US20180354966A1 - Tubulin-binding compounds, compositions and uses related thereto - Google Patents
Tubulin-binding compounds, compositions and uses related thereto Download PDFInfo
- Publication number
- US20180354966A1 US20180354966A1 US15/577,551 US201615577551A US2018354966A1 US 20180354966 A1 US20180354966 A1 US 20180354966A1 US 201615577551 A US201615577551 A US 201615577551A US 2018354966 A1 US2018354966 A1 US 2018354966A1
- Authority
- US
- United States
- Prior art keywords
- compound
- compounds
- cell
- compound according
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 226
- 239000000203 mixture Substances 0.000 title abstract description 71
- 102000004243 Tubulin Human genes 0.000 title description 44
- 108090000704 Tubulin Proteins 0.000 title description 44
- 238000000034 method Methods 0.000 claims abstract description 54
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 45
- 201000003793 Myelodysplastic syndrome Diseases 0.000 claims abstract description 21
- 210000004027 cell Anatomy 0.000 claims description 143
- 125000000217 alkyl group Chemical group 0.000 claims description 58
- 150000003839 salts Chemical class 0.000 claims description 48
- -1 cyano, hydroxyl Chemical group 0.000 claims description 37
- 201000011510 cancer Diseases 0.000 claims description 34
- 229910052739 hydrogen Inorganic materials 0.000 claims description 34
- 239000001257 hydrogen Substances 0.000 claims description 33
- 102000029749 Microtubule Human genes 0.000 claims description 26
- 108091022875 Microtubule Proteins 0.000 claims description 26
- 210000004688 microtubule Anatomy 0.000 claims description 26
- 125000003118 aryl group Chemical group 0.000 claims description 23
- 125000001072 heteroaryl group Chemical group 0.000 claims description 21
- 125000000623 heterocyclic group Chemical group 0.000 claims description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 20
- 229910052736 halogen Inorganic materials 0.000 claims description 18
- 150000002367 halogens Chemical class 0.000 claims description 18
- 125000002252 acyl group Chemical group 0.000 claims description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 15
- 125000003342 alkenyl group Chemical group 0.000 claims description 14
- 125000003545 alkoxy group Chemical group 0.000 claims description 14
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 13
- 125000000304 alkynyl group Chemical group 0.000 claims description 11
- 239000008194 pharmaceutical composition Substances 0.000 claims description 11
- 150000002148 esters Chemical class 0.000 claims description 10
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 10
- 125000004442 acylamino group Chemical group 0.000 claims description 9
- 125000004423 acyloxy group Chemical group 0.000 claims description 9
- 125000003282 alkyl amino group Chemical group 0.000 claims description 9
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 8
- 239000003937 drug carrier Substances 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- 239000003981 vehicle Substances 0.000 claims description 8
- 125000004414 alkyl thio group Chemical group 0.000 claims description 7
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 7
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 7
- 125000001188 haloalkyl group Chemical group 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 6
- 239000002671 adjuvant Substances 0.000 claims description 6
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 6
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 6
- 150000007970 thio esters Chemical class 0.000 claims description 6
- 125000000041 C6-C10 aryl group Chemical group 0.000 claims description 5
- 125000003368 amide group Chemical group 0.000 claims description 5
- 150000001408 amides Chemical class 0.000 claims description 5
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 5
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 claims description 5
- 239000004202 carbamide Substances 0.000 claims description 5
- 230000000368 destabilizing effect Effects 0.000 claims description 5
- 125000004438 haloalkoxy group Chemical group 0.000 claims description 5
- 125000004475 heteroaralkyl group Chemical group 0.000 claims description 5
- 229940124530 sulfonamide Drugs 0.000 claims description 5
- 150000003456 sulfonamides Chemical class 0.000 claims description 5
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 claims description 5
- 150000003457 sulfones Chemical class 0.000 claims description 5
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 5
- 150000003462 sulfoxides Chemical class 0.000 claims description 5
- 150000003568 thioethers Chemical class 0.000 claims description 5
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 claims description 4
- ZFTFAPZRGNKQPU-UHFFFAOYSA-N dicarbonic acid Chemical compound OC(=O)OC(O)=O ZFTFAPZRGNKQPU-UHFFFAOYSA-N 0.000 claims description 4
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 125000003375 sulfoxide group Chemical group 0.000 claims description 4
- 150000003573 thiols Chemical class 0.000 claims description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 3
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims description 3
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 claims description 2
- 125000001313 C5-C10 heteroaryl group Chemical group 0.000 claims description 2
- 125000004076 pyridyl group Chemical group 0.000 claims description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 22
- 230000002927 anti-mitotic effect Effects 0.000 abstract description 5
- 230000003463 hyperproliferative effect Effects 0.000 abstract description 3
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 104
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 52
- 229960004397 cyclophosphamide Drugs 0.000 description 52
- 229960004679 doxorubicin Drugs 0.000 description 52
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 48
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 47
- 229960004316 cisplatin Drugs 0.000 description 47
- 235000002639 sodium chloride Nutrition 0.000 description 46
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 46
- 229960004528 vincristine Drugs 0.000 description 46
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 46
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 45
- QRCJOCOSPZMDJY-UHFFFAOYSA-N valnoctamide Chemical compound CCC(C)C(CC)C(N)=O QRCJOCOSPZMDJY-UHFFFAOYSA-N 0.000 description 37
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 35
- 229960005420 etoposide Drugs 0.000 description 35
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 35
- 229960004618 prednisone Drugs 0.000 description 35
- 239000003814 drug Substances 0.000 description 34
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 30
- 239000003795 chemical substances by application Substances 0.000 description 29
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 29
- 229930012538 Paclitaxel Natural products 0.000 description 28
- 229960000485 methotrexate Drugs 0.000 description 28
- 229960001592 paclitaxel Drugs 0.000 description 28
- 238000011282 treatment Methods 0.000 description 28
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 26
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 25
- 229960002949 fluorouracil Drugs 0.000 description 25
- 201000001441 melanoma Diseases 0.000 description 25
- 229960001338 colchicine Drugs 0.000 description 24
- 229940079593 drug Drugs 0.000 description 23
- 108010006654 Bleomycin Proteins 0.000 description 22
- 229960001561 bleomycin Drugs 0.000 description 22
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 22
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 21
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 21
- 229960003048 vinblastine Drugs 0.000 description 21
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 21
- 0 *C.CC.[3*]N1C(=O)C2=C(CC3=C2CCCC3)[Y]=C1*C Chemical compound *C.CC.[3*]N1C(=O)C2=C(CC3=C2CCCC3)[Y]=C1*C 0.000 description 20
- 239000002246 antineoplastic agent Substances 0.000 description 20
- 238000005160 1H NMR spectroscopy Methods 0.000 description 18
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 18
- 229960000684 cytarabine Drugs 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 17
- 125000004429 atom Chemical group 0.000 description 17
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 17
- 235000008191 folinic acid Nutrition 0.000 description 17
- 239000011672 folinic acid Substances 0.000 description 17
- 229960001691 leucovorin Drugs 0.000 description 17
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 17
- 230000022131 cell cycle Effects 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- 238000003556 assay Methods 0.000 description 15
- 125000001183 hydrocarbyl group Chemical group 0.000 description 15
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 15
- 229960000624 procarbazine Drugs 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 14
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 14
- 229960001101 ifosfamide Drugs 0.000 description 14
- 125000001424 substituent group Chemical group 0.000 description 14
- 229940002612 prodrug Drugs 0.000 description 13
- 239000000651 prodrug Substances 0.000 description 13
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 238000007792 addition Methods 0.000 description 12
- 208000036815 beta tubulin Diseases 0.000 description 12
- 230000032823 cell division Effects 0.000 description 12
- 239000013078 crystal Substances 0.000 description 12
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 12
- 229960000975 daunorubicin Drugs 0.000 description 12
- 208000035475 disorder Diseases 0.000 description 12
- 239000003112 inhibitor Substances 0.000 description 12
- 230000011278 mitosis Effects 0.000 description 12
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 12
- 229960001156 mitoxantrone Drugs 0.000 description 12
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 12
- 230000003833 cell viability Effects 0.000 description 11
- 125000005842 heteroatom Chemical group 0.000 description 11
- 230000029115 microtubule polymerization Effects 0.000 description 11
- 230000036456 mitotic arrest Effects 0.000 description 11
- 230000003389 potentiating effect Effects 0.000 description 11
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 10
- 229940125773 compound 10 Drugs 0.000 description 10
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 10
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 9
- 241000282414 Homo sapiens Species 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 229930192392 Mitomycin Natural products 0.000 description 9
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 239000003080 antimitotic agent Substances 0.000 description 9
- 229960004562 carboplatin Drugs 0.000 description 9
- YAYRGNWWLMLWJE-UHFFFAOYSA-L carboplatin Chemical compound O=C1O[Pt](N)(N)OC(=O)C11CCC1 YAYRGNWWLMLWJE-UHFFFAOYSA-L 0.000 description 9
- 230000030833 cell death Effects 0.000 description 9
- 230000004663 cell proliferation Effects 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 229960004857 mitomycin Drugs 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 238000011160 research Methods 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000006907 apoptotic process Effects 0.000 description 8
- ZNEWHQLOPFWXOF-UHFFFAOYSA-N coenzyme M Chemical compound OS(=O)(=O)CCS ZNEWHQLOPFWXOF-UHFFFAOYSA-N 0.000 description 8
- 229960003901 dacarbazine Drugs 0.000 description 8
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 8
- 229960004635 mesna Drugs 0.000 description 8
- 206010006187 Breast cancer Diseases 0.000 description 7
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 7
- 230000002159 abnormal effect Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 7
- 229940127089 cytotoxic agent Drugs 0.000 description 7
- 208000005017 glioblastoma Diseases 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 229960002247 lomustine Drugs 0.000 description 7
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 7
- 229960004961 mechlorethamine Drugs 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 230000002062 proliferating effect Effects 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 208000000453 Skin Neoplasms Diseases 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 6
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 6
- 108020005542 Tubulin-tyrosine ligase Proteins 0.000 description 6
- 229940041181 antineoplastic drug Drugs 0.000 description 6
- 229960005243 carmustine Drugs 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000002050 diffraction method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 239000000543 intermediate Substances 0.000 description 6
- 208000032839 leukemia Diseases 0.000 description 6
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 6
- 229960001924 melphalan Drugs 0.000 description 6
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 6
- 230000000394 mitotic effect Effects 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 201000000849 skin cancer Diseases 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 230000024355 spindle assembly checkpoint Effects 0.000 description 6
- MQLACMBJVPINKE-UHFFFAOYSA-N 10-[(3-hydroxy-4-methoxyphenyl)methylidene]anthracen-9-one Chemical compound C1=C(O)C(OC)=CC=C1C=C1C2=CC=CC=C2C(=O)C2=CC=CC=C21 MQLACMBJVPINKE-UHFFFAOYSA-N 0.000 description 5
- 108010024976 Asparaginase Proteins 0.000 description 5
- 102000015790 Asparaginase Human genes 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 208000026310 Breast neoplasm Diseases 0.000 description 5
- 108010092160 Dactinomycin Proteins 0.000 description 5
- 229940123237 Taxane Drugs 0.000 description 5
- 102000007432 Tubulin-tyrosine ligase Human genes 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 5
- 229960003272 asparaginase Drugs 0.000 description 5
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 210000004292 cytoskeleton Anatomy 0.000 description 5
- 229960000640 dactinomycin Drugs 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000012458 free base Substances 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000008880 microtubule cytoskeleton organization Effects 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 229960003862 vemurafenib Drugs 0.000 description 5
- GPXBXXGIAQBQNI-UHFFFAOYSA-N vemurafenib Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(=CN=C3NC=2)C=2C=CC(Cl)=CC=2)=C1F GPXBXXGIAQBQNI-UHFFFAOYSA-N 0.000 description 5
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 4
- VOXBZHOHGGBLCQ-UHFFFAOYSA-N 2-amino-3,7-dihydropurine-6-thione;hydrate Chemical compound O.N1C(N)=NC(=S)C2=C1N=CN2.N1C(N)=NC(=S)C2=C1N=CN2 VOXBZHOHGGBLCQ-UHFFFAOYSA-N 0.000 description 4
- WYWHKKSPHMUBEB-UHFFFAOYSA-N 6-Mercaptoguanine Natural products N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 4
- 102100033350 ATP-dependent translocase ABCB1 Human genes 0.000 description 4
- 208000003174 Brain Neoplasms Diseases 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 102100026539 Induced myeloid leukemia cell differentiation protein Mcl-1 Human genes 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 102000005465 Stathmin Human genes 0.000 description 4
- 108050003387 Stathmin Proteins 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 125000000392 cycloalkenyl group Chemical group 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229960001428 mercaptopurine Drugs 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 108010056274 polo-like kinase 1 Proteins 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000020347 spindle assembly Effects 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 238000002287 time-lapse microscopy Methods 0.000 description 4
- 229960003087 tioguanine Drugs 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- GFWBKUDRXMQSFD-FJXQXJEOSA-M 3-aminopropanoyl-[(1s)-1-carboxy-2-(1h-imidazol-5-yl)ethyl]azanide;zinc Chemical compound [Zn].NCCC(=O)[N-][C@H](C(O)=O)CC1=CN=CN1 GFWBKUDRXMQSFD-FJXQXJEOSA-M 0.000 description 3
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 206010001197 Adenocarcinoma of the cervix Diseases 0.000 description 3
- 208000034246 Adenocarcinoma of the cervix uteri Diseases 0.000 description 3
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 101001008948 Dictyostelium discoideum Kinesin-related protein 13 Proteins 0.000 description 3
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical class C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 3
- 240000007472 Leucaena leucocephala Species 0.000 description 3
- 108010047230 Member 1 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- 206010067387 Myelodysplastic syndrome transformation Diseases 0.000 description 3
- 208000033833 Myelomonocytic Chronic Leukemia Diseases 0.000 description 3
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 3
- 206010033128 Ovarian cancer Diseases 0.000 description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 206010038272 Refractory anaemia with ringed sideroblasts Diseases 0.000 description 3
- 208000009527 Refractory anemia Diseases 0.000 description 3
- 208000033501 Refractory anemia with excess blasts Diseases 0.000 description 3
- 206010072684 Refractory cytopenia with unilineage dysplasia Diseases 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 101001091265 Xenopus laevis Kinesin-like protein KIF11-A Proteins 0.000 description 3
- 101001091264 Xenopus laevis Kinesin-like protein KIF11-B Proteins 0.000 description 3
- 230000001594 aberrant effect Effects 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 208000013685 acquired idiopathic sideroblastic anemia Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000001093 anti-cancer Effects 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 3
- 125000001246 bromo group Chemical group Br* 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000023359 cell cycle switching, meiotic to mitotic cell cycle Effects 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 238000012054 celltiter-glo Methods 0.000 description 3
- 201000006662 cervical adenocarcinoma Diseases 0.000 description 3
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 3
- 229960004630 chlorambucil Drugs 0.000 description 3
- 201000010902 chronic myelomonocytic leukemia Diseases 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000005757 colony formation Effects 0.000 description 3
- 238000002648 combination therapy Methods 0.000 description 3
- 238000002447 crystallographic data Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 3
- 229960003957 dexamethasone Drugs 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 229960003668 docetaxel Drugs 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 229960001904 epirubicin Drugs 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 3
- 229960002074 flutamide Drugs 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 239000000833 heterodimer Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 101150094281 mcl1 gene Proteins 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 208000016586 myelodysplastic syndrome with excess blasts Diseases 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 229940056457 promace Drugs 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 208000023933 refractory anemia with excess blasts in transformation Diseases 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 229960001603 tamoxifen Drugs 0.000 description 3
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- 229940104230 thymidine Drugs 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 3
- 229960002066 vinorelbine Drugs 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 2
- DPJOMSILUQOWSD-VMPITWQZSA-N 2-[(E)-2-(2,5-difluorophenyl)ethenyl]-5,6,7,8-tetrahydro-3H-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound FC1=C(/C=C/C=2NC(C3=C(N=2)SC2=C3CCCC2)=O)C=C(C=C1)F DPJOMSILUQOWSD-VMPITWQZSA-N 0.000 description 2
- CNFMWHZCFUBGOB-SOFGYWHQSA-N 2-[(e)-2-(3,4-difluorophenyl)ethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound C1=C(F)C(F)=CC=C1\C=C\C(NC1=O)=NC2=C1C(CCCC1)=C1S2 CNFMWHZCFUBGOB-SOFGYWHQSA-N 0.000 description 2
- OIQFSWUWCAJTKH-CSKARUKUSA-N 2-[(e)-2-(3,4-dimethoxyphenyl)ethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound C1=C(OC)C(OC)=CC=C1\C=C\C(NC1=O)=NC2=C1C(CCCC1)=C1S2 OIQFSWUWCAJTKH-CSKARUKUSA-N 0.000 description 2
- UXOMTLBRSOBHFN-MDZDMXLPSA-N 2-[(e)-2-(3-methoxyphenyl)ethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound COC1=CC=CC(\C=C\C=2NC(=O)C=3C=4CCCCC=4SC=3N=2)=C1 UXOMTLBRSOBHFN-MDZDMXLPSA-N 0.000 description 2
- 206010000830 Acute leukaemia Diseases 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 2
- 206010000890 Acute myelomonocytic leukaemia Diseases 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 206010005949 Bone cancer Diseases 0.000 description 2
- 208000018084 Bone neoplasm Diseases 0.000 description 2
- BKQCPSVECKTXPO-ZFAVBRJPSA-N CC1=CC(/C=C/C2=NC3=C(C(=O)N2)C2=C(CCCC2)S3)=CC=C1.CCOC1=CC=C(/C=C/C2=NC3=C(C(=O)N2)C2=C(CCCC2)S3)C=C1OC.O=C1NC(/C=C/C2=CC(F)=CC=C2F)=NC2=C1C1=C(CCCC1)S2.O=C1NC(/C=C/C2=CC=C(F)C=C2)=NC2=C1C1=C(CCCC1)S2.O=C1NC(/C=C/C2=CC=C(F)C=C2F)=NC2=C1C1=C(CCCC1)S2.O=C1NC(/C=C/C2=CC=CC=C2)=NC2=C1C1=C(CCCC1)S2 Chemical compound CC1=CC(/C=C/C2=NC3=C(C(=O)N2)C2=C(CCCC2)S3)=CC=C1.CCOC1=CC=C(/C=C/C2=NC3=C(C(=O)N2)C2=C(CCCC2)S3)C=C1OC.O=C1NC(/C=C/C2=CC(F)=CC=C2F)=NC2=C1C1=C(CCCC1)S2.O=C1NC(/C=C/C2=CC=C(F)C=C2)=NC2=C1C1=C(CCCC1)S2.O=C1NC(/C=C/C2=CC=C(F)C=C2F)=NC2=C1C1=C(CCCC1)S2.O=C1NC(/C=C/C2=CC=CC=C2)=NC2=C1C1=C(CCCC1)S2 BKQCPSVECKTXPO-ZFAVBRJPSA-N 0.000 description 2
- BLLZZVWCNUZBCS-FJEDDJBMSA-N COC1=CC(/C=C/C2=NC3=C(C(=O)N2)C2=C(CCCC2)S3)=CC=C1.O=C1NC(/C=C/C2=CC=CC=C2C(F)(F)F)=NC2=C1C1=C(CCCC1)S2 Chemical compound COC1=CC(/C=C/C2=NC3=C(C(=O)N2)C2=C(CCCC2)S3)=CC=C1.O=C1NC(/C=C/C2=CC=CC=C2C(F)(F)F)=NC2=C1C1=C(CCCC1)S2 BLLZZVWCNUZBCS-FJEDDJBMSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- 102000002554 Cyclin A Human genes 0.000 description 2
- 108010068192 Cyclin A Proteins 0.000 description 2
- 102000002427 Cyclin B Human genes 0.000 description 2
- 108010068150 Cyclin B Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 206010072449 Desmoplastic melanoma Diseases 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 206010014733 Endometrial cancer Diseases 0.000 description 2
- 206010014759 Endometrial neoplasm Diseases 0.000 description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 2
- 108010029961 Filgrastim Proteins 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 230000010190 G1 phase Effects 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108010069236 Goserelin Proteins 0.000 description 2
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 2
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 2
- 206010023256 Juvenile melanoma benign Diseases 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- 108010063296 Kinesin Proteins 0.000 description 2
- 102000010638 Kinesin Human genes 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 206010024218 Lentigo maligna Diseases 0.000 description 2
- 108010000817 Leuprolide Proteins 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 230000027311 M phase Effects 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 206010027145 Melanocytic naevus Diseases 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 101000794231 Mus musculus Mitotic checkpoint serine/threonine-protein kinase BUB1 beta Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- 208000033835 Myelomonocytic Acute Leukemia Diseases 0.000 description 2
- 208000037538 Myelomonocytic Juvenile Leukemia Diseases 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 208000007256 Nevus Diseases 0.000 description 2
- 208000032452 Nevus, Epithelioid and Spindle Cell Diseases 0.000 description 2
- KYRVNWMVYQXFEU-UHFFFAOYSA-N Nocodazole Chemical compound C1=C2NC(NC(=O)OC)=NC2=CC=C1C(=O)C1=CC=CS1 KYRVNWMVYQXFEU-UHFFFAOYSA-N 0.000 description 2
- 206010029488 Nodular melanoma Diseases 0.000 description 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 206010033661 Pancytopenia Diseases 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 101100422597 Rattus norvegicus Stmn4 gene Proteins 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 102100031463 Serine/threonine-protein kinase PLK1 Human genes 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 206010042553 Superficial spreading melanoma stage unspecified Diseases 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- 206010057644 Testis cancer Diseases 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 201000005969 Uveal melanoma Diseases 0.000 description 2
- 206010000583 acral lentiginous melanoma Diseases 0.000 description 2
- 208000011912 acute myelomonocytic leukemia M4 Diseases 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229960000473 altretamine Drugs 0.000 description 2
- 208000006431 amelanotic melanoma Diseases 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000003149 assay kit Methods 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 235000012216 bentonite Nutrition 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 201000008274 breast adenocarcinoma Diseases 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 125000005884 carbocyclylalkyl group Chemical group 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000005754 cellular signaling Effects 0.000 description 2
- 210000003793 centrosome Anatomy 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- IMBXRZKCLVBLBH-OGYJWPHRSA-N cvp protocol Chemical compound ClCCN(CCCl)P1(=O)NCCCO1.O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1.C([C@H](C[C@]1(C(=O)OC)C=2C(=C3C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)=CC=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 IMBXRZKCLVBLBH-OGYJWPHRSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 208000024389 cytopenia Diseases 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- GNGACRATGGDKBX-UHFFFAOYSA-N dihydroxyacetone phosphate Chemical compound OCC(=O)COP(O)(O)=O GNGACRATGGDKBX-UHFFFAOYSA-N 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 201000004101 esophageal cancer Diseases 0.000 description 2
- 229960001842 estramustine Drugs 0.000 description 2
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 2
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- CDYVTVLXEWMCHU-UHFFFAOYSA-N ethyl 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate Chemical compound C1CCCC2=C1SC(N)=C2C(=O)OCC CDYVTVLXEWMCHU-UHFFFAOYSA-N 0.000 description 2
- 238000013265 extended release Methods 0.000 description 2
- 208000024519 eye neoplasm Diseases 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 229960004177 filgrastim Drugs 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 229960000908 idarubicin Drugs 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 201000005992 juvenile myelomonocytic leukemia Diseases 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 208000011080 lentigo maligna melanoma Diseases 0.000 description 2
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 2
- 229960004338 leuprorelin Drugs 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 201000003731 mucosal melanoma Diseases 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 229950006344 nocodazole Drugs 0.000 description 2
- 201000000032 nodular malignant melanoma Diseases 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 201000008106 ocular cancer Diseases 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 201000002511 pituitary cancer Diseases 0.000 description 2
- 125000003367 polycyclic group Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 208000016691 refractory malignant neoplasm Diseases 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 239000004334 sorbic acid Substances 0.000 description 2
- 235000010199 sorbic acid Nutrition 0.000 description 2
- 229940075582 sorbic acid Drugs 0.000 description 2
- 208000011584 spitz nevus Diseases 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 2
- 229960001052 streptozocin Drugs 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 208000030457 superficial spreading melanoma Diseases 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 2
- 229960001278 teniposide Drugs 0.000 description 2
- 201000003120 testicular cancer Diseases 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- 229960001196 thiotepa Drugs 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 2
- 229960000303 topotecan Drugs 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- LIRYPHYGHXZJBZ-UHFFFAOYSA-N trametinib Chemical compound CC(=O)NC1=CC=CC(N2C(N(C3CC3)C(=O)C3=C(NC=4C(=CC(I)=CC=4)F)N(C)C(=O)C(C)=C32)=O)=C1 LIRYPHYGHXZJBZ-UHFFFAOYSA-N 0.000 description 2
- 229960004066 trametinib Drugs 0.000 description 2
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 230000034512 ubiquitination Effects 0.000 description 2
- 238000010798 ubiquitination Methods 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- AAWZDTNXLSGCEK-LNVDRNJUSA-N (3r,5r)-1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid Chemical compound O[C@@H]1CC(O)(C(O)=O)C[C@@H](O)C1O AAWZDTNXLSGCEK-LNVDRNJUSA-N 0.000 description 1
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- LOBCDGHHHHGHFA-LBPRGKRZSA-N (S)-monastrol Chemical compound CCOC(=O)C1=C(C)NC(=S)N[C@H]1C1=CC=CC(O)=C1 LOBCDGHHHHGHFA-LBPRGKRZSA-N 0.000 description 1
- APJSHECCIRQQDV-ZRDIBKRKSA-N (e)-3-[4-hydroxy-3-(5,5,8,8-tetramethyl-3-pentoxy-6,7-dihydronaphthalen-2-yl)phenyl]prop-2-enoic acid Chemical compound CCCCCOC1=CC(C(CCC2(C)C)(C)C)=C2C=C1C1=CC(\C=C\C(O)=O)=CC=C1O APJSHECCIRQQDV-ZRDIBKRKSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- QXOQNNAWFUXKMH-UHFFFAOYSA-N 1-(Malonylamino)cyclopropanecarboxylic acid Chemical compound OC(=O)CC(=O)NC1(C(O)=O)CC1 QXOQNNAWFUXKMH-UHFFFAOYSA-N 0.000 description 1
- WXYYACUWOMKZQC-UHFFFAOYSA-N 1-benzyl-4-(4-propan-2-ylphenyl)-6-prop-2-ynoxyquinazolin-2-one Chemical compound C1=CC(C(C)C)=CC=C1C(C1=CC(OCC#C)=CC=C11)=NC(=O)N1CC1=CC=CC=C1 WXYYACUWOMKZQC-UHFFFAOYSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 1
- GDHMBNWVLWMONW-UHFFFAOYSA-N 2-(chloromethyl)-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound C1CCCC2=C1SC1=C2C(=O)NC(CCl)=N1 GDHMBNWVLWMONW-UHFFFAOYSA-N 0.000 description 1
- KTXBKIAOGAGFAS-MDZDMXLPSA-N 2-[(e)-2-(3-methylphenyl)ethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound CC1=CC=CC(\C=C\C=2NC(=O)C=3C=4CCCCC=4SC=3N=2)=C1 KTXBKIAOGAGFAS-MDZDMXLPSA-N 0.000 description 1
- JOOUCISKDNKHET-JXMROGBWSA-N 2-[(e)-2-(4-bromophenyl)ethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC(Br)=CC=C1\C=C\C(NC1=O)=NC2=C1C(CCCC1)=C1S2 JOOUCISKDNKHET-JXMROGBWSA-N 0.000 description 1
- AWEDIHFVHJYBKO-PKNBQFBNSA-N 2-[(e)-2-(4-ethoxy-3-methoxyphenyl)ethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound C1=C(OC)C(OCC)=CC=C1\C=C\C(NC1=O)=NC2=C1C(CCCC1)=C1S2 AWEDIHFVHJYBKO-PKNBQFBNSA-N 0.000 description 1
- JMBYBXQZXDQASP-FMIVXFBMSA-N 2-[(e)-2-(4-ethoxyphenyl)ethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC(OCC)=CC=C1\C=C\C(NC1=O)=NC2=C1C(CCCC1)=C1S2 JMBYBXQZXDQASP-FMIVXFBMSA-N 0.000 description 1
- YDBMLMYZMWRHAW-JXMROGBWSA-N 2-[(e)-2-(4-fluorophenyl)ethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC(F)=CC=C1\C=C\C(NC1=O)=NC2=C1C(CCCC1)=C1S2 YDBMLMYZMWRHAW-JXMROGBWSA-N 0.000 description 1
- BMZLXTMFWPTZPB-DHZHZOJOSA-N 2-[(e)-2-(4-methoxyphenyl)ethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC(OC)=CC=C1\C=C\C(NC1=O)=NC2=C1C(CCCC1)=C1S2 BMZLXTMFWPTZPB-DHZHZOJOSA-N 0.000 description 1
- LXIHIMJBAHSEIS-ZHACJKMWSA-N 2-[(e)-2-(4-methylphenyl)ethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC(C)=CC=C1\C=C\C(NC1=O)=NC2=C1C(CCCC1)=C1S2 LXIHIMJBAHSEIS-ZHACJKMWSA-N 0.000 description 1
- XOIBKMUEWUDOCR-DHZHZOJOSA-N 2-[(e)-2-(4-methylsulfanylphenyl)ethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC(SC)=CC=C1\C=C\C(NC1=O)=NC2=C1C(CCCC1)=C1S2 XOIBKMUEWUDOCR-DHZHZOJOSA-N 0.000 description 1
- VLORCJSLBLQLOO-ZHACJKMWSA-N 2-[(e)-2-phenylethenyl]-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidin-4-one Chemical compound N=1C=2SC=3CCCCC=3C=2C(=O)NC=1\C=C\C1=CC=CC=C1 VLORCJSLBLQLOO-ZHACJKMWSA-N 0.000 description 1
- JNODDICFTDYODH-UHFFFAOYSA-N 2-hydroxytetrahydrofuran Chemical compound OC1CCCO1 JNODDICFTDYODH-UHFFFAOYSA-N 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- WNFAQVLTRONMFD-UHFFFAOYSA-N 3-[4-carbamoyl-1-[5-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-1,3-thiazol-2-yl]piperidin-4-yl]benzoic acid Chemical compound C1CC(C(=O)N)(C=2C=C(C=CC=2)C(O)=O)CCN1C1=NC=C(C(O)(C(F)(F)F)C(F)(F)F)S1 WNFAQVLTRONMFD-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- CTNTUFQBOKZSPI-UHFFFAOYSA-N 4-[(5-methyl-1,2-oxazol-3-yl)methylsulfonyl]aniline;5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidine-2,4-diamine Chemical compound O1C(C)=CC(CS(=O)(=O)C=2C=CC(N)=CC=2)=N1.COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 CTNTUFQBOKZSPI-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 101150034941 AURKB gene Proteins 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000003200 Adenoma Diseases 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 1
- 102220560889 Ataxin-7_C14A_mutation Human genes 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 229940125431 BRAF inhibitor Drugs 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 206010055113 Breast cancer metastatic Diseases 0.000 description 1
- 108010037003 Buserelin Proteins 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- FKZKDWNHWYAPQV-UHFFFAOYSA-O C.C.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CCOC(=O)C1=C(N)SC2=C1CCCC2.CCOC(=O)C1=C(N)SC2=C1CCCC2.CCOC(=O)CC#N.N#CCCl.O=C1CCCCC1.O=C1NC(CCl)=NC2=C1C1=C(CCCC1)S2.O=C1NC(CCl)=NC2=C1C1=C(CCCC1)S2.O=C1NC(C[P+](C2=CC=CC=C2)(C2=CC=CC=C2)C2=CC=CC=C2)=NC2=C1C1=C(CCCC1)S2.S.[Cl-] Chemical compound C.C.C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.CCOC(=O)C1=C(N)SC2=C1CCCC2.CCOC(=O)C1=C(N)SC2=C1CCCC2.CCOC(=O)CC#N.N#CCCl.O=C1CCCCC1.O=C1NC(CCl)=NC2=C1C1=C(CCCC1)S2.O=C1NC(CCl)=NC2=C1C1=C(CCCC1)S2.O=C1NC(C[P+](C2=CC=CC=C2)(C2=CC=CC=C2)C2=CC=CC=C2)=NC2=C1C1=C(CCCC1)S2.S.[Cl-] FKZKDWNHWYAPQV-UHFFFAOYSA-O 0.000 description 1
- IPQLZLCIFQTNTF-UHFFFAOYSA-N C.C.CC(C)C1=CC(F)=CC=C1F.CC(C)C1=CC=C(F)C=C1.CC(C)C1=CC=C(F)C=C1F.CC(C)C1=CC=CC=C1.CC(C)C1=CC=CC=C1C(F)(F)F.CC1=CC(C(C)C)=CC=C1.CCOC1=CC=C(C(C)C)C=C1OC.COC1=CC(C(C)C)=CC=C1 Chemical compound C.C.CC(C)C1=CC(F)=CC=C1F.CC(C)C1=CC=C(F)C=C1.CC(C)C1=CC=C(F)C=C1F.CC(C)C1=CC=CC=C1.CC(C)C1=CC=CC=C1C(F)(F)F.CC1=CC(C(C)C)=CC=C1.CCOC1=CC=C(C(C)C)C=C1OC.COC1=CC(C(C)C)=CC=C1 IPQLZLCIFQTNTF-UHFFFAOYSA-N 0.000 description 1
- RPEVBUFPLMBCTD-AATRIKPKSA-N CC1=CC2=C(C=C1C)SC(/C=C/C1=CN=CC=C1)=N2 Chemical compound CC1=CC2=C(C=C1C)SC(/C=C/C1=CN=CC=C1)=N2 RPEVBUFPLMBCTD-AATRIKPKSA-N 0.000 description 1
- NADVBWAGSCIWIP-UHFFFAOYSA-N CCOC1=CC=C(C2=NN3C(=NN=C3C3=CC=CC=C3OC)OC2)C=C1 Chemical compound CCOC1=CC=C(C2=NN3C(=NN=C3C3=CC=CC=C3OC)OC2)C=C1 NADVBWAGSCIWIP-UHFFFAOYSA-N 0.000 description 1
- 101100326430 Caenorhabditis elegans bub-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 238000003734 CellTiter-Glo Luminescent Cell Viability Assay Methods 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RENMDAKOXSCIGH-UHFFFAOYSA-N Chloroacetonitrile Chemical compound ClCC#N RENMDAKOXSCIGH-UHFFFAOYSA-N 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- 208000028698 Cognitive impairment Diseases 0.000 description 1
- AAWZDTNXLSGCEK-UHFFFAOYSA-N Cordycepinsaeure Natural products OC1CC(O)(C(O)=O)CC(O)C1O AAWZDTNXLSGCEK-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000012623 DNA damaging agent Substances 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- ZINBFGBAIFRYSH-UHFFFAOYSA-N Demethoxyviridin Natural products CC12C(O)C(O)C(=O)c3coc(C(=O)c4c5CCC(=O)c5ccc14)c23 ZINBFGBAIFRYSH-UHFFFAOYSA-N 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 1
- 102100028138 F-box/WD repeat-containing protein 7 Human genes 0.000 description 1
- QGYXHWOOPGADBS-SOFGYWHQSA-N FC1=C(/C=C/C=2NC(C3=C(N=2)SC2=C3CCCC2)=O)C=CC(=C1)F Chemical compound FC1=C(/C=C/C=2NC(C3=C(N=2)SC2=C3CCCC2)=O)C=CC(=C1)F QGYXHWOOPGADBS-SOFGYWHQSA-N 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 230000004668 G2/M phase Effects 0.000 description 1
- 230000037059 G2/M phase arrest Effects 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 101000595680 Homarus americanus Tubulin beta-1 chain Proteins 0.000 description 1
- 101001060231 Homo sapiens F-box/WD repeat-containing protein 7 Proteins 0.000 description 1
- 101001056180 Homo sapiens Induced myeloid leukemia cell differentiation protein Mcl-1 Proteins 0.000 description 1
- 101001015220 Homo sapiens Myelin-associated oligodendrocyte basic protein Proteins 0.000 description 1
- 101000697529 Homo sapiens Stathmin-4 Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 1
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000006391 Luria-Bertani Medium Substances 0.000 description 1
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 229940124647 MEK inhibitor Drugs 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 108091092878 Microsatellite Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 101100204207 Mus musculus Stard9 gene Proteins 0.000 description 1
- 102100032977 Myelin-associated oligodendrocyte basic protein Human genes 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- QJZRFPJCWMNVAV-HHHXNRCGSA-N N-(3-aminopropyl)-N-[(1R)-1-[7-chloro-4-oxo-3-(phenylmethyl)-2-quinazolinyl]-2-methylpropyl]-4-methylbenzamide Chemical compound NCCCN([C@H](C(C)C)C=1N(C(=O)C2=CC=C(Cl)C=C2N=1)CC=1C=CC=CC=1)C(=O)C1=CC=C(C)C=C1 QJZRFPJCWMNVAV-HHHXNRCGSA-N 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 206010029350 Neurotoxicity Diseases 0.000 description 1
- 229910004727 OSO3H Inorganic materials 0.000 description 1
- 108010016076 Octreotide Proteins 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002685 Polyoxyl 35CastorOil Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- AAWZDTNXLSGCEK-ZHQZDSKASA-N Quinic acid Natural products O[C@H]1CC(O)(C(O)=O)C[C@H](O)C1O AAWZDTNXLSGCEK-ZHQZDSKASA-N 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 229910006069 SO3H Inorganic materials 0.000 description 1
- 102000012152 Securin Human genes 0.000 description 1
- 108010061477 Securin Proteins 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 231100000632 Spindle poison Toxicity 0.000 description 1
- 102100026756 StAR-related lipid transfer protein 9 Human genes 0.000 description 1
- 101150005754 Stard9 gene Proteins 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 1
- CBPNZQVSJQDFBE-FUXHJELOSA-N Temsirolimus Chemical compound C1C[C@@H](OC(=O)C(C)(CO)CO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 CBPNZQVSJQDFBE-FUXHJELOSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- IVTVGDXNLFLDRM-HNNXBMFYSA-N Tomudex Chemical compound C=1C=C2NC(C)=NC(=O)C2=CC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)S1 IVTVGDXNLFLDRM-HNNXBMFYSA-N 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 102000006275 Ubiquitin-Protein Ligases Human genes 0.000 description 1
- 108010083111 Ubiquitin-Protein Ligases Proteins 0.000 description 1
- 208000008385 Urogenital Neoplasms Diseases 0.000 description 1
- 108700019493 VAB-IV protocol Proteins 0.000 description 1
- 241000863480 Vinca Species 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 229940125528 allosteric inhibitor Drugs 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 229960002932 anastrozole Drugs 0.000 description 1
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940044684 anti-microtubule agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000005735 apoptotic response Effects 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- LSFOZQQVTWFMNS-UHFFFAOYSA-N avanbulin Chemical compound C1=CC(N)=CC=C1C(=O)CN1C2=CC=CC=C2N=C1C1=NON=C1NCCC#N LSFOZQQVTWFMNS-UHFFFAOYSA-N 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- FUKOGSUFTZDYOI-BMANNDLBSA-O beacopp protocol Chemical compound ClCCN(CCCl)P1(=O)NCCCO1.CNNCC1=CC=C(C(=O)NC(C)C)C=C1.O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1.COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3C(O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1.C([C@H](C[C@]1(C(=O)OC)C=2C(=C3C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)=CC=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21.N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)C(O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C FUKOGSUFTZDYOI-BMANNDLBSA-O 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 1
- 229960001467 bortezomib Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- CUWODFFVMXJOKD-UVLQAERKSA-N buserelin Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](COC(C)(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 CUWODFFVMXJOKD-UVLQAERKSA-N 0.000 description 1
- 229960002719 buserelin Drugs 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000003560 cancer drug Substances 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 125000004452 carbocyclyl group Chemical group 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- BLMPQMFVWMYDKT-NZTKNTHTSA-N carfilzomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)[C@]1(C)OC1)NC(=O)CN1CCOCC1)CC1=CC=CC=C1 BLMPQMFVWMYDKT-NZTKNTHTSA-N 0.000 description 1
- 108010021331 carfilzomib Proteins 0.000 description 1
- 229960002438 carfilzomib Drugs 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 229940076006 cell cycle modulator Drugs 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 201000010288 cervix melanoma Diseases 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- JCYRRZITSZDHKN-WODMUGMNSA-N chlvpp protocol Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1.OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1.O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1.C([C@H](C[C@]1(C(=O)OC)C=2C(=C3C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)=CC=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JCYRRZITSZDHKN-WODMUGMNSA-N 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- ACSIXWWBWUQEHA-UHFFFAOYSA-N clodronic acid Chemical compound OP(O)(=O)C(Cl)(Cl)P(O)(O)=O ACSIXWWBWUQEHA-UHFFFAOYSA-N 0.000 description 1
- 229960002286 clodronic acid Drugs 0.000 description 1
- 229940047766 co-trimoxazole Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 238000000315 cryotherapy Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 125000006448 cycloalkyl cycloalkyl group Chemical group 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- MKNXBRLZBFVUPV-UHFFFAOYSA-L cyclopenta-1,3-diene;dichlorotitanium Chemical compound Cl[Ti]Cl.C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 MKNXBRLZBFVUPV-UHFFFAOYSA-L 0.000 description 1
- 229960003843 cyproterone Drugs 0.000 description 1
- DUSHUSLJJMDGTE-ZJPMUUANSA-N cyproterone Chemical compound C1=C(Cl)C2=CC(=O)[C@@H]3C[C@@H]3[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 DUSHUSLJJMDGTE-ZJPMUUANSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- SWJBYJJNDIXFSA-KUHUBIRLSA-N demethoxyviridin Chemical compound O=C1C2=C3CCC(=O)C3=CC=C2[C@]2(C)C3=C1OC=C3C(=O)C[C@H]2O SWJBYJJNDIXFSA-KUHUBIRLSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940120124 dichloroacetate Drugs 0.000 description 1
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 1
- NFDFQCUYFHCNBW-SCGPFSFSSA-N dienestrol Chemical compound C=1C=C(O)C=CC=1\C(=C/C)\C(=C\C)\C1=CC=C(O)C=C1 NFDFQCUYFHCNBW-SCGPFSFSSA-N 0.000 description 1
- 229960003839 dienestrol Drugs 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 229960000452 diethylstilbestrol Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000019621 digestibility Nutrition 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- HESCAJZNRMSMJG-KKQRBIROSA-N epothilone A Chemical class C/C([C@@H]1C[C@@H]2O[C@@H]2CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 HESCAJZNRMSMJG-KKQRBIROSA-N 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- ZIUSEGSNTOUIPT-UHFFFAOYSA-N ethyl 2-cyanoacetate Chemical compound CCOC(=O)CC#N ZIUSEGSNTOUIPT-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 229960005167 everolimus Drugs 0.000 description 1
- 229960000255 exemestane Drugs 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- IKIBJHWXDSKRKV-UHFFFAOYSA-N fijianolide B Natural products CC1CC(=C)CC(O)C2OC2CC(OC(=O)C=C/CC3OC(C)(CC=C3)C1)C(O)C=CC4CC(=CCO4)C IKIBJHWXDSKRKV-UHFFFAOYSA-N 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 1
- 229960002011 fludrocortisone Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- YLRFCQOZQXIBAB-RBZZARIASA-N fluoxymesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)C[C@@H]2O YLRFCQOZQXIBAB-RBZZARIASA-N 0.000 description 1
- 229960001751 fluoxymesterone Drugs 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229940045109 genistein Drugs 0.000 description 1
- TZBJGXHYKVUXJN-UHFFFAOYSA-N genistein Natural products C1=CC(O)=CC=C1C1=COC2=CC(O)=CC(O)=C2C1=O TZBJGXHYKVUXJN-UHFFFAOYSA-N 0.000 description 1
- 235000006539 genistein Nutrition 0.000 description 1
- ZCOLJUOHXJRHDI-CMWLGVBASA-N genistein 7-O-beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=C2C(=O)C(C=3C=CC(O)=CC=3)=COC2=C1 ZCOLJUOHXJRHDI-CMWLGVBASA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229960002913 goserelin Drugs 0.000 description 1
- 229960003690 goserelin acetate Drugs 0.000 description 1
- DBUMITZHDMTTNX-UHFFFAOYSA-N gtpl6365 Chemical compound C1=CC(OC)=CC=C1N1C(=O)C(SC=2C3=C(NC4CC4)N=CN=2)=C3N=C1 DBUMITZHDMTTNX-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000009033 hematopoietic malignancy Effects 0.000 description 1
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 238000012188 high-throughput screening assay Methods 0.000 description 1
- 102000057453 human STMN4 Human genes 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229960002411 imatinib Drugs 0.000 description 1
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000010820 immunofluorescence microscopy Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229950007344 ispinesib Drugs 0.000 description 1
- FABUFPQFXZVHFB-CFWQTKTJSA-N ixabepilone Chemical compound C/C([C@@H]1C[C@@H]2O[C@]2(C)CCC[C@@H]([C@@H]([C@H](C)C(=O)C(C)(C)[C@H](O)CC(=O)N1)O)C)=C\C1=CSC(C)=N1 FABUFPQFXZVHFB-CFWQTKTJSA-N 0.000 description 1
- 229960002014 ixabepilone Drugs 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- MSBQEQDLFWWWMV-XZZGLLCESA-N laulimalide Chemical compound C(/[C@H](O)[C@H]1OC(=O)\C=C/C[C@@H]2C=CC[C@H](O2)C[C@H](CC(=C)C[C@H](O)[C@@H]2O[C@H]2C1)C)=C\[C@@H]1CC(C)=CCO1 MSBQEQDLFWWWMV-XZZGLLCESA-N 0.000 description 1
- 229960004942 lenalidomide Drugs 0.000 description 1
- GOTYRUGSSMKFNF-UHFFFAOYSA-N lenalidomide Chemical compound C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O GOTYRUGSSMKFNF-UHFFFAOYSA-N 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- WMFOQBRAJBCJND-UHFFFAOYSA-M lithium hydroxide Inorganic materials [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 229960003538 lonidamine Drugs 0.000 description 1
- WDRYRZXSPDWGEB-UHFFFAOYSA-N lonidamine Chemical compound C12=CC=CC=C2C(C(=O)O)=NN1CC1=CC=C(Cl)C=C1Cl WDRYRZXSPDWGEB-UHFFFAOYSA-N 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 230000001320 lysogenic effect Effects 0.000 description 1
- 230000028744 lysogeny Effects 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229960004616 medroxyprogesterone Drugs 0.000 description 1
- FRQMUZJSZHZSGN-HBNHAYAOSA-N medroxyprogesterone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FRQMUZJSZHZSGN-HBNHAYAOSA-N 0.000 description 1
- 229960001786 megestrol Drugs 0.000 description 1
- JBVNBBXAMBZTMQ-CEGNMAFCSA-N megestrol Chemical compound C1=CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 JBVNBBXAMBZTMQ-CEGNMAFCSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910052751 metal Chemical class 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
- 229960003105 metformin Drugs 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- AWIJRPNMLHPLNC-UHFFFAOYSA-N methanethioic s-acid Chemical compound SC=O AWIJRPNMLHPLNC-UHFFFAOYSA-N 0.000 description 1
- FBOZXECLQNJBKD-UHFFFAOYSA-N methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-UHFFFAOYSA-N 0.000 description 1
- 229960004584 methylprednisolone Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 210000003879 microtubule-organizing center Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 239000002829 mitogen activated protein kinase inhibitor Substances 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- BLCLNMBMMGCOAS-UHFFFAOYSA-N n-[1-[[1-[[1-[[1-[[1-[[1-[[1-[2-[(carbamoylamino)carbamoyl]pyrrolidin-1-yl]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-[(2-methylpropan-2-yl)oxy]-1-oxopropan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amin Chemical compound C1CCC(C(=O)NNC(N)=O)N1C(=O)C(CCCN=C(N)N)NC(=O)C(CC(C)C)NC(=O)C(COC(C)(C)C)NC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 BLCLNMBMMGCOAS-UHFFFAOYSA-N 0.000 description 1
- MUJNAWXXOJRNGK-UHFFFAOYSA-N n-[3-(6-methyl-1,2,3,4-tetrahydrocarbazol-9-yl)propyl]cyclohexanamine Chemical compound C1=2CCCCC=2C2=CC(C)=CC=C2N1CCCNC1CCCCC1 MUJNAWXXOJRNGK-UHFFFAOYSA-N 0.000 description 1
- 230000012106 negative regulation of microtubule depolymerization Effects 0.000 description 1
- 230000012169 negative regulation of microtubule polymerization Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 201000011682 nervous system cancer Diseases 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 208000004235 neutropenia Diseases 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 1
- 229960002653 nilutamide Drugs 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 229960002700 octreotide Drugs 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- QUANRIQJNFHVEU-UHFFFAOYSA-N oxirane;propane-1,2,3-triol Chemical compound C1CO1.OCC(O)CO QUANRIQJNFHVEU-UHFFFAOYSA-N 0.000 description 1
- KLAKIAVEMQMVBT-UHFFFAOYSA-N p-hydroxy-phenacyl alcohol Natural products OCC(=O)C1=CC=C(O)C=C1 KLAKIAVEMQMVBT-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- WRUUGTRCQOWXEG-UHFFFAOYSA-N pamidronate Chemical compound NCCC(O)(P(O)(O)=O)P(O)(O)=O WRUUGTRCQOWXEG-UHFFFAOYSA-N 0.000 description 1
- 229940046231 pamidronate Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- NETARJWZTMGMRM-JRTPPQMASA-N peloruside A Chemical compound C1[C@H](OC)[C@@H](O)C(=O)O[C@@H](C(\C)=C/[C@@H](CO)CC)C[C@H](OC)C[C@@H](O)C(C)(C)[C@@]2(O)[C@@H](O)[C@@H](OC)C[C@@H]1O2 NETARJWZTMGMRM-JRTPPQMASA-N 0.000 description 1
- NETARJWZTMGMRM-KJHLVSCNSA-N peloruside A Natural products CC[C@@H](CO)C=C(C)[C@@H]1C[C@H](C[C@H](O)C(C)(C)[C@@]2(O)O[C@@H](C[C@@H](OC)[C@H](O)C(=O)O1)C[C@@H](OC)[C@H]2O)OC NETARJWZTMGMRM-KJHLVSCNSA-N 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- SZFPYBIJACMNJV-UHFFFAOYSA-N perifosine Chemical compound CCCCCCCCCCCCCCCCCCOP([O-])(=O)OC1CC[N+](C)(C)CC1 SZFPYBIJACMNJV-UHFFFAOYSA-N 0.000 description 1
- 229950010632 perifosine Drugs 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229960000688 pomalidomide Drugs 0.000 description 1
- UVSMNLNDYGZFPF-UHFFFAOYSA-N pomalidomide Chemical compound O=C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O UVSMNLNDYGZFPF-UHFFFAOYSA-N 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 1
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Inorganic materials [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000031877 prophase Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 229960004432 raltitrexed Drugs 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 150000003870 salicylic acids Chemical class 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 229960003787 sorafenib Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000005556 structure-activity relationship Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 description 1
- 229960001796 sunitinib Drugs 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229960005314 suramin Drugs 0.000 description 1
- FIAFUQMPZJWCLV-UHFFFAOYSA-N suramin Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(NC(=O)C3=CC=C(C(=C3)NC(=O)C=3C=C(NC(=O)NC=4C=C(C=CC=4)C(=O)NC=4C(=CC=C(C=4)C(=O)NC=4C5=C(C=C(C=C5C(=CC=4)S(O)(=O)=O)S(O)(=O)=O)S(O)(=O)=O)C)C=CC=3)C)=CC=C(S(O)(=O)=O)C2=C1 FIAFUQMPZJWCLV-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- 229960000235 temsirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-UHFFFAOYSA-N temsirolimus Natural products C1CC(O)C(OC)CC1CC(C)C1OC(=O)C2CCCCN2C(=O)C(=O)C(O)(O2)C(C)CCC2CC(OC)C(C)=CC=CC=CC(C)CC(C)C(=O)C(OC)C(O)C(C)=CC(C)C(=O)C1 QFJCIRLUMZQUOT-UHFFFAOYSA-N 0.000 description 1
- FWQHRZXEQNUCSY-UHFFFAOYSA-N tert-butyl N-[2-(ethoxycarbonylamino)-5-[(4-fluorophenyl)methyl-prop-2-ynylamino]phenyl]carbamate Chemical compound CCOC(=O)NC1=C(C=C(C=C1)N(CC#C)CC2=CC=C(C=C2)F)NC(=O)OC(C)(C)C FWQHRZXEQNUCSY-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- DUYAAUVXQSMXQP-UHFFFAOYSA-M thioacetate Chemical compound CC([S-])=O DUYAAUVXQSMXQP-UHFFFAOYSA-M 0.000 description 1
- 125000004001 thioalkyl group Chemical group 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- AVCVDUDESCZFHJ-UHFFFAOYSA-N triphenylphosphane;hydrochloride Chemical compound [Cl-].C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1 AVCVDUDESCZFHJ-UHFFFAOYSA-N 0.000 description 1
- ZHKMVECXITZAPL-SNSGICDFSA-N tsvpp protocol Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1.CNNCC1=CC=C(C(=O)NC(C)C)C=C1.O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1.C([C@H](C[C@]1(C(=O)OC)C=2C(=C3C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)=CC=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 ZHKMVECXITZAPL-SNSGICDFSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/64—Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/06—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
Definitions
- This disclosure relates to compounds useful in compositions and methods for treating hyperproliferative disorders, including cancers.
- the cell cycle is a set of coordinated events that culminate in the formation of two cells from one mother cell. It is composed of four major phases; G1 (growth phase 1), S (DNA synthesis phase), G2 (growth phase 2) and M (mitosis), which function to integrate environment sensing signaling pathways with cell growth and proliferation.
- G1 growth phase 1
- S DNA synthesis phase
- G2 growth phase 2
- M mitosis
- Cancer cells often deregulate the cell cycle and undergo unscheduled cell divisions. Therefore, inhibition of the the cell cycle represents an opportunity for therapeutic intervention in treating proliferative diseases like cancer.
- Anticancer drugs perturb the proliferation cycle of tumor cells. These drugs are broadly classified into those acting in interphase, such as DNA damaging agents, and those acting in mitosis, so-called antimitotic drugs.
- Antimitotics are a group of natural and synthetic small molecules that function by activating the spindle assembly checkpoint (SAC), which arrests cells in mitosis until proper microtubule-kinetochore attachment occurs.
- SAC spindle assembly checkpoint
- Mcl1 destruction relieves its inhibiton of Bax and Bak (pro-apoptotic factors), allowing them to bind the mitochondrial outer membrane to induce an apoptotic cell death. (Matson; Wertz; Manchado, op. cit.)
- Microtubule targeting agents including stabilizers (taxanes like paclitaxel (taxol) and epothilones) and destabilizers (vinca alkaloids and colchicine) bind to tubulin and perturb microtubule dynamics by stabilizing or destabilizing microtubules and thereby their ability to align and segregate chromosomes.
- stabilizers taxanes like paclitaxel (taxol) and epothilones
- destabilizers vinca alkaloids and colchicine
- microtubule-targeting agents are some of the most common chemotherapeutic agents used to treat a wide variety of cancers, they show important dose-limiting toxicities, including neutropenia and neurotoxicity, largely a consequence of disturbing microtubule dynamics in neurons.
- Tubulin a target for antineoplastic drugs into the cancer cells but also in the periperal nervous system.
- M-181 An inhibitor of the M-phase of the cell cycle is M-181, which targets tubulin. Characterization experiments revealed inhibition of tubulin polymerization, spindle assembly checkpoint (SAC) activation, mitotic arrest, and induction of apoptosis in cells treated with MI-181.
- SAC spindle assembly checkpoint
- the present disclosure addresses the aforementioned need by providing a novel class of compounds that inhibit cell proliferation.
- these compounds bind to tubulin, to inhibit microtubule polymerization, arrest cells in mitosis, activate the spindle assembly checkpoint, and/or trigger an apoptotic cell death.
- the compounds of this disclosure represent a novel class of compounds that bind ⁇ -tubulin.
- this disclosure provides compounds of Formula I:
- the compounds are typically selective modulators of the microtubules.
- the compounds as described herein bind to microtubulin.
- the compounds as described herein inhibit microtubule polymerization, arrest cells in mitosis, induce apoptosis, and/or cause cell death.
- Compounds of Formula I can be used to treat the conditions as described herein.
- the compounds are typically selective modulators of microtubules.
- the compounds as described herein bind to microtubulin.
- the compounds as described herein inhibit microtubule polymerization, arrest cells in mitosis, induce apoptosis, and/or cause cell death.
- Compounds of Formula I can be used to treat the conditions as described herein.
- compositions that comprise the compounds of this disclosure.
- the disclosure also includes the use of the compounds or compositions disclosed herein in the manufacture of a medicament for the treatment of one or more of the conditions described herein.
- myelodysplastic syndrome (MDS) in a subject in need thereof using a compound described herein.
- the myelodysplastic syndrome that may be treated by a compound described herein is selected from, but not limited to, refractory anemia, refractory anemia with ringed sideroblasts, refractory anemia with excess blasts, refractory anemia with excess blasts in transformation, and chronic myelomonocytic leukemia.
- the cancer that may be treated by a compound or composition described herein is selected from, but not limited to, ovarian cancer, cervical cancer, brain cancer, lung cancer, skin cancer, colorectal cancer, esophageal cancer, breast cancer, prostate cancer, leukemia, multiple myeloma, bone cancer, pancreatic cancer, bladder cancer, endometrial cancer, kidney cancer, liver cancer, eye cancer, pituitary cancer, testicular cancer, and stomach cancer.
- the skin cancer that may be treated by a compound described herein is a melanoma.
- the melanoma is selected from, but not limited to, lentigo maligna melanoma, superficial spreading melanoma, acral lentiginous melanoma, mucosal melanoma, nodular melanoma, polypoid melanoma, desmoplastic melanoma, amelanotic melanoma, soft-tissue melanoma, melanoma with small nevus-like cells, melanoma with features of a Spitz nevus, and uveal melanoma.
- FIG. 1 shows that the cell cycle histogram of HeLa cells treated with DMSO or 10 ⁇ M of either colchicine or compound 10 for 20 hours. The percentage of cells in G1 phase, S phase and G2/M phase is indicated below the histogram for each treatment.
- FIG. 2 shows the in vitro microtubule polymerization inhibition after treatment with DMSO, 3 ⁇ M taxol, 3 ⁇ M colchicine or 3 ⁇ M of Compounds 10, 10a, or 10b.
- FIG. 3 shows the drug response dose curves to measure mitotic arrest IC 50 s for increasing treatment with colchicine and compound 10.
- FIG. 4 shows the drug response dose curves to measure mitotic arrest IC 50 s for increasing treatment with compounds 10, 10a, and 10b.
- FIG. 5 quantifies the percentage of cells undergoing cell division after treatment with DMSO, colchicine, 10b, or taxol ( FIG. 5 a ) and the time from mitotic entry to cell death for individual cells ( FIG. 5 b ) and 10 cells ( FIG. 5 c ) treated with DMSO, colchicine, 10b, or taxol.
- FIG. 6 shows the cell viability IC 50 for patient-derived glioblastoma cells treated with compounds 10, 10a, and 10b.
- FIG. 7 shows HeLa cell mitotic arrest and cell viability dose response curves for nocodazole, colchicine, taxol and MI-181.
- FIG. 8 shows immunoblot analysis of MI-181 treated cells.
- FIG. 9 shows MI-181 induced mitotic arrest is reversible.
- FIG. 10 shows that MI-181 is a potent cancer cell inhibitor, especially for melanomas.
- FIG. 11 shows that MI-181 inhibits tubulin polymerization.
- the present disclosure provides a compound of Formula I:
- L is chosen such that L interposes 2 atoms between the central ring (bearing R 3 ) and ring A, e.g., substituted or unsubstituted ethylene or ethenylene (vinylene).
- L is selected from: —CH 2 —, —CH 2 SCH 2 —, —CH 2 CH 2 S—, —SCH 2 CH 2 —, —CH 2 OCH 2 —, —CH 2 CH 2 O—, —OCH 2 CH 2 —, —CH 2 NHCH 2 —, —CH 2 CH 2 NH—, —NHCH 2 CH 2 —, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 S—, —SCH 2 —, —CH 2 O—, —OCH 2 —, —CH 2 NH—, —NHCH 2 —, and —CH ⁇ CH—, preferably —CH ⁇ CH—, wherein any hydrogen atom of a CH or CH 2 unit may optionally be replaced by R 4 (such as lower alkyl), any hydrogen of an NH unit may optionally be replaced by R 4 (such as lower alkyl).
- L is —CH ⁇ CH—.
- the compound of Formula I has a structure of formula IA:
- each occurrence of R 4 is independently selected from hydrogen or lower alkyl (e.g., methyl or ethyl). In some embodiments of a compound of formula IA, both occurrences of R 4 are hydrogen.
- Y is —N ⁇ .
- X is —S—.
- Y is —N ⁇ .
- A is unsubstituted or substituted (C6-C10)-aryl, such as unsubstituted or substituted phenyl.
- the compound of Formula I has a structure of formula IA-1:
- A (and/or the phenyl ring bearing R 1 ) is selected from:
- n is 0-3, preferably 0, 1 or 2. In some embodiments, n is 0. In some embodiments, n is 1. In other embodiments, n is 2.
- each occurrence of R 1 when present, is independently selected from: halogen, lower alkyl, haloalkyl, alkoxy, haloalkoxy, and alkylthio. In some embodiments, when present, each occurrence of R 1 is independently selected from: —F, —Br, —Cl, —Me, —Et, —CF 3 , —OMe, —OEt, —OCF 3 , —OCHF 2 , and —SMe. In some embodiments, each occurrence of R 1 is independently selected from: —F, -Me, —CF 3 , —OMe, and —OEt.
- n is 1-3, and at least one R 1 is —F. In some embodiments, n is 1 or 2, and at least one R 1 is —F. In some embodiments, n is 2 and both R 1 are —F.
- the compound has a structure of formula IA-2:
- n is 1. In some embodiments of a compound of formula IA-2, n is 2. In some embodiments of a compound of formula IA-2, n is 2 and R 1 is —F.
- R 3 is hydrogen or lower alkyl (such as methyl or ethyl). In some embodiments, R 3 is hydrogen.
- m is 0-3, preferably 0, 1 or 2. In some embodiments, m is 0. In some embodiments, m is 1. In other embodiments, m is 2.
- each occurrence of R 4 is independently hydrogen or lower alkyl (such as methyl or ethyl).
- the disclosure also includes various combinations of n, m, L, A, X, Y, R 1 , R 2 , R 3 and R 4 as described above. These combinations can in turn be combined with any or all of the values of the other variables described above.
- the compound of this disclosure has a structure of Formula I:
- m is 0; A is phenyl; L is ethenylene (vinylene), preferably —CH ⁇ CH—; and each occurrence of R 1 is independently selected from: —F, -Me, —CF 3 , —OMe, and —OEt; and R 3 is hydrogen.
- the compound has a structure of formula IA:
- m is 0; A is phenyl; each occurrence of R 1 is independently selected from: —F, -Me, —CF 3 , —OMe, and OEt; R 3 is hydrogen; and each occurrence of R 4 is hydrogen.
- the compound of Formula IA is selected from:
- L 2 is a substituted or unsubstituted alkenyl group.
- R 22 and R 25 are both hydrogen.
- Z 2 is S.
- a 2 is pyridyl, such as pyridin-3-yl.
- R 23 and R 24 are both substituted or unsubstituted alkyl.
- m 0.
- the compound of Formula II is MI-181:
- the present disclosure provides a pharmaceutical composition
- a pharmaceutical composition comprising a compound of this disclosure, and a pharmaceutically acceptable carrier, adjuvant or vehicle.
- the present disclosure provides a method for treating cancer in a subject in need thereof, comprising administering to the subject an effective amount of a compound of this disclosure.
- the subject is a mammal, such as a human.
- the present disclosure provides a method of modulating microtubules in a cell, comprising contacting the cell with a compound of this disclosure.
- the compounds of this disclosure are more soluble in aqueous solutions, as compared to paclitaxel. In some embodiments, the compounds of this disclosure have a log S of ⁇ 8.4319 or higher. In some embodiments, the compounds of this disclosure have a log S selected from ⁇ 4.0 to ⁇ 8.5. In some embodiments, the compounds of this disclosure have a log S selected from ⁇ 5.0 to ⁇ 6.0.
- the compounds of this disclosure are highly soluble in aqueous saline solutions, such as phosphate buffered saline (PBS).
- PBS phosphate buffered saline
- the compounds of this disclosure can be delivered or administered as a solution or suspension in aqueous saline solutions, without any additional delivery vehicles (such as the Cremophor EL® formulation).
- the compounds of this disclosure can be administered orally.
- the compounds of this disclosure can effectively pass the blood brain barrier when administered, e.g., for treating brain cancers.
- the compounds of this disclosure bind to all tubulin isoforms. In some embodiments, the compounds described herein are effective in treating paclitaxel-resistant cancers that overexpress ⁇ -tubulin isoform 3.
- P-glycoprotein (P-gp) efflux pump (a product of the multidrug resistant gene MDR1) can transport paclitaxel out of the cell, thus rendering it ineffective.
- P-gp overexpressing cancers are resistant to paclitaxel.
- compounds of the disclosure are not substrates of these pumps and thus are effective against cancers that overexpress drug efflux pumps.
- the subject compounds are effective in paclitaxel-resistant cancers that have become resistant to paclitaxel due to mutagenesis of the ⁇ -tubulin taxane-binding site.
- the present disclosure provides a pharmaceutical composition
- a pharmaceutically acceptable carrier comprising a pharmaceutically acceptable carrier and a compound of this disclosure.
- Pharmaceutically acceptable carriers that may be used in these compositions include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene polyoxypropylene block polymers, polyethylene glycol and wool fat.
- the compounds of this disclosure may be prepared in general by methods known to those skilled in the art. Illustrated herein are general and synthetic routes to the compounds of the present disclosure. Other equivalent routes, which will be readily apparent to the ordinary skilled organic chemist, may alternatively be used to synthesize various portions of the molecules as illustrated herein.
- the present disclosure provides novel compounds of Formulas I, IA, IA-1, IA-2, and II, as well as salts and prodrugs thereof, which, together with the specific microtubule-inhibiting compounds disclosed herein, are the compounds of the disclosure. Accordingly, the present invention includes all uses of the compounds of the disclosure, including their use in compositions (such as pharmaceutical compositions) and therapeutic methods (e.g., for modulating cell division and other uses disclosed herein), as well as uses in diagnostic assays and as research tools.
- the compounds of the disclosure are useful in modulating microtubules, including destabilizing microtubules and/or inhibiting mitotic spindle formation, for the treatment of various conditions such as all proliferative disorders as mentioned above. Accordingly, the invention provides a method of modulating microtubules' stability and/or mitotic spindle formation, by administering an effective amount of a compound of the disclosure to a cell or subject in need thereof. In a further aspect, the invention provides a method of destabilizing microtubules and/or inhibiting mitotic spindle formation, by administering an effective amount of a compound of the disclosure to a cell or subject in need thereof.
- the present invention provides a method for modulating cell division and/or proliferation, comprising administering an effective amount of a compound of the disclosure to a cell or subject in need thereof.
- the invention provides a method of arresting cells during the process of cell division (mitosis), inducing apoptosis, and/or causing cell death, the method comprising administering an effective amount of a compound of the disclosure to a cell or subject in need thereof.
- the method of the disclosure is useful in inhibiting the division and/or proliferation of abnormal but not normal cells.
- Abnormal cells include any type of cell that is causative of or involved in a disease or condition and wherein it is desirable to modulate or inhibit the proliferation of the abnormal cell to treat the disease or condition. Examples of abnormal cells include malignant or cancerous cells as well as cell that over-proliferate in inflammatory conditions.
- the compounds of the disclosure are effective at killing cancer cells while at the same time they do not kill normal cells. These properties make the compounds of the disclosure useful as anti-cancer agents. Accordingly, in some embodiments, the present invention provides a method of inhibiting the division and/or proliferation (and in some cases, causing apoptosis) of a cancer cell, comprising administering an effective amount of a compound of the disclosure to a cell or subject in need thereof.
- Cancer cells that can be treated with a compound of the disclosure may be any type of cancer including, but not limited to, hematopoietic malignancies, including leukemias, lymphomas, and myelomas as well as other types of cancer including sarcomas, carcinomas, melanomas, adenomas, nervous system cancers and genitourinary cancers.
- leukemias include acute lymphoblastic leukemia (ALL), acute myelocytic leukemia (AML), acute myelomonocytic leukemia (AMML), chronic myeloid leukemia (CIVIL), chronic lymphocytic leukemia (CLL) and juvenile myelo-monocytic leukemia (JMML).
- the compounds and compositions of this disclosure are useful in treating a cancer selected from, but not limited to, ovarian cancer, cervical cancer, brain cancer, lung cancer, skin cancer, colorectal cancer, esophageal cancer, breast cancer, prostate cancer, leukemia, multiple myeloma, bone cancer, pancreatic cancer, bladder cancer, endometrial cancer, kidney cancer, liver cancer, eye cancer, pituitary cancer, testicular cancer, and stomach cancer.
- a cancer selected from, but not limited to, ovarian cancer, cervical cancer, brain cancer, lung cancer, skin cancer, colorectal cancer, esophageal cancer, breast cancer, prostate cancer, leukemia, multiple myeloma, bone cancer, pancreatic cancer, bladder cancer, endometrial cancer, kidney cancer, liver cancer, eye cancer, pituitary cancer, testicular cancer, and stomach cancer.
- the compounds and the compositions of this disclosure are useful in treating a myelodysplastic syndrome (MDS) in a subject in need thereof, comprising administering an effective amount of a compound or composition of the disclosure to a cell or subject in need thereof.
- MDS myelodysplastic syndrome
- compounds and compositions of Formula I are useful in treating MDS.
- compounds and compositions of Formula II are useful in treating MDS.
- Myelodysplastic syndrome (MDS) refers to a diverse group of hematopoietic stem cell disorders.
- MDS is characterized by a cellular marrow with impaired morphology and maturation (dysmyelopoiesis), peripheral blood cytopenias, and a variable risk of progression to acute leukemia, resulting from ineffective blood cell production.
- the compounds or compositions of this disclosure are useful in treating an MDS that is selected from, but not limited to, refractory anemia, refractory anemia with ringed sideroblasts, refractory anemia with excess blasts, refractory anemia with excess blasts in transformation and chronic myelomonocytic leukemia.
- the compounds of the disclosure are useful in treating other conditions involving aberrant or abnormal cell proliferation.
- compounds and compositions of Formula I are useful in treating conditions involving aberrant or abnormal cell proliferation.
- compounds and compositions of Formula II are useful in treating conditions involving aberrant or abnormal cell proliferation.
- Other cell proliferative disorders include inflammatory diseases, allergies, autoimmune disease, graft rejection psoriasis, restenosis, atherosclerosis, and any other disorder wherein it is desirable to inhibit, prevent, or suppress cell growth.
- Compounds of the disclosure may be tested for their efficacy in a particular cell proliferation disorder using assays and techniques known to those of skill in the art.
- Another aspect of this disclosure provides methods for treating a skin cancer in a subject in need thereof using a compound described herein.
- compounds and compositions of Formula I are useful in treating MDS.
- compounds and compositions of Formula II are useful in treating MDS.
- the skin cancer that may be treated by a compound described herein is a melanoma.
- the melanoma is selected from, but not limited to, lentigo maligna melanoma, superficial spreading melanoma, acral lentiginous melanoma, mucosal melanoma, nodular melanoma, polypoid melanoma, desmoplastic melanoma, amelanotic melanoma, soft-tissue melanoma, melanoma with small nevus-like cells, melanoma with features of a Spitz nevus, and uveal melanoma.
- the compounds of the disclosure are also useful in diagnostic assays, screening assays and as research tools.
- the compounds of the disclosure may be useful in identifying or detecting a cell proliferative disorder.
- the compounds of the disclosure may be radiolabelled (as hereinbefore described) and contacted with a population of cells. The presence of the radiolabel on the cells may indicate a cell proliferative disorder.
- the compounds of the disclosure may be used to identify other compounds that destabilize microtubules, modulate cell division and/or proliferation.
- the compounds may also be radiolabelled.
- the compounds of this disclosure can be used to synthesize additional analogs and derivatives to improve their therapeutic activity (e.g., anticancer activity), including but not limited to improved stability, solubility, potency, specificity, bioavailability, efficacy, and delivery.
- the compounds of this disclosure can be used to synthesize additional analogs and derivatives to decrease their side effects, including but not limited to its toxicity or unwanted metabolites.
- the compounds of the disclosure are formulated into pharmaceutical compositions for administration to subjects (such as human subjects) in a biologically compatible form suitable for administration in vivo.
- the present invention provides a pharmaceutical composition comprising a compound of the disclosure in admixture with a suitable diluent or carrier. Such a composition is useful for treating the conditions described herein.
- compositions containing the compounds of the disclosure can be prepared by known methods for the preparation of pharmaceutically acceptable compositions which can be administered to subjects, such that an effective quantity of the active substance is combined in a mixture with a pharmaceutically acceptable vehicle.
- suitable vehicles are described, for example, in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA 1985).
- the compositions include, albeit not exclusively, solutions of the substances in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffered solutions with a suitable pH and iso-osmotic with the physiological fluids.
- the compounds of this invention may be used in treating the conditions described herein, in the form of the free base, salts (preferably pharmaceutically acceptable salts), solvates, hydrates, prodrugs, isomers, or mixtures thereof. All forms are within the scope of the disclosure. Acid addition salts may be formed and provide a more convenient form for use; in practice, use of the salt form inherently amounts to use of the base form.
- the acids which can be used to prepare the acid addition salts include preferably those which produce, when combined with the free base, pharmaceutically acceptable salts, that is, salts whose anions are non-toxic to the subject organism in pharmaceutical doses of the salts, so that the beneficial properties inherent in the free base are not vitiated by side effects ascribable to the anions.
- Pharmaceutically acceptable salts within the scope of the disclosure include those derived from the following acids; mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid and sulfamic acid; and organic acids such as acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, quinic acid, and the like.
- the described compounds may be administered to a patient in a variety of forms depending on the selected route of administration, as will be understood by those skilled in the art.
- the compositions of the disclosure may be administered orally or parenterally.
- Parenteral administration includes intravenous, intraperitoneal, subcutaneous, intramuscular, transepithelial, nasal, intrapulmonary, intrathecal, rectal and topical modes of administration. Parenteral administration may be by continuous infusion over a selected period of time.
- compositions suitable for parenteral administration may comprise the compound of the present disclosure in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or non-aqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
- aqueous and non-aqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
- polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
- vegetable oils such as olive oil
- injectable organic esters such as ethyl oleate.
- Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- a composition comprising a compound of the present disclosure may also contain adjuvants, such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption, such as aluminum monostearate and gelatin.
- compositions comprising a compound of the present disclosure can be administered orally, e.g., in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and the like, each containing a predetermined amount of the compound of the present disclosure as an active ingredient.
- inert base such as gelatin and glycerin, or sucrose and acacia
- one or more compositions comprising the compound of the present disclosure may be mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose, and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting
- pharmaceutically acceptable carriers such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders
- compositions may also comprise buffering agents.
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol (ethanol), isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- the oral compositions can also include adjuvants such as wetting agents, emulsifying
- Suspensions in addition to the active compounds, salts and/or prodrugs thereof, may contain suspending agents such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- suspending agents such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersion and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the compounds of the disclosure may be administered to a subject in need thereof alone or in combination with pharmaceutically acceptable carriers, as noted above, the proportion of which is determined by the solubility and chemical nature of the compound, chosen route of administration and standard pharmaceutical practice.
- the dosage of the compounds and/or compositions of the disclosure can vary depending on many factors such as the pharmacodynamic properties of the compound, the mode of administration, the age, health and weight of the recipient, the nature and extent of the symptoms, the frequency of the treatment and the type of concurrent treatment, if any, and the clearance rate of the compound in the subject to be treated.
- One of skill in the art can determine the appropriate dosage based on the above factors.
- the compounds of the disclosure may be administered initially in a suitable dosage that may be adjusted as required, depending on the clinical response.
- HED human equivalent dose
- HED mouse dose (mg/kg) ⁇ 0.08
- the compounds of the disclosure can be used alone or conjointly with other therapeutic agents, or in combination with other types of treatment (which may or may not modulate stability of microtubules) for treating cell proliferative disorders.
- these other therapeutically useful agents may be administered in a single formulation, simultaneously or sequentially with the compound of the present disclosure according to the methods of the disclosure.
- the compounds of the disclosure may be used in combination with other therapies and therapeutics to treat leukemia.
- the method of treating or preventing cancer may comprise administering a compound or composition of the disclosure conjointly with one or more other chemotherapeutic agent(s).
- Chemotherapeutic agents that may be conjointly administered with compounds or compositions of the disclosure include: aminoglutethimide, amsacrine, anastrozole, asparaginase, bcg, bicalutamide, bleomycin, bortezomib, buserelin, busulfan, campothecin, capecitabine, carboplatin, carfilzomib, carmustine, chlorambucil, chloroquine, cisplatin, cladribine, clodronate, colchicine, cyclophosphamide, cyproterone, cytarabine, dacarbazine, dactinomycin, daunorubicin, demethoxyviridin, dichloroacetate, dienestrol, diethy
- the chemotherapeutic agent conjointly administered with compounds of the disclosure is a taxane chemotherapeutic agent, such as paclitaxel or docetaxel.
- the chemotherapeutic agent conjointly administered with compounds of the disclosure is doxorubicin.
- a compound of the disclosure is administered conjointly with a taxane chemotherapeutic agent (e.g., paclitaxel) and doxorubicin.
- combination therapies have been developed for the treatment of cancer.
- compounds or compositions of the disclosure may be conjointly administered with a combination therapy.
- Examples of combination therapies with which compounds of the disclosure may be conjointly administered are included in Table 1.
- a compound or composition of the disclosure may be conjointly administered with non-chemical methods of cancer treatment.
- a compound or composition of the disclosure may be conjointly administered with radiation therapy.
- a compound or composition of the disclosure may be conjointly administered with surgery, with thermoablation, with focused ultrasound therapy, with cryotherapy, or with any combination of these.
- different compounds of the disclosure may be conjointly administered with one or more other compounds of the disclosure.
- such combinations may be conjointly administered with other therapeutic agents, such as other agents suitable for the treatment of cancer, such as the agents identified above.
- compositions and methods described herein may be adapted and modified as is appropriate for the application being addressed and that the compositions and methods described herein may be employed in other suitable applications, and that such other additions and modifications will not depart from the scope hereof.
- the compounds and compositions of this disclosure can be used as research tools or chemical probes to, for example, understand normal cell or cancer cell biological processes, including but not limited to microtubule dynamics, cell division, cell proliferation, and the types of cells that are resistant or sensitive to the compounds or compositions of this disclosure.
- the disclosure contemplates all uses of the compounds and compositions of the disclosure, including their use in therapeutic methods and compositions for modulating cell division, their use in diagnostic assays and their use as research tools.
- agent is used herein to denote a chemical compound (such as an organic or inorganic compound, a mixture of chemical compounds), a biological macromolecule (such as a nucleic acid, an antibody, including parts thereof as well as humanized, chimeric and human antibodies and monoclonal antibodies, a protein or portion thereof, e.g., a peptide, a lipid, a carbohydrate), or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues.
- Agents include, for example, agents whose structure is known, and those whose structure is not known. The microtubule-stabilizing or -destabilizing activity of such agents may render them suitable as “therapeutic agents” in the methods and compositions of this disclosure.
- a “patient,” “subject,” or “individual” are used interchangeably and refer to either a human or a non-human animal. These terms include mammals, such as humans, primates, livestock animals (including bovines, porcines, etc.), companion animals (e.g., canines, felines, etc.) and rodents (e.g., mice and rats).
- Treating” a condition or patient refers to taking steps to obtain beneficial or desired results, including clinical results.
- treatment is an approach for obtaining beneficial or desired results, including clinical results.
- Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable.
- Treatment can also mean prolonging survival as compared to expected survival if not receiving treatment.
- preventing is art-recognized, and when used in relation to a condition, such as a local recurrence (e.g., pain), a disease such as cancer, a syndrome complex such as heart failure or any other medical condition, is well understood in the art, and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition.
- a condition such as a local recurrence (e.g., pain)
- a disease such as cancer
- a syndrome complex such as heart failure or any other medical condition
- prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, e.g., by a statistically and/or clinically significant amount.
- administering or “administration of” a substance, a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art.
- a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitoneally, subcutaneously, ocularly, sublingually, orally (by ingestion), intranasally (by inhalation), intraspinally, intracerebrally, and transdermally (by absorption, e.g., through a skin duct).
- a compound or agent can also appropriately be introduced by rechargeable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow or controlled release of the compound or agent.
- Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
- a compound or an agent is administered orally, e.g., to a subject by ingestion.
- the orally administered compound or agent is in an extended release or slow release formulation, or administered using a device for such slow or extended release.
- the phrase “conjoint administration” refers to any form of administration of two or more different therapeutic agents such that the second agent is administered while the previously administered therapeutic agent is still effective in the body (e.g., the two agents are simultaneously effective in the patient, which may include synergistic effects of the two agents).
- the different therapeutic compounds can be administered either in the same formulation or in separate formulations, either concomitantly or sequentially.
- an individual who receives such treatment can benefit from a combined effect of different therapeutic agents.
- a “therapeutically effective amount” or a “therapeutically effective dose” of a drug or agent is an amount of a drug or an agent that, when administered to a subject will have the intended therapeutic effect.
- the full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses.
- a therapeutically effective amount may be administered in one or more administrations.
- the precise effective amount needed for a subject will depend upon, for example, the subject's size, health and age, and the nature and extent of the condition being treated, such as cancer or MDS. The skilled worker can readily determine the effective amount for a given situation by routine experimentation.
- antimitotic agent(s) or “antimitotic(s)”, as used herein, means a compound (or compounds) that inhibits cell growth by interfering with cell division.
- Antimitotic agents include antimicrotubule agents, mitotic inhibitors, and/or taxanes.
- Docetaxel and paclitaxel are exemplary antimitotic agents.
- Antimitotic agents that interact with tubulin protein are of interest because of their potential uses in the treatment of human neoplastic and inflammatory diseases.
- the compounds as described herein target the microtubules.
- Important dynamics of the microtubule polymers include their growth rate at the plus ends, catastrophic shortening, frequency of transition between the two phases, pause between the two phases, their release from the microtubule organizing center, and treadmilling (Margolis and Wilson, 1981; Mitchison and Kirschner, 1984; Kirschner and Mitchison, 1986; Margolis and Wilson, 1998; Jordan and Wilson, 2004).
- the compounds of this disclosure disrupt the normal microtubule dynamics by acting on (or affecting) one or more of the above aspects of the microtubule dynamics.
- acyl is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)—, preferably alkylC(O)—.
- acylamino is art-recognized and refers to an amino group substituted with an acyl group and may be represented, for example, by the formula hydrocarbylC(O)NH—.
- acyloxy is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)O—, preferably alkylC(O)O—.
- alkoxy refers to an alkyl group having an oxygen attached thereto.
- Representative alkoxy groups include methoxy, ethoxy, propoxy, tert-butoxy and the like.
- alkoxyalkyl refers to an alkyl group substituted with an alkoxy group and may be represented by the general formula alkyl-O-alkyl.
- alkyl refers to saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl-substituted cycloalkyl groups, and cycloalkyl-substituted alkyl groups.
- a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (e.g., C 1-30 for straight chains, C 3-30 for branched chains), and more preferably 20 or fewer.
- alkyl as used throughout the specification, examples, and claims is intended to include both unsubstituted and substituted alkyl groups, the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone, including haloalkyl groups such as trifluoromethyl and 2,2,2-trifluoroethyl, etc.
- C x-y or “Cx-Cy”, when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups that contain from x to y carbons in the chain.
- C 0 alkyl indicates a hydrogen where the group is in a terminal position, a bond if internal.
- a C 1-6 alkyl group for example, contains from one to six carbon atoms in the chain.
- alkylamino refers to an amino group substituted with at least one alkyl group.
- alkylthio refers to a thiol group substituted with an alkyl group and may be represented by the general formula alkyl S—.
- amide refers to a group
- R 9 and R 10 each independently represent a hydrogen or hydrocarbyl group, or R 9 and R 10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- amine and “amino” are art-recognized and refer to both unsubstituted and substituted amines and salts thereof, e.g., a moiety that can be represented by
- R 9 , R 10 , and R 10′ each independently represent a hydrogen or a hydrocarbyl group, or R 9 and R 10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- aminoalkyl refers to an alkyl group substituted with an amino group.
- aralkyl refers to an alkyl group substituted with an aryl group.
- aryl as used herein include substituted or unsubstituted single-ring aromatic groups in which each atom of the ring is carbon.
- the ring is a 5- to 7-membered ring, more preferably a 6-membered ring.
- aryl also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
- Aryl groups include benzene, naphthalene, phenanthrene, phenol, aniline, and the like.
- R 9 and R 10 independently represent hydrogen or a hydrocarbyl group.
- Carbocyclylalkyl refers to an alkyl group substituted with a carbocycle group.
- carbocycle refers to a non-aromatic saturated or unsaturated ring in which each atom of the ring is carbon.
- a carbocycle ring contains from 3 to 10 atoms, more preferably from 5 to 7 atoms.
- Carbocyclylalkyl refers to an alkyl group substituted with a carbocycle group.
- carbonate is art-recognized and refers to a group —OCO 2 —.
- esters refers to a group —C(O)OR 9 wherein R 9 represents a hydrocarbyl group.
- ether refers to a hydrocarbyl group linked through an oxygen to another hydrocarbyl group. Accordingly, an ether substituent of a hydrocarbyl group may be hydrocarbyl-O—. Ethers may be either symmetrical or unsymmetrical. Examples of ethers include, but are not limited to, heterocycle-O-heterocycle and aryl-O-heterocycle. Ethers include “alkoxyalkyl” groups, which may be represented by the general formula alkyl-O-alkyl.
- halo and “halogen” as used herein means halogen and includes chloro, fluoro, bromo, and iodo.
- heteroalkyl and “heteroaralkyl”, as used herein, refers to an alkyl group substituted with a hetaryl group.
- heteroaryl and “hetaryl” include substituted or unsubstituted aromatic single ring structures, preferably 5- to 7-membered rings, more preferably 5- to 6-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms.
- heteroaryl and “hetaryl” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heteroaromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
- Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like.
- heteroatom as used herein means an atom of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, and sulfur.
- heterocyclylalkyl refers to an alkyl group substituted with a heterocycle group.
- heterocyclyl refers to substituted or unsubstituted non-aromatic ring structures, preferably 3- to 10-membered rings, more preferably 3- to 7-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms.
- heterocyclyl and “heterocyclic” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heterocyclic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
- Heterocyclyl groups include, for example, piperidine, piperazine, pyrrolidine, morpholine, lactones, lactams, and the like.
- hydrocarbyl refers to a group that is bonded through a carbon atom that does not have a ⁇ O or ⁇ S substituent, and typically has at least one carbon-hydrogen bond and a primarily carbon backbone, but may optionally include heteroatoms.
- groups like methyl, ethoxyethyl, 2-pyridyl, and even trifluoromethyl are considered to be hydrocarbyl for the purposes of this application, but substituents such as acetyl (which has a ⁇ O substituent on the linking carbon) and ethoxy (which is linked through oxygen, not carbon) are not.
- Hydrocarbyl groups include, but are not limited to aryl, heteroaryl, carbocycle, heterocycle, alkyl, alkenyl, alkynyl, and combinations thereof.
- hydroxyalkyl refers to an alkyl group substituted with a hydroxy group.
- lower when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups where there are ten or fewer atoms in the substituent, preferably six or fewer.
- acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy substituents defined herein are respectively lower acyl, lower acyloxy, lower alkyl, lower alkenyl, lower alkynyl, or lower alkoxy, whether they appear alone or in combination with other substituents, such as in the recitations hydroxyalkyl and aralkyl (in which case, for example, the atoms within the aryl group are not counted when counting the carbon atoms in the alkyl substituent).
- polycyclyl refers to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls) in which two or more atoms are common to two adjoining rings, e.g., the rings are “fused rings”.
- Each of the rings of the polycycle can be substituted or unsubstituted.
- each ring of the polycycle contains from 3 to 10 atoms in the ring, preferably from 5 to 7.
- sulfate is art-recognized and refers to the group —OSO 3 H, or a pharmaceutically acceptable salt thereof.
- R 9 and R 10 independently represents hydrogen or hydrocarbyl.
- sulfoxide is art-recognized and refers to the group —S(O)—.
- sulfonate is art-recognized and refers to the group SO 3 H, or a pharmaceutically acceptable salt thereof.
- substituted refers to moieties having substituents replacing a hydrogen on one or more carbons of the backbone. It will be understood that “substitution” or “substituted with” includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds.
- the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and non-aromatic substituents of organic compounds.
- the permissible substituents can be one or more and the same or different for appropriate organic compounds.
- the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms.
- Substituents can include any substituents described herein, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic mo
- thioalkyl refers to an alkyl group substituted with a thiol group.
- thioester refers to a group —C(O)SR 9 or —SC(O)R 9 wherein R 9 represents a hydrocarbyl.
- thioether is equivalent to an ether, wherein the oxygen is replaced with a sulfur.
- urea is art-recognized and may be represented by the general formula
- R 9 and R 10 independently represent hydrogen or a hydrocarbyl.
- modulate includes the inhibition or suppression of a function or activity (such as cell proliferation) as well as the enhancement of a function or activity.
- compositions, excipients, adjuvants, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- “Pharmaceutically acceptable salt” or “salt” is used herein to refer to an acid addition salt or a basic addition salt which is suitable for or compatible with the treatment of patients.
- pharmaceutically acceptable acid addition salt means any non-toxic organic or inorganic salt of any base compounds represented by Formula I.
- Illustrative inorganic acids which form suitable salts include hydrochloric, hydrobromic, sulfuric and phosphoric acids, as well as metal salts such as sodium monohydrogen orthophosphate and potassium hydrogen sulfate.
- Illustrative organic acids that form suitable salts include mono-, di-, and tricarboxylic acids such as glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, benzoic, phenylacetic, cinnamic and salicylic acids, as well as sulfonic acids such as p-toluene sulfonic and methanesulfonic acids. Either the mono or di-acid salts can be formed, and such salts may exist in either a hydrated, solvated or substantially anhydrous form.
- mono-, di-, and tricarboxylic acids such as glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, benzoic, phenylacetic, cinnamic and salicylic acids, as well as sul
- the acid addition salts of compounds of Formula I are more soluble in water and various hydrophilic organic solvents, and generally demonstrate higher melting points in comparison to their free base forms.
- the selection of the appropriate salt will be known to one skilled in the art.
- Other non-pharmaceutically acceptable salts e.g., oxalates, may be used, for example, in the isolation of compounds of Formula I for laboratory use, or for subsequent conversion to a pharmaceutically acceptable acid addition salt.
- pharmaceutically acceptable basic addition salt means any non-toxic organic or inorganic base addition salt of any acid compounds represented by Formula I or any of their intermediates.
- Illustrative inorganic bases which form suitable salts include lithium, sodium, potassium, calcium, magnesium, or barium hydroxide.
- Illustrative organic bases which form suitable salts include aliphatic, alicyclic, or aromatic organic amines such as methylamine, trimethylamine and picoline or ammonia. The selection of the appropriate salt will be known to a person skilled in the art.
- stereogenic center in their structure.
- This stereogenic center may be present in a R or a S configuration, said R and S notation is used in correspondence with the rules described in Pure Appl. Chem. (1976), 45, 11-30.
- the disclosure contemplates all stereoisomeric forms such as enantiomeric and diastereoisomeric forms of the compounds, salts, prodrugs or mixtures thereof (including all possible mixtures of stereoisomers). See, e.g., WO 01/062726.
- Prodrug or “pharmaceutically acceptable prodrug” refers to a compound that is metabolized, for example hydrolyzed or oxidized, in the host after administration to form the compound of the present disclosure (e.g., compounds of formula I).
- Typical examples of prodrugs include compounds that have biologically labile or cleavable (protecting) groups on a functional moiety of the active compound.
- Prodrugs include compounds that can be oxidized, reduced, aminated, deaminated, hydroxylated, dehydroxylated, hydrolyzed, dehydrolyzed, alkylated, dealkylated, acylated, deacylated, phosphorylated, or dephosphorylated to produce the active compound.
- prodrugs using ester or phosphoramidate as biologically labile or cleavable (protecting) groups are disclosed in U.S. Pat. Nos. 6,875,751, 7,585,851, and 7,964,580, the disclosures of which are incorporated herein by reference.
- the prodrugs of this disclosure are metabolized to produce a compound of Formula I.
- the present disclosure includes within its scope, prodrugs of the compounds described herein. Conventional procedures for the selection and preparation of suitable prodrugs are described, for example, in “Design of Prodrugs” Ed. H. Bundgaard, Elsevier, 1985.
- pharmaceutically acceptable carrier means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filter, diluent, excipient, solvent or encapsulating material useful for formulating a drug for medicinal or therapeutic use.
- myelodysplastic syndrome means a hematopoietic stem cell disorder characterized by one or more of the following: ineffective blood cell production, progressive cytopenias, risk of progression to acute leukemia or cellular marrow with impaired morphology and maturation (dysmyelopoiesis).
- myelodysplastic syndrome includes, but is not limited to, refractory anemia, refractory anemia with ringed sideroblasts, refractory anemia with excess blasts, refractory anemia with excess blasts in transformation and chronic myelomonocytic leukemia.
- Log of solubility is used in the art to quantify the aqueous solubility of a compound.
- the aqueous solubility of a compound significantly affects its absorption and distribution characteristics. A low solubility often goes along with a poor absorption.
- Log S value is a unit stripped logarithm (base 10) of the solubility measured in mol/liter.
- Morpholine (20.4 g, 0.234 mol) was added dropwise to a mixture of cyclohexanone (10.0 g, 0.102 mol), ethyl cyanoacetate (11.53 g, 0.102 mol), and sulfur (2.9 g, 0.094 mol) in 30 mL of ethanol at ambient temperature in 20 min.
- the reaction was exothermic, so the temperature increased to 50° C., and a clear solution was obtained. It was filtered from solids and cooled to 0-5° C. After stirring for 1 h the product was filtered off, washed with chilled ethanol (15 mL) and sucked dry. The obtained cake was dried in an oven at 50° C. for 3 h to obtain 14 g of the title product.
- the cell viability IC 50 of each compound was determined using Promega CellTiter-Glo Luminescent Cell Viability Assay kit by measuring the total ATP levels to quantify the number of metabolically active cells upon drug treatment as described in Crouch et al., J Immunol Methods 1993, 160, (1), 81-8. Briefly, the compounds were suspended in DMSO at 10 mM and diluted in 384 plates (20 ⁇ l/well in DMSO) in triplicate by a 14-point titration (12 nM to 100 ⁇ M).
- Cells used in Example 2 and other examples disclosed herein were cultured as follows: Adherent HeLa cells and patient derived glioblastoma cells were grown with 5% CO 2 at 37° C. in F12:DMEM 50:50 medium (Invitrogen) containing 10% FBS and 1% penicillin/streptomycin. To obtain HeLa cells synchronized in mitosis, cycling cells were treated with 2 mM thymidine (Sigma-Aldrich) for eighteen hours, washed three times with PBS, and released into fresh media until they entered mitosis eight hours post-release. Patient-derived glioblastoma cells (HK-309) were collected and grown with approval from the UCLA Institutional Review Board.
- HK-309 was derived from a recurrent glioblastoma taken from a 55 year old male.
- the cells were initially propagated as cancer stem cell-containing spheres in serum-free medium containing basic fibroblast growth factor and epidermal growth factor (Preprotech) as described previously by Visnyei et al., Mol Cancer Ther 2011, 10, (10), 1818-28.
- Preprotech basic fibroblast growth factor and epidermal growth factor
- in vitro microtubule polymerization reactions were performed with the most potent compounds (10-10b) using the HTS-tubulin polymerization assay kit from Cytoskeleton Inc. Briefly, tubulin polymerization assays were conducted using the HTS-Tubulin polymerization assay kit from Cytoskeleton Inc. The reactions were carried out according to the manufacturer instructions (Cytoskeleton, BK011P) in the presence of 3 ⁇ M of test compounds (10, 10a, and 10b) and controls (DMSO, colchicine and taxol).
- microtubule polymerization was monitored by reading the fluorescence at 420 nm (due to the incorporation of a fluorescent reporter into microtubules as polymerization occurs) every ten seconds using a Tecan M1000 microplate reader ( FIG. 6B ). Fluorescence increased as polymerization occurred, due to the incorporation of 4′,6-diamidino-2-phenylindole. Fluorescence was monitored every minute for 70 minutes at 37° C. See FIG. 2 . Both endpoint and kinetic measurements indicated that in vitro 10, 10a and 10b were potent inhibitors of microtubule polymerization similar to colchicine.
- microtubule stability was analyzed in HeLa cells treated with increasing concentrations of each of these three compounds by fixing the cells with 4% paraformaldehyde, staining them with Hoechst 33342 (DNA dye) to visualize their DNA and anti- ⁇ -tubulin antibodies to visualize microtubule structures and then imaging them by immunofluorescence microscopy.
- Hoechst 33342 DNA dye
- This analysis showed that, similar to colchicine, the microtubules of 10, 10a and 10b-treated cells became destabilized in a drug dose-dependent manner.
- FIG. 1 shows the cell cycle histogram of cells treated with DMSO, colchicine or compound 10. Additionally, HeLa cells were treated with increasing concentrations of colchicine and compound 10 for 20 hours and the drug response dose curves were used to measure the mitotic arrest IC 50 for each treatment. See FIG. 3 .
- Live-cell time-lapse microscopy was carried out essentially as described by Torres et al., Cell 2011, 147, (6), 1309-23. Briefly, HeLa-FUCCI cells were arrested with 2 mM thymidine for eighteen hours, washed three times with PBS, and released into fresh media. Six hours postrelease, cells were treated with indicated small molecules and imaged live at 20 ⁇ magnification with ten Z-stacks, one every 1 ⁇ m, for twelve hours at ten-minute intervals. Images were captured with a Leica DMI6000 microscope (Leica Microsystems), processed using LSF software and converted to Apple QuickTime movies. Each frame represents a fifteen-minute interval. Data quantitation represents the average ⁇ SD (standard deviation) of 3 independent experiments, with 20 cells counted for each.
- MI-181 had broad anti-cancer activity
- MCF7 cervical adenocarcinoma
- M233 breast adenocarcinoma
- M233 melanoma
- osteosarcoma U20S
- CCRF-CEM acute lymphoblastic leukemia
- NCI-H460 non-small cell lung carcinoma
- MCF7 breast adenocarcinoma
- IC 50 18 nM-90 nM
- BRAFV 600E cell lines were slightly more sensitive than NRAS Q61L cell lines and MI-181 was effective in Vemurafenib and Trametinib resistant cell lines ( FIG. 10 c and Table 3).
- MI-181 is a potent inhibitor of melanoma cell lines.
- Example 9 Microtubule Polymerization Assays (In Vitro Tubulin Polymerization Assays)
- Tubulin polymerization reactions were carried out according to the manufacturer (Cytoskeleton, BK011P) in the presence of 3 ⁇ M colchicine, MI-181, taxol or DMSO. Polymerization was monitored with a Tecan M1000 micro-plate reader at 420 nm for 70 minutes at 37° C. The results are depicted in FIG. 11 .
- Example 10 Antibodies (for Inhibition Reversibility Study, FIGS. 5 and 6 )
- Phospho-histone-H3-488 (Ser10) (p-H3-488, Cell Signaling), ⁇ -tubulin (Serotec), AurKB (BD Transduction), Anti-Centromere-Antibodies (ACA, Cortex Biochem), cyclin A and B (Santa Cruz Biotechnology), and SECURIN (Gene Tex).
- BubR1 and Bub1 were from Hongtao Yu.
- FITC-, Cy3- and Cy5-conjugated secondary antibodies were from Jackson Immuno Research.
- HeLa cells were plated in 384-well plates (1500 cells/well) and treated with 10 ⁇ M drugs for 20 hours. Cells were fixed and stained with 5 ⁇ M Vybrant DyeCycle Green (Invitrogen) for 1 hour at room temperature and plates were scanned with an Acumen eX3 (TTP Labtech) fluorescence cytometer using its 488 nm laser and a cell cycle histogram profile was generated for each well.
- Vybrant DyeCycle Green Invitrogen
- Acumen eX3 TTP Labtech
- Z′ factor 1-3 ⁇ ( ⁇ p + ⁇ n )/(
- HeLa FUCCI fluorescent ubiquitination-based cell cycle indicator cell line, where S through M-phase cells are green due to expression of the mAG-hGeminin fusion protein, and G1-phase cells are red due to expression of the mKO2-hCdt1 fusion protein
- cells were released from G1/S in the presence of indicated drug or control DMSO and ten Z-stack images (0.9 ⁇ m steps) were captured 6 hours post-release at 15-minute intervals.
- Non-melanoma cell lines were purchased from ATCC, which verified identity by short-tandem repeat profiling, were passaged for less than 6 months following receipt and were maintained in F12:DMEM 50:50 medium (GIBCO) with 10% FBS, 2 mM L-glutamine and antibiotics, in 5% CO 2 at 37° C.
- Melanoma cell lines were established from patient biopsies under UCLA IRB approval #02-08-067, as described in: Sondergaard J. N., et al. Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032 . J Transl Med 2010, 8: 39.
- Melanoma cell lines were genotyped using Oncomap3 platform for 33 genes, Affymetrix Gene Chip for SNP and IonTorrent for next-generation sequencing, were passaged for less than 6 months following verification, and were maintained in RPMI (GIBCO) with 10% FBS and antibiotics in 5% CO 2 at 37° C., as described previously (Sondergaard, op. cit.) For G1/S arrests, cells were treated with 2 mM thymidine (Sigma-Aldrich) for 18 hours.
- Mitotic arrest IC 50 was determined by_measuring the percent G2/M arrest using the Vybrant DyeCycle Green (Invitrogen) assay described above. Cell viability IC 50 was determined using the CellTiter-Glo Assay (Promega), which measures total ATP levels. Plates were read with a Tecan M1000 micro-plate reader at 540 nm. The CDD software was used for generating IC 50 and IC 90 values.
- TTL tubulin tyrosine ligase
- the crystal soaked with MI-181 exhibited diffraction to at least 2.60 ⁇ and the crystal soaked with C2 diffracted to at least 3.75 ⁇ .
- the final resolution cutoffs described here were determined optimally from a subset of diffraction images that took into consideration the signal-to-noise ratio for reflection intensities and the random half-data set correlation coefficient, CC 1/2 (Karplus P. A., Diederichs K. Linking crystallographic model and data quality. Science 2012, (New York, N.Y.) 336:1030-1033.)
- T 2 R-TTL structures with MI-181 and C2 bound to ⁇ -tubulin identify the previously unknown binding sites for each compound [ FIGS. 7(B) and 7(C) ].
- Secondary structure elements and sequence numbering of tubulin are based on the initial structural studies of tubulin (Nogales E., et al. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 1998, 391:199-203.). Both compounds occupy a binding pocket in the intermediate domain of ⁇ -tubulin that forms the interface with the ⁇ -subunit (residues 206-384).
- nucleotide-binding domain (residues 1-205) and a C-terminal helical domain from residue 385 to the C-terminus. Only MI-181 is in proximity to the nucleotide-binding domain, which binds and hydrolyzes GTP within the ⁇ -subunit.
- Tubulin retains a curved structure in the presence of MI-181 and C2 as observed similarly with colchicine and other molecules that interact with the expansive binding pocket on ⁇ -tubulin (Ravelli R. B., Gigant B., et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004, 428:198-202; Dorleans A., Gigant B., et al. Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. PNAS 2009, 106:13775-13779; Prota A. E., Danel F., op.
- Luria-Bertani medium also known as lysogeny broth (LB) was purchased from EMD Millipore (Gibbstown, N.J.) (Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 1951,62:293-300.) Antibiotics, DNase I, and lysozyme were from Sigma Chemical Company (St. Louis, Mo.). Isopropyl ⁇ -D-1-thiogalactopyranoside (IPTG) and dithiothreitol (DTT) were from Gold Biotechnology, Inc. (St. Louis, Mo.). The compounds MI-181 and C2 (>95% purity) were purchased through MolPort (Riga, Norway). Protease inhibitor tablets and other chemicals were from Roche and Fisher Scientific, respectively (Indianapolis, Ind. and Pittsburgh, Pa.).
- the rat STMN4 stathmin-like domain with mutations Cys14Ala and Phe20Trp and chicken TTL genes were cloned into pET22b(+) (Novagen) with no additional residues or a C-terminal hexahistidine tag, respectively.
- the proteins were recombinantly expressed and purified using established methods (Prota A. E., Bargsten K., et al., op. cit.; Charbaut E., et al. Stathmin family proteins display specific molecular and tubulin binding properties. J Biol Chem 2001, 276:16146-16154.) Lyophilized bovine brain tubulin (>99% purity) was purchased from Cytoskeleton, Inc.
- MR solutions were initially refined with rigid-body refinement using the phenix.refine module of PHENIX (Adams P. D., et al. PHENIX: building new software for automated crystallographic structure determination. Acta crystallographica Section D, Biological crystallography 2002, 58:1948-1954.)
- Ligand structures and restraints for MI-181 and C2 were generated with SMILES input for phenix.eLBOW (Moriarty N. W. et al. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation.
- Certain compounds of Formula II such as MI-181, were shown to be potent anticancer agents.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application is a U.S. National Stage of International Patent Application No. PCT/US2016/034286, filed May 26, 2016, which claims the benefit of U.S. Provisional Patent Application No. 62/167,526, filed May 28, 2015, and U.S. Provisional Patent Application No. 62/191,738, filed Jul. 13, 2015, the contents of each of which are fully incorporated by reference herein in their entirety.
- This invention was made with Government support under TR000124 and CA016042, awarded by the National Institutes of Health. The Government has certain rights in the invention.
- This disclosure relates to compounds useful in compositions and methods for treating hyperproliferative disorders, including cancers.
- The cell cycle is a set of coordinated events that culminate in the formation of two cells from one mother cell. It is composed of four major phases; G1 (growth phase 1), S (DNA synthesis phase), G2 (growth phase 2) and M (mitosis), which function to integrate environment sensing signaling pathways with cell growth and proliferation. (Schwartz G. K., Shah M. A. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 2005, 23(36): 9408-9421.) Cancer cells often deregulate the cell cycle and undergo unscheduled cell divisions. Therefore, inhibition of the the cell cycle represents an opportunity for therapeutic intervention in treating proliferative diseases like cancer. (Williams G. H., Stoeber K. The cell cycle and cancer. J Pathol 2012, 226(2): 352-364.) Most anticancer drugs perturb the proliferation cycle of tumor cells by inhibiting/damaging cell cycle events, which activate checkpoints, arrest cells and induce apoptosis. (Manchado, E., et al., Killing cells by targeting mitosis. Cell Death Differ 2012, 19, (3), 369-77.) For example, inhibitors targeting DNA replication (5-fluorouracil) and cell division (microtubule-stabilizing paclitaxel) have been used successfully for treating a broad array of cancers including breast and colorectal. (Williams, op. cit.)
- Many anticancer drugs perturb the proliferation cycle of tumor cells. These drugs are broadly classified into those acting in interphase, such as DNA damaging agents, and those acting in mitosis, so-called antimitotic drugs. Antimitotics are a group of natural and synthetic small molecules that function by activating the spindle assembly checkpoint (SAC), which arrests cells in mitosis until proper microtubule-kinetochore attachment occurs. (Gascoigne, K E et al., Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 2008, 14, (2), 111-22; Shi, J., et al., Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res 2008, 68, (9), 3269-76.) Prolonged mitotic arrest activates an apoptotic response leading to cell death. (Matson, D. R.; Stukenberg, P. T., Spindle poisons and cell fate: a tale of two pathways. Mol Interv 2011, 11, (2), 141-50.) This process occurs through p38, JNK, and CKII kinase mediated phosphorylation of Mcl1, which targets Mcl1 for ubiquitination by the SCF-Fbw7 ubiquitin ligase and proteosome-dependent degradation. (Matson op. cit.; Wertz, I. E., et al., Sensitivity to anitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 2011, 471, (7336), 100-4; Manchado, op. cit.) Mcl1 destruction relieves its inhibiton of Bax and Bak (pro-apoptotic factors), allowing them to bind the mitochondrial outer membrane to induce an apoptotic cell death. (Matson; Wertz; Manchado, op. cit.)
- Current antimitotics work through binding and inhibition of three major classes of molecules; microtubules, kinases, and kinesins. (Manchado, op. cit.) For example, GSK-461363, a polo like kinase 1 (Plk1) ATP-competitive inhibitor, blocks Plk1-dependent centrosome maturation, which arrests cells in prophase with a monopolar spindle. (Lansing, T. J., et al., In vitro biological activity of a novel small-molecule inhibitor of polo-like kinase 1. Mol Cancer Ther 2007, 6, (2), 450-9.) Similarly, Ispinesib, an allosteric inhibitor of Kinesin-5 arrests cells with a monopolar spindle, due to the inability of Kinesin-5 to separate centrosomes to opposite ends of the cell. (Kapoor, T. M., et al., Probing spindle assembly mechanisms with monastrol, a small moelcule inhibitor of the mitotic kinesisn, Eg5. J Cell Biol, 2000, 150, (5), 975-88.) Microtubule targeting agents including stabilizers (taxanes like paclitaxel (taxol) and epothilones) and destabilizers (vinca alkaloids and colchicine) bind to tubulin and perturb microtubule dynamics by stabilizing or destabilizing microtubules and thereby their ability to align and segregate chromosomes. (Dumontet, C.; Jordan, M. A., Microtuble-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010, 9, (10), 790-803.) Although microtubule-targeting agents are some of the most common chemotherapeutic agents used to treat a wide variety of cancers, they show important dose-limiting toxicities, including neutropenia and neurotoxicity, largely a consequence of disturbing microtubule dynamics in neurons. (Canta, A., et al., Tubulin: a target for antineoplastic drugs into the cancer cells but also in the periperal nervous system. Curr Med Chem 2009, 16, (11), 1315-24; Carlson, K., Ocean, A. J., Peripheral neuropathy with microtubule-targeting agents: occurrence and management approach. Clin Breast Cancer 2011, 11 (2), 73-81.) Most of the microtubule-targeting agents used clinically are large, natural (difficult to synthesize), hydrophobic compounds with limited solubility. In addition, some cancers acquire resistance to these agents by overexpressing efflux pumps like MDR1, mutating key amino acids in βI-tubulin, or by overexpressing βIII-tubulin. (Rivera, E., Gomez, H., Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone. Breast Cancer Res 2010, 12 Suppl 2, S2.) Thus, there is a critical need to identify novel tubulin-targeting drugs with improved properties that can be used as anti-cancer agents.
- An inhibitor of the M-phase of the cell cycle is M-181, which targets tubulin. Characterization experiments revealed inhibition of tubulin polymerization, spindle assembly checkpoint (SAC) activation, mitotic arrest, and induction of apoptosis in cells treated with MI-181. (Senese, S., et al., Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development. Cell Death & Disease, 2014, 5, e1462; published online 16 Oct. 2014).
- Furthermore, there is a need for new antimitotic compounds, with colchicine-like properties, that bind to tubulin and are useful in therapeutic preparations for the treatment of disorders responsive to inhibition of microtubule polymerization, including hyperproliferative disorders such as cancers and myelodysplastic syndromes.
- The present disclosure addresses the aforementioned need by providing a novel class of compounds that inhibit cell proliferation. In certain embodiments, these compounds bind to tubulin, to inhibit microtubule polymerization, arrest cells in mitosis, activate the spindle assembly checkpoint, and/or trigger an apoptotic cell death. In some embodiments, the compounds of this disclosure represent a novel class of compounds that bind β-tubulin.
- In one aspect, this disclosure provides compounds of Formula I:
- wherein the variables are as defined herein. The compounds are typically selective modulators of the microtubules. In some embodiments, the compounds as described herein bind to microtubulin. In some embodiments, the compounds as described herein inhibit microtubule polymerization, arrest cells in mitosis, induce apoptosis, and/or cause cell death. Compounds of Formula I can be used to treat the conditions as described herein.
- Another aspect of this disclosure provides compounds of Formula II:
- wherein the variables are as defined herein. The compounds are typically selective modulators of microtubules. In some embodiments, the compounds as described herein bind to microtubulin. In some embodiments, the compounds as described herein inhibit microtubule polymerization, arrest cells in mitosis, induce apoptosis, and/or cause cell death. Compounds of Formula I can be used to treat the conditions as described herein.
- Another aspect of this disclosure provides compositions (such as pharmaceutical compositions) that comprise the compounds of this disclosure. The disclosure also includes the use of the compounds or compositions disclosed herein in the manufacture of a medicament for the treatment of one or more of the conditions described herein.
- Another aspect of this disclosure provides methods for treating a myelodysplastic syndrome (MDS) in a subject in need thereof using a compound described herein. In some embodiments, the myelodysplastic syndrome that may be treated by a compound described herein is selected from, but not limited to, refractory anemia, refractory anemia with ringed sideroblasts, refractory anemia with excess blasts, refractory anemia with excess blasts in transformation, and chronic myelomonocytic leukemia.
- Another aspect of this disclosure provides methods for treating the conditions described herein using the compounds or compositions disclosed herein, including methods for treating cancer in a subject in need or at risk thereof. In some embodiments, the cancer that may be treated by a compound or composition described herein is selected from, but not limited to, ovarian cancer, cervical cancer, brain cancer, lung cancer, skin cancer, colorectal cancer, esophageal cancer, breast cancer, prostate cancer, leukemia, multiple myeloma, bone cancer, pancreatic cancer, bladder cancer, endometrial cancer, kidney cancer, liver cancer, eye cancer, pituitary cancer, testicular cancer, and stomach cancer.
- Another aspect of this disclosure provides methods for treating a skin cancer in a subject in need thereof using a compound described herein. In some embodiments, the skin cancer that may be treated by a compound described herein is a melanoma. In some embodiments, the melanoma is selected from, but not limited to, lentigo maligna melanoma, superficial spreading melanoma, acral lentiginous melanoma, mucosal melanoma, nodular melanoma, polypoid melanoma, desmoplastic melanoma, amelanotic melanoma, soft-tissue melanoma, melanoma with small nevus-like cells, melanoma with features of a Spitz nevus, and uveal melanoma.
- The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
-
FIG. 1 shows that the cell cycle histogram of HeLa cells treated with DMSO or 10 μM of either colchicine orcompound 10 for 20 hours. The percentage of cells in G1 phase, S phase and G2/M phase is indicated below the histogram for each treatment. -
FIG. 2 shows the in vitro microtubule polymerization inhibition after treatment with DMSO, 3 μM taxol, 3 μM colchicine or 3 μM of 10, 10a, or 10b.Compounds -
FIG. 3 shows the drug response dose curves to measure mitotic arrest IC50s for increasing treatment with colchicine andcompound 10. -
FIG. 4 shows the drug response dose curves to measure mitotic arrest IC50s for increasing treatment with 10, 10a, and 10b.compounds -
FIG. 5 quantifies the percentage of cells undergoing cell division after treatment with DMSO, colchicine, 10b, or taxol (FIG. 5a ) and the time from mitotic entry to cell death for individual cells (FIG. 5b ) and 10 cells (FIG. 5c ) treated with DMSO, colchicine, 10b, or taxol. -
FIG. 6 shows the cell viability IC50 for patient-derived glioblastoma cells treated with 10, 10a, and 10b.compounds -
FIG. 7 shows HeLa cell mitotic arrest and cell viability dose response curves for nocodazole, colchicine, taxol and MI-181. -
FIG. 8 shows immunoblot analysis of MI-181 treated cells. -
FIG. 9 shows MI-181 induced mitotic arrest is reversible. -
FIG. 10 shows that MI-181 is a potent cancer cell inhibitor, especially for melanomas. -
FIG. 11 shows that MI-181 inhibits tubulin polymerization. - In one aspect, the present disclosure provides a compound of Formula I:
- or a pharmaceutically acceptable salt thereof, wherein:
- X is —NH—, —O— or —S—, preferably —S—;
- Y is —CH═ or —N═, preferably —N═;
- n is selected from 0-5;
- m is selected from 0-5;
- A is a ring selected from (C6-C10)-aryl and 5-10-membered heteroaryl;
- L is a C1-C3 straight or branched carbon chain that may be fully saturated, or have one or more units of unsaturation, and links A to the central ring, wherein one or more methylene units of L are optionally and independently replaced by —O— —S—, —S(O)—, —S(O)2—, —N═, or —NH—, wherein L is optionally further substituted with one or more R4, preferably L is chosen such that L interposes 2 atoms between the central ring (bearing R3) and ring A, e.g., substituted or unsubstituted ethylene or ethenylene (vinylene);
- each occurrence of R1 is independently selected from:
- halogen (preferably —F), nitro, cyano, hydroxyl, thiol, amino, alkyl (preferably lower alkyl, such as methyl or ethyl), haloalkyl (such as —CF3), alkoxy (such as methoxy or ethoxy), haloalkoxy (such as —OCF3 and —OCHF2), alkylamino, alkylthio (such as —SCH3), hydroxyalkyl, alkoxyalkyl, aminoalkyl, thioether, ester, amide, thioester, carboxy, carbonate, carbamate, urea, sulfonate, sulfone, sulfoxide, sulfonamide, sulfate, acyl, acyloxy, and acylamino;
- each occurrence of R2 is independently selected from alkyl (preferably lower alkyl, such as methyl) and halogen;
- R3 is hydrogen or alkyl, preferably hydrogen;
- each occurrence of R4 is independently selected from:
- cyano, halogen, nitro, hydroxyl, thiol, amino, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylamino, alkylthio, hydroxyalkyl, alkoxyalkyl, aminoalkyl, thioether, ester, amide, thioester, carboxy, carbonate, carbamate, urea, sulfonate, sulfone, sulfoxide, sulfonamide, sulfate, acyl, acyloxy, and acylamino.
- In some embodiments of Formula I, L is chosen such that L interposes 2 atoms between the central ring (bearing R3) and ring A, e.g., substituted or unsubstituted ethylene or ethenylene (vinylene). In some embodiments, L is selected from: —CH2—, —CH2SCH2—, —CH2CH2S—, —SCH2CH2—, —CH2OCH2—, —CH2CH2O—, —OCH2CH2—, —CH2NHCH2—, —CH2CH2NH—, —NHCH2CH2—, —CH2CH2—, —CH2CH2CH2—, —CH2S—, —SCH2—, —CH2O—, —OCH2—, —CH2NH—, —NHCH2—, and —CH═CH—, preferably —CH═CH—, wherein any hydrogen atom of a CH or CH2 unit may optionally be replaced by R4 (such as lower alkyl), any hydrogen of an NH unit may optionally be replaced by R4 (such as lower alkyl).
- In some embodiments of Formula I, L is —CH═CH—. In certain embodiments, the compound of Formula I has a structure of formula IA:
- wherein X, Y, n, m, A, R1, R2, R3 and R4 are as defined herein. In some embodiments of a compound of formula IA, each occurrence of R4 is independently selected from hydrogen or lower alkyl (e.g., methyl or ethyl). In some embodiments of a compound of formula IA, both occurrences of R4 are hydrogen.
- In some embodiments of Formula I, Y is —N═. In some embodiments, X is —S—. In some embodiments, X is —S— and Y is —N═.
- In some embodiments of Formula I, A is unsubstituted or substituted (C6-C10)-aryl, such as unsubstituted or substituted phenyl. In some embodiments, the compound of Formula I has a structure of formula IA-1:
- wherein the variables are as defined herein. For example, in some embodiments, A (and/or the phenyl ring bearing R1) is selected from:
- In some embodiments of Formula I, n is 0-3, preferably 0, 1 or 2. In some embodiments, n is 0. In some embodiments, n is 1. In other embodiments, n is 2.
- In some embodiment of Formula I s, each occurrence of R1, when present, is independently selected from: halogen, lower alkyl, haloalkyl, alkoxy, haloalkoxy, and alkylthio. In some embodiments, when present, each occurrence of R1 is independently selected from: —F, —Br, —Cl, —Me, —Et, —CF3, —OMe, —OEt, —OCF3, —OCHF2, and —SMe. In some embodiments, each occurrence of R1 is independently selected from: —F, -Me, —CF3, —OMe, and —OEt.
- In some embodiments of Formula I, n is 1-3, and at least one R1 is —F. In some embodiments, n is 1 or 2, and at least one R1 is —F. In some embodiments, n is 2 and both R1 are —F.
- In some embodiments of Formula I, the compound has a structure of formula IA-2:
- wherein the variables are as defined herein. In some embodiments of a compound of formula IA-2, n is 1. In some embodiments of a compound of formula IA-2, n is 2. In some embodiments of a compound of formula IA-2, n is 2 and R1 is —F.
- In some embodiments of Formula I, R3 is hydrogen or lower alkyl (such as methyl or ethyl). In some embodiments, R3 is hydrogen.
- In some embodiments of Formula I, m is 0-3, preferably 0, 1 or 2. In some embodiments, m is 0. In some embodiments, m is 1. In other embodiments, m is 2.
- In some embodiments of Formula I, when present, each occurrence of R4 is independently hydrogen or lower alkyl (such as methyl or ethyl).
- The disclosure also includes various combinations of n, m, L, A, X, Y, R1, R2, R3 and R4 as described above. These combinations can in turn be combined with any or all of the values of the other variables described above. For example, in some embodiments, the compound of this disclosure has a structure of Formula I:
- wherein: X is —S—; Y is —N═; n is 0, 1 or 2; m is 0, 1 or 2, preferably 0; A is (C6-C10)-aryl-, preferably phenyl; L is ethylene or ethenylene (vinylene), preferably —CH═CH—, wherein L is optionally substituted with one or more R4; each occurrence of R1 is independently selected from: halogen, lower alkyl, haloalkyl, and alkoxy, preferably selected from —F, -Me, —CF3, —OMe, and —OE; each occurrence of R2 is independently selected from lower alkyl and halogen; R3 is hydrogen or lower alkyl, preferably hydrogen; and each occurrence of R4 is independently hydrogen or lower alkyl, preferably hydrogen. In some of such embodiments, m is 0; A is phenyl; L is ethenylene (vinylene), preferably —CH═CH—; and each occurrence of R1 is independently selected from: —F, -Me, —CF3, —OMe, and —OEt; and R3 is hydrogen.
- In some embodiments, the compound has a structure of formula IA:
- wherein: X is —S—; Y is —N═; n is 0, 1 or 2; m is 0, 1 or 2, preferably 0; A is (C6-C10)-aryl-, preferably phenyl; each occurrence of R1 is independently selected from: halogen, lower alkyl, haloakyl, and alkoxy, preferably selected from selected from: —F, -Me, —CF3, —OMe, and —OEt; each occurrence of R2 is independently selected from lower alkyl and halogen; R3 is hydrogen or lower alkyl, preferably hydrogen; and each occurrence of R4 is independently hydrogen or lower alkyl, preferably hydrogen. In some of such embodiments, m is 0; A is phenyl; each occurrence of R1 is independently selected from: —F, -Me, —CF3, —OMe, and OEt; R3 is hydrogen; and each occurrence of R4 is hydrogen.
- In some embodiments, the compound of Formula IA is selected from:
- or a pharmaceutically acceptable salt thereof.
- In another aspect, the present disclosure provides a compound of Formula II:
- or a pharmaceutically acceptable salt thereof, wherein:
- X is —N═;
- Z is —NH—, —O—, or —S—;
- R21, independently for each occurrence, is selected from hydroxyl, halogen, cyano, substituted or unsubstituted amido, amino, acyl, alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocycloalkyl, acylamino, alkylamino, carbamate, ester, heteroaryl, heteroaralkyl, carbamate, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido;
- R22, R23, R24, R25 independently for each occurrence, are selected from H, hydroxyl, halogen, cyano, substituted or unsubstituted amido, amino, acyl, alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocycloalkyl, acylamino, alkylamino, carbamate, ester, heteroaryl, heteroaralkyl, carbamate, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido;
- L2 is absent or selected from —S—, substituted or unsubstituted alkyl, alkenyl, alkynyl, and heteroaryl;
- A2 is a ring selected from substituted or unsubstituted aryl or heteroaryl; and
- m is selected from 0-5.
- In some embodiments of Formula II, L2 is a substituted or unsubstituted alkenyl group.
- In some embodiments of Formula II, R22 and R25 are both hydrogen.
- In some embodiments of Formula II, Z2 is S.
- In some embodiments of Formula II, A2 is pyridyl, such as pyridin-3-yl.
- In some embodiments of Formula II, R23 and R24 are both substituted or unsubstituted alkyl.
- In some embodiments of Formula II, m is 0.
- In some embodiments, the compound of Formula II is MI-181:
- In another aspect, the present disclosure provides a pharmaceutical composition comprising a compound of this disclosure, and a pharmaceutically acceptable carrier, adjuvant or vehicle.
- In another aspect, the present disclosure provides a method for treating cancer in a subject in need thereof, comprising administering to the subject an effective amount of a compound of this disclosure. In some such embodiments, the subject is a mammal, such as a human.
- In another aspect, the present disclosure provides a method of modulating microtubules in a cell, comprising contacting the cell with a compound of this disclosure.
- In some embodiments, the compounds of this disclosure are more soluble in aqueous solutions, as compared to paclitaxel. In some embodiments, the compounds of this disclosure have a log S of −8.4319 or higher. In some embodiments, the compounds of this disclosure have a log S selected from −4.0 to −8.5. In some embodiments, the compounds of this disclosure have a log S selected from −5.0 to −6.0.
- In some embodiments, the compounds of this disclosure are highly soluble in aqueous saline solutions, such as phosphate buffered saline (PBS). In such embodiments, the compounds of this disclosure can be delivered or administered as a solution or suspension in aqueous saline solutions, without any additional delivery vehicles (such as the Cremophor EL® formulation). In some embodiments, the compounds of this disclosure can be administered orally.
- In some embodiments, the compounds of this disclosure can effectively pass the blood brain barrier when administered, e.g., for treating brain cancers.
- In some embodiments, the compounds of this disclosure bind to all tubulin isoforms. In some embodiments, the compounds described herein are effective in treating paclitaxel-resistant cancers that overexpress β-
tubulin isoform 3. - Many types of cancers evade anticancer drug killing by overexpressing efflux pumps that actively shuttle the drug out of the cell and thus lowering the active intracellular concentration of the drug and its ability to kill the cell. For example, the P-glycoprotein (P-gp) efflux pump (a product of the multidrug resistant gene MDR1) can transport paclitaxel out of the cell, thus rendering it ineffective. See, e.g., Gottesman M M (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53: 615-627. Thus, P-gp overexpressing cancers are resistant to paclitaxel. In some embodiments, compounds of the disclosure are not substrates of these pumps and thus are effective against cancers that overexpress drug efflux pumps.
- In certain embodiments, the subject compounds are effective in paclitaxel-resistant cancers that have become resistant to paclitaxel due to mutagenesis of the β-tubulin taxane-binding site.
- In another aspect, the present disclosure provides a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound of this disclosure. Pharmaceutically acceptable carriers that may be used in these compositions include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene polyoxypropylene block polymers, polyethylene glycol and wool fat.
- The compounds of this disclosure may be prepared in general by methods known to those skilled in the art. Illustrated herein are general and synthetic routes to the compounds of the present disclosure. Other equivalent routes, which will be readily apparent to the ordinary skilled organic chemist, may alternatively be used to synthesize various portions of the molecules as illustrated herein.
- The present disclosure provides novel compounds of Formulas I, IA, IA-1, IA-2, and II, as well as salts and prodrugs thereof, which, together with the specific microtubule-inhibiting compounds disclosed herein, are the compounds of the disclosure. Accordingly, the present invention includes all uses of the compounds of the disclosure, including their use in compositions (such as pharmaceutical compositions) and therapeutic methods (e.g., for modulating cell division and other uses disclosed herein), as well as uses in diagnostic assays and as research tools.
- The compounds of the disclosure are useful in modulating microtubules, including destabilizing microtubules and/or inhibiting mitotic spindle formation, for the treatment of various conditions such as all proliferative disorders as mentioned above. Accordingly, the invention provides a method of modulating microtubules' stability and/or mitotic spindle formation, by administering an effective amount of a compound of the disclosure to a cell or subject in need thereof. In a further aspect, the invention provides a method of destabilizing microtubules and/or inhibiting mitotic spindle formation, by administering an effective amount of a compound of the disclosure to a cell or subject in need thereof.
- While the compounds of the disclosure may act by destabilizing microtubules in a cell or subject in need thereof, one of skill in the art will appreciate that other modes or mechanisms of action for the compounds of the disclosure are possible.
- In one aspect, the present invention provides a method for modulating cell division and/or proliferation, comprising administering an effective amount of a compound of the disclosure to a cell or subject in need thereof. In some embodiments, the invention provides a method of arresting cells during the process of cell division (mitosis), inducing apoptosis, and/or causing cell death, the method comprising administering an effective amount of a compound of the disclosure to a cell or subject in need thereof. In particular, the method of the disclosure is useful in inhibiting the division and/or proliferation of abnormal but not normal cells. Abnormal cells include any type of cell that is causative of or involved in a disease or condition and wherein it is desirable to modulate or inhibit the proliferation of the abnormal cell to treat the disease or condition. Examples of abnormal cells include malignant or cancerous cells as well as cell that over-proliferate in inflammatory conditions.
- In some embodiments, the compounds of the disclosure are effective at killing cancer cells while at the same time they do not kill normal cells. These properties make the compounds of the disclosure useful as anti-cancer agents. Accordingly, in some embodiments, the present invention provides a method of inhibiting the division and/or proliferation (and in some cases, causing apoptosis) of a cancer cell, comprising administering an effective amount of a compound of the disclosure to a cell or subject in need thereof.
- Cancer cells that can be treated with a compound of the disclosure may be any type of cancer including, but not limited to, hematopoietic malignancies, including leukemias, lymphomas, and myelomas as well as other types of cancer including sarcomas, carcinomas, melanomas, adenomas, nervous system cancers and genitourinary cancers. Examples of leukemias include acute lymphoblastic leukemia (ALL), acute myelocytic leukemia (AML), acute myelomonocytic leukemia (AMML), chronic myeloid leukemia (CIVIL), chronic lymphocytic leukemia (CLL) and juvenile myelo-monocytic leukemia (JMML). In some embodiments, the compounds and compositions of this disclosure are useful in treating a cancer selected from, but not limited to, ovarian cancer, cervical cancer, brain cancer, lung cancer, skin cancer, colorectal cancer, esophageal cancer, breast cancer, prostate cancer, leukemia, multiple myeloma, bone cancer, pancreatic cancer, bladder cancer, endometrial cancer, kidney cancer, liver cancer, eye cancer, pituitary cancer, testicular cancer, and stomach cancer.
- In addition to cancer, the compounds and the compositions of this disclosure are useful in treating a myelodysplastic syndrome (MDS) in a subject in need thereof, comprising administering an effective amount of a compound or composition of the disclosure to a cell or subject in need thereof. In some embodiments, compounds and compositions of Formula I are useful in treating MDS. In some embodiments, compounds and compositions of Formula II are useful in treating MDS. Myelodysplastic syndrome (MDS) refers to a diverse group of hematopoietic stem cell disorders. MDS is characterized by a cellular marrow with impaired morphology and maturation (dysmyelopoiesis), peripheral blood cytopenias, and a variable risk of progression to acute leukemia, resulting from ineffective blood cell production. The Merck Manual 953 (17th ed. 1999) and List et al., 1990, J Clin. Oncol. 8:1424. In some embodiments, the compounds or compositions of this disclosure are useful in treating an MDS that is selected from, but not limited to, refractory anemia, refractory anemia with ringed sideroblasts, refractory anemia with excess blasts, refractory anemia with excess blasts in transformation and chronic myelomonocytic leukemia.
- Furthermore, the compounds of the disclosure are useful in treating other conditions involving aberrant or abnormal cell proliferation. In some embodiments, compounds and compositions of Formula I are useful in treating conditions involving aberrant or abnormal cell proliferation. In some embodiments, compounds and compositions of Formula II are useful in treating conditions involving aberrant or abnormal cell proliferation. Other cell proliferative disorders that may be treated by the present invention include inflammatory diseases, allergies, autoimmune disease, graft rejection psoriasis, restenosis, atherosclerosis, and any other disorder wherein it is desirable to inhibit, prevent, or suppress cell growth. Compounds of the disclosure may be tested for their efficacy in a particular cell proliferation disorder using assays and techniques known to those of skill in the art.
- Another aspect of this disclosure provides methods for treating a skin cancer in a subject in need thereof using a compound described herein. In some embodiments, compounds and compositions of Formula I are useful in treating MDS. In some embodiments, compounds and compositions of Formula II are useful in treating MDS. In some embodiments, the skin cancer that may be treated by a compound described herein is a melanoma. In some embodiments, the melanoma is selected from, but not limited to, lentigo maligna melanoma, superficial spreading melanoma, acral lentiginous melanoma, mucosal melanoma, nodular melanoma, polypoid melanoma, desmoplastic melanoma, amelanotic melanoma, soft-tissue melanoma, melanoma with small nevus-like cells, melanoma with features of a Spitz nevus, and uveal melanoma.
- In addition to the above-mentioned therapeutic uses, the compounds of the disclosure are also useful in diagnostic assays, screening assays and as research tools.
- In diagnostic assays, the compounds of the disclosure may be useful in identifying or detecting a cell proliferative disorder. In such an embodiment, the compounds of the disclosure may be radiolabelled (as hereinbefore described) and contacted with a population of cells. The presence of the radiolabel on the cells may indicate a cell proliferative disorder.
- In screening assays, the compounds of the disclosure may be used to identify other compounds that destabilize microtubules, modulate cell division and/or proliferation. In such assays, the compounds may also be radiolabelled.
- In another example, the compounds of this disclosure can be used to synthesize additional analogs and derivatives to improve their therapeutic activity (e.g., anticancer activity), including but not limited to improved stability, solubility, potency, specificity, bioavailability, efficacy, and delivery. In another example, the compounds of this disclosure can be used to synthesize additional analogs and derivatives to decrease their side effects, including but not limited to its toxicity or unwanted metabolites.
- In some embodiments (such as the uses described above), the compounds of the disclosure are formulated into pharmaceutical compositions for administration to subjects (such as human subjects) in a biologically compatible form suitable for administration in vivo. Accordingly, in another aspect, the present invention provides a pharmaceutical composition comprising a compound of the disclosure in admixture with a suitable diluent or carrier. Such a composition is useful for treating the conditions described herein.
- The compositions containing the compounds of the disclosure can be prepared by known methods for the preparation of pharmaceutically acceptable compositions which can be administered to subjects, such that an effective quantity of the active substance is combined in a mixture with a pharmaceutically acceptable vehicle. Suitable vehicles are described, for example, in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA 1985). On this basis, the compositions include, albeit not exclusively, solutions of the substances in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffered solutions with a suitable pH and iso-osmotic with the physiological fluids.
- The compounds of this invention may be used in treating the conditions described herein, in the form of the free base, salts (preferably pharmaceutically acceptable salts), solvates, hydrates, prodrugs, isomers, or mixtures thereof. All forms are within the scope of the disclosure. Acid addition salts may be formed and provide a more convenient form for use; in practice, use of the salt form inherently amounts to use of the base form. The acids which can be used to prepare the acid addition salts include preferably those which produce, when combined with the free base, pharmaceutically acceptable salts, that is, salts whose anions are non-toxic to the subject organism in pharmaceutical doses of the salts, so that the beneficial properties inherent in the free base are not vitiated by side effects ascribable to the anions. Although pharmaceutically acceptable salts of the basic compounds are preferred, all acid addition salts are useful as sources of the free base form even if the particular salt per se is desired only as an intermediate product as, for example, when the salt is formed only for the purposes of purification and identification, or when it is used as an intermediate in preparing a pharmaceutically acceptable salt by ion exchange procedures.
- Pharmaceutically acceptable salts within the scope of the disclosure include those derived from the following acids; mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid and sulfamic acid; and organic acids such as acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, quinic acid, and the like.
- In accordance with the methods of the disclosure, the described compounds may be administered to a patient in a variety of forms depending on the selected route of administration, as will be understood by those skilled in the art. The compositions of the disclosure may be administered orally or parenterally.
- Parenteral administration includes intravenous, intraperitoneal, subcutaneous, intramuscular, transepithelial, nasal, intrapulmonary, intrathecal, rectal and topical modes of administration. Parenteral administration may be by continuous infusion over a selected period of time.
- In certain embodiments, pharmaceutical compositions suitable for parenteral administration may comprise the compound of the present disclosure in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or non-aqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents. Examples of suitable aqueous and non-aqueous carriers which may be employed in the pharmaceutical compositions of the disclosure include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- A composition comprising a compound of the present disclosure may also contain adjuvants, such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption, such as aluminum monostearate and gelatin.
- In certain embodiments of the disclosure, compositions comprising a compound of the present disclosure can be administered orally, e.g., in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and the like, each containing a predetermined amount of the compound of the present disclosure as an active ingredient.
- In solid dosage forms for oral administration (capsules, tablets, pills, dragees, powders, granules, and the like), one or more compositions comprising the compound of the present disclosure may be mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose, and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, cetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and elixirs. In addition to the compound of the present disclosure, the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol (ethanol), isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming, and preservative agents.
- Suspensions, in addition to the active compounds, salts and/or prodrugs thereof, may contain suspending agents such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- A person skilled in the art would know how to prepare suitable formulations. Conventional procedures and ingredients for the selection and preparation of suitable formulations are described, for example, in Remington's Pharmaceutical Sciences (1990-18th edition) and in The United States Pharmacopeia: The National Formulary (USP 24 NF19) published in 1999.
- The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersion and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- The compounds of the disclosure may be administered to a subject in need thereof alone or in combination with pharmaceutically acceptable carriers, as noted above, the proportion of which is determined by the solubility and chemical nature of the compound, chosen route of administration and standard pharmaceutical practice.
- The dosage of the compounds and/or compositions of the disclosure can vary depending on many factors such as the pharmacodynamic properties of the compound, the mode of administration, the age, health and weight of the recipient, the nature and extent of the symptoms, the frequency of the treatment and the type of concurrent treatment, if any, and the clearance rate of the compound in the subject to be treated. One of skill in the art can determine the appropriate dosage based on the above factors. The compounds of the disclosure may be administered initially in a suitable dosage that may be adjusted as required, depending on the clinical response. To calculate the human equivalent dose (HED) from a dosage used in the treatment of age-dependent cognitive impairment in rats, the formula HED (mg/kg)=rat dose (mg/kg)×0.16 may be employed (see Estimating the Safe Starting Dose in Clinical Trials for Therapeutics in Adult Healthy Volunteers, December 2002, Center for Biologics Evaluation and Research). For example, using that formula, a dosage of 10 mg/kg in rats is equivalent to 1.6 mg/kg in humans. This conversion is based on a more general formula HED=animal dose in mg/kg x (animal weight in kg/human weight in kg)0.33. Similarly, to calculate the HED from a dosage used in the treatment in mouse, the formula HED (mg/kg)=mouse dose (mg/kg)×0.08 may be employed (see Estimating the Safe Starting Dose in Clinical Trials for Therapeutics in Adult Healthy Volunteers, December 2002, Center for Biologics Evaluation and Research).
- The compounds of the disclosure can be used alone or conjointly with other therapeutic agents, or in combination with other types of treatment (which may or may not modulate stability of microtubules) for treating cell proliferative disorders. For example, these other therapeutically useful agents may be administered in a single formulation, simultaneously or sequentially with the compound of the present disclosure according to the methods of the disclosure.
- There are various examples of other types of treatment for cell proliferative disorders currently used to treat different types of cancers. In a particular aspect of the present invention, the compounds of the disclosure may be used in combination with other therapies and therapeutics to treat leukemia.
- In some embodiments, the method of treating or preventing cancer, such as those described above, may comprise administering a compound or composition of the disclosure conjointly with one or more other chemotherapeutic agent(s). Chemotherapeutic agents that may be conjointly administered with compounds or compositions of the disclosure include: aminoglutethimide, amsacrine, anastrozole, asparaginase, bcg, bicalutamide, bleomycin, bortezomib, buserelin, busulfan, campothecin, capecitabine, carboplatin, carfilzomib, carmustine, chlorambucil, chloroquine, cisplatin, cladribine, clodronate, colchicine, cyclophosphamide, cyproterone, cytarabine, dacarbazine, dactinomycin, daunorubicin, demethoxyviridin, dichloroacetate, dienestrol, diethylstilbestrol, docetaxel, doxorubicin, epirubicin, estradiol, estramustine, etoposide, everolimus, exemestane, filgrastim, fludarabine, fludrocortisone, fluorouracil, fluoxymesterone, flutamide, gemcitabine, genistein, goserelin, hydroxyurea, idarubicin, ifosfamide, imatinib, interferon, irinotecan, ironotecan, lenalidomide, letrozole, leucovorin, leuprolide, levamisole, lomustine, lonidamine, mechlorethamine, medroxyprogesterone, megestrol, melphalan, mercaptopurine, mesna, metformin, methotrexate, mitomycin, mitotane, mitoxantrone, nilutamide, nocodazole, octreotide, oxaliplatin, paclitaxel, pamidronate, pentostatin, perifosine, plicamycin, pomalidomide, porfimer, procarbazine, raltitrexed, rituximab, sorafenib, streptozocin, sunitinib, suramin, tamoxifen, temozolomide, temsirolimus, teniposide, testosterone, thalidomide, thioguanine, thiotepa, titanocene dichloride, topotecan, trastuzumab, tretinoin, vinblastine, vincristine, vindesine, and vinorelbine. In certain embodiments of the methods of the disclosure described herein, the chemotherapeutic agent conjointly administered with compounds of the disclosure is a taxane chemotherapeutic agent, such as paclitaxel or docetaxel. In certain embodiments of the methods of the disclosure described herein, the chemotherapeutic agent conjointly administered with compounds of the disclosure is doxorubicin. In certain embodiments of the methods of the disclosure described herein, a compound of the disclosure is administered conjointly with a taxane chemotherapeutic agent (e.g., paclitaxel) and doxorubicin.
- Many combination therapies have been developed for the treatment of cancer. In certain embodiments, compounds or compositions of the disclosure may be conjointly administered with a combination therapy. Examples of combination therapies with which compounds of the disclosure may be conjointly administered are included in Table 1.
-
TABLE 1 Exemplary combinatorial therapies for the treatment of cancer. Name Therapeutic agents ABV Doxorubicin, Bleomycin, Vinblastine ABVD Doxorubicin, Bleomycin, Vinblastine, Dacarbazine AC (Breast) Doxorubicin, Cyclophosphamide AC (Sarcoma) Doxorubicin, Cisplatin AC (Neuroblastoma) Cyclophosphamide, Doxorubicin ACE Cyclophosphamide, Doxorubicin, Etoposide ACe Cyclophosphamide, Doxorubicin AD Doxorubicin, Dacarbazine AP Doxorubicin, Cisplatin ARAC-DNR Cytarabine, Daunorubicin B-CAVe Bleomycin, Lomustine, Doxorubicin, Vinblastine BCVPP Carmustine, Cyclophosphamide, Vinblastine, Procarbazine, Prednisone BEACOPP Bleomycin, Etoposide, Doxorubicin, Cyclophosphamide, Vincristine, Procarbazine, Prednisone, Filgrastim BEP Bleomycin, Etoposide, Cisplatin BIP Bleomycin, Cisplatin, Ifosfamide, Mesna BOMP Bleomycin, Vincristine, Cisplatin, Mitomycin CA Cytarabine, Asparaginase CABO Cisplatin, Methotrexate, Bleomycin, Vincristine CAF Cyclophosphamide, Doxorubicin, Fluorouracil CAL-G Cyclophosphamide, Daunorubicin, Vincristine, Prednisone, Asparaginase CAMP Cyclophosphamide, Doxorubicin, Methotrexate, Procarbazine CAP Cyclophosphamide, Doxorubicin, Cisplatin CaT Carboplatin, Paclitaxel CAV Cyclophosphamide, Doxorubicin, Vincristine CAVE ADD CAV and Etoposide CA-VP16 Cyclophosphamide, Doxorubicin, Etoposide CC Cyclophosphamide, Carboplatin CDDP/VP-16 Cisplatin, Etoposide CEF Cyclophosphamide, Epirubicin, Fluorouracil CEPP(B) Cyclophosphamide, Etoposide, Prednisone, with or without/Bleomycin CEV Cyclophosphamide, Etoposide, Vincristine CF Cisplatin, Fluorouracil or Carboplatin Fluorouracil CHAP Cyclophosphamide or Cyclophosphamide, Altretamine, Doxorubicin, Cisplatin ChlVPP Chlorambucil, Vinblastine, Procarbazine, Prednisone CHOP Cyclophosphamide, Doxorubicin, Vincristine, Prednisone CHOP-BLEO Add Bleomycin to CHOP CISCA Cyclophosphamide, Doxorubicin, Cisplatin CLD-BOMP Bleomycin, Cisplatin, Vincristine, Mitomycin CMF Methotrexate, Fluorouracil, Cyclophosphamide CMFP Cyclophosphamide, Methotrexate, Fluorouracil, Prednisone CMFVP Cyclophosphamide, Methotrexate, Fluorouracil, Vincristine, Prednisone CMV Cisplatin, Methotrexate, Vinblastine CNF Cyclophosphamide, Mitoxantrone, Fluorouracil CNOP Cyclophosphamide, Mitoxantrone, Vincristine, Prednisone COB Cisplatin, Vincristine, Bleomycin CODE Cisplatin, Vincristine, Doxorubicin, Etoposide COMLA Cyclophosphamide, Vincristine, Methotrexate, Leucovorin, Cytarabine COMP Cyclophosphamide, Vincristine, Methotrexate, Prednisone Cooper Regimen Cyclophosphamide, Methotrexate, Fluorouracil, Vincristine, Prednisone COP Cyclophosphamide, Vincristine, Prednisone COPE Cyclophosphamide, Vincristine, Cisplatin, Etoposide COPP Cyclophosphamide, Vincristine, Procarbazine, Prednisone CP(Chronic Chlorambucil, Prednisone lymphocytic leukemia) CP (Ovarian Cancer) Cyclophosphamide, Cisplatin CT Cisplatin, Paclitaxel CVD Cisplatin, Vinblastine, Dacarbazine CVI Carboplatin, Etoposide, Ifosfamide, Mesna CVP Cyclophosphamide, Vincristine, Prednisone CVPP Lomustine, Procarbazine, Prednisone CYVADIC Cyclophosphamide, Vincristine, Doxorubicin, Dacarbazine DA Daunorubicin, Cytarabine DAT Daunorubicin, Cytarabine, Thioguanine DAV Daunorubicin, Cytarabine, Etoposide DCT Daunorubicin, Cytarabine, Thioguanine DHAP Cisplatin, Cytarabine, Dexamethasone DI Doxorubicin, Ifosfamide DTIC/Tamoxifen Dacarbazine, Tamoxifen DVP Daunorubicin, Vincristine, Prednisone EAP Etoposide, Doxorubicin, Cisplatin EC Etoposide, Carboplatin EFP Etoposie, Fluorouracil, Cisplatin ELF Etoposide, Leucovorin, Fluorouracil EMA 86 Mitoxantrone, Etoposide, Cytarabine EP Etoposide, Cisplatin EVA Etoposide, Vinblastine FAC Fluorouracil, Doxorubicin, Cyclophosphamide FAM Fluorouracil, Doxorubicin, Mitomycin FAMTX Methotrexate, Leucovorin, Doxorubicin FAP Fluorouracil, Doxorubicin, Cisplatin F-CL Fluorouracil, Leucovorin FEC Fluorouracil, Cyclophosphamide, Epirubicin FED Fluorouracil, Etoposide, Cisplatin FL Flutamide, Leuprolide FZ Flutamide, Goserelin acetate implant HDMTX Methotrexate, Leucovorin Hexa-CAF Altretamine, Cyclophosphamide, Methotrexate, Fluorouracil ICE-T Ifosfamide, Carboplatin, Etoposide, Paclitaxel, Mesna IDMTX/6-MP Methotrexate, Mercaptopurine, Leucovorin IE Ifosfamide, Etoposide, Mesna IfoVP Ifosfamide, Etoposide, Mesna IPA Ifosfamide, Cisplatin, Doxorubicin M-2 Vincristine, Carmustine, Cyclophosphamide, Prednisone, Melphalan MAC-III Methotrexate, Leucovorin, Dactinomycin, Cyclophosphamide MACC Methotrexate, Doxorubicin, Cyclophosphamide, Lomustine MACOP-B Methotrexate, Leucovorin, Doxorubicin, Cyclophosphamide, Vincristine, Bleomycin, Prednisone MAID Mesna, Doxorubicin, Ifosfamide, Dacarbazine m-BACOD Bleomycin, Doxorubicin, Cyclophosphamide, Vincristine, Dexamethasone, Methotrexate, Leucovorin MBC Methotrexate, Bleomycin, Cisplatin MC Mitoxantrone, Cytarabine MF Methotrexate, Fluorouracil, Leucovorin MICE Ifosfamide, Carboplatin, Etoposide, Mesna MINE Mesna, Ifosfamide, Mitoxantrone, Etoposide mini-BEAM Carmustine, Etoposide, Cytarabine, Melphalan MOBP Bleomycin, Vincristine, Cisplatin, Mitomycin MOP Mechlorethamine, Vincristine, Procarbazine MOPP Mechlorethamine, Vincristine, Procarbazine, Prednisone MOPP/ABV Mechlorethamine, Vincristine, Procarbazine, Prednisone, Doxorubicin, Bleomycin, Vinblastine MP (multiple Melphalan, Prednisone myeloma) MP (prostate cancer) Mitoxantrone, Prednisone MTX/6-MO Methotrexate, Mercaptopurine MTX/6-MP/VP Methotrexate, Mercaptopurine, Vincristine, Prednisone MTX-CDDPAdr Methotrexate, Leucovorin, Cisplatin, Doxorubicin MV (breast cancer) Mitomycin, Vinblastine MV (acute myelocytic Mitoxantrone, Etoposide leukemia) M-VAC Methotrexate Vinblastine, Doxorubicin, Cisplatin MVP Mitomycin Vinblastine, Cisplatin MVPP Mechlorethamine, Vinblastine, Procarbazine, Prednisone NFL Mitoxantrone, Fluorouracil, Leucovorin NOVP Mitoxantrone, Vinblastine, Vincristine OPA Vincristine, Prednisone, Doxorubicin OPPA Add Procarbazine to OPA. PAC Cisplatin, Doxorubicin PAC-I Cisplatin, Doxorubicin, Cyclophosphamide PA-CI Cisplatin, Doxorubicin PC Paclitaxel, Carboplatin or Paclitaxel, Cisplatin PCV Lomustine, Procarbazine, Vincristine PE Paclitaxel, Estramustine PFL Cisplatin, Fluorouracil, Leucovorin POC Prednisone, Vincristine, Lomustine ProMACE Prednisone, Methotrexate, Leucovorin, Doxorubicin, Cyclophosphamide, Etoposide ProMACE/cytaBOM Prednisone, Doxorubicin, Cyclophosphamide, Etoposide, Cytarabine, Bleomycin, Vincristine, Methotrexate, Leucovorin, Cotrimoxazole PRoMACE/MOPP Prednisone, Doxorubicin, Cyclophosphamide, Etoposide, Mechlorethamine, Vincristine, Procarbazine, Methotrexate, Leucovorin Pt/VM Cisplatin, Teniposide PVA Prednisone, Vincristine, Asparaginase PVB Cisplatin, Vinblastine, Bleomycin PVDA Prednisone, Vincristine, Daunorubicin, Asparaginase SMF Streptozocin, Mitomycin, Fluorouracil TAD Mechlorethamine, Doxorubicin, Vinblastine, Vincristine, Bleomycin, Etoposide, Prednisone TCF Paclitaxel, Cisplatin, Fluorouracil TIP Paclitaxel, Ifosfamide, Mesna, Cisplatin TTT Methotrexate, Cytarabine, Hydrocortisone Topo/CTX Cyclophosphamide, Topotecan, Mesna VAB-6 Cyclophosphamide, Dactinomycin, Vinblastine, Cisplatin, Bleomycin VAC Vincristine, Dactinomycin, Cyclophosphamide VACAdr Vincristine, Cyclophosphamide, Doxorubicin, Dactinomycin, Vincristine VAD Vincristine, Doxorubicin, Dexamethasone VATH Vinblastine, Doxorubicin, Thiotepa, Flouxymesterone VBAP Vincristine, Carmustine, Doxorubicin, Prednisone VBCMP Vincristine, Carmustine, Melphalan, Cyclophosphamide, Prednisone VC Vinorelbine, Cisplatin VCAP Vincristine, Cyclophosphamide, Doxorubicin, Prednisone VD Vinorelbine, Doxorubicin VelP Vinblastine, Cisplatin, Ifosfamide, Mesna VIP Etoposide, Cisplatin, Ifosfamide, Mesna VM Mitomycin, Vinblastine VMCP Vincristine, Melphalan, Cyclophosphamide, Prednisone VP Etoposide, Cisplatin V-TAD Etoposide, Thioguanine, Daunorubicin, Cytarabine 5 + 2 Cytarabine, Daunorubicin, Mitoxantrone 7 + 3 Cytarabine with/, Daunorubicin or Idarubicin or Mitoxantrone “8 in 1” Methylprednisolone, Vincristine, Lomustine, Procarbazine, Hydroxyurea, Cisplatin, Cytarabine, Dacarbazine - In certain embodiments, a compound or composition of the disclosure may be conjointly administered with non-chemical methods of cancer treatment. In certain embodiments, a compound or composition of the disclosure may be conjointly administered with radiation therapy. In certain embodiments, a compound or composition of the disclosure may be conjointly administered with surgery, with thermoablation, with focused ultrasound therapy, with cryotherapy, or with any combination of these.
- In certain embodiments, different compounds of the disclosure may be conjointly administered with one or more other compounds of the disclosure. Moreover, such combinations may be conjointly administered with other therapeutic agents, such as other agents suitable for the treatment of cancer, such as the agents identified above.
- It will be understood by one of ordinary skill in the art that the compositions and methods described herein may be adapted and modified as is appropriate for the application being addressed and that the compositions and methods described herein may be employed in other suitable applications, and that such other additions and modifications will not depart from the scope hereof. For example, in addition to the therapeutic uses described herein, the compounds and compositions of this disclosure can be used as research tools or chemical probes to, for example, understand normal cell or cancer cell biological processes, including but not limited to microtubule dynamics, cell division, cell proliferation, and the types of cells that are resistant or sensitive to the compounds or compositions of this disclosure. The disclosure contemplates all uses of the compounds and compositions of the disclosure, including their use in therapeutic methods and compositions for modulating cell division, their use in diagnostic assays and their use as research tools.
- Unless otherwise defined herein, scientific and technical terms used in this application shall have the meanings that are commonly understood by those of ordinary skill in the art. Generally, nomenclature used in connection with, and techniques of, chemistry, cell and tissue culture, molecular biology, cell and cancer biology, neurobiology, neurochemistry, virology, immunology, microbiology, pharmacology, genetics and protein and nucleic acid chemistry, described herein, are those well known and commonly used in the art.
- The methods and techniques of the present disclosure are generally performed, unless otherwise indicated, according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout this specification. See, e.g. “Principles of Neural Science”, McGraw-Hill Medical, New York, N.Y. (2000); Motulsky, “Intuitive Biostatistics”, Oxford University Press, Inc. (1995); Lodish et al., “Molecular Cell Biology, 4th ed.”, W. H. Freeman & Co., New York (2000); Griffiths et al., “Introduction to Genetic Analysis, 7th ed.”, W. H. Freeman & Co., N.Y. (1999); and Gilbert et al., “Developmental Biology, 6th ed.”, Sinauer Associates, Inc., Sunderland, Mass. (2000).
- Chemistry terms used herein are used according to conventional usage in the art, as exemplified by “The McGraw-Hill Dictionary of Chemical Terms”, Parker S., Ed., McGraw-Hill, San Francisco, Calif. (1985).
- All of the above, and any other publications, patents and published patent applications referred to in this application are specifically incorporated by reference herein. In case of conflict, the present specification, including its specific definitions, will control.
- The term “agent” is used herein to denote a chemical compound (such as an organic or inorganic compound, a mixture of chemical compounds), a biological macromolecule (such as a nucleic acid, an antibody, including parts thereof as well as humanized, chimeric and human antibodies and monoclonal antibodies, a protein or portion thereof, e.g., a peptide, a lipid, a carbohydrate), or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues. Agents include, for example, agents whose structure is known, and those whose structure is not known. The microtubule-stabilizing or -destabilizing activity of such agents may render them suitable as “therapeutic agents” in the methods and compositions of this disclosure.
- A “patient,” “subject,” or “individual” are used interchangeably and refer to either a human or a non-human animal. These terms include mammals, such as humans, primates, livestock animals (including bovines, porcines, etc.), companion animals (e.g., canines, felines, etc.) and rodents (e.g., mice and rats).
- “Treating” a condition or patient refers to taking steps to obtain beneficial or desired results, including clinical results. As used herein, and as well understood in the art, “treatment” is an approach for obtaining beneficial or desired results, including clinical results. Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment.
- The term “preventing” is art-recognized, and when used in relation to a condition, such as a local recurrence (e.g., pain), a disease such as cancer, a syndrome complex such as heart failure or any other medical condition, is well understood in the art, and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition. Thus, prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, e.g., by a statistically and/or clinically significant amount.
- “Administering” or “administration of” a substance, a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art. For example, a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitoneally, subcutaneously, ocularly, sublingually, orally (by ingestion), intranasally (by inhalation), intraspinally, intracerebrally, and transdermally (by absorption, e.g., through a skin duct). A compound or agent can also appropriately be introduced by rechargeable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow or controlled release of the compound or agent. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
- Appropriate methods of administering a substance, a compound or an agent to a subject will also depend, for example, on the age and/or the physical condition of the subject and the chemical and biological properties of the compound or agent (e.g. solubility, digestibility, bioavailability, stability and toxicity). In some embodiments, a compound or an agent is administered orally, e.g., to a subject by ingestion. In some embodiments, the orally administered compound or agent is in an extended release or slow release formulation, or administered using a device for such slow or extended release.
- As used herein, the phrase “conjoint administration” refers to any form of administration of two or more different therapeutic agents such that the second agent is administered while the previously administered therapeutic agent is still effective in the body (e.g., the two agents are simultaneously effective in the patient, which may include synergistic effects of the two agents). For example, the different therapeutic compounds can be administered either in the same formulation or in separate formulations, either concomitantly or sequentially. Thus, an individual who receives such treatment can benefit from a combined effect of different therapeutic agents.
- A “therapeutically effective amount” or a “therapeutically effective dose” of a drug or agent is an amount of a drug or an agent that, when administered to a subject will have the intended therapeutic effect. The full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses. Thus, a therapeutically effective amount may be administered in one or more administrations. The precise effective amount needed for a subject will depend upon, for example, the subject's size, health and age, and the nature and extent of the condition being treated, such as cancer or MDS. The skilled worker can readily determine the effective amount for a given situation by routine experimentation.
- The term “antimitotic agent(s)” or “antimitotic(s)”, as used herein, means a compound (or compounds) that inhibits cell growth by interfering with cell division. Antimitotic agents include antimicrotubule agents, mitotic inhibitors, and/or taxanes. Docetaxel and paclitaxel are exemplary antimitotic agents. Antimitotic agents that interact with tubulin protein are of interest because of their potential uses in the treatment of human neoplastic and inflammatory diseases. In some embodiments of the present disclosure, the compounds as described herein target the microtubules. Important dynamics of the microtubule polymers include their growth rate at the plus ends, catastrophic shortening, frequency of transition between the two phases, pause between the two phases, their release from the microtubule organizing center, and treadmilling (Margolis and Wilson, 1981; Mitchison and Kirschner, 1984; Kirschner and Mitchison, 1986; Margolis and Wilson, 1998; Jordan and Wilson, 2004). In some embodiments, the compounds of this disclosure disrupt the normal microtubule dynamics by acting on (or affecting) one or more of the above aspects of the microtubule dynamics.
- The term “acyl” is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)—, preferably alkylC(O)—.
- The term “acylamino” is art-recognized and refers to an amino group substituted with an acyl group and may be represented, for example, by the formula hydrocarbylC(O)NH—.
- The term “acyloxy” is art-recognized and refers to a group represented by the general formula hydrocarbylC(O)O—, preferably alkylC(O)O—.
- The term “alkoxy” refers to an alkyl group having an oxygen attached thereto. Representative alkoxy groups include methoxy, ethoxy, propoxy, tert-butoxy and the like.
- The term “alkoxyalkyl” refers to an alkyl group substituted with an alkoxy group and may be represented by the general formula alkyl-O-alkyl.
- The term “alkyl” refers to saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl-substituted cycloalkyl groups, and cycloalkyl-substituted alkyl groups. In preferred embodiments, a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (e.g., C1-30 for straight chains, C3-30 for branched chains), and more preferably 20 or fewer.
- Moreover, the term “alkyl” as used throughout the specification, examples, and claims is intended to include both unsubstituted and substituted alkyl groups, the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone, including haloalkyl groups such as trifluoromethyl and 2,2,2-trifluoroethyl, etc.
- The term “Cx-y” or “Cx-Cy”, when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups that contain from x to y carbons in the chain. C0alkyl indicates a hydrogen where the group is in a terminal position, a bond if internal. A C1-6alkyl group, for example, contains from one to six carbon atoms in the chain.
- The term “alkylamino”, as used herein, refers to an amino group substituted with at least one alkyl group.
- The term “alkylthio”, as used herein, refers to a thiol group substituted with an alkyl group and may be represented by the general formula alkyl S—.
- The term “amide”, as used herein, refers to a group
- wherein R9 and R10 each independently represent a hydrogen or hydrocarbyl group, or R9 and R10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- The terms “amine” and “amino” are art-recognized and refer to both unsubstituted and substituted amines and salts thereof, e.g., a moiety that can be represented by
- wherein R9, R10, and R10′ each independently represent a hydrogen or a hydrocarbyl group, or R9 and R10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
- The term “aminoalkyl”, as used herein, refers to an alkyl group substituted with an amino group.
- The term “aralkyl”, as used herein, refers to an alkyl group substituted with an aryl group.
- The term “aryl” as used herein include substituted or unsubstituted single-ring aromatic groups in which each atom of the ring is carbon. Preferably the ring is a 5- to 7-membered ring, more preferably a 6-membered ring. The term “aryl” also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Aryl groups include benzene, naphthalene, phenanthrene, phenol, aniline, and the like.
- The term “carbamate” is art-recognized and refers to a group
- wherein R9 and R10 independently represent hydrogen or a hydrocarbyl group.
- The term “carbocyclylalkyl”, as used herein, refers to an alkyl group substituted with a carbocycle group.
- The terms “carbocycle”, “carbocyclyl”, and “carbocyclic”, as used herein, refers to a non-aromatic saturated or unsaturated ring in which each atom of the ring is carbon. Preferably a carbocycle ring contains from 3 to 10 atoms, more preferably from 5 to 7 atoms.
- The term “carbocyclylalkyl”, as used herein, refers to an alkyl group substituted with a carbocycle group.
- The term “carbonate” is art-recognized and refers to a group —OCO2—.
- The term “carboxy”, as used herein, refers to a group represented by the formula —CO2H.
- The term “ester”, as used herein, refers to a group —C(O)OR9 wherein R9 represents a hydrocarbyl group.
- The term “ether”, as used herein, refers to a hydrocarbyl group linked through an oxygen to another hydrocarbyl group. Accordingly, an ether substituent of a hydrocarbyl group may be hydrocarbyl-O—. Ethers may be either symmetrical or unsymmetrical. Examples of ethers include, but are not limited to, heterocycle-O-heterocycle and aryl-O-heterocycle. Ethers include “alkoxyalkyl” groups, which may be represented by the general formula alkyl-O-alkyl.
- The terms “halo” and “halogen” as used herein means halogen and includes chloro, fluoro, bromo, and iodo.
- The terms “hetaralkyl” and “heteroaralkyl”, as used herein, refers to an alkyl group substituted with a hetaryl group.
- The terms “heteroaryl” and “hetaryl” include substituted or unsubstituted aromatic single ring structures, preferably 5- to 7-membered rings, more preferably 5- to 6-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms. The terms “heteroaryl” and “hetaryl” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heteroaromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like.
- The term “heteroatom” as used herein means an atom of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, and sulfur.
- The term “heterocyclylalkyl”, as used herein, refers to an alkyl group substituted with a heterocycle group.
- The terms “heterocyclyl”, “heterocycle”, and “heterocyclic” refer to substituted or unsubstituted non-aromatic ring structures, preferably 3- to 10-membered rings, more preferably 3- to 7-membered rings, whose ring structures include at least one heteroatom, preferably one to four heteroatoms, more preferably one or two heteroatoms. The terms “heterocyclyl” and “heterocyclic” also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heterocyclic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Heterocyclyl groups include, for example, piperidine, piperazine, pyrrolidine, morpholine, lactones, lactams, and the like.
- The term “hydrocarbyl”, as used herein, refers to a group that is bonded through a carbon atom that does not have a ═O or ═S substituent, and typically has at least one carbon-hydrogen bond and a primarily carbon backbone, but may optionally include heteroatoms. Thus, groups like methyl, ethoxyethyl, 2-pyridyl, and even trifluoromethyl are considered to be hydrocarbyl for the purposes of this application, but substituents such as acetyl (which has a ═O substituent on the linking carbon) and ethoxy (which is linked through oxygen, not carbon) are not. Hydrocarbyl groups include, but are not limited to aryl, heteroaryl, carbocycle, heterocycle, alkyl, alkenyl, alkynyl, and combinations thereof.
- The term “hydroxyalkyl”, as used herein, refers to an alkyl group substituted with a hydroxy group.
- The term “lower” when used in conjunction with a chemical moiety, such as, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy is meant to include groups where there are ten or fewer atoms in the substituent, preferably six or fewer. A “lower alkyl”, for example, refers to an alkyl group that contains ten or fewer carbon atoms, preferably six or fewer. In certain embodiments, acyl, acyloxy, alkyl, alkenyl, alkynyl, or alkoxy substituents defined herein are respectively lower acyl, lower acyloxy, lower alkyl, lower alkenyl, lower alkynyl, or lower alkoxy, whether they appear alone or in combination with other substituents, such as in the recitations hydroxyalkyl and aralkyl (in which case, for example, the atoms within the aryl group are not counted when counting the carbon atoms in the alkyl substituent).
- The terms “polycyclyl”, “polycycle”, and “polycyclic” refer to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls) in which two or more atoms are common to two adjoining rings, e.g., the rings are “fused rings”. Each of the rings of the polycycle can be substituted or unsubstituted. In certain embodiments, each ring of the polycycle contains from 3 to 10 atoms in the ring, preferably from 5 to 7.
- The term “sulfate” is art-recognized and refers to the group —OSO3H, or a pharmaceutically acceptable salt thereof.
- The term “sulfonamide” is art-recognized and refers to the group represented by the general formulae
- wherein R9 and R10 independently represents hydrogen or hydrocarbyl.
- The term “sulfoxide” is art-recognized and refers to the group —S(O)—.
- The term “sulfonate” is art-recognized and refers to the group SO3H, or a pharmaceutically acceptable salt thereof.
- The term “sulfone” is art-recognized and refers to the group —S(O)2—.
- The term “substituted” refers to moieties having substituents replacing a hydrogen on one or more carbons of the backbone. It will be understood that “substitution” or “substituted with” includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and non-aromatic substituents of organic compounds. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this invention, the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. Substituents can include any substituents described herein, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic moiety. It will be understood by those skilled in the art that the moieties substituted on the hydrocarbon chain can themselves be substituted, if appropriate.
- The term “thioalkyl”, as used herein, refers to an alkyl group substituted with a thiol group.
- The term “thioester”, as used herein, refers to a group —C(O)SR9 or —SC(O)R9 wherein R9 represents a hydrocarbyl.
- The term “thioether”, as used herein, is equivalent to an ether, wherein the oxygen is replaced with a sulfur.
- The term “urea” is art-recognized and may be represented by the general formula
- wherein R9 and R10 independently represent hydrogen or a hydrocarbyl.
- The term “modulate” as used herein includes the inhibition or suppression of a function or activity (such as cell proliferation) as well as the enhancement of a function or activity.
- The phrase “pharmaceutically acceptable” is art-recognized. In certain embodiments, the term includes compositions, excipients, adjuvants, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- “Pharmaceutically acceptable salt” or “salt” is used herein to refer to an acid addition salt or a basic addition salt which is suitable for or compatible with the treatment of patients.
- The term “pharmaceutically acceptable acid addition salt” as used herein means any non-toxic organic or inorganic salt of any base compounds represented by Formula I. Illustrative inorganic acids which form suitable salts include hydrochloric, hydrobromic, sulfuric and phosphoric acids, as well as metal salts such as sodium monohydrogen orthophosphate and potassium hydrogen sulfate. Illustrative organic acids that form suitable salts include mono-, di-, and tricarboxylic acids such as glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, benzoic, phenylacetic, cinnamic and salicylic acids, as well as sulfonic acids such as p-toluene sulfonic and methanesulfonic acids. Either the mono or di-acid salts can be formed, and such salts may exist in either a hydrated, solvated or substantially anhydrous form. In general, the acid addition salts of compounds of Formula I are more soluble in water and various hydrophilic organic solvents, and generally demonstrate higher melting points in comparison to their free base forms. The selection of the appropriate salt will be known to one skilled in the art. Other non-pharmaceutically acceptable salts, e.g., oxalates, may be used, for example, in the isolation of compounds of Formula I for laboratory use, or for subsequent conversion to a pharmaceutically acceptable acid addition salt.
- The term “pharmaceutically acceptable basic addition salt” as used herein means any non-toxic organic or inorganic base addition salt of any acid compounds represented by Formula I or any of their intermediates. Illustrative inorganic bases which form suitable salts include lithium, sodium, potassium, calcium, magnesium, or barium hydroxide. Illustrative organic bases which form suitable salts include aliphatic, alicyclic, or aromatic organic amines such as methylamine, trimethylamine and picoline or ammonia. The selection of the appropriate salt will be known to a person skilled in the art.
- Many of the compounds useful in the methods and compositions of this disclosure have at least one stereogenic center in their structure. This stereogenic center may be present in a R or a S configuration, said R and S notation is used in correspondence with the rules described in Pure Appl. Chem. (1976), 45, 11-30. The disclosure contemplates all stereoisomeric forms such as enantiomeric and diastereoisomeric forms of the compounds, salts, prodrugs or mixtures thereof (including all possible mixtures of stereoisomers). See, e.g., WO 01/062726.
- Furthermore, certain compounds which contain alkenyl groups may exist as Z (zusammen) or E (entgegen) isomers. In each instance, the disclosure includes both mixture and separate individual isomers.
- Some of the compounds may also exist in tautomeric forms. Such forms, although not explicitly indicated in the formulae described herein, are intended to be included within the scope of the present disclosure.
- “Prodrug” or “pharmaceutically acceptable prodrug” refers to a compound that is metabolized, for example hydrolyzed or oxidized, in the host after administration to form the compound of the present disclosure (e.g., compounds of formula I). Typical examples of prodrugs include compounds that have biologically labile or cleavable (protecting) groups on a functional moiety of the active compound. Prodrugs include compounds that can be oxidized, reduced, aminated, deaminated, hydroxylated, dehydroxylated, hydrolyzed, dehydrolyzed, alkylated, dealkylated, acylated, deacylated, phosphorylated, or dephosphorylated to produce the active compound. Examples of prodrugs using ester or phosphoramidate as biologically labile or cleavable (protecting) groups are disclosed in U.S. Pat. Nos. 6,875,751, 7,585,851, and 7,964,580, the disclosures of which are incorporated herein by reference. The prodrugs of this disclosure are metabolized to produce a compound of Formula I. The present disclosure includes within its scope, prodrugs of the compounds described herein. Conventional procedures for the selection and preparation of suitable prodrugs are described, for example, in “Design of Prodrugs” Ed. H. Bundgaard, Elsevier, 1985.
- The phrase “pharmaceutically acceptable carrier” as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filter, diluent, excipient, solvent or encapsulating material useful for formulating a drug for medicinal or therapeutic use.
- The term “myelodysplastic syndrome” or “MDS” means a hematopoietic stem cell disorder characterized by one or more of the following: ineffective blood cell production, progressive cytopenias, risk of progression to acute leukemia or cellular marrow with impaired morphology and maturation (dysmyelopoiesis). The term “myelodysplastic syndrome” or “MDS” includes, but is not limited to, refractory anemia, refractory anemia with ringed sideroblasts, refractory anemia with excess blasts, refractory anemia with excess blasts in transformation and chronic myelomonocytic leukemia.
- The term “Log of solubility”, “Log S” or “log S” as used herein is used in the art to quantify the aqueous solubility of a compound. The aqueous solubility of a compound significantly affects its absorption and distribution characteristics. A low solubility often goes along with a poor absorption. Log S value is a unit stripped logarithm (base 10) of the solubility measured in mol/liter.
- This disclosure will be better understood from the Experimental Details which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the disclosure as described more fully in the embodiments which follow thereafter.
- Chemistry: General Experimental Procedures.
- All reagents and solvents were purchased from commercial suppliers and used without further purification unless otherwise stated. The reactions were monitored by thin layer chromatography (TLC) on precoated silica gel F254 plates (Sigma-Aldrich) with a UV indicator using chloroform:methanol (9.5:0.5 v/v). Yields were of purified product and were not optimized. The purity of the newly synthesized compounds was determined by LCMS analysis. The proton nuclear resonance (1H NMR) spectra were performed on a
Varian GEMINI 2000 NMR spectrometer system with working frequency 400 MHz. Chemical shifts (δ) are given in ppm, and the following abbreviations are used: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad singlet (br s). All LCMS data were gathered on an Agilent 1100 LC system. The compound solution was injected into the ionization source (APCI) operating positive and negative modes with a mobile phase acetonitrile/water/formic acid (50:50:0.1% v/v) at 1.0 mL/min. The instrument was externally calibrated for the mass range m/z 100 to m/z 650. - Certain compounds of the invention were synthesized according to Scheme 2 and as outlined in the following general procedures.
- Morpholine (20.4 g, 0.234 mol) was added dropwise to a mixture of cyclohexanone (10.0 g, 0.102 mol), ethyl cyanoacetate (11.53 g, 0.102 mol), and sulfur (2.9 g, 0.094 mol) in 30 mL of ethanol at ambient temperature in 20 min. The reaction was exothermic, so the temperature increased to 50° C., and a clear solution was obtained. It was filtered from solids and cooled to 0-5° C. After stirring for 1 h the product was filtered off, washed with chilled ethanol (15 mL) and sucked dry. The obtained cake was dried in an oven at 50° C. for 3 h to obtain 14 g of the title product. Yield: 66.0%. 1H NMR (ppm): 1.23 (3H, t), 1.61-1.72 (4H, m), 2.38-2.41 (2H, m), 2.56-2.61 (2H, m), 4.13 (2H, d), 7.21 (2H, br.s).
- Ethyl-2-amino-4,5,6,7-tetrahydrobenzothiophene-3-carboxylate (11.25 g, 0.05 mol) and chloroacetonitrile (5.0 g, 0.06 mol) were dissolved 1,4-dioxane. The obtained solution was heated to 50° C., and passed with dry hydrogen chloride gas for 3 h until the starting material disappeared. Then the solvent was removed under vacuum. The residue was triturated with hexane, and a precipitate was formed as a fine powder. The product was filtered, washed with hexane, and air dried to obtain 8.1 g of the compound. Yield: 63.0%. 1H NMR (ppm): 1.71-1.82 (4H, m), 2.74 (2H, d.tr), 2.87 (2H, d.tr), 4.53 (2H, s), 12.5 (1H, br.s).
- 0.01 mol of compound 6 and 0.01 mol of thriphenylphosphine were boiled in 50 mL of toluene for 10 h. The resulting residue was filtered off, washed with toluene, air dried and used for condensation with aldehydes without further purification. Yield: 75%. 1H NMR (ppm): 1.60-1.80 (4H, m), 12.90 (1H, br.s), 2.65 (2H, d.tr), 2.77 (2H, d.tr), 8.60 (2H, d), 8.70-8.80 (6H, m), 8.80-8.90 (9H, m).
- A 10% solution of Na2CO3 (0.8 mL) was added dropwise to a solution of thriphenylphosphonium chloride 8 (0.001 mol) and corresponding aldehyde 9 (0.0005 mol) in methanol. The reaction mixture was stirred for 10 min at RT. The resulting yellow precipitate was filtered off, washed with water and methanol. The remaining residue was boiled in ethanol for 2 h, filtered hot, washed with alcohol and dried to give the final compound as a solid.
- Yield: 46%. Purity 95% by LCMS. 1H NMR (ppm): 1.70-1.82 (4H, m), 2.75 (2H, d.t), 2.59 (2H, d.t), 6.98 (1H, d), 7.39-7.51 (3H, m), 7.68-7.81 (2H, m), 7.98 (1H, d), 12.97 (1H, br.s).
- Yield: 40%. Purity 95% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.76-1.86 (4H, m), 2.75 (2H, d.t), 2.88 (2H, d.t), 7.03 (1H, d), 7.18-7.22 (1H, m), 7.34-7.41 (1H, m), 7.76-7.82 (1H, m), 7.86 (1H, d), 12.42 (1H, br.s).
- Yield: 42%. Purity 98% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.76-1.86 (4H, m), 2.75 (2H, d.t), 2.89 (2H, d.t), 7.12 (1H, d), 7.27-7.40 (2H, m), 7.59-7.62 (1H, m), 7.86 (1H, d), 12.45 (1H, br.s).
- Yield: 33%. Purity 97% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.76-1.86 (4H, m), 2.75 (2H, d.t), 2.89 (2H, d.t), 6.92 (1H, d), 7.24-7.32 (2H, m), 7.65-7.73 (2H, m), 7.87 (1H, d), 12.30 (1H, br.s).
- Yield: 36%. Purity 98% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.75-1.88 (4H, m), 2.75 (2H, d.t), 2.88 (2H, d.t), 3.80 (3H, s) 6.98 (1H, d), 6.99 (1H, dd), 7.20 (1H, d), 7.21 (1H, d), 7.36 (1H, t), 7.84 (1H, d), 12.30 (1H, br.s).
- Yield: 39%. Purity 95% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.76-1.86 (4H, m), 2.52 (3H, s), 2.76 (2H, d.t), 2.91 (2H, d.t), 6.92 (1H, d), 7.32 (2H, d), 7.55 (2H, d), 7.84 (1H, d), 11.95 (1H, br.s).
- Yield: 46%. Purity 96% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.34 (3H, t), 1.76-1.86 (4H, m), 2.75 (2H, d.t), 2.89 (2H, d.t), 3.82 (3H, s), 4.06 (2H, q), 6.86 (1H, d), 7.00 (1H, d), 7.16 (1H, dd), 7.24 (1H, d), 7.82 (1H, d), 12.20 (1H, br.s).
- Yield: 56%. Purity 95% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.76-1.86 (4H, m), 2.36 (3H, s), 2.76 (2H, d.t), 2.91 (2H, d.t), 6.96 (1H, d), 7.22 (1H, dd), 7.33 (1H, t), 7.42 (1H, d), 7.43 (1H, d), 7.83 (1H, d), 12.15 (1H, br.s).
- Yield: 55%. Purity 95% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.75-1.88 (4H, m), 2.74 (2H, d.t), 2.88 (2H, d.t), 3.80 (3H, s) 6.83 (1H, d), 7.01 (2H, d), 7.58 (2H, d), 7.83 (1H, d), 12.24 (1H, br.s).
- Yield: 39%. Purity 96% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.75-1.88 (4H, m), 2.75 (2H, d.t), 2.88 (2H, d.t), 6.98 (1H, d), 7.58 (2H, d), 7.64 (2H, d), 7.83 (1H, d), 12.34 (1H, br.s).
- Yield: 53%. Purity 95% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.76-1.90 (4H, m), 2.76 (2H, d.t), 2.90 (2H, d.t), 6.95 (1H, d), 7.44-7.52 (2H, m), 7.64-7.71 (1H, m), 7.82 (1H, d), 12.10 (1H, br.s).
- Yield: 30%. Purity 95% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.76-1.86 (4H, m), 2.75 (2H, d.t), 2.89 (2H, d.t), 3.80 (3H, s), 3.81 (3H, s), 6.86 (1H, d), 7.02 (1H, d), 7.19 (1H, dd), 7.24 (1H, d), 7.82 (1H, d), 12.45 (1H, br.s).
- Yield: 52%. Purity 95% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.36 (3H, t), 1.76-1.86 (4H, m), 2.75 (2H, d.t), 2.89 (2H, d.t), 4.11 (2H, q), 6.82 (1H, d), 6.99 (2H, d), 7.55 (2H, d), 7.81 (1H, d), 11.90 (1H, br.s).
- Yield: 41%. Purity 95% by LCMS. 1H NMR (DMSO-d6, 400 MHz): δ 1.76-1.86 (4H, m), 2.35 (3H, s), 2.76 (2H, d.t), 2.91 (2H, d.t), 6.92 (1H, d), 7.25 (2H, d), 7.52 (2H, d), 7.83 (1H, d), 12.05 (1H, br.s).
- Compounds 10n-10z are commercially available from MolPort (Latvia) and were found to be >95% purity by LCMS.
- The cell viability IC50 of each compound was determined using Promega CellTiter-Glo Luminescent Cell Viability Assay kit by measuring the total ATP levels to quantify the number of metabolically active cells upon drug treatment as described in Crouch et al., J Immunol Methods 1993, 160, (1), 81-8. Briefly, the compounds were suspended in DMSO at 10 mM and diluted in 384 plates (20 μl/well in DMSO) in triplicate by a 14-point titration (12 nM to 100 μM). 50 μl of HeLa cells or patient derived glioblastoma cells (HK-309) (2000 cells/well) were then treated with the prepared dilutions of the drugs (0.5 μl) and incubated at 37° C. and 5% CO2. 72 hours later 50 μl of CellTiter-Glo reagent was added to each well followed by a 2 minutes shaking and a 10-minute incubation to lyse the cells. The relative luminescent intensity units (RLU) of each well was measured using a Tecan M1000 microplate reader (Tecan Group Ltd.) with its green filter and 1 second integration time.
- The SAR data for certain compounds of the invention is summarized in Table 2.
- Cells used in Example 2 and other examples disclosed herein were cultured as follows: Adherent HeLa cells and patient derived glioblastoma cells were grown with 5% CO2 at 37° C. in F12:DMEM 50:50 medium (Invitrogen) containing 10% FBS and 1% penicillin/streptomycin. To obtain HeLa cells synchronized in mitosis, cycling cells were treated with 2 mM thymidine (Sigma-Aldrich) for eighteen hours, washed three times with PBS, and released into fresh media until they entered mitosis eight hours post-release. Patient-derived glioblastoma cells (HK-309) were collected and grown with approval from the UCLA Institutional Review Board. HK-309 was derived from a recurrent glioblastoma taken from a 55 year old male. The cells were initially propagated as cancer stem cell-containing spheres in serum-free medium containing basic fibroblast growth factor and epidermal growth factor (Preprotech) as described previously by Visnyei et al.,
Mol Cancer Ther 2011, 10, (10), 1818-28. -
TABLE 2 Cell Viability IC50 Values for CSI Compounds Tested in HeLa Cells Compound R1 R2 R3 IC50 [uM] 10 H H H 0.552 10a 2,4-F H H 0.246 10b 2,5-F H H 0.159 10c 4-F H H 1.11 10d 3-OCH3 H H 4.21 10e 4-SCH3 H H 6.31 10f 3-OCH3,4-OCH2CH3 H H 25.9 10g 3-CH3 H H >100 10h 4-OCH3 H H 50.9 10i 4-Br H H >100 10j 3,4-F H H >100 10k 3,4-OCH3 H H >100 10l 4-OCH2CH3 H H >100 10m 4-CH3 H H >100 10n 4-OCF2 CN 3-CH3 >100 10o 2-OCF2 CN 3-CH3 >100 10p 2,5-CH3 CN 3-CH3 >100 10q 4-CF3 CN H >100 10r 2,6-Cl CN 3-CH3 >100 10s 3,4-Cl H H, decane >100 ring 10t 3-CH3 CN 3-CH3 >100 10u 2-CF3 H H >100 10v 4-CH2CH3 CN 3-CH3 >100 10w 2-CH3 CN 3-CH3 >100 10x 2,4,6-CH3 CN H >100 10y 2-CF3 CN H >100 10z 2,4,6-CH3 CN 3-CH3 >100 - To further validate that
compound 10 and its analogues were targeting microtubules, in vitro microtubule polymerization reactions were performed with the most potent compounds (10-10b) using the HTS-tubulin polymerization assay kit from Cytoskeleton Inc. Briefly, tubulin polymerization assays were conducted using the HTS-Tubulin polymerization assay kit from Cytoskeleton Inc. The reactions were carried out according to the manufacturer instructions (Cytoskeleton, BK011P) in the presence of 3 μM of test compounds (10, 10a, and 10b) and controls (DMSO, colchicine and taxol). 1.5 ul of 10X strength compound, 20 μl of tubulin solution and Triton X-100 at a final concentration of 0.01% were added to each well in a 384 well plate. The reactions were assembled on ice to prevent tubulin pre-polymerization. For kinetic measurements, microtubule polymerization was monitored by reading the fluorescence at 420 nm (due to the incorporation of a fluorescent reporter into microtubules as polymerization occurs) every ten seconds using a Tecan M1000 microplate reader (FIG. 6B ). Both endpoint and kinetic measurements indicated that in 10, 10a and 10b were potent inhibitors of microtubule polymerization similar to colchicine (vitro FIG. 6A , B). For kinetic measurements, microtubule polymerization was monitored by reading the fluorescence at 420 nm (due to the incorporation of a fluorescent reporter into microtubules as polymerization occurs) every ten seconds using a Tecan M1000 microplate reader (FIG. 6B ). Fluorescence increased as polymerization occurred, due to the incorporation of 4′,6-diamidino-2-phenylindole. Fluorescence was monitored every minute for 70 minutes at 37° C. SeeFIG. 2 . Both endpoint and kinetic measurements indicated that in 10, 10a and 10b were potent inhibitors of microtubule polymerization similar to colchicine.vitro - Next, microtubule stability was analyzed in HeLa cells treated with increasing concentrations of each of these three compounds by fixing the cells with 4% paraformaldehyde, staining them with Hoechst 33342 (DNA dye) to visualize their DNA and anti-α-tubulin antibodies to visualize microtubule structures and then imaging them by immunofluorescence microscopy. This analysis showed that, similar to colchicine, the microtubules of 10, 10a and 10b-treated cells became destabilized in a drug dose-dependent manner.
- For cell cycle analysis, HeLa cells were plated in 384 well plates (1500 cells/well) and treated with 10 μM drugs for 20 hours. Cells were then fixed and stained with 5 μM Vybrant DyeCycle Green (Invitrogen) for 1 hour at 37° C. and plates were scanned with an Acumen eX3 (TTP Labtech) fluorescence microplate cytometer using its 488 nm laser and a cell cycle histogram profile was generated for each drug treatment using the CDD (Collaborative Drug Discovery) software.
FIG. 1 shows the cell cycle histogram of cells treated with DMSO, colchicine orcompound 10. Additionally, HeLa cells were treated with increasing concentrations of colchicine andcompound 10 for 20 hours and the drug response dose curves were used to measure the mitotic arrest IC50 for each treatment. SeeFIG. 3 . - Additionally, it was discovered that
compound 10 and its analogs inhibit cell division and trigger apoptotic cell death. Briefly, HeLa cells were treated with increasing concentrations of 10, 10a, and 10b for 20 hours and the drug response dose curves were used to measure the mitotic arrest IC50 for each treatment. SeeFIG. 4 . Also, the percentage of cells undergoing normal cell division was quantified for DMSO, colchicine, 10b, or taxol-treated cells. Data represent the average±SD of 3 independent experiments, with 20 cells counted for each. Asterisks denotes p-value<0.0001. - Live-cell time-lapse microscopy was carried out essentially as described by Torres et al., Cell 2011, 147, (6), 1309-23. Briefly, HeLa-FUCCI cells were arrested with 2 mM thymidine for eighteen hours, washed three times with PBS, and released into fresh media. Six hours postrelease, cells were treated with indicated small molecules and imaged live at 20× magnification with ten Z-stacks, one every 1 μm, for twelve hours at ten-minute intervals. Images were captured with a Leica DMI6000 microscope (Leica Microsystems), processed using LSF software and converted to Apple QuickTime movies. Each frame represents a fifteen-minute interval. Data quantitation represents the average±SD (standard deviation) of 3 independent experiments, with 20 cells counted for each.
- Individual cells treated with DMSO, colchicine, 10b, or taxol were tracked over time using live-cell time-lapse microcopy and the time from mitotic entry to cell death was represented as a bar for each cell as shown in
FIG. 5b . Additionally, the time from mitotic entry to cell death was quantified for DMSO, colchicine, 10b, or taxol-treated cells. Data represent the average±SD of 3 independent experiments, with 10 cells counted for each. SeeFIG. 5(c) . - Certain compounds of the invention were shown to be potent anticancer agents. Briefly, patient-derived glioblastoma cells (HK-309) were treated with fourteen point two-fold titration (1.5 nM to 12.5 μM) of 10, 10a and 10b for 72 hours and their cell viability (CellTiter-Glo Assay, Promega) IC50 was determined.
FIG. 6 depicts this data where RLU indicates relative light units. Interestingly, 10, 10a and 10b showed great efficacy in these populations of brain cancer cells (cell viability IC50 for 10=352 nM, 10a=283 nM, and 10b=113 nM). These results indicated thatcompound 10 and its analogues were potent not only against a cervical adenocarcinoma cell line, but also patient derived glioblastoma cells. - To determine if MI-181 had broad anti-cancer activity, we treated a diverse panel of cancer cell lines including cervical adenocarcinoma (HeLa), breast adenocarcinoma (MCF7), melanoma (M233), osteosarcoma (U20S), acute lymphoblastic leukemia (CCRF-CEM), non-small cell lung carcinoma (NCI-H460), and breast adenocarcinoma (MCF7) with MI-181 and determined its cell viability IC50 (
FIGS. 13A and 13B ). Interestingly, MI-181 showed great efficacy across most cancer cell lines with a cell viability IC50 ranging from 0.03 μM to 0.36 μM, with the exception of MCF7 cells (IC50=11 μM) (FIGS. 13a and 13b ). These results indicated that MI-181 was potent across a broad array of cancers and was most effective against cervical adenocarcinoma and melanoma cell lines. Therefore, the efficacy of MI-181 was analyzed in a panel of melanoma cell lines with defined genetic backgrounds including BRAFV600E and NRASQ61L mutations and varied sensitivities to Vemurafenib (BRAF inhibitor) and Trametinib (MEK inhibitor), which are currently used to treat BRAFV600E melanomas43,44 (FIG. 10c ). MI-181 displayed great potency across this panel (IC50=18 nM-90 nM) (FIG. 10c and Table 3). As a general trend BRAFV600E cell lines were slightly more sensitive than NRASQ61L cell lines and MI-181 was effective in Vemurafenib and Trametinib resistant cell lines (FIG. 10c and Table 3). Finally, we tested the ability of MI-181 to inhibit melanoma colony formation using the M233 and M308 cell lines (both resistant to Vemurafenib). Indeed, MI-181 was a potent inhibitor of colony formation (percentage colony formation for 10 nM MI-181=0.2±0.1 and 0.8±0.7; for 10 nM colchicine=0.1±0.06 and 1.5±0.5; and for 10 nM Vemurafenib=94±7 and 102±5) (FIG. 10d ). Thus, MI-181 is a potent inhibitor of melanoma cell lines. -
TABLE 3 MI-181 IC50 Against Various Cell Lines Cell Line Cell Viability IC50 (μM MI-181) HeLa 0.0174 M397 0.0181 M395 0.0234 M233 0.0244 M243 0.026 M308 0.0283 M238 0.0305 M229 0.0367 M376 0.0397 M244 0.0415 M207 0.0417 M296 0.0367 M409 0.0419 M230 0.042 M368 0.0421 M318 0.0549 M375 0.0582 M202 0.0883 - Tubulin polymerization reactions were carried out according to the manufacturer (Cytoskeleton, BK011P) in the presence of 3 μM colchicine, MI-181, taxol or DMSO. Polymerization was monitored with a Tecan M1000 micro-plate reader at 420 nm for 70 minutes at 37° C. The results are depicted in
FIG. 11 . - Phospho-histone-H3-488 (Ser10) (p-H3-488, Cell Signaling), α-tubulin (Serotec), AurKB (BD Transduction), Anti-Centromere-Antibodies (ACA, Cortex Biochem), cyclin A and B (Santa Cruz Biotechnology), and SECURIN (Gene Tex). BubR1 and Bub1 were from Hongtao Yu. FITC-, Cy3- and Cy5-conjugated secondary antibodies were from Jackson Immuno Research.
- Cells were synchronized in G1/S, released into the cell cycle in the presence of DMSO or MI-181, and cell extracts were prepared at several time points post-release. Immoblot analysis of these extracts revealed that MI-181 treated cells arrested in mitosis (p-H3 positive), activated the SAC (BubR1 remained phosphorylated) and stabilized cyclin B while degrading cyclin A. (
FIG. 8 ). Additionally, the MI-182-induced mitotic arrest was reversible, as cells exited mitosis within 2 hours of drug washout (FIG. 9 ). - HeLa cells were plated in 384-well plates (1500 cells/well) and treated with 10 μM drugs for 20 hours. Cells were fixed and stained with 5 μM Vybrant DyeCycle Green (Invitrogen) for 1 hour at room temperature and plates were scanned with an Acumen eX3 (TTP Labtech) fluorescence cytometer using its 488 nm laser and a cell cycle histogram profile was generated for each well. For the G2/M secondary screen, 20 hours post drug addition cells were fixed with 4% paraformaldehyde, permeabilized with 0.2% Triton X-100/PBS and stained with Alexa-488-phospho-histone-H3 (Ser10, Cell Signaling) and 1 μg/ml Hoechst 33342 for 1 hour. Plates were imaged with an ImageXpress Micro (Molecular Devices) high-content fluorescence microscope. Data analysis was performed using the CDD (Collaborative Drug Discovery) software and outputs were exported to Excel. The quality of the screen was assessed by calculating the Z′ factor (Z′ factor=1-3×(σp+σn)/(|μp−μn|)), which takes into account the dynamic range of the assay and variance of the data. (Zhang J. H., et al. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen 1999, 4(2): 67-73.) The screen performed with an average plate Z′ factor of 0.51±0.09, within the optimal performance range of 0.5-1.47 (Zhang, op. cit.)
- Time-lapse microscopy was performed as described in: Torres J. Z., et al. The STARD9/Kif16a Kinesin Associates with Mitotic Microtubules and Regulates Spindle Pole Assembly. Cell 2011, 147(6): 1309-1323. Briefly, HeLa FUCCI (fluorescent ubiquitination-based cell cycle indicator cell line, where S through M-phase cells are green due to expression of the mAG-hGeminin fusion protein, and G1-phase cells are red due to expression of the mKO2-hCdt1 fusion protein) cells were released from G1/S in the presence of indicated drug or control DMSO and ten Z-stack images (0.9 μm steps) were captured 6 hours post-release at 15-minute intervals.
- Non-melanoma cell lines were purchased from ATCC, which verified identity by short-tandem repeat profiling, were passaged for less than 6 months following receipt and were maintained in F12:DMEM 50:50 medium (GIBCO) with 10% FBS, 2 mM L-glutamine and antibiotics, in 5% CO2 at 37° C. Melanoma cell lines were established from patient biopsies under UCLA IRB approval #02-08-067, as described in: Sondergaard J. N., et al. Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032. J Transl Med 2010, 8: 39. Melanoma cell lines were genotyped using Oncomap3 platform for 33 genes, Affymetrix Gene Chip for SNP and IonTorrent for next-generation sequencing, were passaged for less than 6 months following verification, and were maintained in RPMI (GIBCO) with 10% FBS and antibiotics in 5% CO2 at 37° C., as described previously (Sondergaard, op. cit.) For G1/S arrests, cells were treated with 2 mM thymidine (Sigma-Aldrich) for 18 hours.
- For mitotic arrest IC50s, cells were treated with a twenty-point-2-fold-titration (190 pM to 10 μM) of each compound tested for 20 hours. For cell viability IC50s, cells were treated with a fourteen-point-2-fold-titration (12.2 nM to 100 μM). Mitotic arrest IC50 was determined by_measuring the percent G2/M arrest using the Vybrant DyeCycle Green (Invitrogen) assay described above. Cell viability IC50 was determined using the CellTiter-Glo Assay (Promega), which measures total ATP levels. Plates were read with a Tecan M1000 micro-plate reader at 540 nm. The CDD software was used for generating IC50 and IC90 values.
- The crystal structure of tubulin bound to two ligands described here was obtained using an established system for tubulin crystal growth. (Prota A. E., Bargsten K., et al. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science (New York, N.Y.) 2013, 339:587-590; Prota A. E., Magiera M. M., et al. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. The Journal of Cell Biology, 2013, 200:259-270.) Initial efforts to crystallize tubulin following an approach in which only the stathmin-like domain facilitates crystal growth never recapitulated previously described results (Gigant B., et al. The 4 A X-ray structure of a tubulin:stathmin-like domain complex.
Cell 2000, 102:809-816; Cormier A., et al. The binding of vinca domain agents to tubulin: structural and biochemical studies. Methods in Cell Biology 2010, 95:373-390.) Briefly, bovine αβ-tubulin, human RB3 or rat STMN4 stathmin-like domain, and chicken tubulin tyrosine ligase (TTL) reconstitute to form a stathmin-bound αβ-tubulin (T2R) T2R-TTL complex, which readily crystallizes. The inclusion of TTL enables an alternative crystal packing arrangement resulting in higher resolution diffraction data and has proven effective in studying the binding of diverse microtubule-targeting agents (Prota A. E., Bargsten K., Diaz J. F., et al. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. PNAS 2014, 111:13817-13821; Prota A. E., Bargsten K., Northcote P. T., et al. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angewandte Chemie (Int. ed. Eng.) 2014, 53:1621-1625; Prota A. E., Danel F., et al. The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. J Mot Biol 2014, 426:1848-1860.) - A single crystal form grown using T2R-TTL soaked with either MI-181 or C2 gave two crystals from which diffraction data were collected. The structure of C2 is shown below:
- The crystal soaked with MI-181 exhibited diffraction to at least 2.60 Å and the crystal soaked with C2 diffracted to at least 3.75 Å. The final resolution cutoffs described here were determined optimally from a subset of diffraction images that took into consideration the signal-to-noise ratio for reflection intensities and the random half-data set correlation coefficient, CC1/2 (Karplus P. A., Diederichs K. Linking crystallographic model and data quality. Science 2012, (New York, N.Y.) 336:1030-1033.)
- The T2R-TTL structures with MI-181 and C2 bound to β-tubulin identify the previously unknown binding sites for each compound [
FIGS. 7(B) and 7(C) ]. Secondary structure elements and sequence numbering of tubulin are based on the initial structural studies of tubulin (Nogales E., et al. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 1998, 391:199-203.). Both compounds occupy a binding pocket in the intermediate domain of β-tubulin that forms the interface with the α-subunit (residues 206-384). Other structural domains in the β-tubulin subunit include the nucleotide-binding domain (residues 1-205) and a C-terminal helical domain from residue 385 to the C-terminus. Only MI-181 is in proximity to the nucleotide-binding domain, which binds and hydrolyzes GTP within the β-subunit. - Tubulin retains a curved structure in the presence of MI-181 and C2 as observed similarly with colchicine and other molecules that interact with the expansive binding pocket on β-tubulin (Ravelli R. B., Gigant B., et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004, 428:198-202; Dorleans A., Gigant B., et al. Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. PNAS 2009, 106:13775-13779; Prota A. E., Danel F., op. cit.) Superimposition of the taxol-stabilized straight tubulin heterodimer β-tubulin subunit with the β-tubulin subunit in our heterodimer structures indicates a rotational offset of the α-subunits. An 11° or 9° discrepancy is present depending on whether the respective analysis uses least-squares fitting or mass-weighted axes representing each heterodimer. This is in close structural agreement with the curvature observed in stathmin-bound tubulin with no depolymerizing compounds bound (Gigant B., et al., op. cit.; Lowe J., et al. Refined structure of alpha beta-tubulin at 3.5 Å resolution. J Mol Biol 2001, 313:1045-1057.) The rmsd of β-tubulin over 416 Ca atoms for each compound when superimposed on the apo-T2R-TTL structure is 0.36 Å and 0.34 Å for MI-181 and C2, respectively (Prota A. E., Bargsten K., et al., op. cit.) These results indicate that no large structural rearrangements occur in tubulin when bound to MI-181 or C2. Additional detail is provided in McNamara, D., et al., Structures of potent anticancer compounds bound to tubulin, Protein Science vol 24:1164-1172 (2015), DOI: 10.1022/pro.2704.
- Luria-Bertani medium also known as lysogeny broth (LB) was purchased from EMD Millipore (Gibbstown, N.J.) (Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 1951,62:293-300.) Antibiotics, DNase I, and lysozyme were from Sigma Chemical Company (St. Louis, Mo.). Isopropyl β-D-1-thiogalactopyranoside (IPTG) and dithiothreitol (DTT) were from Gold Biotechnology, Inc. (St. Louis, Mo.). The compounds MI-181 and C2 (>95% purity) were purchased through MolPort (Riga, Latvia). Protease inhibitor tablets and other chemicals were from Roche and Fisher Scientific, respectively (Indianapolis, Ind. and Pittsburgh, Pa.).
- The rat STMN4 stathmin-like domain with mutations Cys14Ala and Phe20Trp and chicken TTL genes were cloned into pET22b(+) (Novagen) with no additional residues or a C-terminal hexahistidine tag, respectively. The proteins were recombinantly expressed and purified using established methods (Prota A. E., Bargsten K., et al., op. cit.; Charbaut E., et al. Stathmin family proteins display specific molecular and tubulin binding properties. J Biol Chem 2001, 276:16146-16154.) Lyophilized bovine brain tubulin (>99% purity) was purchased from Cytoskeleton, Inc. (Denver, Colo.), reconstituted to form T2R-TTL complexes, and crystallized with sitting-drop vapor diffusion as described previously (Prota A. E., Bargsten K., et al., op. cit.; Prota A. E., Magiera M. M., et al., op. cit.) Crystals were soaked for 24 hours in well solution containing 1 mM compound with 10% DMSO. The crystal soaked with MI-181 was cryoprotected in Paratone-N oil and the C2 complex crystal was cryoprotected in well solution with 16% total glycerol then flash-frozen in liquid nitrogen.
- Diffraction data were collected at 100K at the Advanced Photon Source (APS) Northeastern Collaborative Access Team (NECAT) beamline 24-ID-C on a DECTRIS PILATUS 6M-F detector. The data collection and refinement statistics are reported in Table 4. Data from both crystals were processed using XDS/XSCALE (Kabsch W. Xds. Acta crystallographica Section D, Biological crystallography 2010, 66:125-132.) The program Phaser (McCoy A. J., et al. Phaser crystallographic software. J Appl Crystallogr 2004, 40:658-674) was used to solve both structures by molecular replacement (MR) using a high-resolution colchicine-bound structure of T2R-TTL (PDB ID 402B) with all non-protein atoms removed as the search model (Prota A. E., Danel F., et al., op. cit.) Both asymmetric units contain one complex of T2R-TTL. Residue numbering for tubulin and stathmin are based on previously established conventions (Nogales E., et al., op. cit.; Charbaut E., et al., op. cit.) MR solutions were initially refined with rigid-body refinement using the phenix.refine module of PHENIX (Adams P. D., et al. PHENIX: building new software for automated crystallographic structure determination. Acta crystallographica Section D, Biological crystallography 2002, 58:1948-1954.) Ligand structures and restraints for MI-181 and C2 were generated with SMILES input for phenix.eLBOW (Moriarty N. W. et al. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta crystallographica Section D, Biological crystallography 2009, 65:1074-1080) using AM1(RM1) geometry optimization, followed by manual restraint of the ethylene linker in MI-181 to the (E)-isomer (Dewar M. J. S., et al. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 1985, 107:3902-3909; Rocha G. B., et al. RM1: a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J Comp Chem 2006, 27:1101-1111.) Other ligands in the structures were added early in refinement after inspection of the mFo-DFc difference map in Coot (Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta crystallographica Section D, Biological crystallography 2004, 60:2126-2132.)
- Both structures were parameterized with individual coordinate and individual (MI-181) or grouped-per-residue (C2) isotropic atomic displacement parameter (ADP) refinement with translation liberation screw-motion (TLS) group definitions matching previous T2R-TTL structure group definitions (Prota A. E., Bargsten K., et al., op. cit.; Painter J., Merritt E. A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta crystallographica Section D, Biological crystallography 2006, 62:439-450.) Iterative cycles of alternating refinement and model adjustment in Coot were performed using 2mFo-DFc and mFo-DFc difference maps to obtain the final models. Residues primarily in TTL with real-space density correlation coefficients below 0.6 were omitted from the model. The coordinates of the final models and the structure factors have been deposited in the Protein Data Bank with PDB codes 4YJ2 and 4YJ3. Structures were analyzed using Chimera and PyMOL, distance measurements were calculated using β-tubulin from chain B of the structure coordinates, and all figures were prepared in PyMOL (The PyMOL Molecular Graphics System v. 1.5 (Schrodinger, LLC 2012); Pettersen E. F., et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comp Chem 2004, 25:1605-1612; Meng E. C., Pettersen E. F., et al. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC bioinformatics 2006, 7:339.
-
TABLE 4 X-ray Data Collection and Refinement Statistics. T2R-TTL MI-181 T2R-TTL C2 Data collection Space group P 21 21 21 P 21 21 21 Unit cell a b c (Å), α = β = γ (°) 104.83 157.65 181.03, 90 105.2 157.69 181.92, 90 Resolution range (Å)a 90.72-2.60 (2.69-2.60) 91.07-3.75 (3.88-3.75) Unique reflections 92610 (9094) 31487 (3092) Multiplicity 6.7 (6.5) 4.4 (4.6) Completeness (%) 99.76 (98.99) 99.25 (99.39) Mean I/σ(I) 17.89 (1.69) 4.83 (1.40) Rmerge b 0.076 (1.076) 0.371 (1.404) CC1/2 c 0.99 (0.63) 0.98 (0.49) Res. <I/σ>~2 (Å)c 2.65 3.90 Wilson B-factor 62.9 81.8 Refinement R-work/R-free (%)d 18.8/23.1 23.9/27.9 No. of non-hydrogen atoms 17335 17035 Macromolecules 17000 16823 Ligands 224 196 Water 111 16 Protein residues 2137 2124 RMSD (bonds) (Å) 0.002 0.002 RMSD (angles) (°) 0.55 0.47 Ramachandran favored (%)e 97.0 96.0 Ramachandran allowed (%) 3.0 4.0 Ramachandran outliers (%) 0.0 0.0 Clashscoree 2.86 3.76 Average B-factor (Å2) 76.1 99.5 macromolecules 76.4 99.7 ligands 67.1 83.8 solvent 53.9 78.4 PDB ID 4YJ2 4YJ3 aValues in the highest resolution shell are shown in parenthesis. bRmerge = Σ|I − <I>|/Σ I where I is the integrated intensity of a given reflection. cCC1/2 is the random half-data set correlation coefficient (33) and the resolution at which <I/σ>~2 (Å) is given for interpretation of traditional resolution criteria. dRfree was calculated using 10% of the data. ePercentages of residues in Ramachandran plot regions and clashscores, or the numbers of unfavorable all-atom steric overlaps ≥0.4 Å per 1000 atoms, were determined using MolProbity (58). - Certain compounds of Formula II, such as MI-181, were shown to be potent anticancer agents.
- All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.
- While specific embodiments of the subject invention have been discussed, the above specification is illustrative and not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of this specification and the claims below. The full scope of the invention should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.
Claims (23)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/577,551 US20180354966A1 (en) | 2015-05-28 | 2016-05-26 | Tubulin-binding compounds, compositions and uses related thereto |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562167526P | 2015-05-28 | 2015-05-28 | |
| US201562191738P | 2015-07-13 | 2015-07-13 | |
| US15/577,551 US20180354966A1 (en) | 2015-05-28 | 2016-05-26 | Tubulin-binding compounds, compositions and uses related thereto |
| PCT/US2016/034286 WO2016191537A1 (en) | 2015-05-28 | 2016-05-26 | Tubulin-binding compounds, compositions and uses related thereto |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2016/034286 A-371-Of-International WO2016191537A1 (en) | 2015-05-28 | 2016-05-26 | Tubulin-binding compounds, compositions and uses related thereto |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/573,602 Division US10913750B2 (en) | 2015-05-28 | 2019-09-17 | Tubulin-binding compounds, compositions and uses related thereto |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180354966A1 true US20180354966A1 (en) | 2018-12-13 |
Family
ID=57394157
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/577,551 Abandoned US20180354966A1 (en) | 2015-05-28 | 2016-05-26 | Tubulin-binding compounds, compositions and uses related thereto |
| US16/573,602 Active US10913750B2 (en) | 2015-05-28 | 2019-09-17 | Tubulin-binding compounds, compositions and uses related thereto |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/573,602 Active US10913750B2 (en) | 2015-05-28 | 2019-09-17 | Tubulin-binding compounds, compositions and uses related thereto |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US20180354966A1 (en) |
| EP (1) | EP3303346B1 (en) |
| WO (1) | WO2016191537A1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016191537A1 (en) | 2015-05-28 | 2016-12-01 | The Regents Of The University Of California | Tubulin-binding compounds, compositions and uses related thereto |
| MX2021002822A (en) | 2018-09-11 | 2022-12-13 | Tpi Composites Inc | Temporary web support for wind turbine blade rotating device. |
| CN112010871B (en) * | 2019-05-29 | 2021-05-11 | 赛尔瑞成(北京)生命科学技术有限公司 | ROR gamma t activity inhibiting compound and preparation method and application thereof |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE225993C (en) | ||||
| DD225993A1 (en) * | 1983-10-12 | 1985-08-14 | Univ Halle Wittenberg | PROCESS FOR THE PREPARATION OF 3,4-DIHYDRO-4-OXO-2-STYRYLTHIENO (2.3-D) PYRIMIDINES |
| US7982035B2 (en) * | 2007-08-27 | 2011-07-19 | Duquesne University Of The Holy Spirit | Tricyclic compounds having antimitotic and/or antitumor activity and methods of use thereof |
| US8481553B2 (en) * | 2010-04-06 | 2013-07-09 | Brigham Young University | Antimetastatic compounds |
| WO2012119605A1 (en) * | 2011-03-10 | 2012-09-13 | Akar Yahya Ahmed Abdellhafeez Salem | New disperse dye with potent anticancer activity |
| WO2015051188A1 (en) * | 2013-10-02 | 2015-04-09 | Washington University | Heterocyclic molecules for biomedical imaging and therapeutic applications |
| WO2016191537A1 (en) | 2015-05-28 | 2016-12-01 | The Regents Of The University Of California | Tubulin-binding compounds, compositions and uses related thereto |
-
2016
- 2016-05-26 WO PCT/US2016/034286 patent/WO2016191537A1/en not_active Ceased
- 2016-05-26 US US15/577,551 patent/US20180354966A1/en not_active Abandoned
- 2016-05-26 EP EP16800699.7A patent/EP3303346B1/en active Active
-
2019
- 2019-09-17 US US16/573,602 patent/US10913750B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| EP3303346A1 (en) | 2018-04-11 |
| EP3303346A4 (en) | 2019-03-13 |
| US10913750B2 (en) | 2021-02-09 |
| US20200079789A1 (en) | 2020-03-12 |
| WO2016191537A1 (en) | 2016-12-01 |
| EP3303346B1 (en) | 2020-09-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3867251B1 (en) | Kras g12c inhibitors | |
| AU2003217393B2 (en) | Ansamycins having improved pharmacological and biological properties | |
| EP2970221B1 (en) | Cdc7 inhibitors | |
| RU2606951C1 (en) | Dichloroacetates of substituted n4-[2-(dimethylphosphoryl)phenyl]-n2-(2-methoxy-4-piperidin-1-ylphenyl)-5-chloropyrimidine-2,4-diamines as modulators of alk and egfr, intended for treating cancer | |
| JP6006242B2 (en) | Alkyne-substituted quinazoline compounds and methods of use | |
| ES2895365T3 (en) | Pyrimidopyrimidinones useful as Wee-1 kinase inhibitors | |
| US10913750B2 (en) | Tubulin-binding compounds, compositions and uses related thereto | |
| EA030538B1 (en) | Biaryl compound useful for the treatment of human diseases in oncology, neurology and immunology | |
| PT2663564E (en) | Imidazo[4,5-c]quinolin-2-one compound and its use as pi3 kinase / mtor dual inhibitor | |
| JP6726640B2 (en) | Compounds and methods for the prevention and treatment of tumor metastasis and tumor formation | |
| JP2012511021A (en) | RAF inhibitors and uses thereof | |
| EP2847186B1 (en) | Substituted aminoquinazolines useful as kinases inhibitors | |
| EP3102571B1 (en) | Substituted pyrimidines useful as egfr-t790m kinase inhibitors | |
| EA013522B1 (en) | Alkynylpyrrolopyrimidines and related analogs as hsp90 inhibitors | |
| KR20210120074A (en) | JAK inhibitors and methods for their preparation | |
| Jin et al. | Synthesis and anti-tumor activity of EF24 analogues as IKKβ inhibitors | |
| ES2958528T3 (en) | Substituted macrocycles useful as kinase inhibitors | |
| US10501466B2 (en) | WDR5 inhibitors and modulators | |
| CN116535359A (en) | Indazolyl-containing hydroxamic acid derivative and application thereof | |
| EP3012248B1 (en) | Substance having tyrosine kinase inhibitory activity and preparation method and use thereof | |
| CN114174269A (en) | Pyrimidines acting on EGFR and ERBB2 | |
| EP3827006A1 (en) | Single molecule compounds providing multi-target inhibition of btk and other proteins and methods of use thereof | |
| CN111777562B (en) | 6-phenoxy substituted pyrimidine targeted DDR1 inhibitor, preparation method thereof and application of inhibitor in antitumor activity | |
| RU2808534C1 (en) | USE OF CYTOTOXIC AGENTS BASED ON SUBSTITUTED (E)-8-(2-OXO-2-R-ETHYLIDENE)-2-R1-3-R2-6-R3-PYRROLO[1,2-a]THIENO[3,2-e]PYRIMIDINE-4,7(5H,8H)-DIONES IN THE TREATMENT OF LUNG MELANOMA | |
| RU2674987C1 (en) | 2-aminium-7-(diethylamino)-4-(4-methoxibenzo[d][1,3]dioxol-5-yl)-4h-chromen-3-carbonitrile n-acetylaminoethanoat having antitumor activity |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TORRES, JORGE;DAMOISEAUX, ROBERT;YEATES, TODD O.;AND OTHERS;SIGNING DATES FROM 20160829 TO 20160919;REEL/FRAME:044748/0617 |
|
| AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF CALIFORNIA LOS ANGELES;REEL/FRAME:045310/0406 Effective date: 20180209 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |