcriptase PCR Methods 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 239000011542 SDS running buffer Substances 0.000 description 1
- 102100037205 Sal-like protein 2 Human genes 0.000 description 1
- 101710192308 Sal-like protein 2 Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 101000899091 Sus scrofa BPI fold-containing family A member 1 Proteins 0.000 description 1
- 102100037225 Syntenin-2 Human genes 0.000 description 1
- 108010083130 Syntenins Proteins 0.000 description 1
- 102100033614 Tetra-peptide repeat homeobox protein 1 Human genes 0.000 description 1
- 101710117231 Tetra-peptide repeat homeobox protein 1 Proteins 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 102100040803 Zymogen granule membrane protein 16 Human genes 0.000 description 1
- 101710186263 Zymogen granule membrane protein 16 Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- AKNNEGZIBPJZJG-UHFFFAOYSA-N alpha-noscapine Natural products CN1CCC2=CC=3OCOC=3C(OC)=C2C1C1C2=CC=C(OC)C(OC)=C2C(=O)O1 AKNNEGZIBPJZJG-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229940025084 amphetamine Drugs 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 201000005200 bronchus cancer Diseases 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 108010019521 carbonic anhydrase VI Proteins 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- UHBYWPGGCSDKFX-UHFFFAOYSA-N carboxyglutamic acid Chemical compound OC(=O)C(N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000012504 chromatography matrix Substances 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 229960003920 cocaine Drugs 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 244000221110 common millet Species 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000002967 competitive immunoassay Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 description 1
- 238000003935 denaturing gradient gel electrophoresis Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229960002179 ephedrine Drugs 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000004401 flow injection analysis Methods 0.000 description 1
- 238000002875 fluorescence polarization Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000007850 in situ PCR Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229940044173 iodine-125 Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 206010023841 laryngeal neoplasm Diseases 0.000 description 1
- 201000004962 larynx cancer Diseases 0.000 description 1
- 238000001499 laser induced fluorescence spectroscopy Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000007834 ligase chain reaction Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 101150084157 lrp-1 gene Proteins 0.000 description 1
- 235000019689 luncheon sausage Nutrition 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 208000026037 malignant tumor of neck Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000002705 metabolomic analysis Methods 0.000 description 1
- 230000001431 metabolomic effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229960001252 methamphetamine Drugs 0.000 description 1
- 229930182817 methionine Chemical group 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-O methylsulfide anion Chemical compound [SH2+]C LSDPWZHWYPCBBB-UHFFFAOYSA-O 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 238000012775 microarray technology Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000013586 microbial product Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000004879 molecular function Effects 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 239000011807 nanoball Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- PLPRGLOFPNJOTN-UHFFFAOYSA-N narcotine Natural products COc1ccc2C(OC(=O)c2c1OC)C3Cc4c(CN3C)cc5OCOc5c4OC PLPRGLOFPNJOTN-UHFFFAOYSA-N 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 238000002966 oligonucleotide array Methods 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 210000003254 palate Anatomy 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- INAAIJLSXJJHOZ-UHFFFAOYSA-N pibenzimol Chemical compound C1CN(C)CCN1C1=CC=C(N=C(N2)C=3C=C4NC(=NC4=CC=3)C=3C=CC(O)=CC=3)C2=C1 INAAIJLSXJJHOZ-UHFFFAOYSA-N 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000955 prescription drug Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 238000000575 proteomic method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012465 retentate Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000003118 sandwich ELISA Methods 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 229940126586 small molecule drug Drugs 0.000 description 1
- AIDBEARHLBRLMO-UHFFFAOYSA-M sodium;dodecyl sulfate;2-morpholin-4-ylethanesulfonic acid Chemical compound [Na+].OS(=O)(=O)CCN1CCOCC1.CCCCCCCCCCCCOS([O-])(=O)=O AIDBEARHLBRLMO-UHFFFAOYSA-M 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- WOZVHXUHUFLZGK-UHFFFAOYSA-N terephthalic acid dimethyl ester Natural products COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 1
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013520 translational research Methods 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B10/0051—Devices for taking samples of body liquids for taking saliva or sputum samples
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4005—Concentrating samples by transferring a selected component through a membrane
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5306—Improving reaction conditions, e.g. reduction of non-specific binding, promotion of specific binding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/2525—Stabilizing or preserving
Definitions
- the present disclosure relates to an apparatus and methods for the analysis of protein and nucleic acids present in cell-free samples of saliva.
- Saliva has been used to detect, for example, caries risk, peridontitis, oral cancer, breast cancer, lung cancer, Sjögren's syndrome, salivary gland disease and infectious diseases such as hepatitis, HIV, and HCV. Saliva is therefore an attractive diagnostic sample alternative for blood, serum, or plasma.
- Saliva is ideal for nucleic acid analysis.
- the human salivary transcriptome in cell-free saliva was first discovered in 2004 by use of microarray technology (Li et al, J. Dent. Res. 83:199-203 (2004)). Investigations into the characteristics of salivary RNA followed, which led to the development of salivary transcriptomics as a research focus. (Park et al., Clin. Chem 52:988-94 (2006); Park et al. Arch. Oral. Biol., 52:30-5 (2007)).
- Saliva is additionally ideal for proteomic analysis.
- Profiling proteins in saliva over the course of disease progression can reveal biomarkers indicative of different stages of diseases, which can be useful in early detection and/or medical diagnosis (Hu et al., Proteomics 6:6326 (2006)).
- Proteomics is widely envisioned as a unique and powerful approach to biomarker development. As proteomic technologies continue to mature, proteomics has the great potential for salivary proteomic biomarker development and further clinical applications (Xiao and Wong, Bioinformation 5:294 (2011); Zhang et al, Mol. Diagn. Ther. 13:245 (2009)).
- Saliva is an ideal translational research tool and diagnostic medium and is being used in unique ways to provide molecular biomarkers for a variety of oral and systemic diseases and conditions.
- the ability to analyze saliva to monitor health and disease is highly desirable for oral health promotion and research.
- Saliva has been used to detect caries risk, periodontitis, oral cancer, breast cancer, salivary gland disease, and infectious diseases such as hepatitis, HIV, and HCV. Measurement of salivary analytes requires optimal collection, processing and storage procedures and conditions.
- a method for stabilizing RNA and protein samples isolated from a saliva sample includes a) collecting a saliva sample from a subject; b) filtering the saliva sample to produce a filtered sample that is free of cells; c) collecting the filtered sample in at least a first and a second receiving device; d) adding an alcohol solution to the first receiving device to produce an alcohol-containing filtered sample comprising a protein sample, with the proviso that alcohol is not added to the second receiving device to produce an alcohol-free filtered sample comprising a nucleic acid sample; wherein the protein sample and the nucleic acid sample are stabilized for at least 3 days when stored at 25 degrees Celsius; and e) performing an analysis on the filtered sample collected in the first and second receiving devices comprising one or more of: a protein analysis on the alcohol-containing filtered sample or a nucleic acid analysis on the alcohol-free filtered sample.
- the nucleic acid is DNA.
- the nucleic acid analysis is polymerase chain reaction (PCR).
- PCR polymerase chain reaction
- the nucleic acid is RNA.
- the nucleic acid analysis is RT-PCR.
- the RT-PCR is reverse transcription quantitative real-time PCR (RT-qPCR).
- the ethanol solution comprises 20% ethanol.
- the ethanol solution comprises 15-25% ethanol.
- the ethanol solution comprises 5-35% ethanol.
- the protein analysis comprises western blot, mass spectrometry protein identification, or ELISA.
- the filtered sample is stored at ambient temperature. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filtered sample is stored at ambient temperature for at least two weeks without more than 50% degradation of proteins or nucleic acids present in the filtered sample.
- the filtered sample is stored at ambient temperature for at least two weeks without more than 25% degradation of proteins or nucleic acids present in the filtered sample. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filtered sample is stored at ambient temperature for at least ten weeks without more than 50% degradation of proteins or nucleic acids present in the filtered sample. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filtered sample is stored at ambient temperature for at least ten weeks without more than 25% degradation of proteins or nucleic acids present in the filtered sample.
- the filter is selected from the group consisting of a 0.22 ⁇ m, 0.45 ⁇ m and 5.0 ⁇ m hydrophilic membrane. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filter is a 0.22 ⁇ m hydrophilic membrane.
- an apparatus for the collection of saliva samples for biomarker detection comprises a sample collection pad, a filter, two or more receiving devices, wherein the receiving devices are selected from an mRNA collection tube, a polypeptide collection tube, and a DNA collection tube, wherein the polypeptide collection tube comprises an ethanol solution, and the DNA collection tube comprises a DNA stabilizer, wherein the filter is operably connected to the receiving devices.
- the filter is selected from the group consisting of a 0.22 ⁇ m, 0.45 ⁇ m or 5.0 ⁇ m hydrophilic membrane. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filter is a 0.22 ⁇ m hydrophilic membrane. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, a method of using the apparatus is provided.
- the method includes inserting the sample collection pad into the oral cavity for sufficient time to moisten the sample collection pad, inserting the collection pad into the receiving tube, applying sufficient force to cause the materials collected in the collection pad to pass through the filter thereby forming a filtered sample, and collecting the filtered sample into one or more receiving devices.
- a method for stabilizing RNA and protein samples isolated from a saliva sample includes a) collecting a saliva sample from a human subject; b) filtering the saliva sample using a 0.22 ⁇ m to 5.0 ⁇ m hydrophilic membrane to produce a filtered sample that is free of cells; c) collecting the filtered sample in at first and a second receiving device; d) adding an ethanol solution to the first receiving device to produce a 20% ethanol-containing filtered sample comprising a protein sample, with the proviso that alcohol is not added to the second receiving device to produce an alcohol-free filtered sample comprising a nucleic acid sample; wherein the protein sample and the nucleic acid sample are stabilized for at least 3 days when stored at 25 degrees Celsius.
- the method further comprises the step of (e) performing an analysis on the filtered samples collected in the first and second receiving devices comprising one or more of: a protein analysis on the ethanol-containing filtered sample or a nucleic acid analysis on the alcohol-free filtered sample.
- the protein sample is stabilized for at least 2 weeks when stored at 25 degrees Celsius.
- the nucleic acid sample is stabilized for at least 10 weeks when stored at 25 degrees Celsius.
- the ethanol solution comprises 15-25% ethanol. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the ethanol solution comprises 5-35% ethanol. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the hydrophilic membrane in 0.22 ⁇ m.
- FIG. 1 illustrates a schematic diagram of the experimental design of Example 1.
- FIG. 2 illustrates the effect of DNA removal by the described DNase treatment procedures as demonstrated using human cell genomic DNA (300 ⁇ g/ml) as template. Solid bars represent GAPDH, white bars represent ACTB, and striped bars represent RPS9.
- FIG. 3 illustrates expression levels of 3 SIRG mRNAs analyzed by standard procedures and the DSTA method at day 0.
- FIG. 4 illustrates expression levels of 3 SIRG mRNAs measure during 10 weeks of storage at ambient temperature without stabilizing reagent.
- FIG. 5 illustrates box-and-whisker plots showing the Cq value distributions of 90 clinical samples used in the validation study of OSCC salivary transcripts.
- the results of each transcript were displayed individually in (A) H3F3A; (B) IL1B; (C) IL8; (D) OAZi; (E) SAT1; (F) DUSP1, and (G) S100P.
- Each transcript was detected in 27 OSCC and 63 normal subjects by standard and streamlined procedures at Day 0 and Week 10 (DSTA method only), which were represented by 1-6 on X axis: 1: Normal subjects assayed by standard procedures; 2: OSCC subjects assayed by standard procedures; 3: Normal subjects assayed by the SDTA method of Day 0; 4: OSCC subjects assayed by the DSTA method at Day 0; 5: Normal subjects assayed by the DSTA method at Week 10; and 6: OSCC subjects assayed by the DSTA method at Week 10.
- Y axis is represented by raw Cq value in each plot.
- FIG. 6 illustrates (A) ROC curves for 7 OSCC salivary transcripts that was each detected by standard procedures, (B) ROC curves for 7 OSCC salivary transcripts that each was detected by the DSTA at day 0, and (C) ROC curves for 7 OSCC salivary transcripts that each was detected by the DSTA at week 10.
- FIG. 7 illustrates a schematic diagram of the saliva sample collection and experimental design of Example 2.
- RT w/E room temperature with adding 20% ethanol (a) without amylase depletion; (b) with amylase depletion.
- FIG. 10 illustrates Protein stabilization by denaturing.
- A Western blot of ⁇ -actin, RT w/B: RT with boiling, RT w/e: RT with 20-time volumes ethanol added
- FIG. 11 illustrates western blot of ⁇ -actin (A) with and without adding ethanol at day 3, day 7 and day 14.
- RT w/E room temperature with 20% ethanol added.
- A Stored for 7 days
- B Stored for 14 days
- C Stored for 30 days.
- RT w/E room temperature with 20% ethanol added.
- FIG. 13 illustrates depicts a scheme of saliva collection, processing, stabilization and storage (SCPSS) as described in Example 3.
- SPSS saliva collection, processing, stabilization and storage
- Human saliva contains an array of analytes (proteins, mRNA, and DNA) that can be used as biomarkers for translational and clinical applications.
- saliva can be used to detect, caries risk, peridontitis, oral cancer, breast cancer, lung cancer, Sjögren's syndrome, salivary gland disease and infectious diseases such as hepatitis, HIV, and HCV.
- a value of using saliva as a source of biomarkers is the ease of sampling and high subject compliance for sample collection. Presence of RNAs and protein in the cell-free fluid phase portion of saliva was confirmed by the procedures described extensively in the Examples. However, current methods for the extraction of nucleic acids and protein from saliva require the saliva sample to be processed immediately after collection using special instrumentation and trained personnel, the addition of nucleic acid and protein stabilizers, and storage at ⁇ 80° C.
- the ability to provide a user friendly and easy to use collector apparatus for major salivary diagnostic analytes is of interest.
- the present invention provides methods and an apparatus for the collection of saliva and saliva biomarkers. The methods can be carried out by non-professionals in a user friendly integrated point-of-care collection system that allows storage and shipment at room temperature without the addition of commonly used nucleic acid and protein stabilizers.
- a “saliva sample” refers to samples derived from saliva from an animal that produces saliva. Saliva is a component of oral fluid produced in most animals.
- a “filtered sample” refers to a saliva sample that has been processed to remove cells by separating the cell-phase and the fluid phase of saliva.
- a filtered sample can have more than 50%, more than 75%, more than 95%, or a 100% removal of cells.
- a sample is filtered to avoid mechanical rupture of cellular elements that could contribute to the detection of unwanted analytes in the cell-free phase.
- a filtered sample can further exclude extraneous substances, including but not limited to, food debris.
- alcohol solution refers to any solution containing an alcohol such as methanol, isopropyl alcohol, and ethanol.
- An alcohol solution can contain, for example, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, or 100% alcohol, e.g., ethanol.
- alcohol-containing filtered sample refers to a cell free saliva sample comprising an alcohol, e.g., an ethanol solution, as described herein.
- alcohol-free filtered sample refers to a cell free saliva sample that is at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% free of alcohol, including but not limited to, isopropyl alcohol, methanol, or ethanol.
- analysis refers to any quantitative or qualitative examination or measurement of saliva components.
- analyses that determine the presence or absence of nucleic acids or proteins; over or under expression of nucleic acids or proteins; or a genomic, transcriptomic, or proteomic examination of a saliva sample.
- a collection apparatus refers to any apparatus that can be used to collect saliva.
- a collection apparatus includes a sample collection pad as described herein, a filter that is capable of separating cells from a sample as described herein, and a receiving device that is capable of receiving the filtered sample as described herein.
- collection pad refers to any material that is suitable for collection of saliva. Examples can include, but are not limited to, nitrocellulose, cellulose acetate, polyethersulfur fabric, cellulose fiber such as paper strips or cotton, nylon, gel foam, fiber glass, polycarbonate, polyproplene, acetate, rayon, polyester absorbent pad, or other synthetic materials capable of collecting saliva.
- filter refers to any filter capable of separating cells from a saliva sample.
- filters can include, but are not limited to, cellulose fiber matrix, hydrophilic filters, such as those based on polyvinylidene fluoride membrane, or filters based on polypropylene membrane. Filters can have micropores that are a wide variety of sizes, including, but not limited to, 0.22 ⁇ m, 0.45 ⁇ m and 5.0 ⁇ m.
- filtering refers to the application of a liquid sample containing cells, e.g. a saliva sample, to a membrane filter. Filtering is the process of removing cells and/or parts of cells from excess fluid in a liquid sample by passing the sample through a microporous membrane filter.
- free of cells refers to a sample solution that has been filtered in accordance with the methods of the present invention such that the sample solution is completely or substantially cell-free.
- degradation refers to, for example, the proteolytic cleavage of proteins into smaller peptides and amino acids; or the catalysis of nucleic acids into smaller components. Degradation as used herein results in proteins and nucleic acids having compromised gene expression and clinical utilities.
- receiving device refers to any device capable of collecting a filtered sample.
- Receiving devices can include, but are not limited to, devices formed wholly or partially from plastic, such as polypropylene, polystyrene, polycarbonate, polyurethane, or polyethylene, polycarbonate, polytetrafluoroethylene, enamel, nylon, ceramic or any combination thereof, or from glass and/or metallic materials.
- Receiving devices can be, for example, snap cap, screw cap, and loop-cap microcentrifuge tubes.
- ambient temperature is the temperature of the surrounding environment, which generally refers to room temperature in a clinical setting. Ambient temperature is generally between 20 and 25 degrees Celsius.
- extracellular refers to fluidic space outside the plasma membranes of cells.
- the composition of the extracellular space can include proteins, nucleic acids, lipids, hormones, microbial product, etc.
- stabilizing refers to any effect of the methods according to the present invention resulting in the stabilization of the structure and/or activity of a biomolecule, the elongation of the shelf-life of a biomolecule and/or the protection of a biomolecule against stress. This results in a biological activity of the biomolecule which is retained to a significant degree.
- exemplary stabilizations can be nucleic acids or proteins that are stabilized for 2 to 10 weeks or more at room temperature.
- nucleic acid refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form, and complements thereof.
- the term refers to all forms of nucleic acids (e.g., gene, pre-mRNA, mRNA) and their polymorphic variants, alleles, mutants, and interspecies homologs.
- nucleic acid is used interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide.
- the term encompasses nucleic acids that are naturally occurring or recombinant.
- Nucleic acids can (1) code for an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino acid sequence identity, preferably over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acids, to a polypeptide encoded by a referenced nucleic acid or an amino acid sequence described herein; (2) specifically bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising a referenced amino acid sequence, immunogenic fragments thereof, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid encoding a referenced amino acid sequence, and conservatively modified variants thereof, (4) have a nucleic acid sequence that has greater than about 95%, preferably greater than about 96%, 97%, 98%, 99%, or higher nucleotide sequence identity
- polypeptide “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues.
- the terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.
- amino acid refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids.
- Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, ⁇ -carboxyglutamate, and O-phosphoserine.
- Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.
- Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
- Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
- a protein, nucleic acid, antibody, or small molecule compound refers to a binding reaction that is determinative of the presence of the protein or nucleic acid, such as the differentially expressed genes of the present invention, often in a heterogeneous population of proteins or nucleic acids and other biologics.
- a specified antibody may bind to a particular protein at least two times the background and more typically more than 10 to 100 times background. Specific binding to an antibody under such conditions requires an antibody that is selected for its specificity for a particular protein.
- polyclonal antibodies can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with the selected antigen and not with other proteins. This selection may be achieved by subtracting out antibodies that cross-react with other molecules.
- a variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein.
- solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Antibodies, A Laboratory Manual (1988) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity).
- Embodiments described herein include a streamlined, ambient-temperature processing, stabilization, and storage of nucleic acids derived from saliva.
- Direct saliva transcriptome and genome analyses using cell-free saliva supernatant instead of isolated nucleic acids, which include the processing, stabilization, and storage of saliva samples, as described herein, can be performed at ambient temperature without stabilization agents.
- stabilization agents can be included.
- alcohol can be included.
- nucleic acid stabilization requiring extremely low temperatures or nucleic acid stabilization chemicals can be impractical for field applications or daily clinical operations.
- nucleic acid stabilizers can affect downstream analyses. Described herein is the extraction of extracellular nucleic acids that can be stored at ambient temperatures until needed for downstream applications, such as PCR, without the need for additional stabilization chemicals.
- the nucleic acids of the present invention can be stored at room temperature for longer than 1 week, 2 weeks, 5 weeks, 10 weeks, or 25 weeks or more.
- nucleic acids in a form that is suitable for detection following collection of the cell-free salivary sample is well known in the art.
- Such methods can include, but are not limited to, PCR, reverse transcriptase-PCR (RT-PCR), real-time PCR, reverse transcription quantitative real-time PCR (RT-qPCR), ligase chain reaction, strand displacement amplification (SDA), self-sustained sequence replication (3SR), or in situ PCR.
- RT-PCR reverse transcriptase-PCR
- RT-qPCR reverse transcription quantitative real-time PCR
- SDA strand displacement amplification
- 3SR self-sustained sequence replication
- Any suitable qualitative or quantitative methods known in the art for detecting specific nucleic acid e.g., RNA or DNA
- Nucleic acid can be detected by, for example, by reverse transcriptase-PCR, or in Northern blots containing poly A mRNA, and other methods well known in the art.
- PCR amplification techniques are described in, e.g., Ausubel et al. and Innis et al., supra. General nucleic acid hybridization methods are described in Anderson, “Nucleic Acid Hybridization,” BIOS Scientific Publishers, 1999.
- a temperature of about 36° C. is typical for low stringency amplification, although annealing temperatures may vary between about 32° C. and 48° C. depending on primer length.
- a temperature of about 62° C. is typical, although high stringency annealing temperatures can range from about 50° C. to about 65° C., depending on the primer length and specificity.
- Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90° C.-95° C. for 30 sec-2 min., an annealing phase lasting 30 sec.-2 min., and an extension phase of about 72° C. for 1-2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis et al., PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y. (1990).
- RNA extraction can be performed by any method know to those of skill in the art, e.g., methods involving proteinase K tissue digestion and alcohol-based nucleic acid precipitation, treatment with DNase to digest contaminating DNA, RNA purification using silica-gel-membrane technology, methods utilizing commercially available kits such as Trizol and RNeasy, or any combination thereof.
- Real time RT-PCR can be performed by any method known to those of skill in the art, e.g., Taqman real time PCR using Applied Biosystem assays.
- Nucleic acid primers, or probes can be generated using the polynucleotide sequences disclosed herein.
- the probes are preferably at least about 12, 15, 16, 18, 20, 22, 24, or 25 nt fragments of a contiguous sequence of nucleic acid or polypeptide.
- the probes can be produced by, for example, chemical synthesis, PCR amplification, generation from longer polynucleotides using restriction enzymes, or other methods well known in the art.
- Nucleic acid probes can be used as diagnostics wherein a biological sample to be analyzed, such as saliva, can be treated, if desired, to extract the nucleic acids contained therein.
- the resulting nucleic acid from the sample can be subjected to gel electrophoresis or other size separation techniques; alternatively, the nucleic acid sample can be dot blotted without size separation.
- the nucleic acids extracted from the sample are then treated with the labeled probe under hybridization conditions of suitable stringencies.
- the probes can be made completely complementary to the target nucleic acid or portion thereof (e.g., to all or a portion of a sequence encoding a target). Therefore, usually high stringency conditions are desirable in order to prevent or at least minimize false positives.
- conditions of high stringency should only be used if the probes are complementary to regions of the target which lack heterogeneity.
- the stringency of hybridization is determined by a number of factors during hybridization and during the washing procedure, including temperature, ionic strength, length of time, and concentration of formamide (Sambrook et al. (1989), “Molecular Cloning; A Laboratory Manual,” Second Edition (Cold Spring Harbor Press, Cold Spring Harbor, N.Y.)).
- Nucleic acid probes can be provided in solution for such assays, or can be affixed to a support (e.g., solid or semi-solid support).
- a support e.g., solid or semi-solid support.
- supports that can be used are nitrocellulose (e.g., in membrane or microtiter well form), polyvinyl chloride (e.g., in sheets or microtiter wells), polystyrene latex (e.g., in beads or microtiter plates, polyvinylidine fluoride, diazotized paper, nylon membranes, activated beads, and Protein A beads.
- Non-PCR-based, sequence specific DNA amplification techniques can also be used with the invention to detect nucleic acids.
- An example of such techniques include, but is not necessarily limited to, the Invader assay (see, e.g., Kwiatkowski et al. Mol Diagn. 1999, 4:353-64. See also U.S. Pat. No. 5,846,717).
- Nucleic acids can be detectably labeled.
- detectable labels include, but are not limited to, radiolabels, fluorochromes, (e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2′,7′-dimethoxy-4′,5′-dichloro-6-carboxyfluorescein, 6-carboxy-X-rhodamine (ROX), 6-carboxy-2′,4′,T,4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N′,N′-tetramethyl-6-carboxyrho-damine (TAMRA)), radioactive labels, (e.g.
- fluorochromes e.g. fluorescein isothiocyanate (FITC), rhodamine,
- the detectable label can involve two stage systems (e.g., biotin-avidin, hapten-anti-hapten antibody, and the like).
- Analysis of nucleic acid mutations derived from saliva samples can be performed using techniques known in the art including, without limitation, electrophoretic analysis or sequence analysis.
- electrophoretic analysis include slab gel electrophoresis such as agarose or polyacrylamide gel electrophoresis, capillary electrophoresis, and denaturing gradient gel electrophoresis (DGGE).
- slab gel electrophoresis such as agarose or polyacrylamide gel electrophoresis
- capillary electrophoresis capillary electrophoresis
- denaturing gradient gel electrophoresis DGGE
- nucleic acid analysis includes, but is limited to, restriction analyses such as restriction-fragment-length-polymorphism detection based on allele-specific restriction-endonuclease cleavage (Kan and Dozy, Lancet ii:910-12 (1978)), hybridization with allele-specific oligonucleotide probes (Wallace et al., Nucl. Acids Res. 6:3543-3557 (1978)), including immobilized oligonucleotides (Saiki et al., PNAS 86:6230-6234 (1989)), oligonucleotide arrays (Maskos and Southern, Nucl. Acids Res.
- restriction analyses such as restriction-fragment-length-polymorphism detection based on allele-specific restriction-endonuclease cleavage (Kan and Dozy, Lancet ii:910-12 (1978)), hybridization with allele-specific oligonucleotide probes (
- Non-limiting examples of sequence analysis include Maxam-Gilbert sequencing, Sanger sequencing, capillary array DNA sequencing, thermal cycle sequencing (Sears et al., Biotechniques, 13:626-633 (1992)), solid-phase sequencing (Zimmerman et al., Methods Mol. Cell Biol., 3:39-42 (1992)), sequencing with mass spectrometry such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS; Fu et al., Nat.
- MALDI-TOF/MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
- Probes can be provided on an array for detection following saliva extraction.
- Arrays can be created by, for example, spotting polynucleotide probes onto a substrate (e.g., glass, nitrocellulose, and the like) in a two-dimensional matrix or array.
- the probes can be bound to the substrate by either covalent bonds or by non-specific interactions, such as hydrophobic interactions.
- Samples of polynucleotides can be detectably labeled (e.g., using radioactive or fluorescent labels) and then hybridized to the probes.
- Double stranded polynucleotides comprising the labeled sample polynucleotides bound to probe polynucleotides, can be detected once the unbound portion of the sample is washed away.
- Techniques for constructing arrays and methods of using these arrays are described in EP 799 897; WO 97/29212; WO 97/27317; EP 785 280; WO 97/02357; U.S. Pat. No. 5,593,839; U.S. Pat. No. 5,578,832; EP 728 520; U.S. Pat. No. 5,599,695; EP 721 016; U.S. Pat. No. 5,556,752; WO 95/22058; and U.S. Pat.
- Arrays are particularly useful where, for example a single sample is to be analyzed for the presence of two or more nucleic acid target regions, as the probes for each of the target regions, as well as controls (both positive and negative) can be provided on a single array. Arrays thus facilitate rapid and convenience analysis.
- Embodiments described herein include a streamlined, ambient-temperature processing, stabilization, and storage of proteins derived from saliva.
- Direct saliva proteomic analyses using cell-free saliva supernatant instead of isolated proteins, which include the processing, stabilization, and storage of saliva samples, as described herein, can be performed at ambient temperature.
- Protein stabilization requiring extremely low temperatures or protein stabilization chemicals can be impractical for field applications or daily clinical operations.
- protein stabilizers can affect downstream analyses. In some embodiments, protein stabilizers can be used. In other embodiments, protein stabilizers are not used. In other embodiments, ethanol can be used to stabilize the salivary proteins of the present invention.
- Alcohol can include, but it not limited to, ethanol. Alcohol can be added, for example, at concentrations of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95% alcohol. Alcohol can be added, for example, at concentrations of 25-35%, 20-40%, 15-45%, 10-50%, 5-50%.
- the nucleic acids of the present invention can be stored at room temperature for longer than 1 week, 2 weeks, 5 weeks, 10 weeks, or 25 weeks or more.
- Extracellular protein can be purified to substantial purity by standard techniques, including selective precipitation with such substances as ammonium sulfate; column chromatography, immunopurification methods, and others (see, e.g., Scopes, Protein Purification: Principles and Practice (1982); U.S. Pat. No. 4,673,641; Ausubel et al, supra; and Sambrook et al., supra).
- the molecular weight of the protein can be used to isolate it from proteins of greater and lesser size using ultrafiltration through membranes of different pore size (for example, Amicon or Millipore membranes).
- membranes of different pore size for example, Amicon or Millipore membranes.
- the protein mixture is ultrafiltered through a membrane with a pore size that has a lower molecular weight cut-off than the molecular weight of the protein of interest.
- the retentate of the ultrafiltration is then ultrafiltered against a membrane with a molecular cut off greater than the molecular weight of the protein of interest.
- the recombinant protein will pass through the membrane into the filtrate.
- the filtrate can then be chromatographed.
- the protein can also be separated from other proteins on the basis of its size, net surface charge, hydrophobicity, and affinity for ligands or substrates using column chromatography.
- antibodies raised against proteins can be conjugated to column matrices and the proteins immunopurified. All of these methods are well known in the art. It will be apparent to one of skill that chromatographic techniques can be performed at any scale and using equipment from many different manufacturers (e.g., Pharmacia Biotech).
- Antibody reagents can be used in assays to detect proteins in saliva samples using any of a number of immunoassays known to those skilled in the art. Immunoassay techniques and protocols are generally described in Price and Newman, “Principles and Practice of Immunoassay,” 2nd Edition, Grove's Dictionaries, 1997; and Gosling, “Immunoassays: A Practical Approach,” Oxford University Press, 2000. A variety of immunoassay techniques, including competitive and non-competitive immunoassays, can be used. (See, e.g., Self et al., Curr. Opin. Biotechnol 7:60-65 (1996)).
- immunoassay encompasses techniques including, without limitation, enzyme immunoassays (EIA) such as enzyme multiplied immunoassay technique (EMIT), enzyme-linked immunosorbent assay (ELISA), IgM antibody capture ELISA (MAC ELISA), and microparticle enzyme immunoassay (META); immunohistochemical assay, capillary electrophoresis immunoassays (CEIA); radioimmunoassays (RIA); immunoradiometric assays (IRMA); fluorescence polarization immunoassays (FPIA); and chemiluminescence assays (CL). If desired, such immunoassays can be automated. Immunoassays can also be used in conjunction with laser induced fluorescence.
- EIA enzyme multiplied immunoassay technique
- ELISA enzyme-linked immunosorbent assay
- MAC ELISA IgM antibody capture ELISA
- MEA microparticle enzyme immunoassay
- immunohistochemical assay capillary electro
- Liposome immunoassays such as flow-injection liposome immunoassays and liposome immunosensors, are also suitable for use in the present invention. (See, e.g., Rongen et al., J. Immunol. Methods, 204:105-133 (1997)).
- nephelometry assays in which the formation of protein/antibody complexes results in increased light scatter that is converted to a peak rate signal as a function of the marker concentration, are suitable for use in the methods of the present invention.
- Nephelometry assays are commercially available from Beckman Coulter (Brea, Calif.; Kit #449430) and can be performed using a Behring Nephelometer Analyzer (Fink et al., J Clin. Chem. Clin. Biochem., 27:261-276 (1989)).
- detectable moiety can be used (direct or indirect detection).
- detectable moieties are well known to those skilled in the art, and can be any material detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Detectable moieties can be used, with the choice of label depending on the sensitivity required, ease of conjugation with the antibody, stability requirements, and available instrumentation and disposal provisions.
- Suitable detectable moieties include, but are not limited to, radionuclides, fluorescent dyes (e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon GreenTM, rhodamine, Texas red, tetrarhodimine isothiocynate (TRITC), Cy3, Cy5, etc.), fluorescent markers (e.g., green fluorescent protein (GFP), phycoerythrin, etc.), autoquenched fluorescent compounds that are activated by tumor-associated proteases, enzymes (e.g., luciferase, horseradish peroxidase, alkaline phosphatase, etc.), nanoparticles, biotin, digoxigenin, metals, and the like.
- fluorescent dyes e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon GreenTM, rhodamine, Texas red, tetrarhodimine isothiocyn
- Direct labels include fluorescent or luminescent tags, metals, dyes, radionucleodies, and the like, attached to the antibody.
- An antibody labeled with iodine-125 (1251) can be used.
- a chemiluminescence assay using a chemiluminescent antibody specific for nucleic acids or proteins is suitable for sensitive, non-radioactive detection of nucleic acids or protein levels.
- An antibody labeled with fluorochrome is also suitable. Examples of fluorochromes include, without limitation, DAPI, fluorescein, Hoechst 33258, R-phycocyanin, B-phycoerythrin, R-phycoerythrin, rhodamine, Texas red, and lissamine.
- Indirect labels include various enzymes well known in the art, such as horseradish peroxidase (HRP), alkaline phosphatase (AP), ⁇ -galactosidase, urease, and the like.
- HRP horseradish peroxidase
- AP alkaline phosphatase
- ⁇ -galactosidase urease, and the like.
- a horseradish-peroxidase detection system can be used, for example, with the chromogenic substrate tetramethylbenzidine (TMB), which yields a soluble product in the presence of hydrogen peroxide that is detectable at 450 nm.
- TMB tetramethylbenzidine
- An alkaline phosphatase detection system can be used with the chromogenic substrate p-nitrophenyl phosphate, for example, which yields a soluble product readily detectable at 405 nm.
- a ⁇ -galactosidase detection system can be used with the chromogenic substrate o-nitrophenyl- ⁇ -D-galactopyranoside (ONPG), which yields a soluble product detectable at 410 nm.
- An urease detection system can be used with a substrate such as urebromocresol purple (Sigma Immunochemicals; St. Louis, Mo.).
- Other proteins capable of specifically binding immunoglobulin constant regions, such as protein A or protein G can also be used as a label agent. These proteins exhibit a strong non-immunogenic reactivity with immunoglobulin constant regions from a variety of species (see, e.g., Kronval et al., J. Immunol. 111:1401-1406 (1973); Akerstrom et al., J. Immunol. 135:2589-2542 (1985).
- Western blot (immunoblot) analysis can be used to detect and quantify the presence of an antigen in the sample.
- the technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support, (such as a nitrocellulose filter, a nylon filter, or derivatized nylon filter), and incubating the sample with the antibodies that specifically bind the antigen.
- the anti-antigen antibodies specifically bind to the antigen on the solid support.
- These antibodies can be directly labeled or alternatively can be subsequently detected using labeled antibodies (e.g., labeled sheep anti-mouse antibodies) that specifically bind to the anti-antigen antibodies.
- An ELISA method can be used as follows: (1) bind an antibody or antigen to a substrate; (2) contact the bound receptor with a fluid or tissue sample containing the virus, a viral antigen, or antibodies to the virus; (3) contact the above with an antibody bound to a detectable moiety (e.g., horseradish peroxidase enzyme or alkaline phosphatase enzyme); (4) contact the above with the substrate for the enzyme; (5) contact the above with a color reagent; (6) observe color change.
- a detectable moiety e.g., horseradish peroxidase enzyme or alkaline phosphatase enzyme
- the above method can be readily modified to detect presence of an antibody in the sample or a specific protein as well as a virus.
- An antigen and/or a subject's antibodies to the virus can be detected utilizing a capture assay.
- antibodies to an immunoglobulin e.g., anti-IgG (or IgM) are bound to a solid phase substrate and used to capture the patient's immunoglobulin from serum.
- the antigen, or reactive fragments of the antigen are then contacted with the solid phase followed by addition of a labeled antibody.
- the amount of specific antibody can then be quantitated by the amount of labeled antibody binding.
- a micro-agglutination test can also be used to detect the presence of an antigen in test samples.
- latex beads are coated with an antibody and mixed with a test sample, such that the antigen in the tissue or body fluids that is specifically reactive with the antibody crosslink with the receptor, causing agglutination.
- the agglutinated antibody-virus complexes within a precipitate visible with the naked eye or by spectrophotometer.
- Competitive assays can also be adapted to provide for an indirect measurement of the amount of an antigen present in the sample. Briefly, serum or other body fluids from the subject is reacted with an antibody bound to a substrate (e.g. an ELISA 96-well plate). Excess serum is thoroughly washed away. A labeled (enzyme-linked, fluorescent, radioactive, etc.) monoclonal antibody is then reacted with the previously reacted antibody complex. The amount of inhibition of monoclonal antibody binding is measured relative to a control. Monoclonal antibodies (MABs) can also be used for detection directly in samples by IFA for MABs specifically reactive for the antibody-antigen complex.
- a substrate e.g. an ELISA 96-well plate
- a labeled (enzyme-linked, fluorescent, radioactive, etc.) monoclonal antibody is then reacted with the previously reacted antibody complex. The amount of inhibition of monoclonal antibody binding is measured relative to a control.
- a hapten inhibition assay is another competitive assay.
- the known antigen can be immobilized on a solid substrate.
- a known amount of anti-antigen antibody is added to the sample, and the sample is then contacted with the immobilized antigen.
- the amount of antibody bound to the known immobilized antigen is inversely proportional to the amount of antigen present in the sample.
- the amount of immobilized antibody can be detected by detecting either the immobilized fraction of antibody or the fraction of the antibody that remains in solution. Detection can be direct where the antibody is labeled or indirect by the subsequent addition of a labeled moiety that specifically binds to the antibody as described above.
- Immunoassays in the competitive binding format can also be used for crossreactivity determinations.
- an antigen can be immobilized to a solid support. Proteins can be added to the assay that competes for binding of the antisera to the immobilized antigen. The ability of the added proteins to compete for binding of the antisera to the immobilized protein is compared to the ability of the antigen to compete with itself. The percent crossreactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% crossreactivity with each of the added proteins listed above are selected and pooled. The cross-reacting antibodies are optionally removed from the pooled antisera by immunoabsorption with the added considered proteins, e.g., distantly related homologs.
- the immunoabsorbed and pooled antisera can then be used in a competitive binding immunoassay as described above to compare a second protein, thought to be perhaps an allele or polymorphic variant of an antigen, to the immunogen protein.
- the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required to inhibit 50% of binding is less than 10 times the amount of the antigen that is required to inhibit 50% of binding, then the second protein is said to specifically bind to the polyclonal antibodies generated to antigen.
- a signal from a direct or indirect label can be analyzed, for example, using a spectrophotometer to detect color from a chromogenic substrate; a radiation counter to detect radiation such as a gamma counter for detection of 1251; or a fluorometer to detect fluorescence in the presence of light of a certain wavelength.
- a radioactive label means for detection include a scintillation counter or photographic film as in autoradiography.
- the label is a fluorescent label, it can be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence. The fluorescence can be detected visually, by the use of electronic detectors such as charge coupled devices (CCDs) or photomultipliers and the like.
- enzymatic labels can be detected by providing the appropriate substrates for the enzyme and detecting the resulting reaction product. Colorimetric or chemilluminescent labels can be detected simply by observing the color associated with the label. Thus, in various dipstick assays, conjugated gold often appears pink, while various conjugated beads appear the color of the bead.
- a quantitative analysis can be made using a spectrophotometer such as an EMAX Microplate Reader (Molecular Devices; Menlo Park, Calif.) in accordance with the manufacturer's instructions. If desired, the assays of the present invention can be automated or performed robotically, and the signal from multiple samples can be detected simultaneously.
- the antibodies can be immobilized onto a variety of solid supports, such as magnetic or chromatographic matrix particles, the surface of an assay plate (e.g., microtiter wells), pieces of a solid substrate material or membrane (e.g., plastic, nylon, paper), and the like.
- An assay strip can be prepared by coating the antibody or a plurality of antibodies in an array on a solid support. This strip can then be dipped into the test sample and processed quickly through washes and detection steps to generate a measureable signal, such as a colored spot.
- Embodiments of the invention described herein relate to the analysis of extracellular nucleic acids and proteins derived from a cell-free fluid phase portion of saliva.
- Saliva Collection, Processing, Stabilization, and Storage (SCPSS) is designed as an all-in-one kit to collect, process, stabilize, and store saliva samples for research and clinical applications such as molecular diagnostics based on protein, RNA, and DNA.
- nucleic acids and proteins were confirmed by the procedures described in the Examples.
- the quality of the detected nucleic acids and proteins meet the demand for techniques such as PCR, qPCR, microarray assays, ELISA, Western blot, etc.
- Suitable absorbent materials can include, but are not limited to, nitrocellulose, cellulose acetate, polyethersulfur fabric, cellulose fiber such as paper strips or cotton, nylon, gel foam, fiber glass, polycarbonate, polyproplene, acetate, rayon, polyester absorbent pad, or other synthetic materials capable of collecting saliva. Any other method known in the art can be used to collect saliva. For example, the spitting method can also be used as a means of collecting a sample of saliva.
- An alternative method of obtaining saliva samples is a method whereby saliva is sucked out of the oral cavity by means of an aspirator. Saliva that has collected in the oral cavity can also be simply dripped out into a sample vessel.
- the absorbent pad can be individually placed into a syringe having a filter attached to the end of the syringe.
- the filter can be any type of filter described herein capable of separating saliva into a cell-free and fluid phase, for example, a 5.0 ⁇ m hydrophilic PVDF filter (Millex-SV, Millipore).
- the syringe plunger can then be used to push the saliva out of the pad and through the filter into a collection tube ( FIG. 7 ).
- the tubes can be pre-loaded with specific stabilizer for protein, RNA, and DNA.
- the tubes can also be pre-loaded with an alcohol solution.
- the collection apparatus can be any type of commercial collection pad.
- the SUPER ⁇ SAL or VERSI ⁇ SAL collection devices can be used to collect saliva samples and further configured to be used with a sample filtration apparatus.
- the saliva collection device can separate samples into two or more aliquots following filtration.
- An exemplary device for dual separation is the ULTRA ⁇ SAL-2 saliva collection device (Oasis Diagnostics, Vancouver, Wash.) ( FIG. 13 ).
- An embodiment describes the apparatus described herein in a method of for collecting saliva.
- the method can include inserting the sample collection pad into the oral cavity for sufficient time to moisten the sample collection pad, inserting the collection pad into the receiving tube, applying sufficient force to cause the materials collected in the collection pad to pass through the filter thereby forming a filtered sample, and collecting the filtered sample into one or more receiving devices.
- nucleic acid and protein can be analyzed, e.g., virus, prions, bacteria (e.g., Mycobacterium tuberculosis ), carbohydrates such as sugars, lipids, fatty acids, hormones, cholesterol, metabolites, and small molecule drug compounds.
- the apparatus can be used to diagnose a disease in a subject.
- the disease can include, but is not limited to, lung cancer, breast cancer stomach cancer, liver cirrhosis, a failing kidney, ulcer cancer, ovarian cancer, uterus cancer, cervical cancer, oral cancer, esophageal cancer, thyroid cancer, larynx cancer, leukemia, colon cancer, bladder cancer, prostate cancer, bronchus cancer, pancreas cancer, caries risk, periodontitis, salivary gland disease, head cancer, neck cancer, skin cancer, diabetes, smoking status, and infectious diseases such as hepatitis, HIV, and HCV.
- the apparatus can be used to monitor pH levels in a subject.
- the apparatus can be used to test for use of a drug including, but not limited to, prescription and controlled drugs, alcohol, methamphetamine, cocaine, caffeine, morphine, codeine, amphetamine, ephedrine, narcotine, DMT, and MDMA.
- a drug including, but not limited to, prescription and controlled drugs, alcohol, methamphetamine, cocaine, caffeine, morphine, codeine, amphetamine, ephedrine, narcotine, DMT, and MDMA.
- Standard operating procedures for salivary transcriptomic analysis require low temperatures and lengthy mRNA isolation processes.
- This example describes a streamlined, ambient-temperature processing, stabilization, and storage protocol for clinical analysis of salivary RNA.
- DSTA Direct Saliva transcriptome analysis
- SS saliva supernatant
- RT-qPCR reverse transcription quantitative real-time PCR
- Saliva samples were collected, according to protocols approved by an institutional review board, from 5 healthy individuals (mean age 34 years) who gave informed consent. None of the individuals had a history of malignancy, immunodeficiency, autoimmune disorder, hepatitis, or HIV infection (Table 1).
- the DNase-treated SS (product from aliquot #2) was employed as a contrast group to reflect DNA interference in the raw SS (product from aliquot #1).
- Isolated mRNA (product from aliquot #3) was applied to standard procedures of saliva RNA detection, and was employed as a positive control to evaluate the DSTA method performance. All the SS samples (products from aliquots #1 and #2) were stored at room temperature (25° C.) without stabilizing reagent, and the isolated mRNAs were frozen at ⁇ 80° C. until use.
- the RT-qPCR assay was used in all samples to detect mRNA expression levels of 3 saliva internal reference genes (SIRGs): glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 9 actin, beta (ACTB), and ribosomal protein S9 (RPS9).
- SIRGs saliva internal reference genes
- GPDH glyceraldehyde-3-phosphate dehydrogenase
- ACTB 9 actin, beta
- RPS9 ribosomal protein S9
- a case-control salivary biomarker study was further conducted to examine the feasibility of clinical applications of the DSTA method associated with long-term ambient temperature storage.
- Ninety samples were collected from 3 institutions, including 27 samples from patients with oral squamous cell carcinoma (OSCC) and 63 samples from healthy controls (see Table 2).
- OSCC oral squamous cell carcinoma
- mRNAs from 7 OSCC salivary biomarker genes human H3 histone family 3A (H3F3A), interleukin1-beta (IL1B), interleukin 8 (IL8), ornithine decarboxylase antizyme 1 (OAZ1), spermidine/spermine N1-acetyltransferase 1 (SAT1), dual specificity phosphatase1 (DUSP1), and S100 calcium binding protein P (S100P) (Li et al. Clin. Cancer Res. 10:8442-50 (2004)).
- H3F3A human H3 histone family 3A
- IL1B interleukin1-beta
- IL8 interleukin 8
- OFAZ1 ornithine decarboxylase antizyme 1
- SAT1 spermidine/spermine N1-acetyltransferase 1
- DUSP1 dual specificity phosphatase1
- S100P S100 calcium binding protein P
- biomarker genes were used as the proof-of-concept markers and tested in all study participants. Quantification of the 7 transcripts in 90 samples was performed concurrently by standard and DSTA methods at day 0 and after 10 weeks of ambient temperature storage without a stabilizing reagent. The feasibility of the DSTA method for the clinical applications was evaluated by the numbers of markers that could be discriminated, and their diagnostic performances were compared to the results obtained by standard procedures.
- Salivary mRNA was isolated from 300 ⁇ L SS ( FIG. 1 , aliquot #3 of each study participant) using a King-Fisher® instrument (Thermo Electron Corporation) with a MagMAX Viral RNA Isolation Kit® (Applied Biosystems). The isolated mRNA was then treated with a TURBO DNA-free kit, followed by DNase inactivation to remove DNA contamination. The purity of the isolated mRNA was assessed by use of the A260/A280 ratio (accepted range: 1.8-2.0) with an ND-1000 spectrophotometer (Thermo Scientific). The complete removal of DNA in the isolated mRNA was demonstrated by qPCR without reverse transcription (see FIG. 2 ).
- RT-qPCR reverse transcription-PCR
- qPCR reverse transcription-PCR
- Table 4 Multiplex RT-PCR preamplification of 3 SIRG mRNAs was performed by using a SuperScript III platinum qRT-PCR System (Invitrogen) with a pool of outer primer sets (200 nmol/L for each; see Table 4), and conducted by a GeneAmp PCR-System 9700 (Applied Biosystems) with a fixed thermal cycling program (see Table 5).
- Each study participant provided 6 L raw SS, 7.08 ⁇ L DNase-treated SS, and 2 ⁇ L isolated mRNA as 3 different templates for RT-PCR, in which the samples were equalized by the mRNA volume.
- RT-PCR samples In addition to the 15 experimental RT-PCR samples (5 study participants 3 templates per study participant), a negative control with nuclease-free water as the reactive template (i.e., a blank group) was prepared. The total volume of each reaction was 30 ⁇ L adjusted by nuclease free water.
- the RT-PCR products were purified by ExoSAP-IT (USB) and immediately applied to qPCR or stored at ⁇ 20° C. until use.
- SYBR Green qPCR was performed to quantitatively detect the expression levels of salivary transcripts.
- the qPCR sample was prepared by combining 2 ⁇ qPCR Mastermix (Applied Biological Materials), inner primers (900 nmol/L; see Table 4), and 2 ⁇ L cDNA template. The total volume of each reaction was 10 ⁇ L adjusted by nuclease-free water.
- the qPCR associated with melting-curve analysis was conducted by use of an AB-7500HT System (Applied Biosystems) with a fixed thermal-cycling program (Table 6). Each gene was tested in triplicate for all samples, including the negative control in which the cDNA template was the product of negative control in RT-PCR preamplification. All primers used in RT-qPCR were designed with intron spanning by use of PRIMER3 software and produced by Sigma after a BLAST search.
- cell-free SS was used as a template to detect mRNA expression levels for 3 SIRGs and compared the results to results obtained with standard procedures.
- the results shown in FIG. 3 are for detection performed immediately after saliva samples were collected (day 0).
- the Cq value in the water group is the mean of triplicate qPCR experiments, and showed 33 for all 3 genes.
- the water group did not show any peak in the melting-curve analysis (data not shown), no matter which SIRG primers were used, indicating there was no reagent contamination during the RT-qPCR procedures.
- the Cq value of each gene in the experimental setups was the mean of results for samples from 5 healthy study participants, each of which was assayed in triplicate (total 15 data points).
- the Cq values obtained from the raw SS (DSTA) were 22.84 (2.36), 21.57 (1.63), and 20.35 (1.39), whereas the Cq acquired from isolated mRNAs were 25.28 (1.44), 23.16 (2.2), and 21.42 (1.33) for GAPDH, ACTB, and RPS9, respectively.
- the P values obtained by comparing the Cq values from SS (DSTA) and isolated mRNA for each SIRG were 0.092, 0.233, and 0.247 for GAPDH, ACTB, and RPS9, respectively.
- melting-curve analyses were conducted along with each qPCR run. A single peak with similar melting temperature was observed for the same gene in all samples (data not shown).
- the P values were 0.645, 0.13, and 0.58 for GAPDH, ACTB, and RPS9, respectively ( FIG.
- saliva samples were stored at 25° C. (laboratory ambient temperature), and the 3 SIRG mRNA expression levels were assayed by using RT-qPCR at day 0 and after 1, 2, and 10 weeks of storage.
- the mean Cq values detected by SS increased slightly after 10 weeks of preservation and showed no significant difference throughout the time course (P>0.05; FIG. 4 ; P values: SS(DSTA)-Week X vs SS (DSTA)-Day 0 at X10).
- the Cq values obtained by using SS were all similar to those detected by isolated mRNA(P>0.05) at each time point ( FIG. 4 ; P value: SS(DSTA) vs isolated mRNA at day 0 and weeks 1, 2, and 10).
- DNase-treated SS samples were used to assess DNA contamination for the duration of ambient temperature storage.
- the mean Cq values were all similar to the results detected by raw SS(P>0.05) at each time point, indicating no DNA interference was present in the DSTA procedure ( FIG. 4 ; P values: SS (DSTA) vs SS+DNase at day 0 and weeks 1, 2, and 10).
- H3F3A, IL1B, IL8, OAZ1, and SAT1 and 4 (H3F3A, IL1B, IL8, and DUSP1) of the salivary oral cancer markers were validated by both standard procedures and the DSTA method at day 0 and week 10, respectively.
- 4 markers (H3F3A, IL1B, IL8, and SAT1) at day 0 and 3 markers (H3F3A, IL1B, and IL8) at week 10 exhibited higher ROC-plot AUC values when assayed by use of the DSTA protocol (see Table 7 FIG. 6 ).
- Saliva RNA detection is an emerging field in molecular diagnostics (Martin et al. Cancer Res. 70:5203-6 (2010)). This study aimed to develop a robust, easy-to-use, ambient-temperature compatible, and cost-effective protocol to further advance the use of saliva transcriptomes for translational and clinical applications.
- RNA profiles in exosomes showed that ribosomal RNA was absent and most of the RNA molecules were ⁇ 200 nucleotides in length (Skog et al, Nat. Cell Biol. 10:1470 (2008)), which is in alignment with the mean size of salivary mRNA.
- Saliva samples were collected from 10 healthy subjects. None of the subjects had any history of malignancy, immunodeficiencies, autoimmune disorders, hepatitis, and/or HIV infection, and had a mean age of 35 years. Subjects were asked to refrain from eating, drinking or using oral hygiene products for at least 1 h prior to collection. After rinsing their mouths with water, 5 mL saliva was collected from each subject into a 50 mL Falcon tube.
- FIG. 7 is the schematic diagram for the sample preparation.
- Saliva amylase depletion was conducted according to a previous report (Deutsch et al. Electrophoresis 29:4150 (2008)). Briefly, saliva samples were eluted from starch column to deplete amylase specifically.
- saliva samples were either boiled at 95° C. for 10 min or by adding 20-time volumes absolute ethanol (Fisher Scientific, NJ, USA). Denatured samples were kept at RT for two weeks. The saliva proteins were then precipitated by centrifugation at 20,000 g for 20 min.
- IV For the non-denaturing method, every 20 ⁇ L absolute ethanol was added to 100 ⁇ L saliva. All the samples were made up to equal volume with distilled water. At different time points, 1 aliquot of saliva sample that has been kept at RT or 4° C. was moved into a ⁇ 80° C. freezer and stored until further analysis.
- the protein concentration of each saliva sample was measured by using the BCA Protein Assay Kit (Thermo Scientific Pierce, Ill., USA). Equal volume of each sample was loaded into a 96 well plate in duplicates. The experiment was performed according to the manufacturer's instruction and the plate was read at 562 nm.
- Equal volume of each saliva sample was used for SDS-PAGE and western blot.
- SDS-PAGE the 10% Bis-Tris gel was run at 150V in MES SDS Running Buffer for 1 h. Pre-stained protein standard (Invitrogen, CA, USA) was used to track protein migration. The gel was then stained with simple blue (Invitrogen, CA, USA).
- saliva proteins were run and transferred to a PVDF membrane using the iBlot (Invitrogen, CA, USA). The membrane was incubated with the primary antibody (mouse monoclonal antibody to actin, Sigma-Aldrich, St.
- Tandem (version 2010.04.21).
- the parameters for searching were enzyme trypsin, 1 missed cleavage, fixed modifications of carbamidomethyl (C), variable modifications of oxidation (M), parent ion tolerance 4 Da and fragment mass tolerance: ⁇ 0.4 Da.
- the criteria of two peptides and log (E-value) ⁇ 10 were used for protein identification.
- ⁇ -actin Total ⁇ -actin Sandwich ELISA Kit, Cell Signaling Technology, Inc., MA, USA
- MP Thermo Scientific Pierce, Ill., USA
- the Graphpad Prism (Version 5.01) was used for all data analysis. P value was calculated based on T test and p ⁇ 0.05 was used as cutoff for significance. One-way ANOVA was run to determine whether the groups are actually different in the measured characteristic. The signal intensity of the western blot bands was quantified by using the Image J software (NIH, Bethesda, Md., USA).
- protease inhibitors are usually added during sample collection to prevent proteolysis. This investigation also assessed protease cocktail and different temperature conditions on proteome stabilization, because they are known to greatly affect the rate proteolysis (Chevalier et al, Clin. Proteomics 3:13 (2007)). Amylase removal may increase the stability of other salivary proteins and eases the characterization of low abundant proteins (Hu et al, Proteomics 6:6326 (2006). Ethanol has been fully evaluated for the stabilization of protein (Gekko and Timasheff, Biochemistry 20:4677 (1981). All these methods were tested and evaluated for their efficiency in proteome stabilization.
- the protein concentrations of saliva samples stored at RT and ⁇ 80° C. were measured.
- the average total protein concentration the positive control was 1.19 ⁇ 0.15 ⁇ g ⁇ L ⁇ 1 after stored at ⁇ 80 for 30 days.
- ⁇ -actin in human saliva was degraded when the samples when stored at RT.
- the stability of ⁇ -actin was systematically compared among different treatments by ELISA. There was significant degradation if saliva samples were stored at RT without any treatment. After 3 days, there was only 71.72 ⁇ 18% left when compared to positive control. If the saliva samples were kept a 4° C. with protease inhibitors, more than 85 ⁇ 12% of this protein could be detected in saliva and there was no significant change from positive control. In the saliva samples stored at RT with protease inhibitors, ⁇ -actin was found to be stable for only 3 days. When saliva samples were stored at 4° C. with protease inhibitor ⁇ -actin was found stable for about 1 month without significant degradation.
- Amylase is the most abundant protein in saliva and greatly affects the stability of other salivary proteins. After removing amylase from saliva, salivary proteins became more stable.
- the SDS-PAGE images of salivary proteins with and without amylase depletions are shown in FIGS. 9A and B.
- FIGS. 9D and E The western blot of ⁇ -actin in saliva after stored for 7 days also demonstrated that it became more stable after amylase removal ( FIGS. 9D and E). If 20% ethanol was added, the stabilization efficiency for ⁇ -actin was better.
- LC-MS/MS was run for the protein identification in the 4 bands of FIG. 9B lane RT.
- band a three proteins were identified, including desmoplakin, deleted in malignant brain tumors 1 protein and syndecan-binding protein 2.
- band b 7 proteins were found (mucin-7, tetra-peptide repeat homeobox protein 1, bactericidal/permeability-increasing protein-like 1, lactotransferrin, peroxisome proliferator-activated receptor gamma coactivator-related protein 1, alpha-2-macroglobulin, and polymeric immunoglobulin receptor).
- FIG. 11A The western blot of ⁇ -actin with different treatments was shown in FIG. 11A . Their corresponding quantifications were shown in FIG. 11B .
- the results showed that there was significant ⁇ -actin degradation at RT after day 3, 7 and 14 when compared to ⁇ 80° C.
- protease inhibitor cocktail tablets used in this investigation were designed to inhibit a broad spectrum of serine, cysteine and metalloproteases as well as calpains (Chevalier et al., Proteomics 3:13 (2007)). Microbes may also generate some metabolites that can change the composition of human salivary proteome. RNA may interact with proteins and become stable (Palanisamy et al., J. Dent. Res. 87:772 (2008)). The storage temperature will also change the activity of different proteases, which will alter the stability of different proteins. By considering all these factors, salivary proteome is facing a huge risk of being digested or changed under different circumstances.
- salivary proteins The efficiency of different methods was evaluated by testing selected protein targets. In order to properly stabilize salivary proteins, the activity of salivary proteases should be inhibited. Otherwise, as shown in FIG. 9A , salivary proteins will degrade quickly.
- saliva sample In order to lower the metabolism of microbes, saliva sample should be kept at ⁇ 80° C.
- Protease inhibitors were added to hinder protein degradation because saliva samples without any treatment will be digested very quickly, although the salivary protein concentrations were significantly lower than the positive control after 30 days at RT.
- the data provided herein show that the addition of protease inhibitors and storage at 4° C. could effectively stabilize this protein for approximately two weeks. However, saliva samples could only be stabilized at RT for 3 days without significant change by adding protease inhibitors.
- Subjects were asked to refrain from eating, drinking, smoking, and oral hygiene activities for at least 2 hours prior to collection.
- Whole unstimulated saliva was then collected using the Oasis saliva collector “Super ⁇ SAL” ( FIG. 13 ) for about 10-15 min.
- the collected saliva was then processed for respective molecular constituent (DNA, Protein and RNA) stabilization and storage.
- the collection tubes were pre-loaded with specific stabilizers for protein, RNA and DNA. All samples can be transported and stored at room temperature.
- the collected saliva is pushed through a barrel where there is a filtration unit (Millipore MGGF filter, 5 ⁇ m hydrophilic PVDF membrane) at the sample filtration end serving to remove cells, microbes and debris.
- a filtration unit Micropore MGGF filter, 5 ⁇ m hydrophilic PVDF membrane
- Half of the volume of the saliva filtrate is stored in a microfuge tube at room temperature for downstream applications including direct saliva transcriptome analysis. This sample was maintained at room temperature.
- Subjects will be asked to refrain from eating, drinking, smoking, and oral hygiene activities for at least 2 hours prior to collection.
- Whole unstimulated saliva will then be collected using an apparatus for the collection of saliva comprising a sample collection pad, a receiving device, and a filter connected to the receiving device.
- the filter is a 5 ⁇ m hydrophilic membrane that filters out cells and microorganisms.
- the filtered sample (1-2 ml) that is free from cells, microbes, and debris will be aliquoted into two microfuge collection tubes.
- the first tube will have a 20% ethanol solution and the second tube will be free of ethanol. All collection activities will be conducted at ambient temperatures.
- the filtered sample collected in the first tube having a 20% ethanol solution will be stored at room temperature for up to two weeks for downstream applications.
- the filtered sample for protein analysis will have the protein concentration measured, and the sample will be used for SDS-PAGE and western blot analyses.
- the saliva proteins will be run and transferred to a protein membrane.
- the membrane containing the protein will be incubated with primary antibody and then secondary antibody. In-gel trypsin digestion and mass spectrometry will then be used to identify extracellular saliva proteins.
- the filtered sample collected in the second tube without ethanol will be stored at room temperature for up to ten weeks for downstream applications, including direct saliva transcriptome analysis.
- the filtered samples will then be treated with DNase.
- RT-qPCR will then be used to analyze mRNA expression levels of extracellular saliva mRNAs.
- the expression levels of the salivary transcripts will be detected using standard procedures of raw quantification cycle (Cq) values.
- Cq raw quantification cycle
- This example describes dual analysis of protein and nucleic acids collected from saliva samples by any person that is not required to be a specially trained technician. The samples will be collected and aliquoted for both protein and nucleic analysis, and subsequently stored at room temperature prior to analysis.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Hematology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Urology & Nephrology (AREA)
- General Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Pulmonology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Provided herein is an all-in-one saliva collection apparatus that collects saliva to allow for the filtration of saliva in order to separate saliva components, such as extracellular proteins and nucleic acids that are not present in intact cells, from the intact cells and debris remaining in the extracted sample. The filtered saliva samples can be aliquoted into two fractions for protein and/or nucleic acid analysis. The present invention further describes long term storage at ambient temperatures of filtered salivary nucleic acids, and long term storage at ambient temperatures of filtered salivary proteins added to an ethanol solution. The filtered cell-free saliva samples have diagnostic usefulness.
Description
- The present application claims priority to U.S. Ser. No. 61/515,169, filed Aug. 4, 2012, herein incorporated by reference in its entirety.
- This invention was made with Government support under Grant No. CA0126733 awarded by the National Institutes of Health. The Government has certain rights in this invention.
- The present disclosure relates to an apparatus and methods for the analysis of protein and nucleic acids present in cell-free samples of saliva.
- Interest in using saliva as a diagnostic tool for disease detection and health surveillance is increasing due to its noninvasive accessibility, cost-effectiveness, easy sample collection and processing, and accumulating scientific rationale (Yan et al., Proteomics Clin. Appl. 3:116 (2009); Lee and Wong, Am J. Dent. 22:241-8 (2009)). Saliva has been used to detect, for example, caries risk, peridontitis, oral cancer, breast cancer, lung cancer, Sjögren's syndrome, salivary gland disease and infectious diseases such as hepatitis, HIV, and HCV. Saliva is therefore an attractive diagnostic sample alternative for blood, serum, or plasma.
- Saliva is ideal for nucleic acid analysis. The human salivary transcriptome in cell-free saliva was first discovered in 2004 by use of microarray technology (Li et al, J. Dent. Res. 83:199-203 (2004)). Investigations into the characteristics of salivary RNA followed, which led to the development of salivary transcriptomics as a research focus. (Park et al., Clin. Chem 52:988-94 (2006); Park et al. Arch. Oral. Biol., 52:30-5 (2007)).
- Saliva is additionally ideal for proteomic analysis. Profiling proteins in saliva over the course of disease progression can reveal biomarkers indicative of different stages of diseases, which can be useful in early detection and/or medical diagnosis (Hu et al., Proteomics 6:6326 (2006)). Proteomics is widely envisioned as a unique and powerful approach to biomarker development. As proteomic technologies continue to mature, proteomics has the great potential for salivary proteomic biomarker development and further clinical applications (Xiao and Wong, Bioinformation 5:294 (2011); Zhang et al, Mol. Diagn. Ther. 13:245 (2009)).
- However, current methods for the extraction of nucleic acids and protein from saliva require the saliva sample to be processed immediately after collection requiring special instrumentation and trained personnel. For example, current standard procedures for salivary transcriptomic diagnostics require mRNA isolation, which is time-consuming and labor-intensive. In addition, operator differences increase as procedural complexity increases. Although several automated devices are commercially available to enhance mRNA isolation efficiency (e.g., KING FISHER<QIACUBE, and MAXWELL 16), throughput is still limited by the number of samples processed per run. Furthermore, particular care is required when working with RNA because of its inherent instability and the ubiquitous presence of RNases. Likewise, current standard procedures for salivary proteomic diagnostics require the addition of protease inhibitors to prevent proteolysis. As a result, current methods for transcriptomic and proteomic diagnostics require the addition of nucleic acid and protein stabilizers to be added to saliva samples followed by storage at −80° C.
- The ability to analyze saliva to monitor health and disease is a highly desirable goal for oral health promotion and research. In order to fully realize the diagnostic and research uses of saliva as a source of biomarkers, systems for collection, handling, and room-temperature storage of saliva by non-professionals in a user friendly integrated point-of-care collection system are desirable.
- Saliva is an ideal translational research tool and diagnostic medium and is being used in unique ways to provide molecular biomarkers for a variety of oral and systemic diseases and conditions. The ability to analyze saliva to monitor health and disease is highly desirable for oral health promotion and research. Saliva has been used to detect caries risk, periodontitis, oral cancer, breast cancer, salivary gland disease, and infectious diseases such as hepatitis, HIV, and HCV. Measurement of salivary analytes requires optimal collection, processing and storage procedures and conditions.
- In an embodiment, a method for stabilizing RNA and protein samples isolated from a saliva sample is provided. The method includes a) collecting a saliva sample from a subject; b) filtering the saliva sample to produce a filtered sample that is free of cells; c) collecting the filtered sample in at least a first and a second receiving device; d) adding an alcohol solution to the first receiving device to produce an alcohol-containing filtered sample comprising a protein sample, with the proviso that alcohol is not added to the second receiving device to produce an alcohol-free filtered sample comprising a nucleic acid sample; wherein the protein sample and the nucleic acid sample are stabilized for at least 3 days when stored at 25 degrees Celsius; and e) performing an analysis on the filtered sample collected in the first and second receiving devices comprising one or more of: a protein analysis on the alcohol-containing filtered sample or a nucleic acid analysis on the alcohol-free filtered sample. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the nucleic acid is DNA. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the nucleic acid analysis is polymerase chain reaction (PCR). In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the nucleic acid is RNA. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the nucleic acid analysis is RT-PCR. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the RT-PCR is reverse transcription quantitative real-time PCR (RT-qPCR). In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the ethanol solution comprises 20% ethanol. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the ethanol solution comprises 15-25% ethanol. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the ethanol solution comprises 5-35% ethanol. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the protein analysis comprises western blot, mass spectrometry protein identification, or ELISA. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filtered sample is stored at ambient temperature. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filtered sample is stored at ambient temperature for at least two weeks without more than 50% degradation of proteins or nucleic acids present in the filtered sample. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filtered sample is stored at ambient temperature for at least two weeks without more than 25% degradation of proteins or nucleic acids present in the filtered sample. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filtered sample is stored at ambient temperature for at least ten weeks without more than 50% degradation of proteins or nucleic acids present in the filtered sample. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filtered sample is stored at ambient temperature for at least ten weeks without more than 25% degradation of proteins or nucleic acids present in the filtered sample. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filter is selected from the group consisting of a 0.22 μm, 0.45 μm and 5.0 μm hydrophilic membrane. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filter is a 0.22 μm hydrophilic membrane.
- In another embodiment, an apparatus for the collection of saliva samples for biomarker detection is provided. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the apparatus comprises a sample collection pad, a filter, two or more receiving devices, wherein the receiving devices are selected from an mRNA collection tube, a polypeptide collection tube, and a DNA collection tube, wherein the polypeptide collection tube comprises an ethanol solution, and the DNA collection tube comprises a DNA stabilizer, wherein the filter is operably connected to the receiving devices. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filter is selected from the group consisting of a 0.22 μm, 0.45 μm or 5.0 μm hydrophilic membrane. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the filter is a 0.22 μm hydrophilic membrane. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, a method of using the apparatus is provided. The method includes inserting the sample collection pad into the oral cavity for sufficient time to moisten the sample collection pad, inserting the collection pad into the receiving tube, applying sufficient force to cause the materials collected in the collection pad to pass through the filter thereby forming a filtered sample, and collecting the filtered sample into one or more receiving devices.
- In another embodiment, a method for stabilizing RNA and protein samples isolated from a saliva sample is provided. The method includes a) collecting a saliva sample from a human subject; b) filtering the saliva sample using a 0.22 μm to 5.0 μm hydrophilic membrane to produce a filtered sample that is free of cells; c) collecting the filtered sample in at first and a second receiving device; d) adding an ethanol solution to the first receiving device to produce a 20% ethanol-containing filtered sample comprising a protein sample, with the proviso that alcohol is not added to the second receiving device to produce an alcohol-free filtered sample comprising a nucleic acid sample; wherein the protein sample and the nucleic acid sample are stabilized for at least 3 days when stored at 25 degrees Celsius. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the method further comprises the step of (e) performing an analysis on the filtered samples collected in the first and second receiving devices comprising one or more of: a protein analysis on the ethanol-containing filtered sample or a nucleic acid analysis on the alcohol-free filtered sample. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the protein sample is stabilized for at least 2 weeks when stored at 25 degrees Celsius. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the nucleic acid sample is stabilized for at least 10 weeks when stored at 25 degrees Celsius. In some embodiments, the ethanol solution comprises 15-25% ethanol. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the ethanol solution comprises 5-35% ethanol. In a further embodiment, in accordance with any of the above embodiments or in combination with any of the above embodiments, the hydrophilic membrane in 0.22 μm.
-
FIG. 1 illustrates a schematic diagram of the experimental design of Example 1. -
FIG. 2 illustrates the effect of DNA removal by the described DNase treatment procedures as demonstrated using human cell genomic DNA (300 μg/ml) as template. Solid bars represent GAPDH, white bars represent ACTB, and striped bars represent RPS9. -
FIG. 3 illustrates expression levels of 3 SIRG mRNAs analyzed by standard procedures and the DSTA method atday 0. -
FIG. 4 illustrates expression levels of 3 SIRG mRNAs measure during 10 weeks of storage at ambient temperature without stabilizing reagent. -
FIG. 5 illustrates box-and-whisker plots showing the Cq value distributions of 90 clinical samples used in the validation study of OSCC salivary transcripts. The results of each transcript were displayed individually in (A) H3F3A; (B) IL1B; (C) IL8; (D) OAZi; (E) SAT1; (F) DUSP1, and (G) S100P. Each transcript was detected in 27 OSCC and 63 normal subjects by standard and streamlined procedures atDay 0 and Week 10 (DSTA method only), which were represented by 1-6 on X axis: 1: Normal subjects assayed by standard procedures; 2: OSCC subjects assayed by standard procedures; 3: Normal subjects assayed by the SDTA method ofDay 0; 4: OSCC subjects assayed by the DSTA method atDay 0; 5: Normal subjects assayed by the DSTA method atWeek 10; and 6: OSCC subjects assayed by the DSTA method atWeek 10. Y axis is represented by raw Cq value in each plot. -
FIG. 6 illustrates (A) ROC curves for 7 OSCC salivary transcripts that was each detected by standard procedures, (B) ROC curves for 7 OSCC salivary transcripts that each was detected by the DSTA atday 0, and (C) ROC curves for 7 OSCC salivary transcripts that each was detected by the DSTA atweek 10. -
FIG. 7 illustrates a schematic diagram of the saliva sample collection and experimental design of Example 2. -
FIG. 8 illustrates ELISA analysis of saliva β-actin: RT+R: RT with protease inhibitors; 4° C.+R: 4 degree with protease inhibitors (n=5) (*: p<0.05). -
FIG. 9 illustrates SDS-Page for saliva proteins without (A) and with (B) amylase depletion, samples were stored for 3 days with corresponding treatment (C) Relative quantification of the labeled 4 bands (D) The western blot of β-actin after 7 days (E) The quantification data for the western blot in (D) (n=3). All quantification was normalized by the corresponding bands in the positive control. RT w/E: room temperature with adding 20% ethanol (a) without amylase depletion; (b) with amylase depletion. -
FIG. 10 illustrates Protein stabilization by denaturing. (A) Western blot of β-actin, RT w/B: RT with boiling, RT w/e: RT with 20-time volumes ethanol added (B) The quantification data for western blot in (A) (n=5). -
FIG. 11 illustrates western blot of β-actin (A) with and without adding ethanol atday 3,day 7 andday 14. The quantification data is shown in dot plot (B) (n=8). RT w/E: room temperature with 20% ethanol added. -
FIG. 12 illustrates ELISA of IL1β in saliva samples (n=10) at different conditions. (A) Stored for 7 days (B) Stored for 14 days (C) Stored for 30 days. RT w/E: room temperature with 20% ethanol added. -
FIG. 13 illustrates depicts a scheme of saliva collection, processing, stabilization and storage (SCPSS) as described in Example 3. Provided are a syringe, absorbent pad, filter, tubes and stabilizers. The collection scheme of various biomarkers is shown. - Human saliva contains an array of analytes (proteins, mRNA, and DNA) that can be used as biomarkers for translational and clinical applications. For example, saliva can be used to detect, caries risk, peridontitis, oral cancer, breast cancer, lung cancer, Sjögren's syndrome, salivary gland disease and infectious diseases such as hepatitis, HIV, and HCV.
- A value of using saliva as a source of biomarkers is the ease of sampling and high subject compliance for sample collection. Presence of RNAs and protein in the cell-free fluid phase portion of saliva was confirmed by the procedures described extensively in the Examples. However, current methods for the extraction of nucleic acids and protein from saliva require the saliva sample to be processed immediately after collection using special instrumentation and trained personnel, the addition of nucleic acid and protein stabilizers, and storage at −80° C.
- The ability to provide a user friendly and easy to use collector apparatus for major salivary diagnostic analytes is of interest. The present invention provides methods and an apparatus for the collection of saliva and saliva biomarkers. The methods can be carried out by non-professionals in a user friendly integrated point-of-care collection system that allows storage and shipment at room temperature without the addition of commonly used nucleic acid and protein stabilizers.
- Unless otherwise noted, the technical terms used herein are according to conventional usage as understood by persons skilled in the art. Definitions of common terms in molecular biology may be found in standard texts (e.g. Benjamin Lewin, Genes V, published by Oxford University Press, 1994 (ISBN 0-19854287-9); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd, 1994 (ISBN 0-632-02182-9); and Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8)).
- A “saliva sample” refers to samples derived from saliva from an animal that produces saliva. Saliva is a component of oral fluid produced in most animals.
- A “filtered sample” refers to a saliva sample that has been processed to remove cells by separating the cell-phase and the fluid phase of saliva. A filtered sample can have more than 50%, more than 75%, more than 95%, or a 100% removal of cells. A sample is filtered to avoid mechanical rupture of cellular elements that could contribute to the detection of unwanted analytes in the cell-free phase. A filtered sample can further exclude extraneous substances, including but not limited to, food debris.
- The term “alcohol solution” refers to any solution containing an alcohol such as methanol, isopropyl alcohol, and ethanol. An alcohol solution can contain, for example, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, or 100% alcohol, e.g., ethanol. The term “alcohol-containing filtered sample” refers to a cell free saliva sample comprising an alcohol, e.g., an ethanol solution, as described herein.
- The term “alcohol-free filtered sample” refers to a cell free saliva sample that is at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% free of alcohol, including but not limited to, isopropyl alcohol, methanol, or ethanol.
- The term “analysis” as used herein refers to any quantitative or qualitative examination or measurement of saliva components. Non-limiting examples are analyses that determine the presence or absence of nucleic acids or proteins; over or under expression of nucleic acids or proteins; or a genomic, transcriptomic, or proteomic examination of a saliva sample.
- The term “collection apparatus” refers to any apparatus that can be used to collect saliva. As used herein, a collection apparatus includes a sample collection pad as described herein, a filter that is capable of separating cells from a sample as described herein, and a receiving device that is capable of receiving the filtered sample as described herein.
- The term “collection pad” refers to any material that is suitable for collection of saliva. Examples can include, but are not limited to, nitrocellulose, cellulose acetate, polyethersulfur fabric, cellulose fiber such as paper strips or cotton, nylon, gel foam, fiber glass, polycarbonate, polyproplene, acetate, rayon, polyester absorbent pad, or other synthetic materials capable of collecting saliva.
- The term “filter” refers to any filter capable of separating cells from a saliva sample. Exemplary filters can include, but are not limited to, cellulose fiber matrix, hydrophilic filters, such as those based on polyvinylidene fluoride membrane, or filters based on polypropylene membrane. Filters can have micropores that are a wide variety of sizes, including, but not limited to, 0.22 μm, 0.45 μm and 5.0 μm. The term “filtering” refers to the application of a liquid sample containing cells, e.g. a saliva sample, to a membrane filter. Filtering is the process of removing cells and/or parts of cells from excess fluid in a liquid sample by passing the sample through a microporous membrane filter.
- The phrase “free of cells” refers to a sample solution that has been filtered in accordance with the methods of the present invention such that the sample solution is completely or substantially cell-free.
- The term “degradation” refers to, for example, the proteolytic cleavage of proteins into smaller peptides and amino acids; or the catalysis of nucleic acids into smaller components. Degradation as used herein results in proteins and nucleic acids having compromised gene expression and clinical utilities.
- The term “receiving device” refers to any device capable of collecting a filtered sample. Receiving devices can include, but are not limited to, devices formed wholly or partially from plastic, such as polypropylene, polystyrene, polycarbonate, polyurethane, or polyethylene, polycarbonate, polytetrafluoroethylene, enamel, nylon, ceramic or any combination thereof, or from glass and/or metallic materials. Receiving devices can be, for example, snap cap, screw cap, and loop-cap microcentrifuge tubes.
- The term “ambient temperature” is the temperature of the surrounding environment, which generally refers to room temperature in a clinical setting. Ambient temperature is generally between 20 and 25 degrees Celsius.
- The term “extracellular” as used herein refers to fluidic space outside the plasma membranes of cells. The composition of the extracellular space can include proteins, nucleic acids, lipids, hormones, microbial product, etc.
- The term “stabilizing” or “stabilization” refers to any effect of the methods according to the present invention resulting in the stabilization of the structure and/or activity of a biomolecule, the elongation of the shelf-life of a biomolecule and/or the protection of a biomolecule against stress. This results in a biological activity of the biomolecule which is retained to a significant degree. Exemplary stabilizations can be nucleic acids or proteins that are stabilized for 2 to 10 weeks or more at room temperature.
- The term “nucleic acid” refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form, and complements thereof. The term refers to all forms of nucleic acids (e.g., gene, pre-mRNA, mRNA) and their polymorphic variants, alleles, mutants, and interspecies homologs. The term nucleic acid is used interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide. The term encompasses nucleic acids that are naturally occurring or recombinant. Nucleic acids can (1) code for an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino acid sequence identity, preferably over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acids, to a polypeptide encoded by a referenced nucleic acid or an amino acid sequence described herein; (2) specifically bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising a referenced amino acid sequence, immunogenic fragments thereof, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid encoding a referenced amino acid sequence, and conservatively modified variants thereof, (4) have a nucleic acid sequence that has greater than about 95%, preferably greater than about 96%, 97%, 98%, 99%, or higher nucleotide sequence identity, preferably over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a reference nucleic acid sequence.
- The terms “polypeptide,” “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.
- The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid. Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
- The phrase “specifically (or selectively) binds” when referring to a protein, nucleic acid, antibody, or small molecule compound refers to a binding reaction that is determinative of the presence of the protein or nucleic acid, such as the differentially expressed genes of the present invention, often in a heterogeneous population of proteins or nucleic acids and other biologics. In the case of antibodies, under designated immunoassay conditions, a specified antibody may bind to a particular protein at least two times the background and more typically more than 10 to 100 times background. Specific binding to an antibody under such conditions requires an antibody that is selected for its specificity for a particular protein. For example, polyclonal antibodies can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with the selected antigen and not with other proteins. This selection may be achieved by subtracting out antibodies that cross-react with other molecules. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Antibodies, A Laboratory Manual (1988) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity).
- Embodiments described herein include a streamlined, ambient-temperature processing, stabilization, and storage of nucleic acids derived from saliva. Direct saliva transcriptome and genome analyses using cell-free saliva supernatant instead of isolated nucleic acids, which include the processing, stabilization, and storage of saliva samples, as described herein, can be performed at ambient temperature without stabilization agents. In some embodiments, stabilization agents can be included. In some embodiments, alcohol can be included.
- Profiling salivary nucleic acids over the course of disease progression can reveal potential biomarkers indicative of different stages of disease, which can be useful in early detection of disease. Nucleic acid stabilization requiring extremely low temperatures or nucleic acid stabilization chemicals can be impractical for field applications or daily clinical operations. Furthermore, nucleic acid stabilizers can affect downstream analyses. Described herein is the extraction of extracellular nucleic acids that can be stored at ambient temperatures until needed for downstream applications, such as PCR, without the need for additional stabilization chemicals.
- The nucleic acids of the present invention can be stored at room temperature for longer than 1 week, 2 weeks, 5 weeks, 10 weeks, or 25 weeks or more.
- The methodology for preparing nucleic acids in a form that is suitable for detection following collection of the cell-free salivary sample is well known in the art. Such methods can include, but are not limited to, PCR, reverse transcriptase-PCR (RT-PCR), real-time PCR, reverse transcription quantitative real-time PCR (RT-qPCR), ligase chain reaction, strand displacement amplification (SDA), self-sustained sequence replication (3SR), or in situ PCR. Any suitable qualitative or quantitative methods known in the art for detecting specific nucleic acid (e.g., RNA or DNA) can be used. Nucleic acid can be detected by, for example, by reverse transcriptase-PCR, or in Northern blots containing poly A mRNA, and other methods well known in the art.
- Applicable PCR amplification techniques are described in, e.g., Ausubel et al. and Innis et al., supra. General nucleic acid hybridization methods are described in Anderson, “Nucleic Acid Hybridization,” BIOS Scientific Publishers, 1999. For PCR, a temperature of about 36° C. is typical for low stringency amplification, although annealing temperatures may vary between about 32° C. and 48° C. depending on primer length. For high stringency PCR amplification, a temperature of about 62° C. is typical, although high stringency annealing temperatures can range from about 50° C. to about 65° C., depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90° C.-95° C. for 30 sec-2 min., an annealing phase lasting 30 sec.-2 min., and an extension phase of about 72° C. for 1-2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis et al., PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y. (1990).
- Real time, quantitative reverse transcriptase PCR (RT-PCR), or reverse transcription quantitative real-time PCR (RT-qPCR) can be used to determine the presence of mutations. RNA extraction can be performed by any method know to those of skill in the art, e.g., methods involving proteinase K tissue digestion and alcohol-based nucleic acid precipitation, treatment with DNase to digest contaminating DNA, RNA purification using silica-gel-membrane technology, methods utilizing commercially available kits such as Trizol and RNeasy, or any combination thereof. Real time RT-PCR can be performed by any method known to those of skill in the art, e.g., Taqman real time PCR using Applied Biosystem assays.
- Nucleic acid primers, or probes can be generated using the polynucleotide sequences disclosed herein. The probes are preferably at least about 12, 15, 16, 18, 20, 22, 24, or 25 nt fragments of a contiguous sequence of nucleic acid or polypeptide. The probes can be produced by, for example, chemical synthesis, PCR amplification, generation from longer polynucleotides using restriction enzymes, or other methods well known in the art.
- Nucleic acid probes can be used as diagnostics wherein a biological sample to be analyzed, such as saliva, can be treated, if desired, to extract the nucleic acids contained therein. The resulting nucleic acid from the sample can be subjected to gel electrophoresis or other size separation techniques; alternatively, the nucleic acid sample can be dot blotted without size separation. The nucleic acids extracted from the sample are then treated with the labeled probe under hybridization conditions of suitable stringencies. The probes can be made completely complementary to the target nucleic acid or portion thereof (e.g., to all or a portion of a sequence encoding a target). Therefore, usually high stringency conditions are desirable in order to prevent or at least minimize false positives. However, conditions of high stringency should only be used if the probes are complementary to regions of the target which lack heterogeneity. The stringency of hybridization is determined by a number of factors during hybridization and during the washing procedure, including temperature, ionic strength, length of time, and concentration of formamide (Sambrook et al. (1989), “Molecular Cloning; A Laboratory Manual,” Second Edition (Cold Spring Harbor Press, Cold Spring Harbor, N.Y.)).
- Nucleic acid probes, or alternatively nucleic acid from the samples, can be provided in solution for such assays, or can be affixed to a support (e.g., solid or semi-solid support). Examples of supports that can be used are nitrocellulose (e.g., in membrane or microtiter well form), polyvinyl chloride (e.g., in sheets or microtiter wells), polystyrene latex (e.g., in beads or microtiter plates, polyvinylidine fluoride, diazotized paper, nylon membranes, activated beads, and Protein A beads.
- Non-PCR-based, sequence specific DNA amplification techniques can also be used with the invention to detect nucleic acids. An example of such techniques include, but is not necessarily limited to, the Invader assay (see, e.g., Kwiatkowski et al. Mol Diagn. 1999, 4:353-64. See also U.S. Pat. No. 5,846,717).
- Nucleic acids can be detectably labeled. Exemplary detectable labels include, but are not limited to, radiolabels, fluorochromes, (e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2′,7′-dimethoxy-4′,5′-dichloro-6-carboxyfluorescein, 6-carboxy-X-rhodamine (ROX), 6-carboxy-2′,4′,T,4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N′,N′-tetramethyl-6-carboxyrho-damine (TAMRA)), radioactive labels, (e.g. .sup.32p, .sup.35S, and sup.3H), and the like. The detectable label can involve two stage systems (e.g., biotin-avidin, hapten-anti-hapten antibody, and the like).
- Analysis of nucleic acid mutations derived from saliva samples can be performed using techniques known in the art including, without limitation, electrophoretic analysis or sequence analysis. Non-limiting examples of electrophoretic analysis include slab gel electrophoresis such as agarose or polyacrylamide gel electrophoresis, capillary electrophoresis, and denaturing gradient gel electrophoresis (DGGE). Other methods of nucleic acid analysis include, but is limited to, restriction analyses such as restriction-fragment-length-polymorphism detection based on allele-specific restriction-endonuclease cleavage (Kan and Dozy, Lancet ii:910-12 (1978)), hybridization with allele-specific oligonucleotide probes (Wallace et al., Nucl. Acids Res. 6:3543-3557 (1978)), including immobilized oligonucleotides (Saiki et al., PNAS 86:6230-6234 (1989)), oligonucleotide arrays (Maskos and Southern, Nucl. Acids Res. 21:2269-2270 (1993)), oligonucleotide-ligation assay (OLA) (Landegren et al., Science 241:1077 (1988)), allele-specific ligation chain reaction (LCR) (Barrany, PNAS 88:189-193 (1991)), gap-LCR (Abavaya et al. Nucl. Acids Res. 23:675-682 (1995)), single-strand-conformation-polymorphism detection (Orita et al., Genomics 5:874-879 (1983)), RNAase cleavage at mis-matched base-pairs (Myers et al., Science 230:1242 (1985)), cleavage of heteroduplex DNA, methods based on allele specific primer extension, genetic bit analysis (GBA) (Nikiforov et al., Nucl. Acids Res. 22:4167-4175 (1994)), in situ hybridization, Southern blot, Northern blot analysis, denaturing high performance liquid chromatography (DHPLC) (Kim et al., Genetic Testing 12:295-298 (2008)). Non-limiting examples of sequence analysis include Maxam-Gilbert sequencing, Sanger sequencing, capillary array DNA sequencing, thermal cycle sequencing (Sears et al., Biotechniques, 13:626-633 (1992)), solid-phase sequencing (Zimmerman et al., Methods Mol. Cell Biol., 3:39-42 (1992)), sequencing with mass spectrometry such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS; Fu et al., Nat. Biotechnol., 16:381-384 (1998)), and sequencing by hybridization (Chee et al., Science, 274:610-614 (1996); Drmanac et al., Science, 260:1649-1652 (1993); Drmanac et al., Nat. Biotechnol., 16:54-58 (1998)), NGS (next-generation sequencing) (Chen et al., Genome Res. 18:1143-1149 (2008); Srivatsan et al. PloS Genet. 4:e1000139 (2008)), Polony sequencing (Porreca et al., Curr. Protoc. Mol. Biol. Chp. 7; Unit7.8 (2006), ion semiconductor sequencing (Elliott et al., J.Biomol Tech. 1:24-30 (2010), DNA nanoball sequencing (Kaji et al., Chem Soc Rev 39:948-56 (2010), single molecule real-time sequencing (Flusberg et al., Nat. Methods 6:461-5 (2010), or nanopore DNA sequencing (Wanunu, Phys Life Rev 9:125-58 (2012).
- Probes (or sample nucleic acid) can be provided on an array for detection following saliva extraction. Arrays can be created by, for example, spotting polynucleotide probes onto a substrate (e.g., glass, nitrocellulose, and the like) in a two-dimensional matrix or array. The probes can be bound to the substrate by either covalent bonds or by non-specific interactions, such as hydrophobic interactions. Samples of polynucleotides can be detectably labeled (e.g., using radioactive or fluorescent labels) and then hybridized to the probes. Double stranded polynucleotides, comprising the labeled sample polynucleotides bound to probe polynucleotides, can be detected once the unbound portion of the sample is washed away. Techniques for constructing arrays and methods of using these arrays are described in EP 799 897; WO 97/29212; WO 97/27317; EP 785 280; WO 97/02357; U.S. Pat. No. 5,593,839; U.S. Pat. No. 5,578,832; EP 728 520; U.S. Pat. No. 5,599,695; EP 721 016; U.S. Pat. No. 5,556,752; WO 95/22058; and U.S. Pat. No. 5,631,734. Arrays are particularly useful where, for example a single sample is to be analyzed for the presence of two or more nucleic acid target regions, as the probes for each of the target regions, as well as controls (both positive and negative) can be provided on a single array. Arrays thus facilitate rapid and convenience analysis.
- Embodiments described herein include a streamlined, ambient-temperature processing, stabilization, and storage of proteins derived from saliva. Direct saliva proteomic analyses using cell-free saliva supernatant instead of isolated proteins, which include the processing, stabilization, and storage of saliva samples, as described herein, can be performed at ambient temperature.
- Profiling saliva proteins over the course of disease progression can reveal potential biomarkers indicative of different stages of disease, which can be useful in early detection of disease. Protein stabilization requiring extremely low temperatures or protein stabilization chemicals can be impractical for field applications or daily clinical operations. Furthermore, protein stabilizers can affect downstream analyses. In some embodiments, protein stabilizers can be used. In other embodiments, protein stabilizers are not used. In other embodiments, ethanol can be used to stabilize the salivary proteins of the present invention.
- Described herein is further the addition of alcohol to increase the stability of cell-free saliva samples at ambient temperature. Without being bound by theory, alcohol could replace ordered water molecules around exposed hydrophobic groups, which surround the non-polar side chins of the proteins and thus increase the stability of salivary proteins. Alcohol can include, but it not limited to, ethanol. Alcohol can be added, for example, at concentrations of 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95% alcohol. Alcohol can be added, for example, at concentrations of 25-35%, 20-40%, 15-45%, 10-50%, 5-50%.
- The nucleic acids of the present invention can be stored at room temperature for longer than 1 week, 2 weeks, 5 weeks, 10 weeks, or 25 weeks or more.
- The methodology for preparing protein in a form that is suitable for detection following collection of the cell-free salivary sample is well known in the art. Extracellular protein can be purified to substantial purity by standard techniques, including selective precipitation with such substances as ammonium sulfate; column chromatography, immunopurification methods, and others (see, e.g., Scopes, Protein Purification: Principles and Practice (1982); U.S. Pat. No. 4,673,641; Ausubel et al, supra; and Sambrook et al., supra).
- The molecular weight of the protein can be used to isolate it from proteins of greater and lesser size using ultrafiltration through membranes of different pore size (for example, Amicon or Millipore membranes). As a first step, the protein mixture is ultrafiltered through a membrane with a pore size that has a lower molecular weight cut-off than the molecular weight of the protein of interest. The retentate of the ultrafiltration is then ultrafiltered against a membrane with a molecular cut off greater than the molecular weight of the protein of interest. The recombinant protein will pass through the membrane into the filtrate. The filtrate can then be chromatographed.
- The protein can also be separated from other proteins on the basis of its size, net surface charge, hydrophobicity, and affinity for ligands or substrates using column chromatography. In addition, antibodies raised against proteins can be conjugated to column matrices and the proteins immunopurified. All of these methods are well known in the art. It will be apparent to one of skill that chromatographic techniques can be performed at any scale and using equipment from many different manufacturers (e.g., Pharmacia Biotech).
- Antibody reagents can be used in assays to detect proteins in saliva samples using any of a number of immunoassays known to those skilled in the art. Immunoassay techniques and protocols are generally described in Price and Newman, “Principles and Practice of Immunoassay,” 2nd Edition, Grove's Dictionaries, 1997; and Gosling, “Immunoassays: A Practical Approach,” Oxford University Press, 2000. A variety of immunoassay techniques, including competitive and non-competitive immunoassays, can be used. (See, e.g., Self et al., Curr. Opin. Biotechnol 7:60-65 (1996)). The term immunoassay encompasses techniques including, without limitation, enzyme immunoassays (EIA) such as enzyme multiplied immunoassay technique (EMIT), enzyme-linked immunosorbent assay (ELISA), IgM antibody capture ELISA (MAC ELISA), and microparticle enzyme immunoassay (META); immunohistochemical assay, capillary electrophoresis immunoassays (CEIA); radioimmunoassays (RIA); immunoradiometric assays (IRMA); fluorescence polarization immunoassays (FPIA); and chemiluminescence assays (CL). If desired, such immunoassays can be automated. Immunoassays can also be used in conjunction with laser induced fluorescence. (See, e.g., Schmalzing et al., Electrophoresis, 25 18:2184-93 (1997); Bao, J Chromatogr. B. Biomed. Sci., 699:463-80 (1997)). Liposome immunoassays, such as flow-injection liposome immunoassays and liposome immunosensors, are also suitable for use in the present invention. (See, e.g., Rongen et al., J. Immunol. Methods, 204:105-133 (1997)). In addition, nephelometry assays, in which the formation of protein/antibody complexes results in increased light scatter that is converted to a peak rate signal as a function of the marker concentration, are suitable for use in the methods of the present invention. Nephelometry assays are commercially available from Beckman Coulter (Brea, Calif.; Kit #449430) and can be performed using a Behring Nephelometer Analyzer (Fink et al., J Clin. Chem. Clin. Biochem., 27:261-276 (1989)).
- Specific immunological binding of an antibody can be detected directly or indirectly. A detectable moiety can be used (direct or indirect detection). A variety of detectable moieties are well known to those skilled in the art, and can be any material detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Detectable moieties can be used, with the choice of label depending on the sensitivity required, ease of conjugation with the antibody, stability requirements, and available instrumentation and disposal provisions. Suitable detectable moieties include, but are not limited to, radionuclides, fluorescent dyes (e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon Green™, rhodamine, Texas red, tetrarhodimine isothiocynate (TRITC), Cy3, Cy5, etc.), fluorescent markers (e.g., green fluorescent protein (GFP), phycoerythrin, etc.), autoquenched fluorescent compounds that are activated by tumor-associated proteases, enzymes (e.g., luciferase, horseradish peroxidase, alkaline phosphatase, etc.), nanoparticles, biotin, digoxigenin, metals, and the like. Direct labels include fluorescent or luminescent tags, metals, dyes, radionucleodies, and the like, attached to the antibody. An antibody labeled with iodine-125 (1251) can be used. A chemiluminescence assay using a chemiluminescent antibody specific for nucleic acids or proteins is suitable for sensitive, non-radioactive detection of nucleic acids or protein levels. An antibody labeled with fluorochrome is also suitable. Examples of fluorochromes include, without limitation, DAPI, fluorescein, Hoechst 33258, R-phycocyanin, B-phycoerythrin, R-phycoerythrin, rhodamine, Texas red, and lissamine. Indirect labels include various enzymes well known in the art, such as horseradish peroxidase (HRP), alkaline phosphatase (AP), β-galactosidase, urease, and the like. A horseradish-peroxidase detection system can be used, for example, with the chromogenic substrate tetramethylbenzidine (TMB), which yields a soluble product in the presence of hydrogen peroxide that is detectable at 450 nm. An alkaline phosphatase detection system can be used with the chromogenic substrate p-nitrophenyl phosphate, for example, which yields a soluble product readily detectable at 405 nm. Similarly, a β-galactosidase detection system can be used with the chromogenic substrate o-nitrophenyl-β-D-galactopyranoside (ONPG), which yields a soluble product detectable at 410 nm. An urease detection system can be used with a substrate such as urebromocresol purple (Sigma Immunochemicals; St. Louis, Mo.). Other proteins capable of specifically binding immunoglobulin constant regions, such as protein A or protein G can also be used as a label agent. These proteins exhibit a strong non-immunogenic reactivity with immunoglobulin constant regions from a variety of species (see, e.g., Kronval et al., J. Immunol. 111:1401-1406 (1973); Akerstrom et al., J. Immunol. 135:2589-2542 (1985).
- Western blot (immunoblot) analysis can be used to detect and quantify the presence of an antigen in the sample. The technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support, (such as a nitrocellulose filter, a nylon filter, or derivatized nylon filter), and incubating the sample with the antibodies that specifically bind the antigen. The anti-antigen antibodies specifically bind to the antigen on the solid support. These antibodies can be directly labeled or alternatively can be subsequently detected using labeled antibodies (e.g., labeled sheep anti-mouse antibodies) that specifically bind to the anti-antigen antibodies.
- An ELISA method can be used as follows: (1) bind an antibody or antigen to a substrate; (2) contact the bound receptor with a fluid or tissue sample containing the virus, a viral antigen, or antibodies to the virus; (3) contact the above with an antibody bound to a detectable moiety (e.g., horseradish peroxidase enzyme or alkaline phosphatase enzyme); (4) contact the above with the substrate for the enzyme; (5) contact the above with a color reagent; (6) observe color change. The above method can be readily modified to detect presence of an antibody in the sample or a specific protein as well as a virus.
- An antigen and/or a subject's antibodies to the virus can be detected utilizing a capture assay. Briefly, to detect antibodies in a sample, antibodies to an immunoglobulin, e.g., anti-IgG (or IgM) are bound to a solid phase substrate and used to capture the patient's immunoglobulin from serum. The antigen, or reactive fragments of the antigen, are then contacted with the solid phase followed by addition of a labeled antibody. The amount of specific antibody can then be quantitated by the amount of labeled antibody binding. A micro-agglutination test can also be used to detect the presence of an antigen in test samples. Briefly, latex beads are coated with an antibody and mixed with a test sample, such that the antigen in the tissue or body fluids that is specifically reactive with the antibody crosslink with the receptor, causing agglutination. The agglutinated antibody-virus complexes within a precipitate, visible with the naked eye or by spectrophotometer.
- Competitive assays can also be adapted to provide for an indirect measurement of the amount of an antigen present in the sample. Briefly, serum or other body fluids from the subject is reacted with an antibody bound to a substrate (e.g. an ELISA 96-well plate). Excess serum is thoroughly washed away. A labeled (enzyme-linked, fluorescent, radioactive, etc.) monoclonal antibody is then reacted with the previously reacted antibody complex. The amount of inhibition of monoclonal antibody binding is measured relative to a control. Monoclonal antibodies (MABs) can also be used for detection directly in samples by IFA for MABs specifically reactive for the antibody-antigen complex.
- A hapten inhibition assay is another competitive assay. In this assay the known antigen can be immobilized on a solid substrate. A known amount of anti-antigen antibody is added to the sample, and the sample is then contacted with the immobilized antigen. The amount of antibody bound to the known immobilized antigen is inversely proportional to the amount of antigen present in the sample. The amount of immobilized antibody can be detected by detecting either the immobilized fraction of antibody or the fraction of the antibody that remains in solution. Detection can be direct where the antibody is labeled or indirect by the subsequent addition of a labeled moiety that specifically binds to the antibody as described above.
- Immunoassays in the competitive binding format can also be used for crossreactivity determinations. For example, an antigen can be immobilized to a solid support. Proteins can be added to the assay that competes for binding of the antisera to the immobilized antigen. The ability of the added proteins to compete for binding of the antisera to the immobilized protein is compared to the ability of the antigen to compete with itself. The percent crossreactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% crossreactivity with each of the added proteins listed above are selected and pooled. The cross-reacting antibodies are optionally removed from the pooled antisera by immunoabsorption with the added considered proteins, e.g., distantly related homologs. The immunoabsorbed and pooled antisera can then be used in a competitive binding immunoassay as described above to compare a second protein, thought to be perhaps an allele or polymorphic variant of an antigen, to the immunogen protein. In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required to inhibit 50% of binding is less than 10 times the amount of the antigen that is required to inhibit 50% of binding, then the second protein is said to specifically bind to the polyclonal antibodies generated to antigen.
- A signal from a direct or indirect label can be analyzed, for example, using a spectrophotometer to detect color from a chromogenic substrate; a radiation counter to detect radiation such as a gamma counter for detection of 1251; or a fluorometer to detect fluorescence in the presence of light of a certain wavelength. Where the label is a radioactive label, means for detection include a scintillation counter or photographic film as in autoradiography. Where the label is a fluorescent label, it can be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence. The fluorescence can be detected visually, by the use of electronic detectors such as charge coupled devices (CCDs) or photomultipliers and the like. Similarly, enzymatic labels can be detected by providing the appropriate substrates for the enzyme and detecting the resulting reaction product. Colorimetric or chemilluminescent labels can be detected simply by observing the color associated with the label. Thus, in various dipstick assays, conjugated gold often appears pink, while various conjugated beads appear the color of the bead. For detection of enzyme-linked antibodies, a quantitative analysis can be made using a spectrophotometer such as an EMAX Microplate Reader (Molecular Devices; Menlo Park, Calif.) in accordance with the manufacturer's instructions. If desired, the assays of the present invention can be automated or performed robotically, and the signal from multiple samples can be detected simultaneously.
- The antibodies can be immobilized onto a variety of solid supports, such as magnetic or chromatographic matrix particles, the surface of an assay plate (e.g., microtiter wells), pieces of a solid substrate material or membrane (e.g., plastic, nylon, paper), and the like. An assay strip can be prepared by coating the antibody or a plurality of antibodies in an array on a solid support. This strip can then be dipped into the test sample and processed quickly through washes and detection steps to generate a measureable signal, such as a colored spot.
- One of skill in the art will appreciate that it is often desirable to minimize non-specific binding in immunoassays. Particularly, where the assay involves an antigen or antibody immobilized on a solid substrate it is desirable to minimize the amount of non-specific binding to the substrate. Means of reducing such non-specific binding are well known to those of skill in the art. Typically, this technique involves coating the substrate with a proteinaceous composition. In particular, protein compositions such as bovine serum albumin (BSA), nonfat powdered milk, and gelatin are widely used with powdered milk being most preferred.
- Embodiments of the invention described herein relate to the analysis of extracellular nucleic acids and proteins derived from a cell-free fluid phase portion of saliva. Saliva Collection, Processing, Stabilization, and Storage (SCPSS) is designed as an all-in-one kit to collect, process, stabilize, and store saliva samples for research and clinical applications such as molecular diagnostics based on protein, RNA, and DNA.
- The presence of nucleic acids and proteins in the cell-free fluid phase portion of saliva was confirmed by the procedures described in the Examples. The quality of the detected nucleic acids and proteins meet the demand for techniques such as PCR, qPCR, microarray assays, ELISA, Western blot, etc.
- To obtain filtered samples, subjects can be given an absorbent pad to place under their tongue for a period of time long enough to absorb saliva. Any type of absorbent pad that absorbs saliva can be used, and SCPSS will work with any animal that produces saliva. Suitable absorbent materials can include, but are not limited to, nitrocellulose, cellulose acetate, polyethersulfur fabric, cellulose fiber such as paper strips or cotton, nylon, gel foam, fiber glass, polycarbonate, polyproplene, acetate, rayon, polyester absorbent pad, or other synthetic materials capable of collecting saliva. Any other method known in the art can be used to collect saliva. For example, the spitting method can also be used as a means of collecting a sample of saliva. An alternative method of obtaining saliva samples is a method whereby saliva is sucked out of the oral cavity by means of an aspirator. Saliva that has collected in the oral cavity can also be simply dripped out into a sample vessel.
- In an embodiment, the absorbent pad can be individually placed into a syringe having a filter attached to the end of the syringe. The filter can be any type of filter described herein capable of separating saliva into a cell-free and fluid phase, for example, a 5.0 μm hydrophilic PVDF filter (Millex-SV, Millipore). The syringe plunger can then be used to push the saliva out of the pad and through the filter into a collection tube (
FIG. 7 ). The tubes can be pre-loaded with specific stabilizer for protein, RNA, and DNA. The tubes can also be pre-loaded with an alcohol solution. The collection apparatus can be any type of commercial collection pad. For example, the SUPER●SAL or VERSI●SAL collection devices (Oasis Diagnostics, Vancouver, Wash.) can be used to collect saliva samples and further configured to be used with a sample filtration apparatus. In other embodiments, the saliva collection device can separate samples into two or more aliquots following filtration. An exemplary device for dual separation is the ULTRA●SAL-2 saliva collection device (Oasis Diagnostics, Vancouver, Wash.) (FIG. 13 ). - An embodiment describes the apparatus described herein in a method of for collecting saliva. The method can include inserting the sample collection pad into the oral cavity for sufficient time to moisten the sample collection pad, inserting the collection pad into the receiving tube, applying sufficient force to cause the materials collected in the collection pad to pass through the filter thereby forming a filtered sample, and collecting the filtered sample into one or more receiving devices.
- It can be appreciated that classes of compounds in addition to nucleic acid and protein can be analyzed, e.g., virus, prions, bacteria (e.g., Mycobacterium tuberculosis), carbohydrates such as sugars, lipids, fatty acids, hormones, cholesterol, metabolites, and small molecule drug compounds.
- It can further be appreciated that the apparatus can be used to diagnose a disease in a subject. The disease can include, but is not limited to, lung cancer, breast cancer stomach cancer, liver cirrhosis, a failing kidney, ulcer cancer, ovarian cancer, uterus cancer, cervical cancer, oral cancer, esophageal cancer, thyroid cancer, larynx cancer, leukemia, colon cancer, bladder cancer, prostate cancer, bronchus cancer, pancreas cancer, caries risk, periodontitis, salivary gland disease, head cancer, neck cancer, skin cancer, diabetes, smoking status, and infectious diseases such as hepatitis, HIV, and HCV. It can further be appreciated that the apparatus can be used to monitor pH levels in a subject. It can further be appreciated that the apparatus can be used to test for use of a drug including, but not limited to, prescription and controlled drugs, alcohol, methamphetamine, cocaine, caffeine, morphine, codeine, amphetamine, ephedrine, narcotine, DMT, and MDMA.
- The methods system herein described are further illustrated in the following examples, which are provided by way of illustration and are not intended to be limiting.
- Standard operating procedures for salivary transcriptomic analysis require low temperatures and lengthy mRNA isolation processes. This example describes a streamlined, ambient-temperature processing, stabilization, and storage protocol for clinical analysis of salivary RNA.
- Direct Saliva transcriptome analysis (DSTA) procedures, including processing, stabilization, and storage of saliva samples, were performed at ambient temperatures and used saliva supernatant (SS) instead of isolated mRNA for saliva transcriptomic detection. SS was prepared by centrifuging collected unstimulated whole saliva at 2600 g for 15 min at 4° C., followed by aspiration from the pellet. The harvested cell-free SS was then sealed and stored in a cool, dry environment at ambient temperature without stabilizing reagent until use. The salivary mRNA was directly detected by a reverse transcription quantitative real-time PCR (RT-qPCR) assay with the stored SS used as the template.
- Saliva samples were collected, according to protocols approved by an institutional review board, from 5 healthy individuals (mean age 34 years) who gave informed consent. None of the individuals had a history of malignancy, immunodeficiency, autoimmune disorder, hepatitis, or HIV infection (Table 1).
-
TABLE 1 Information of samples used for evaluation of DSTA performance and salivary mRNA stability Sample ID Ethnicity Age Gender Smoking Diagnosis SalivaSup-1 Asian 34 M NO Normal SalivaSup-2 Asian 32 M NO Normal SalivaSup-3 Caucasian 33 M NO Normal SalivaSup-4 Asian 33 F NO Normal SalivaSup-5 Asian 38 M NO Normal Abbreviations: M: Male; F: Female. - Unstimulated whole saliva samples were collected between 9 and 10 AM as described previously (Navazesh M, Ann. NY Acad. Sci 694: 72-7 (1994)), and processed with centrifugation to obtain cell-free SS (Li et al. J. Dent. Res. 183:199-203 (2004)). The absence of cells in the harvested SS was confirmed by microscopy. The collected SS of each study participant was then split into 3 aliquots (300 μL each) as diagrammed in
FIG. 1 .Aliquot # 1 was directly transferred into a 1.5-mL microcentrifuge tube and stored.Aliquots # 2 and #3 were immediately processed by DNase treatment and salivary mRNA isolation, respectively. The DNase-treated SS (product from aliquot #2) was employed as a contrast group to reflect DNA interference in the raw SS (product from aliquot #1). Isolated mRNA (product from aliquot #3) was applied to standard procedures of saliva RNA detection, and was employed as a positive control to evaluate the DSTA method performance. All the SS samples (products fromaliquots # 1 and #2) were stored at room temperature (25° C.) without stabilizing reagent, and the isolated mRNAs were frozen at −80° C. until use. At day 0 (i.e., the day that all samples were collected), and after 1, 2, and 10 weeks of storage, the RT-qPCR assay was used in all samples to detect mRNA expression levels of 3 saliva internal reference genes (SIRGs): glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 9 actin, beta (ACTB), and ribosomal protein S9 (RPS9). The effectiveness of the DSTA method was assessed by comparing mRNA expression levels from 3 SIRGs obtained from raw SS and isolated mRNA. The stability of salivary mRNA stored at ambient temperature without stabilizing reagent was evaluated by detecting the change of each mRNA expression level in raw SS during 10 weeks of storage. - A case-control salivary biomarker study was further conducted to examine the feasibility of clinical applications of the DSTA method associated with long-term ambient temperature storage. Ninety samples were collected from 3 institutions, including 27 samples from patients with oral squamous cell carcinoma (OSCC) and 63 samples from healthy controls (see Table 2).
-
TABLE 2 Information of samples used for DSTA oral cancer mRNA biomarkers validation. Validation Sample ID Ethnicity Age Gender Smoking Diagnosis V-OralCAN-001 Caucasian 59 M NO OSCC V-OralCAN-002 Caucasian 76 M YES OSCC V-OralCAN-003 Caucasian 64 F YES OSCC V-OralCAN-004 Caucasian 61 M YES OSCC V-OralCAN-005 Caucasian 59 M YES OSCC V-OralCAN-006 Caucasian 60 M YES OSCC V-OralCAN-007 Caucasian 59 M NO OSCC V-OralCAN-008 Caucasian 65 M NO OSCC V-OralCAN-009 Hispanic 77 M YES OSCC V-OralCAN-010 Caucasian 68 F NO OSCC V-OralCAN-011 Caucasian 68 M NO OSCC V-OralCAN-012 Caucasian 59 M NO OSCC V-OralCAN-013 Caucasian 65 F NO OSCC V-OralCAN-014 Caucasian 74 M YES OSCC V-OralCAN-015 Caucasian 51 M YES OSCC V-OralCAN-016 Caucasian 78 M YES OSCC V-OralCAN-017 Caucasian 51 M NO OSCC V-OralCAN-018 Caucasian 70 M YES OSCC V-OralCAN-019 Caucasian 84 M YES OSCC V-OralCAN-020 Asian 54 F NO OSCC V-OralCAN-021 Caucasian 81 M NO OSCC V-OralCAN-022 Caucasian 63 M NO OSCC V-OralCAN-023 Caucasian 66 M NO OSCC V-OralCAN-024 Caucasian 52 M YES OSCC V-OralCAN-025 Hispanic 71 M NO OSCC V-OralCAN-026 Hispanic 49 M NO OSCC V-OralCAN-027 Caucasian 71 M NO OSCC V-Ctrl-001 Caucasian 65 M NO Normal V-Ctrl-002 Caucasian 66 M YES Normal V-Ctrl-003 Caucasian 65 F NO Normal V-Ctrl-004 Caucasian 56 F NO Normal V-Ctrl-005 Caucasian 62 M YES Normal V-Ctrl-006 Caucasian 69 M NO Normal V-Ctrl-007 Caucasian 74 M NO Normal V-Ctrl-008 Caucasian 62 M NO Normal V-Ctrl-009 Caucasian 80 M YES Normal V-Ctrl-010 Caucasian 52 M NO Normal V-Ctrl-011 Caucasian 69 M YES Normal V-Ctrl-012 Caucasian 75 M NO Normal V-Ctrl-013 Hispanic 54 M YES Normal V-Ctrl-014 Caucasian 57 F NO Normal V-Ctrl-015 Caucasian 72 M NO Normal V-Ctrl-016 Asian 37 M NO Normal V-Ctrl-017 Hispanic 64 M YES Normal V-Ctrl-018 Hispanic 45 M NO Normal V-Ctrl-019 Caucasian 56 F NO Normal V-Ctrl-020 Caucasian 59 M NO Normal V-Ctrl-021 Caucasian 60 M NO Normal V-Ctrl-022 Hispanic 63 M YES Normal V-Ctrl-023 Caucasian 57 M YES Normal V-Ctrl-024 Caucasian 72 M YES Normal V-Ctrl-025 Caucasian 62 M NO Normal V-Ctrl-026 Caucasian 66 M NO Normal V-Ctrl-027 Caucasian 72 M NO Normal V-Ctrl-028 Caucasian 56 M YES Normal V-Ctrl-029 Hispanic 62 F NO Normal V-Ctrl-030 Caucasian 57 M YES Normal V-Ctrl-031 Caucasian 45 M NO Normal V-Ctrl-032 Caucasian 54 F YES Normal V-Ctrl-033 Caucasian 52 M YES Normal V-Ctrl-034 Caucasian 62 M YES Normal V-Ctrl-035 Caucasian 55 M YES Normal V-Ctrl-036 Caucasian 70 M NO Normal V-Ctrl-037 Caucasian 67 F NO Normal V-Ctrl-038 Hispanic 35 M NO Normal V-Ctrl-039 Caucasian 81 M NO Normal V-Ctrl-040 Caucasian 59 F YES Normal V-Ctrl-041 Caucasian 61 M NO Normal V-Ctrl-042 Caucasian 63 M YES Normal V-Ctrl-043 Caucasian 71 M NO Normal V-Ctrl-044 Caucasian 62 M NO Normal V-Ctrl-045 Caucasian 54 M YES Normal V-Ctrl-046 Hispanic 64 M NO Normal V-Ctrl-047 Caucasian 64 M YES Normal V-Ctrl-048 Caucasian 59 M NO Normal V-Ctrl-049 Caucasian 58 M YES Normal V-Ctrl-050 Caucasian 66 M NO Normal V-Ctrl-051 Caucasian 77 M YES Normal V-Ctrl-052 Caucasian 70 M NO Normal V-Ctrl-053 Asian 44 M NO Normal V-Ctrl-054 Caucasian 61 M YES Normal V-Ctrl-055 Caucasian 51 M NO Normal V-Ctrl-056 Caucasian 74 M YES Normal V-Ctrl-057 Caucasian 61 M NO Normal V-Ctrl-058 Caucasian 61 M YES Normal V-Ctrl-059 Caucasian 82 M YES Normal V-Ctrl-060 Caucasian 57 M NO Normal V-Ctrl-061 Caucasian 47 M YES Normal V-Ctrl-062 Caucasian 61 M YES Normal V-Ctrl-063 Caucasian 47 M NO Normal Abbreviations: M: Male; F: Female: OSCC: Oral squamous cell carcinoma. -
- Ninety saliva samples were recruited from three institutions: University of California, Los Angeles (UCLA), University of Southern California (USC), and the Veterans Hospital of Greater Los Angeles (VAGLA).
- All patients had a diagnosis of primary OSCC and had not undergone chemotherapy and/or radiotherapy. The controls were matched by sex, age, ethnicity, and smoking history to the OSCC group as described in Table 3.
-
TABLE 3 Demongraphic information for participants in the OSCC mRNA biomarker validation study. Demographic OSCC Healthy control variable (n = 17) (n = 63) Age, mean (SD), y 65.00 (9.56) 61.29 (9.82) Sex, n (%) Male 23 (85.2) 55 (87.3) Female 4 (14.8) 8 (12.7) Ethnicity, n (%) White 23 (85.2) 54 (85.7) Hispanic 3 (11.1) 7 (11.1) Asian 1 (3.7) 2 (3.2) Smoking, n (%) Yes 12 (44.4) 27 (42.9) No 15 (55.6) 36 (57.1) - The saliva collection procedures were approved by the ethics review boards and institutional review boards of all participating institutions. All participants provided written informed consent before sample collection. In this study, we used mRNAs from 7 OSCC salivary biomarker genes: human H3 histone family 3A (H3F3A), interleukin1-beta (IL1B), interleukin 8 (IL8), ornithine decarboxylase antizyme 1 (OAZ1), spermidine/spermine N1-acetyltransferase 1 (SAT1), dual specificity phosphatase1 (DUSP1), and S100 calcium binding protein P (S100P) (Li et al. Clin. Cancer Res. 10:8442-50 (2004)). These biomarker genes were used as the proof-of-concept markers and tested in all study participants. Quantification of the 7 transcripts in 90 samples was performed concurrently by standard and DSTA methods at
day 0 and after 10 weeks of ambient temperature storage without a stabilizing reagent. The feasibility of the DSTA method for the clinical applications was evaluated by the numbers of markers that could be discriminated, and their diagnostic performances were compared to the results obtained by standard procedures. - Genomic DNA was eliminated in 40 μL SS (
FIG. 1 ,aliquot # 2 of each study participant) by rigorous DNase treatment using a TURBO DNA-free TM kit (Applied Biosystems) followed by DNase inactivation according to the manufacturer's instructions. The effect of DNA removal was demonstrated by applying human cell genomic DNA (300 μg/mL) to the above DNase treatment procedures. (FIG. 2 ). - Salivary mRNA Isolation
- Salivary mRNA was isolated from 300 μL SS (
FIG. 1 ,aliquot # 3 of each study participant) using a King-Fisher® instrument (Thermo Electron Corporation) with a MagMAX Viral RNA Isolation Kit® (Applied Biosystems). The isolated mRNA was then treated with a TURBO DNA-free kit, followed by DNase inactivation to remove DNA contamination. The purity of the isolated mRNA was assessed by use of the A260/A280 ratio (accepted range: 1.8-2.0) with an ND-1000 spectrophotometer (Thermo Scientific). The complete removal of DNA in the isolated mRNA was demonstrated by qPCR without reverse transcription (seeFIG. 2 ). Furthermore, the quality of isolated mRNAs was evaluated by detecting GAPDH, ACTB, and RPS9 mRNA expression levels using an RT-qPCR assay. Only those samples exhibiting PCR products for all 3 genes were used for subsequent analyses (Li et al. Clin. Cancer Res. 10:8442-50 (2004)). - A 2-step RT-qPCR (reverse transcription-PCR (RT-PCR) followed by qPCR operated separately) was performed for detection of salivary transcriptomes. Multiplex RT-PCR preamplification of 3 SIRG mRNAs was performed by using a SuperScript III platinum qRT-PCR System (Invitrogen) with a pool of outer primer sets (200 nmol/L for each; see Table 4), and conducted by a GeneAmp PCR-System 9700 (Applied Biosystems) with a fixed thermal cycling program (see Table 5). Each study participant provided 6 L raw SS, 7.08 μL DNase-treated SS, and 2 μL isolated mRNA as 3 different templates for RT-PCR, in which the samples were equalized by the mRNA volume. In addition to the 15 experimental RT-PCR samples (5
study participants 3 templates per study participant), a negative control with nuclease-free water as the reactive template (i.e., a blank group) was prepared. The total volume of each reaction was 30 μL adjusted by nuclease free water. The RT-PCR products were purified by ExoSAP-IT (USB) and immediately applied to qPCR or stored at −20° C. until use. -
TABLE 4 Primers of 3 SIRGs and 7 OSCC salivary transcripts Gene NCBI Amplicon Symbol Accession No. Primer Sequence (5' to 3') size (bp) GAPDH NM_002046 OF: CCTCAACGACCACTTTGTCA 59 OR: ATGTGGGCCATGAGGTCC IF: ACCACTTTGTCAAGCTCATTTCCT IR: CACCCTGTTGCTGTAGCCAAAT ACTB NM_001101 OF: GATCATTGCTCCTCCTGAGC 92 OR: CGGACTCGTCATACTCCTGC IF: CTCCTGAGCGCAAGTACTCC IR: ATACTCCTGCTTGCTGATCCAC RPS9 NM_001013 OF: ATCTCGTCTCGACCAAGAGC 58 OR: TTTGACCCTCCAGACCTCAC IR: CGACCAAGAGCTGAAGCTGAT IR: CCAGACCTCACGTTTGTTCC H3F3A NM_002107 OF: AGCGTCTGGTGCGAGAAATT 71 OR: GCACACAGGTTGGTGTCTTCAA IF: CGCTTCCAGAGCGCAGCTAT IR: TCTTCAAAAAGGCCAACCAGAT IL1B NM_000576 OF: GTACCTGTCCTGCGTGTTGAAAG 84 OR: TTCTATCTTGTTGAAGACAAATCGCTT IF: TGTTGAAAGATGATAAGCCCACTCT IR: CAAATCGCTTTTCCATCTTCTTCT IL8 NM_000584 OF: TTTCTGATGGAAGAGAGCTCTGTCT 89 OR: ATCTTCACTGATTCTTGGATACCACA IR: CCAAGGAAAACTGGGTGCAG IR: CTTGGATACCACAGAGAATGAATTTTT OAZ1 NM_004152 OF: TGCGAGCCGACCATGTC 73 OR: CCCCGGTCTCACAATCTCAA IF: TCTTCATTTGCTTCCACAAGAACC IR: TCAAAGCCCAAAAAGCTGAAG SAT1 NM_002970 OF: CGTGATGAGTGATTATAGAGGCTTTG 85 OR: GGTTCATTCCATTCTGCTACCAA IR: TTGGCATAGGATCAGAAATTCTGAA IR: TCTGCTACCAAGAAGTGCATGCT DUSP1 NM_004417 OF: CCTGTGGAGGACAACCACAAG 75 OR: GCCTGGCAGTGGACAAACA IF: CAGACATCAGCTCCTGGTTCAA IR: CAAACACCCTTCCTCCAGCAT S100P NM_005980 OF: GCACGCAGACCCTGACCA 72 OR: CGTCCAGTCCTTGAGCAATT IF: GCTGATGGAGAAGGAGCTACCA IR: TTGAGCAATTTATCCACGGCAT Abbreviations: NCBI: National Center or Biotechnology Information; O: outer, I: inner; F: forward; R: reverse Amplicon size: The product size yielded by IF + IR -
TABLE 5 Thermal cycling program for RT-PCR preamplification. Temperature (° C.) Time Cycle 60 2 min 1 50 30 min 95 2 min 95 15 sec 15 50 30 sec 60 10 sec 72 10 sec 72 10 min 1 4 Forever - SYBR Green qPCR was performed to quantitatively detect the expression levels of salivary transcripts. The qPCR sample was prepared by combining 2×qPCR Mastermix (Applied Biological Materials), inner primers (900 nmol/L; see Table 4), and 2 μL cDNA template. The total volume of each reaction was 10 μL adjusted by nuclease-free water. The qPCR associated with melting-curve analysis was conducted by use of an AB-7500HT System (Applied Biosystems) with a fixed thermal-cycling program (Table 6). Each gene was tested in triplicate for all samples, including the negative control in which the cDNA template was the product of negative control in RT-PCR preamplification. All primers used in RT-qPCR were designed with intron spanning by use of PRIMER3 software and produced by Sigma after a BLAST search.
-
TABLE 6 Thermal cycling program for qPCR. Mode Temperature (° C.) Time Cycle Hot Start 95 20 sec 1 qPCR 95 3 sec 40 (Quick AB 7500) 60 30 sec Disassociation Stage 95 15 sec 1 60 1 min 95 15 sec 60 15 sec - The expression levels of 3 SIRG mRNAs and 7 OSCC salivary transcripts detected by the streamlined and standard procedures were analyzed by raw quantification cycle (Cq) values. All qPCR experiments were performed in triplicate and presented as mean (SD) Cq. Statistical comparison by ANOVA was performed at a significance level of P<0.05 based on the Wilcoxon signed-rank test. In the case-control salivary biomarker study, the transcript was validated when it showed a significantly different level (P<0.05) between the OSCC patients and controls. In addition, the ROC curve was constructed and the value of the area under the curve (AUC) was calculated by numerical integration of the ROC curve using MedCalc software for each transcript detected. The P values between OSCC and controls combined with AUC values represent the diagnostic performance of the biomarker.
- To explore whether salivary transcriptomes can be directly detected without the need for RNA isolation, cell-free SS was used as a template to detect mRNA expression levels for 3 SIRGs and compared the results to results obtained with standard procedures. The results shown in
FIG. 3 are for detection performed immediately after saliva samples were collected (day 0). The Cq value in the water group is the mean of triplicate qPCR experiments, and showed 33 for all 3 genes. In addition, the water group did not show any peak in the melting-curve analysis (data not shown), no matter which SIRG primers were used, indicating there was no reagent contamination during the RT-qPCR procedures. The Cq value of each gene in the experimental setups (SS (DSTA), SS+DNase, and isolated mRNA) was the mean of results for samples from 5 healthy study participants, each of which was assayed in triplicate (total 15 data points). The Cq values obtained from the raw SS (DSTA) were 22.84 (2.36), 21.57 (1.63), and 20.35 (1.39), whereas the Cq acquired from isolated mRNAs were 25.28 (1.44), 23.16 (2.2), and 21.42 (1.33) for GAPDH, ACTB, and RPS9, respectively. The P values obtained by comparing the Cq values from SS (DSTA) and isolated mRNA for each SIRG were 0.092, 0.233, and 0.247 for GAPDH, ACTB, and RPS9, respectively. To ensure that the obtained Cq values resulted from the specific mRNA without genomic DNA interference, melting-curve analyses were conducted along with each qPCR run. A single peak with similar melting temperature was observed for the same gene in all samples (data not shown). Furthermore, when we compared the Cq values of the SIRGs in the DNase-treated SS group to the values for the SS(DSTA) group, the P values were 0.645, 0.13, and 0.58 for GAPDH, ACTB, and RPS9, respectively (FIG. 3 ; P value: SS (DSTA) vs SS+DNase). These results indicated that the results in the SS (DSTA) group were exclusively from the mRNA without DNA interference, and the performance of the DSTA method was comparable to the standard procedures for salivary mRNA detection. It should be noted that both the outer and inner primers of SIRGs were designed by intron spanning, which provided additional specificity to the mRNA assays. - To evaluate the stability of saliva mRNA at room temperature without stabilizing reagent and/or nuclease inhibitor, saliva samples were stored at 25° C. (laboratory ambient temperature), and the 3 SIRG mRNA expression levels were assayed by using RT-qPCR at
day 0 and after 1, 2, and 10 weeks of storage. As shown inFIG. 4 for the 3 SIRGs evaluated, the mean Cq values detected by SS (DSTA) increased slightly after 10 weeks of preservation and showed no significant difference throughout the time course (P>0.05;FIG. 4 ; P values: SS(DSTA)-Week X vs SS (DSTA)-Day 0 at X10). In addition, the Cq values obtained by using SS were all similar to those detected by isolated mRNA(P>0.05) at each time point (FIG. 4 ; P value: SS(DSTA) vs isolated mRNA atday 0 and 1, 2, and 10). DNase-treated SS samples were used to assess DNA contamination for the duration of ambient temperature storage. As shown inweeks FIG. 4 , the mean Cq values were all similar to the results detected by raw SS(P>0.05) at each time point, indicating no DNA interference was present in the DSTA procedure (FIG. 4 ; P values: SS (DSTA) vs SS+DNase atday 0 and 1, 2, and 10). These results demonstrated that mRNA in SS can be stable at ambient temperature in the absence of stabilizing reagent for up to 10 weeks without significant degradation, and analyzed by the DSTA method.weeks - With the observed performance of the DSTA method, the feasibility of DSTA was evaluated in a clinical study. Ninety saliva samples (27 from OSCC patients and 63 from matched controls) were assayed for 7 previously identified OSCC salivary RNA markers: SAT1, OAZ1, H3F3A, IL1B, IL8, DUSP1, and S100P (Li et al. Clin. Cancer Res. 10:8442-50 (2004)). To examine the effect of long-term ambient temperature storage on marker discrimination, 7 salivary transcripts by the were assayed by the DSTA method at day 0 (i.e., immediately after sample collection) and after 10 weeks of room temperature storage without stabilizing reagent. Identification of the 7 salivary transcripts by using standard procedures was performed in parallel as the positive control. The quantitative distributions of Cq values for each transcript in healthy controls and patients with OSCC are shown in
FIG. 5 and statistically described in Table 7. -
TABLE 7 Statistical analyses of 7 OSCC salivary mRNA biomarkers assayed by the streamlined and standard procedures and detected at day 0 and after 10 weeks of storage.Standard DSTA day 0 DSTA week 10 at roomprocedures (Saliva Temperature (Isolated mRNA) supernatant) (Saliva supernatant) Gene symbol P AUC ΔCqb P AUC ΔCq P AUC ΔCq H3F3A 0.004b 0.655 1.77 <0.001c 0.718 2.8 0.012c 0.669 2.3 IL1B 0.002b 0.677 1.73 0.015c 0.745 2.8 0.022 0.707 3.2 IL8 0.005b 0.655 1.78 <0.001c 0.805 3.6 0.005c 0.712 3.6 OAZ1 0.003b 0.688 1.59 0.014c 0.684 1.7 0.345 0.560 0.8 SAT1 0.044b 0.667 1.40 0.028c 0.728 2.0 0.085 0.650 1.7 DUSP1 0.008b 0.644 1.56 0.214 0.585 1.7 0.048c 0.636 2.8 S100P 0.092 0.611 0.93 0.008c 0.693 1.8 0.025c 0.662 2.0 aRT-qPCR was performed to validate the 7 previously identified OSCC biomarkers in an independent clinical saliva sample, including 27 OSCC patients and 63 healthy controls. bΔCq: the mean Cq value of 63 healthy controls - the mean Cq value of 27 OSCC patients. cThe marker is validated if P < 0.05 based on Wilcoxon signed-rank test. - All 7 salivary oral cancer RNA markers exhibited upregulation in the OSCC cohort assayed by both DSTA and standard procedures. By standard procedures, 6 of the 7 gene transcripts, H3F3A, IL1B, IL8, OAZ1, SAT1, and DUSP1, showed significantly different expression levels between normal and OSCC samples (P<0.05). With the DSTA method, 6 (H3F3A, IL1B, IL8, OAZ1, SAT1, and S100P) and 5 (H3F3A, IL1B, IL8, DUSP1, and S100P) of the 7 oral cancer markers were validated (P<0.05) at
day 0 andweek 10, respectively. Five (H3F3A, IL1B, IL8, OAZ1, and SAT1) and 4 (H3F3A, IL1B, IL8, and DUSP1) of the salivary oral cancer markers were validated by both standard procedures and the DSTA method atday 0 andweek 10, respectively. Of note, 4 markers (H3F3A, IL1B, IL8, and SAT1) at 0 and 3 markers (H3F3A, IL1B, and IL8) atday week 10 exhibited higher ROC-plot AUC values when assayed by use of the DSTA protocol (see Table 7FIG. 6 ). These results indicate that the DSTA method is comparable to standard procedures in discrimination of oral cancer salivary mRNA biomarkers. - Saliva RNA detection is an emerging field in molecular diagnostics (Martin et al. Cancer Res. 70:5203-6 (2010)). This study aimed to develop a robust, easy-to-use, ambient-temperature compatible, and cost-effective protocol to further advance the use of saliva transcriptomes for translational and clinical applications.
- This study shows that 3 SIRG mRNA expression levels remained stable in ambient temperature-stored saliva supernatant for up to 10 weeks. This outcome is consistent with results showing that salivary RNAs are protected by specific mechanisms against nucleases in saliva. Without being bound by theory, this protective phenomenon may because salivary RNAs are associated with macromolecules such as mucines, AU (adenine and uridine)-rich element binding protein, salivary chaperone Hsp70, and apoptotic bodies. Exosomes may also play an important role in protecting salivary transcriptomes, which are vesicles for intercellular mRNA transfer that have been found in saliva. Exosomes may provide a shelter to confer salivary mRNA stability in the presence of extracellular RNases. Furthermore, analyses of the RNA profiles in exosomes showed that ribosomal RNA was absent and most of the RNA molecules were <200 nucleotides in length (Skog et al, Nat. Cell Biol. 10:1470 (2008)), which is in alignment with the mean size of salivary mRNA.
- A clinical validation study of 7 oral cancer salivary mRNA biomarkers was performed previously (Li et al. Clin. Cancer Res. 10:8442-50 (2004)) to evaluate the clinical performance of the DSTA method. The number of validated salivary RNA markers was benchmarked (i.e., the transcript showing significant upregulation in OSCC patients; P<0.05) and their diagnostic performances, and compared these results with the results assayed by the DSTA method. The quality of the products obtained by standard and DSTA procedures was evaluated by running melting curves along with all qPCR assays. All samples exhibited a single peak with a similar melting temperature for the same gene, indicating that no DNA contamination, mispriming, and/or primer-dimer artifacts occurred in the experiments. When the saliva was assayed immediately after sample were collected, equal validation efficiencies (6 of 7 markers were validated) were obtained by both standard and DSTA procedures, in which 5 markers overlapped. After 10-week storage at ambient temperature, expressions of all 7 transcripts were still increased in the OSCC patients, and 4 markers were validated by both procedures. Most markers validated by the DSTA method showed higher ROC-plot AUC values than those assayed by standard procedures, even after 10 weeks of ambient temperature storage, indicating that the DSTA method can confer enhanced performance for detection of oral cancer salivary biomarkers.
- This examples shows that the salivary proteome is stable for approximately two weeks at room temperature (RT) without degradation by adding ethanol to the samples.
- Saliva samples were collected from 10 healthy subjects. None of the subjects had any history of malignancy, immunodeficiencies, autoimmune disorders, hepatitis, and/or HIV infection, and had a mean age of 35 years. Subjects were asked to refrain from eating, drinking or using oral hygiene products for at least 1 h prior to collection. After rinsing their mouths with water, 5 mL saliva was collected from each subject into a 50 mL Falcon tube.
- These saliva samples were filtered with a 0.45 μm PVDF membrane (Millipore, Billerica, Mass., USA) to remove cells and any debris. The flow through was collected. During the sample preparation, saliva samples were always kept on ice.
FIG. 7 is the schematic diagram for the sample preparation. - Filtered saliva samples were then aliquoted into microcentrifuge tubes and stored at RT, 4° C. and −80° C., respectively, after the four different treatments described as following: (I) saliva samples with protease inhibitors were prepared, aliquoted and placed at RT and 4° C. for storage. All samples were made up with distilled water to keep the same volume. An aliquot saliva sample that had been stored at −80° C. with added protease inhibitors was used as positive control in all the experiments. Protease inhibitor stock solution was prepared by adding 1 Roche complete tablet (Roche Diagnostics GmbH, Roche Applied Science, Mannheim, Germany) into 1 mL distilled water. For every 1 mL saliva, 20 μL stock solution was added and briefly mixed by vortex. (II) Saliva amylase depletion was conducted according to a previous report (Deutsch et al. Electrophoresis 29:4150 (2008)). Briefly, saliva samples were eluted from starch column to deplete amylase specifically. (III) For protein denaturing experiments, saliva samples were either boiled at 95° C. for 10 min or by adding 20-time volumes absolute ethanol (Fisher Scientific, NJ, USA). Denatured samples were kept at RT for two weeks. The saliva proteins were then precipitated by centrifugation at 20,000 g for 20 min. (IV) For the non-denaturing method, every 20 μL absolute ethanol was added to 100 μL saliva. All the samples were made up to equal volume with distilled water. At different time points, 1 aliquot of saliva sample that has been kept at RT or 4° C. was moved into a −80° C. freezer and stored until further analysis.
- The protein concentration of each saliva sample was measured by using the BCA Protein Assay Kit (Thermo Scientific Pierce, Ill., USA). Equal volume of each sample was loaded into a 96 well plate in duplicates. The experiment was performed according to the manufacturer's instruction and the plate was read at 562 nm.
- Equal volume of each saliva sample was used for SDS-PAGE and western blot. For SDS-PAGE, the 10% Bis-Tris gel was run at 150V in MES SDS Running Buffer for 1 h. Pre-stained protein standard (Invitrogen, CA, USA) was used to track protein migration. The gel was then stained with simple blue (Invitrogen, CA, USA). For western blot Zhang et al, PloS ONE 5:e15573), saliva proteins were run and transferred to a PVDF membrane using the iBlot (Invitrogen, CA, USA). The membrane was incubated with the primary antibody (mouse monoclonal antibody to actin, Sigma-Aldrich, St. Louis, Mich., USA) and then incubated with the secondary antibody (anti-mouse IgG, peroxidase-linked species-specific whole antibody from sheep) according to manufacturer's instructions, for 1 h at RT. Finally, the membrane was washed and visualized using ECL Plus detection kit (GE Healthcare, WI, USA).
- In-gel trypsin digestion and mass spectrometry protein identification were the same as previously described (Xiao and Wong, Bioinformation 5:294 (2011). Briefly, each cut gel slice was destained, and in-gel tryptic digestion was carried out overnight at 37° C. Tryptic peptides resulting from the digestion were then extracted and loaded to LC-MS/MS (Eksige NanoLC-2D with Thermo LTQXL) for protein identification. Spect was collected and processed by Xcalibur software v3.3.0 (Thermo Scientific, Waltham, Mass.). Combined MS and MS/MS spectra were converted from RAW to mzXML (ReAdW version 4.3.1) and submitted for database search again Human Swissprot by using X! Tandem (version 2010.04.21). The parameters for searching were enzyme trypsin, 1 missed cleavage, fixed modifications of carbamidomethyl (C), variable modifications of oxidation (M),
parent ion tolerance 4 Da and fragment mass tolerance: ±0.4 Da. The criteria of two peptides and log (E-value)<−10 were used for protein identification. - The ELISA tests for β-actin (Total β-actin Sandwich ELISA Kit, Cell Signaling Technology, Inc., MA, USA) and MP (Thermo Scientific Pierce, Ill., USA) were performed according to the manufacturer's instructions. All saliva samples were diluted 2 times with sample diluents for IL1β and 10 times for β-actin.
- The Graphpad Prism (Version 5.01) was used for all data analysis. P value was calculated based on T test and p<0.05 was used as cutoff for significance. One-way ANOVA was run to determine whether the groups are actually different in the measured characteristic. The signal intensity of the western blot bands was quantified by using the Image J software (NIH, Bethesda, Md., USA).
- Protease inhibitors are usually added during sample collection to prevent proteolysis. This investigation also assessed protease cocktail and different temperature conditions on proteome stabilization, because they are known to greatly affect the rate proteolysis (Chevalier et al, Clin. Proteomics 3:13 (2007)). Amylase removal may increase the stability of other salivary proteins and eases the characterization of low abundant proteins (Hu et al, Proteomics 6:6326 (2006). Ethanol has been fully evaluated for the stabilization of protein (Gekko and Timasheff, Biochemistry 20:4677 (1981). All these methods were tested and evaluated for their efficiency in proteome stabilization.
- The protein concentrations of saliva samples stored at RT and −80° C. were measured. The average total protein concentration the positive control was 1.19±0.15 μg μL−1 after stored at −80 for 30 days. Saliva stored at RT for 30 days was found to have total protein concentration of 0.76±0.21 μg μL−1, 36% less than that of positive control (p=0.0063, n=5), which demonstrated that salivary proteome had been significantly degraded.
- β-actin in human saliva was degraded when the samples when stored at RT. As shown in
FIG. 8 , the stability of β-actin was systematically compared among different treatments by ELISA. There was significant degradation if saliva samples were stored at RT without any treatment. After 3 days, there was only 71.72±18% left when compared to positive control. If the saliva samples were kept a 4° C. with protease inhibitors, more than 85±12% of this protein could be detected in saliva and there was no significant change from positive control. In the saliva samples stored at RT with protease inhibitors, β-actin was found to be stable for only 3 days. When saliva samples were stored at 4° C. with protease inhibitor β-actin was found stable for about 1 month without significant degradation. - Amylase is the most abundant protein in saliva and greatly affects the stability of other salivary proteins. After removing amylase from saliva, salivary proteins became more stable. The SDS-PAGE images of salivary proteins with and without amylase depletions are shown in
FIGS. 9A and B. InFIG. 9A without amylase removal, the labeled bands a, b, c and d of lane RT were obviously weaker than that stored for 3 days at RT with 20% ethanol. All the 4 bands were quantified and then normalized to the corresponding positive control bands (FIG. 9C ). The data demonstrated that there was significant difference between −80° C. and RT if no treatment was involved (p=0.024, n=4). When saliva samples were stored at RT with 20% ethanol, there was no significant change in comparison to the −80° C. samples (FIG. 9A ) (p=0.31, n=4). In contrast, if amylase was removed from saliva, there was no significant degradation between either −80° C. and RT or RT with 20% ethanol (FIG. 9B ) (p=0.17 and p=0.36, respectively, n−4). The western blot of β-actin in saliva after stored for 7 days also demonstrated that it became more stable after amylase removal (FIGS. 9D and E). If 20% ethanol was added, the stabilization efficiency for β-actin was better. In order to check what kind of proteins might have been protected by amylase removal, LC-MS/MS was run for the protein identification in the 4 bands ofFIG. 9B lane RT. In the band a, three proteins were identified, including desmoplakin, deleted inmalignant brain tumors 1 protein and syndecan-bindingprotein 2. In the band b, 7 proteins were found (mucin-7, tetra-peptiderepeat homeobox protein 1, bactericidal/permeability-increasing protein-like 1, lactotransferrin, peroxisome proliferator-activated receptor gamma coactivator-relatedprotein 1, alpha-2-macroglobulin, and polymeric immunoglobulin receptor). In the band c, several isoforms of immunoglobulin appeared, such as the heavy chain V-III, alpha-2, gamma-1, gamma-2 and gamma-4. Moreover, carbonic anhydrase 6, haptoglobin-related protein andcytoplasmic 1 actin were also identified. In the band d, 6 proteins were discovered. They were Ig lambda-1, Ig kappa, zymogen granule protein 16, short palate lung and nasal epithelium carcinoma-associatedprotein 2, Glyceraldehyde-3-phosphate dehydrogenase and L-lactate dehydrogenase. - We also explored the use of heat and ethanol denaturation to stabilize the salivary proteome. Saliva samples were treated either by boiling at 95° C. for 10 min or by precipitating with 20-time volumes ethanol. These saliva samples were then stored at RT. After two weeks, the β-actin in these samples were detected by western blot and compared with that of the positive control (
FIG. 10A ). There was no significant change after these denatured samples were kept at RT. Especially for ethanol precipitation, the stability of (3-actin was very consistent in these five samples (FIG. 10B , p=0.42, n=5), while there was a relative large deviation for the boiled saliva samples (p=0.071, n=5). - By comparison of these methods that have been used to stabilize salivary proteins, 20% ethanol was chosen as an optimized approach to stabilize salivary proteome at RT. By adding ethanol to the samples and keeping them at RT for different time intervals, two proteins were measured by immunoassay, including β-actin and IL1β.
- The western blot of β-actin with different treatments was shown in
FIG. 11A . Their corresponding quantifications were shown inFIG. 11B . The results showed that there was significant β-actin degradation at RT after 3, 7 and 14 when compared to −80° C. By adding 20% ethanol to the saliva samples, protein degradation observed at RT were hindered with no significant difference found when compared to −80° C. (day FIG. 11B ) (p>0.05, n=8). However, after 30 days, significant degradation of β-actin was observed even though ethanol was added (p=0.0071, n=7). - IL1β has been verified as an oral cancer salivary biomarker, which was tested by ELISA in this study. Although there was degradation with the prolonged time period, the data in
FIG. 12 showed that MP was stable at RT even after 30 days (p>0.05). By adding 20% ethanol, the stability of this protein was increased (p>0.05, n=10). - Besides protein, there are other types of analytes in human saliva, such as RNA (19), microRNA (Michael et al, Oral Dis. 16:34 (2010)), DNA (Jiang et al., Clin. Cancer Res. 11:2486 (2005)), metabolites (Sugimoto et al., Metabolomics 6:78 (2010)), cells (Xie et al., Proteomics 7:486 (2008)) and microbes (Ryu et al., J. Oral Rehabil. 37:194 (2010)). All these analytes may influence the quality and composition of salivary proteome. For example, there are different kinds of proteases in the saliva, which could digest diverse proteins. The protease inhibitor cocktail tablets used in this investigation were designed to inhibit a broad spectrum of serine, cysteine and metalloproteases as well as calpains (Chevalier et al., Proteomics 3:13 (2007)). Microbes may also generate some metabolites that can change the composition of human salivary proteome. RNA may interact with proteins and become stable (Palanisamy et al., J. Dent. Res. 87:772 (2008)). The storage temperature will also change the activity of different proteases, which will alter the stability of different proteins. By considering all these factors, salivary proteome is facing a huge risk of being digested or changed under different circumstances.
- The efficiency of different methods was evaluated by testing selected protein targets. In order to properly stabilize salivary proteins, the activity of salivary proteases should be inhibited. Otherwise, as shown in
FIG. 9A , salivary proteins will degrade quickly. - In order to lower the metabolism of microbes, saliva sample should be kept at −80° C.
- Protease inhibitors were added to hinder protein degradation because saliva samples without any treatment will be digested very quickly, although the salivary protein concentrations were significantly lower than the positive control after 30 days at RT. The data provided herein show that the addition of protease inhibitors and storage at 4° C. could effectively stabilize this protein for approximately two weeks. However, saliva samples could only be stabilized at RT for 3 days without significant change by adding protease inhibitors.
- Upon amylase depletion, the salivary proteome became more stable. By removing amylase, salivary protein degradation at RT was not obvious when compared with that without amylase depletion (
FIGS. 9A and B). In total, 24 proteins have been identified in the selected 4 gel bands, which might have been protected by amylase removal. Most of them have the molecular function of binding and catalytic activity. Amylase removal could greatly benefit the characterization of low abundant proteins (Hu et al., Proteomics 6:6326 (2006)). However, although this strategy is promising for saliva protein stabilization, there are several weaknesses for this method. Firstly, the saliva samples need additional treatment, which increased the complexity of sample collection. Secondly, the saliva samples are diluted 5-10 times after amylase depletion, which may affect the downstream analysis. Lastly, some saliva proteins may also be removed by using the starch column. - Denaturing of proteins kills microbes and alters the protein structure. Both heat and organic solvents can stabilize proteins by changing their structure (Polson et al, Anal. Technol. Biomed. Life Sci. 785:263 (2003). Data provided herein showed that the denatured saliva samples could be stored at RT for two weeks without significant change when compared to the positive control. Nevertheless, in terms of clinical usage, these proteins are unsuitable for some analysis, such as structure-related analysis and assay, as well as immunoassays, such as ELISA. By lowering the added volume of ethanol to 20%, the proteins in saliva could still be stabilized at RT without significant degradation for at least two weeks (
FIGS. 11 and 12 ). - Subjects were asked to refrain from eating, drinking, smoking, and oral hygiene activities for at least 2 hours prior to collection. Whole unstimulated saliva was then collected using the Oasis saliva collector “Super●SAL” (
FIG. 13 ) for about 10-15 min. The collected saliva was then processed for respective molecular constituent (DNA, Protein and RNA) stabilization and storage. - The collection tubes were pre-loaded with specific stabilizers for protein, RNA and DNA. All samples can be transported and stored at room temperature.
- An aliquot of whole saliva (1-2 ml) was dispensed into a microfuge tube. An equal volume of 2× lysis and DNA Stabilization Buffer (Oasis Diagnostics) were added and maintained at room temperature.
- For salivary RNA and proteins, the collected saliva is pushed through a barrel where there is a filtration unit (Millipore MGGF filter, 5 μm hydrophilic PVDF membrane) at the sample filtration end serving to remove cells, microbes and debris.
- Half of the volume of the saliva filtrate is stored in a microfuge tube at room temperature for downstream applications including direct saliva transcriptome analysis. This sample was maintained at room temperature.
- Half of the collected saliva filtrate is placed in a microfuge tube, an equal volume of 40% ethanol is added to the sample. This sample can be maintained at room temperature.
- Subjects will be asked to refrain from eating, drinking, smoking, and oral hygiene activities for at least 2 hours prior to collection. Whole unstimulated saliva will then be collected using an apparatus for the collection of saliva comprising a sample collection pad, a receiving device, and a filter connected to the receiving device. The filter is a 5 μm hydrophilic membrane that filters out cells and microorganisms.
- The filtered sample (1-2 ml) that is free from cells, microbes, and debris will be aliquoted into two microfuge collection tubes. The first tube will have a 20% ethanol solution and the second tube will be free of ethanol. All collection activities will be conducted at ambient temperatures.
- The filtered sample collected in the first tube having a 20% ethanol solution will be stored at room temperature for up to two weeks for downstream applications.
- The filtered sample for protein analysis will have the protein concentration measured, and the sample will be used for SDS-PAGE and western blot analyses. The saliva proteins will be run and transferred to a protein membrane. The membrane containing the protein will be incubated with primary antibody and then secondary antibody. In-gel trypsin digestion and mass spectrometry will then be used to identify extracellular saliva proteins.
- The filtered sample collected in the second tube without ethanol will be stored at room temperature for up to ten weeks for downstream applications, including direct saliva transcriptome analysis. The filtered samples will then be treated with DNase. RT-qPCR will then be used to analyze mRNA expression levels of extracellular saliva mRNAs. The expression levels of the salivary transcripts will be detected using standard procedures of raw quantification cycle (Cq) values. Statistical comparison by ANOVA will be performed at a significance level of P<0.05 based on the Wilcoxon signed-rank test.
- This example describes dual analysis of protein and nucleic acids collected from saliva samples by any person that is not required to be a specially trained technician. The samples will be collected and aliquoted for both protein and nucleic analysis, and subsequently stored at room temperature prior to analysis.
- The examples set forth above are provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use the embodiments of the compositions, systems and methods of the disclosure, and are not intended to limit the scope of what the inventors regard as their disclosure. Modifications of the above-described modes for carrying out the disclosure that are obvious to persons of skill in the art are intended to be within the scope of the following claims. All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the disclosure pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.
Claims (28)
1. A method for stabilizing nucleic acid and protein samples isolated from a saliva sample, the method comprising:
a) collecting a saliva sample from a subject;
b) filtering the saliva sample to produce a filtered sample that is free of cells;
c) collecting the filtered sample in at least a first and a second receiving device;
d) adding an alcohol solution to the first receiving device to produce an alcohol-containing filtered sample comprising a protein sample, with the proviso that alcohol is not added to the second receiving device to produce an alcohol-free filtered sample comprising a nucleic acid sample; wherein the protein sample and the nucleic acid sample are stabilized for at least 3 days when stored at 25 degrees Celsius; and
e) performing an analysis on the filtered sample collected in the first and second receiving devices comprising one or more of: a protein analysis on the alcohol-containing filtered sample or a nucleic acid analysis on the alcohol-free filtered sample.
2. The method of claim 1 , wherein the nucleic acid is DNA.
3. The method of claim 1 , wherein the nucleic acid analysis is polymerase chain reaction (PCR).
4. The method of claim 1 , wherein the nucleic acid is RNA.
5. The method of claim 4 , wherein the nucleic acid analysis is RT-PCR.
6. The method of claim 5 , wherein the RT-PCR is reverse transcription quantitative real-time PCR (RT-qPCR).
7. The method of claim 1 , wherein the alcohol solution comprises 20% ethanol.
8. The method of claim 1 , wherein the protein analysis comprises western blot, mass spectrometry protein identification, or ELISA.
9. The method of claim 1 , wherein the filtered sample is stored at ambient temperature.
10. The method of claim 1 , wherein the filtered sample is stored at ambient temperature for at least two weeks without more than 50% degradation of proteins or nucleic acids present in the filtered sample.
11. The method of claim 1 , wherein the filtered sample is stored at ambient temperature for at least two weeks without more than 25% degradation of proteins or nucleic acids present in the filtered sample
12. The method of claim 1 , wherein the filtered sample is stored at ambient temperature for at least ten weeks without more than 50% degradation of proteins or nucleic acids present in the filtered sample.
13. The method of claim 1 , wherein the filtered sample is stored at ambient temperature for at least ten weeks without more than 25% degradation of proteins or nucleic acids present in the filtered sample.
14. The method of claim 1 , wherein the alcohol solution comprises 15-25% ethanol.
15. The method of claim 1 , wherein the alcohol solution comprises 5-35% ethanol.
16. The method of claim 1 , wherein the filter is selected from the group consisting of a 0.22 μm, 0.45 μm and 5.0 μm hydrophilic membrane.
17. The method of claim 16 , wherein the filter is a 0.22 μm hydrophilic membrane.
18. An apparatus for the collection of saliva comprising a sample collection pad, a filter, two or more receiving devices, wherein the receiving devices are selected from an mRNA collection tube, a polypeptide collection tube, and a DNA collection tube, wherein the polypeptide collection tube comprises an ethanol solution, and the DNA collection tube comprises a DNA stabilizer, wherein the filter is operably connected to the receiving devices.
19. The apparatus of claim 18 , wherein the filter is selected from the group consisting of a 0.22 μm, 0.45 μm and 5.0 μm hydrophilic membrane.
20. The apparatus of claim 19 , wherein the filter is a 0.22 μm hydrophilic membrane.
21. A method of using the apparatus of claim 18 , the method comprising inserting the sample collection pad into the oral cavity for sufficient time to moisten the sample collection pad, inserting the collection pad into the receiving tube, applying sufficient force to cause the materials collected in the collection pad to pass through the filter thereby forming a filtered sample, and collecting the filtered sample into one or more receiving devices.
22. A method for stabilizing nucleic acid and protein samples isolated from a saliva sample, the method comprising:
a) collecting a saliva sample from a human subject;
b) filtering the saliva sample using a 0.22 μm to 5.0 μm hydrophilic membrane to produce a filtered sample that is free of cells;
c) collecting the filtered sample in at first and a second receiving device;
d) adding an ethanol solution to the first receiving device to produce a 20% ethanol-containing filtered sample comprising a protein sample, with the proviso that alcohol is not added to the second receiving device to produce an alcohol-free filtered sample comprising a nucleic acid sample; wherein the protein sample and the nucleic acid sample are stabilized for at least 3 days when stored at 25 degrees Celsius.
23. The method of claim 22 , wherein the protein sample is stabilized for at least 2 weeks when stored at 25 degrees Celsius.
24. The method of claim 22 , wherein the nucleic acid sample is stabilized for at least 10 weeks when stored at 25 degrees Celsius.
25. The method of claim 22 , further comprising the step of: (e) performing an analysis on the filtered samples collected in the first and second receiving devices comprising one or more of: a protein analysis on the ethanol-containing filtered sample or a nucleic acid analysis on the alcohol-free filtered sample.
26. The method of claim 22 , wherein the ethanol solution comprises 15-25% ethanol.
27. The method of claim 22 , wherein the ethanol solution comprises 5-35% ethanol.
28. The method of claim 22 , wherein the hydrophilic membrane in 0.22 μm.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/015,407 US20190010538A1 (en) | 2011-08-04 | 2018-06-22 | Saliva collection, processing, stabilization, and storage method |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161515169P | 2011-08-04 | 2011-08-04 | |
| PCT/US2012/049776 WO2013020137A1 (en) | 2011-08-04 | 2012-08-06 | Saliva collection, processing, stabilization, and storage method |
| US201414236963A | 2014-06-23 | 2014-06-23 | |
| US16/015,407 US20190010538A1 (en) | 2011-08-04 | 2018-06-22 | Saliva collection, processing, stabilization, and storage method |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/236,963 Continuation US10023903B2 (en) | 2011-08-04 | 2012-08-06 | Saliva collection, processing, stabilization, and storage method |
| PCT/US2012/049776 Continuation WO2013020137A1 (en) | 2011-08-04 | 2012-08-06 | Saliva collection, processing, stabilization, and storage method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190010538A1 true US20190010538A1 (en) | 2019-01-10 |
Family
ID=47629727
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/236,963 Active 2034-11-05 US10023903B2 (en) | 2011-08-04 | 2012-08-06 | Saliva collection, processing, stabilization, and storage method |
| US16/015,407 Abandoned US20190010538A1 (en) | 2011-08-04 | 2018-06-22 | Saliva collection, processing, stabilization, and storage method |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/236,963 Active 2034-11-05 US10023903B2 (en) | 2011-08-04 | 2012-08-06 | Saliva collection, processing, stabilization, and storage method |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US10023903B2 (en) |
| EP (1) | EP2739731A1 (en) |
| CN (1) | CN103842506A (en) |
| AP (1) | AP2014007466A0 (en) |
| AU (1) | AU2012289854A1 (en) |
| CA (1) | CA2845317A1 (en) |
| WO (1) | WO2013020137A1 (en) |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2805486C (en) * | 2010-07-20 | 2018-03-06 | Becton, Dickinson And Company | Method for linking point of care rapid diagnostic testing results to laboratory-based methods |
| US8956859B1 (en) | 2010-08-13 | 2015-02-17 | Aviex Technologies Llc | Compositions and methods for determining successful immunization by one or more vaccines |
| RU2627383C2 (en) | 2012-04-13 | 2017-08-08 | Бектон, Дикинсон Энд Компани | Additional research of samples with application of residual materials from previous test |
| US20160123856A1 (en) * | 2013-06-12 | 2016-05-05 | Oasis Diagnostics Corporation | Rna/prtein/dna preferential fluid sample collection system and methods |
| US10849600B2 (en) * | 2016-03-08 | 2020-12-01 | Entech Instruments Inc. | Breath condensate and saliva analysis using oral rinse |
| EP3713477B1 (en) * | 2017-11-21 | 2022-07-06 | MX3 Diagnostics, Inc. | Saliva testing system and method |
| EP3742969B1 (en) | 2018-03-06 | 2025-04-09 | Entech Instruments Inc. | Ventilator-coupled sampling device and method |
| JP7157869B2 (en) | 2018-07-31 | 2022-10-20 | エンテック インスツルメンツ インコーポレイテッド | Hybrid capillary/filled trap and method of use |
| US11701036B2 (en) | 2019-07-10 | 2023-07-18 | MX3 Diagnostics, Inc. | Saliva test strip and method |
| EP4097470A4 (en) | 2020-01-30 | 2024-03-06 | MX3 Diagnostics, Inc. | BIOLOGICAL FLUID SAMPLE EVALUATION |
| CN111518797A (en) * | 2020-04-30 | 2020-08-11 | 上海安五生物科技有限公司 | Normal-temperature protection solution and preparation method and application thereof |
| WO2021236050A1 (en) | 2020-05-18 | 2021-11-25 | Baseline Global, Inc. | Assay device, system, method, and kit |
| CN112640885B (en) * | 2020-12-08 | 2022-04-12 | 河北工程大学 | A room temperature preservation method for fatigued human saliva samples |
| CN114224392B (en) * | 2021-11-23 | 2024-06-18 | 深圳市罗湖医院集团 | Sampler and sampling equipment |
| CN115287283B (en) * | 2022-09-16 | 2025-05-23 | 山东第一医科大学(山东省医学科学院) | A method for simultaneously extracting DNA, RNA and protein from saliva stains |
| CN116296648A (en) * | 2022-11-12 | 2023-06-23 | 北京毅新博创生物科技有限公司 | Pretreatment reagent composition for mass spectrum detection of respiratory tract pathogen infection and detection kit thereof |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040115692A1 (en) * | 2000-04-03 | 2004-06-17 | Cytyc Corporation | Methods, compositions and apparatuses for detecting a target in a preservative solution |
| DE602005026273D1 (en) * | 2004-04-09 | 2011-03-24 | Vivebio Llc | DEVICES AND METHODS FOR ACCEPTANCE, STORAGE AND TRANSPORT OF BIOLOGICAL SAMPLES |
| EP1965190A1 (en) * | 2007-02-27 | 2008-09-03 | Qiagen GmbH | Fixation of a biological sample |
| CA2806734A1 (en) * | 2010-07-26 | 2012-02-09 | Biomatrica, Inc. | Compositions for stabilizing dna, rna and proteins in saliva and other biological samples during shipping and storage at ambient temperatures |
| EP2598660B1 (en) * | 2010-07-26 | 2017-03-15 | Biomatrica, INC. | Compositions for stabilizing dna, rna and proteins in blood and other biological samples during shipping and storage at ambient temperatures |
-
2012
- 2012-08-06 CN CN201280049049.5A patent/CN103842506A/en active Pending
- 2012-08-06 AP AP2014007466A patent/AP2014007466A0/en unknown
- 2012-08-06 AU AU2012289854A patent/AU2012289854A1/en not_active Abandoned
- 2012-08-06 EP EP12820235.5A patent/EP2739731A1/en not_active Withdrawn
- 2012-08-06 CA CA2845317A patent/CA2845317A1/en not_active Abandoned
- 2012-08-06 WO PCT/US2012/049776 patent/WO2013020137A1/en not_active Ceased
- 2012-08-06 US US14/236,963 patent/US10023903B2/en active Active
-
2018
- 2018-06-22 US US16/015,407 patent/US20190010538A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| US10023903B2 (en) | 2018-07-17 |
| AU2012289854A1 (en) | 2014-03-06 |
| CA2845317A1 (en) | 2013-02-07 |
| US20140329705A1 (en) | 2014-11-06 |
| AP2014007466A0 (en) | 2014-02-28 |
| WO2013020137A1 (en) | 2013-02-07 |
| CN103842506A (en) | 2014-06-04 |
| EP2739731A1 (en) | 2014-06-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10023903B2 (en) | Saliva collection, processing, stabilization, and storage method | |
| Dwivedi et al. | Diseases and molecular diagnostics: a step closer to precision medicine | |
| US10526665B2 (en) | Exosomal biomarkers diagnostic of tuberculosis | |
| JP2006503587A5 (en) | ||
| CN107058588B (en) | Genetic deafness gene detection product | |
| JP2011525106A (en) | Markers for diffuse B large cell lymphoma and methods of use thereof | |
| CN114292909B (en) | Application of SNP rs241970 as a target in the development of a kit for screening high-altitude pulmonary edema susceptible populations | |
| KR20180028028A (en) | Composition and method for improving sensitivity and specificity on detection of nucleic acids with using dCas9 protein and gRNA for binding to target nucleic acid sequence | |
| JP2018512868A (en) | Metagenomic compositions and methods for breast cancer detection | |
| WO2013060005A1 (en) | Method for detecting specific single nucleotide polymorphism related to ankylosing spondylitis and kit therefor | |
| CN116622840B (en) | Application of SNP rs9594543 as target in developing kit for screening plateau pulmonary edema susceptible population | |
| JP2008502330A (en) | Diagnosis or prediction of progression of breast cancer | |
| CN108841949B (en) | Reagent kit and device for early detection and diagnosis of Parkinson's disease | |
| WO2003076614A1 (en) | Method of collecting data for deducing sensitivity to periodontal disease | |
| JP2008534009A (en) | Multiple SNP for diagnosing colorectal cancer, microarray and kit including the same, and method for diagnosing colorectal cancer using the same | |
| CN114381517B (en) | Application of detection of SNP rs12569857 polymorphism in preparation of screening kit for high altitude pulmonary edema susceptible population | |
| CN104789673B (en) | Applications of the rs1800818 in heating companion's thrombocytopenic syndromes that new bunyavirus causes are detected | |
| CN104630379A (en) | Non-small-cell lung cancer marker FAM107A and application thereof | |
| CN104862379A (en) | Detection kit for human leucocyte antigen genes | |
| KR20180081445A (en) | Method for rapidly detecting nucleic acid and rapid diagnosic method of disease using thereof | |
| EP1716255B1 (en) | A polynucleotide associated with a colon cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a colon cancer using the polynucleotide | |
| ES2640524B1 (en) | USE OF TCFL5 / CHA AS A NEW MARKER FOR THE PROGNOSIS AND / OR DIFFERENTIAL DIAGNOSIS OF ACUTE LYMPHOBLASTIC LEUKEMIES | |
| KR20210024919A (en) | Urinary exosome-derived miRNA gene biomarkers for diagnosis of BK virus nephropathy in kidney allografts and use thereof | |
| CN103045745B (en) | Application of CPPED1 gene | |
| CN116536417B (en) | Application of SNP rs9790196 as target in developing kit for screening plateau pulmonary edema susceptible population |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WONG, DAVID T.;LIAO, WEI;SIGNING DATES FROM 20180722 TO 20180723;REEL/FRAME:046438/0151 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |