[go: up one dir, main page]

US20190008927A1 - Composition For Enzymatic Debridement - Google Patents

Composition For Enzymatic Debridement Download PDF

Info

Publication number
US20190008927A1
US20190008927A1 US16/050,796 US201816050796A US2019008927A1 US 20190008927 A1 US20190008927 A1 US 20190008927A1 US 201816050796 A US201816050796 A US 201816050796A US 2019008927 A1 US2019008927 A1 US 2019008927A1
Authority
US
United States
Prior art keywords
composition
enzymatic debridement
bromelain
enzymatic
debridement composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/050,796
Inventor
Douglas Philip HANSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KCI Licensing Inc
Original Assignee
KCI Licensing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KCI Licensing Inc filed Critical KCI Licensing Inc
Priority to US16/050,796 priority Critical patent/US20190008927A1/en
Publication of US20190008927A1 publication Critical patent/US20190008927A1/en
Assigned to KCI LICENSING, INC. reassignment KCI LICENSING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANSON, DOUGLAS PHILIP
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4873Cysteine endopeptidases (3.4.22), e.g. stem bromelain, papain, ficin, cathepsin H
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels

Definitions

  • This disclosure relates generally to the field of wound care. More particularly, it concerns methods and compositions for enzymatic debridement of wounds.
  • Debridement is an important part of the healing process for certain types of wounds.
  • a variety of techniques have been employed in the removal of dead, damaged, or infected tissue from wounds including surgical, mechanical, chemical, and enzymatic techniques.
  • Enzymatic debridement uses naturally occurring enzymes to digest the dead, damaged, or infected tissue.
  • enzymatic debriding agents include collagenase (Santyl®), papain/urea (Accuzyme® (discontinued)), fibrinolysin/DNAse (Elase), and trypsin (Vasolex®).
  • Extracts derived from the pineapple plant have also been investigated as debridement agents. See, e.g., U.S. Pat. Nos. 4,197,291; 4,226,854; 4,329,430; 4,307,081; 5,106,621; 5,387,517; 5,830,739; and U.S. Publ. No. 2009/0148429.
  • These efforts have largely focused on isolating specific proteases or molecular weight fractions, which requires extensive processing of bromelain. Accordingly, there is a need for effective enzymatic debridement agents that can be obtained in large quantities and with relatively few processing steps.
  • the methods include dissolving crude bromelain in a composition comprising one or more weak acids and removing low molecular weight components from the dissolved bromelain composition to obtain an enzymatic debridement composition.
  • removing the low molecular weight components from the dissolved bromelain composition involves filtration and/or dialysis.
  • the weak acid is acetic acid.
  • a method of preparing an enzymatic debridement composition comprising: (a) dissolving crude bromelain in a composition comprising a weak acid; (b) filtering the dissolved crude bromelain to obtain a filtered bromelain composition; (c) dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition; and (d) optionally lyophilizing the enzymatic debridement composition.
  • an enzymatic debridement composition consisting essentially of: (a) dissolving crude bromelain in a composition comprising a weak acid; (b) filtering the dissolved crude bromelain to obtain a filtered bromelain composition; (c) dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition; and (d) optionally lyophilizing the enzymatic debridement composition.
  • a method of preparing an enzymatic debridement composition comprising: (a) dissolving crude bromelain in a composition comprising a weak acid; (b) filtering and/or dialyzing the dissolved crude bromelain to obtain the enzymatic debridement composition; and (c) optionally lyophilizing the enzymatic debridement composition.
  • an enzymatic debridement composition consisting essentially of: (a) dissolving crude bromelain in a composition comprising a weak acid; (b) filtering and/or dialyzing the dissolved crude bromelain to obtain the enzymatic debridement composition; and (c) optionally lyophilizing the enzymatic debridement composition.
  • crude bromelain refers to a precipitate obtained or obtainable by adding acetone at ⁇ 20% by volume to the juice from the stem of the pineapple plant.
  • a weak acid refers to an acid that does not dissociate completely. It does not donate all of its protons (hydrogens) to the solution.
  • weak acids include but are not limited to acetic acid, trichloroacetic acid, oxalic acid, formic acid, benzoic acid, and citric acid.
  • the amount of a weak acid used to dissolve the crude bromelain may be, for example, between about 0.1 to 1 M or between about 0.2 to 0.4 M. In certain embodiments, the acid composition comprises about 0.3 M weak acid.
  • Filtration is a process that removes contaminants and/or insoluble components from a fluid by passage through a porous substrate such as a membrane.
  • the filter pore size may be about 0.1 to 10 ⁇ m, 0.1 to 1 ⁇ m, or 0.1 to 0.4 ⁇ m.
  • the dissolved crude bromelain is filtered through a 0.2 ⁇ m pore filter. In certain aspects, the filtration is assisted by applying a vacuum or pressure.
  • Dialysis separates molecules in solution by the difference in their rates of diffusion through a semipermeable membrane, such as dialysis tubing.
  • the filtered bromelain composition is subjected to dialysis to obtain the enzymatic debridement composition.
  • the filtered bromelain is dialyzed through a membrane having a molecular weight cut off of about, or at least, 7,000, 8,000, 10,000, 11,000, 12,000, 12,400, 13,000, or 14,000 Daltons.
  • the membrane has a molecular weight cut off of about 6,000-8,000 or 12,000-14,000 Daltons.
  • the filtered bromelain composition is subjected to dialysis using a 12,400 Dalton molecular weight cut-off membrane.
  • the process steps for preparing the enzymatic debridement compositions are carried out at room temperature. In other embodiments, the steps for preparing the enzymatic debridement compositions are carried out below room temperature.
  • the enzymatic debridement composition may be formulated in a variety of ways such as, for example, a liquid, gel, powder, foam, paste, spray, or film.
  • the enzymatic debridement composition is lyophilized to a powder.
  • the lyophilized enzymatic debridement composition may be used in powder form, or the powder may be further processed into gels, foams, aerosols, films, or other formulations.
  • the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation may be between about 0.5 to 25%, 1 to 20%, 5 to 15%, or 8 to 12% by weight.
  • the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation is about 10% by weight.
  • the enzymatic debridement composition is applied to a wound dressing, such as a gauze, cloth, or film.
  • the methods and compositions provided herein therefore also relate to a wound dressing comprising an enzymatic debridement composition or formulation thereof as disclosed herein and a formulation (such as a liquid, gel, powder, foam, paste, spray, or film) comprising an enzymatic debridement composition as disclosed herein, optionally in an amount of about 0.5 to 25%, 1 to 20%, 5 to 15%, or 8 to 12% by weight.
  • a formulation such as a liquid, gel, powder, foam, paste, spray, or film
  • an enzymatic debridement composition consisting essentially of: (a) dissolving crude bromelain in a composition comprising 0.3M of a weak acid; (b) filtering the dissolved crude bromelain through a 0.2 ⁇ m pore filter to obtain a filtered bromelain composition; (c) dialyzing the filtered bromelain composition through a 12,400 molecular weight cut-off membrane to obtain the enzymatic debridement composition; and (d) lyophilizing the enzymatic debridement composition.
  • the composition may then be further formulated.
  • an enzymatic debridement composition prepared by a method comprising: (a) dissolving crude bromelain in a composition comprising a weak acid; (b) filtering and/or dialyzing the dissolved crude bromelain to obtain an enzymatic debridement composition; and (c) optionally lyophilizing the enzymatic debridement composition.
  • the method of preparing the enzymatic debridement composition comprises filtering the dissolved bromelain to obtain a filtered bromelain composition, and dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition.
  • the weak acid used in the preparation of the enzymatic debridement compositions is selected from the group consisting of acetic acid, trichloroacetic acid, oxalic acid, formic acid, benzoic acid, citric acid, and a mixture thereof. In other embodiments, the weak acid is acetic acid.
  • a pharmaceutical composition comprising: (a) an enzymatic debridement composition, wherein the enzymatic debridement composition was prepared by dissolving crude bromelain in a composition comprising a weak acid, and filtering and/or dialyzing the dissolved crude bromelain to obtain the enzymatic debridement composition, and optionally lyophilizing the enzymatic debridement composition; and (b) an excipient.
  • preparing the enzymatic debridement composition comprises filtering the dissolved bromelain to obtain a filtered bromelain composition; and dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition.
  • the pharmaceutical composition may be formulated as, for example, a liquid, gel, powder, foam, spray, or film.
  • the excipient may be any pharmaceutically acceptable carrier that is compatible with the enzymatic debridement composition.
  • Non-limiting examples include water, saline solutions such as normal saline, Ringer's solution, glycerol, ethanol, PBS (phosphate-buffered saline), and generally mixtures of various salts including potassium and phosphate salts with or without sugar additives such as glucose.
  • Nontoxic auxiliary substances, such as wetting agents, buffers, or emulsifiers may also be added to the composition.
  • the amount of a weak acid used to dissolve the crude bromelain may be, for example, between about 0.1 to 1 M or between about 0.2 to 0.4 M.
  • the acid composition comprises about 0.3 M of a weak acid.
  • the filter pore size may be about 0.1 to 10 ⁇ m, 0.1 to 1 ⁇ m, or 0.1 to 0.4 ⁇ m.
  • the dissolved crude bromelain is filtered through a 0.2 ⁇ m pore filter.
  • the filtration is assisted by applying a vacuum or pressure.
  • the filtered bromelain composition is subjected to dialysis to obtain the enzymatic debridement composition.
  • the filtered bromelain is dialyzed through a membrane having a molecular weight cut off of about or at least 7,000, 8,000, 10,000, 11,000, 12,000, 12,400, 13,000, or 14,000 Daltons. In some embodiments, the membrane has a molecular weight cut off of about 6,000-8,000 or 12,000-14,000 Daltons. In one embodiment, the filtered bromelain composition is subjected to dialysis using a 12,400 Dalton molecular weight cut-off membrane.
  • the enzymatic debridement composition may be formulated in a variety of ways such as, for example, a liquid, gel, powder, foam, paste, spray, or film.
  • the enzymatic debridement composition is lyophilized to a powder.
  • the lyophilized enzymatic debridement composition may be used in powder form, or the powder may be further processed into gels, foams, aerosols, films, or other formulations.
  • the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation may be between about 0.5 to 25%, 1 to 20%, 5 to 15%, or 8 to 12% by weight.
  • the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation is about 10% by weight.
  • the composition is in the form of a gel comprising about 10% of the enzymatic debridement composition by weight.
  • the enzymatic debridement composition is applied to a wound dressing, such as a gauze, cloth, or film.
  • an enzymatic debridement composition comprising all acid soluble components of crude bromelain having molecular weights greater than about 12,000, 12,400, 13,000, or 14,000 Daltons, and being substantially devoid of components of crude bromelain having molecular weights less than about 12,000, 12,400, 13,000, or 14,000 Daltons.
  • the enzymatic debridement composition is lyophilized.
  • a method for debridement of devitalized tissue from a subject comprising: (a) contacting devitalized tissue with an enzymatic debridement composition to dissolve the devitalized tissue, wherein the enzymatic debridement composition was prepared by dissolving crude bromelain in a composition comprising a weak acid, and filtering and/or dialyzing the dissolved crude bromelain to obtain the enzymatic debridement composition, and optionally lyophilizing the enzymatic debridement composition; and (b) removing the dissolved devitalized tissue.
  • the method of preparing the enzymatic debridement composition comprises filtering the dissolved bromelain to obtain a filtered bromelain composition, and dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition.
  • the methods and compositions provided herein further relates to an enzymatic debridement composition, as disclosed herein, for use in debridement of devitalized tissue from a subject.
  • the enzymatic debridement composition may be applied to the devitalized tissue as needed to dissolve the tissue.
  • the enzymatic debridement composition may be in contact with the devitalized tissue for about 1 to 48 hours, 1 to 24 hours, 1 to 12 hours, 1 to 8 hours, 1 to 4 hours, 2 to 48 hours, 2 to 24 hours, 2 to 12 hours, 2 to 8 hours, or 2 to 4 hours before the dissolved devitalized tissue is removed.
  • the enzymatic debridement composition is in contact with the devitalized tissue for at least 1, 2, 3, 4, 5, 6, 7, 8, 12, or 24 hours before the dissolved devitalized tissue is removed.
  • the steps of contacting the devitalized tissue with an enzymatic debridement composition to dissolve the devitalized tissue, and removing the dissolved devitalized tissue may be repeated as needed to effect the removal of the devitalized tissue.
  • the process may be repeated at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times.
  • the method for applying the enzymatic debridement composition to the devitalized tissue may vary depending on factors such as the location and amount of devitalized tissue and the size and shape of the wound where the devitalized tissue is located. For example, a gel formulation may be desirable where large surface areas need to be covered, a coated foam formulation may be desirable for applications used with negative pressure therapy, and a coated gauze formulation may be desirable for areas that need to be wrapped. A health care provider will be able to determine an appropriate method for applying the enzymatic debridement composition to the devitalized tissue in view of such factors.
  • the enzymatic debridement composition is applied by coating the devitalized tissue with the enzymatic debridement composition, or by injecting the enzymatic debridement composition into the devitalized tissue.
  • the devitalized tissue may be covered with a wound dressing after the enzymatic debridement composition.
  • the wound dressing comprises the enzymatic debridement composition (e.g., gauze soaked in or coated with the enzymatic debridement composition), in which case the enzymatic debridement composition may be applied to the devitalized tissue by applying the wound dressing to the devitalized tissue.
  • the dissolved devitalized tissue may be removed if by, for example, wiping or rinsing the dissolved tissue from the wound.
  • the wound may be any type of wound including, without limitation, a burn wound, sunburn, frostbite, diabetic ulcer, pressure ulcer, surgery site, or skin graft site.
  • kits comprising the enzymatic debridement compositions or formulations disclosed herein.
  • the kit may further comprise a wound dressing, such as a gauze, gel, foam, cloth, or film.
  • a method, composition, kit, or system that “comprises,” “has,” “contains,” or “includes” one or more recited steps or elements possesses those recited steps or elements, but is not limited to possessing only those steps or elements; it may possess (i.e., cover) elements or steps that are not recited.
  • an element of a method, composition, kit, or system that “comprises,” “has,” “contains,” or “includes” one or more recited features possesses those features, but is not limited to possessing only those features; it may possess features that are not recited.
  • any embodiment of any of the present methods, composition, kit, and systems may consist of or consist essentially of—rather than comprise/include/contain/have—the described steps and/or features.
  • the term “consisting of” or “consisting essentially of” may be substituted for any of the open-ended linking verbs recited above, in order to change the scope of a given claim from what it would otherwise be using the open-ended linking verb.
  • FIG. 1 shows a process for obtaining a lyophilized enzymatic debridement composition.
  • FIG. 2 shows a comparison of Accuzyme® (papain/urea) and a bromelain enzymatic debridement composition on a pig skin burn model over a 24 hour period.
  • FIG. 3 shows a graph comparing Accuzyme® (papain/urea) and two bromelain formulations on a pig skin burn model from 0 to 8 hours at 2 hour intervals.
  • compositions provided herein are the enzymatic debridement agents used for debridement purposes.
  • Debridement is an important part of the healing process for certain types of wounds, and a variety of techniques have been employed in the debridement of wounds.
  • Enzymatic debridement uses naturally occurring enzymes to digest the dead, damaged, or infected tissue.
  • enzymatic debriding agents have been developed including collagenase (Santyl®), papain/urea (Accuzyme® (discontinued)), fibrinolysin/DNAse (Elase), and trypsin (Vasolex®).
  • Extracts derived from the pineapple plant have also been investigated as debridement agents. See, e.g., U.S. Pat. Nos. 4,197,291; 4,226,854; 4,329,430; 4,307,081; 5,106,621; 5,387,517; 5,830,739; and U.S. Publ. No. 2009/0148429.
  • These efforts have largely focused on isolating specific proteases or molecular weight fractions, which requires extensive processing of bromelain.
  • crude bromelain also contains protease inhibitors.
  • bromelain inhibitors I-VII seven closely related protease inhibitors, i.e., bromelain inhibitors I-VII, from a commercial bromelain acetone powder. These inhibitors were reported to have molecular weights of 5000-6000 Daltons.
  • the bromelain-based enzymatic debridement compositions provided herein remove devitalized tissue faster than Santyl®, Accuzyme®, and crude bromelain, yet can be prepared with fewer processing steps than needed to isolate specific proteases from crude bromelain.
  • the process of preparing the enzymatic debridement composition comprises: (a) dissolving crude bromelain in an acidic composition; and (b) filtering and/or dialyzing to obtain the enzymatic debridement composition.
  • the process of preparing the enzymatic debridement composition comprises filtering the dissolved bromelain to obtain a filtered bromelain composition, and dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition.
  • the enzymatic debridement composition may further be lyophilized to a powder.
  • the acidic composition used to dissolve the crude bromelain comprises one or more weak acids.
  • weak acids include but are not limited to acetic acid, trichloroacetic acid, oxalic acid, formic acid, benzoic acid, and citric acid.
  • the acidic composition comprises acetic acid.
  • FIG. 1 shows a flow chart of one process of preparing the enzymatic debridement composition.
  • crude bromelain is first dissolved in 0.3M acetic acid.
  • the dissolved bromelain is then filtered through a 0.2 ⁇ m pore size filter with vacuum assistance. After filtering, the composition is dialyzed with 12,400 MW cutoff tubing, and then lyophilized to a powder.
  • Filtration of the dissolved crude bromelain is used to remove the non-soluble components in the acidic solution.
  • a 2 micron filter will remove bacteria from the solution as well as most fat globules and insoluble protein aggregates, whereas most soluble proteins should pass through the filter.
  • filtration techniques examples include gravimetric and pressure assisted techniques, such as but not limited to ultrafiltration.
  • Dialysis uses a semi-permeable membrane for diffusion of molecules from high concentration to low concentration. Only those molecules small enough to fit through the pores of the membrane will diffuse across the membrane. In the preparation of the enzymatic debridement compositions described here, small molecules (e.g., molecules with molecular weights less than about 12,400 Daltons) diffuse across the dialysis membrane and the larger-sized molecules are retained. By removing the low molecular weight components from the composition, the low molecular weight protease inhibitors can be substantially eliminated while retaining a broad range of active enzymes in the composition.
  • small molecules e.g., molecules with molecular weights less than about 12,400 Daltons
  • Examples of some dialysis techniques that may be employed in the methods disclosed herein include batch and continuous dialysis.
  • the enzymatic debridement composition is highly specific to necrotic tissue and will not digest the surrounding living tissue.
  • the enzymatic debridement composition is also very fast and effective, removing nearly all necrotic tissue in as little as 4 hours.
  • the speed at which this composition works is not merely an issue of convenience, but it also lessens the possibility of infection at the wound site and subsequent sepsis that can put a patient's life at risk.
  • compositions comprising the enzymatic debridement compositions (or agents) prepared by the methods disclosed herein.
  • the enzymatic debridement compositions are provided in a variety of forms, particularly forms suitable for topical delivery to wound sites.
  • the enzymatic debridement compositions are formulated as liquids, gels, powders, pastes, foams, sprays, or films.
  • the enzymatic debridement composition is first prepared as a powder, which is then further formulated into, for example, a gel, paste, foam, spray, or film.
  • the excipient(s) in the formulation may be any pharmaceutically acceptable carrier that is compatible with the enzymatic debridement composition.
  • Non-limiting examples include water, saline solutions such as normal saline, Ringer's solution, glycerol, ethanol, PBS (phosphate-buffered saline), and generally mixtures of various salts including potassium and phosphate salts with or without sugar additives such as glucose.
  • Nontoxic auxiliary substances, such as wetting agents, buffers, or emulsifiers may also be added to the composition.
  • the formulation may be aqueous or non-aqueous.
  • the enzymatic debridement composition is in an aprotic deliver system.
  • the enzymatic debridement composition is lyophilized to a powder.
  • the lyophilized enzymatic debridement composition may be used in powder form, or the powder may be further processed into gels, foams, aerosols, films, or other formulations.
  • the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation may be between about 0.5 to 25%, 1 to 20%, 5 to 15%, or 8 to 12% by weight. In one embodiment, the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation is about 10% by weight.
  • the enzymatic debridement composition or the lyophilized enzymatic debridement composition is in the form of a gel, and the gel comprises 10% by weight of the enzymatic debridement composition.
  • the enzymatic debridement composition is applied to a wound dressing, such as a gauze, cloth, or film.
  • the enzymatic debridement composition may also be applied to or incorporated into a wound dressing, such as a gauze, cloth, or film.
  • a wound dressing such as a gauze, cloth, or film.
  • the wound dressing could be saturated with the enzymatic debridement composition or the enzymatic debridement composition could be applied to one side of the wound dressing.
  • Wound healing depends on orderly progression through four known phases. These phases are hemostasis, inflammation, proliferation, and remodeling or maturation. In certain cases, a wound fails to heal in the orderly, predictable stages within the time expected. Such wounds are considered chronic, and sufferers of chronic wounds may have additional emotional and physical stress due to the failure of the wound to heal. Typically, a chronic wound develops if something causes disruption of the inflammatory phase or the proliferative phase. Common sources of disruption include infection, tissue hypoxia, repeated trauma, the presence of debris and/or necrotic tissue, and certain diseases such as diabetes. Patients with chronic wounds are at higher risk for infection, and often report a great deal of pain.
  • Debridement of dead or infected tissue improves the healing potential of the remaining healthy tissue.
  • the enzymatic debridement compositions disclosed herein are very fast and effective, capable of removing nearly all necrotic tissue from a wound within hours. Additionally, the compositions are highly specific to necrotic tissue and will not digest the surrounding healthy tissue.
  • the method for applying the enzymatic debridement composition to the devitalized tissue may vary depending on factors such as the location and amount of devitalized tissue and the size and shape of the wound where the devitalized tissue is located. A health care provider will be able to determine an appropriate method for applying the enzymatic debridement composition to the devitalized tissue in view of such factors.
  • the enzymatic debridement composition may be applied by coating the devitalized tissue with the enzymatic debridement composition.
  • the enzymatic debridement composition may also be injected into the devitalized tissue.
  • the wound may be covered with a wound dressing after the enzymatic debridement composition is applied.
  • the wound dressing comprises the enzymatic debridement composition (e.g., gauze soaked in or coated with the enzymatic debridement composition), in which case the enzymatic debridement composition may be applied to the devitalized tissue by applying the wound dressing to the devitalized tissue.
  • the dissolved devitalized tissue is removed, typically by wiping or rinsing the dissolved tissue from the wound.
  • the enzymatic debridement composition may be re-applied as needed to remove any remaining devitalized tissue from the wound.
  • kits containing components for use in wound debridement Any of the components disclosed herein may be combined in a kit.
  • the kit comprises an enzymatic debridement compositions or formulations disclosed herein.
  • the kit may further comprise a wound dressing, such as a gauze, cloth, or film.
  • kits will generally include at least one vial, test tube, flask, bottle, syringe, foil package, or other container, into which a component may be placed, and preferably, suitably aliquoted. Where there is more than one component in the kit, the kit also will generally contain a second, third or other additional containers into which the additional components may be separately placed. However, various combinations of components may be comprised in a container.
  • the kits also will typically include packaging for containing the various containers in close confinement for commercial sale. Such packaging may include cardboard or injection or blow molded plastic packaging into which the desired containers are retained.
  • a kit may also include instructions for employing the kit components. Instructions may include variations that can be implemented.
  • a powdered bromelain enzymatic debridement composition was prepared by the processes shown in FIG. 1 .
  • the powdered bromelain enzymatic debridement composition was then formulated into a gel at 10% weight loading.
  • the gel was an aqueous gel of 2% COSMEDIA® (polyacrylate). This gel formulation is referred to as KCI F2 in the pig skin model studies below.
  • Crude bromelain was also lyophilized to powder form and formulated into a gel (2% COSMEDIA® (polyacrylate)) at 10% weight loading. This gel formulation is referred to as KCI F1 in the pig skin model studies below.
  • the debridement compositions were evaluated using a pig skin burn model in which a blow torch is applied to fresh pig skin for 20 seconds to produce a patch of black eschar.
  • the various debridement compositions were then applied to the eschar and covered with damp gauze.
  • the skin was then placed in a sealed container in an oven at the 33° C. to simulate skin temperature. The skin remained in the oven for the duration of the testing periods indicated below.
  • the results compare the histograms of images captured before and after treatment.
  • the eschar was defined by the dark pixels, which were determined by masking to be in the range of 0-70.
  • Santyl® (collagenase) only removed 28.50% of the eschar in a 24 hour period. This represents a debridement rate of 1.19% per hour. KCI F2 was over 20 times faster than Santyl® (collagenase).
  • KCI F2 had almost completely removed the necrotic burn eschar within 4 hours (3.37% eschar remaining), whereas 56.88% and 47.92% of the eschar remained after 4 hours on the Accuzyme® (papain/urea) and KCI F1 treated skin.
  • KCI F2 had the fastest debridement rate at 24.20% per hour.
  • the debridement rate for KCI F1 was 13.2% per hour.
  • the debridement rate for Accuzyme® (papain/urea) was 9.3% per hour.
  • the debridement rate for KCI F2 was 2.6 times faster than that of Accuzyme® (papain/urea).
  • compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods disclosed herein have been described in terms of certain embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept, spirit and scope of the present disclosure. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the disclosure as defined by the appended claims.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Methods and compositions for the enzymatic debridement of wounds are provided. Methods for preparing enzymatic debridement compositions are also provided. In one embodiment, an enzymatic debridement composition prepared by dissolving crude bromelain in a composition comprising a weak acid, and filtering and/or dialyzing the dissolved crude bromelain to obtain the enzymatic debridement composition is provided.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional of U.S. patent application Ser. No. 13/719,176, filed Dec. 18, 2012, which claims priority to U.S. Provisional Application No. 61/577,997, filed Dec. 20, 2011, entitled COMPOSITION FOR ENZYMATIC DEBRIDEMENT, the disclosure of which is hereby incorporated by reference in its entirety.
  • BACKGROUND Field
  • This disclosure relates generally to the field of wound care. More particularly, it concerns methods and compositions for enzymatic debridement of wounds.
  • Description of Related Art
  • Debridement is an important part of the healing process for certain types of wounds. A variety of techniques have been employed in the removal of dead, damaged, or infected tissue from wounds including surgical, mechanical, chemical, and enzymatic techniques. Enzymatic debridement uses naturally occurring enzymes to digest the dead, damaged, or infected tissue. Several enzymatic debriding agents have been developed including collagenase (Santyl®), papain/urea (Accuzyme® (discontinued)), fibrinolysin/DNAse (Elase), and trypsin (Vasolex®).
  • Extracts derived from the pineapple plant (Ananas comosus) have also been investigated as debridement agents. See, e.g., U.S. Pat. Nos. 4,197,291; 4,226,854; 4,329,430; 4,307,081; 5,106,621; 5,387,517; 5,830,739; and U.S. Publ. No. 2009/0148429. These efforts, however, have largely focused on isolating specific proteases or molecular weight fractions, which requires extensive processing of bromelain. Accordingly, there is a need for effective enzymatic debridement agents that can be obtained in large quantities and with relatively few processing steps.
  • SUMMARY
  • Provided herein are methods of preparing an enzymatic debridement composition from crude bromelain and enzymatic debridement compositions prepared by the disclosed methods. The methods include dissolving crude bromelain in a composition comprising one or more weak acids and removing low molecular weight components from the dissolved bromelain composition to obtain an enzymatic debridement composition. In one embodiment, removing the low molecular weight components from the dissolved bromelain composition involves filtration and/or dialysis. In another embodiment, the weak acid is acetic acid.
  • In one embodiment, provided herein is a method of preparing an enzymatic debridement composition comprising: (a) dissolving crude bromelain in a composition comprising a weak acid; (b) filtering the dissolved crude bromelain to obtain a filtered bromelain composition; (c) dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition; and (d) optionally lyophilizing the enzymatic debridement composition.
  • In another embodiment, provided herein is a method of preparing an enzymatic debridement composition consisting essentially of: (a) dissolving crude bromelain in a composition comprising a weak acid; (b) filtering the dissolved crude bromelain to obtain a filtered bromelain composition; (c) dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition; and (d) optionally lyophilizing the enzymatic debridement composition.
  • In a further embodiment, provided herein is a method of preparing an enzymatic debridement composition comprising: (a) dissolving crude bromelain in a composition comprising a weak acid; (b) filtering and/or dialyzing the dissolved crude bromelain to obtain the enzymatic debridement composition; and (c) optionally lyophilizing the enzymatic debridement composition.
  • In another embodiment, provided herein is a method of preparing an enzymatic debridement composition consisting essentially of: (a) dissolving crude bromelain in a composition comprising a weak acid; (b) filtering and/or dialyzing the dissolved crude bromelain to obtain the enzymatic debridement composition; and (c) optionally lyophilizing the enzymatic debridement composition.
  • As used herein, “crude bromelain” refers to a precipitate obtained or obtainable by adding acetone at ˜20% by volume to the juice from the stem of the pineapple plant.
  • As used herein, “a weak acid” refers to an acid that does not dissociate completely. It does not donate all of its protons (hydrogens) to the solution. Examples of weak acids include but are not limited to acetic acid, trichloroacetic acid, oxalic acid, formic acid, benzoic acid, and citric acid.
  • The amount of a weak acid used to dissolve the crude bromelain may be, for example, between about 0.1 to 1 M or between about 0.2 to 0.4 M. In certain embodiments, the acid composition comprises about 0.3 M weak acid.
  • Filtration is a process that removes contaminants and/or insoluble components from a fluid by passage through a porous substrate such as a membrane. In certain embodiments, the filter pore size may be about 0.1 to 10 μm, 0.1 to 1 μm, or 0.1 to 0.4 μm. In one embodiment, the dissolved crude bromelain is filtered through a 0.2 μm pore filter. In certain aspects, the filtration is assisted by applying a vacuum or pressure.
  • Dialysis separates molecules in solution by the difference in their rates of diffusion through a semipermeable membrane, such as dialysis tubing. In certain aspects, the filtered bromelain composition is subjected to dialysis to obtain the enzymatic debridement composition. In some embodiments, the filtered bromelain is dialyzed through a membrane having a molecular weight cut off of about, or at least, 7,000, 8,000, 10,000, 11,000, 12,000, 12,400, 13,000, or 14,000 Daltons. In some embodiments, the membrane has a molecular weight cut off of about 6,000-8,000 or 12,000-14,000 Daltons. In one embodiment, the filtered bromelain composition is subjected to dialysis using a 12,400 Dalton molecular weight cut-off membrane.
  • In some embodiments, the process steps for preparing the enzymatic debridement compositions are carried out at room temperature. In other embodiments, the steps for preparing the enzymatic debridement compositions are carried out below room temperature.
  • The enzymatic debridement composition may be formulated in a variety of ways such as, for example, a liquid, gel, powder, foam, paste, spray, or film. In certain aspects, the enzymatic debridement composition is lyophilized to a powder. The lyophilized enzymatic debridement composition may be used in powder form, or the powder may be further processed into gels, foams, aerosols, films, or other formulations. In certain embodiments, the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation may be between about 0.5 to 25%, 1 to 20%, 5 to 15%, or 8 to 12% by weight. In one embodiment, the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation is about 10% by weight. In some aspects, the enzymatic debridement composition is applied to a wound dressing, such as a gauze, cloth, or film.
  • The methods and compositions provided herein therefore also relate to a wound dressing comprising an enzymatic debridement composition or formulation thereof as disclosed herein and a formulation (such as a liquid, gel, powder, foam, paste, spray, or film) comprising an enzymatic debridement composition as disclosed herein, optionally in an amount of about 0.5 to 25%, 1 to 20%, 5 to 15%, or 8 to 12% by weight.
  • In a further embodiment, provided herein is a method of preparing an enzymatic debridement composition consisting essentially of: (a) dissolving crude bromelain in a composition comprising 0.3M of a weak acid; (b) filtering the dissolved crude bromelain through a 0.2 μm pore filter to obtain a filtered bromelain composition; (c) dialyzing the filtered bromelain composition through a 12,400 molecular weight cut-off membrane to obtain the enzymatic debridement composition; and (d) lyophilizing the enzymatic debridement composition. The composition may then be further formulated.
  • In another embodiment, provided herein is an enzymatic debridement composition prepared by a method comprising: (a) dissolving crude bromelain in a composition comprising a weak acid; (b) filtering and/or dialyzing the dissolved crude bromelain to obtain an enzymatic debridement composition; and (c) optionally lyophilizing the enzymatic debridement composition. In one embodiment, the method of preparing the enzymatic debridement composition comprises filtering the dissolved bromelain to obtain a filtered bromelain composition, and dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition.
  • In some embodiments, the weak acid used in the preparation of the enzymatic debridement compositions is selected from the group consisting of acetic acid, trichloroacetic acid, oxalic acid, formic acid, benzoic acid, citric acid, and a mixture thereof. In other embodiments, the weak acid is acetic acid.
  • In a further embodiment, provided herein is a pharmaceutical composition comprising: (a) an enzymatic debridement composition, wherein the enzymatic debridement composition was prepared by dissolving crude bromelain in a composition comprising a weak acid, and filtering and/or dialyzing the dissolved crude bromelain to obtain the enzymatic debridement composition, and optionally lyophilizing the enzymatic debridement composition; and (b) an excipient. In some embodiments, preparing the enzymatic debridement composition comprises filtering the dissolved bromelain to obtain a filtered bromelain composition; and dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition.
  • The pharmaceutical composition may be formulated as, for example, a liquid, gel, powder, foam, spray, or film. The excipient may be any pharmaceutically acceptable carrier that is compatible with the enzymatic debridement composition. Non-limiting examples include water, saline solutions such as normal saline, Ringer's solution, glycerol, ethanol, PBS (phosphate-buffered saline), and generally mixtures of various salts including potassium and phosphate salts with or without sugar additives such as glucose. Nontoxic auxiliary substances, such as wetting agents, buffers, or emulsifiers may also be added to the composition.
  • The amount of a weak acid used to dissolve the crude bromelain may be, for example, between about 0.1 to 1 M or between about 0.2 to 0.4 M. In certain embodiments, the acid composition comprises about 0.3 M of a weak acid. In certain embodiments, the filter pore size may be about 0.1 to 10 μm, 0.1 to 1 μm, or 0.1 to 0.4 μm. In one embodiment, the dissolved crude bromelain is filtered through a 0.2 μm pore filter. In certain aspects, the filtration is assisted by applying a vacuum or pressure. In certain aspects, the filtered bromelain composition is subjected to dialysis to obtain the enzymatic debridement composition. In some embodiments, the filtered bromelain is dialyzed through a membrane having a molecular weight cut off of about or at least 7,000, 8,000, 10,000, 11,000, 12,000, 12,400, 13,000, or 14,000 Daltons. In some embodiments, the membrane has a molecular weight cut off of about 6,000-8,000 or 12,000-14,000 Daltons. In one embodiment, the filtered bromelain composition is subjected to dialysis using a 12,400 Dalton molecular weight cut-off membrane.
  • The enzymatic debridement composition may be formulated in a variety of ways such as, for example, a liquid, gel, powder, foam, paste, spray, or film. In certain aspects, the enzymatic debridement composition is lyophilized to a powder. The lyophilized enzymatic debridement composition may be used in powder form, or the powder may be further processed into gels, foams, aerosols, films, or other formulations. In certain embodiments, the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation may be between about 0.5 to 25%, 1 to 20%, 5 to 15%, or 8 to 12% by weight. In one embodiment, the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation is about 10% by weight. In another embodiment, the composition is in the form of a gel comprising about 10% of the enzymatic debridement composition by weight. In some aspects, the enzymatic debridement composition is applied to a wound dressing, such as a gauze, cloth, or film.
  • In another embodiment, provided herein is an enzymatic debridement composition comprising all acid soluble components of crude bromelain having molecular weights greater than about 12,000, 12,400, 13,000, or 14,000 Daltons, and being substantially devoid of components of crude bromelain having molecular weights less than about 12,000, 12,400, 13,000, or 14,000 Daltons. In some embodiments, the enzymatic debridement composition is lyophilized.
  • In one embodiment, provided herein is a method for debridement of devitalized tissue from a subject comprising: (a) contacting devitalized tissue with an enzymatic debridement composition to dissolve the devitalized tissue, wherein the enzymatic debridement composition was prepared by dissolving crude bromelain in a composition comprising a weak acid, and filtering and/or dialyzing the dissolved crude bromelain to obtain the enzymatic debridement composition, and optionally lyophilizing the enzymatic debridement composition; and (b) removing the dissolved devitalized tissue. In one embodiment, the method of preparing the enzymatic debridement composition comprises filtering the dissolved bromelain to obtain a filtered bromelain composition, and dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition.
  • The methods and compositions provided herein further relates to an enzymatic debridement composition, as disclosed herein, for use in debridement of devitalized tissue from a subject.
  • The enzymatic debridement composition may be applied to the devitalized tissue as needed to dissolve the tissue. For example, in some embodiments the enzymatic debridement composition may be in contact with the devitalized tissue for about 1 to 48 hours, 1 to 24 hours, 1 to 12 hours, 1 to 8 hours, 1 to 4 hours, 2 to 48 hours, 2 to 24 hours, 2 to 12 hours, 2 to 8 hours, or 2 to 4 hours before the dissolved devitalized tissue is removed. In certain embodiments, the enzymatic debridement composition is in contact with the devitalized tissue for at least 1, 2, 3, 4, 5, 6, 7, 8, 12, or 24 hours before the dissolved devitalized tissue is removed. The steps of contacting the devitalized tissue with an enzymatic debridement composition to dissolve the devitalized tissue, and removing the dissolved devitalized tissue may be repeated as needed to effect the removal of the devitalized tissue. For example, the process may be repeated at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times.
  • The method for applying the enzymatic debridement composition to the devitalized tissue may vary depending on factors such as the location and amount of devitalized tissue and the size and shape of the wound where the devitalized tissue is located. For example, a gel formulation may be desirable where large surface areas need to be covered, a coated foam formulation may be desirable for applications used with negative pressure therapy, and a coated gauze formulation may be desirable for areas that need to be wrapped. A health care provider will be able to determine an appropriate method for applying the enzymatic debridement composition to the devitalized tissue in view of such factors. In certain embodiments, the enzymatic debridement composition is applied by coating the devitalized tissue with the enzymatic debridement composition, or by injecting the enzymatic debridement composition into the devitalized tissue. The devitalized tissue may be covered with a wound dressing after the enzymatic debridement composition. In certain aspects, the wound dressing comprises the enzymatic debridement composition (e.g., gauze soaked in or coated with the enzymatic debridement composition), in which case the enzymatic debridement composition may be applied to the devitalized tissue by applying the wound dressing to the devitalized tissue. The dissolved devitalized tissue may be removed if by, for example, wiping or rinsing the dissolved tissue from the wound.
  • The wound may be any type of wound including, without limitation, a burn wound, sunburn, frostbite, diabetic ulcer, pressure ulcer, surgery site, or skin graft site.
  • Provided herein is a kit comprising the enzymatic debridement compositions or formulations disclosed herein. In certain embodiments, the kit may further comprise a wound dressing, such as a gauze, gel, foam, cloth, or film.
  • It is contemplated that any method or composition described herein can be implemented with respect to any other method or composition described herein.
  • The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “contain” (and any form of contain, such as “contains” and “containing”), and “include” (and any form of include, such as “includes” and “including”) are open-ended linking verbs. As a result, a method, composition, kit, or system that “comprises,” “has,” “contains,” or “includes” one or more recited steps or elements possesses those recited steps or elements, but is not limited to possessing only those steps or elements; it may possess (i.e., cover) elements or steps that are not recited. Likewise, an element of a method, composition, kit, or system that “comprises,” “has,” “contains,” or “includes” one or more recited features possesses those features, but is not limited to possessing only those features; it may possess features that are not recited.
  • Any embodiment of any of the present methods, composition, kit, and systems may consist of or consist essentially of—rather than comprise/include/contain/have—the described steps and/or features. Thus, in any of the claims, the term “consisting of” or “consisting essentially of” may be substituted for any of the open-ended linking verbs recited above, in order to change the scope of a given claim from what it would otherwise be using the open-ended linking verb.
  • The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.”
  • Throughout this specification, the term “about” is used to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value.
  • Following long-standing patent law, the words “a” and “an,” when used in conjunction with the word “comprising” in the claims or specification, denotes one or more, unless specifically noted.
  • Other objects, features and advantages of the methods and compositions provided herein will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments, are given by way of illustration only, since various changes and modifications within the spirit and scope will become apparent to those skilled in the art from this detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following drawings form part of the present specification and are included to further demonstrate certain embodiments. The methods and compositions disclosed herein may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.
  • FIG. 1 shows a process for obtaining a lyophilized enzymatic debridement composition.
  • FIG. 2 shows a comparison of Accuzyme® (papain/urea) and a bromelain enzymatic debridement composition on a pig skin burn model over a 24 hour period.
  • FIG. 3 shows a graph comparing Accuzyme® (papain/urea) and two bromelain formulations on a pig skin burn model from 0 to 8 hours at 2 hour intervals.
  • DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS A. Enzymatic Debridement Agents
  • Certain embodiments provide enzymatic debridement compositions and methods of preparing such compositions from bromelain. The compositions provided herein are the enzymatic debridement agents used for debridement purposes. Debridement is an important part of the healing process for certain types of wounds, and a variety of techniques have been employed in the debridement of wounds. Enzymatic debridement uses naturally occurring enzymes to digest the dead, damaged, or infected tissue. Several enzymatic debriding agents have been developed including collagenase (Santyl®), papain/urea (Accuzyme® (discontinued)), fibrinolysin/DNAse (Elase), and trypsin (Vasolex®).
  • Extracts derived from the pineapple plant (Ananas comosus) have also been investigated as debridement agents. See, e.g., U.S. Pat. Nos. 4,197,291; 4,226,854; 4,329,430; 4,307,081; 5,106,621; 5,387,517; 5,830,739; and U.S. Publ. No. 2009/0148429. These efforts, however, have largely focused on isolating specific proteases or molecular weight fractions, which requires extensive processing of bromelain. In addition to containing proteases, crude bromelain also contains protease inhibitors. For example, Perlstein and Kezdy (1973) identified seven closely related protease inhibitors, i.e., bromelain inhibitors I-VII, from a commercial bromelain acetone powder. These inhibitors were reported to have molecular weights of 5000-6000 Daltons.
  • The bromelain-based enzymatic debridement compositions provided herein remove devitalized tissue faster than Santyl®, Accuzyme®, and crude bromelain, yet can be prepared with fewer processing steps than needed to isolate specific proteases from crude bromelain. In general, the process of preparing the enzymatic debridement composition comprises: (a) dissolving crude bromelain in an acidic composition; and (b) filtering and/or dialyzing to obtain the enzymatic debridement composition. In some embodiments, the process of preparing the enzymatic debridement composition comprises filtering the dissolved bromelain to obtain a filtered bromelain composition, and dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition. The enzymatic debridement composition may further be lyophilized to a powder.
  • In one embodiment, the acidic composition used to dissolve the crude bromelain comprises one or more weak acids. Examples of weak acids include but are not limited to acetic acid, trichloroacetic acid, oxalic acid, formic acid, benzoic acid, and citric acid. In another embodiment, the acidic composition comprises acetic acid.
  • FIG. 1 shows a flow chart of one process of preparing the enzymatic debridement composition. As can be seen in FIG. 1, crude bromelain is first dissolved in 0.3M acetic acid. The dissolved bromelain is then filtered through a 0.2 μm pore size filter with vacuum assistance. After filtering, the composition is dialyzed with 12,400 MW cutoff tubing, and then lyophilized to a powder.
  • Filtration of the dissolved crude bromelain is used to remove the non-soluble components in the acidic solution. For example, a 2 micron filter will remove bacteria from the solution as well as most fat globules and insoluble protein aggregates, whereas most soluble proteins should pass through the filter.
  • Examples of some filtration techniques that are employed in the methods disclosed herein include gravimetric and pressure assisted techniques, such as but not limited to ultrafiltration.
  • Dialysis uses a semi-permeable membrane for diffusion of molecules from high concentration to low concentration. Only those molecules small enough to fit through the pores of the membrane will diffuse across the membrane. In the preparation of the enzymatic debridement compositions described here, small molecules (e.g., molecules with molecular weights less than about 12,400 Daltons) diffuse across the dialysis membrane and the larger-sized molecules are retained. By removing the low molecular weight components from the composition, the low molecular weight protease inhibitors can be substantially eliminated while retaining a broad range of active enzymes in the composition.
  • Examples of some dialysis techniques that may be employed in the methods disclosed herein include batch and continuous dialysis.
  • The enzymatic debridement composition is highly specific to necrotic tissue and will not digest the surrounding living tissue. The enzymatic debridement composition is also very fast and effective, removing nearly all necrotic tissue in as little as 4 hours. The speed at which this composition works is not merely an issue of convenience, but it also lessens the possibility of infection at the wound site and subsequent sepsis that can put a patient's life at risk.
  • B. Formulations
  • Provided herein are pharmaceutical compositions comprising the enzymatic debridement compositions (or agents) prepared by the methods disclosed herein. The enzymatic debridement compositions are provided in a variety of forms, particularly forms suitable for topical delivery to wound sites. For example, the enzymatic debridement compositions are formulated as liquids, gels, powders, pastes, foams, sprays, or films. In certain embodiments, the enzymatic debridement composition is first prepared as a powder, which is then further formulated into, for example, a gel, paste, foam, spray, or film.
  • The excipient(s) in the formulation may be any pharmaceutically acceptable carrier that is compatible with the enzymatic debridement composition. Non-limiting examples include water, saline solutions such as normal saline, Ringer's solution, glycerol, ethanol, PBS (phosphate-buffered saline), and generally mixtures of various salts including potassium and phosphate salts with or without sugar additives such as glucose. Nontoxic auxiliary substances, such as wetting agents, buffers, or emulsifiers may also be added to the composition. The formulation may be aqueous or non-aqueous. In one embodiment, the enzymatic debridement composition is in an aprotic deliver system.
  • In certain aspects, the enzymatic debridement composition is lyophilized to a powder. The lyophilized enzymatic debridement composition may be used in powder form, or the powder may be further processed into gels, foams, aerosols, films, or other formulations. In certain embodiments, the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation may be between about 0.5 to 25%, 1 to 20%, 5 to 15%, or 8 to 12% by weight. In one embodiment, the amount of enzymatic debridement composition or lyophilized enzymatic debridement composition in a formulation is about 10% by weight. In other embodiments, the enzymatic debridement composition or the lyophilized enzymatic debridement composition is in the form of a gel, and the gel comprises 10% by weight of the enzymatic debridement composition. In some aspects, the enzymatic debridement composition is applied to a wound dressing, such as a gauze, cloth, or film.
  • The enzymatic debridement composition may also be applied to or incorporated into a wound dressing, such as a gauze, cloth, or film. For example, the wound dressing could be saturated with the enzymatic debridement composition or the enzymatic debridement composition could be applied to one side of the wound dressing.
  • C. Wound Treatment
  • Wound healing depends on orderly progression through four known phases. These phases are hemostasis, inflammation, proliferation, and remodeling or maturation. In certain cases, a wound fails to heal in the orderly, predictable stages within the time expected. Such wounds are considered chronic, and sufferers of chronic wounds may have additional emotional and physical stress due to the failure of the wound to heal. Typically, a chronic wound develops if something causes disruption of the inflammatory phase or the proliferative phase. Common sources of disruption include infection, tissue hypoxia, repeated trauma, the presence of debris and/or necrotic tissue, and certain diseases such as diabetes. Patients with chronic wounds are at higher risk for infection, and often report a great deal of pain.
  • Debridement of dead or infected tissue (i.e., devitalized tissue) from the wound improves the healing potential of the remaining healthy tissue. The enzymatic debridement compositions disclosed herein are very fast and effective, capable of removing nearly all necrotic tissue from a wound within hours. Additionally, the compositions are highly specific to necrotic tissue and will not digest the surrounding healthy tissue. The method for applying the enzymatic debridement composition to the devitalized tissue may vary depending on factors such as the location and amount of devitalized tissue and the size and shape of the wound where the devitalized tissue is located. A health care provider will be able to determine an appropriate method for applying the enzymatic debridement composition to the devitalized tissue in view of such factors.
  • For example, the enzymatic debridement composition may be applied by coating the devitalized tissue with the enzymatic debridement composition. The enzymatic debridement composition may also be injected into the devitalized tissue. The wound may be covered with a wound dressing after the enzymatic debridement composition is applied. In certain aspects, the wound dressing comprises the enzymatic debridement composition (e.g., gauze soaked in or coated with the enzymatic debridement composition), in which case the enzymatic debridement composition may be applied to the devitalized tissue by applying the wound dressing to the devitalized tissue.
  • After the enzymatic debridement composition has been in contact with the wound for a desired amount of time, the dissolved devitalized tissue is removed, typically by wiping or rinsing the dissolved tissue from the wound. The enzymatic debridement composition may be re-applied as needed to remove any remaining devitalized tissue from the wound.
  • D. Kits
  • Provided herein are kits containing components for use in wound debridement. Any of the components disclosed herein may be combined in a kit. In certain embodiments, the kit comprises an enzymatic debridement compositions or formulations disclosed herein. The kit may further comprise a wound dressing, such as a gauze, cloth, or film.
  • The kits will generally include at least one vial, test tube, flask, bottle, syringe, foil package, or other container, into which a component may be placed, and preferably, suitably aliquoted. Where there is more than one component in the kit, the kit also will generally contain a second, third or other additional containers into which the additional components may be separately placed. However, various combinations of components may be comprised in a container. The kits also will typically include packaging for containing the various containers in close confinement for commercial sale. Such packaging may include cardboard or injection or blow molded plastic packaging into which the desired containers are retained. A kit may also include instructions for employing the kit components. Instructions may include variations that can be implemented.
  • E. Examples
  • The following examples are included to demonstrate preferred embodiments. It should be appreciated by those of skill in the art that the techniques, disclosed in the examples which follow, represent techniques discovered by the inventor to function well in the practice of the methods and compositions disclosed herein, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the present disclosure.
  • 1. Debridement Compositions
  • A powdered bromelain enzymatic debridement composition was prepared by the processes shown in FIG. 1. The powdered bromelain enzymatic debridement composition was then formulated into a gel at 10% weight loading. The gel was an aqueous gel of 2% COSMEDIA® (polyacrylate). This gel formulation is referred to as KCI F2 in the pig skin model studies below.
  • Crude bromelain was also lyophilized to powder form and formulated into a gel (2% COSMEDIA® (polyacrylate)) at 10% weight loading. This gel formulation is referred to as KCI F1 in the pig skin model studies below.
  • 2. Pig Skin Burn Model
  • The debridement compositions were evaluated using a pig skin burn model in which a blow torch is applied to fresh pig skin for 20 seconds to produce a patch of black eschar. The various debridement compositions were then applied to the eschar and covered with damp gauze. The skin was then placed in a sealed container in an oven at the 33° C. to simulate skin temperature. The skin remained in the oven for the duration of the testing periods indicated below.
  • After the testing period, the skin was removed from the oven and the dissolved tissue was gently wiped away. The results compare the histograms of images captured before and after treatment. The eschar was defined by the dark pixels, which were determined by masking to be in the range of 0-70.
  • 3. Results
  • The ability of KCI F2 and Accuzyme® (papain/urea) to remove the eschar in the burned pig skin model in 24 hours was evaluated. As shown in FIG. 2, the % Dark pixels at time 0 was 38.32% and 28.06% for the eschars treated with Accuzyme® (papain/urea) and KCI F2, respectively. Both Accuzyme® (papain/urea) and KCI F2 had completely dissolved the necrotic burn eschar from the pig skin model 24 hours after treatment (FIG. 2).
  • Santyl® (collagenase) only removed 28.50% of the eschar in a 24 hour period. This represents a debridement rate of 1.19% per hour. KCI F2 was over 20 times faster than Santyl® (collagenase).
  • In a further study, the ability of KCI F2, KCI F1, and Accuzyme® (papain/urea) to remove the eschar in the burned pig skin model after 2, 4, 6, and 8 hours was evaluated. The results are shown in Table 1 below.
  • TABLE 1
    The eschar was defined by the dark pixels, with the dark
    pixels at the 0 hour time point normalized to 100%.
    0 hr 2 hr 4 hr 6 hr 8 hr
    Accuzyme ®
    100% 65.78% 56.88% 46.78% 16.11%
    KCI F1
    100% 79.96% 47.92% 10.04% 2.59%
    KCI F2
    100% 54.52% 3.37% 0.00% 0.00%
  • As shown in Table 1, KCI F2 had almost completely removed the necrotic burn eschar within 4 hours (3.37% eschar remaining), whereas 56.88% and 47.92% of the eschar remained after 4 hours on the Accuzyme® (papain/urea) and KCI F1 treated skin.
  • The amount of eschar remaining was plotted as a function of time in the graph shown in FIG. 3. This allowed the calculation of the removal rate by fitting the data to a straight line. KCI F2 had the fastest debridement rate at 24.20% per hour. The debridement rate for KCI F1 was 13.2% per hour. The debridement rate for Accuzyme® (papain/urea) was 9.3% per hour. Thus, the debridement rate for KCI F2 was 2.6 times faster than that of Accuzyme® (papain/urea).
  • All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods disclosed herein have been described in terms of certain embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept, spirit and scope of the present disclosure. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the disclosure as defined by the appended claims.
  • REFERENCES
  • The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.
    • U.S. Pat. No. 4,197,291
    • U.S. Pat. No. 4,226,854
    • U.S. Pat. No. 4,307,081
    • U.S. Pat. No. 4,329,430
    • U.S. Pat. No. 5,106,621
    • U.S. Pat. No. 5,387,517
    • U.S. Pat. No. 5,830,739
    • U.S. Publ. No. 2009/0148429
    • Perlstein and Kezdy, J. Supramol. Struct., 1: 249-254, 1973.

Claims (18)

1.-10. (canceled)
11. A method for debridement of devitalized tissue from a subject comprising:
(a) contacting devitalized tissue with an enzymatic debridement composition according to claim 21 to dissolve the devitalized tissue; and
(b) removing the dissolved devitalized tissue.
12. The method of claim 11, wherein the enzymatic debridement composition was prepared by
(a) dissolving crude bromelain in a composition comprising a weak acid;
(b) filtering the dissolved crude bromelain to obtain a filtered bromelain composition; and/or,
(c) dialyzing the filtered bromelain composition to obtain the enzymatic debridement composition.
13. The method of claim 11, wherein the enzymatic debridement composition is in contact with the devitalized tissue for 1 to 48 hours before the dissolved devitalized tissue is removed.
14. The method of claim 11, wherein contacting the devitalized tissue is by coating the devitalized tissue with the enzymatic debridement composition or by injecting the enzymatic debridement composition into the devitalized tissue.
15. The method of claim 11, further comprising covering the devitalized tissue with a wound dressing.
16. The method of claim 15, wherein the wound dressing is gauze.
17. (canceled)
18. (canceled)
19. The enzymatic debridement composition of claim 21, wherein the enzymatic debridement composition is formulated as a gel, foam, or spray.
20. The enzymatic debridement composition of claim 19, wherein the gel comprises 10% by weight of the enzymatic debridement composition.
21. An enzymatic debridement composition comprising acid soluble components of crude bromelain having molecular weights greater than about 12,400 Daltons, and being substantially devoid of components of crude bromelain having molecular weights less than about 12,400 Daltons.
22. A pharmaceutical composition comprising the enzymatic debridement composition of claim 21 and a pharmaceutically acceptable excipient.
23. The pharmaceutical composition of claim 22, wherein the enzymatic debridement composition is lyophilized.
24. The pharmaceutical composition of claim 22, wherein the pharmaceutically acceptable excipient is a saline solution.
25. A kit comprising the enzymatic debridement composition of claim 21.
26. The kit of claim 25, wherein the enzymatic debridement composition is lyophilized.
27. The kit of claim 25, further comprising a wound dressing.
US16/050,796 2011-12-20 2018-07-31 Composition For Enzymatic Debridement Abandoned US20190008927A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/050,796 US20190008927A1 (en) 2011-12-20 2018-07-31 Composition For Enzymatic Debridement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161577997P 2011-12-20 2011-12-20
US13/719,176 US10058596B2 (en) 2011-12-20 2012-12-18 Composition for enzymatic debridement
US16/050,796 US20190008927A1 (en) 2011-12-20 2018-07-31 Composition For Enzymatic Debridement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/719,176 Division US10058596B2 (en) 2011-12-20 2012-12-18 Composition for enzymatic debridement

Publications (1)

Publication Number Publication Date
US20190008927A1 true US20190008927A1 (en) 2019-01-10

Family

ID=47501509

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/719,176 Active 2034-01-14 US10058596B2 (en) 2011-12-20 2012-12-18 Composition for enzymatic debridement
US16/050,796 Abandoned US20190008927A1 (en) 2011-12-20 2018-07-31 Composition For Enzymatic Debridement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/719,176 Active 2034-01-14 US10058596B2 (en) 2011-12-20 2012-12-18 Composition for enzymatic debridement

Country Status (2)

Country Link
US (2) US10058596B2 (en)
WO (1) WO2013096337A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014027995A2 (en) 2012-05-11 2017-06-27 Smith & Nephew Inc use of seaprose to remove bacterial biofilm
CA2890757C (en) 2012-11-14 2021-10-26 Smith & Nephew, Inc. Stable thermolysin hydrogel
KR20150127280A (en) 2013-03-15 2015-11-16 스미스 앤드 네퓨, 인크. Dissolvable gel-forming film for delivery of active agents
CN103637978B (en) * 2013-12-13 2015-03-11 北京诺康达医药科技有限公司 Stable gel containing bromelain
US9821040B2 (en) 2014-02-26 2017-11-21 Kiss My Itch Goodbye Inc Topical therapeutic compositions containing bromelain
LT6177B (en) 2014-10-10 2015-07-27 Uab "Biocentras" ISOLATION OF ENZYME COMPLEXES FROM Streptomyces gougerotii 101, PREPARATION AND APPLICATION OF MULTIENZYME BIOPREPARATIONS
WO2016094675A1 (en) 2014-12-12 2016-06-16 Smith & Nephew, Inc. Use of clostridium histolyticum protease mixture in promoting wound healing
NZ745240A (en) * 2016-01-31 2022-12-23 Mediwound Ltd Debriding composition for treating wounds
ES2936404T3 (en) * 2016-04-18 2023-03-16 Mediwound Ltd Formulations for debridement of chronic wounds
WO2018020435A1 (en) 2016-07-27 2018-02-01 Smith & Nephew, Inc. Use of thermolysin to reduce or eliminate bacterial biofilms from surfaces
EP3573622B1 (en) 2017-01-30 2023-10-18 Smith & Nephew, Inc. Synergistic combination of thermolysin and an antibacterial agent to reduce or eliminate bacterial biofilms from surfaces
NL2024170B1 (en) 2019-11-06 2021-07-20 Hw Innovations B V Compositions, uses and methods for prevention and treatment of viral plant infections.
CN113679828A (en) * 2021-08-25 2021-11-23 佛山市第一人民医院(中山大学附属佛山医院) A kind of wound cleaning solution and its preparation method and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148429A1 (en) * 2004-11-22 2009-06-11 Marian Gorecki Debriding composition from bromelain and methods of production thereof

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1355846A (en) 1920-02-06 1920-10-19 David A Rannells Medical appliance
US2547758A (en) 1949-01-05 1951-04-03 Wilmer B Keeling Instrument for treating the male urethra
US2632443A (en) 1949-04-18 1953-03-24 Eleanor P Lesher Surgical dressing
GB692578A (en) 1949-09-13 1953-06-10 Minnesota Mining & Mfg Improvements in or relating to drape sheets for surgical use
US2682873A (en) 1952-07-30 1954-07-06 Johnson & Johnson General purpose protective dressing
NL189176B (en) 1956-07-13 1900-01-01 Hisamitsu Pharmaceutical Co PLASTER BASED ON A SYNTHETIC RUBBER.
US2969057A (en) 1957-11-04 1961-01-24 Brady Co W H Nematodic swab
US3066672A (en) 1960-09-27 1962-12-04 Jr William H Crosby Method and apparatus for serial sampling of intestinal juice
US3367332A (en) 1965-08-27 1968-02-06 Gen Electric Product and process for establishing a sterile area of skin
US3520300A (en) 1967-03-15 1970-07-14 Amp Inc Surgical sponge and suction device
US3568675A (en) 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3682180A (en) 1970-06-08 1972-08-08 Coilform Co Inc Drain clip for surgical drain
BE789293Q (en) 1970-12-07 1973-01-15 Parke Davis & Co MEDICO-SURGICAL DRESSING FOR BURNS AND SIMILAR LESIONS
US3826254A (en) 1973-02-26 1974-07-30 Verco Ind Needle or catheter retaining appliance
US4307081A (en) 1974-01-08 1981-12-22 Gerold K. V. Klein Enzyme mixture
US4197291A (en) 1974-01-08 1980-04-08 Gerold K. V. Klein Hydrolytic enzyme material
US4226854A (en) 1974-01-08 1980-10-07 Gerold K. V. Klein Debridement of devitalized tissue with hydrolytic enzyme product
DE2527706A1 (en) 1975-06-21 1976-12-30 Hanfried Dr Med Weigand DEVICE FOR THE INTRODUCTION OF CONTRAST AGENTS INTO AN ARTIFICIAL INTESTINAL OUTLET
DE2640413C3 (en) 1976-09-08 1980-03-27 Richard Wolf Gmbh, 7134 Knittlingen Catheter monitor
NL7710909A (en) 1976-10-08 1978-04-11 Smith & Nephew COMPOSITE STRAPS.
GB1562244A (en) 1976-11-11 1980-03-05 Lock P M Wound dressing materials
US4080970A (en) 1976-11-17 1978-03-28 Miller Thomas J Post-operative combination dressing and internal drain tube with external shield and tube connector
US4139004A (en) 1977-02-17 1979-02-13 Gonzalez Jr Harry Bandage apparatus for treating burns
US4184510A (en) 1977-03-15 1980-01-22 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
US4165748A (en) 1977-11-07 1979-08-28 Johnson Melissa C Catheter tube holder
US4245637A (en) 1978-07-10 1981-01-20 Nichols Robert L Shutoff valve sleeve
SE414994B (en) 1978-11-28 1980-09-01 Landstingens Inkopscentral VENKATETERFORBAND
DE2953373A1 (en) 1978-12-06 1981-01-08 P Svedman Device for treating tissues,for example skin
US4266545A (en) 1979-04-06 1981-05-12 Moss James P Portable suction device for collecting fluids from a closed wound
US4329430A (en) 1979-06-04 1982-05-11 Klein Gerold K V Enzyme mixture
US4284079A (en) 1979-06-28 1981-08-18 Adair Edwin Lloyd Method for applying a male incontinence device
US4261363A (en) 1979-11-09 1981-04-14 C. R. Bard, Inc. Retention clips for body fluid drains
US4569348A (en) 1980-02-22 1986-02-11 Velcro Usa Inc. Catheter tube holder strap
US4480638A (en) 1980-03-11 1984-11-06 Eduard Schmid Cushion for holding an element of grafted skin
US4297995A (en) 1980-06-03 1981-11-03 Key Pharmaceuticals, Inc. Bandage containing attachment post
US4333468A (en) 1980-08-18 1982-06-08 Geist Robert W Mesentery tube holder apparatus
US4465485A (en) 1981-03-06 1984-08-14 Becton, Dickinson And Company Suction canister with unitary shut-off valve and filter features
US4392853A (en) 1981-03-16 1983-07-12 Rudolph Muto Sterile assembly for protecting and fastening an indwelling device
US4373519A (en) 1981-06-26 1983-02-15 Minnesota Mining And Manufacturing Company Composite wound dressing
US4392858A (en) 1981-07-16 1983-07-12 Sherwood Medical Company Wound drainage device
US4419097A (en) 1981-07-31 1983-12-06 Rexar Industries, Inc. Attachment for catheter tube
AU550575B2 (en) 1981-08-07 1986-03-27 Richard Christian Wright Wound drainage device
SE429197B (en) 1981-10-14 1983-08-22 Frese Nielsen SAR TREATMENT DEVICE
DE3146266A1 (en) 1981-11-21 1983-06-01 B. Braun Melsungen Ag, 3508 Melsungen COMBINED DEVICE FOR A MEDICAL SUCTION DRAINAGE
US4551139A (en) 1982-02-08 1985-11-05 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
US4475909A (en) 1982-05-06 1984-10-09 Eisenberg Melvin I Male urinary device and method for applying the device
DE3361779D1 (en) 1982-07-06 1986-02-20 Dow Corning Medical-surgical dressing and a process for the production thereof
NZ206837A (en) 1983-01-27 1986-08-08 Johnson & Johnson Prod Inc Thin film adhesive dressing:backing material in three sections
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4540412A (en) 1983-07-14 1985-09-10 The Kendall Company Device for moist heat therapy
US4543100A (en) 1983-11-01 1985-09-24 Brodsky Stuart A Catheter and drain tube retainer
US4525374A (en) 1984-02-27 1985-06-25 Manresa, Inc. Treating hydrophobic filters to render them hydrophilic
CA1286177C (en) 1984-05-03 1991-07-16 Smith And Nephew Associated Companies Plc Adhesive wound dressing
US4897081A (en) 1984-05-25 1990-01-30 Thermedics Inc. Percutaneous access device
US5215522A (en) 1984-07-23 1993-06-01 Ballard Medical Products Single use medical aspirating device and method
GB8419745D0 (en) 1984-08-02 1984-09-05 Smith & Nephew Ass Wound dressing
US4872450A (en) 1984-08-17 1989-10-10 Austad Eric D Wound dressing and method of forming same
US4826494A (en) 1984-11-09 1989-05-02 Stryker Corporation Vacuum wound drainage system
US4655754A (en) 1984-11-09 1987-04-07 Stryker Corporation Vacuum wound drainage system and lipids baffle therefor
US4605399A (en) 1984-12-04 1986-08-12 Complex, Inc. Transdermal infusion device
US5037397A (en) 1985-05-03 1991-08-06 Medical Distributors, Inc. Universal clamp
US4640688A (en) 1985-08-23 1987-02-03 Mentor Corporation Urine collection catheter
US4710165A (en) 1985-09-16 1987-12-01 Mcneil Charles B Wearable, variable rate suction/collection device
US4758220A (en) 1985-09-26 1988-07-19 Alcon Laboratories, Inc. Surgical cassette proximity sensing and latching apparatus
US4733659A (en) 1986-01-17 1988-03-29 Seton Company Foam bandage
WO1987004626A1 (en) 1986-01-31 1987-08-13 Osmond, Roger, L., W. Suction system for wound and gastro-intestinal drainage
US4838883A (en) 1986-03-07 1989-06-13 Nissho Corporation Urine-collecting device
JPS62281965A (en) 1986-05-29 1987-12-07 テルモ株式会社 Catheter and catheter fixing member
GB8621884D0 (en) 1986-09-11 1986-10-15 Bard Ltd Catheter applicator
GB2195255B (en) 1986-09-30 1991-05-01 Vacutec Uk Limited Apparatus for vacuum treatment of an epidermal surface
US4743232A (en) 1986-10-06 1988-05-10 The Clinipad Corporation Package assembly for plastic film bandage
DE3634569A1 (en) 1986-10-10 1988-04-21 Sachse Hans E CONDOM CATHETER, A URINE TUBE CATHETER FOR PREVENTING RISING INFECTIONS
JPS63135179A (en) 1986-11-26 1988-06-07 立花 俊郎 Subcataneous drug administration set
GB8628564D0 (en) 1986-11-28 1987-01-07 Smiths Industries Plc Anti-foaming agent suction apparatus
GB8706116D0 (en) 1987-03-14 1987-04-15 Smith & Nephew Ass Adhesive dressings
US4787888A (en) 1987-06-01 1988-11-29 University Of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
US4863449A (en) 1987-07-06 1989-09-05 Hollister Incorporated Adhesive-lined elastic condom cathether
GB8724728D0 (en) 1987-10-22 1987-11-25 Genzyme Corp Cysteine proteinase
US5176663A (en) 1987-12-02 1993-01-05 Pal Svedman Dressing having pad with compressibility limiting elements
US4906240A (en) 1988-02-01 1990-03-06 Matrix Medica, Inc. Adhesive-faced porous absorbent sheet and method of making same
US4985019A (en) 1988-03-11 1991-01-15 Michelson Gary K X-ray marker
GB8812803D0 (en) 1988-05-28 1988-06-29 Smiths Industries Plc Medico-surgical containers
US4919654A (en) 1988-08-03 1990-04-24 Kalt Medical Corporation IV clamp with membrane
US5000741A (en) 1988-08-22 1991-03-19 Kalt Medical Corporation Transparent tracheostomy tube dressing
US5059596A (en) 1989-01-16 1991-10-22 Roussel Uclaf Azabicyclo compounds
GB8906100D0 (en) 1989-03-16 1989-04-26 Smith & Nephew Laminates
US5100396A (en) 1989-04-03 1992-03-31 Zamierowski David S Fluidic connection system and method
US5527293A (en) 1989-04-03 1996-06-18 Kinetic Concepts, Inc. Fastening system and method
US4969880A (en) 1989-04-03 1990-11-13 Zamierowski David S Wound dressing and treatment method
US5261893A (en) 1989-04-03 1993-11-16 Zamierowski David S Fastening system and method
JP2719671B2 (en) 1989-07-11 1998-02-25 日本ゼオン株式会社 Wound dressing
US5358494A (en) 1989-07-11 1994-10-25 Svedman Paul Irrigation dressing
US5232453A (en) 1989-07-14 1993-08-03 E. R. Squibb & Sons, Inc. Catheter holder
GB2235877A (en) 1989-09-18 1991-03-20 Antonio Talluri Closed wound suction apparatus
US5134994A (en) 1990-02-12 1992-08-04 Say Sam L Field aspirator in a soft pack with externally mounted container
US5092858A (en) 1990-03-20 1992-03-03 Becton, Dickinson And Company Liquid gelling agent distributor device
JP2941918B2 (en) 1990-09-19 1999-08-30 テルモ株式会社 Weighing device
US5149331A (en) 1991-05-03 1992-09-22 Ariel Ferdman Method and device for wound closure
US5278100A (en) 1991-11-08 1994-01-11 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
US5645081A (en) 1991-11-14 1997-07-08 Wake Forest University Method of treating tissue damage and apparatus for same
US5636643A (en) 1991-11-14 1997-06-10 Wake Forest University Wound treatment employing reduced pressure
IL103969A (en) 1991-12-03 1997-01-10 Gerold K V Klein Proteolytic mixture containing escharase and method of isolating same
US5279550A (en) 1991-12-19 1994-01-18 Gish Biomedical, Inc. Orthopedic autotransfusion system
US5167613A (en) 1992-03-23 1992-12-01 The Kendall Company Composite vented wound dressing
FR2690617B1 (en) 1992-04-29 1994-06-24 Cbh Textile TRANSPARENT ADHESIVE DRESSING.
DE4306478A1 (en) 1993-03-02 1994-09-08 Wolfgang Dr Wagner Drainage device, in particular pleural drainage device, and drainage method
US5342376A (en) 1993-05-03 1994-08-30 Dermagraphics, Inc. Inserting device for a barbed tissue connector
US6241747B1 (en) 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US5344415A (en) 1993-06-15 1994-09-06 Deroyal Industries, Inc. Sterile system for dressing vascular access site
US5437651A (en) 1993-09-01 1995-08-01 Research Medical, Inc. Medical suction apparatus
US5549584A (en) 1994-02-14 1996-08-27 The Kendall Company Apparatus for removing fluid from a wound
US5387517A (en) 1994-03-23 1995-02-07 Ethicon, Inc. Thiol activated protease from stem bromelain for treating devitalized tissue
US5607388A (en) 1994-06-16 1997-03-04 Hercules Incorporated Multi-purpose wound dressing
US5556375A (en) 1994-06-16 1996-09-17 Hercules Incorporated Wound dressing having a fenestrated base layer
US5664270A (en) 1994-07-19 1997-09-09 Kinetic Concepts, Inc. Patient interface system
EP0777504B1 (en) 1994-08-22 1998-10-21 Kinetic Concepts, Inc. Wound drainage equipment
DE29504378U1 (en) 1995-03-15 1995-09-14 MTG Medizinisch, technische Gerätebau GmbH, 66299 Friedrichsthal Electronically controlled low-vacuum pump for chest and wound drainage
GB9523253D0 (en) 1995-11-14 1996-01-17 Mediscus Prod Ltd Portable wound treatment apparatus
US20020102253A1 (en) * 1997-02-25 2002-08-01 Mynott Tracey Lehanne Component of bromelain
US6135116A (en) 1997-07-28 2000-10-24 Kci Licensing, Inc. Therapeutic method for treating ulcers
AU755496B2 (en) 1997-09-12 2002-12-12 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
GB9719520D0 (en) 1997-09-12 1997-11-19 Kci Medical Ltd Surgical drape and suction heads for wound treatment
US6071267A (en) 1998-02-06 2000-06-06 Kinetic Concepts, Inc. Medical patient fluid management interface system and method
US6488643B1 (en) 1998-10-08 2002-12-03 Kci Licensing, Inc. Wound healing foot wrap
US6287316B1 (en) 1999-03-26 2001-09-11 Ethicon, Inc. Knitted surgical mesh
US7799004B2 (en) 2001-03-05 2010-09-21 Kci Licensing, Inc. Negative pressure wound treatment apparatus and infection identification system and method
US6856821B2 (en) 2000-05-26 2005-02-15 Kci Licensing, Inc. System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
US6991643B2 (en) 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
EP1257313B1 (en) 2000-02-24 2004-05-12 Venetec International, Inc. Universal catheter anchoring system
US6540705B2 (en) 2001-02-22 2003-04-01 Core Products International, Inc. Ankle brace providing upper and lower ankle adjustment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148429A1 (en) * 2004-11-22 2009-06-11 Marian Gorecki Debriding composition from bromelain and methods of production thereof

Also Published As

Publication number Publication date
WO2013096337A1 (en) 2013-06-27
US10058596B2 (en) 2018-08-28
US20130156745A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
US10058596B2 (en) Composition for enzymatic debridement
Sheokand et al. Natural polymers used in the dressing materials for wound healing: Past, present and future
CN109044948A (en) A kind of autologous collagen hydrolight needle and preparation method thereof
CN102746372B (en) Extracellular matrix freeze-drying protection liquid and application method thereof
JPH09504719A (en) Hemostatic patch
JP2014513696A (en) Wound debridement composition containing seaprose and method of wound treatment using the same
IL294659A (en) Biased il2 muteins methods and compositions
EP3445389B1 (en) Formulations for debridement of chronic wounds
US10039721B2 (en) Dressing for promotion of wound healing
Menon et al. Complications of hemotoxic snakebite in India
Shibata et al. Development of new wound dressing composed of spongy collagen sheet containing dibutyryl cyclic AMP
KR20040081128A (en) Preparation for wound healing and prevention of bandage adhesion to the wound
WO2013025940A1 (en) Angiogenesis promoted by alpha-keratose
CN114891279B (en) Composite hydrogel and preparation method and application thereof
CN111135338A (en) Hemostatic gel and preparation method thereof
CN1994481A (en) Highly effective Chinese medicine-chitosan compound hemostatic material
US11938173B2 (en) Use of Clostridium histolyticum protease mixture in promoting wound healing
US20120087903A1 (en) Hair growth agent having a platelet dry powder
CN104490760B (en) The preparation method and applications of capsaicine collagen protein sponge
Nozaki et al. Sprayable bioactive dressings for skin wounds: recent developments and future prospects
Sharma et al. Trends in the Treatment of Chronic Wounds
CN114887123B (en) Hirudin grafted nanofiber vascular stent material, preparation method and application
Jo et al. Therapeutic Potential of Stem Cell-Derived Exosomes in Skin Wound Healing
CN103285418A (en) Novel biological antibacterial dressing aerosol based on large-area burn wound
Jeong et al. Supercritical Fluid‐Processed Multifunctional Hybrid Decellularized Extracellular Matrix with Chitosan Hydrogel for Improving Photoaged Dermis Microenvironment

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: KCI LICENSING, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HANSON, DOUGLAS PHILIP;REEL/FRAME:052243/0750

Effective date: 20121217

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION