US20180366604A1 - Solar panel - Google Patents
Solar panel Download PDFInfo
- Publication number
- US20180366604A1 US20180366604A1 US16/111,578 US201816111578A US2018366604A1 US 20180366604 A1 US20180366604 A1 US 20180366604A1 US 201816111578 A US201816111578 A US 201816111578A US 2018366604 A1 US2018366604 A1 US 2018366604A1
- Authority
- US
- United States
- Prior art keywords
- solar
- solar module
- detour
- module
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H01L31/0504—
-
- H01L31/044—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
- H02S20/20—Supporting structures directly fixed to an immovable object
- H02S20/22—Supporting structures directly fixed to an immovable object specially adapted for buildings
- H02S20/23—Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
- H02S20/25—Roof tile elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/34—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/36—Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/70—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising bypass diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/90—Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
- H10F19/902—Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Definitions
- the invention relates generally to solar cell modules in which the solar cells are arranged in a shingled manner, and more particularly to such solar modules in which rear surface electrical connections between solar cells in electrically parallel rows of solar cells provide detour current paths through the solar module around any underperforming solar cells.
- Solar energy resources are sufficient in many geographical regions to satisfy such demands, in part, by provision of electric power generated with solar (e.g., photovoltaic) cells.
- solar e.g., photovoltaic
- a solar module comprises a plurality of super cells arranged in two or more physically parallel rows with the rows electrically connected to each other in parallel.
- Each super cell comprises a plurality of rectangular silicon solar cells arranged in line with long sides of adjacent silicon solar cells overlapping and conductively bonded directly to each other to electrically connect the silicon solar cells in series.
- the solar module also comprises a plurality of detour electrical interconnects each of which is arranged to extend perpendicularly to the rows of super cells to electrically connect rear surfaces of at least one pair of solar cells located side-by-side in adjacent rows to provide detour current paths through the module around one or more other solar cells in the event that the one or more other solar cells provide insufficient current for normal operation of the module. These detour current paths do not pass through bypass diodes.
- FIG. 1 shows a cross-sectional diagram of a string of series-connected solar cells arranged in a shingled manner with the ends of adjacent solar cells overlapping to form a shingled super cell.
- FIG. 2 shows a diagram of the front surface of an example rectangular solar module comprising a plurality of rectangular shingled super cells, with the long side of each super cell having a length of approximately the full length of the long side of the module.
- the super cells are arranged with their long sides parallel to the long sides of the module.
- FIGS. 3-11 show diagrams of the rear surfaces of example solar modules in which electrical interconnections between rear surfaces of solar cells in adjacent rows of super cells provide alternative current paths (i.e., detours) through the solar module around damaged, shaded, or otherwise underperforming solar cells.
- detours alternative current paths
- FIGS. 12A-12B show rear surface metallization of individual solar cells and detour electrical connections between super cells allowing current to flow around a horizontal crack in a solar cell.
- FIG. 13 shows a typical crack pattern in a conventional solar module after uniform mechanical loading.
- FIG. 14A shows an example patterned metallized back sheet that provides electrical connections corresponding to those provided by the electrical interconnects and return wires shown in FIG. 10 .
- FIG. 14B shows a close-up view of electrical interconnections to bypass diodes in the junction box shown in FIG. 14A .
- the singular forms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise.
- the term “parallel” is intended to mean “substantially parallel” and to encompass minor deviations from parallel geometries.
- the term “perpendicular” is intended to mean “perpendicular or substantially perpendicular” and to encompass minor deviations from perpendicular geometries rather than to require that any perpendicular arrangement described herein be exactly perpendicular.
- the term “square” is intended to mean “square or substantially square” and to encompass minor deviations from square shapes, for example substantially square shapes having chamfered (e.g., rounded or otherwise truncated) corners.
- the term “rectangular” is intended to mean “rectangular or substantially rectangular” and to encompass minor deviations from rectangular shapes, for example substantially rectangular shapes having chamfered (e.g., rounded or otherwise truncated) corners.
- high-efficiency solar modules also referred to herein as solar panels
- solar panels comprising silicon solar cells arranged in an overlapping shingled manner and electrically connected in series by conductive bonds between adjacent overlapping solar cells to form super cells, with the super cells arranged in physically parallel rows in the solar module.
- a super cell may comprise any suitable number of solar cells.
- the super cells may have lengths spanning essentially the full length or width of the solar module, for example, or two or more super cells may be arranged end-to-end in a row. This arrangement hides solar cell-to-solar cell electrical interconnections and increases the efficiency and the aesthetic attractiveness of the module.
- the solar modules described herein include electrical interconnects between rear surfaces of solar cells in adjacent rows of super cells that provide alternative current paths (i.e., detours) through the solar panel around damaged, shaded, or otherwise underperforming solar cells. These detour current paths do not pass through bypass diodes.
- FIG. 1 shows a cross-sectional view of a string of series-connected solar cells 10 arranged in a shingled manner with the ends of adjacent solar cells overlapping and electrically connected to form a super cell 100 .
- Each solar cell 10 comprises a semiconductor diode structure and electrical contacts to the semiconductor diode structure by which electric current generated in solar cell 10 when it is illuminated by light may be provided to an external load.
- each solar cell 10 is a rectangular crystalline silicon solar cell having front (sun side) surface and rear (shaded side) surface metallization patterns providing electrical contact to opposite sides of an n-p junction, the front surface metallization pattern is disposed on a semiconductor layer of n-type conductivity, and the rear surface metallization pattern is disposed on a semiconductor layer of p-type conductivity.
- the front (sun side) surface metallization pattern may be disposed on a semiconductor layer of p-type conductivity
- the rear (shaded side) surface metallization pattern disposed on a semiconductor layer of n-type conductivity.
- Rectangular solar cells 10 may be prepared, for example, by separating a standard sized square or pseudo-square solar cell wafer into two or more (i.e., N) rectangular solar cells each having a length equal to the side length (e.g., 156 millimeters) of the standard sized solar cell wafer and a width equal to a fraction (i.e., about 1/N) of the side length of the standard sized solar cell wafer.
- N may be, for example, 2 to 20 or more, for example 6 or 8.
- adjacent solar cells 10 are conductively bonded directly to each other in the region in which they overlap by an electrically conductive bonding material that electrically connects the front surface metallization pattern of one solar cell to the rear surface metallization pattern of the adjacent solar cell.
- electrically conductive bonding materials may include, for example, electrically conductive adhesives and electrically conductive adhesive films and adhesive tapes, and conventional solders.
- FIG. 2 shows a front view of an example rectangular solar module 200 comprising six rectangular super cells 100 , each of which has a length approximately equal to the length of the long sides of the solar module.
- the super cells are arranged as six parallel rows with their long sides oriented parallel to the long sides of the module.
- a similarly configured solar module may include more or fewer rows of such side-length super cells than shown in this example.
- the super cells may each have a length approximately equal to the length of a short side of a rectangular solar module, and be arranged in parallel rows with their long sides oriented parallel to the short sides of the module.
- each row may comprise two or more super cells, which may be electrically interconnected in series for example.
- the modules may have shorts sides having a length, for example, of about 1 meter and long sides having a length, for example, of about 1.5 to about 2.0 meters. Any other suitable shapes (e.g., square) and dimensions for the solar modules may also be used.
- a super cell may comprise any suitable number of rectangular solar cells of any suitable dimensions.
- a row of super cells may comprise any suitable number of rectangular solar cells of any suitable dimensions arranged in one or more super cells.
- Solar modules as described herein typically comprise many more (e.g., N times) as many solar cells as a conventional module of the same size because N rectangular solar cells are formed from a single conventional sized solar cell wafer.
- the super cells formed from these solar cells may be arranged in an electrically parallel/series combination that provides current and voltage outputs similar to those provided by a solar module of about the same size comprising series-connected conventional size solar cells. For example, if a conventional module includes M conventional size solar cells electrically connected in series, then a corresponding shingled super cell module comprising N electrically parallel rows of super cells with each super cell row comprising M series connected rectangular solar cells (each having 1/N the area of a conventional solar cell) would provide about the same voltage and current output as the conventional module.
- the example solar modules of FIG. 2 and of FIGS. 3-11 (described below) comprise six rows of super cells all of which are electrically interconnected in parallel by terminal interconnects 250 at opposite ends of the rows. Because of the electrically parallel arrangement, the voltage across each row (voltage between one end of the row and the other) is the same though the current through each row may be different. “Detour” electrical interconnect arrangements similar to those described below with respect to FIGS. 3-11 may also be employed in solar modules comprising fewer rows of super cells and/or in which some but not all rows of super cells are electrically connected in parallel.
- the solar modules described herein comprise one or more (e.g., three) bypass diodes. If a solar cell arranged electrically in parallel with one of the bypass diodes significantly limits current due to shading, cracking, or otherwise suboptimal cell performance, the bypass diode will become forward biased and electrically bypass that solar cell or a portion of the module including that solar cell. This prevents formation of a dangerous hot spot around the current limiting cell and improves performance of the module.
- the solar modules described herein include super cells electrically connected in parallel, there is an opportunity to improve performance further by providing alternate current paths (i.e. detours) so that in the event that one cell in a super cell is severely shaded or otherwise current limiting an adjacent string of cells in an electrically parallel super cell can try to compensate by operating at a higher current.
- detour paths pass through the rear surface metallization of solar cells and through detour electrical interconnects that electrically connect equal voltage pairs of solar cells located side-by-side in adjacent super cell rows in the module. Conduction through the rear surface metallization of the solar cells enable the bypass and detour architectures using detour interconnects and/or planar patterned metallized back sheets described herein.
- detour connectors can instead be placed on a subset of cells to statistically reduce the likelihood that damage from cracking or other failure mechanisms significantly degrades performance of the module.
- detour connections can be concentrated in areas of the module most likely to experience cell cracking, such as for example along well know stress lines from mechanical loading. Cracks can be created by several mechanisms, may be dependent on the way the module is mounted in the field or on the roof, and may occur in predictable patterns based on the mounting method and the source of stress. Wind and snow load create specific stress and hence cracking. Walking on the module may create cracks. Severe hail may create another type of crack. While initially cracks may not cause electrical disconnects or otherwise degrade a module's performance, the cracks may expand as the module goes though heating and cooling cycles and eventually significantly affect module performance. Cracks in monocrystalline and polycrystalline cells may behave differently.
- the detour electrical connections between the rear surface metallization on solar cells in adjacent rows may be made, for example, using short copper interconnects that bridge a gap between the rows and that are conductively bonded at opposite ends to the rear surfaces of the solar cells.
- the detour interconnects may be bonded to the solar cells (e.g., to contact pads on the rear surface of the solar cells) using solder or conductive glue or other conductive adhesive, for example, or by any other suitable method. Any portion of a detour interconnect that would otherwise be visible from the front of the solar module (i.e., through a gap between rows) may be covered with a black coating or black tape, or otherwise darkened or hidden, to preserve an “all black” look from a front view of the module.
- the conductive detour current path may include portions of the rear surface (e.g., aluminum) cell metallization as well as the detour interconnect.
- the detour interconnections between solar cells in a “line” of solar cells oriented perpendicularly to the super cell rows may be made for example with a single long approximately module-width crossing ribbon that is conductively bonded to the rear surface of each cell in the line.
- This approach may be preferred for example for modules including very large numbers of solar cells, for example a module having six rows of super cells with each row having eighty solar cells. Such a module would otherwise require 400 separate short interconnects to provide detour paths for each cell.
- detour interconnections may be made in the same way as “hidden tap” interconnections to bypass diodes, as described for example in U.S. patent application Ser. No. 14/674,983 titled “Shingled Solar Cell Panel Employing Hidden Taps” filed Mar. 31, 2015, which is incorporated herein by reference in its entirety.
- the '983 application also discloses rear surface metallization patterns and contact pads for hidden tap interconnections to bypass diodes that facilitate detour interconnections as described herein as well.
- the detour paths and the connections to bypass diodes in a solar module may be made using the same or substantially similar types of interconnects.
- the detour interconnections may also be made, for example, using a patterned metallized back sheet conductively bonded to the rear surfaces of the solar cells, with the patterned metallization on the back sheet providing the detour current interconnections.
- the patterned metallization on the back sheet may also provide electrical connections to bypass diodes and/or to a junction box. (See discussion of FIGS. 14A-14B below, for example).
- the metallization pattern on the back sheet is single layer planar.
- each solar cell 10 is electrically connected to the rear surface metallization of its neighbor solar cell (or solar cells) in adjacent super cell rows by detour interconnectors 275 .
- Two of the detour interconnections ( 275 A and 275 B) are also electrically connected via return wires (conductors) 280 A and 280 B to three bypass diodes (not shown) in junction box 290 .
- Return wires 280 C and 280 D electrically connect the bypass diodes to terminal interconnects 250 .
- detour interconnect 275 A or 275 B serve as hidden taps to the bypass diodes in addition to providing detour current paths. (Similar arrangements with detour interconnects also providing hidden taps to bypass diodes are shown in other figures, as well).
- return wires such as 280 A- 280 D, for example, are electrically insulated from the solar cells and conductors over which they pass, except at their ends.
- return wire 280 B in FIG. 3 is electrically connected (e.g., conductively bonded) to detour electrical interconnect 275 B but electrically insulated from the other detour electrical interconnects over which it passes on the way to junction box 290 . This may be accomplished for example with a strip of insulation placed between the return wire and the rear surfaces of the solar cells and other module components.
- the example solar module 400 of FIG. 4 is similar to that of FIG. 3 , except that in solar module 400 every other (i.e., alternating) solar cell along a super cell row has detours installed.
- detour interconnects 275 are installed in a pattern designed to compensate for a typical crack pattern that may result from uniform mechanical loading of a solar module.
- the crack pattern is shown in FIG. 13 superimposed on a sketch of a conventional ribbon tabbed solar module, with the crack pattern generally indicated by lines 305 .
- conductors 280 A and 280 B are conductively bonded to the rear surface metallization of solar cells 10 A and 10 B, respectively, to electrically connect them to bypass diodes in junction box 290
- Detour interconnects may be installed at any suitable intervals along a super cell row. The intervals may be equal or approximately equal, or instead vary in length along the row.
- detour interconnects 275 are installed in four approximately evenly spaced lines across the module.
- detour interconnects 275 are installed in five lines across the module, with the interval between detour interconnects greater at one end of the module than at the other end of the module.
- solar module 1000 FIG.
- detour interconnects 275 are installed in six lines across the module, with the interval between interconnects greater in the central portion of the module than at the ends of the module.
- detour interconnects 275 are installed in nine lines across the module in combination with five series-connected bypass diodes, with two lines of interconnects between each adjacent pair of bypass diodes.
- any suitable number of bypass diodes may be used and they may be spaced along the super cell rows at any suitable interval.
- the bypass diodes may be installed in a junction box, or alternatively embedded in a laminate comprising the solar cells.
- Example solar modules 300 , 400 , 500 , and 1000 each include three series-connected bypass diodes (not shown) arranged in junction box 290 .
- example solar modules 600 , 700 , 900 , and 1100 are embedded in the solar cell laminate.
- example solar cell module 800 three series-connected bypass diodes 310 are embedded in the laminate.
- Example solar modules 700 and 900 each include two junction boxes 290 A and 290 B, one at each end of the module, each providing a single (e.g., positive or negative) output.
- a crack e.g., crack 330 oriented along the long axis of a solar cell 10 can substantially reduce current flow perpendicular to the long axis of the cell, which is the direction in which current generally and preferably flows through the solar cells during normal operation of the modules described herein (i.e., when not taking a detour path).
- detour electrical interconnects as described above can provide a detour path around the cracked cell.
- a detour current path around and over the crack can also be provided within the cell, as shown in FIGS. 12A-12B .
- detour interconnect contact pads 320 on the rear surface of the solar cell are positioned at the short ends of the solar cell and elongated parallel to the short ends to substantially span the width of the solar cell.
- Detour interconnects 275 that are conductively bonded to these contact pads provide a crack jumping current path, allowing current within the cell to make its way to an interconnect 275 , go over or around the crack, and then back to the other part of the solar cell as shown for example by arrows 335 .
- example patterned metallized back sheet 350 provides detour current paths and electrical connections to bypass diodes 310 in a junction box 290 corresponding to those provided by detour interconnects 275 and return wires 280 A- 280 D shown in FIG. 10 .
- the junction box is not part of the back sheet, but is located in the module with respect to the back sheet as shown in the figures).
- the metallization pattern comprises a positive return region 355 , a negative return region 360 , a first bypass diode return path 365 , a second bypass diode return path 370 , two rows of detour interconnect regions 375 A that also serve as hidden taps to the bypass diodes, and three additional rows of detour interconnect regions 375 B.
- Metallization is removed from the sheet, for example as indicated at 380 , to electrically isolate the various regions from each other.
- each rectangular solar cell 10 has long sides having a length equal to the side length of a conventional silicon solar cell wafer
- the long sides of solar cells 10 can be a fraction (e.g., 1 ⁇ 2, 1 ⁇ 3, 1 ⁇ 4, or less) of the side length of a conventional solar cell wafer.
- the number of rows of super cells in a module can be correspondingly increased, for example by the reciprocal of that fraction (or by one or more rows less than the reciprocal to leave room for gaps between rows).
- each full length solar cell 10 in solar module 300 FIG. 3
- the rectangular solar cells could have dimensions of 1 ⁇ 6 by 1 ⁇ 2 the side length of a conventional solar cell wafer, for example. Reducing cell length in this manner may increase the robustness of the cells with respect to cracking, and reduce the impact of a cracked cell on performance of the module. Further, the use of detour electrical interconnects or metallized backing sheets as described above with smaller cells as just described can increase the number of detour current paths available through the module (compared to the use of full length cells), further reducing the impact of a cracked cell on performance.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Photovoltaic Devices (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 15/210,516 titled “Solar Panel” and filed Jul. 14, 2016, which claims benefit of priority to U.S. Provisional Application No. 62/206,667 titled “Solar Panel” filed Aug. 18, 2015, which is incorporated herein by reference in its entirety.
- The invention relates generally to solar cell modules in which the solar cells are arranged in a shingled manner, and more particularly to such solar modules in which rear surface electrical connections between solar cells in electrically parallel rows of solar cells provide detour current paths through the solar module around any underperforming solar cells.
- Alternate sources of energy are needed to satisfy ever increasing world-wide energy demands. Solar energy resources are sufficient in many geographical regions to satisfy such demands, in part, by provision of electric power generated with solar (e.g., photovoltaic) cells.
- In one aspect, a solar module comprises a plurality of super cells arranged in two or more physically parallel rows with the rows electrically connected to each other in parallel. Each super cell comprises a plurality of rectangular silicon solar cells arranged in line with long sides of adjacent silicon solar cells overlapping and conductively bonded directly to each other to electrically connect the silicon solar cells in series. The solar module also comprises a plurality of detour electrical interconnects each of which is arranged to extend perpendicularly to the rows of super cells to electrically connect rear surfaces of at least one pair of solar cells located side-by-side in adjacent rows to provide detour current paths through the module around one or more other solar cells in the event that the one or more other solar cells provide insufficient current for normal operation of the module. These detour current paths do not pass through bypass diodes.
- These and other embodiments, features and advantages of the present invention will become more apparent to those skilled in the art when taken with reference to the following more detailed description of the invention in conjunction with the accompanying drawings that are first briefly described.
-
FIG. 1 shows a cross-sectional diagram of a string of series-connected solar cells arranged in a shingled manner with the ends of adjacent solar cells overlapping to form a shingled super cell. -
FIG. 2 shows a diagram of the front surface of an example rectangular solar module comprising a plurality of rectangular shingled super cells, with the long side of each super cell having a length of approximately the full length of the long side of the module. The super cells are arranged with their long sides parallel to the long sides of the module. -
FIGS. 3-11 show diagrams of the rear surfaces of example solar modules in which electrical interconnections between rear surfaces of solar cells in adjacent rows of super cells provide alternative current paths (i.e., detours) through the solar module around damaged, shaded, or otherwise underperforming solar cells. -
FIGS. 12A-12B show rear surface metallization of individual solar cells and detour electrical connections between super cells allowing current to flow around a horizontal crack in a solar cell. -
FIG. 13 shows a typical crack pattern in a conventional solar module after uniform mechanical loading. -
FIG. 14A shows an example patterned metallized back sheet that provides electrical connections corresponding to those provided by the electrical interconnects and return wires shown inFIG. 10 .FIG. 14B shows a close-up view of electrical interconnections to bypass diodes in the junction box shown inFIG. 14A . - The following detailed description should be read with reference to the drawings, in which identical reference numbers refer to like elements throughout the different figures. The drawings, which are not necessarily to scale, depict selective embodiments and are not intended to limit the scope of the invention. The detailed description illustrates by way of example, not by way of limitation, the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.
- As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Also, the term “parallel” is intended to mean “substantially parallel” and to encompass minor deviations from parallel geometries. The term “perpendicular” is intended to mean “perpendicular or substantially perpendicular” and to encompass minor deviations from perpendicular geometries rather than to require that any perpendicular arrangement described herein be exactly perpendicular. The term “square” is intended to mean “square or substantially square” and to encompass minor deviations from square shapes, for example substantially square shapes having chamfered (e.g., rounded or otherwise truncated) corners. The term “rectangular” is intended to mean “rectangular or substantially rectangular” and to encompass minor deviations from rectangular shapes, for example substantially rectangular shapes having chamfered (e.g., rounded or otherwise truncated) corners.
- This specification discloses high-efficiency solar modules (also referred to herein as solar panels) comprising silicon solar cells arranged in an overlapping shingled manner and electrically connected in series by conductive bonds between adjacent overlapping solar cells to form super cells, with the super cells arranged in physically parallel rows in the solar module. A super cell may comprise any suitable number of solar cells. The super cells may have lengths spanning essentially the full length or width of the solar module, for example, or two or more super cells may be arranged end-to-end in a row. This arrangement hides solar cell-to-solar cell electrical interconnections and increases the efficiency and the aesthetic attractiveness of the module.
- Advantageously, the solar modules described herein include electrical interconnects between rear surfaces of solar cells in adjacent rows of super cells that provide alternative current paths (i.e., detours) through the solar panel around damaged, shaded, or otherwise underperforming solar cells. These detour current paths do not pass through bypass diodes.
- Turning now to the figures for a more detailed understanding of the solar modules described in this specification,
FIG. 1 shows a cross-sectional view of a string of series-connectedsolar cells 10 arranged in a shingled manner with the ends of adjacent solar cells overlapping and electrically connected to form asuper cell 100. Eachsolar cell 10 comprises a semiconductor diode structure and electrical contacts to the semiconductor diode structure by which electric current generated insolar cell 10 when it is illuminated by light may be provided to an external load. - In the examples described in this specification, each
solar cell 10 is a rectangular crystalline silicon solar cell having front (sun side) surface and rear (shaded side) surface metallization patterns providing electrical contact to opposite sides of an n-p junction, the front surface metallization pattern is disposed on a semiconductor layer of n-type conductivity, and the rear surface metallization pattern is disposed on a semiconductor layer of p-type conductivity. However, other material systems, diode structures, physical dimensions, or electrical contact arrangements may be used if suitable. For example, the front (sun side) surface metallization pattern may be disposed on a semiconductor layer of p-type conductivity, and the rear (shaded side) surface metallization pattern disposed on a semiconductor layer of n-type conductivity. - Rectangular
solar cells 10 may be prepared, for example, by separating a standard sized square or pseudo-square solar cell wafer into two or more (i.e., N) rectangular solar cells each having a length equal to the side length (e.g., 156 millimeters) of the standard sized solar cell wafer and a width equal to a fraction (i.e., about 1/N) of the side length of the standard sized solar cell wafer. N may be, for example, 2 to 20 or more, for example 6 or 8. - Referring again to
FIG. 1 , insuper cell 100 adjacentsolar cells 10 are conductively bonded directly to each other in the region in which they overlap by an electrically conductive bonding material that electrically connects the front surface metallization pattern of one solar cell to the rear surface metallization pattern of the adjacent solar cell. Suitable electrically conductive bonding materials may include, for example, electrically conductive adhesives and electrically conductive adhesive films and adhesive tapes, and conventional solders. -
FIG. 2 shows a front view of an example rectangularsolar module 200 comprising six rectangularsuper cells 100, each of which has a length approximately equal to the length of the long sides of the solar module. The super cells are arranged as six parallel rows with their long sides oriented parallel to the long sides of the module. A similarly configured solar module may include more or fewer rows of such side-length super cells than shown in this example. In other variations the super cells may each have a length approximately equal to the length of a short side of a rectangular solar module, and be arranged in parallel rows with their long sides oriented parallel to the short sides of the module. In yet other arrangements each row may comprise two or more super cells, which may be electrically interconnected in series for example. The modules may have shorts sides having a length, for example, of about 1 meter and long sides having a length, for example, of about 1.5 to about 2.0 meters. Any other suitable shapes (e.g., square) and dimensions for the solar modules may also be used. A super cell may comprise any suitable number of rectangular solar cells of any suitable dimensions. Similarly, a row of super cells may comprise any suitable number of rectangular solar cells of any suitable dimensions arranged in one or more super cells. - Solar modules as described herein typically comprise many more (e.g., N times) as many solar cells as a conventional module of the same size because N rectangular solar cells are formed from a single conventional sized solar cell wafer. Optionally, the super cells formed from these solar cells may be arranged in an electrically parallel/series combination that provides current and voltage outputs similar to those provided by a solar module of about the same size comprising series-connected conventional size solar cells. For example, if a conventional module includes M conventional size solar cells electrically connected in series, then a corresponding shingled super cell module comprising N electrically parallel rows of super cells with each super cell row comprising M series connected rectangular solar cells (each having 1/N the area of a conventional solar cell) would provide about the same voltage and current output as the conventional module.
- The example solar modules of
FIG. 2 and ofFIGS. 3-11 (described below) comprise six rows of super cells all of which are electrically interconnected in parallel byterminal interconnects 250 at opposite ends of the rows. Because of the electrically parallel arrangement, the voltage across each row (voltage between one end of the row and the other) is the same though the current through each row may be different. “Detour” electrical interconnect arrangements similar to those described below with respect toFIGS. 3-11 may also be employed in solar modules comprising fewer rows of super cells and/or in which some but not all rows of super cells are electrically connected in parallel. - Typically, though not necessarily, the solar modules described herein comprise one or more (e.g., three) bypass diodes. If a solar cell arranged electrically in parallel with one of the bypass diodes significantly limits current due to shading, cracking, or otherwise suboptimal cell performance, the bypass diode will become forward biased and electrically bypass that solar cell or a portion of the module including that solar cell. This prevents formation of a dangerous hot spot around the current limiting cell and improves performance of the module.
- Because the solar modules described herein include super cells electrically connected in parallel, there is an opportunity to improve performance further by providing alternate current paths (i.e. detours) so that in the event that one cell in a super cell is severely shaded or otherwise current limiting an adjacent string of cells in an electrically parallel super cell can try to compensate by operating at a higher current. These detour paths pass through the rear surface metallization of solar cells and through detour electrical interconnects that electrically connect equal voltage pairs of solar cells located side-by-side in adjacent super cell rows in the module. Conduction through the rear surface metallization of the solar cells enable the bypass and detour architectures using detour interconnects and/or planar patterned metallized back sheets described herein.
- In the extreme case all rows of super cells are electrically connected in parallel and every solar cell would have detour connectors attached to at least one cell in a different (e.g., adjacent) row to provide alternative current paths. However, detour connectors can instead be placed on a subset of cells to statistically reduce the likelihood that damage from cracking or other failure mechanisms significantly degrades performance of the module.
- Furthermore, detour connections can be concentrated in areas of the module most likely to experience cell cracking, such as for example along well know stress lines from mechanical loading. Cracks can be created by several mechanisms, may be dependent on the way the module is mounted in the field or on the roof, and may occur in predictable patterns based on the mounting method and the source of stress. Wind and snow load create specific stress and hence cracking. Walking on the module may create cracks. Severe hail may create another type of crack. While initially cracks may not cause electrical disconnects or otherwise degrade a module's performance, the cracks may expand as the module goes though heating and cooling cycles and eventually significantly affect module performance. Cracks in monocrystalline and polycrystalline cells may behave differently.
- The detour electrical connections between the rear surface metallization on solar cells in adjacent rows may be made, for example, using short copper interconnects that bridge a gap between the rows and that are conductively bonded at opposite ends to the rear surfaces of the solar cells. The detour interconnects may be bonded to the solar cells (e.g., to contact pads on the rear surface of the solar cells) using solder or conductive glue or other conductive adhesive, for example, or by any other suitable method. Any portion of a detour interconnect that would otherwise be visible from the front of the solar module (i.e., through a gap between rows) may be covered with a black coating or black tape, or otherwise darkened or hidden, to preserve an “all black” look from a front view of the module. In operation, the conductive detour current path may include portions of the rear surface (e.g., aluminum) cell metallization as well as the detour interconnect.
- Alternatively, the detour interconnections between solar cells in a “line” of solar cells oriented perpendicularly to the super cell rows may be made for example with a single long approximately module-width crossing ribbon that is conductively bonded to the rear surface of each cell in the line. This approach may be preferred for example for modules including very large numbers of solar cells, for example a module having six rows of super cells with each row having eighty solar cells. Such a module would otherwise require 400 separate short interconnects to provide detour paths for each cell.
- The detour interconnections (short or long) may be made in the same way as “hidden tap” interconnections to bypass diodes, as described for example in U.S. patent application Ser. No. 14/674,983 titled “Shingled Solar Cell Panel Employing Hidden Taps” filed Mar. 31, 2015, which is incorporated herein by reference in its entirety. The '983 application also discloses rear surface metallization patterns and contact pads for hidden tap interconnections to bypass diodes that facilitate detour interconnections as described herein as well. As shown in
FIGS. 3-11 , for example, the detour paths and the connections to bypass diodes in a solar module may be made using the same or substantially similar types of interconnects. - The detour interconnections may also be made, for example, using a patterned metallized back sheet conductively bonded to the rear surfaces of the solar cells, with the patterned metallization on the back sheet providing the detour current interconnections. The patterned metallization on the back sheet may also provide electrical connections to bypass diodes and/or to a junction box. (See discussion of
FIGS. 14A-14B below, for example). Typically, the metallization pattern on the back sheet is single layer planar. - In the example
solar module 300 ofFIG. 3 , all available detour paths are installed. That is, the rear surface metallization of eachsolar cell 10 is electrically connected to the rear surface metallization of its neighbor solar cell (or solar cells) in adjacent super cell rows bydetour interconnectors 275. Two of the detour interconnections (275A and 275B) are also electrically connected via return wires (conductors) 280A and 280B to three bypass diodes (not shown) injunction box 290. Return wires 280C and 280D electrically connect the bypass diodes toterminal interconnects 250. The other detour interconnections in line across the rows with 275A or 275B serve as hidden taps to the bypass diodes in addition to providing detour current paths. (Similar arrangements with detour interconnects also providing hidden taps to bypass diodes are shown in other figures, as well).detour interconnect - In
FIG. 3 and the other figures described below, it should be understood that return wires such as 280A-280D, for example, are electrically insulated from the solar cells and conductors over which they pass, except at their ends. For example,return wire 280B inFIG. 3 is electrically connected (e.g., conductively bonded) to detourelectrical interconnect 275B but electrically insulated from the other detour electrical interconnects over which it passes on the way tojunction box 290. This may be accomplished for example with a strip of insulation placed between the return wire and the rear surfaces of the solar cells and other module components. - The example
solar module 400 ofFIG. 4 is similar to that ofFIG. 3 , except that insolar module 400 every other (i.e., alternating) solar cell along a super cell row has detours installed. - In example
solar module 500 ofFIG. 5 , detour interconnects 275 are installed in a pattern designed to compensate for a typical crack pattern that may result from uniform mechanical loading of a solar module. The crack pattern is shown inFIG. 13 superimposed on a sketch of a conventional ribbon tabbed solar module, with the crack pattern generally indicated bylines 305. In the example ofFIG. 5 , 280A and 280B are conductively bonded to the rear surface metallization ofconductors solar cells 10A and 10B, respectively, to electrically connect them to bypass diodes injunction box 290 - Detour interconnects may be installed at any suitable intervals along a super cell row. The intervals may be equal or approximately equal, or instead vary in length along the row. In example solar modules 600 (
FIG. 6 ) and 700 (FIG. 7 ), detour interconnects 275 are installed in four approximately evenly spaced lines across the module. In example solar modules 800 (FIG. 8 ) and 900 (FIG. 9 ), detour interconnects 275 are installed in five lines across the module, with the interval between detour interconnects greater at one end of the module than at the other end of the module. In example solar module 1000 (FIG. 10 ), detour interconnects 275 are installed in six lines across the module, with the interval between interconnects greater in the central portion of the module than at the ends of the module. In example solar module 1100 (FIG. 11 ), detour interconnects 275 are installed in nine lines across the module in combination with five series-connected bypass diodes, with two lines of interconnects between each adjacent pair of bypass diodes. - If the solar module comprises bypass diodes, any suitable number of bypass diodes may be used and they may be spaced along the super cell rows at any suitable interval. The bypass diodes may be installed in a junction box, or alternatively embedded in a laminate comprising the solar cells. Example
300, 400, 500, and 1000 each include three series-connected bypass diodes (not shown) arranged insolar modules junction box 290. In example 600, 700, 900, and 1100 five series-connectedsolar modules bypass diodes 310 are embedded in the solar cell laminate. In examplesolar cell module 800 three series-connectedbypass diodes 310 are embedded in the laminate. Example 700 and 900 each include twosolar modules 290A and 290B, one at each end of the module, each providing a single (e.g., positive or negative) output.junction boxes - Referring now to
FIGS. 12A-12B , a crack (e.g., crack 330) oriented along the long axis of asolar cell 10 can substantially reduce current flow perpendicular to the long axis of the cell, which is the direction in which current generally and preferably flows through the solar cells during normal operation of the modules described herein (i.e., when not taking a detour path). The use of detour electrical interconnects as described above can provide a detour path around the cracked cell. - A detour current path around and over the crack can also be provided within the cell, as shown in
FIGS. 12A-12B . In particular, detourinterconnect contact pads 320 on the rear surface of the solar cell are positioned at the short ends of the solar cell and elongated parallel to the short ends to substantially span the width of the solar cell. Detour interconnects 275 that are conductively bonded to these contact pads provide a crack jumping current path, allowing current within the cell to make its way to aninterconnect 275, go over or around the crack, and then back to the other part of the solar cell as shown for example byarrows 335. - Referring now to
FIGS. 14A-14B , example patterned metallized backsheet 350 provides detour current paths and electrical connections to bypassdiodes 310 in ajunction box 290 corresponding to those provided bydetour interconnects 275 and returnwires 280A-280D shown inFIG. 10 . (The junction box is not part of the back sheet, but is located in the module with respect to the back sheet as shown in the figures). In particular, the metallization pattern comprises apositive return region 355, anegative return region 360, a first bypassdiode return path 365, a second bypassdiode return path 370, two rows ofdetour interconnect regions 375A that also serve as hidden taps to the bypass diodes, and three additional rows of detour interconnect regions 375B. Metallization is removed from the sheet, for example as indicated at 380, to electrically isolate the various regions from each other. - Although in the example solar modules described above each rectangular
solar cell 10 has long sides having a length equal to the side length of a conventional silicon solar cell wafer, alternatively the long sides ofsolar cells 10 can be a fraction (e.g., ½, ⅓, ¼, or less) of the side length of a conventional solar cell wafer. The number of rows of super cells in a module can be correspondingly increased, for example by the reciprocal of that fraction (or by one or more rows less than the reciprocal to leave room for gaps between rows). For example, each full lengthsolar cell 10 in solar module 300 (FIG. 3 ) could be replaced by two solar cells of ½ length arranged in eleven or twelve rows of super cells, or in any other suitable number of rows of super cells. The rectangular solar cells could have dimensions of ⅙ by ½ the side length of a conventional solar cell wafer, for example. Reducing cell length in this manner may increase the robustness of the cells with respect to cracking, and reduce the impact of a cracked cell on performance of the module. Further, the use of detour electrical interconnects or metallized backing sheets as described above with smaller cells as just described can increase the number of detour current paths available through the module (compared to the use of full length cells), further reducing the impact of a cracked cell on performance. - This disclosure is illustrative and not limiting. Further modifications will be apparent to one skilled in the art in light of this disclosure and are intended to fall within the scope of the appended claims.
Claims (20)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/111,578 US20180366604A1 (en) | 2015-08-18 | 2018-08-24 | Solar panel |
| US17/707,326 US11804565B2 (en) | 2015-08-18 | 2022-03-29 | Solar panel |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562206667P | 2015-08-18 | 2015-08-18 | |
| US15/210,516 US10084104B2 (en) | 2015-08-18 | 2016-07-14 | Solar panel |
| US16/111,578 US20180366604A1 (en) | 2015-08-18 | 2018-08-24 | Solar panel |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/210,516 Continuation US10084104B2 (en) | 2015-08-18 | 2016-07-14 | Solar panel |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/707,326 Continuation US11804565B2 (en) | 2015-08-18 | 2022-03-29 | Solar panel |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180366604A1 true US20180366604A1 (en) | 2018-12-20 |
Family
ID=58051435
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/210,516 Active 2036-12-16 US10084104B2 (en) | 2015-08-18 | 2016-07-14 | Solar panel |
| US16/111,578 Abandoned US20180366604A1 (en) | 2015-08-18 | 2018-08-24 | Solar panel |
| US17/707,326 Active US11804565B2 (en) | 2015-08-18 | 2022-03-29 | Solar panel |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/210,516 Active 2036-12-16 US10084104B2 (en) | 2015-08-18 | 2016-07-14 | Solar panel |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/707,326 Active US11804565B2 (en) | 2015-08-18 | 2022-03-29 | Solar panel |
Country Status (4)
| Country | Link |
|---|---|
| US (3) | US10084104B2 (en) |
| CN (5) | CN110828592B (en) |
| DE (1) | DE112016003768B4 (en) |
| WO (1) | WO2017030695A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI719497B (en) * | 2019-06-11 | 2021-02-21 | 上銀光電股份有限公司 | Solar module and generating system of using the same |
| US10998761B2 (en) | 2017-07-05 | 2021-05-04 | Sunpower Corporation | Rapid shutdown of photovoltaic systems |
| USD1009775S1 (en) * | 2014-10-15 | 2024-01-02 | Maxeon Solar Pte. Ltd. | Solar panel |
| US11869998B2 (en) | 2021-03-24 | 2024-01-09 | Maxeon Solar Pte. Ltd. | Cross-tied photovoltaic array |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6905936B2 (en) * | 2015-11-13 | 2021-07-21 | 株式会社カネカ | Installation structure of solar cell module, solar cell module, and installation method of solar cell module |
| US10673379B2 (en) | 2016-06-08 | 2020-06-02 | Sunpower Corporation | Systems and methods for reworking shingled solar cell modules |
| CN108831945A (en) * | 2017-05-03 | 2018-11-16 | 江苏赛拉弗光伏系统有限公司 | A heat-spot-free shingled photovoltaic module structure |
| CN109004050A (en) * | 2017-06-07 | 2018-12-14 | 江苏赛拉弗光伏系统有限公司 | A kind of no hot spot imbrication photovoltaic module |
| CN107170841B (en) * | 2017-06-07 | 2021-01-22 | 苏州携创新能源科技有限公司 | Solar cell photovoltaic module and solar cell photovoltaic module |
| US11063166B2 (en) * | 2017-10-05 | 2021-07-13 | Sunpower Corporation | System and method for shingling wafer strips connected in parallel |
| JP6967436B2 (en) * | 2017-11-30 | 2021-11-17 | 株式会社カネカ | Solar cell module |
| USD848362S1 (en) * | 2017-12-04 | 2019-05-14 | First Solar, Inc. | Photovoltaic device |
| CN108649087B (en) * | 2018-05-09 | 2020-11-13 | 晶澳太阳能有限公司 | Solar cell module and preparation method thereof |
| CN108735831A (en) * | 2018-07-27 | 2018-11-02 | 英利能源(中国)有限公司 | Solar cell, solar cell string and imbrication photovoltaic module |
| EP4018483A4 (en) * | 2019-10-01 | 2023-08-23 | Clearvue Technologies Ltd | SYSTEM TO GENERATE ELECTRICITY |
| USD978781S1 (en) * | 2020-01-31 | 2023-02-21 | Sunpower Corporation | Solar cell wafer |
| DE102020130897B4 (en) | 2020-11-23 | 2023-06-01 | Meyer Burger (Germany) Gmbh | solar cell module |
| DE102021103099A1 (en) * | 2021-02-10 | 2022-08-11 | Hanwha Q Cells Gmbh | Photovoltaic module and a method for its manufacture |
| USD1023907S1 (en) * | 2021-02-25 | 2024-04-23 | First Solar, Inc. | Support assembly for a photovoltaic device |
| DE202021104759U1 (en) | 2021-09-03 | 2022-12-07 | Meyer Burger (Germany) Gmbh | solar panel |
| CN114388641B (en) * | 2021-11-03 | 2023-06-23 | 浙江晶科能源有限公司 | A kind of photovoltaic module and photovoltaic module array |
| DE102022111597A1 (en) * | 2022-05-10 | 2023-11-16 | M10 Solar Equipment GmbH | Method for cross-connecting a solar cell arrangement, solar module and device for electrically cross-connecting solar cell arrangements |
| DE102022124476B4 (en) * | 2022-09-23 | 2025-07-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Solar cell module and method for producing a solar cell module |
| DE102023000609A1 (en) * | 2023-02-21 | 2024-08-22 | Azur Space Solar Power Gmbh | Protection of space solar cells in a string arrangement |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120279548A1 (en) * | 2009-05-18 | 2012-11-08 | Muench Markus | Arrangement and circuit, and method for interconnecting flat solar cells |
| US20150349703A1 (en) * | 2014-05-27 | 2015-12-03 | Cogenra Solar, Inc. | Shingled solar cell module |
Family Cites Families (164)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BE460098A (en) | 1943-12-02 | |||
| DE1030713B (en) | 1956-06-04 | 1958-05-22 | Josef Watt | Can opener |
| US2938938A (en) | 1956-07-03 | 1960-05-31 | Hoffman Electronics Corp | Photo-voltaic semiconductor apparatus or the like |
| US3116171A (en) | 1961-03-14 | 1963-12-31 | Bell Telephone Labor Inc | Satellite solar cell assembly |
| US3340096A (en) | 1962-02-26 | 1967-09-05 | Spectrolab A Division Of Textr | Solar cell array |
| US3459597A (en) | 1966-02-04 | 1969-08-05 | Trw Inc | Solar cells with flexible overlapping bifurcated connector |
| US3837924A (en) | 1971-06-01 | 1974-09-24 | Trw Inc | Solar array |
| US3811181A (en) | 1972-03-31 | 1974-05-21 | Us Navy | New approach to shingling of solar cells |
| US3769091A (en) | 1972-03-31 | 1973-10-30 | Us Navy | Shingled array of solar cells |
| US4257821A (en) | 1978-11-13 | 1981-03-24 | Trw Inc. | Universal solar cell/conductor junction element and solar panel embodying same |
| US4617421A (en) | 1985-04-01 | 1986-10-14 | Sovonics Solar Systems | Photovoltaic cell having increased active area and method for producing same |
| US4617420A (en) | 1985-06-28 | 1986-10-14 | The Standard Oil Company | Flexible, interconnected array of amorphous semiconductor photovoltaic cells |
| US4652693A (en) | 1985-08-30 | 1987-03-24 | The Standard Oil Company | Reformed front contact current collector grid and cell interconnect for a photovoltaic cell module |
| DE3708548A1 (en) | 1987-03-17 | 1988-09-29 | Telefunken Electronic Gmbh | SOLAR CELL MODULE WITH PARALLEL AND SERIAL ARRANGED SOLAR CELLS |
| EP0457998B1 (en) | 1990-05-25 | 1994-01-26 | International Business Machines Corporation | Method and apparatus for batch cleaving semiconductor wafers and for coating the cleaved facets |
| DE4017933A1 (en) | 1990-06-05 | 1991-12-12 | Telefunken Systemtechnik | SOLAR CELL ELEMENT WITH A COVER |
| DE4030713A1 (en) | 1990-09-28 | 1992-04-02 | Telefunken Systemtechnik | Photoelectric solar generator - has flexible intermediate connecting plate designed to prevent solar cell fracture due to temp. change stresses |
| US5590495A (en) | 1995-07-06 | 1997-01-07 | Bressler Group Inc. | Solar roofing system |
| US5616185A (en) | 1995-10-10 | 1997-04-01 | Hughes Aircraft Company | Solar cell with integrated bypass diode and method |
| US6218605B1 (en) | 1997-04-23 | 2001-04-17 | Robert B. Dally | Performance optimizing system for a satellite solar array |
| JPH11195803A (en) | 1998-01-06 | 1999-07-21 | Canon Inc | Solar cell module array |
| WO1999048136A2 (en) | 1998-03-13 | 1999-09-23 | Steffen Keller | Solar cell arrangement |
| JPH11350685A (en) | 1998-06-09 | 1999-12-21 | Misawa Homes Co Ltd | Roof with solar cell |
| US6303853B1 (en) | 1998-08-06 | 2001-10-16 | Jx Crystals Inc. | Shingle circuits for thermophotovoltaic systems |
| US6232545B1 (en) | 1998-08-06 | 2001-05-15 | Jx Crystals Inc. | Linear circuit designs for solar photovoltaic concentrator and thermophotovoltaic applications using cell and substrate materials with matched coefficients of thermal expansion |
| GB2341273A (en) | 1998-09-04 | 2000-03-08 | Eev Ltd | Solar cell arrangements |
| ES2146182B1 (en) | 1998-10-15 | 2001-02-01 | Univ Madrid Politecnica | SOLAR CELL INTERCONNECTION PROCEDURE IN PHOTOVOLTAIC PANELS BY DIRECT AND SIMULTANEOUS WELDING. |
| NL1010635C2 (en) | 1998-11-23 | 2000-05-24 | Stichting Energie | A method of manufacturing a metallization pattern on a photovoltaic cell. |
| US6262358B1 (en) * | 1999-02-18 | 2001-07-17 | Sharp Kabushiki Kaisha | Solar cell module and solar cell panel using the same |
| JP2000323208A (en) | 1999-03-10 | 2000-11-24 | Sharp Corp | INTERCONNECTOR, FORMATION METHOD THEREOF, AND ITS JOINING APPARATUS |
| US8138413B2 (en) | 2006-04-13 | 2012-03-20 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
| US7507903B2 (en) | 1999-03-30 | 2009-03-24 | Daniel Luch | Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays |
| US6239352B1 (en) | 1999-03-30 | 2001-05-29 | Daniel Luch | Substrate and collector grid structures for electrically interconnecting photovoltaic arrays and process of manufacture of such arrays |
| US8222513B2 (en) | 2006-04-13 | 2012-07-17 | Daniel Luch | Collector grid, electrode structures and interconnect structures for photovoltaic arrays and methods of manufacture |
| US8076568B2 (en) | 2006-04-13 | 2011-12-13 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
| US20090111206A1 (en) | 1999-03-30 | 2009-04-30 | Daniel Luch | Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture |
| US7635810B2 (en) | 1999-03-30 | 2009-12-22 | Daniel Luch | Substrate and collector grid structures for integrated photovoltaic arrays and process of manufacture of such arrays |
| US6034322A (en) | 1999-07-01 | 2000-03-07 | Space Systems/Loral, Inc. | Solar cell assembly |
| US6353175B1 (en) | 1999-09-17 | 2002-03-05 | Jx Crystals Inc. | Two-terminal cell-interconnected-circuits using mechanically-stacked photovoltaic cells for line-focus concentrator arrays |
| US6538193B1 (en) | 2000-04-21 | 2003-03-25 | Jx Crystals Inc. | Thermophotovoltaic generator in high temperature industrial process |
| EP1359625B1 (en) | 2000-12-28 | 2010-10-06 | Mitsubishi Denki Kabushiki Kaisha | Solar battery |
| JP2002246628A (en) * | 2001-02-14 | 2002-08-30 | Showa Shell Sekiyu Kk | Solar cell module with integrated bypass diode and method of manufacturing the module |
| US6770544B2 (en) | 2001-02-21 | 2004-08-03 | Nec Machinery Corporation | Substrate cutting method |
| JP2002277448A (en) | 2001-03-16 | 2002-09-25 | Tokyo Electric Power Co Inc:The | Scale thickness measuring apparatus and method |
| JP4201241B2 (en) | 2001-05-17 | 2008-12-24 | 株式会社カネカ | Method for manufacturing integrated thin film photoelectric conversion module |
| US6489553B1 (en) | 2001-05-30 | 2002-12-03 | Jx Crystals Inc. | TPV cylindrical generator for home cogeneration |
| JP4526223B2 (en) | 2001-06-29 | 2010-08-18 | シャープ株式会社 | Wiring member, solar cell module and manufacturing method thereof |
| WO2003038859A2 (en) | 2001-07-20 | 2003-05-08 | Itn Energy Systems, Inc. | Apparatus and method of production of thin film photovoltaic modules |
| US20030121228A1 (en) | 2001-12-31 | 2003-07-03 | Stoehr Robert P. | System and method for dendritic web solar cell shingling |
| JP2005514795A (en) | 2002-01-02 | 2005-05-19 | レベオ, インコーポレイティッド | Photovoltaic cell and method for producing photovoltaic cell |
| US7388146B2 (en) | 2002-04-24 | 2008-06-17 | Jx Crystals Inc. | Planar solar concentrator power module |
| US7619159B1 (en) | 2002-05-17 | 2009-11-17 | Ugur Ortabasi | Integrating sphere photovoltaic receiver (powersphere) for laser light to electric power conversion |
| US6660930B1 (en) | 2002-06-12 | 2003-12-09 | Rwe Schott Solar, Inc. | Solar cell modules with improved backskin |
| AU2002313256B8 (en) * | 2002-06-21 | 2006-11-02 | Sphelar Power Corporation | Light-receiving or light-emitting device and its production method |
| US6803513B2 (en) | 2002-08-20 | 2004-10-12 | United Solar Systems Corporation | Series connected photovoltaic module and method for its manufacture |
| JP2004319800A (en) | 2003-04-17 | 2004-11-11 | Canon Inc | Solar cell module |
| AU2003902270A0 (en) | 2003-05-09 | 2003-05-29 | Origin Energy Solar Pty Ltd | Separating and assembling semiconductor strips |
| US8212138B2 (en) | 2003-05-16 | 2012-07-03 | The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration | Reverse bias protected solar array with integrated bypass battery |
| US8334451B2 (en) | 2003-10-03 | 2012-12-18 | Ixys Corporation | Discrete and integrated photo voltaic solar cells |
| US7777128B2 (en) | 2004-06-01 | 2010-08-17 | Konarka Technologies, Inc. | Photovoltaic module architecture |
| US7390961B2 (en) | 2004-06-04 | 2008-06-24 | Sunpower Corporation | Interconnection of solar cells in a solar cell module |
| KR100628276B1 (en) | 2004-11-05 | 2006-09-27 | 엘지.필립스 엘시디 주식회사 | Scribing equipment and substrate cutting device having same and substrate cutting method using same |
| JP4361516B2 (en) | 2005-06-10 | 2009-11-11 | キヤノンマシナリー株式会社 | Wafer dividing method |
| KR100586821B1 (en) | 2006-01-09 | 2006-06-08 | 주식회사 탑 엔지니어링 | Brake Device of Glass Substrate |
| US8729385B2 (en) | 2006-04-13 | 2014-05-20 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
| ES2759526T3 (en) | 2006-04-13 | 2020-05-11 | Cnbm Bengbu Design & Res Institute For Glass Industry Co Ltd | Solar module |
| US20070283997A1 (en) | 2006-06-13 | 2007-12-13 | Miasole | Photovoltaic module with integrated current collection and interconnection |
| US20070283996A1 (en) | 2006-06-13 | 2007-12-13 | Miasole | Photovoltaic module with insulating interconnect carrier |
| WO2008019349A2 (en) | 2006-08-04 | 2008-02-14 | Solopower, Inc. | Thin film solar cell with finger pattern |
| US20080156365A1 (en) | 2006-10-25 | 2008-07-03 | Scholz Jeremy H | Edge mountable electrical connection assembly |
| EP2100336A4 (en) | 2006-12-22 | 2013-04-10 | Applied Materials Inc | INTERCONNECTION TECHNOLOGIES FOR REAR CONTACT SOLAR CELLS AND MODULES |
| US7825329B2 (en) | 2007-01-03 | 2010-11-02 | Solopower, Inc. | Thin film solar cell manufacturing and integration |
| WO2009051853A1 (en) | 2007-10-15 | 2009-04-23 | And, Llc | Systems for highly efficient solar power |
| US8003446B2 (en) | 2007-03-22 | 2011-08-23 | Microsemi Corporation | Flexible diode package and method of manufacturing |
| CA2693028A1 (en) | 2007-06-28 | 2009-01-08 | Certainteed Corporation | Photovoltaic devices including cover elements, and photovoltaic systems, arrays, roofs and methods using them |
| JP4819004B2 (en) | 2007-08-10 | 2011-11-16 | シャープ株式会社 | Solar cell array and solar cell module |
| JP5555163B2 (en) | 2007-09-10 | 2014-07-23 | ダイソル・インダストリーズ・プロプライエタリー・リミテッド | Method for manufacturing a solar cell |
| AU2007360045A1 (en) | 2007-10-12 | 2009-04-16 | System S.P.A. | A process for connecting photovoltaic cells in series, a photovoltaic cell connectable in series using the process, and a module obtained with the process |
| GB2453746A (en) * | 2007-10-16 | 2009-04-22 | Renewable Energy Corp Asa | Parallel interconnection of solar cell units |
| CN101431115B (en) | 2007-11-07 | 2011-05-18 | E.I.内穆尔杜邦公司 | Solar cell panel and manufacturing method thereof |
| US8212139B2 (en) | 2008-01-18 | 2012-07-03 | Tenksolar, Inc. | Thin-film photovoltaic module |
| US20090184746A1 (en) | 2008-01-22 | 2009-07-23 | Microsemi Corporation | Low Voltage Drop Unidirectional Electronic Valve |
| EP2246899A1 (en) | 2008-02-18 | 2010-11-03 | Sharp Kabushiki Kaisha | Thin film solar cell module |
| US20090229596A1 (en) | 2008-03-12 | 2009-09-17 | Myung-Hun Shin | Solar energy module having repair line, solar energy assembly having the same, method of repairing the solar energy module and method of trimming the solar energy assembly |
| US20110197947A1 (en) | 2008-03-20 | 2011-08-18 | Miasole | Wire network for interconnecting photovoltaic cells |
| US20100043863A1 (en) | 2008-03-20 | 2010-02-25 | Miasole | Interconnect assembly |
| EP2110863A1 (en) | 2008-04-15 | 2009-10-21 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | Solar cell module |
| WO2009131120A1 (en) | 2008-04-23 | 2009-10-29 | シャープ株式会社 | Power lines for solar power generation system, solar power generation system using the power lines, and method for inspecting malfunction of the solar power generation system |
| WO2009134939A2 (en) | 2008-04-29 | 2009-11-05 | Advent Solar, Inc. | Photovoltaic modules manufactured using monolithic module assembly techniques |
| US20090283137A1 (en) | 2008-05-15 | 2009-11-19 | Steven Thomas Croft | Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions |
| CN102150284A (en) | 2008-06-17 | 2011-08-10 | 新加坡国立大学 | Thin-film solar cell interconnection |
| AU2009263416B2 (en) | 2008-06-23 | 2014-07-17 | Asahi Glass Company, Limited | Backsheet for solar cell module and solar cell module |
| US8207440B2 (en) | 2008-08-11 | 2012-06-26 | Solopower, Inc. | Photovoltaic modules with improved reliability |
| EP2159846A1 (en) | 2008-08-29 | 2010-03-03 | ODERSUN Aktiengesellschaft | Thin film solar cell and photovoltaic string assembly |
| JP2010074071A (en) | 2008-09-22 | 2010-04-02 | Sharp Corp | Integrated thin film solar cell and manufacturing method thereof |
| JP2012504350A (en) | 2008-09-29 | 2012-02-16 | シンシリコン・コーポレーション | Integrated solar module |
| US8586857B2 (en) | 2008-11-04 | 2013-11-19 | Miasole | Combined diode, lead assembly incorporating an expansion joint |
| EP2226850A1 (en) * | 2009-03-06 | 2010-09-08 | SAPHIRE ApS | Solar module having integrated electronic devices |
| WO2010077952A1 (en) | 2008-12-16 | 2010-07-08 | Solopower, Inc. | Thin film photovoltaic module manufacturing methods and structures |
| US20110168238A1 (en) | 2010-01-11 | 2011-07-14 | Solopower, Inc. | Flexible solar modules and manufacturing the same |
| US20120048349A1 (en) | 2009-01-09 | 2012-03-01 | Solopower, Inc. | Flexible solar modules and manufacturing the same |
| JP5306112B2 (en) | 2009-02-17 | 2013-10-02 | 三洋電機株式会社 | Solar cell and solar cell module |
| CN101510570A (en) | 2009-03-30 | 2009-08-19 | 苏州富能技术有限公司 | Film solar battery module set with series parallel structure and method of processing the same |
| JP5515367B2 (en) | 2009-03-31 | 2014-06-11 | 三洋電機株式会社 | Solar cell, solar cell module and solar cell system |
| BRPI0924530A2 (en) * | 2009-05-25 | 2015-06-30 | Day4 Energy Inc | "arrangement of photovoltaic module groups and shading protection for them" |
| DE102009026027B4 (en) | 2009-06-24 | 2013-05-29 | Hanwha Q.CELLS GmbH | Wafer solar cell |
| WO2011011091A2 (en) * | 2009-07-22 | 2011-01-27 | Applied Materials, Inc. | Monolithic module assembly using back contact solar cells and metal ribbon |
| MX2012001218A (en) | 2009-07-29 | 2012-06-01 | Cyrium Technologies Inc | SOLAR CELL AND MANUFACTURING METHOD OF THE SAME. |
| US20120234388A1 (en) | 2009-08-26 | 2012-09-20 | Robert Stancel | Assembly for electrical breakdown protection for high current, non-elongate solar cells with electrically conductive substrates |
| US20100071752A1 (en) | 2009-10-23 | 2010-03-25 | Applied Materials, Inc. | Solar Cell Module Having Buss Adhered With Conductive Adhesive |
| US20110114158A1 (en) | 2009-11-16 | 2011-05-19 | Sunpower Corporation | Replaceable photovoltaic roof panel |
| KR101097252B1 (en) | 2009-11-17 | 2011-12-21 | 삼성에스디아이 주식회사 | Photoelectric conversion element |
| TWI393202B (en) | 2009-12-08 | 2013-04-11 | Ind Tech Res Inst | Inspection method for scribing defect of thin film solar cell |
| CN203026514U (en) * | 2010-01-23 | 2013-06-26 | 索拉瓦特有限公司 | Solar power generation system |
| EP2362430A1 (en) | 2010-02-18 | 2011-08-31 | SAVIO S.p.A. | A photovoltaic module |
| US8586875B2 (en) | 2010-02-26 | 2013-11-19 | Ibiden Co., Ltd. | Wiring board and method for manufacturing the same |
| US20110240337A1 (en) | 2010-04-05 | 2011-10-06 | John Montello | Interconnects for photovoltaic panels |
| JP2011249790A (en) * | 2010-04-28 | 2011-12-08 | Kyocera Corp | Solar battery device |
| US20110271999A1 (en) | 2010-05-05 | 2011-11-10 | Cogenra Solar, Inc. | Receiver for concentrating photovoltaic-thermal system |
| US20110315184A1 (en) | 2010-06-29 | 2011-12-29 | Primestar Solar, Inc. | Photovoltaic (pv) module with improved bus tape to foil ribbon contact |
| JP5077470B2 (en) | 2010-08-06 | 2012-11-21 | Jfeスチール株式会社 | Oriented electrical steel sheet |
| US20120037206A1 (en) | 2010-08-16 | 2012-02-16 | Richard Norman | Systems for cost effective concentration and utilization of solar energy |
| NO20101194A1 (en) | 2010-08-26 | 2012-02-27 | Innotech Solar Asa | Photovoltaic module with integrated solar cell diodes |
| KR20140007327A (en) | 2010-09-07 | 2014-01-17 | 다우 글로벌 테크놀로지스 엘엘씨 | Improved photovoltaic cell assembly |
| US8969714B2 (en) | 2010-09-29 | 2015-03-03 | Kyocera Corporation | Solar cell module and method of manufacturing solar cell module |
| US20130206210A1 (en) | 2010-10-06 | 2013-08-15 | Mitsubishi Electric Corporation | Solar battery module, photovoltaic apparatus, and manufacturing method of solar battery module |
| US20120118355A1 (en) | 2010-11-12 | 2012-05-17 | Solopower, Inc. | Flexible solar shell and support structure for use with rooftops |
| US20120152327A1 (en) | 2010-11-12 | 2012-06-21 | Solopower, Inc. | Method of manufacturing solar modules |
| US20120125391A1 (en) | 2010-11-19 | 2012-05-24 | Solopower, Inc. | Methods for interconnecting photovoltaic cells |
| US20120152349A1 (en) | 2010-12-17 | 2012-06-21 | Solopower, Inc. | Junction box attachment for photovoltaic thin film devices |
| US8952672B2 (en) | 2011-01-17 | 2015-02-10 | Kent Kernahan | Idealized solar panel |
| KR20120108724A (en) | 2011-03-25 | 2012-10-05 | 삼성전기주식회사 | Method and apparatus for producing solar cell |
| JP5210408B2 (en) | 2011-04-06 | 2013-06-12 | 三星ダイヤモンド工業株式会社 | Fragment material substrate cutting device |
| DE102011001999A1 (en) | 2011-04-12 | 2012-10-18 | Schott Solar Ag | solar cell |
| US20120318318A1 (en) | 2011-06-17 | 2012-12-20 | Solopower, Inc. | Cigs based thin film solar cells having shared bypass diodes |
| US20120318319A1 (en) * | 2011-06-17 | 2012-12-20 | Solopower, Inc. | Methods of interconnecting thin film solar cells |
| US20120325282A1 (en) | 2011-06-24 | 2012-12-27 | Solopower, Inc. | Solar cells with grid wire interconnections |
| CN102856425A (en) | 2011-06-30 | 2013-01-02 | 上海空间电源研究所 | Method for manufacturing soft silicon-based thin film solar cell integrated component |
| WO2013020590A1 (en) | 2011-08-09 | 2013-02-14 | Kioto Photovoltaics Gmbh | Rectangular solar cell and associated solar cell arrangement |
| WO2013040179A1 (en) | 2011-09-15 | 2013-03-21 | First Solar, Inc. | Photovoltaic module interlayer |
| US20130096710A1 (en) | 2011-10-17 | 2013-04-18 | Solopower, Inc. | Tracking system and method for solar cell manufacturing |
| EP2780952A4 (en) | 2011-11-20 | 2015-08-12 | Solexel Inc | INTELLIGENT PHOTOVOLTAIC CELLS AND ASSOCIATED MODULES |
| US20130160824A1 (en) | 2011-12-21 | 2013-06-27 | Solopower, Inc. | Roof integrated solar module assembly |
| US20130160823A1 (en) | 2011-12-21 | 2013-06-27 | Solopower, Inc. | Integrated structural solar module and chassis |
| JP5852454B2 (en) * | 2012-01-30 | 2016-02-03 | Jx日鉱日石エネルギー株式会社 | Solar cell module and solar power generation system |
| US20130206221A1 (en) | 2012-02-13 | 2013-08-15 | John Anthony Gannon | Solar cell with metallization compensating for or preventing cracking |
| US10741712B2 (en) * | 2012-02-15 | 2020-08-11 | Alta Devices, Inc. | Photovoltaic module containing shingled photovoltaic tiles and fabrication processes thereof |
| US8859322B2 (en) | 2012-03-19 | 2014-10-14 | Rec Solar Pte. Ltd. | Cell and module processing of semiconductor wafers for back-contacted solar photovoltaic module |
| JP2014017447A (en) | 2012-07-11 | 2014-01-30 | Sharp Corp | Integrated thin film solar cell and manufacturing method of the same |
| US9812590B2 (en) | 2012-10-25 | 2017-11-07 | Sunpower Corporation | Bifacial solar cell module with backside reflector |
| US9947820B2 (en) * | 2014-05-27 | 2018-04-17 | Sunpower Corporation | Shingled solar cell panel employing hidden taps |
| US20140124014A1 (en) * | 2012-11-08 | 2014-05-08 | Cogenra Solar, Inc. | High efficiency configuration for solar cell string |
| US20140124013A1 (en) * | 2012-11-08 | 2014-05-08 | Cogenra Solar, Inc. | High efficiency configuration for solar cell string |
| WO2014098771A1 (en) | 2012-12-17 | 2014-06-26 | Agency For Science, Technology And Research | Wafer dicing apparatus and wafer dicing method |
| DE102013103837A1 (en) * | 2013-04-16 | 2014-10-16 | Teamtechnik Maschinen Und Anlagen Gmbh | Application of conductive adhesive on solar cells |
| JP6410106B2 (en) | 2013-05-28 | 2018-10-24 | パナソニックIpマネジメント株式会社 | Solar cell module |
| GB2515837A (en) | 2013-07-05 | 2015-01-07 | Rec Solar Pte Ltd | Solar cell assembly |
| US20160158890A1 (en) | 2014-12-05 | 2016-06-09 | Solarcity Corporation | Systems and methods for scribing photovoltaic structures |
| US9590132B2 (en) | 2014-12-05 | 2017-03-07 | Solarcity Corporation | Systems and methods for cascading photovoltaic structures |
| US10056522B2 (en) | 2014-12-05 | 2018-08-21 | Solarcity Corporation | System and apparatus for precision automation of tab attachment for fabrications of solar panels |
| US10043937B2 (en) | 2014-12-05 | 2018-08-07 | Solarcity Corporation | Systems and method for precision automated placement of backsheet on PV modules |
| US9991412B2 (en) | 2014-12-05 | 2018-06-05 | Solarcity Corporation | Systems for precision application of conductive adhesive paste on photovoltaic structures |
| US9685579B2 (en) | 2014-12-05 | 2017-06-20 | Solarcity Corporation | Photovoltaic structure cleaving system |
| US9899546B2 (en) | 2014-12-05 | 2018-02-20 | Tesla, Inc. | Photovoltaic cells with electrodes adapted to house conductive paste |
-
2016
- 2016-07-14 WO PCT/US2016/042317 patent/WO2017030695A1/en not_active Ceased
- 2016-07-14 CN CN201911000455.2A patent/CN110828592B/en active Active
- 2016-07-14 CN CN201910865218.6A patent/CN110634979B/en active Active
- 2016-07-14 US US15/210,516 patent/US10084104B2/en active Active
- 2016-07-14 CN CN201910999866.0A patent/CN110828591B/en active Active
- 2016-07-14 CN CN201680000981.7A patent/CN106663706B/en active Active
- 2016-07-14 CN CN201910999434.XA patent/CN110808301B/en active Active
- 2016-07-14 DE DE112016003768.6T patent/DE112016003768B4/en active Active
-
2018
- 2018-08-24 US US16/111,578 patent/US20180366604A1/en not_active Abandoned
-
2022
- 2022-03-29 US US17/707,326 patent/US11804565B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120279548A1 (en) * | 2009-05-18 | 2012-11-08 | Muench Markus | Arrangement and circuit, and method for interconnecting flat solar cells |
| US20150349703A1 (en) * | 2014-05-27 | 2015-12-03 | Cogenra Solar, Inc. | Shingled solar cell module |
Non-Patent Citations (1)
| Title |
|---|
| provisional application date of October 31st, 2014 from 14/530,405 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USD1009775S1 (en) * | 2014-10-15 | 2024-01-02 | Maxeon Solar Pte. Ltd. | Solar panel |
| US10998761B2 (en) | 2017-07-05 | 2021-05-04 | Sunpower Corporation | Rapid shutdown of photovoltaic systems |
| TWI719497B (en) * | 2019-06-11 | 2021-02-21 | 上銀光電股份有限公司 | Solar module and generating system of using the same |
| US11869998B2 (en) | 2021-03-24 | 2024-01-09 | Maxeon Solar Pte. Ltd. | Cross-tied photovoltaic array |
Also Published As
| Publication number | Publication date |
|---|---|
| US20170054047A1 (en) | 2017-02-23 |
| CN110634979A (en) | 2019-12-31 |
| CN106663706A (en) | 2017-05-10 |
| CN106663706B (en) | 2019-10-08 |
| CN110634979B (en) | 2024-04-12 |
| US20220223753A1 (en) | 2022-07-14 |
| CN110828592A (en) | 2020-02-21 |
| CN110808301A (en) | 2020-02-18 |
| WO2017030695A1 (en) | 2017-02-23 |
| CN110808301B (en) | 2023-05-05 |
| CN110828592B (en) | 2023-04-28 |
| DE112016003768T5 (en) | 2018-05-03 |
| DE112016003768B4 (en) | 2024-03-07 |
| CN110828591B (en) | 2023-05-02 |
| CN110828591A (en) | 2020-02-21 |
| US10084104B2 (en) | 2018-09-25 |
| US11804565B2 (en) | 2023-10-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11804565B2 (en) | Solar panel | |
| US9947820B2 (en) | Shingled solar cell panel employing hidden taps | |
| US20140124013A1 (en) | High efficiency configuration for solar cell string | |
| US11804557B2 (en) | Solar panel | |
| CN105874609B (en) | Module fabrication of solar cells with low-resistance electrodes | |
| US11594651B2 (en) | Cell module | |
| US20170085217A1 (en) | High efficiency configuration for solar cell string | |
| CN104221159A (en) | Solar cell with metallization compensating for or preventing cracking | |
| US11070167B2 (en) | Systems and methods for reworking shingled solar cell modules | |
| JP2012527786A (en) | Photovoltaic module string device and protection from shadows therefor | |
| US20170179324A1 (en) | High-efficiency low-cost solar panel with protection circuitry | |
| CN109639216B (en) | System and method for stacking parallel connected wafer strips | |
| KR20190032584A (en) | Solar cell module | |
| JP2008235819A (en) | Solar cell module | |
| US12396271B2 (en) | Ribbons for use in shingled solar cells | |
| TWI734077B (en) | Photovoltaic module | |
| EP3043391B1 (en) | Parallel interconnection of neighboring solar cells via a common back plane |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SUNPOWER CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORAD, RATSON;ALMOGY, GILAD;LANCE, TAMIR;AND OTHERS;SIGNING DATES FROM 20160615 TO 20160712;REEL/FRAME:046714/0701 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING RESPONSE FOR INFORMALITY, FEE DEFICIENCY OR CRF ACTION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: MAXEON SOLAR PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUNPOWER CORPORATION;REEL/FRAME:062490/0742 Effective date: 20221214 Owner name: MAXEON SOLAR PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNOR'S INTEREST;ASSIGNOR:SUNPOWER CORPORATION;REEL/FRAME:062490/0742 Effective date: 20221214 |