[go: up one dir, main page]

US20190007937A1 - Uplink control channel configuration for unlicensed carriers - Google Patents

Uplink control channel configuration for unlicensed carriers Download PDF

Info

Publication number
US20190007937A1
US20190007937A1 US15/853,390 US201715853390A US2019007937A1 US 20190007937 A1 US20190007937 A1 US 20190007937A1 US 201715853390 A US201715853390 A US 201715853390A US 2019007937 A1 US2019007937 A1 US 2019007937A1
Authority
US
United States
Prior art keywords
pucch
wireless communication
communication device
uci
symbol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/853,390
Inventor
Yu Yang
Fredrik Lindqvist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IB2016/057404 external-priority patent/WO2017098414A1/en
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Priority to US15/853,390 priority Critical patent/US20190007937A1/en
Publication of US20190007937A1 publication Critical patent/US20190007937A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H04W72/0413
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT

Definitions

  • the disclosed subject matter relates generally to telecommunications. Certain embodiments relate more particularly to uplink control channel configuration for unlicensed carriers.
  • LTE Long-Term Evolution
  • LTE-U unlicensed spectrum
  • 3GPP 3 rd Generation Partnership Project
  • Rel-14 Rel-14
  • LAA Uplink Licensed-Assisted Access
  • UEs LTE User Equipments
  • 5 GHz or license-shared 3.5 GHz radio spectrum For standalone LTE-U, initial random access and subsequent UL transmissions take place entirely on unlicensed spectrum. Regulatory requirements may prohibit transmissions in the unlicensed spectrum without prior channel sensing.
  • LBT listen-before-talk
  • Wi-Fi Wireless Local Area Network
  • LTE uses Orthogonal Frequency Division Multiplexing (OFDM) in the downlink and Discrete Fourier Transform spread (DFT-spread) OFDM (also referred to as single-carrier FDMA [SC-FDMA]) in the uplink.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT-spread Discrete Fourier Transform spread
  • SC-FDMA single-carrier FDMA
  • the basic LTE downlink physical resource can thus be seen as a time-frequency grid as illustrated in Figure ( FIG. 1 , where each resource element corresponds to one OFDM subcarrier during one OFDM symbol interval.
  • the uplink subframe has the same subcarrier spacing (15 kHz) as the downlink and the same number of SC-FDMA symbols in the time domain as OFDM symbols in the downlink.
  • Each subframe comprises two slots of duration 0.5 ms each, and the slot numbering within a frame ranges from 0 to 19.
  • one subframe comprises 14 OFDM symbols. The duration of each symbol is approximately 71.4 ⁇ s when including the cyclic prefix.
  • resource allocation in LTE is typically described in terms of resource blocks, where a resource block corresponds to 12 contiguous subcarriers in the frequency domain. Resource blocks are numbered in the frequency domain, starting from 0 at one end of the system bandwidth.
  • Unlicensed spectrum can, by definition, be simultaneously used/shared by multiple different technologies. Therefore, LTE should consider coexistence with other systems such as IEEE 802.11 (Wi-Fi). Operating LTE in the same manner in unlicensed spectrum as in licensed spectrum can seriously degrade the performance of Wi-Fi as Wi-Fi will not transmit once it detects the channel is occupied.
  • Wi-Fi IEEE 802.11
  • one way to utilize unlicensed spectrum reliably is to transmit essential control signals and channels on a licensed carrier.
  • a UE is connected to a PCell in the licensed band and one or more SCells in the unlicensed band.
  • a secondary cell in unlicensed spectrum is referred to as a licensed-assisted access secondary cell (LAA SCell).
  • LAA SCell licensed-assisted access secondary cell
  • MuLTEfire A new industry forum has been initiated on extending LTE to operate entirely on unlicensed spectrum in a standalone mode, which is referred to as “MuLTEfire”.
  • MuLTEfire there is no licensed carrier for essential control signals transmissions and control channels. Accordingly, all transmission occurs on unlicensed spectrum with no guaranteed channel access availability, yet it must also fulfill the regulatory requirements on the unlicensed spectrum.
  • a method of operating a wireless communication device comprises identifying a physical uplink control channel (PUCCH) format for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and transmitting the UCI to a radio access node in accordance with the identified PUCCH format.
  • PUCCH physical uplink control channel
  • the UCI is transmitted to the radio access node in coordination with one or more other wireless communication devices.
  • transmitting the UCI to the radio access node in coordination with the one or more other wireless communication devices comprises multiplexing the one or more other wireless communication devices on the same interlace as the short PUCCH or the long PUCCH.
  • transmitting the UCI in coordination with the one or more other wireless communication devices comprises multiplexing with the one or more other wireless communication devices using orthogonal cover codes (OCC) and cyclic shifts (CS) on control-data symbols and reference symbols, respectively, in the short PUCCH or long PUCCH.
  • OCC orthogonal cover codes
  • CS cyclic shifts
  • the PUCCH format is short PUCCH.
  • the PUCCH format is long PUCCH.
  • the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain.
  • the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • DMRS demodulation reference signal
  • the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
  • DMRS demodulation reference signal
  • B-IFDMA block-interleaved frequency division multiple access
  • the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • DMRS demodulation reference signal
  • the wireless communication device and the one or more other wireless communication devices are assigned different interlacing patterns.
  • the wireless communication device and the one or more other wireless communication devices are assigned the same interlacing pattern, and they apply different orthogonal cover codes (OCC) to enable PUCCH control-data on the same time-frequency resources.
  • OCC orthogonal cover codes
  • a wireless communication device comprises at least one processor configured to identify a physical uplink control channel (PUCCH) format for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and at least one transmitter configured to transmit the UCI to a radio access node in accordance with the identified PUCCH format.
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • the UCI is transmitted to the radio access node in coordination with one or more other wireless communication devices.
  • transmitting the UCI to the radio access node in coordination with the one or more other wireless communication devices comprises multiplexing the one or more other wireless communication devices on the same interlace as the short PUCCH or the long PUCCH.
  • the PUCCH format is short PUCCH.
  • the PUCCH format is long PUCCH.
  • the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain.
  • DMRS demodulation reference signal
  • the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • transmitting the UCI in coordination with the one or more other wireless communication devices comprises multiplexing with the one or more other wireless communication devices using orthogonal cover codes (OCC) and cyclic shifts (CS) on data symbols and reference symbols, respectively, in the short PUCCH or long PUCCH.
  • OCC orthogonal cover codes
  • CS cyclic shifts
  • the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
  • DMRS demodulation reference signal
  • B-IFDMA block-interleaved frequency division multiple access
  • the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • DMRS demodulation reference signal
  • the wireless communication device and the one or more other wireless communication devices are assigned different interlacing patterns.
  • the wireless communication device and the one or more other wireless communication devices are assigned the same interlacing pattern, and they apply different orthogonal cover codes (OCC) to enable PUCCH control-data on the same time-frequency resources.
  • OCC orthogonal cover codes
  • a method of operating a radio access node comprises identifying a physical uplink control channel (PUCCH) format to be used by at least one wireless communication device for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and receiving the UCI from the at least one wireless communication device in accordance with the identified PUCCH format.
  • PUCCH physical uplink control channel
  • identifying the PUCCH format comprises selecting between short PUCCH and long PUCCH according to at least one of an eNodeB timing configuration and a hybrid automatic repeat request (HARM) protocol.
  • HARM hybrid automatic repeat request
  • the received UCI is multiplexed on the same interlace as the short PUCCH or the long PUCCH with information transmitted from at least one other wireless communication device.
  • the PUCCH format is short PUCCH.
  • the PUCCH format is long PUCCH.
  • the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain.
  • DMRS demodulation reference signal
  • the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • the received UCI is multiplexed in the short PUCCH or long PUCCH with information transmitted from at least one other wireless communication device.
  • the UCI and the information transmitted from the at least one other wireless communication device are multiplexed using orthogonal cover codes (OCC) and cyclic shifts (CS) on control-data symbols and reference symbols, respectively.
  • OCC orthogonal cover codes
  • CS cyclic shifts
  • the PUCCH format comprises a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
  • DMRS demodulation reference signal
  • B-IFDMA block-interleaved frequency division multiple access
  • the PUCCH format comprises a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • DMRS demodulation reference signal
  • the UCI is multiplexed with UCI from at least one other wireless communication device using different interlacing patterns within the same subframe.
  • the UCI is multiplexed with UCI from at least one other wireless communication device using the same interlacing pattern within the same subframe.
  • the UCI from the at least one wireless communication device and the at least one other wireless communication device are subject to different orthogonal cover codes (OCC).
  • OCC orthogonal cover codes
  • a radio access node comprises at least one processor and memory collectively configured to identify a physical uplink control channel (PUCCH) format to be used by at least one wireless communication device for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and a receiver configured to receive the UCI from the at least one wireless communication device in accordance with the identified PUCCH format.
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • identifying the PUCCH format comprises selecting between short PUCCH and long PUCCH according to at least one of an eNodeB timing configuration and a hybrid automatic repeat request (HARM) protocol.
  • HARM hybrid automatic repeat request
  • the received UCI is multiplexed on the same interlace as the short PUCCH or the long PUCCH with information transmitted from at least one other wireless communication device.
  • the PUCCH format is short PUCCH.
  • the PUCCH format is long PUCCH.
  • the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain.
  • DMRS demodulation reference signal
  • the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • the received UCI is multiplexed in the short PUCCH or long PUCCH with information transmitted from at least one other wireless communication device.
  • the UCI and the information transmitted from the at least one other wireless communication device are multiplexed using orthogonal cover codes (OCC) and cyclic shifts (CS) on control-data symbols and reference symbols, respectively.
  • OCC orthogonal cover codes
  • CS cyclic shifts
  • the PUCCH format comprises a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
  • DMRS demodulation reference signal
  • B-IFDMA block-interleaved frequency division multiple access
  • the PUCCH format comprises a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • DMRS demodulation reference signal
  • the UCI is multiplexed with UCI from at least one other wireless communication device using different interlacing patterns within the same subframe.
  • the UCI is multiplexed with UCI from at least one other wireless communication device using the same interlacing pattern within the same subframe.
  • the UCI from the at least one wireless communication device and the at least one other wireless communication device are subject to different orthogonal cover codes (OCC).
  • OCC orthogonal cover codes
  • a wireless communication device comprises an identification module configured to identify a physical uplink control channel (PUCCH) format for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and a transmission module configured to transmit the UCI to a radio access node in accordance with the identified PUCCH format.
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • a radio access node comprises an identification module configured to identify a physical uplink control channel (PUCCH) format to be used by at least one wireless communication device for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and a reception module configured to receive the UCI from the at least one wireless communication device in accordance with the identified PUCCH format.
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • FIG. 1 shows an example LTE downlink physical resource.
  • FIG. 2 shows an example LTE time-domain structure.
  • FIG. 3 shows an example of LAA to unlicensed spectrum using LTE carrier aggregation.
  • FIG. 4 shows an example of short PUCCH occupying two symbols and one interlace.
  • FIG. 5 shows an example of short PUCCH multiplexing with PUSCH transmission in the same subframe.
  • FIG. 6 shows an example of two PUCCH UEs DS multiplexing on the same interlace(s) with N PRB PRBs.
  • FIG. 7 shows an example of a long PUCCH.
  • FIG. 8 shows an example of long PUCCH multiplexing with PUSCH transmission in the same subframe
  • FIG. 9 shows an example of long PUCCH multiplexing with PUSCH transmission in the same subframe with symbol-based frequency hopping.
  • FIG. 10 shows an example of two PUCCH UEs RS multiplexing on the same interlace(s).
  • FIG. 11 shows an example of an LTE network.
  • FIG. 12 shows an example of a wireless communication device.
  • FIG. 13 shows an example of a radio access node.
  • FIG. 14 shows an example method of operating a wireless communication device.
  • FIG. 15 shows an example of a wireless communication device.
  • FIG. 16 shows an example method of operating a radio access node.
  • FIG. 17 shows an example of a radio access node.
  • FIG. 18 shows an example of B-IFDMA.
  • FIG. 19 shows an example of inter- and intra-symbol OCC.
  • uplink control information such as HARQ-ACK, CSI are sent from UE to eNB on the control channel PUCCH when there is no UL-SCH data scheduled.
  • the PUCCH design up to Rel-13 is only for carriers in licensed spectrum, which is not possible to be reused for carriers in unlicensed spectrum due to regulatory requirements.
  • special consideration should be given when designing the PUCCH on carriers in unlicensed spectrum.
  • Certain embodiments of the disclosed subject matter provide a physical layer design of uplink control channel (e.g., PUCCH) format for LAA/standalone LTE-U.
  • PUCCH physical layer design of uplink control channel
  • Various alternative embodiments may employ either or both of two PUCCH formats, including a short PUCCH and a long PUCCH.
  • the two different PUCCH formats can be considered for UCI transmission depending on e.g. eNB timing configuration and/or HARQ protocol.
  • the short PUCCH typically occupies less than one subframe (e.g. 1-4 SC-FDMA/OFDM symbols) in the time domain, while the long PUCCH typically occupies 1 subframe. Both formats span the entire bandwidth with interlacing. UE multiplexing is supported on both formats using Orthogonal Cover Codes (OCC) and Cyclic Shifts (CS) on data symbols and reference symbols.
  • OCC Orthogonal Cover Codes
  • CS Cyclic Shifts
  • the normal PUCCH can also be multiplexed with PUSCH transmission from same or different UEs.
  • the establishment and/or use of a particular PUCCH format may be coordinated by one or more radio access nodes.
  • Such coordination may include, for instance, determining the format and signaling scheduling and/or format information from the one or more radio access nodes to one or more wireless communication devices.
  • the determining of the format may include e.g. selecting a PUCCH format according to an eNB timing configuration or a HARQ protocol.
  • the signaling may take the form of e.g. downlink control signaling or radio resource control (RRC) configuration signaling.
  • RRC radio resource control
  • Some embodiments may provide various potential benefits compared to conventional approaches. Some embodiments may, for instance, allow UCI to be transmitted on PUCCH on carriers in unlicensed spectrum; some embodiments may allow similar functionality as legacy LTE PUCCH to be maintained; and some embodiments may allow UE multiplexing to be supported on new PUCCH formats.
  • the following embodiments include physical layer configuration of PUCCH in unlicensed spectrum. Certain methods or concepts described below may be used for both single- and multi-carrier transmissions. The proposed approaches may also apply to different variations of LTE operating in unlicensed spectrum, such as LAA, LTE-U and standalone LTE-U.
  • short PUCCH refers to a PUCCH that is relatively short in the time domain, e.g., less than 1 subframe.
  • a short PUCCH may occupy 1-4 SC-FDMA or OFDM symbols depending on eNB configuration.
  • a short PUCCH may span the whole bandwidth by interlacing.
  • long PUCCH refers to a PUCCH that is relatively long in the time domain, e.g., 1 subframe. In the frequency domain, a long PUCCH may span the whole bandwidth by interlacing.
  • a short PUCCH or long PUCCH is considered to span the whole bandwidth by interlacing if the interlaces of the short PUCCH or long PUCCH are included in an interlacing pattern that spans the entire bandwidth, as illustrated e.g. in FIG. 7 .
  • Terms such as “whole bandwidth”, “entire bandwidth”, “entire system bandwidth”, and so on, generally refer to the transmission bandwidth of a carrier. For instance, such terms may refer to the transmission bandwidth of a 10 MHz or 20 MHz carrier, which may be slightly less than 10 MHz or 20 MHz, respectively.
  • interlacing refers to a technique in which physical resources are assigned or allocated according to a pattern such as one of those illustrated in FIGS. 4-5 and 7-10 , for instance.
  • interlace refers to a set of physical resources that forms part of an interlacing pattern, with an example interlace being two symbols of a resource block as shown in FIG. 4 or two resource blocks as shown in FIG. 7 .
  • interlacing is considered to be performed at a resource block level if an interlace spans a set of subcarriers that corresponds to the size of a resource block in the frequency domain.
  • FIGS. 4 and 7 both show examples of interlacing at a resource block level.
  • interlacing is considered to be performed at a subcarrier level if an interlace only spans a subcarrier in the frequency domain.
  • interlacing at a resource block level can also be referred to as block-interleaved frequency division multiple access (B-IFDMA), with which an inverse Fourier transform (IFFT) of the illustrated PUCCH physical resources with zero values in between, create a time domain waveform being referred to as a B-IFDMA symbol.
  • IFFT inverse Fourier transform
  • the size of the mentioned IFFT (in the transmitter) typically corresponds to the system bandwidth.
  • An example of B-IFDMA is shown in FIG.
  • a third interlace is assigned out of 10 possible.
  • FIG. 4 shows an example of short PUCCH occupying two symbols in the time domain and one interlace in the frequency domain.
  • demodulation reference signal DMRS
  • DMRS demodulation reference signal
  • DMRS is sent on every few number of subcarriers, e.g., 6 subcarriers (e.g. to enable more PUCCH data) whose pattern can be shifted or unshifted on different B-IFDMA symbols, as illustrated in the right-most part of FIG. 4 .
  • PUCCH UEs can be multiplexed on a PUCCH resource by various alternative approaches as explained below.
  • PUCCH UEs can also be multiplexed with PUSCH UEs in the same subframe in a way that PUSCH transmission for other UEs occupying other interlacing patterns as shown in FIG. 5 .
  • PUCCH multiplexing in one example PUCCH UEs are assigned different interlacing patterns, i.e., frequency division multiplexing.
  • multiple PUCCH UEs are assigned the same interlacing pattern, in which case UEs apply different Orthogonal Cover Codes (OCC) to enable multiplexing of PUCCH data on the same time-frequency resources.
  • OCC Orthogonal Cover Codes
  • the OCCs can be employed in two different ways, or in a combination of both, i.e., via inter-symbol OCC or and/or via intra-symbol OCC.
  • FIG. 19 shows examples of inter-DS OCC length-2 (top of FIG. 19 ) and intra-DS OCC length-2 (bottom of FIG. 19 ) with bipolar Hadamard OCC.
  • FIG. 6 shows an example of two PUCCH UEs DS multiplexing on the same interlace(s) with N PRB PRBs.
  • OCC spreading is applied within a symbol in the frequency domain for the total number of allocated subcarriers (SC).
  • SC subcarriers
  • the OCC spreading within a symbol is similar to FIG. 6 but instead typically applied per physical resource block (PRB) and furthermore before the transmitter DFT.
  • PRB physical resource block
  • FIG. 6 exemplifies the case where 2 UEs are multiplexed.
  • the 2 UE multiplexing case corresponds to that each UE applies an OCC-length of 2 (i.e., 2 repeated symbols).
  • An extension to multiplexing e.g. 4 or 6 UEs with B-IFDMA using intra-symbol OCC on a PRB-basis follows directly by instead applying an OCC of length-4 or length-6 (i.e., repeating 4 or 6 subcarriers within each PRB).
  • the OCC sequences can for example be based on a Hadamard matrix with +1, ⁇ 1 as in FIG.
  • OCC orthogonal matrix
  • DS data symbols
  • the OCC can be applied after the transmitter modulation, i.e., in the time domain.
  • the inter-symbol OCC can be applied in the frequency domain or before the transmitter DFT, since it corresponds to scalar multiplication.
  • the reference symbols are using existing DMRS sequences in LTE uplink based on Zadoff-Chu sequence (assuming >2 PRBs, for fewer PRBs other sequences are used). Multiple UEs are typically using the same root sequence and transmit RS on the same time-frequency resources. For RS multiplexing, different cyclic shifts are applied for different UEs.
  • the HARQ feedback and the corresponding process IDs could either be listed explicitly or e.g. be provided as a bitmap (one or two bits per process).
  • the UCI on short PUCCH (sPUCCH) is attached with an 8-bit CRC and encoded using Tail Biting Convolutional Code (TBCC) for medium to large payload size, e.g., >16-20 bits payload.
  • TBCC Tail Biting Convolutional Code
  • a block code may be used without CRC to improve the performance, for instance, a Reed-Muller code as utilized by LTE.
  • Other encoding types could also be used.
  • the encoded symbols are mapped to available resource elements (Res), e.g., in a frequency first time second manner. Similar features may also be used in relation to long PUCCH.
  • FIG. 7 shows an example of a long PUCCH, where the PUCCH occupies one interlace in one subframe with two DMRS symbols per subframe. Other number of DMRS per subframe could also be used, e.g. 4 symbols per subframe as in LTE PUCCH format 3.
  • long PUCCH occupies 1 subframe in the time domain, and it spans the whole bandwidth by interlacing in the frequency domain.
  • Demodulation reference signal DMRS
  • DMRS Demodulation reference signal
  • multiple PUCCH UEs can also be multiplexed using long PUCCH.
  • PUCCH UEs can also be multiplexed with PUSCH UEs in the same subframe using different interlacing patterns for PUCCH data and PUSCH data transmissions as shown in FIG. 8 without frequency hopping.
  • frequency hopping is enabled and UEs are multiplexed by using the hopped resources.
  • One example is to have symbol-based frequency hopping as shown in FIG. 9 (where the interlace numbering refers to the location used at the first symbol in the subframe).
  • PUCCH UEs are assigned different interlacing patterns compared to PUSCH UEs and other PUCCH UEs.
  • multiple PUCCH UEs are assigned the same interlacing pattern.
  • UEs apply different Orthogonal Cover Codes (OCC) to be multiplexed on the same time-frequency resources.
  • OCC Orthogonal Cover Codes
  • OCC is applied before DFT.
  • OCC spreading is applied between B-IFDMA symbols which contain DS.
  • the reference symbols use existing DMRS sequences in LTE uplink based on Zadoff-Chu sequence (assuming >2 PRBs). Multiple UEs use the same root sequence and transmit RS on the same time-frequency resources. For RS multiplexing, in one example, the multiple PUCCH and PUSCH UEs apply different cyclic shifts within one RS symbol.
  • two UEs are multiplexed using OCC [1 1] and [1 ⁇ 1] on the two DMRS symbols.
  • multiple UEs apply both OCC between DMRS symbols and cyclic shifts within one DMRS symbol as shown in FIG. 10 .
  • the PUSCH UEs can apply OCC [1 1] for the DMRSs while the PUCCH UEs apply OCC [1 ⁇ 1]. In this way, the total number of DMRS CS (i.e., resources) can be split among all PUCCH UEs independently of the number of PUSCH UEs, and vice versa.
  • the described embodiments may be implemented in any appropriate type of communication system supporting any suitable communication standards and using any suitable components.
  • certain embodiments may be implemented in an LTE network, such as that illustrated in FIG. 11 .
  • a communication network 1100 comprises a plurality of wireless communication devices 1105 (e.g., conventional UEs, machine type communication [MTC]/machine-to-machine [M2M] UEs) and a plurality of radio access nodes 1110 (e.g., eNodeBs or other base stations).
  • Communication network 1100 is organized into cells 1115 , which are connected to a core network 120 via corresponding to radio access nodes 1110 .
  • Radio access nodes 1110 are capable of communicating with wireless communication devices 1105 along with any additional elements suitable to support communication between wireless communication devices or between a wireless communication device and another communication device (such as a landline telephone).
  • wireless communication devices 1105 may represent communication devices that include any suitable combination of hardware and/or software, these wireless communication devices may, in certain embodiments, represent devices such as an example wireless communication device illustrated in greater detail by FIG. 12 .
  • the illustrated radio access node may represent network nodes that include any suitable combination of hardware and/or software, these nodes may, in particular embodiments, represent devices such as the example radio access node illustrated in greater detail by FIG. 13 .
  • a wireless communication device 1200 comprises a processor 1205 , a memory, a transceiver 1215 , and an antenna 1220 .
  • the device processor executing instructions stored on a computer-readable medium, such as the memory shown in FIG. 12 .
  • Alternative embodiments may include additional components beyond those shown in FIG. 12 that may be responsible for providing certain aspects of the device's functionality, including any of the functionality described herein.
  • a radio access node 1300 comprises a node processor 1305 , a memory 1310 , a network interface 1315 , a transceiver 1320 , and an antenna 1325 .
  • some or all of the functionality described as being provided by a base station, a node B, an enodeB, and/or any other type of network node may be provided by node processor 1305 executing instructions stored on a computer-readable medium, such as memory 1310 shown in FIG. 13 .
  • Alternative embodiments of radio access node 1300 may comprise additional components to provide additional functionality, such as the functionality described herein and/or related supporting functionality.
  • FIGS. 14-16 illustrate various methods and apparatuses in which some or all of the above features may potentially be implemented.
  • FIG. 14 is a flowchart illustrating a method 1400 of operating a wireless communication device. The method of FIG. 14 could be performed by a wireless communication device as illustrated in any of FIG. 11, 12 or 15 , for instance.
  • method 1400 comprises identifying a physical uplink control channel (PUCCH) format for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level (S 1405 ), and transmitting the UCI to a radio access node in accordance with the identified PUCCH format (S 1410 ).
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • identifying” or “determining” a PUCCH format may be performed in various alternative ways, such as determining the format based on information available to the wireless communication device, reading an indication of the format from a memory in the wireless communication device, being preconfigured to use the format, receiving signaling from a radio access node that identifies the format, and so on.
  • the UCI is transmitted to the radio access node in coordination with one or more other wireless communication devices.
  • transmitting the UCI in coordination with the one or more other wireless communication devices comprises multiplexing with the one or more other wireless communication devices using orthogonal cover codes (OCC) and cyclic shifts (CS) on control-data symbols and reference symbols, respectively, in the short PUCCH or long PUCCH.
  • transmitting the UCI to the radio access node in coordination with the one or more other wireless communication devices comprises multiplexing the one or more other wireless communication devices on the same interlace as the short PUCCH or the long PUCCH.
  • the wireless communication device and the one or more other wireless communication devices are assigned different interlacing patterns.
  • the wireless communication device and the one or more other wireless communication devices are assigned the same interlacing pattern, and they apply different orthogonal cover codes (OCC) to enable PUCCH control-data on the same time-frequency resources.
  • the PUCCH format is short PUCCH and the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain.
  • the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • the PUCCH format is short PUCCH and the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
  • DMRS demodulation reference signal
  • B-IFDMA block-interleaved frequency division multiple access
  • the PUCCH format is short PUCCH and the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • DMRS demodulation reference signal
  • FIG. 15 is a diagram illustrating a wireless communication device 1500 .
  • wireless communication device 1500 comprises an identification module 1505 configured to identify a PUCCH format as in S 1405 , and a transmission module 1510 configured to transmit the UCI as in S 1410 .
  • Wireless communication device 1500 may further comprise additional modules configured to perform additional functions as described above in relation to FIG. 14 , for instance.
  • module denotes any suitable combination of hardware and/or software configured to perform a designated function.
  • the modules in FIG. 15 and other figures may be implemented by at least one processor and memory, one or more controllers, etc.
  • FIG. 16 is a flowchart illustrating a method 1600 of operating a radio access node. The method of FIG. 16 could be performed by a radio access node as illustrated in any of FIG. 11, 13 or 17 , for instance.
  • method 1600 comprises identifying a physical uplink control channel (PUCCH) format to be used by at least one wireless communication device for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level (S 1605 ), and receiving the UCI from the at least one wireless communication device in accordance with the identified PUCCH format (S 1610 ).
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • identifying the PUCCH format comprises selecting between short PUCCH and long PUCCH according to at least one of an eNodeB timing configuration and a hybrid automatic repeat request (HARM) protocol.
  • HARM hybrid automatic repeat request
  • the received UCI is multiplexed on the same interlace as the short PUCCH or the long PUCCH with information transmitted from at least one other wireless communication device.
  • the PUCCH format is short PUCCH and the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain.
  • the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • the received UCI is multiplexed in the short PUCCH or long PUCCH with information transmitted from at least one other wireless communication device.
  • the UCI and the information transmitted from the at least one other wireless communication device are multiplexed using orthogonal cover codes (OCC) and cyclic shifts (CS) on control-data symbols and reference symbols, respectively.
  • OCC orthogonal cover codes
  • CS cyclic shifts
  • the PUCCH format comprises a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
  • the PUCCH format comprises a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • the UCI is multiplexed with UCI from at least one other wireless communication device using different interlacing patterns within the same subframe.
  • the UCI is multiplexed with UCI from at least one other wireless communication device using the same interlacing pattern within the same subframe.
  • the UCI from the at least one wireless communication device and the at least one other wireless communication device are subject to different orthogonal cover codes (OCC).
  • FIG. 17 is a diagram illustrating a radio access node 1700 .
  • radio access node 1700 comprises a determining module 1705 configured to determine or identify a PUCCH format as in S 1605 , and a receiving/decoding module 1710 configured to receive and decode the UCI as in S 1610 .
  • Radio access node 1700 may further comprise additional modules configured to perform additional functions as described above in relation to FIG. 16 , for instance.
  • certain embodiments of the disclosed subject matter provide two PUCCH formats to be transmitted on carriers in unlicensed spectrum for LAA/Standalone LTE-U. Both formats use interlaced UL resources and can be multiplexed with other PUCCH/PUSCH UEs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A physical uplink control channel (PUCCH) format for transmission of uplink control information (UCI) in unlicensed spectrum is either short PUCCH or long PUCCH. The short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level. The long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 15/431,012, filed Feb. 13, 2017, now patented under U.S. Pat. No. 9,854,569 on Dec. 26, 2017, which is a continuation of International Application No. PCT/IB2016/057404, filed Dec. 7, 2016, which designates the United States, and which claims priority to U.S. Provisional Application No. 62/264,091, filed on Dec. 7, 2015, the disclosure disclosures of which is are hereby incorporated by reference in its their entirety.ch is hereby incorporated by reference in its entirety.
  • TECHNICAL FIELD
  • The disclosed subject matter relates generally to telecommunications. Certain embodiments relate more particularly to uplink control channel configuration for unlicensed carriers.
  • BACKGROUND
  • The standalone Long-Term Evolution (LTE) in unlicensed spectrum (LTE-U) forum and 3rd Generation Partnership Project (3GPP) Release 14 (Rel-14) work item on Uplink Licensed-Assisted Access (LAA) intends to allow LTE User Equipments (UEs) to transmit on the uplink in the unlicensed 5 GHz or license-shared 3.5 GHz radio spectrum. For standalone LTE-U, initial random access and subsequent UL transmissions take place entirely on unlicensed spectrum. Regulatory requirements may prohibit transmissions in the unlicensed spectrum without prior channel sensing.
  • Because the unlicensed spectrum is typically shared with other radios of similar or dissimilar wireless technologies, a so-called listen-before-talk (LBT) method may be applied. LBT involves sensing the medium for a pre-defined minimum amount of time and backing off if the channel is busy.
  • Today, unlicensed 5 GHz spectrum is mainly used by equipment implementing the IEEE 802.11 Wireless Local Area Network (WLAN) standard, also known as Wi-Fi.
  • LTE uses Orthogonal Frequency Division Multiplexing (OFDM) in the downlink and Discrete Fourier Transform spread (DFT-spread) OFDM (also referred to as single-carrier FDMA [SC-FDMA]) in the uplink. The basic LTE downlink physical resource can thus be seen as a time-frequency grid as illustrated in Figure (FIG. 1, where each resource element corresponds to one OFDM subcarrier during one OFDM symbol interval. The uplink subframe has the same subcarrier spacing (15 kHz) as the downlink and the same number of SC-FDMA symbols in the time domain as OFDM symbols in the downlink.
  • In the time domain, LTE downlink transmissions are organized into radio frames of 10 ms, each radio frame comprising ten equally-sized subframes of length Tsubframe=1 ms as shown in FIG. 2. Each subframe comprises two slots of duration 0.5 ms each, and the slot numbering within a frame ranges from 0 to 19. For normal cyclic prefix, one subframe comprises 14 OFDM symbols. The duration of each symbol is approximately 71.4 μs when including the cyclic prefix.
  • Furthermore, the resource allocation in LTE is typically described in terms of resource blocks, where a resource block corresponds to 12 contiguous subcarriers in the frequency domain. Resource blocks are numbered in the frequency domain, starting from 0 at one end of the system bandwidth.
  • Up to now, the spectrum used by LTE is dedicated to LTE. This has the benefit of allowing LTE to avoid complications from sharing the spectrum and to achieve commensurate gains in spectrum efficiency. However, the spectrum allocated to LTE is limited and cannot meet the ever increasing demand for larger throughput from applications/services. Consequently, a new study item has been initiated in 3GPP on extending LTE to exploit unlicensed spectrum in addition to licensed spectrum.
  • Unlicensed spectrum can, by definition, be simultaneously used/shared by multiple different technologies. Therefore, LTE should consider coexistence with other systems such as IEEE 802.11 (Wi-Fi). Operating LTE in the same manner in unlicensed spectrum as in licensed spectrum can seriously degrade the performance of Wi-Fi as Wi-Fi will not transmit once it detects the channel is occupied.
  • Furthermore, one way to utilize unlicensed spectrum reliably is to transmit essential control signals and channels on a licensed carrier. For example, as shown in FIG. 3, a UE is connected to a PCell in the licensed band and one or more SCells in the unlicensed band. In this description, a secondary cell in unlicensed spectrum is referred to as a licensed-assisted access secondary cell (LAA SCell).
  • A new industry forum has been initiated on extending LTE to operate entirely on unlicensed spectrum in a standalone mode, which is referred to as “MuLTEfire”. In MuLTEfire there is no licensed carrier for essential control signals transmissions and control channels. Accordingly, all transmission occurs on unlicensed spectrum with no guaranteed channel access availability, yet it must also fulfill the regulatory requirements on the unlicensed spectrum.
  • SUMMARY
  • In some embodiments of the disclosed subject matter, a method of operating a wireless communication device comprises identifying a physical uplink control channel (PUCCH) format for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and transmitting the UCI to a radio access node in accordance with the identified PUCCH format.
  • In certain related embodiments, the UCI is transmitted to the radio access node in coordination with one or more other wireless communication devices. In some such embodiments, transmitting the UCI to the radio access node in coordination with the one or more other wireless communication devices comprises multiplexing the one or more other wireless communication devices on the same interlace as the short PUCCH or the long PUCCH. In some such embodiments, transmitting the UCI in coordination with the one or more other wireless communication devices comprises multiplexing with the one or more other wireless communication devices using orthogonal cover codes (OCC) and cyclic shifts (CS) on control-data symbols and reference symbols, respectively, in the short PUCCH or long PUCCH.
  • In certain related embodiments, the PUCCH format is short PUCCH.
  • In certain related embodiments, the PUCCH format is long PUCCH. In some such embodiments, the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain. In some such embodiments, the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • In certain related embodiments, the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
  • In certain related embodiments, the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • In certain related embodiments, the wireless communication device and the one or more other wireless communication devices are assigned different interlacing patterns.
  • In certain related embodiments, the wireless communication device and the one or more other wireless communication devices are assigned the same interlacing pattern, and they apply different orthogonal cover codes (OCC) to enable PUCCH control-data on the same time-frequency resources.
  • In some embodiments of the disclosed subject matter, a wireless communication device comprises at least one processor configured to identify a physical uplink control channel (PUCCH) format for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and at least one transmitter configured to transmit the UCI to a radio access node in accordance with the identified PUCCH format.
  • In certain related embodiments, the UCI is transmitted to the radio access node in coordination with one or more other wireless communication devices.
  • In certain related embodiments, transmitting the UCI to the radio access node in coordination with the one or more other wireless communication devices comprises multiplexing the one or more other wireless communication devices on the same interlace as the short PUCCH or the long PUCCH.
  • In certain related embodiments, the PUCCH format is short PUCCH.
  • In certain related embodiments, the PUCCH format is long PUCCH.
  • In certain related embodiments, the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain.
  • In certain related embodiments, the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • In certain related embodiments, transmitting the UCI in coordination with the one or more other wireless communication devices comprises multiplexing with the one or more other wireless communication devices using orthogonal cover codes (OCC) and cyclic shifts (CS) on data symbols and reference symbols, respectively, in the short PUCCH or long PUCCH.
  • In certain related embodiments, the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
  • In certain related embodiments, the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • In certain related embodiments, the wireless communication device and the one or more other wireless communication devices are assigned different interlacing patterns.
  • In certain related embodiments, the wireless communication device and the one or more other wireless communication devices are assigned the same interlacing pattern, and they apply different orthogonal cover codes (OCC) to enable PUCCH control-data on the same time-frequency resources.
  • In some embodiments of the disclosed subject matter, a method of operating a radio access node comprises identifying a physical uplink control channel (PUCCH) format to be used by at least one wireless communication device for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and receiving the UCI from the at least one wireless communication device in accordance with the identified PUCCH format.
  • In certain related embodiments, identifying the PUCCH format comprises selecting between short PUCCH and long PUCCH according to at least one of an eNodeB timing configuration and a hybrid automatic repeat request (HARM) protocol.
  • In certain related embodiments, the received UCI is multiplexed on the same interlace as the short PUCCH or the long PUCCH with information transmitted from at least one other wireless communication device.
  • In certain related embodiments, the PUCCH format is short PUCCH.
  • In certain related embodiments, the PUCCH format is long PUCCH.
  • In certain related embodiments, the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain.
  • In certain related embodiments, the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • In certain related embodiments, the received UCI is multiplexed in the short PUCCH or long PUCCH with information transmitted from at least one other wireless communication device.
  • In certain related embodiments, the UCI and the information transmitted from the at least one other wireless communication device are multiplexed using orthogonal cover codes (OCC) and cyclic shifts (CS) on control-data symbols and reference symbols, respectively.
  • In certain related embodiments, the PUCCH format comprises a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
  • In certain related embodiments, the PUCCH format comprises a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • In certain related embodiments, the UCI is multiplexed with UCI from at least one other wireless communication device using different interlacing patterns within the same subframe.
  • In certain related embodiments, the UCI is multiplexed with UCI from at least one other wireless communication device using the same interlacing pattern within the same subframe.
  • In certain related embodiments, the UCI from the at least one wireless communication device and the at least one other wireless communication device are subject to different orthogonal cover codes (OCC).
  • In some embodiments of the disclosed subject matter, a radio access node comprises at least one processor and memory collectively configured to identify a physical uplink control channel (PUCCH) format to be used by at least one wireless communication device for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and a receiver configured to receive the UCI from the at least one wireless communication device in accordance with the identified PUCCH format.
  • In certain related embodiments, identifying the PUCCH format comprises selecting between short PUCCH and long PUCCH according to at least one of an eNodeB timing configuration and a hybrid automatic repeat request (HARM) protocol.
  • In certain related embodiments, the received UCI is multiplexed on the same interlace as the short PUCCH or the long PUCCH with information transmitted from at least one other wireless communication device.
  • In certain related embodiments, the PUCCH format is short PUCCH.
  • In certain related embodiments, the PUCCH format is long PUCCH.
  • In certain related embodiments, the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain.
  • In certain related embodiments, the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • In certain related embodiments, the received UCI is multiplexed in the short PUCCH or long PUCCH with information transmitted from at least one other wireless communication device.
  • In certain related embodiments, the UCI and the information transmitted from the at least one other wireless communication device are multiplexed using orthogonal cover codes (OCC) and cyclic shifts (CS) on control-data symbols and reference symbols, respectively.
  • In certain related embodiments, the PUCCH format comprises a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
  • In certain related embodiments, the PUCCH format comprises a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • In certain related embodiments, the UCI is multiplexed with UCI from at least one other wireless communication device using different interlacing patterns within the same subframe.
  • In certain related embodiments, the UCI is multiplexed with UCI from at least one other wireless communication device using the same interlacing pattern within the same subframe.
  • In certain related embodiments, the UCI from the at least one wireless communication device and the at least one other wireless communication device are subject to different orthogonal cover codes (OCC).
  • In some embodiments of the disclosed subject matter, a wireless communication device comprises an identification module configured to identify a physical uplink control channel (PUCCH) format for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and a transmission module configured to transmit the UCI to a radio access node in accordance with the identified PUCCH format.
  • In some embodiments of the disclosed subject matter a radio access node comprises an identification module configured to identify a physical uplink control channel (PUCCH) format to be used by at least one wireless communication device for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level, and a reception module configured to receive the UCI from the at least one wireless communication device in accordance with the identified PUCCH format.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings illustrate selected embodiments of the disclosed subject matter. In the drawings, like reference labels denote like features.
  • FIG. 1 shows an example LTE downlink physical resource.
  • FIG. 2 shows an example LTE time-domain structure.
  • FIG. 3 shows an example of LAA to unlicensed spectrum using LTE carrier aggregation.
  • FIG. 4 shows an example of short PUCCH occupying two symbols and one interlace.
  • FIG. 5 shows an example of short PUCCH multiplexing with PUSCH transmission in the same subframe.
  • FIG. 6 shows an example of two PUCCH UEs DS multiplexing on the same interlace(s) with NPRB PRBs.
  • FIG. 7 shows an example of a long PUCCH.
  • FIG. 8 shows an example of long PUCCH multiplexing with PUSCH transmission in the same subframe
  • FIG. 9 shows an example of long PUCCH multiplexing with PUSCH transmission in the same subframe with symbol-based frequency hopping.
  • FIG. 10 shows an example of two PUCCH UEs RS multiplexing on the same interlace(s).
  • FIG. 11 shows an example of an LTE network.
  • FIG. 12 shows an example of a wireless communication device.
  • FIG. 13 shows an example of a radio access node.
  • FIG. 14 shows an example method of operating a wireless communication device.
  • FIG. 15 shows an example of a wireless communication device.
  • FIG. 16 shows an example method of operating a radio access node.
  • FIG. 17 shows an example of a radio access node.
  • FIG. 18 shows an example of B-IFDMA.
  • FIG. 19 shows an example of inter- and intra-symbol OCC.
  • DETAILED DESCRIPTION
  • The following description presents various embodiments of the disclosed subject matter. These embodiments are presented as teaching examples and are not to be construed as limiting the scope of the disclosed subject matter. For example, certain details of the described embodiments may be modified, omitted, or expanded upon without departing from the scope of the disclosed subject matter.
  • In LAA/standalone LTE-U, uplink control information (UCI) such as HARQ-ACK, CSI are sent from UE to eNB on the control channel PUCCH when there is no UL-SCH data scheduled. The PUCCH design up to Rel-13 is only for carriers in licensed spectrum, which is not possible to be reused for carriers in unlicensed spectrum due to regulatory requirements. In addition, because there is no longer any guaranteed channel access availability for PUCCH, special consideration should be given when designing the PUCCH on carriers in unlicensed spectrum.
  • Certain embodiments of the disclosed subject matter provide a physical layer design of uplink control channel (e.g., PUCCH) format for LAA/standalone LTE-U. Various alternative embodiments may employ either or both of two PUCCH formats, including a short PUCCH and a long PUCCH. The two different PUCCH formats can be considered for UCI transmission depending on e.g. eNB timing configuration and/or HARQ protocol. Although several of the described embodiments relate to PUCCH, the described concepts could nevertheless be applied to other types of uplink control channels.
  • The short PUCCH typically occupies less than one subframe (e.g. 1-4 SC-FDMA/OFDM symbols) in the time domain, while the long PUCCH typically occupies 1 subframe. Both formats span the entire bandwidth with interlacing. UE multiplexing is supported on both formats using Orthogonal Cover Codes (OCC) and Cyclic Shifts (CS) on data symbols and reference symbols. The normal PUCCH can also be multiplexed with PUSCH transmission from same or different UEs.
  • In certain embodiments, the establishment and/or use of a particular PUCCH format may be coordinated by one or more radio access nodes. Such coordination may include, for instance, determining the format and signaling scheduling and/or format information from the one or more radio access nodes to one or more wireless communication devices. The determining of the format may include e.g. selecting a PUCCH format according to an eNB timing configuration or a HARQ protocol. The signaling may take the form of e.g. downlink control signaling or radio resource control (RRC) configuration signaling.
  • The described embodiments may provide various potential benefits compared to conventional approaches. Some embodiments may, for instance, allow UCI to be transmitted on PUCCH on carriers in unlicensed spectrum; some embodiments may allow similar functionality as legacy LTE PUCCH to be maintained; and some embodiments may allow UE multiplexing to be supported on new PUCCH formats.
  • The following embodiments include physical layer configuration of PUCCH in unlicensed spectrum. Certain methods or concepts described below may be used for both single- and multi-carrier transmissions. The proposed approaches may also apply to different variations of LTE operating in unlicensed spectrum, such as LAA, LTE-U and standalone LTE-U.
  • In the following description, the term “short PUCCH” refers to a PUCCH that is relatively short in the time domain, e.g., less than 1 subframe. For example, a short PUCCH may occupy 1-4 SC-FDMA or OFDM symbols depending on eNB configuration. In the frequency domain, a short PUCCH may span the whole bandwidth by interlacing. Similarly, the term “long PUCCH” refers to a PUCCH that is relatively long in the time domain, e.g., 1 subframe. In the frequency domain, a long PUCCH may span the whole bandwidth by interlacing.
  • A short PUCCH or long PUCCH is considered to span the whole bandwidth by interlacing if the interlaces of the short PUCCH or long PUCCH are included in an interlacing pattern that spans the entire bandwidth, as illustrated e.g. in FIG. 7. Terms such as “whole bandwidth”, “entire bandwidth”, “entire system bandwidth”, and so on, generally refer to the transmission bandwidth of a carrier. For instance, such terms may refer to the transmission bandwidth of a 10 MHz or 20 MHz carrier, which may be slightly less than 10 MHz or 20 MHz, respectively.
  • The term “interlacing” refers to a technique in which physical resources are assigned or allocated according to a pattern such as one of those illustrated in FIGS. 4-5 and 7-10, for instance. The term “interlace” refers to a set of physical resources that forms part of an interlacing pattern, with an example interlace being two symbols of a resource block as shown in FIG. 4 or two resource blocks as shown in FIG. 7. In general, interlacing is considered to be performed at a resource block level if an interlace spans a set of subcarriers that corresponds to the size of a resource block in the frequency domain. For instance, FIGS. 4 and 7 both show examples of interlacing at a resource block level. In contrast, interlacing is considered to be performed at a subcarrier level if an interlace only spans a subcarrier in the frequency domain. In the context of LTE and related systems, interlacing at a resource block level can also be referred to as block-interleaved frequency division multiple access (B-IFDMA), with which an inverse Fourier transform (IFFT) of the illustrated PUCCH physical resources with zero values in between, create a time domain waveform being referred to as a B-IFDMA symbol. The size of the mentioned IFFT (in the transmitter) typically corresponds to the system bandwidth. An example of B-IFDMA is shown in FIG. 18, which is a simplified block diagram of an B-IFDMA transmitter for short/long PUCCH, where for example M=120 and N=2048 with a 20 MHz system bandwidth when using 1 interlace of 10 RBs. In the example of FIG. 18, a third interlace is assigned out of 10 possible.
  • FIG. 4 shows an example of short PUCCH occupying two symbols in the time domain and one interlace in the frequency domain. In one example, demodulation reference signal (DMRS) is sent on all subcarriers within a B-IFDMA symbol on the assigned interlace(s) or on all interlaces across the whole bandwidth, e.g. across the whole maximum transmission bandwidth or system bandwidth. In another example, DMRS is sent on every few number of subcarriers, e.g., 6 subcarriers (e.g. to enable more PUCCH data) whose pattern can be shifted or unshifted on different B-IFDMA symbols, as illustrated in the right-most part of FIG. 4.
  • Multiple PUCCH UEs can be multiplexed on a PUCCH resource by various alternative approaches as explained below. PUCCH UEs can also be multiplexed with PUSCH UEs in the same subframe in a way that PUSCH transmission for other UEs occupying other interlacing patterns as shown in FIG. 5.
  • For PUCCH multiplexing, in one example PUCCH UEs are assigned different interlacing patterns, i.e., frequency division multiplexing.
  • In another example, multiple PUCCH UEs are assigned the same interlacing pattern, in which case UEs apply different Orthogonal Cover Codes (OCC) to enable multiplexing of PUCCH data on the same time-frequency resources. In this context, the OCCs can be employed in two different ways, or in a combination of both, i.e., via inter-symbol OCC or and/or via intra-symbol OCC. FIG. 19 shows examples of inter-DS OCC length-2 (top of FIG. 19) and intra-DS OCC length-2 (bottom of FIG. 19) with bipolar Hadamard OCC.
  • FIG. 6 shows an example of two PUCCH UEs DS multiplexing on the same interlace(s) with NPRB PRBs. In this example, with OFDM modulation, OCC spreading is applied within a symbol in the frequency domain for the total number of allocated subcarriers (SC). In case of B-IFDMA modulation, the OCC spreading within a symbol is similar to FIG. 6 but instead typically applied per physical resource block (PRB) and furthermore before the transmitter DFT. This latter case of intra-symbol OCC corresponds to OCC on a per PRB-basis by essentially assuming NPRB=1 in FIG. 6 for each PRB within the allocated interlace(s).
  • It should be emphasized that FIG. 6 exemplifies the case where 2 UEs are multiplexed. For B-IFDMA and intra-symbol OCC on a PRB-basis, the 2 UE multiplexing case corresponds to that each UE applies an OCC-length of 2 (i.e., 2 repeated symbols). An extension to multiplexing e.g. 4 or 6 UEs with B-IFDMA using intra-symbol OCC on a PRB-basis follows directly by instead applying an OCC of length-4 or length-6 (i.e., repeating 4 or 6 subcarriers within each PRB). The OCC sequences can for example be based on a Hadamard matrix with +1, −1 as in FIG. 6 or based on the columns/rows of an orthogonal matrix such as the DFT matrix. The latter may be preferred with e.g. 4 or 6 intra-symbol OCC multiplexed UEs. As another example, OCC spreading is applied between B-IFDMA symbols which contain data symbols (DS). In the latter case, the OCC can be applied after the transmitter modulation, i.e., in the time domain. Equivalently, the inter-symbol OCC can be applied in the frequency domain or before the transmitter DFT, since it corresponds to scalar multiplication. The reference symbols (RS or so called DMRS) are using existing DMRS sequences in LTE uplink based on Zadoff-Chu sequence (assuming >2 PRBs, for fewer PRBs other sequences are used). Multiple UEs are typically using the same root sequence and transmit RS on the same time-frequency resources. For RS multiplexing, different cyclic shifts are applied for different UEs.
  • The HARQ feedback and the corresponding process IDs could either be listed explicitly or e.g. be provided as a bitmap (one or two bits per process). To align the design with 3GPP Rel-13 CA, the UCI on short PUCCH (sPUCCH) is attached with an 8-bit CRC and encoded using Tail Biting Convolutional Code (TBCC) for medium to large payload size, e.g., >16-20 bits payload. For shorter payloads, e.g. <16-20 bits, a block code may be used without CRC to improve the performance, for instance, a Reed-Muller code as utilized by LTE. Other encoding types could also be used. The encoded symbols are mapped to available resource elements (Res), e.g., in a frequency first time second manner. Similar features may also be used in relation to long PUCCH.
  • FIG. 7 shows an example of a long PUCCH, where the PUCCH occupies one interlace in one subframe with two DMRS symbols per subframe. Other number of DMRS per subframe could also be used, e.g. 4 symbols per subframe as in LTE PUCCH format 3. In general, long PUCCH occupies 1 subframe in the time domain, and it spans the whole bandwidth by interlacing in the frequency domain. Demodulation reference signal (DMRS) is sent on all subcarriers within a B-IFDMA symbol on the assigned interlace(s) or on all interlaces across the whole bandwidth.
  • Similar to short PUCCH, multiple PUCCH UEs can also be multiplexed using long PUCCH. PUCCH UEs can also be multiplexed with PUSCH UEs in the same subframe using different interlacing patterns for PUCCH data and PUSCH data transmissions as shown in FIG. 8 without frequency hopping. In another example, frequency hopping is enabled and UEs are multiplexed by using the hopped resources. One example is to have symbol-based frequency hopping as shown in FIG. 9 (where the interlace numbering refers to the location used at the first symbol in the subframe).
  • For PUCCH multiplexing, in one example, PUCCH UEs are assigned different interlacing patterns compared to PUSCH UEs and other PUCCH UEs.
  • In another example, multiple PUCCH UEs are assigned the same interlacing pattern. For data symbols (DS), UEs apply different Orthogonal Cover Codes (OCC) to be multiplexed on the same time-frequency resources. As one example, OCC spreading is applied within a B-IFDMA symbol before the transmitter DFT/IFFT for the total number of allocated subcarriers as shown in FIG. 6, or per PRB-basis by essentially assuming NPRB=1 for each PRB within the allocated interlace(s), as previously explained In case there is a B-IFDMA, OCC is applied before DFT. As another example, OCC spreading is applied between B-IFDMA symbols which contain DS.
  • The reference symbols (RS or so called DMRS) use existing DMRS sequences in LTE uplink based on Zadoff-Chu sequence (assuming >2 PRBs). Multiple UEs use the same root sequence and transmit RS on the same time-frequency resources. For RS multiplexing, in one example, the multiple PUCCH and PUSCH UEs apply different cyclic shifts within one RS symbol.
  • In another example, two UEs are multiplexed using OCC [1 1] and [1 −1] on the two DMRS symbols. In a further example, multiple UEs apply both OCC between DMRS symbols and cyclic shifts within one DMRS symbol as shown in FIG. 10. More specifically, the PUSCH UEs can apply OCC [1 1] for the DMRSs while the PUCCH UEs apply OCC [1 −1]. In this way, the total number of DMRS CS (i.e., resources) can be split among all PUCCH UEs independently of the number of PUSCH UEs, and vice versa.
  • The described embodiments may be implemented in any appropriate type of communication system supporting any suitable communication standards and using any suitable components. As one example, certain embodiments may be implemented in an LTE network, such as that illustrated in FIG. 11.
  • Referring to FIG. 11, a communication network 1100 comprises a plurality of wireless communication devices 1105 (e.g., conventional UEs, machine type communication [MTC]/machine-to-machine [M2M] UEs) and a plurality of radio access nodes 1110 (e.g., eNodeBs or other base stations). Communication network 1100 is organized into cells 1115, which are connected to a core network 120 via corresponding to radio access nodes 1110. Radio access nodes 1110 are capable of communicating with wireless communication devices 1105 along with any additional elements suitable to support communication between wireless communication devices or between a wireless communication device and another communication device (such as a landline telephone).
  • Although wireless communication devices 1105 may represent communication devices that include any suitable combination of hardware and/or software, these wireless communication devices may, in certain embodiments, represent devices such as an example wireless communication device illustrated in greater detail by FIG. 12. Similarly, although the illustrated radio access node may represent network nodes that include any suitable combination of hardware and/or software, these nodes may, in particular embodiments, represent devices such as the example radio access node illustrated in greater detail by FIG. 13.
  • Referring to FIG. 12, a wireless communication device 1200 comprises a processor 1205, a memory, a transceiver 1215, and an antenna 1220. In certain embodiments, some or all of the functionality described as being provided by UEs, MTC or M2M devices, and/or any other types of wireless communication devices may be provided by the device processor executing instructions stored on a computer-readable medium, such as the memory shown in FIG. 12. Alternative embodiments may include additional components beyond those shown in FIG. 12 that may be responsible for providing certain aspects of the device's functionality, including any of the functionality described herein.
  • Referring to FIG. 13, a radio access node 1300 comprises a node processor 1305, a memory 1310, a network interface 1315, a transceiver 1320, and an antenna 1325. In certain embodiments, some or all of the functionality described as being provided by a base station, a node B, an enodeB, and/or any other type of network node may be provided by node processor 1305 executing instructions stored on a computer-readable medium, such as memory 1310 shown in FIG. 13. Alternative embodiments of radio access node 1300 may comprise additional components to provide additional functionality, such as the functionality described herein and/or related supporting functionality.
  • FIGS. 14-16 illustrate various methods and apparatuses in which some or all of the above features may potentially be implemented.
  • FIG. 14 is a flowchart illustrating a method 1400 of operating a wireless communication device. The method of FIG. 14 could be performed by a wireless communication device as illustrated in any of FIG. 11, 12 or 15, for instance.
  • Referring to FIG. 14, method 1400 comprises identifying a physical uplink control channel (PUCCH) format for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level (S1405), and transmitting the UCI to a radio access node in accordance with the identified PUCCH format (S1410). In this and other embodiments, “identifying” or “determining” a PUCCH format may be performed in various alternative ways, such as determining the format based on information available to the wireless communication device, reading an indication of the format from a memory in the wireless communication device, being preconfigured to use the format, receiving signaling from a radio access node that identifies the format, and so on.
  • In certain embodiments, the UCI is transmitted to the radio access node in coordination with one or more other wireless communication devices. In certain related embodiments, transmitting the UCI in coordination with the one or more other wireless communication devices comprises multiplexing with the one or more other wireless communication devices using orthogonal cover codes (OCC) and cyclic shifts (CS) on control-data symbols and reference symbols, respectively, in the short PUCCH or long PUCCH. In certain other related embodiments, transmitting the UCI to the radio access node in coordination with the one or more other wireless communication devices comprises multiplexing the one or more other wireless communication devices on the same interlace as the short PUCCH or the long PUCCH. In certain other related embodiments, the wireless communication device and the one or more other wireless communication devices are assigned different interlacing patterns. In certain other related embodiments, the wireless communication device and the one or more other wireless communication devices are assigned the same interlacing pattern, and they apply different orthogonal cover codes (OCC) to enable PUCCH control-data on the same time-frequency resources.
  • In certain embodiments, the PUCCH format is short PUCCH and the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain. In certain related embodiments, the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • In certain embodiments, the PUCCH format is short PUCCH and the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
  • In certain embodiments, the PUCCH format is short PUCCH and the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • FIG. 15 is a diagram illustrating a wireless communication device 1500.
  • Referring to FIG. 15, wireless communication device 1500 comprises an identification module 1505 configured to identify a PUCCH format as in S1405, and a transmission module 1510 configured to transmit the UCI as in S1410. Wireless communication device 1500 may further comprise additional modules configured to perform additional functions as described above in relation to FIG. 14, for instance.
  • As used herein, the term “module” denotes any suitable combination of hardware and/or software configured to perform a designated function. For instance, the modules in FIG. 15 and other figures may be implemented by at least one processor and memory, one or more controllers, etc.
  • FIG. 16 is a flowchart illustrating a method 1600 of operating a radio access node. The method of FIG. 16 could be performed by a radio access node as illustrated in any of FIG. 11, 13 or 17, for instance.
  • Referring to FIG. 16, method 1600 comprises identifying a physical uplink control channel (PUCCH) format to be used by at least one wireless communication device for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level (S1605), and receiving the UCI from the at least one wireless communication device in accordance with the identified PUCCH format (S1610).
  • In certain embodiments, identifying the PUCCH format comprises selecting between short PUCCH and long PUCCH according to at least one of an eNodeB timing configuration and a hybrid automatic repeat request (HARM) protocol.
  • In certain embodiments, the received UCI is multiplexed on the same interlace as the short PUCCH or the long PUCCH with information transmitted from at least one other wireless communication device.
  • In certain embodiments, the PUCCH format is short PUCCH and the short PUCCH comprises at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain. In certain related embodiments, the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
  • In certain embodiments, the received UCI is multiplexed in the short PUCCH or long PUCCH with information transmitted from at least one other wireless communication device. In certain related embodiments, the UCI and the information transmitted from the at least one other wireless communication device are multiplexed using orthogonal cover codes (OCC) and cyclic shifts (CS) on control-data symbols and reference symbols, respectively.
  • In certain embodiments, the PUCCH format comprises a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth. In certain embodiments, the PUCCH format comprises a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
  • In certain embodiments, the UCI is multiplexed with UCI from at least one other wireless communication device using different interlacing patterns within the same subframe.
  • In certain embodiments, the UCI is multiplexed with UCI from at least one other wireless communication device using the same interlacing pattern within the same subframe. In certain related embodiments, the UCI from the at least one wireless communication device and the at least one other wireless communication device are subject to different orthogonal cover codes (OCC).
  • FIG. 17 is a diagram illustrating a radio access node 1700.
  • Referring to FIG. 17, radio access node 1700 comprises a determining module 1705 configured to determine or identify a PUCCH format as in S1605, and a receiving/decoding module 1710 configured to receive and decode the UCI as in S1610. Radio access node 1700 may further comprise additional modules configured to perform additional functions as described above in relation to FIG. 16, for instance.
  • As indicated by the foregoing, certain embodiments of the disclosed subject matter provide two PUCCH formats to be transmitted on carriers in unlicensed spectrum for LAA/Standalone LTE-U. Both formats use interlaced UL resources and can be multiplexed with other PUCCH/PUSCH UEs.
  • The following abbreviations are used in this description.
      • CCA Clear Channel Assessment
      • CRS Cell-Specific Reference Signal
      • CSI Channel State Information
      • DCI Downlink Control Information
      • DL Downlink
      • DS Data Symbol
      • eNB evolved NodeB, base station
      • UE User Equipment
      • UL Uplink
      • LAA Licensed-Assisted Access
      • RS Reference Signal
      • SCell Secondary Cell
      • LBT Listen-before-talk
      • LTE-U LTE in Unlicensed Spectrum
      • PUSCH Physical Uplink Shared Channel
      • PUCCH Physical Uplink Control Channel
      • UCI Uplink Control Information
  • While the disclosed subject matter has been presented above with reference to various embodiments, it will be understood that various changes in form and details may be made to the described embodiments without departing from the overall scope of the disclosed subject matter.

Claims (20)

1. A method of operating a wireless communication device, comprising:
identifying a physical uplink control channel (PUCCH) format for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level; and
transmitting the UCI to a radio access node in accordance with the identified PUCCH format.
2. The method of claim 1, wherein the UCI is transmitted to the radio access node in coordination with one or more other wireless communication devices.
3. The method of claim 2, wherein transmitting the UCI to the radio access node in coordination with the one or more other wireless communication devices comprises multiplexing the one or more other wireless communication devices on the same interlace as the short PUCCH or the long PUCCH.
4. The method of claim 1, wherein the PUCCH format is short PUCCH comprising at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain.
5. The method of claim 4, wherein the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
6. The method of claim 2, wherein transmitting the UCI in coordination with the one or more other wireless communication devices comprises multiplexing with the one or more other wireless communication devices using orthogonal cover codes (OCC) and cyclic shifts (CS) on control-data symbols and reference symbols, respectively, in the short PUCCH or long PUCCH.
7. The method of claim 4, wherein the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
8. The method of claim 4, wherein the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
9. The method of claim 2, wherein the wireless communication device and the one or more other wireless communication devices are assigned different interlacing patterns.
10. The method of claim 2, wherein the wireless communication device and the one or more other wireless communication devices are assigned the same interlacing pattern, and they apply different orthogonal cover codes (OCC) to enable PUCCH control-data on the same time-frequency resources.
11. A wireless communication device, comprising:
at least one processor configured to:
identify a physical uplink control channel (PUCCH) format for transmission of uplink control information (UCI) in unlicensed spectrum, wherein the PUCCH format is short PUCCH or long PUCCH, wherein the short PUCCH occupies less than 1 subframe in the time domain and spans an entire system bandwidth in the frequency domain with interlacing on a resource block level, and wherein the long PUCCH occupies one subframe in the time domain and spans the entire system bandwidth in the frequency domain with interlacing on a resource block level; and
at least one transmitter configured to transmit the UCI to a radio access node in accordance with the identified PUCCH format.
12. The wireless communication device of claim 11, wherein the UCI is transmitted to the radio access node in coordination with one or more other wireless communication devices.
13. The wireless communication device of claim 12, wherein transmitting the UCI to the radio access node in coordination with the one or more other wireless communication devices comprises multiplexing the one or more other wireless communication devices on the same interlace as the short PUCCH or the long PUCCH.
14. The wireless communication device of claim 11, wherein the PUCCH format is short PUCCH comprising at least one demodulation reference signal (DMRS) symbol and at least one control-data symbol in the time domain.
15. The wireless communication device of claim 14, wherein the short PUCCH comprises a sequence of symbols at the end of a downlink partial subframe.
16. The wireless communication device of claim 12, wherein transmitting the UCI in coordination with the one or more other wireless communication devices comprises multiplexing with the one or more other wireless communication devices using orthogonal cover codes (OCC) and cyclic shifts (CS) on data symbols and reference symbols, respectively, in the short PUCCH or long PUCCH.
17. The wireless communication device of claim 14, wherein the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol on all subcarriers within a block-interleaved frequency division multiple access (B-IFDMA) symbol on an assigned interlace or on all assigned interlaces across the entire system bandwidth.
18. The wireless communication device of claim 14, wherein the transmitting comprises transmitting a demodulation reference signal (DMRS) symbol once per “n” subcarriers with a pattern that can be shifted or unshifted on different B-IFDMA symbols, where “n” is an integer greater than 1.
19. The wireless communication device of claim 12, wherein the wireless communication device and the one or more other wireless communication devices are assigned different interlacing patterns.
20. The wireless communication device of claim 12, wherein the wireless communication device and the one or more other wireless communication devices are assigned the same interlacing pattern, and they apply different orthogonal cover codes (OCC) to enable PUCCH control-data on the same time-frequency resources.
US15/853,390 2015-12-07 2017-12-22 Uplink control channel configuration for unlicensed carriers Abandoned US20190007937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/853,390 US20190007937A1 (en) 2015-12-07 2017-12-22 Uplink control channel configuration for unlicensed carriers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562264091P 2015-12-07 2015-12-07
PCT/IB2016/057404 WO2017098414A1 (en) 2015-12-07 2016-12-07 Uplink control channel configuration for unlicensed carriers
US15/431,012 US9854569B2 (en) 2015-12-07 2017-02-13 Uplink control channel configuration for unlicensed carriers
US15/853,390 US20190007937A1 (en) 2015-12-07 2017-12-22 Uplink control channel configuration for unlicensed carriers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/431,012 Continuation US9854569B2 (en) 2015-12-07 2017-02-13 Uplink control channel configuration for unlicensed carriers

Publications (1)

Publication Number Publication Date
US20190007937A1 true US20190007937A1 (en) 2019-01-03

Family

ID=58800502

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/431,012 Active US9854569B2 (en) 2015-12-07 2017-02-13 Uplink control channel configuration for unlicensed carriers
US15/853,390 Abandoned US20190007937A1 (en) 2015-12-07 2017-12-22 Uplink control channel configuration for unlicensed carriers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/431,012 Active US9854569B2 (en) 2015-12-07 2017-02-13 Uplink control channel configuration for unlicensed carriers

Country Status (1)

Country Link
US (2) US9854569B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835487A (en) * 2019-08-13 2020-10-27 维沃移动通信有限公司 An information processing method, device and computer-readable storage medium
US11283547B2 (en) * 2018-09-12 2022-03-22 Qualcomm Incorporated Discrete Fourier transform-spread (DFT-S) based interlace physical uplink control channel (PUCCH) with user multiplexing

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135594B2 (en) * 2015-08-13 2018-11-20 Electronics And Telecommunications Research Institute Scheduling method for communication network supporting unlicensed band
US10172118B2 (en) * 2015-12-09 2019-01-01 Qualcomm Incorporated Decoupled mode for a common uplink burst transmission in a time division duplex subframe structure
US10485027B2 (en) * 2016-02-02 2019-11-19 Qualcomm Incorporated Uplink short transmission techniques using contention-based radio frequency spectrum
US10243929B2 (en) * 2016-03-30 2019-03-26 Qualcomm Incorporated Uplink control channel scheduling for jamming resilience
KR20250026411A (en) * 2016-03-31 2025-02-25 레노보 이노베이션스 리미티드 (홍콩) Interlace determination for device
CN109076527A (en) * 2016-03-31 2018-12-21 株式会社Ntt都科摩 User terminal, wireless base station, and wireless communication method
JPWO2017195850A1 (en) * 2016-05-12 2019-03-28 株式会社Nttドコモ User terminal and wireless communication method
WO2017217799A1 (en) * 2016-06-16 2017-12-21 엘지전자 주식회사 Method for transmitting and receiving physical uplink control channel in wireless communication system, and device for supporting same
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
EP3488552B1 (en) * 2016-07-20 2020-09-02 Telefonaktiebolaget LM Ericsson (publ) Srs carrier based switching on unlicensed bands
WO2018030768A1 (en) * 2016-08-08 2018-02-15 엘지전자 주식회사 Method and device for reporting power headroom
US20180076917A1 (en) * 2016-09-14 2018-03-15 Mediatek Inc. Short PUCCH In NR Networks
EP3520270B1 (en) * 2016-09-30 2023-05-03 Nokia Solutions and Networks Oy Nr pucch coverage extension
US11323966B2 (en) 2016-10-28 2022-05-03 Qualcomm Incorporated Uplink transmission techniques in low latency wireless communication systems
WO2018084610A1 (en) * 2016-11-03 2018-05-11 엘지전자(주) Method for transmitting uplink channel in wireless communication system, and apparatus therefor
US10142074B2 (en) * 2016-11-03 2018-11-27 Qualcomm Incorporated Techniques and apparatuses for common uplink burst
EP3535903A1 (en) * 2016-11-04 2019-09-11 Telefonaktiebolaget LM Ericsson (publ) Signaling of demodulation reference signal configuration for uplink short tti transmissions
US11240785B2 (en) 2016-11-16 2022-02-01 Kt Corporation Method and apparatus for transmitting and receiving uplink control data in next generation wireless network
US10425962B2 (en) * 2016-12-14 2019-09-24 Qualcomm Incorporated PUCCH design with flexible symbol configuration
EP3557799B1 (en) * 2017-01-06 2020-12-30 Huawei Technologies Co., Ltd. Uplink control channel transmission and reception methods and devices
US10841904B2 (en) * 2017-02-02 2020-11-17 Sharp Kabushiki Kaisha Short physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
CN110583069B (en) * 2017-02-24 2023-10-24 株式会社Ntt都科摩 Terminal, base station, system and wireless communication method
SG11201908421PA (en) * 2017-03-17 2019-10-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Uplink transmission method, apparatus, terminal device, access network device and system
KR102264030B1 (en) * 2017-03-21 2021-06-11 엘지전자 주식회사 Method of transmitting and recieving physical uplink control channel between a user equipment and a base station in a wireless communication system and device supporting thereof
AU2017405239A1 (en) * 2017-03-22 2019-08-15 Sony Corporation Terminal device, base station device, communication method, and storage medium
KR102288629B1 (en) * 2017-05-04 2021-08-11 삼성전자 주식회사 Method and apparatus for transmitting of uplink control channel in a wireless communication system
CN109152014B (en) * 2017-06-16 2021-10-22 大唐移动通信设备有限公司 Uplink control channel transmission method, terminal, base station and device
WO2019028797A1 (en) * 2017-08-10 2019-02-14 华为技术有限公司 Uplink control signaling transmission method, terminal device and base station
CN109391429B (en) * 2017-08-11 2021-06-11 大唐移动通信设备有限公司 PUCCH transmission method, user equipment and device
US11229016B2 (en) * 2017-09-20 2022-01-18 Qualcomm Incorporated Physical uplink shared channel (PUSCH) design with power spectral density (PSD) parameters in new radio-spectrum sharing (NR-SS)
CN109845305A (en) * 2017-09-28 2019-06-04 瑞典爱立信有限公司 Physical uplink control channel (PUCCH) format is adjusted within a wireless communication network
CN111345087B (en) * 2017-11-17 2025-01-24 Oppo广东移动通信有限公司 Resource determination method, device, network element and system
US10750484B2 (en) * 2017-11-22 2020-08-18 Qualcomm Incorporated Physical uplink control channel (PUCCH) configuration for new-radio-spectrum sharing (NR-SS)
CN113824667B (en) * 2017-12-05 2023-08-29 中兴通讯股份有限公司 Information sending method and device
EP3738242B1 (en) * 2018-01-10 2025-06-18 InterDigital Patent Holdings, Inc. Short physical uplink control channel (spucch) structure
ES2926517T3 (en) 2018-01-12 2022-10-26 Guangdong Oppo Mobile Telecommunications Corp Ltd Information transmission method and device
CN110149703B (en) * 2018-02-12 2021-04-27 北京紫光展锐通信技术有限公司 Method and device for sending uplink control information, storage medium and user equipment
US10868629B2 (en) * 2018-04-06 2020-12-15 Mediatek Inc. Channel multiplexing within interlace for new radio unlicensed spectrum operation
CN112514303B (en) * 2018-05-10 2024-04-09 瑞典爱立信有限公司 Physical uplink control channel frequency division multiplexing with orthogonal cover codes within data subcarriers
CN112385189B (en) * 2018-05-11 2024-05-14 株式会社Ntt都科摩 User terminal and radio base station
EP4358452A3 (en) * 2018-08-02 2024-07-10 INTEL Corporation New radio (nr) physical uplink control channel (pucch) formats for nr-unlicensed
US12003455B2 (en) 2018-08-09 2024-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Intra-symbol OCC mapping for transmissions such as NR-U PUCCH transmissions
WO2020033734A1 (en) * 2018-08-10 2020-02-13 Intel Corporation Block interleaved interlace-based physical uplink channel for nr-unlicensed transmissions
US12082197B2 (en) * 2018-11-02 2024-09-03 Lg Electronics Inc. Method and device for transmitting and receiving signals in wireless communication system
US11582077B2 (en) * 2019-02-25 2023-02-14 Huawei Technologies Co., Ltd. Systems and methods for transmission of uplink control information over multiple carriers in unlicensed spectrum
US11412497B2 (en) 2019-03-27 2022-08-09 Electronics And Telecommunications Research Institute Method and apparatus for transmitting or receiving uplink feedback information in communication system
US11974136B2 (en) * 2019-08-05 2024-04-30 Qualcomm Incorporated Physical uplink control channel (PUCCH) and reference signal design for new radio-unlicensed (NR-U)
US12317372B2 (en) * 2020-02-13 2025-05-27 Nokia Technologies Oy Signalling optimisation
US11706768B2 (en) * 2020-04-24 2023-07-18 Qualcomm Incorporated Uplink control channel transmission in high band operation
US12003445B2 (en) * 2020-09-29 2024-06-04 Qualcomm Incorporated Multiple user (MU) support for reference signal (RS) and data multiplexing on shared uplink (UL) resources(s)
CN115087103B (en) * 2021-03-12 2025-09-02 展讯通信(上海)有限公司 Direct link synchronization signal block transmission method and device, and computer-readable storage medium
KR102585235B1 (en) * 2021-05-13 2023-10-06 삼성전자주식회사 Spectrum shaping method for generating almost constant envelope signal in communication system and transmitter for performing the same
US12207261B2 (en) * 2021-12-10 2025-01-21 Qualcomm Incorporated Physical uplink control channel resource allocation techniques

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140219162A1 (en) * 2013-02-07 2014-08-07 Airvana Llc Radio access networks
US20170014271A1 (en) * 2008-12-31 2017-01-19 I Optima Ltd. Device and method for laser assisted deep sclerectomy
US20170366380A1 (en) * 2014-12-08 2017-12-21 Lg Electronics Inc. Method and user equipment for transmitting pucch when more than five cells are used according to carrier aggregation
US20180376490A1 (en) * 2015-11-19 2018-12-27 Nokia Solutions And Networks Oy Dynamic HARQ-ACK Codebook Size in Unlicensed Spectrum

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9949275B2 (en) * 2013-10-01 2018-04-17 Qualcomm Incorporated Physical uplink control management in LTE/LTE-A systems with unlicensed spectrum
US10827491B2 (en) * 2014-10-07 2020-11-03 Qualcomm Incorporated Techniques for transmitting a sounding reference signal or scheduling request over an unlicensed radio frequency spectrum band
US10164746B2 (en) * 2015-05-22 2018-12-25 Qualcomm Incorporated Techniques for managing transmissions of reference signals
US9955460B2 (en) * 2015-07-01 2018-04-24 Qualcomm Incorporated Scheduling assignment optimization for device-to-device communications
US10257851B2 (en) * 2015-09-24 2019-04-09 Qualcomm Incorporated Channel configuration for co-existence on a shared communication medium
US10368348B2 (en) * 2015-11-18 2019-07-30 Qualcomm Incorporated Physical control channel signaling on a shared communication medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170014271A1 (en) * 2008-12-31 2017-01-19 I Optima Ltd. Device and method for laser assisted deep sclerectomy
US20140219162A1 (en) * 2013-02-07 2014-08-07 Airvana Llc Radio access networks
US20190037421A1 (en) * 2013-02-07 2019-01-31 Commscope Technologies Llc Radio access networks
US20170366380A1 (en) * 2014-12-08 2017-12-21 Lg Electronics Inc. Method and user equipment for transmitting pucch when more than five cells are used according to carrier aggregation
US20180376490A1 (en) * 2015-11-19 2018-12-27 Nokia Solutions And Networks Oy Dynamic HARQ-ACK Codebook Size in Unlicensed Spectrum

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11283547B2 (en) * 2018-09-12 2022-03-22 Qualcomm Incorporated Discrete Fourier transform-spread (DFT-S) based interlace physical uplink control channel (PUCCH) with user multiplexing
US20220173832A1 (en) * 2018-09-12 2022-06-02 Qualcomm Incorporated Discrete fourier transform-spread (dft-s) based interlace physical uplink control channel (pucch) with user multiplexing
US12057938B2 (en) * 2018-09-12 2024-08-06 Qualcomm Incorporated Discrete fourier transform-spread (DFT-S) based interlace physical uplink control channel (PUCCH) with user multiplexing
US20240430036A1 (en) * 2018-09-12 2024-12-26 Qualcomm Incorporated Discrete fourier transform-spread (dft-s) based interlace physical uplink control channel (pucch) with user multiplexing
CN111835487A (en) * 2019-08-13 2020-10-27 维沃移动通信有限公司 An information processing method, device and computer-readable storage medium

Also Published As

Publication number Publication date
US9854569B2 (en) 2017-12-26
US20170164352A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
US9854569B2 (en) Uplink control channel configuration for unlicensed carriers
EP3930250B1 (en) Uplink control channel configuration for unlicensed carriers
EP3906748B1 (en) Method and apparatus for valid rach occasion determination in nr unlicensed
US11540210B2 (en) Method for transmitting and receiving downlink channel for MTC terminal, and apparatus therefor
US10728077B2 (en) Method and apparatus for performing random access procedure in NB-IoT carrier in wireless communication system
US10278166B2 (en) Method of transmitting/receiving downlink control information and user equipment therefor in wireless access system
US10638495B2 (en) Terminal apparatus, base station apparatus, and integrated circuit
US10264560B2 (en) Uplink signal transmitting method and user equipment, and uplink signal receiving method and base station
US10098156B2 (en) Method and MTC device for performing random access procedure according to plurality of parameter sets
US9419759B2 (en) Method and apparatus for transreceiving synchronization signal in wireless communication system
EP3618536A1 (en) Base station device, terminal device, communication method, and integrated circuit
CN110574459B (en) Terminal device, base station device, and communication method
AU2018239031A1 (en) Method of transmitting or receiving signals in wireless communication system and apparatus therefor
US11570760B2 (en) Uplink channel multiplexing and waveform selection
EP3616450A1 (en) Multiple starting positions for uplink transmission on unlicensed spectrum
KR20230087488A (en) Uplink transmission method, apparatus and system in wireless communication system
US12022382B2 (en) Method for transmitting and receiving downlink channel for MTC terminal, and apparatus therefor
WO2018105631A1 (en) Base station device, terminal device, and communication method
BR112018011377B1 (en) METHODS OF OPERATION OF A WIRELESS COMMUNICATION DEVICE AND A RADIO ACCESS NODE, WIRELESS COMMUNICATION DEVICE, AND, RADIO ACCESS NODE

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION