US20180353400A1 - Nail color coating system - Google Patents
Nail color coating system Download PDFInfo
- Publication number
- US20180353400A1 US20180353400A1 US16/007,177 US201816007177A US2018353400A1 US 20180353400 A1 US20180353400 A1 US 20180353400A1 US 201816007177 A US201816007177 A US 201816007177A US 2018353400 A1 US2018353400 A1 US 2018353400A1
- Authority
- US
- United States
- Prior art keywords
- group
- ingredient
- nail polish
- composition according
- polish composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000009500 colour coating Methods 0.000 title 1
- 239000004615 ingredient Substances 0.000 claims abstract description 135
- 239000000203 mixture Substances 0.000 claims abstract description 106
- 229920000642 polymer Polymers 0.000 claims abstract description 39
- 239000003999 initiator Substances 0.000 claims abstract description 36
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 30
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 26
- 239000008199 coating composition Substances 0.000 claims abstract description 23
- BVCZEBOGSOYJJT-UHFFFAOYSA-N ammonium carbamate Chemical compound [NH4+].NC([O-])=O BVCZEBOGSOYJJT-UHFFFAOYSA-N 0.000 claims abstract description 14
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims abstract description 14
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 12
- 230000002378 acidificating effect Effects 0.000 claims abstract description 11
- 239000001257 hydrogen Substances 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 125000006575 electron-withdrawing group Chemical group 0.000 claims abstract description 7
- 239000001023 inorganic pigment Substances 0.000 claims abstract description 7
- 150000002431 hydrogen Chemical group 0.000 claims abstract description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000003086 colorant Substances 0.000 claims abstract description 5
- 125000002091 cationic group Chemical group 0.000 claims abstract description 4
- 230000006870 function Effects 0.000 claims abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 69
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical group OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 41
- 238000006243 chemical reaction Methods 0.000 claims description 31
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 30
- WDJHALXBUFZDSR-UHFFFAOYSA-N acetoacetic acid Chemical group CC(=O)CC(O)=O WDJHALXBUFZDSR-UHFFFAOYSA-N 0.000 claims description 29
- 239000002904 solvent Substances 0.000 claims description 29
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 26
- 150000001875 compounds Chemical class 0.000 claims description 26
- 229920000728 polyester Polymers 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000004814 polyurethane Substances 0.000 claims description 22
- 229920002635 polyurethane Polymers 0.000 claims description 22
- -1 trimethylhexyl Chemical group 0.000 claims description 21
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 17
- 150000002148 esters Chemical class 0.000 claims description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 14
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 14
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 13
- 229960004592 isopropanol Drugs 0.000 claims description 11
- 238000006845 Michael addition reaction Methods 0.000 claims description 10
- 239000004952 Polyamide Substances 0.000 claims description 10
- 229920002647 polyamide Polymers 0.000 claims description 10
- 229920000570 polyether Polymers 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 claims description 8
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 8
- 229920000058 polyacrylate Polymers 0.000 claims description 8
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 7
- 239000004593 Epoxy Substances 0.000 claims description 7
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 7
- 150000003856 quaternary ammonium compounds Chemical class 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 6
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 claims description 6
- 125000000524 functional group Chemical group 0.000 claims description 6
- HNMCSUXJLGGQFO-UHFFFAOYSA-N hexaaluminum;hexasodium;tetrathietane;hexasilicate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].S1SSS1.S1SSS1.[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] HNMCSUXJLGGQFO-UHFFFAOYSA-N 0.000 claims description 6
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 6
- 229920000180 alkyd Polymers 0.000 claims description 5
- LQJVOKWHGUAUHK-UHFFFAOYSA-L disodium 5-amino-4-hydroxy-3-phenyldiazenylnaphthalene-2,7-disulfonate Chemical compound [Na+].[Na+].OC1=C2C(N)=CC(S([O-])(=O)=O)=CC2=CC(S([O-])(=O)=O)=C1N=NC1=CC=CC=C1 LQJVOKWHGUAUHK-UHFFFAOYSA-L 0.000 claims description 5
- 229920006149 polyester-amide block copolymer Polymers 0.000 claims description 5
- 229940096522 trimethylolpropane triacrylate Drugs 0.000 claims description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 4
- 239000003822 epoxy resin Substances 0.000 claims description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 239000004408 titanium dioxide Substances 0.000 claims description 4
- LMYRWZFENFIFIT-UHFFFAOYSA-N toluene-4-sulfonamide Chemical compound CC1=CC=C(S(N)(=O)=O)C=C1 LMYRWZFENFIFIT-UHFFFAOYSA-N 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- NDDLLTAIKYHPOD-ISLYRVAYSA-N (2e)-6-chloro-2-(6-chloro-4-methyl-3-oxo-1-benzothiophen-2-ylidene)-4-methyl-1-benzothiophen-3-one Chemical compound S/1C2=CC(Cl)=CC(C)=C2C(=O)C\1=C1/SC(C=C(Cl)C=C2C)=C2C1=O NDDLLTAIKYHPOD-ISLYRVAYSA-N 0.000 claims description 3
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 claims description 3
- AZXGXVQWEUFULR-UHFFFAOYSA-N 2',4',5',7'-tetrabromofluorescein Chemical compound OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 AZXGXVQWEUFULR-UHFFFAOYSA-N 0.000 claims description 3
- MIDXCONKKJTLDX-UHFFFAOYSA-N 3,5-dimethylcyclopentane-1,2-dione Chemical compound CC1CC(C)C(=O)C1=O MIDXCONKKJTLDX-UHFFFAOYSA-N 0.000 claims description 3
- 244000017106 Bixa orellana Species 0.000 claims description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 3
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 claims description 3
- XRMBQHTWUBGQDN-UHFFFAOYSA-N [2-[2,2-bis(prop-2-enoyloxymethyl)butoxymethyl]-2-(prop-2-enoyloxymethyl)butyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CC)COCC(CC)(COC(=O)C=C)COC(=O)C=C XRMBQHTWUBGQDN-UHFFFAOYSA-N 0.000 claims description 3
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 235000012665 annatto Nutrition 0.000 claims description 3
- 239000010362 annatto Substances 0.000 claims description 3
- UHHXUPJJDHEMGX-UHFFFAOYSA-K azanium;manganese(3+);phosphonato phosphate Chemical compound [NH4+].[Mn+3].[O-]P([O-])(=O)OP([O-])([O-])=O UHHXUPJJDHEMGX-UHFFFAOYSA-K 0.000 claims description 3
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 claims description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 3
- 229940073609 bismuth oxychloride Drugs 0.000 claims description 3
- 229940067573 brown iron oxide Drugs 0.000 claims description 3
- 235000013736 caramel Nutrition 0.000 claims description 3
- ZLWLTDZLUVBSRJ-UHFFFAOYSA-K chembl2360149 Chemical compound [Na+].[Na+].[Na+].O=C1C(N=NC=2C=CC(=CC=2)S([O-])(=O)=O)=C(C(=O)[O-])NN1C1=CC=C(S([O-])(=O)=O)C=C1 ZLWLTDZLUVBSRJ-UHFFFAOYSA-K 0.000 claims description 3
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 3
- 229940075482 d & c green 5 Drugs 0.000 claims description 3
- 229940056316 d&c red no. 28 Drugs 0.000 claims description 3
- 229940075484 d&c red no. 30 Drugs 0.000 claims description 3
- FPAYXBWMYIMERV-UHFFFAOYSA-L disodium;5-methyl-2-[[4-(4-methyl-2-sulfonatoanilino)-9,10-dioxoanthracen-1-yl]amino]benzenesulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC(C)=CC=C1NC(C=1C(=O)C2=CC=CC=C2C(=O)C=11)=CC=C1NC1=CC=C(C)C=C1S([O-])(=O)=O FPAYXBWMYIMERV-UHFFFAOYSA-L 0.000 claims description 3
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 claims description 3
- 229940057841 eosine yellowish Drugs 0.000 claims description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 claims description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 claims description 3
- WTFXARWRTYJXII-UHFFFAOYSA-N iron(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+2].[Fe+3].[Fe+3] WTFXARWRTYJXII-UHFFFAOYSA-N 0.000 claims description 3
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- 150000002688 maleic acid derivatives Chemical class 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 239000010445 mica Substances 0.000 claims description 3
- 229910052618 mica group Inorganic materials 0.000 claims description 3
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 claims description 3
- GVKCHTBDSMQENH-UHFFFAOYSA-L phloxine B Chemical compound [Na+].[Na+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 GVKCHTBDSMQENH-UHFFFAOYSA-L 0.000 claims description 3
- 235000013799 ultramarine blue Nutrition 0.000 claims description 3
- 229920008347 Cellulose acetate propionate Polymers 0.000 claims description 2
- 239000000020 Nitrocellulose Substances 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 229920002301 cellulose acetate Polymers 0.000 claims description 2
- 229920006217 cellulose acetate butyrate Polymers 0.000 claims description 2
- 229920001220 nitrocellulos Polymers 0.000 claims description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 2
- 239000000080 wetting agent Substances 0.000 claims description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims 1
- UQWIHFJXDRNUDP-UHFFFAOYSA-N chembl1206007 Chemical compound COC1=CC(S(O)(=O)=O)=C(C)C=C1N=NC1=C(O)C=CC2=CC(S(O)(=O)=O)=CC=C12 UQWIHFJXDRNUDP-UHFFFAOYSA-N 0.000 claims 1
- 239000006254 rheological additive Substances 0.000 claims 1
- 238000000518 rheometry Methods 0.000 claims 1
- 239000011347 resin Substances 0.000 description 99
- 229920005989 resin Polymers 0.000 description 99
- 238000000576 coating method Methods 0.000 description 60
- 210000000282 nail Anatomy 0.000 description 51
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 43
- 239000011248 coating agent Substances 0.000 description 39
- 239000000975 dye Substances 0.000 description 38
- 239000000499 gel Substances 0.000 description 26
- 238000009472 formulation Methods 0.000 description 25
- 239000000463 material Substances 0.000 description 25
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 21
- 230000008859 change Effects 0.000 description 21
- 239000002585 base Substances 0.000 description 20
- 239000003054 catalyst Substances 0.000 description 18
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 description 15
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 15
- 150000002690 malonic acid derivatives Chemical class 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- JIYXHCMRGZVYMA-UHFFFAOYSA-N dimethylcarbamic acid;n-methylmethanamine Chemical compound C[NH2+]C.CN(C)C([O-])=O JIYXHCMRGZVYMA-UHFFFAOYSA-N 0.000 description 13
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 12
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 12
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 12
- 238000001723 curing Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 10
- 239000000049 pigment Substances 0.000 description 10
- 229920005862 polyol Polymers 0.000 description 10
- 150000003077 polyols Chemical class 0.000 description 10
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 8
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 8
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 8
- 239000005056 polyisocyanate Substances 0.000 description 8
- 229920001228 polyisocyanate Polymers 0.000 description 8
- 238000005809 transesterification reaction Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 229940093858 ethyl acetoacetate Drugs 0.000 description 7
- 210000004905 finger nail Anatomy 0.000 description 7
- 239000003973 paint Substances 0.000 description 7
- HJHUXWBTVVFLQI-UHFFFAOYSA-N tributyl(methyl)azanium Chemical compound CCCC[N+](C)(CCCC)CCCC HJHUXWBTVVFLQI-UHFFFAOYSA-N 0.000 description 7
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- 0 [7*]OC(=O)O Chemical compound [7*]OC(=O)O 0.000 description 6
- 229940043232 butyl acetate Drugs 0.000 description 6
- PZTQVMXMKVTIRC-UHFFFAOYSA-L chembl2028348 Chemical compound [Ca+2].[O-]S(=O)(=O)C1=CC(C)=CC=C1N=NC1=C(O)C(C([O-])=O)=CC2=CC=CC=C12 PZTQVMXMKVTIRC-UHFFFAOYSA-L 0.000 description 6
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 6
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 6
- 210000004906 toe nail Anatomy 0.000 description 6
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- CEZCCHQBSQPRMU-UHFFFAOYSA-L chembl174821 Chemical compound [Na+].[Na+].COC1=CC(S([O-])(=O)=O)=C(C)C=C1N=NC1=C(O)C=CC2=CC(S([O-])(=O)=O)=CC=C12 CEZCCHQBSQPRMU-UHFFFAOYSA-L 0.000 description 5
- 210000003298 dental enamel Anatomy 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 150000002440 hydroxy compounds Chemical class 0.000 description 5
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 125000003198 secondary alcohol group Chemical group 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- 239000005058 Isophorone diisocyanate Substances 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 4
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 3
- VZXPHDGHQXLXJC-UHFFFAOYSA-N 1,6-diisocyanato-5,6-dimethylheptane Chemical compound O=C=NC(C)(C)C(C)CCCCN=C=O VZXPHDGHQXLXJC-UHFFFAOYSA-N 0.000 description 3
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 3
- 150000003138 primary alcohols Chemical class 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- AHIHJODVQGBOND-UHFFFAOYSA-M propan-2-yl carbonate Chemical compound CC(C)OC([O-])=O AHIHJODVQGBOND-UHFFFAOYSA-M 0.000 description 3
- 125000001453 quaternary ammonium group Chemical group 0.000 description 3
- 150000003333 secondary alcohols Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- JKUYRAMKJLMYLO-UHFFFAOYSA-N tert-butyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OC(C)(C)C JKUYRAMKJLMYLO-UHFFFAOYSA-N 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- IPILPUZVTYHGIL-UHFFFAOYSA-M tributyl(methyl)azanium;chloride Chemical compound [Cl-].CCCC[N+](C)(CCCC)CCCC IPILPUZVTYHGIL-UHFFFAOYSA-M 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- 229940114072 12-hydroxystearic acid Drugs 0.000 description 2
- PQSMEVPHTJECDZ-UHFFFAOYSA-N 2,3-dimethylheptan-2-ol Chemical compound CCCCC(C)C(C)(C)O PQSMEVPHTJECDZ-UHFFFAOYSA-N 0.000 description 2
- IAVREABSGIHHMO-UHFFFAOYSA-N 3-hydroxybenzaldehyde Chemical compound OC1=CC=CC(C=O)=C1 IAVREABSGIHHMO-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 238000006957 Michael reaction Methods 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- FFDGPVCHZBVARC-UHFFFAOYSA-N N,N-dimethylglycine Chemical compound CN(C)CC(O)=O FFDGPVCHZBVARC-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 2
- WDJHALXBUFZDSR-UHFFFAOYSA-M acetoacetate Chemical compound CC(=O)CC([O-])=O WDJHALXBUFZDSR-UHFFFAOYSA-M 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 150000005323 carbonate salts Chemical class 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 2
- VQAZCUCWHIIFGE-UHFFFAOYSA-N diethyl 2-ethylpropanedioate Chemical compound CCOC(=O)C(CC)C(=O)OCC VQAZCUCWHIIFGE-UHFFFAOYSA-N 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000002320 enamel (paints) Substances 0.000 description 2
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- OHMBHFSEKCCCBW-UHFFFAOYSA-N hexane-2,5-diol Chemical compound CC(O)CCC(C)O OHMBHFSEKCCCBW-UHFFFAOYSA-N 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- DRAVOWXCEBXPTN-UHFFFAOYSA-N isoguanine Chemical compound NC1=NC(=O)NC2=C1NC=N2 DRAVOWXCEBXPTN-UHFFFAOYSA-N 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- GTCCGKPBSJZVRZ-UHFFFAOYSA-N pentane-2,4-diol Chemical compound CC(O)CC(C)O GTCCGKPBSJZVRZ-UHFFFAOYSA-N 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 150000003509 tertiary alcohols Chemical class 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- UJMBCXLDXJUMFB-UHFFFAOYSA-K trisodium;5-oxo-1-(4-sulfonatophenyl)-4-[(4-sulfonatophenyl)diazenyl]-4h-pyrazole-3-carboxylate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=NN(C=2C=CC(=CC=2)S([O-])(=O)=O)C(=O)C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 UJMBCXLDXJUMFB-UHFFFAOYSA-K 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- XLTMWFMRJZDFFD-UHFFFAOYSA-N 1-[(2-chloro-4-nitrophenyl)diazenyl]naphthalen-2-ol Chemical compound OC1=CC=C2C=CC=CC2=C1N=NC1=CC=C([N+]([O-])=O)C=C1Cl XLTMWFMRJZDFFD-UHFFFAOYSA-N 0.000 description 1
- AVFZOVWCLRSYKC-UHFFFAOYSA-N 1-methylpyrrolidine Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- AZPXZTOCIRKBSJ-UHFFFAOYSA-N 2,5-dioxopyrrolidine-3-carboxylic acid Chemical compound OC(=O)C1CC(=O)NC1=O AZPXZTOCIRKBSJ-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- FFYTTYVSDVWNMY-UHFFFAOYSA-N 2-Methyl-5-nitroimidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1 FFYTTYVSDVWNMY-UHFFFAOYSA-N 0.000 description 1
- FGLBSLMDCBOPQK-UHFFFAOYSA-N 2-nitropropane Chemical compound CC(C)[N+]([O-])=O FGLBSLMDCBOPQK-UHFFFAOYSA-N 0.000 description 1
- MOLKLIYWXFEEJM-UHFFFAOYSA-N 2h-triazole-4-carbaldehyde Chemical compound O=CC1=CNN=N1 MOLKLIYWXFEEJM-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- FLYPTKCEBOQBAK-UHFFFAOYSA-N 3-(hydroxymethyl)pyrrolidine-2,5-dione Chemical compound OCC1CC(=O)NC1=O FLYPTKCEBOQBAK-UHFFFAOYSA-N 0.000 description 1
- JDXQWYKOKYUQDN-UHFFFAOYSA-N 3-hydroxypyrrolidine-2,5-dione Chemical compound OC1CC(=O)NC1=O JDXQWYKOKYUQDN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- QISOBCMNUJQOJU-UHFFFAOYSA-N 4-bromo-1h-pyrazole-5-carboxylic acid Chemical compound OC(=O)C=1NN=CC=1Br QISOBCMNUJQOJU-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- DTGPWMCHGMMMJV-UHFFFAOYSA-N 5-ethoxycarbonyl-2h-triazole-4-carboxylic acid Chemical compound CCOC(=O)C1=NNN=C1C(O)=O DTGPWMCHGMMMJV-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- OQLZINXFSUDMHM-UHFFFAOYSA-N Acetamidine Chemical compound CC(N)=N OQLZINXFSUDMHM-UHFFFAOYSA-N 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- KHBQMWCZKVMBLN-UHFFFAOYSA-N Benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=CC=C1 KHBQMWCZKVMBLN-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- QFAAHWUITCVPOY-UHFFFAOYSA-N C(N)(OC1=C(C=CC=C1)CC1=C(C=CC=C1)OC(N)=O)=O.OCCC(C(=O)O)=C.OCCC(C(=O)O)=C Chemical compound C(N)(OC1=C(C=CC=C1)CC1=C(C=CC=C1)OC(N)=O)=O.OCCC(C(=O)O)=C.OCCC(C(=O)O)=C QFAAHWUITCVPOY-UHFFFAOYSA-N 0.000 description 1
- JXNUMEHSNJGZIS-UHFFFAOYSA-N C(N)(OC1=C(C=CC=C1)CC1=C(C=CC=C1)OC(N)=O)=O.OCCCCC(C(=O)O)=C.OCCCCC(C(=O)O)=C Chemical compound C(N)(OC1=C(C=CC=C1)CC1=C(C=CC=C1)OC(N)=O)=O.OCCCCC(C(=O)O)=C.OCCCCC(C(=O)O)=C JXNUMEHSNJGZIS-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- OONXYOAWMIVMCI-UHFFFAOYSA-N D-Lesquerolinsaeure Natural products CCCCCCC(O)CC=CCCCCCCCCCC(O)=O OONXYOAWMIVMCI-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- IYXGSMUGOJNHAZ-UHFFFAOYSA-N Ethyl malonate Chemical compound CCOC(=O)CC(=O)OCC IYXGSMUGOJNHAZ-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Natural products OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- DUGOZIWVEXMGBE-UHFFFAOYSA-N Methylphenidate Chemical compound C=1C=CC=CC=1C(C(=O)OC)C1CCCCN1 DUGOZIWVEXMGBE-UHFFFAOYSA-N 0.000 description 1
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 1
- RRMBVBSGMYMIEC-UHFFFAOYSA-N OCCC(C(=O)O)=C.OCCC(C(=O)O)=C.C(C=C)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(O)C(CC)(CO)CO.C(O)C(CC)(CO)CO Chemical compound OCCC(C(=O)O)=C.OCCC(C(=O)O)=C.C(C=C)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(O)C(CC)(CO)CO.C(O)C(CC)(CO)CO RRMBVBSGMYMIEC-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- FHNINJWBTRXEBC-UHFFFAOYSA-N Sudan III Chemical compound OC1=CC=C2C=CC=CC2=C1N=NC(C=C1)=CC=C1N=NC1=CC=CC=C1 FHNINJWBTRXEBC-UHFFFAOYSA-N 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N [2-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC=C1CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 229960000458 allantoin Drugs 0.000 description 1
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 description 1
- 229960003459 allopurinol Drugs 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- CSJKPFQJIDMSGF-UHFFFAOYSA-K aluminum;tribenzoate Chemical compound [Al+3].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 CSJKPFQJIDMSGF-UHFFFAOYSA-K 0.000 description 1
- WLDHEUZGFKACJH-UHFFFAOYSA-K amaranth Chemical compound [Na+].[Na+].[Na+].C12=CC=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(O)=C1N=NC1=CC=C(S([O-])(=O)=O)C2=CC=CC=C12 WLDHEUZGFKACJH-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- PRKQVKDSMLBJBJ-UHFFFAOYSA-N ammonium carbonate Chemical class N.N.OC(O)=O PRKQVKDSMLBJBJ-UHFFFAOYSA-N 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000011162 ammonium carbonates Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229940053198 antiepileptics succinimide derivative Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- QSRFYFHZPSGRQX-UHFFFAOYSA-N benzyl(tributyl)azanium Chemical compound CCCC[N+](CCCC)(CCCC)CC1=CC=CC=C1 QSRFYFHZPSGRQX-UHFFFAOYSA-N 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- VBQDSLGFSUGBBE-UHFFFAOYSA-N benzyl(triethyl)azanium Chemical compound CC[N+](CC)(CC)CC1=CC=CC=C1 VBQDSLGFSUGBBE-UHFFFAOYSA-N 0.000 description 1
- QXTVBPWGOIXKBU-UHFFFAOYSA-N benzyl(trihexyl)azanium Chemical compound CCCCCC[N+](CCCCCC)(CCCCCC)CC1=CC=CC=C1 QXTVBPWGOIXKBU-UHFFFAOYSA-N 0.000 description 1
- YOUGRGFIHBUKRS-UHFFFAOYSA-N benzyl(trimethyl)azanium Chemical compound C[N+](C)(C)CC1=CC=CC=C1 YOUGRGFIHBUKRS-UHFFFAOYSA-N 0.000 description 1
- BCCDCNCWUHICFM-UHFFFAOYSA-N benzyl(tripropyl)azanium Chemical compound CCC[N+](CCC)(CCC)CC1=CC=CC=C1 BCCDCNCWUHICFM-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical group 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000013036 cure process Methods 0.000 description 1
- FCDHSFUOYFXWHV-UHFFFAOYSA-N cyanosulfinylformonitrile Chemical compound N#CS(=O)C#N FCDHSFUOYFXWHV-UHFFFAOYSA-N 0.000 description 1
- HJSLFCCWAKVHIW-UHFFFAOYSA-N cyclohexane-1,3-dione Chemical compound O=C1CCCC(=O)C1 HJSLFCCWAKVHIW-UHFFFAOYSA-N 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 229940075493 d&c red no. 6 Drugs 0.000 description 1
- 229940057946 d&c red no. 7 Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- UPQZOUHVTJNGFK-UHFFFAOYSA-N diethyl 2-methylpropanedioate Chemical compound CCOC(=O)C(C)C(=O)OCC UPQZOUHVTJNGFK-UHFFFAOYSA-N 0.000 description 1
- WASQWSOJHCZDFK-UHFFFAOYSA-N diketene Chemical compound C=C1CC(=O)O1 WASQWSOJHCZDFK-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- WQHRRUZRGXLCGL-UHFFFAOYSA-N dimethyl(dipropyl)azanium Chemical compound CCC[N+](C)(C)CCC WQHRRUZRGXLCGL-UHFFFAOYSA-N 0.000 description 1
- 108700003601 dimethylglycine Proteins 0.000 description 1
- VPWFPZBFBFHIIL-UHFFFAOYSA-L disodium 4-[(4-methyl-2-sulfophenyl)diazenyl]-3-oxidonaphthalene-2-carboxylate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC(C)=CC=C1N=NC1=C(O)C(C([O-])=O)=CC2=CC=CC=C12 VPWFPZBFBFHIIL-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- HAPOVYFOVVWLRS-UHFFFAOYSA-N ethosuximide Chemical compound CCC1(C)CC(=O)NC1=O HAPOVYFOVVWLRS-UHFFFAOYSA-N 0.000 description 1
- 229960002767 ethosuximide Drugs 0.000 description 1
- DHZYWCBUDKTLGD-UHFFFAOYSA-N ethyl 1h-1,2,4-triazole-5-carboxylate Chemical compound CCOC(=O)C1=NC=NN1 DHZYWCBUDKTLGD-UHFFFAOYSA-N 0.000 description 1
- ZIUSEGSNTOUIPT-UHFFFAOYSA-N ethyl 2-cyanoacetate Chemical compound CCOC(=O)CC#N ZIUSEGSNTOUIPT-UHFFFAOYSA-N 0.000 description 1
- BMGCDMZWMQQHMI-UHFFFAOYSA-N ethyl 2h-triazole-4-carboxylate Chemical compound CCOC(=O)C=1C=NNN=1 BMGCDMZWMQQHMI-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical class OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- UKFXDFUAPNAMPJ-UHFFFAOYSA-N ethylmalonic acid Chemical compound CCC(C(O)=O)C(O)=O UKFXDFUAPNAMPJ-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- JXDYKVIHCLTXOP-UHFFFAOYSA-N isatin Chemical compound C1=CC=C2C(=O)C(=O)NC2=C1 JXDYKVIHCLTXOP-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- OONXYOAWMIVMCI-KWRJMZDGSA-N lesquerolic acid Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCCCC(O)=O OONXYOAWMIVMCI-KWRJMZDGSA-N 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 235000010187 litholrubine BK Nutrition 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- WRIRWRKPLXCTFD-UHFFFAOYSA-N malonamide Chemical class NC(=O)CC(N)=O WRIRWRKPLXCTFD-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229960003151 mercaptamine Drugs 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- NDNHNDHVEAHYRC-UHFFFAOYSA-N methyl(tripentyl)azanium Chemical compound CCCCC[N+](C)(CCCCC)CCCCC NDNHNDHVEAHYRC-UHFFFAOYSA-N 0.000 description 1
- UARUINOVQHEYKN-UHFFFAOYSA-M methyl(tripropyl)azanium;iodide Chemical compound [I-].CCC[N+](C)(CCC)CCC UARUINOVQHEYKN-UHFFFAOYSA-M 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 229960001344 methylphenidate Drugs 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 229940078490 n,n-dimethylglycine Drugs 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 238000005935 nucleophilic addition reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 125000005496 phosphonium group Chemical group 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 239000011527 polyurethane coating Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- RPDAUEIUDPHABB-UHFFFAOYSA-N potassium ethoxide Chemical compound [K+].CC[O-] RPDAUEIUDPHABB-UHFFFAOYSA-N 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 229940099373 sudan iii Drugs 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- DTIFFPXSSXFQCJ-UHFFFAOYSA-N tetrahexylazanium Chemical compound CCCCCC[N+](CCCCCC)(CCCCCC)CCCCCC DTIFFPXSSXFQCJ-UHFFFAOYSA-N 0.000 description 1
- GJSGYPDDPQRWPK-UHFFFAOYSA-N tetrapentylammonium Chemical compound CCCCC[N+](CCCCC)(CCCCC)CCCCC GJSGYPDDPQRWPK-UHFFFAOYSA-N 0.000 description 1
- OSBSFAARYOCBHB-UHFFFAOYSA-N tetrapropylammonium Chemical compound CCC[N+](CCC)(CCC)CCC OSBSFAARYOCBHB-UHFFFAOYSA-N 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- SEACXNRNJAXIBM-UHFFFAOYSA-N triethyl(methyl)azanium Chemical compound CC[N+](C)(CC)CC SEACXNRNJAXIBM-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 238000004260 weight control Methods 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
- C09D4/06—Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/41—Amines
- A61K8/416—Quaternary ammonium compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/44—Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/494—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/4986—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with sulfur as the only hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
- A61K8/731—Cellulose; Quaternized cellulose derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/85—Polyesters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q3/00—Manicure or pedicure preparations
- A61Q3/02—Nail coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/20—Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
- C08G63/21—Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups in the presence of unsaturated monocarboxylic acids or unsaturated monohydric alcohols or reactive derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/109—Esters; Ether-esters of carbonic acid, e.g. R-O-C(=O)-O-R
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
- C09D167/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/20—Diluents or solvents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/45—Anti-settling agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/63—Additives non-macromolecular organic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/95—Involves in-situ formation or cross-linking of polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
Definitions
- the invention provides for a crosslinkable composition for use in nail coating compositions containing dyes, inorganic pigments or lakes.
- the coatings industry continues to develop new chemistries as performance requirements for decorative and functional coatings evolve.
- Drivers for change are varied and these can include: regulatory controls to reduce VOC emissions, concerns about toxic hazards of coating raw materials, a desire for cost reduction, commitments to sustainability, and a need for increased product effectiveness.
- UV nail gel coatings have gained rapid popularity with fashion conscious individuals who apply nail polish to fingernails or toenails to decorate and protect nail plates. UV nail gels can produce coatings that exhibit phenomenal chip resistance and durability when properly applied and cured in comparison to those nail coatings derived from traditional solvent based nail lacquers. The performance difference particularly becomes apparent when the coating is applied on human finger nails and tested for durability. UV nail gel coatings can easily last for two weeks or more and still look like new whereas conventional nail polishes are easily scratched and will chip or peel from the natural nail in one to five days. UV nail gels are typically based on acrylates that cure quickly into dense, crosslinked thermoset coatings within half a minute or so. This is an advantage as the coating becomes almost immediately resistant to denting and scratching.
- Michael addition reaction involves the nucleophilic addition of a Michael donor, such as a carbanion or another nucleophile to a Michael acceptor, such as an ⁇ , ⁇ -unsaturated carbonyl.
- a Michael donor such as a carbanion or another nucleophile
- a Michael acceptor such as an ⁇ , ⁇ -unsaturated carbonyl.
- the base catalyzed addition of activated methylene moieties to electron deficient C ⁇ C double bonds are known in coatings applications.
- suitable materials that can provide activated methylene or methine groups are generally disclosed in U.S. Pat. No.
- 4,871,822 which resins contain a methylene and/or monosubstituted methylene group in the alpha-position to two activating groups such as, for example, carbonyl, cyano, sulfoxide and/or nitro groups.
- Preferred are resins containing a methylene group in the alpha-position to two carbonyl groups, such as malonate and/or acetoacetate group-containing materials, malonates being most preferred.
- the ⁇ , ⁇ -unsaturated carbonyl typically is an acrylate material and representative materials have been disclosed in U.S. Pat. No. 4,602,061.
- the Michael reaction is fast, can be carried out at ambient temperatures and gives a chemically stable crosslinking bond without forming any reaction by-product.
- a typical crosslinkable coating composition comprises a resin ingredient A (Michael donor), a resin ingredient B (Michael acceptor) and a base to start and catalyze the Michael addition reaction.
- the base catalyst should be strong enough to abstract, i.e. activate a proton from resin ingredient A to form the Michael donor carbanion species. Since the Michael addition cure chemistry can be very fast, the coating formulator is challenged to control the speed of the reaction to achieve an acceptable balance of pot life, open time, tack free time and cure time. Pot life is defined as the amount of time during which the viscosity of a mixed reactive system doubles.
- Working life or working time informs the user how much time they have to work with a reactive two-part system before it reaches such a high state of viscosity, or other condition, that it cannot be properly worked with to produce an acceptable application result.
- Gel time is the amount of time it takes for a mixed, reactive resin system to gel or become so highly viscous that it has lost fluidity.
- the open time of a coating is a practical measure of how much time it takes for a drying or curing coating to reach a stage where it can no longer be touched by brush or roller when applying additional coating material without leaving an indication that the drying or curing coating and newly applied coating did not quite flow together. These indications normally take the form of brush or roller marks and sometimes a noticeable difference in sheen levels.
- the tack free time is the amount of time it takes for a curing or drying coating to be no longer sticky to the touch, i.e. the time for a system to become hard to the touch, with no tackiness.
- Cure time is the amount of time it takes for a coating system to reach full final properties.
- the Michael reaction starts the very moment when coating resin ingredients A and B are mixed together with a suitable base. Since it is a fast reaction, the material in a mixing pot starts to crosslink and the fluid viscosity starts to rise. This limits the pot life, working time and general use as a coating.
- a dormant initiator that is essentially passive while coating material remains in a mixing vessel but that activates the Michael addition reaction upon film formation allows for longer pot life and working time, yet would show good open time, tack free time and cure time.
- the application of dormant initiator technology can provide the formulator with tools to control the speed of the reaction in order to achieve desirable cure characteristics.
- U.S. Pat. No. 8,962,725 describes a blocked base catalyst for Michael addition, which is based on substituted carbonate salts.
- Preferred Michael donor resins are based on malonate and Michael acceptor resins are acrylates.
- the substituted carbonates can bear substituents, but these should not substantially interfere with the crosslinking reaction between malonate and acrylate.
- the carbonate salts release carbon dioxide and a strong base upon activation by means of film formation.
- the base is either hydroxide or alkoxide.
- the carbonate requires presence of a certain amount of water in the coating formulation for the blocking of the base to become effective. All disclosed blocked carbonate examples utilize methanol and/or water.
- malonate esters are known to be susceptible to base hydrolysis, particularly when water is present. Hence, the water necessary to block the carbonate base can thus degrade malonate oligomers or polymers at the same time, which in turn can lead to altered coatings performance.
- the hydrolysis product furthermore can result in undesirable destruction of base catalyst by means of formation of malonate salt; a reaction which is cloaked as longer pot life and gel time. Presence of water can also be quite problematic in certain coatings applications. Wood grain raising is a significant problem when water is present in wood coatings; water penetrates into wood, which causes swelling and lifting of fibers and this leaves a rough surface. Water also can cause flash rust, i.e. appearance of rust spots on a metal surface during drying of newly applied paint that contains water. Longer term rust formation in terms of corrosion may also be a problem when dealing with formulations that contain water.
- the present invention provides for a nail polish composition containing a crosslinkable coating composition
- a crosslinkable coating composition comprising: ingredient A that has at least two protons that can be activated to form a Michael carbanion donor; ingredient B that functions as a Michael acceptor having at least two ethylenically unsaturated functionalities each activated by an electron-withdrawing group; and a carbonate initiator of Formula (1)
- R 7 is selected from hydrogen, a linear or branched substituted or unsubstituted alkyl group having 1 to 22 carbon atoms; 1 to 8 carbon atoms; 1 to 3 carbon atoms; and A n+ is a cationic species or polymer and n is an integer equal or greater than 1 with the proviso that A n+ is not an acidic hydrogen; at least one colorant independently selected from the group consisting of (i) a dye; (ii) an inorganic pigment; or an (iii) a lake; and optionally further comprising ammonium carbamate (H 2 NR 8 R 9 +—OC ⁇ ONR 8 R 9 ), wherein R 8 R 9 are each independently selected from hydrogen, a linear or branched substituted or unsubstituted alkyl group having 1 to 22 carbon atoms; 1 to 8 carbon atoms; 1 to 3 carbon atoms.
- the present invention provides a nail polish composition wherein a dye is selected from the group consisting of D&C Red 21, D&C Red No. 22, D&C Red No. 28, D&C Red No. 30, D&C Red No. 33, D&C Red No. 40, D&C Black No. 2, D&C Yellow No. 5, D&C Green No. 5, Annatto and Caramel.
- a dye is selected from the group consisting of D&C Red 21, D&C Red No. 22, D&C Red No. 28, D&C Red No. 30, D&C Red No. 33, D&C Red No. 40, D&C Black No. 2, D&C Yellow No. 5, D&C Green No. 5, Annatto and Caramel.
- the inorganic pigment is selected from the group consisting of red iron oxide; yellow iron oxide; titanium dioxide; brown iron oxide; chromium oxide green; iron blue (ferric ferrocyanide blue); ultramarine blue; ultramarine violet; ultramarine pink; black iron oxide; bismuth oxychloride; aluminum powder; manganese violet; mica; bronze powder; copper powder; guanine and combinations thereof.
- the lake is a D&C lake.
- the present invention provides a nail polish composition wherein ingredient A is selected from the group consisting of compounds, oligomers or polymers.
- ingredient A is independently selected from a malonate group containing compound, a malonate group containing oligomer, a malonate group containing polymer, an acetoacetate group containing compound, an acetoacetate group containing oligomer, an acetoacetate group containing polymer or combinations thereof.
- the malonate group containing compound, malonate group containing oligomer, malonate group containing polymer, an acetoacetate group containing compound, acetoacetate group containing oligomer, or acetoacetate group containing polymer are each selected from the group consisting of: polyurethanes, polyesters, polyacrylates, epoxy polymers, polyamides, polyesteramides or polyvinyl polymers, wherein such compounds, oligomers or polymers have a malonate group or acetoacetate group located in a main chain of such compound or oligomer or polymer or a side chain of such compound or oligomer or polymer.
- the present invention provides a nail polish composition wherein wherein ingredient B is selected from the group consisting of acrylates, fumarates, maleates and combinations thereof.
- the acrylate is independently selected from the group consisting of hexanediol diacrylate, trimethylol propane triacrylate, pentaerythritol triacrylate, di-trimethylolpropane tetraacrylate bis(2-hydroxyethyl acrylate), trimethylhexyl dicarbamate, bis(2-hydroxyethyl acrylate) 1,3,3-trimethylcyclohexyl dicarbamate, bis(2-hydroxyethyl acrylate) methylene dicyclohexyl dicarbamate and combinations thereof.
- the present invention provides a nail polish composition wherein ingredient B is independently selected from the group consisting of polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least two pendant ethylenically unsaturated groups each activated by an electron-withdrawing group.
- the invention disclosed here is a crosslinkable composition
- a resin ingredient A Moichael donor
- a resin ingredient B Moichael acceptor
- a carbonate initiator ingredient C The invention generally is useful as a decorative and/or functional coating, and the invention particularly is useful as a coating for human finger nails or toe nails.
- Resin Ingredient A (Michael Donor):
- Resin ingredients A are compounds, oligomers or polymers that contain functional groups that have reactive protons that can be activated to produce a carbanion Michael donor.
- the functional group can be a methylene or methine group and resins have been described in U.S. Pat. No. 4,602,061 and U.S. Pat. No. 8,962,725 for example.
- resin ingredients A are those derived from malonic acid or malonate esters, i.e. malonate.
- Oligomeric or polymeric malonate compounds include polyurethanes, polyesters, polyacrylates, epoxy resins, polyamides, polyesteramides or polyvinyl resins each containing malonate groups, either in the main chain or the side chain or in both.
- polyurethanes having malonate groups may be obtained, for instance, by bringing a polyisocyanate into reaction with a hydroxyl group containing ester or polyester of a polyol and malonic acid/malonates, by esterification or transesterification of a hydroxyfunctional polyurethane with malonic acid and/or a dialkyl malonate.
- polyisocyanates include hexamethylenediisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, toluene diisocyanate and addition products of a polyol with a diisocyanate, such as that of trimethylolpropane to hexamethylene diisocyanate.
- the polyisocyanate is selected from isophorone diisocyanate and trimethyhexamethylene diisocyanate. In another embodiment, the polyisocyanate is isophorone diisocyanate.
- hydroxyfunctional polyurethanes include the addition products of a polyisocyanate, such as the foregoing polyisocyanates, with di- or polyvalent hydroxy compounds, including diethyleneglycol, neopentyl glycol, dimethylol cyclohexane, trimethylolpropane, 1,3-propandiol, 1,4-butanediol, 1,6-hexanediol and polyether polyols, polyester polyols or polyacrylate polyols.
- the di- or polyvalent hydroxy compounds include diethyleneglycol, 1,3-propanediol, 1,4-butanediol and 1,6-hexanediol. In other embodiments, the di- or polyvalent hydroxy compounds include diethyleneglycol and 1,6-hexanediol.
- malonic polyesters may be obtained, for instance, by polycondensation of malonic acid, an alkylmalonic acid, such as ethylmalonic acid, a mono- or dialkyl ester of such a carboxylic acid, or the reaction product of a malonic ester and an alkylacrylate or methacrylate, optionally mixed with other di- or polycarboxylic with one or more dihydroxy and/or polyhydroxy compounds, in combination or not with mono hydroxy compounds and/or carboxyl compounds.
- an alkylmalonic acid such as ethylmalonic acid
- a mono- or dialkyl ester of such a carboxylic acid such as a carboxylic acid
- reaction product of a malonic ester and an alkylacrylate or methacrylate optionally mixed with other di- or polycarboxylic with one or more dihydroxy and/or polyhydroxy compounds, in combination or not with mono hydroxy compounds and/or carboxyl compounds.
- polyhydroxy compounds include compounds containing 2-6 hydroxyl group and 2-20 carbon atoms, such as ethylene glycol, diethyleneglycol, propylene glycol, trimethylol ethane, trimethylolpropane, glycerol, pentaerythritol, 1,4-butanediol, 1,6-hexanediol, cyclohexanedimethanol, 1,12-dodecanediol and sorbitol.
- the polyhydroxyl compounds include diethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol.
- the polyhydroxyl compounds include propylene glycol and 1,6-hexanediol.
- the polyhydroxy may be a primary alcohol and in certain other embodiments, the polyhydroxy may be a secondary alcohol.
- Examples of polyols with secondary alcohol groups are 2,3-butanediol, 2,4-pentanediol and 2,5-hexanediol and the like.
- malonate group-containing polymers also may be prepared by transesterification of an excess of dialkyl malonate with a hydroxy functional polymer, such as a vinyl alcohol-styrene copolymer. In this way, polymers with malonate groups in the side chains are formed. After the reaction, the excess of dialkyl malonate may optionally be removed under reduced pressure or be used as reactive solvent.
- a hydroxy functional polymer such as a vinyl alcohol-styrene copolymer.
- malonate group or acetoacetate group containing polymers may also be obtained from reaction with malonate or acetoacetonate with polyols, such as those polyols that are commercially sold for reaction with isocyanates to form polyurethane coatings.
- malonic epoxy esters may be prepared by esterifying an epoxy polymer with malonic acid or a malonic monoester, or by transesterifying with a dialkylmalonate, optionally in the presence of one or more other carboxylic acids or derivatives thereof.
- polyamides having malonate groups may be obtained in the same manner as polyesters, at least part of the hydroxy compound(s) being replaced with a mono- or polyvalent primary and/or secondary amine, such as cyclohexylamine, ethylene diamine, isophorone diamine, hexamethylene diamine, or diethylene triamine.
- a mono- or polyvalent primary and/or secondary amine such as cyclohexylamine, ethylene diamine, isophorone diamine, hexamethylene diamine, or diethylene triamine.
- such polyamide compounds can be obtained when 12-hydroxystearic acid is reacted with a diamine such as ethylenediamine.
- a diamine such as ethylenediamine.
- Such polyamides have secondary alcohol groups, which can be esterified with malonic acid or malonate in a second reaction step.
- other diamines may also be used in the reaction with 12-hydroxystearic acid, for example: xylylenediamine, butylenediamine, hexamethylenediamine, dodecamethylenediamine, and even dimer amine, which is derived from dimer acid.
- Polyamines may also be used, but in a right stoichiometric ratio as to avoid gelling of the polyamide in the reactor.
- Lesquerolic acid may also be used in reactions with polyamines to yield polyamides bearing secondary alcohol groups, which can be used in reactions with malonate to form malonate containing compounds. Reactions that yield malonamides are much less desirable.
- the above mentioned malonate resins may be blended together to achieve optimized coatings properties.
- Such blends can be mixtures of malonate modified polyurethanes, polyesters, polyacrylates, epoxy resins, polyamides, polyesteramides and the like, but mixtures can also be prepared by blending various malonate modified polyesters together.
- various malonate modified polyurethanes can be mixed together, or various malonate modified polyacrylates, or malonate modified epoxy resins, or various malonate modified polyamides, malonate modified polyesteramides.
- malonate resins are malonate group containing oligomeric esters, polyesters, polyurethanes, or epoxy esters having 1-100, or 2-20 malonate groups per molecule.
- the malonate resins should have a number average molecular weight in the range of from 250 to 10,000 and an acid number not higher than 5, or not higher than 2.
- Use may optionally be made of malonate compounds in which the malonic acid structural unit is cyclized by formaldehyde, acetaldehyde, acetone or cyclohexanone.
- molecular weight control may be achieved by the use of end capping agents, typically monofunctional alcohol, monocarboxylic acid or esters.
- malonate compounds may be end capped with one or more of 1-hexanol, 1-octanol, 1-dodecanol, hexanoic acid or its ester, octanoic acid or its esters, dodecanoic acid or its esters, diethyleneglycol monoethyl ether, trimethylhexanol, and t-butyl acetoacetate, ethyl acetoacetate.
- the malonate is end capped with 1-octanol, diethyleneglycol monoethyl ether, trimethylhexanol, t-butyl acetoacetate and ethyl acetoacetate.
- the malonate is end capped t-butyl acetoacetate, ethyl acetoacetate and combinations thereof.
- Monomeric malonates may optionally be used as reactive diluents, but certain performance requirements may necessitate removal of monomeric malonates from resin ingredient A.
- resin ingredients A include oligomeric and/or polymeric acetoacetate group-containing resins.
- acetoacetate group-containing resins are acetoacetic esters as disclosed in U.S. Pat. No. 2,759,913, diacetoacetate resins as disclosed in U.S. Pat. No. 4,217,396 and acetoacetate group-containing oligomeric and polymeric resins as disclosed in U.S. Pat. No. 4,408,018.
- acetoacetate group-containing oligomeric and polymeric resins can be obtained, for example, from polyalcohols and/or hydroxy-functional polyether, polyester, polyacrylate, vinyl and epoxy oligomers and polymers by reaction with diketene or transesterication with an alkyl acetoacetate. Such resins may also be obtained by copolymerization of an acetoacetate functional (meth)acrylic monomer with other vinyl- and/or acrylic-functional monomers.
- the acetoacetate group-containing resins for use with the present invention are the acetoacetate group-containing oligomers and polymers containing at least 1, or 2-10, acetoacetate groups.
- such acetoacetate group containing resins should have Mn in the range of from about 100 to about 5000 g/mol, and an acid number of about 2 or less. Resins containing both malonate and acetoacetate groups in the same molecule may also be used.
- the above mentioned malonate group containing resins and acetoacetate group-containing resins may also be blended to optimize coatings properties as desired, often determined by the intended end application.
- Structural changes at the acidic site of malonate or acetoacetate can alter the acidity of these materials and derivatives thereof.
- pKa measurements in DMSO show that diethyl methylmalonate (MeCH(CO 2 Et) 2 ) has a pKa of 18.7 and diethyl ethylmalonate (EtCH(CO 2 Et) 2 ) has a pKa of 19.1 whereas diethyl malonate (CH 2 (CO 2 Et) 2 ) has a pKa of 16.4.
- Resin ingredient A may contain such substituted moieties and therewith show changes in gel time, open time, cure time and the like.
- resin ingredient A may be a polyester derived from a polyol, diethyl malonate and diethyl ethylmalonate.
- Resin Ingredient B (Michael Acceptor):
- Resin ingredients B generally can be materials with ethylenically unsaturated moieties in which the carbon-carbon double bond is activated by an electron-withdrawing group, e.g. a carbonyl group in the alpha-position.
- resin ingredients B are described in: U.S. Pat. No. 2,759,913, U.S. Pat. No. 4,871,822, U.S. Pat. No. 4,602,061, U.S. Pat. No. 4,408,018, U.S. Pat. No. 4,217,396 and U.S. Pat. No. 8,962,725.
- resin ingredients B include acrylates, fumarates and maleates.
- resin ingredients B are the acrylic esters of chemicals containing 2-6 hydroxyl groups and 2-20 carbon atoms. These esters may optionally contain hydroxyl groups.
- examples of such acrylic esters include hexanediol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, di-trimethylolpropane tetraacrylate.
- acrylic esters include trimethylolpropane triacrylate, di-trimethylolproane tetraacrylate, dipentaerythritol hexaacrylate, pentaerythritol ethoxylated (EO) n tetraacrylate, trimethylolpropane ethoxylated(EO) n triacrylate and combinations thereof.
- acrylamides may be used as a resin ingredient B.
- resin ingredients B are polyesters based upon maleic, fumaric and/or itaconic acid (and maleic and itaconic anhydride), and chemicals with di- or polyvalent hydroxyl groups, optionally including materials with a monovalent hydroxyl and/or carboxyl functionality.
- resin ingredients B are resins such as polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least two pendant ethylenically unsaturated groups each activated by an electron-withdrawing group.
- resins such as polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least two pendant ethylenically unsaturated groups each activated by an electron-withdrawing group.
- resins such as polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least two pendant ethylenically unsaturated groups each activated by an electron-withdrawing group.
- urethane acrylates obtained by reaction of a polyisocyanate with an hydroxyl group-containing acrylic ester, e.g., an hydroxyalkyl ester of acrylic acid or a resins prepared by esterification of a polyhydroxyl material with acrylic acid
- polyurethane acrylate resins may be prepared by reaction of hydroxyalkyl acrylate with polyisocyanate.
- Such polyurethane acrylate resins independently include bis(2-hydroxyethyl acrylate) trimethylhexyl dicarbamate [2-hydroxyethyl acrylate trimethylhexamethylene diisocyanate (TMDI) adduct], bis(2-hydroxyethyl acrylate) 1,3,3-trimethylcyclohexyl dicarbamate [2-hydroxyethyl acrylate 1,3,3-trimethylcyclohexyl diisocyanate/isophorone diisocyanate (IPDI) adduct], bis(2-hydroxyethyl acrylate) hexyl dicarbamate [2-hydroxyethyl acrylate hexamethylene diisocyanate (HDI) adduct], bis(2-hydroxyethyl acrylate) methylene dicyclohexyl dicarbamate [2-hydroxye
- resin ingredients B have unsaturated acryloyl functional groups.
- resin ingredient B is independently selected from the group consisting of polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least one pendant acryloyl functional group.
- the acid value of the activated unsaturated group-containing material is sufficiently low to not substantially impair the Michael addition reaction, for example less than about 2, and further for example less than 1 mg KOH/g.
- the number of reactive unsaturated group ranges from 2 to 20
- the equivalent molecular weight EQW: average molecular weight per reactive functional group
- the number average molecular weight Mn ranges from 100 to 5000.
- the reactive part of resin ingredients A and B can also be combined in one A-B type molecule.
- both the methylene and/or methine features as well as the ⁇ , ⁇ -unsaturated carbonyl are present in the same molecule, be it a monomer, oligomer or polymer. Mixtures of such A-B type molecules with ingredient A and B are also useful.
- resin ingredient A and resin ingredient B may be combined with the various embodiments of a dormant carbonate initiator ingredient C, described below, to arrive at the inventions described herein.
- resin ingredient A is a polyester malonate composition and resin ingredient B is a polyester acrylate.
- resin ingredient A is a polyurethane malonate composition and resin ingredient B is a polyester acrylate.
- resin ingredient A is a polyurethane malonate composition and resin ingredient B is a polyester acrylate.
- resin ingredient A is a polyurethane malonate composition and resin ingredient B is a polyurethane acrylate.
- resin ingredient A is a polyester malonate having acetoacetate end groups and resin ingredient B is a polyester acrylate.
- resin ingredient A is a polyester malonate having acetoacetate end groups and resin ingredient B is a polyurethane acrylate.
- resin ingredient A is a polyester malonate having acetoacetate end groups and resin ingredient B is a mixture of polyester acrylate and polyurethane acrylate.
- the number of reactive protons for resin ingredients A, and the number of ⁇ , ⁇ -unsaturated carbonyl moieties on resin ingredient B can be utilized to express desirable ratios and ranges for resin ingredients A and B.
- the mole ratio of reactive protons of ingredient A that can be activated with subsequent carbanion formation relative to the activated unsaturated groups on ingredient B is in the range between 10/1 and 0.1/1, or between 4/1 and 0.25/1, or between 3.3/1 and 0.67/1.
- the optimal amount strongly depends also on the number of reactive groups present on ingredients A and/or B.
- the amount of dormant carbonate initiator used expressed as mole ratio of protons that can be abstracted to form an activated Michael donor species (e.g. the methylene group of malonate can provide two protons for reactions, while a methine group can provide one proton to form an activated species) relative to initiator, ranges from about 1000/1 to 1/1, or from 250/1 to 10/1, or from 125/1 to 20/1 but the optimal amount to be used depends also on the amount of solvent present, reactivity of various acidic protons present on resin ingredients A and/or B.
- an activated Michael donor species e.g. the methylene group of malonate can provide two protons for reactions, while a methine group can provide one proton to form an activated species
- Ingredient C may be a carbonate initiator having a structure as shown in Formula 1:
- R 7 can be independently selected and is hydrogen or a linear or branched alkyl group with 1 to 22 carbon atoms; 1 to 8 carbon atoms; or 1 to 3 carbon atoms. In some such embodiments, R 7 is an unsubstituted alkyl group. In other such embodiments, R 7 is a substituted alkyl group including hydroxyl substituted alkyl groups. In some embodiments, R 7 is independently selected from a methyl group, an ethyl group, a propyl group, or a butyl group.
- a n+ is a cationic material and n is an integer equal or greater than 1; A +n is not an acidic hydrogen.
- a n+ can be a monovalent cation, such as an alkali metal, earth alkali metal or another monovalent metal cation, a quaternary ammonium or a phosphonium compound.
- a n+ can also be a multivalent metal cation, or a compound bearing more than one quaternary ammonium or phosphonium groups, or can be a cationic polymer.
- a n+ is a monovalent quaternary ammonium compound where n is 1.
- a n+ cannot have acidic protons that can protonate the carbanion Michael donor derived from resin ingredient A.
- a n+ of formula 1 is a monovalent quaternary ammonium compound and as shown in formula 2.
- quaternary ammonium compounds are derived from tertiary amines and quaternized with a methyl or benzyl group.
- tetra alkyl ammonium compounds also can be used.
- R3, R4 and R5 are independently selected and are linear or branched alkyl chains having from 1 to 22 carbon atoms; or 1 to 8 carbon atoms.
- R6 is selected from a methyl or a benzyl group or an alkyl group having from 2 to 6 carbon atoms.
- Such quaternary ammonium compounds are commercially available as salts and the anion typically is chloride, bromide, methyl sulfate, or hydroxide. Quaternary ammonium compounds with methylcarbonate or ethylcarbonate anions are also available.
- Examples of A n+ of formula 1 include dim ethyl diethylammonium, dimethyldipropylammonium, triethylmethylammonium, tripropylmethylammonium, tributylmethylammonium, tripentylmethylammonium, trihexylmethylammonium tetraethylammonium, tetrapropylammonium, tetrabutyl ammonium, tetrapentylammonium, tetrahexylammonium, benzyltrimethylammonium, benzyltriethylammonium, benzyltripropylammonium, benzyltributylammonium, benzyltripentyammonium, and benzyltrihexylammonium.
- the crosslinkable composition of this invention preferably contains some solvent.
- the coating formulator may choose to use an alcohol, or a combination of alcohols as solvent for a variety of reasons. Other solvents like ethylacetate or butylacetate may also be used, potentially in combination with alcohol solvents. Ethanol is a preferred solvent. Isopropyl alcohol also is a preferred solvent. Methanol is not preferred as a solvent because of health and safety risks, and is particularly not preferred and cannot be used when the crosslinkable composition is used as a coating for finger nails and toe nails. Other oxygenated, polar solvents such as ester or ketones for instance, are also suitable and can be used, potentially in combination with alcohol. Other organic solvents may also be used.
- water may be added to the composition. further comprising water concentration selected from the group consisting of less than 10 wt. %, less than 5 wt. %; less than 1 wt. %; less than 0.1 wt. %; less than 0.01 wt. % water.
- the crosslinkable composition of this invention may also be formulated without solvent in some cases.
- the crosslinkable coating contains typically at least 5 wt % of solvent, preferably between 5% and 45%, more preferable between 5% and 35%, but preferable not more than 60% because of VOC restrictions.
- the organic solvent is independently selected from the group consisting of an alcohol, ester, ether, glycol ether, ketone, aromatic and combinations thereof.
- the alcohol is independently selected from the group consisting of methanol, ethanol, iso-propanol, butanol, iso-butanol, t-butanol and combinations thereof.
- the crosslinkable composition useful as a coating can be formulated as a one component, a two component system or a three component system.
- initiator ingredient C is added to a mixture of ingredients A and B just prior to use; ingredient D may optionally be added to the initiator ingredient C or the mixture of ingredients A and B.
- ingredients A and C are mixed, and ingredient B is added prior to use ingredient; D may optionally be added to the mixture of ingredient A and initiator ingredient C or ingredient B.
- ingredient A is added to a mixture of ingredients B and C prior to use; ingredient D may optionally be added to ingredient A or the mixture of ingredient B and initiator C.
- pot life, working time and gel time can be adjusted by selection of the initiator structure, the amount used in the crosslinkable composition, presence of additional ammonium carbamate and to a certain extent the amount of solvent and/or water.
- a gel time of hours, and even days can be readily achieved, and gel times of weeks are possible.
- the dormant initiator allows for an opportunity to formulate a three component paint system.
- ingredients A, B, C and D are mixed together, optionally with other ingredients to formulate a paint, which is then canned and stored until use.
- a one component system can be enhanced by means of using excess carbon dioxide gas over the crosslinkable composition as to further improve pot life and gel time.
- a paint composition formulated according to the invention may have a protective atmosphere of carbon dioxide over the paint volume; and in yet another embodiment, a container containing the crosslinkable composition may even be pressurized with carbon dioxide.
- a one component system containing ingredients A, B and C are in a container filled to capacity with essentially no space remaining for other solids, liquid or gaseous ingredients and optionally containing ammonium carbamate.
- additional ammonium carbamate may further enhance stability in such one component coating formulations.
- the present invention provides for the crosslinkable coating composition wherein ingredient A, ingredient B and the carbonate initiator are contained in a container having two or more chambers, which are separated from one another.
- ingredient A and ingredient B are contained in separate chambers to inhibit any reaction.
- the carbonate initiator is contained in the chamber having ingredient A, and optionally containing CO 2 and/or ammonium carbamate.
- the carbonate initiator is contained in the chamber having ingredient B, and optionally containing CO 2 and/or ammonium carbamate.
- the present invention provides for the crosslinkable coating composition such that ingredient A and ingredient B are contained in the same chamber and the carbonate initiator is contained in a separate chamber to inhibit any reaction and said separate chamber optionally containing CO 2 and/or ammonium carbamate.
- Malonate esters are known to be susceptible to base hydrolysis, particularly when water is present. Water potentially can lead to undesirable destruction of initiator by means of formation of malonate salt and it can degrade malonate oligomers or polymers, which in turn can lead to altered coatings performance. Transesterification reactions also can occur with malonate esters and alcohol solvent. These reactions potentially can be limiting to the formulation of an acceptable working life, as a coatings formulator seeks to increase pot life and gel time for a crosslinkable composition formulated either as a one or two component system. However, primary alcohols such as methanol and ethanol are much more active in transesterification reactions than secondary alcohols such as isopropanol, while tertiary alcohols are generally least active.
- malonate polyester resins are derived from malonic acid, or a dialkylmalonate such as diethylmalonate, and polyols bearing secondary alcohol groups; such as 2,3-butanediol, 2,4-pentanediol and 2,5-hexanediol and the like.
- the combination of such polyester resins and non-primary alcohol solvents, such as isopropanol or butanol, is particularly useful in achieving desirable resistance towards transesterification reactions.
- resin ingredient A comprises malonate moieties that have been esterified with polyols bearing secondary alcohol groups and where secondary alcohol is present as solvent in the crosslinkable composition of this invention.
- tertiary alcohols are used as solvent or solvents as used that do not participate in transesterification reactions.
- Other resins may also be formulated using such stabilizing approaches towards resin breakdown and such approaches are well known to one skilled in the art and need not be further described here.
- the number of reactive protons for ingredients A, and the number of ⁇ , ⁇ -unsaturated carbonyl moieties on resin ingredient B can be utilized to express desirable ratio's and ranges for ingredients A and B.
- the mole ratio of reactive protons of ingredient A that can be activated with subsequent carbanion formation relative to the activated unsaturated groups on ingredient B is in the range between 10/1 and 0.1/1, preferably between 4/1 and 0.25/1, and more preferably 3.3/1 and 0.67/1.
- the optimal amount strongly depends also on the number of such active functionalities present on ingredients A and/or B. Although good tack free time may be obtained over a wide ratio range, coatings properties, such as hardness for instance may show a smaller preference range.
- the crosslinkable composition of this invention comprising ingredients A, B and C may optionally contain an additional ingredient D, which once activated, can react with the Michael acceptor.
- Ingredient D has one or more reactive protons that are more reactive, i.e. more acidic than those of ingredient A (the pKa of ingredient D is lower than that of ingredient A).
- the reactive protons of ingredient D are present at a fraction based on the reactive protons of ingredient A. The fraction ranges from 0 to 0.5, more preferably from 0 to 0.35, even more preferable between 0 and 0.15.
- ingredient D examples include; succinimide, isatine, ethosuximide, phthalimide, 4-nitro-2-methylimidazole, 5,5-dimethylhydantioin, phenol, 1,2,4-triazole, ethylacetoacetate, 1,2,3-triazole, ethyl cyanoacetate, benzotriazole, acetylacetone, benzenesulfonamide, 1,3-cyclohexanedione, nitromethane, nitroethane, 2-nitropropane, diethylmalonate, 1,2,3-triazole-4,5-dicarboxylic acid ethyl ester, 1,2,4-triazole-3-carboxylic acid ethyl ester, 3-Amino-1,2,4-triazole, 1H-1,2,3-triazole-5-carboxylic acid ethyl ester, 1H-[1,2,3]triazole-4-carbaldehyde,
- ingredient D may be incorporated into resin ingredient A.
- substituted succinimides including hydroxyl group containing succinimide derivatives, 3-hydroxy-2,5-pyrrolidinedione and 3-(hydroxymethyl)-2,5-pyrrolidinedione, or carboxylic acid group containing succinimide derivative, 2,5-dioxo-3-pyrrolidinecarboxylic acid can undergo condensation reactions with either acid/ester groups or hydroxyl groups at the end of resin A polymer chain, where the succinimide moiety will be incorporated into the polymer backbone as end cap.
- the amount of carbonate initiator used expressed as mole ratio of protons that can be abstracted to form an activated Michael donor species (e.g. the methylene group of malonate can provide two protons for reactions, while a methine group can provide one proton to form an activated species) relative to initiator, ranges from about 1000/1 to 1/1, more preferably from 250/1 to 10/1, even more preferable from 125/1 to 20/1 but the optimal amount to be used depends also on the amount of solvent present, reactivity of various acidic protons present on ingredient A and, if present, ingredient D, on pigments or dyes present in the system, on the number of active functionalities present on ingredients A and/or B and the like. Hence, the optimal amount needs to be determined experimentally to arrive at preferred curing characteristics.
- the crosslinkable coating composition of this invention can comprise one or more pigments, dyes, effect pigments, phosphorescent pigments, flakes and fillers. Metal flake effect pigments may also be used in the crosslinkable coating composition of this invention and this is an advantage over UV curable nail gel coatings as the UV cure process is hindered by such pigments and these metal flakes are therefore typically not used in such long lasting nail coatings.
- the cross-linkable coating composition of this invention can comprise other Michael addition reactive and non-reactive resins or polymers, for instance to facilitate adhesion, and/or aid in coating removal. Such removal aids may be solvent-dissolvable compounds, resins, oligomers or polymers, which are dispersed in the polymerized structure and can be easily dissolved by a solvent to facilitate solvent absorption and migration during removal of the coating.
- the crosslinkable coating compositions of this invention may contain one or more of FD&C or D&C dyes, pigments and/or lakes. Lakes are colorants where one or more of the FD&C or D&C dyes are adsorbed on a substratum, such as alumina, blanc fixe, gloss white, clay, titanium dioxide, zinc oxide, talc, rosin, aluminum benzoate or calcium carbonate.
- the D&C dye is independently selected from D&C Red 21, D&C Red No. 22, D&C Red No. 28, D&C Red No. 30, D&C Red No. 40, D&C Red No. 33, D&C Black No. 2, D&C Yellow No. 5, D&C Green No.
- the inorganic pigment is selected from the group consisting of red iron oxide; yellow iron oxide; titanium dioxide; brown iron oxide; chromium oxide green; iron blue (ferric ferrocyanide blue); ultramarine blue; ultramarine violet; ultramarine pink; black iron oxide; bismuth oxychloride; aluminum powder; manganese violet; mica; bronze powder; copper powder; guanine and combinations thereof.
- the formulation may optionally comprise resins, such as, but not limited to nitrocellulose, polyvinylbutyral, tosylamide formaldehyde and/or tosylamide expoxy resins.
- the crosslinkable coating compositions may comprise a cellulose acetate alkylate selected from the group consisting of cellulose acetate butyrate, cellulose acetate propionate, and mixtures thereof.
- Such resins may act as film formers, adhesion promoters, and aids to removal. These resins may also qualify as solvent-dissolvable resins.
- the cross-linkable coating composition of this invention can comprise additives such as wetting agents, defoamers, rheological control agents, ultraviolet (UV) light stabilizers, dispersing agents, flow and leveling agents, optical brighteners, gloss additives, radical inhibitors, radical initiators, adhesions promotors, gloss additives, radical inhibitors, radical initiators, plasticizers and combinations thereof.
- additives such as wetting agents, defoamers, rheological control agents, ultraviolet (UV) light stabilizers, dispersing agents, flow and leveling agents, optical brighteners, gloss additives, radical inhibitors, radical initiators, adhesions promotors, gloss additives, radical inhibitors, radical initiators, plasticizers and combinations thereof.
- additives such as wetting agents, defoamers, rheological control agents, ultraviolet (UV) light stabilizers, dispersing agents, flow and leveling agents, optical brighteners, gloss additives, radical inhibitors, radical initiators, adhesions promotors, gloss additives, radical
- the crosslinkable composition of this invention formulated as a nail polish may be packaged in a single unit package good for one time use.
- Such single serve units contain enough coating material to decorate all finger and toe nails.
- a single use package may contain a nail polish formulated as a one component system where all ingredients are mixed in one chamber, potentially with extra ammonium carbamate and carbon dioxide to push back on the dormant carbonate initiator in one chamber filled to capacity with essentially no space remaining for other solid, liquid or gaseous ingredients.
- the single unit package may contain more than one chambers when the nail polish system is formulated as a multi component system, e.g.
- Material may be dispensed multiple times provided the time between uses does not exceed the working life of the nail polish in a mixing chamber or if the working life is to be exceeded, the mixing nozzle is removed and the package capped and stored until future use when a new mixing nozzle will be used.
- Many packaging solutions are available from packaging providers and these are well known to one skilled in the art.
- the cross-linkable coating composition of this invention is particularly useful to decorate finger and toe nails, and can be applied as a three coat nail polish system, with a base coat applied directly on top of the base nail surface, followed by a color coat and finished with a glossy top coat.
- the nail polish system is formulated as a two coat system, where a color coat is applied directly on the bare nail surface, and finished with a glossy top coat, but in yet another approach, and base coat is applied to the nail surface to provide adhesion for a glossy color coat.
- Another particularly useful approach to decorate nails is where the cross-linkable coating composition of this invention is used as a single coat system, which has good adhesion to the nail surface, color and gloss all in a one coat system. It is understood that multiple coats can be applied over a same coat for any of these one, two or three coat systems.
- Tack free time was evaluated by lightly pressing a gloved index finger periodically onto the coating. The time when visible marks in the film are no longer left by the pressed finger, was then recorded as the tack free time.
- Gel time was taken as the amount of time it takes for a mixed, reactive resin system to gel or become so highly viscous that it has lost fluidity.
- the various ingredients were charged into a 4 ml vial and closed with headspace volume as constant as possible to allow for comparison and the sample was kept at room temperature and tilted at regular time intervals to determine whether the material still flows. If no flow is observed during tiling, the vial was held upside down and if no further flow occurs the materials is gelled.
- Fineness of Grind was evaluated with a Hegman Gauge according to the ASTM D1210 test method.
- TBA OH in solution was mixed with diethyl carbonate (DEtC) in a 1:5 molar ratio respectively and stirred for 1 hour at room temperature using magnetic stirrer.
- DEtC diethyl carbonate
- the final clear initiator solution was analyzed by means of titration and NMR.
- clear solutions were obtained in 1-propanol and 2-propanol.
- a solution made using the TBA OH base in methanol resulted in white precipitate which is removed by centrifuge followed by filtration using 0.45 ⁇ syringe filter. Transesterification reaction products were observed in the NMR for all cases where the carbonate alkyl group was different from the solvent, e.g. ethanol formation was observed when DEtC was added to TBA OH in isopropanol and isopropyl groups associated with carbonates were also observed.
- a 500 ml reactor was charged with 149.8 g of Polyethylene glycol (PEG 300), 100 g of diethyl malonate (DEM), 32.5 g of 1-octanol and 4-5 drops of titanium (IV) butoxide.
- the reactor was equipped with a Dean-Stark apparatus, mechanical stirrer, nitrogen flow and heating equipment. The mixture was heated to about 180° C. with stirring under nitrogen atmosphere. During an eight-hour reaction time, about 70 ml of ethanol was collected. The final product was a lightly yellow colored liquid with less than 0.15 wt. % of residual DEM as determined by gas chromatography (GC). Gel permeation chromatography (GPC) analysis showed Mw/Mn (PDI) of 4191/2818 (1.49) in gram/mole and a malonate methylene equivalent molecular weight of 360 g/mole.
- GC gas chromatography
- FD&C and D&C dyes commonly used in nail enamel formulations were evaluated in Michael addition based crosslinkable compositions. Such colorants may also be used in other coating application industries such as automotive and industrial paints, architectural paints, plastics, adhesives and others.
- Concentrated dispersions of dye in Malonate resin from example 2 were prepared first. Said dispersions were then used to formulate simple nail enamel color coat formulations. All nail enamel color coats were formulated to contain dye concentrations at 3% dye loading by weight. Finally, nail enamel coatings of controlled thickness are prepared to evaluate certain applications and color properties. The following is an example how a dye dispersion and color nail enamel coat is prepared and serves as general preparative example:
- Nail enamel coatings typically are about 1.0-1.5 mil thick, sometimes up to 2 mil thick per coating layer when applied by brush on finger- and/or toe nails although even thicker coatings are applied by consumers that are less experienced.
- the uncolored nail coating used as a reference film exhibits slight surface wrinkling without any dye present.
- the amount of surface wrinkling is inherent in the resin/formula combination used for this evaluation. Any worsening of this surface wrinkling is considered less desirable.
- Tributylmethylammonium chloride (TBMA Cl) (10 g) was dissolved in ethanol (8.7 g) and mixed with a 20 wt. % solution of potassium ethoxide in ethanol (17.8 g) in 1:1 molar ratio. Anhydrous ethanol was used. The mixture was allowed to mix under agitation for 30 min, and was then centrifuged at 5000 rpm for 15 min to remove potassium chloride precipitate. The concentration of tributylmethylammonium ethoxide was determined potentiometrically by titrating it against 0.1 N HCl solution. Dry carbon dioxide gas was passed through the tributylmethylammonium ethoxide solution with stirring for 1 hour as to obtain the desired initiator.
- the tributylmethylammonium ethylcarbonate (TBMA EC) solution in ethanol is light yellow in color and is characterized by means of acid and base titrations (potentiometric and with indicator) and NMR.
- TBMA IPC tributylmethylammonium isopropylcarbonate
- a 3 L reactor was charged with 700.0 g of diethyl malonate, 619.8 g of 1,6-hexanediol (HDO) and 227.5 g of ethyl acetoacetate (EAA).
- the reactor was equipped with a Dean-Stark apparatus, overhead mechanical stirrer, nitrogen flow and heating equipment. The mixture was heated to about 120° C. with stirring under nitrogen and then 0.62 g of phosphoric acid was added. Temperature was then increased to 145° C. and ethanol started to distill at this temperature. Temperature was then stepwise increased to 180° C. and continued until ethanol distillation stopped. In total, 588 ml of ethanol was collected. The reaction was then cooled to 120° C. and vacuum was applied for 4 hours while driving molecular weight. The final product is clear with less than 0.1% of residual monomer.
- GPC analysis showed Mw/Mn (PD) of 4143/1792 (2.31) in g/mole.
- a 5 L reactor was charged with 2075.0 g (8.12 moles) of diethyl malonate (DEM), 1182.9 g (9.74 moles) of 1,3-propanediol (PD) and 674.4 g (3.25 moles) of ethyl acetoacetate (EAA).
- DEM diethyl malonate
- PD 1,3-propanediol
- EAA ethyl acetoacetate
- the reactor was equipped with a Dean-Stark apparatus, overhead mechanical stirrer, nitrogen flow and heating equipment. The mixture was heated to about 120° C. with stirring under nitrogen and then 1.57 g of phosphoric acid was added. Temperature was then increased to 145° C. and ethanol started to distill at this temperature. Temperature was then stepwise increased to 180° C. and continued until ethanol distillation stopped. In total, 1396 g of ethanol was collected.
- the TBMA EC solution of Example 4 was tested as an initiator catalyst.
- 2.0 g of the malonate resin II of Example 5 was mixed with 2.68 g of DTMPTA, 0.4 g of BA and 0.80 g of the TBMA EC solution was added.
- the complete formulation was mixed well prior to observing gel time and applying a 3 mil test film on a polycarbonate substrate to test coating curing behavior.
- the ambient relative humidity was low at 15%, while the temperature was 21° C.
- the absolute humidity was 2.8 [g/m 3 ].
- a similar test was carried out with the TBMA IPC catalyst using 0.90 g of the TBMA IPC solution to keep molar amounts of catalyst constant versus the resin. Data in Table 3 shows that a notably shorter gel time for the isopropanol based catalyst was observed in comparison to the ethanol based catalyst.
- DMADMC dimethylammonium dimethylcarbamate
- a basic nail color formulation was prepared and evaluated per the general procedures as outlined in example 3, however, malonate resin II of example 5 was used to prepare a D&C Red 7 dye dispersion.
- the final overall formulation contained 0.167 g D&C Red 7 dye, 0.948 g resin II of example 5, 0.632 g resin III of example 6, 0.837 g ethanol and 2.449 g DTMPTA. 1.1604 g of TBMA EC catalyst solution of example 4 was used to cure the formulation.
- Another such formulation was prepared except that 4 wt % water (relative to the total weight of the formulation) was added to this second formulation. All formulations were mixed well and then a 3 mil test film was applied on a polycarbonate substrate to test the curing behavior and coating final color. The relative humidity and temperature was kept constant as the films cured and the absolute humidity was 9.4 [g/m 3 ]. Data in Table 5 shows that significant and undesirable color change occurs as water is added to the formulation.
- D&C Red No. 17 and D&C Red No. 36 are incompatible with the nail polish chemistry as significant color changes are observed during the curing process at both humidity levels.
- D&C Red No. 7 and D&C Red No. 33 show observable and undesirable color changes during cure at higher humidity levels.
- D&C Red No. 6 does show a measurable color difference for the cured films but the color change during cure is less apparent.
- the other dyes show minor color differences when the cured films are compared but no visible color change during the cure is observed.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Emergency Medicine (AREA)
- Paints Or Removers (AREA)
- Cosmetics (AREA)
Abstract
A nail polish composition containing a crosslinkable coating composition. The composition comprises ingredient A that has at least two protons that can be activated to form a Michael carbanion donor; ingredient B that functions as a Michael acceptor having at least two ethylenically unsaturated functionalities each activated by an electron-withdrawing group; and a carbonate initiator of Formula (1)
wherein R7 is selected from hydrogen, a linear or branched substituted or unsubstituted alkyl group having 1 to 22 carbon atoms; 1 to 8 carbon atoms; 1 to 3 carbon atoms; and An+ is a cationic species or polymer and n is an integer equal or greater than 1 with the proviso that An+ is not an acidic hydrogen; at least one colorant independently selected from the group consisting of (i) a dye; (ii) an inorganic pigment; or an (iii) a lake; and optionally further comprising ammonium carbamate (H2NR8R9+—OC═ONR8R9), wherein R8 R9 are each independently selected from hydrogen, a linear or branched substituted or unsubstituted alkyl group having 1 to 22 carbon atoms; 1 to 8 carbon atoms; 1 to 3 carbon atoms.
Description
- This application claims priority benefit from U.S. Provisional Patent Application 62/518,791 filed Jun. 13, 2017 which is incorporated by reference herein in its entirety.
- The invention provides for a crosslinkable composition for use in nail coating compositions containing dyes, inorganic pigments or lakes.
- The coatings industry continues to develop new chemistries as performance requirements for decorative and functional coatings evolve. Drivers for change are varied and these can include: regulatory controls to reduce VOC emissions, concerns about toxic hazards of coating raw materials, a desire for cost reduction, commitments to sustainability, and a need for increased product effectiveness.
- UV nail gel coatings have gained rapid popularity with fashion conscious individuals who apply nail polish to fingernails or toenails to decorate and protect nail plates. UV nail gels can produce coatings that exhibit phenomenal chip resistance and durability when properly applied and cured in comparison to those nail coatings derived from traditional solvent based nail lacquers. The performance difference particularly becomes apparent when the coating is applied on human finger nails and tested for durability. UV nail gel coatings can easily last for two weeks or more and still look like new whereas conventional nail polishes are easily scratched and will chip or peel from the natural nail in one to five days. UV nail gels are typically based on acrylates that cure quickly into dense, crosslinked thermoset coatings within half a minute or so. This is an advantage as the coating becomes almost immediately resistant to denting and scratching. Conventional nail lacquers show significant sensitivity to denting while the solvent evaporates from the coating and this requires great care by the individual as the coating dries and hardens; a process that can take easily fifteen to twenty minutes. However, conventional nail polish is easily removed with solvent whereas it can take some effort to remove a fully cured UV nail gel from the nail surface. An expensive UV light also is required for UV nail gel application and this has limited the success of UV nail gels in the mass market for home use. The expense of a UV light is less of an issue for professional salons where a right balance between service rate and a customers' perception of service is more important. As such, there is a need in the consumer market place for durable nail coatings that can cure quickly but do not require procurement of an UV light.
- Highly crosslinked, durable coating compositions can be achieved using Michael addition chemistry. The Michael addition reaction involves the nucleophilic addition of a Michael donor, such as a carbanion or another nucleophile to a Michael acceptor, such as an α,β-unsaturated carbonyl. As such, the base catalyzed addition of activated methylene moieties to electron deficient C═C double bonds are known in coatings applications. Representative examples of suitable materials that can provide activated methylene or methine groups are generally disclosed in U.S. Pat. No. 4,871,822, which resins contain a methylene and/or monosubstituted methylene group in the alpha-position to two activating groups such as, for example, carbonyl, cyano, sulfoxide and/or nitro groups. Preferred are resins containing a methylene group in the alpha-position to two carbonyl groups, such as malonate and/or acetoacetate group-containing materials, malonates being most preferred. The α,β-unsaturated carbonyl typically is an acrylate material and representative materials have been disclosed in U.S. Pat. No. 4,602,061. The Michael reaction is fast, can be carried out at ambient temperatures and gives a chemically stable crosslinking bond without forming any reaction by-product.
- A typical crosslinkable coating composition comprises a resin ingredient A (Michael donor), a resin ingredient B (Michael acceptor) and a base to start and catalyze the Michael addition reaction. The base catalyst should be strong enough to abstract, i.e. activate a proton from resin ingredient A to form the Michael donor carbanion species. Since the Michael addition cure chemistry can be very fast, the coating formulator is challenged to control the speed of the reaction to achieve an acceptable balance of pot life, open time, tack free time and cure time. Pot life is defined as the amount of time during which the viscosity of a mixed reactive system doubles. Working life or working time informs the user how much time they have to work with a reactive two-part system before it reaches such a high state of viscosity, or other condition, that it cannot be properly worked with to produce an acceptable application result. Gel time is the amount of time it takes for a mixed, reactive resin system to gel or become so highly viscous that it has lost fluidity. The open time of a coating is a practical measure of how much time it takes for a drying or curing coating to reach a stage where it can no longer be touched by brush or roller when applying additional coating material without leaving an indication that the drying or curing coating and newly applied coating did not quite flow together. These indications normally take the form of brush or roller marks and sometimes a noticeable difference in sheen levels. The tack free time is the amount of time it takes for a curing or drying coating to be no longer sticky to the touch, i.e. the time for a system to become hard to the touch, with no tackiness. Cure time is the amount of time it takes for a coating system to reach full final properties.
- The Michael reaction starts the very moment when coating resin ingredients A and B are mixed together with a suitable base. Since it is a fast reaction, the material in a mixing pot starts to crosslink and the fluid viscosity starts to rise. This limits the pot life, working time and general use as a coating. A dormant initiator that is essentially passive while coating material remains in a mixing vessel but that activates the Michael addition reaction upon film formation allows for longer pot life and working time, yet would show good open time, tack free time and cure time. Hence, the application of dormant initiator technology can provide the formulator with tools to control the speed of the reaction in order to achieve desirable cure characteristics.
- U.S. Pat. No. 8,962,725 describes a blocked base catalyst for Michael addition, which is based on substituted carbonate salts. Preferred Michael donor resins are based on malonate and Michael acceptor resins are acrylates. The substituted carbonates can bear substituents, but these should not substantially interfere with the crosslinking reaction between malonate and acrylate. The carbonate salts release carbon dioxide and a strong base upon activation by means of film formation. The base is either hydroxide or alkoxide. Before practical pot life and gel times are achieved with acceptable curing characteristics, the carbonate requires presence of a certain amount of water in the coating formulation for the blocking of the base to become effective. All disclosed blocked carbonate examples utilize methanol and/or water. However, malonate esters are known to be susceptible to base hydrolysis, particularly when water is present. Hence, the water necessary to block the carbonate base can thus degrade malonate oligomers or polymers at the same time, which in turn can lead to altered coatings performance. The hydrolysis product furthermore can result in undesirable destruction of base catalyst by means of formation of malonate salt; a reaction which is cloaked as longer pot life and gel time. Presence of water can also be quite problematic in certain coatings applications. Wood grain raising is a significant problem when water is present in wood coatings; water penetrates into wood, which causes swelling and lifting of fibers and this leaves a rough surface. Water also can cause flash rust, i.e. appearance of rust spots on a metal surface during drying of newly applied paint that contains water. Longer term rust formation in terms of corrosion may also be a problem when dealing with formulations that contain water.
- In one embodiment, the present invention provides for a nail polish composition containing a crosslinkable coating composition comprising: ingredient A that has at least two protons that can be activated to form a Michael carbanion donor; ingredient B that functions as a Michael acceptor having at least two ethylenically unsaturated functionalities each activated by an electron-withdrawing group; and a carbonate initiator of Formula (1)
- wherein R7 is selected from hydrogen, a linear or branched substituted or unsubstituted alkyl group having 1 to 22 carbon atoms; 1 to 8 carbon atoms; 1 to 3 carbon atoms; and An+ is a cationic species or polymer and n is an integer equal or greater than 1 with the proviso that An+ is not an acidic hydrogen; at least one colorant independently selected from the group consisting of (i) a dye; (ii) an inorganic pigment; or an (iii) a lake; and optionally further comprising ammonium carbamate (H2NR8R9+—OC═ONR8R9), wherein R8 R9 are each independently selected from hydrogen, a linear or branched substituted or unsubstituted alkyl group having 1 to 22 carbon atoms; 1 to 8 carbon atoms; 1 to 3 carbon atoms.
- In one embodiment, the present invention provides a nail polish composition wherein a dye is selected from the group consisting of D&C Red 21, D&C Red No. 22, D&C Red No. 28, D&C Red No. 30, D&C Red No. 33, D&C Red No. 40, D&C Black No. 2, D&C Yellow No. 5, D&C Green No. 5, Annatto and Caramel. In one such embodiment, the inorganic pigment is selected from the group consisting of red iron oxide; yellow iron oxide; titanium dioxide; brown iron oxide; chromium oxide green; iron blue (ferric ferrocyanide blue); ultramarine blue; ultramarine violet; ultramarine pink; black iron oxide; bismuth oxychloride; aluminum powder; manganese violet; mica; bronze powder; copper powder; guanine and combinations thereof. In another such embodiment, the lake is a D&C lake.
- In one embodiment, the present invention provides a nail polish composition wherein ingredient A is selected from the group consisting of compounds, oligomers or polymers. In one such embodiment, ingredient A is independently selected from a malonate group containing compound, a malonate group containing oligomer, a malonate group containing polymer, an acetoacetate group containing compound, an acetoacetate group containing oligomer, an acetoacetate group containing polymer or combinations thereof. In another such embodiment, the malonate group containing compound, malonate group containing oligomer, malonate group containing polymer, an acetoacetate group containing compound, acetoacetate group containing oligomer, or acetoacetate group containing polymer are each selected from the group consisting of: polyurethanes, polyesters, polyacrylates, epoxy polymers, polyamides, polyesteramides or polyvinyl polymers, wherein such compounds, oligomers or polymers have a malonate group or acetoacetate group located in a main chain of such compound or oligomer or polymer or a side chain of such compound or oligomer or polymer.
- In one embodiment, the present invention provides a nail polish composition wherein wherein ingredient B is selected from the group consisting of acrylates, fumarates, maleates and combinations thereof. In one such embodiment, the acrylate is independently selected from the group consisting of hexanediol diacrylate, trimethylol propane triacrylate, pentaerythritol triacrylate, di-trimethylolpropane tetraacrylate bis(2-hydroxyethyl acrylate), trimethylhexyl dicarbamate, bis(2-hydroxyethyl acrylate) 1,3,3-trimethylcyclohexyl dicarbamate, bis(2-hydroxyethyl acrylate) methylene dicyclohexyl dicarbamate and combinations thereof.
- In one embodiment, the present invention provides a nail polish composition wherein ingredient B is independently selected from the group consisting of polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least two pendant ethylenically unsaturated groups each activated by an electron-withdrawing group.
- The invention disclosed here is a crosslinkable composition comprising a resin ingredient A (Michael donor), a resin ingredient B (Michael acceptor) and a carbonate initiator ingredient C. The invention generally is useful as a decorative and/or functional coating, and the invention particularly is useful as a coating for human finger nails or toe nails.
- Resin Ingredient A (Michael Donor):
- Resin ingredients A are compounds, oligomers or polymers that contain functional groups that have reactive protons that can be activated to produce a carbanion Michael donor. In one embodiment, the functional group can be a methylene or methine group and resins have been described in U.S. Pat. No. 4,602,061 and U.S. Pat. No. 8,962,725 for example. In one embodiment, resin ingredients A are those derived from malonic acid or malonate esters, i.e. malonate. Oligomeric or polymeric malonate compounds include polyurethanes, polyesters, polyacrylates, epoxy resins, polyamides, polyesteramides or polyvinyl resins each containing malonate groups, either in the main chain or the side chain or in both.
- In one embodiment, polyurethanes having malonate groups may be obtained, for instance, by bringing a polyisocyanate into reaction with a hydroxyl group containing ester or polyester of a polyol and malonic acid/malonates, by esterification or transesterification of a hydroxyfunctional polyurethane with malonic acid and/or a dialkyl malonate. Examples of polyisocyanates include hexamethylenediisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, toluene diisocyanate and addition products of a polyol with a diisocyanate, such as that of trimethylolpropane to hexamethylene diisocyanate. In one embodiment, the polyisocyanate is selected from isophorone diisocyanate and trimethyhexamethylene diisocyanate. In another embodiment, the polyisocyanate is isophorone diisocyanate. In some embodiments, hydroxyfunctional polyurethanes include the addition products of a polyisocyanate, such as the foregoing polyisocyanates, with di- or polyvalent hydroxy compounds, including diethyleneglycol, neopentyl glycol, dimethylol cyclohexane, trimethylolpropane, 1,3-propandiol, 1,4-butanediol, 1,6-hexanediol and polyether polyols, polyester polyols or polyacrylate polyols. In some embodiments, the di- or polyvalent hydroxy compounds include diethyleneglycol, 1,3-propanediol, 1,4-butanediol and 1,6-hexanediol. In other embodiments, the di- or polyvalent hydroxy compounds include diethyleneglycol and 1,6-hexanediol.
- In one embodiment, malonic polyesters may be obtained, for instance, by polycondensation of malonic acid, an alkylmalonic acid, such as ethylmalonic acid, a mono- or dialkyl ester of such a carboxylic acid, or the reaction product of a malonic ester and an alkylacrylate or methacrylate, optionally mixed with other di- or polycarboxylic with one or more dihydroxy and/or polyhydroxy compounds, in combination or not with mono hydroxy compounds and/or carboxyl compounds. In some embodiments, polyhydroxy compounds include compounds containing 2-6 hydroxyl group and 2-20 carbon atoms, such as ethylene glycol, diethyleneglycol, propylene glycol, trimethylol ethane, trimethylolpropane, glycerol, pentaerythritol, 1,4-butanediol, 1,6-hexanediol, cyclohexanedimethanol, 1,12-dodecanediol and sorbitol. In some embodiments, the polyhydroxyl compounds include diethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol. In other embodiments, the polyhydroxyl compounds include propylene glycol and 1,6-hexanediol. In certain embodiments, the polyhydroxy may be a primary alcohol and in certain other embodiments, the polyhydroxy may be a secondary alcohol. Examples of polyols with secondary alcohol groups are 2,3-butanediol, 2,4-pentanediol and 2,5-hexanediol and the like.
- In one embodiment, malonate group-containing polymers also may be prepared by transesterification of an excess of dialkyl malonate with a hydroxy functional polymer, such as a vinyl alcohol-styrene copolymer. In this way, polymers with malonate groups in the side chains are formed. After the reaction, the excess of dialkyl malonate may optionally be removed under reduced pressure or be used as reactive solvent.
- In one embodiment, malonate group or acetoacetate group containing polymers may also be obtained from reaction with malonate or acetoacetonate with polyols, such as those polyols that are commercially sold for reaction with isocyanates to form polyurethane coatings.
- In one embodiment, malonic epoxy esters may be prepared by esterifying an epoxy polymer with malonic acid or a malonic monoester, or by transesterifying with a dialkylmalonate, optionally in the presence of one or more other carboxylic acids or derivatives thereof.
- In one embodiment, polyamides having malonate groups may be obtained in the same manner as polyesters, at least part of the hydroxy compound(s) being replaced with a mono- or polyvalent primary and/or secondary amine, such as cyclohexylamine, ethylene diamine, isophorone diamine, hexamethylene diamine, or diethylene triamine.
- In some embodiments, such polyamide compounds can be obtained when 12-hydroxystearic acid is reacted with a diamine such as ethylenediamine. Such polyamides have secondary alcohol groups, which can be esterified with malonic acid or malonate in a second reaction step. In some embodiments, other diamines may also be used in the reaction with 12-hydroxystearic acid, for example: xylylenediamine, butylenediamine, hexamethylenediamine, dodecamethylenediamine, and even dimer amine, which is derived from dimer acid. Polyamines may also be used, but in a right stoichiometric ratio as to avoid gelling of the polyamide in the reactor. Lesquerolic acid may also be used in reactions with polyamines to yield polyamides bearing secondary alcohol groups, which can be used in reactions with malonate to form malonate containing compounds. Reactions that yield malonamides are much less desirable.
- In some embodiments, the above mentioned malonate resins may be blended together to achieve optimized coatings properties. Such blends can be mixtures of malonate modified polyurethanes, polyesters, polyacrylates, epoxy resins, polyamides, polyesteramides and the like, but mixtures can also be prepared by blending various malonate modified polyesters together. In some other embodiments, various malonate modified polyurethanes can be mixed together, or various malonate modified polyacrylates, or malonate modified epoxy resins, or various malonate modified polyamides, malonate modified polyesteramides.
- In certain embodiments, malonate resins are malonate group containing oligomeric esters, polyesters, polyurethanes, or epoxy esters having 1-100, or 2-20 malonate groups per molecule. In some such embodiments, the malonate resins should have a number average molecular weight in the range of from 250 to 10,000 and an acid number not higher than 5, or not higher than 2. Use may optionally be made of malonate compounds in which the malonic acid structural unit is cyclized by formaldehyde, acetaldehyde, acetone or cyclohexanone. In some embodiments, molecular weight control may be achieved by the use of end capping agents, typically monofunctional alcohol, monocarboxylic acid or esters. In one embodiment, malonate compounds may be end capped with one or more of 1-hexanol, 1-octanol, 1-dodecanol, hexanoic acid or its ester, octanoic acid or its esters, dodecanoic acid or its esters, diethyleneglycol monoethyl ether, trimethylhexanol, and t-butyl acetoacetate, ethyl acetoacetate. In one such embodiment, the malonate is end capped with 1-octanol, diethyleneglycol monoethyl ether, trimethylhexanol, t-butyl acetoacetate and ethyl acetoacetate. In another such embodiment, the malonate is end capped t-butyl acetoacetate, ethyl acetoacetate and combinations thereof.
- Monomeric malonates may optionally be used as reactive diluents, but certain performance requirements may necessitate removal of monomeric malonates from resin ingredient A.
- In some embodiments, resin ingredients A include oligomeric and/or polymeric acetoacetate group-containing resins. In some embodiments, such acetoacetate group-containing resins are acetoacetic esters as disclosed in U.S. Pat. No. 2,759,913, diacetoacetate resins as disclosed in U.S. Pat. No. 4,217,396 and acetoacetate group-containing oligomeric and polymeric resins as disclosed in U.S. Pat. No. 4,408,018. In some embodiments, acetoacetate group-containing oligomeric and polymeric resins can be obtained, for example, from polyalcohols and/or hydroxy-functional polyether, polyester, polyacrylate, vinyl and epoxy oligomers and polymers by reaction with diketene or transesterication with an alkyl acetoacetate. Such resins may also be obtained by copolymerization of an acetoacetate functional (meth)acrylic monomer with other vinyl- and/or acrylic-functional monomers. In certain other embodiments, the acetoacetate group-containing resins for use with the present invention are the acetoacetate group-containing oligomers and polymers containing at least 1, or 2-10, acetoacetate groups. In some such embodiments, such acetoacetate group containing resins should have Mn in the range of from about 100 to about 5000 g/mol, and an acid number of about 2 or less. Resins containing both malonate and acetoacetate groups in the same molecule may also be used.
- In another embodiment, the above mentioned malonate group containing resins and acetoacetate group-containing resins may also be blended to optimize coatings properties as desired, often determined by the intended end application.
- Structural changes at the acidic site of malonate or acetoacetate can alter the acidity of these materials and derivatives thereof. For instance, pKa measurements in DMSO show that diethyl methylmalonate (MeCH(CO2Et)2) has a pKa of 18.7 and diethyl ethylmalonate (EtCH(CO2Et)2) has a pKa of 19.1 whereas diethyl malonate (CH2(CO2Et)2) has a pKa of 16.4. Resin ingredient A may contain such substituted moieties and therewith show changes in gel time, open time, cure time and the like. For example, resin ingredient A may be a polyester derived from a polyol, diethyl malonate and diethyl ethylmalonate.
- Resin Ingredient B (Michael Acceptor):
- Resin ingredients B (Michael acceptor) generally can be materials with ethylenically unsaturated moieties in which the carbon-carbon double bond is activated by an electron-withdrawing group, e.g. a carbonyl group in the alpha-position. In some embodiments, resin ingredients B are described in: U.S. Pat. No. 2,759,913, U.S. Pat. No. 4,871,822, U.S. Pat. No. 4,602,061, U.S. Pat. No. 4,408,018, U.S. Pat. No. 4,217,396 and U.S. Pat. No. 8,962,725. In certain embodiments, resin ingredients B include acrylates, fumarates and maleates.
- In some embodiments, resin ingredients B are the acrylic esters of chemicals containing 2-6 hydroxyl groups and 2-20 carbon atoms. These esters may optionally contain hydroxyl groups. In some such embodiments, examples of such acrylic esters include hexanediol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, di-trimethylolpropane tetraacrylate. In one such embodiment, acrylic esters include trimethylolpropane triacrylate, di-trimethylolproane tetraacrylate, dipentaerythritol hexaacrylate, pentaerythritol ethoxylated (EO)n tetraacrylate, trimethylolpropane ethoxylated(EO)n triacrylate and combinations thereof. In another embodiment, acrylamides may be used as a resin ingredient B.
- In other embodiments, resin ingredients B are polyesters based upon maleic, fumaric and/or itaconic acid (and maleic and itaconic anhydride), and chemicals with di- or polyvalent hydroxyl groups, optionally including materials with a monovalent hydroxyl and/or carboxyl functionality.
- In other embodiments, resin ingredients B are resins such as polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least two pendant ethylenically unsaturated groups each activated by an electron-withdrawing group. These include, for example, urethane acrylates obtained by reaction of a polyisocyanate with an hydroxyl group-containing acrylic ester, e.g., an hydroxyalkyl ester of acrylic acid or a resins prepared by esterification of a polyhydroxyl material with acrylic acid; polyether acrylates obtained by esterification of an hydroxyl group-containing polyether with acrylic acid; polyfunctional acrylates obtained by reaction of an hydroxyalkyl acrylate with a polycarboxylic acid and/or a polyamino resin; polyacrylates obtained by reaction of acrylic acid with an epoxy resin; and polyalkylmaleates obtained by reaction of a monoalkylmaleate ester with an epoxy polymer and/or an hydroxy functional oligomer or polymer. In certain embodiments, polyurethane acrylate resins may be prepared by reaction of hydroxyalkyl acrylate with polyisocyanate. Such polyurethane acrylate resins independently include bis(2-hydroxyethyl acrylate) trimethylhexyl dicarbamate [2-hydroxyethyl acrylate trimethylhexamethylene diisocyanate (TMDI) adduct], bis(2-hydroxyethyl acrylate) 1,3,3-trimethylcyclohexyl dicarbamate [2-hydroxyethyl acrylate 1,3,3-trimethylcyclohexyl diisocyanate/isophorone diisocyanate (IPDI) adduct], bis(2-hydroxyethyl acrylate) hexyl dicarbamate [2-hydroxyethyl acrylate hexamethylene diisocyanate (HDI) adduct], bis(2-hydroxyethyl acrylate) methylene dicyclohexyl dicarbamate [2-hydroxyethyl acrylate methylene dicyclohexyl diisocyanate (HMDI) adduct], bis(2-hydroxylethyl acrylate) methylenediphenyl dicarbamate [2-hydroxyethyl acrylate methylenediphenyl diisocyanate (MDI) adduct], bis(4-hydroxybutyl acrylate) 1,3,3-trimethylcyclohexyl dicarbamate [4-hydroxybutyl acrylate IPDI adduct], bis(4-hydroxybutyl acrylate) trimethylhexyl dicarbamate [4-hydroxybutyl acrylate TMDI adduct], bis(4-hydroxybutyl acrylate) hexyl dicarbamate [4-hydroxybutyl acrylate HDI adduct], bis(4-hydroxybutyl acrylate) methylene dicyclohexyl dicarbamate [4-hydroxybutyl acrylate HMDI adduct], bis(4-hydroxybutyl acrylate) methylenediphenyl dicarbamate [4-hydroxybutyl acrylate MDI adduct].
- In other embodiments, resin ingredients B have unsaturated acryloyl functional groups. In other certain embodiments, resin ingredient B is independently selected from the group consisting of polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least one pendant acryloyl functional group.
- In certain embodiments, the acid value of the activated unsaturated group-containing material (resin ingredient B) is sufficiently low to not substantially impair the Michael addition reaction, for example less than about 2, and further for example less than 1 mg KOH/g.
- As exemplified by the previously incorporated references, these and other activated unsaturated group containing resins, and their methods of production, are generally known to those skilled in the art, and need no further explanation here. In certain embodiments, the number of reactive unsaturated group ranges from 2 to 20, the equivalent molecular weight (EQW: average molecular weight per reactive functional group) ranges from 100 to 2000, and the number average molecular weight Mn ranges from 100 to 5000.
- In one embodiment, the reactive part of resin ingredients A and B can also be combined in one A-B type molecule. In this embodiment of the crosslinkable composition both the methylene and/or methine features as well as the α,β-unsaturated carbonyl are present in the same molecule, be it a monomer, oligomer or polymer. Mixtures of such A-B type molecules with ingredient A and B are also useful.
- Each of the foregoing embodiments of resin ingredient A and resin ingredient B may be combined with the various embodiments of a dormant carbonate initiator ingredient C, described below, to arrive at the inventions described herein. In one embodiment, resin ingredient A is a polyester malonate composition and resin ingredient B is a polyester acrylate. In another embodiment, resin ingredient A is a polyurethane malonate composition and resin ingredient B is a polyester acrylate. In another embodiment, resin ingredient A is a polyurethane malonate composition and resin ingredient B is a polyester acrylate. In another embodiment, resin ingredient A is a polyurethane malonate composition and resin ingredient B is a polyurethane acrylate. In another embodiment, resin ingredient A is a polyester malonate having acetoacetate end groups and resin ingredient B is a polyester acrylate. In yet another embodiment, resin ingredient A is a polyester malonate having acetoacetate end groups and resin ingredient B is a polyurethane acrylate. In still yet another embodiment, resin ingredient A is a polyester malonate having acetoacetate end groups and resin ingredient B is a mixture of polyester acrylate and polyurethane acrylate.
- In the foregoing embodiments, the number of reactive protons for resin ingredients A, and the number of α,β-unsaturated carbonyl moieties on resin ingredient B can be utilized to express desirable ratios and ranges for resin ingredients A and B. Typically, the mole ratio of reactive protons of ingredient A that can be activated with subsequent carbanion formation relative to the activated unsaturated groups on ingredient B is in the range between 10/1 and 0.1/1, or between 4/1 and 0.25/1, or between 3.3/1 and 0.67/1. However, the optimal amount strongly depends also on the number of reactive groups present on ingredients A and/or B.
- The amount of dormant carbonate initiator used, expressed as mole ratio of protons that can be abstracted to form an activated Michael donor species (e.g. the methylene group of malonate can provide two protons for reactions, while a methine group can provide one proton to form an activated species) relative to initiator, ranges from about 1000/1 to 1/1, or from 250/1 to 10/1, or from 125/1 to 20/1 but the optimal amount to be used depends also on the amount of solvent present, reactivity of various acidic protons present on resin ingredients A and/or B.
- Carbonate Initiator Ingredient C:
- Ingredient C may be a carbonate initiator having a structure as shown in Formula 1:
- R7 can be independently selected and is hydrogen or a linear or branched alkyl group with 1 to 22 carbon atoms; 1 to 8 carbon atoms; or 1 to 3 carbon atoms. In some such embodiments, R7 is an unsubstituted alkyl group. In other such embodiments, R7 is a substituted alkyl group including hydroxyl substituted alkyl groups. In some embodiments, R7 is independently selected from a methyl group, an ethyl group, a propyl group, or a butyl group. For the foregoing embodiments, An+ is a cationic material and n is an integer equal or greater than 1; A+n is not an acidic hydrogen. In some embodiments, An+ can be a monovalent cation, such as an alkali metal, earth alkali metal or another monovalent metal cation, a quaternary ammonium or a phosphonium compound. In some embodiments, An+ can also be a multivalent metal cation, or a compound bearing more than one quaternary ammonium or phosphonium groups, or can be a cationic polymer. In certain embodiments, An+ is a monovalent quaternary ammonium compound where n is 1. An+ cannot have acidic protons that can protonate the carbanion Michael donor derived from resin ingredient A.
- In a certain embodiment, An+ of formula 1 is a monovalent quaternary ammonium compound and as shown in formula 2. A large selection of such quaternary ammonium compounds is commercially available from various manufacturers. In one embodiment, quaternary ammonium compounds are derived from tertiary amines and quaternized with a methyl or benzyl group. In other embodiments, tetra alkyl ammonium compounds also can be used. R3, R4 and R5 are independently selected and are linear or branched alkyl chains having from 1 to 22 carbon atoms; or 1 to 8 carbon atoms. In such foregoing embodiments, R6 is selected from a methyl or a benzyl group or an alkyl group having from 2 to 6 carbon atoms. Such quaternary ammonium compounds are commercially available as salts and the anion typically is chloride, bromide, methyl sulfate, or hydroxide. Quaternary ammonium compounds with methylcarbonate or ethylcarbonate anions are also available.
- Examples of An+ of formula 1 include dim ethyl diethylammonium, dimethyldipropylammonium, triethylmethylammonium, tripropylmethylammonium, tributylmethylammonium, tripentylmethylammonium, trihexylmethylammonium tetraethylammonium, tetrapropylammonium, tetrabutyl ammonium, tetrapentylammonium, tetrahexylammonium, benzyltrimethylammonium, benzyltriethylammonium, benzyltripropylammonium, benzyltributylammonium, benzyltripentyammonium, and benzyltrihexylammonium.
- The crosslinkable composition of this invention preferably contains some solvent. The coating formulator may choose to use an alcohol, or a combination of alcohols as solvent for a variety of reasons. Other solvents like ethylacetate or butylacetate may also be used, potentially in combination with alcohol solvents. Ethanol is a preferred solvent. Isopropyl alcohol also is a preferred solvent. Methanol is not preferred as a solvent because of health and safety risks, and is particularly not preferred and cannot be used when the crosslinkable composition is used as a coating for finger nails and toe nails. Other oxygenated, polar solvents such as ester or ketones for instance, are also suitable and can be used, potentially in combination with alcohol. Other organic solvents may also be used.
- In some embodiments of the crosslinkable composition, water may be added to the composition. further comprising water concentration selected from the group consisting of less than 10 wt. %, less than 5 wt. %; less than 1 wt. %; less than 0.1 wt. %; less than 0.01 wt. % water.
- Some embodiments of the crosslinkable composition of this invention may also be formulated without solvent in some cases. In other embodiments, the crosslinkable coating contains typically at least 5 wt % of solvent, preferably between 5% and 45%, more preferable between 5% and 35%, but preferable not more than 60% because of VOC restrictions. In such embodiments, the organic solvent is independently selected from the group consisting of an alcohol, ester, ether, glycol ether, ketone, aromatic and combinations thereof. In certain embodiments the alcohol is independently selected from the group consisting of methanol, ethanol, iso-propanol, butanol, iso-butanol, t-butanol and combinations thereof.
- The crosslinkable composition useful as a coating can be formulated as a one component, a two component system or a three component system. In an embodiment of a two component system, initiator ingredient C is added to a mixture of ingredients A and B just prior to use; ingredient D may optionally be added to the initiator ingredient C or the mixture of ingredients A and B. In an alternative embodiment, ingredients A and C are mixed, and ingredient B is added prior to use ingredient; D may optionally be added to the mixture of ingredient A and initiator ingredient C or ingredient B. In yet another embodiment, ingredient A is added to a mixture of ingredients B and C prior to use; ingredient D may optionally be added to ingredient A or the mixture of ingredient B and initiator C. In certain embodiments, pot life, working time and gel time can be adjusted by selection of the initiator structure, the amount used in the crosslinkable composition, presence of additional ammonium carbamate and to a certain extent the amount of solvent and/or water. A gel time of hours, and even days can be readily achieved, and gel times of weeks are possible. As such, the dormant initiator allows for an opportunity to formulate a three component paint system. In such embodiment of a one component system, ingredients A, B, C and D are mixed together, optionally with other ingredients to formulate a paint, which is then canned and stored until use. In certain embodiments, a one component system can be enhanced by means of using excess carbon dioxide gas over the crosslinkable composition as to further improve pot life and gel time. For instance, a paint composition formulated according to the invention may have a protective atmosphere of carbon dioxide over the paint volume; and in yet another embodiment, a container containing the crosslinkable composition may even be pressurized with carbon dioxide. In another embodiment, a one component system containing ingredients A, B and C are in a container filled to capacity with essentially no space remaining for other solids, liquid or gaseous ingredients and optionally containing ammonium carbamate. In yet another embodiment, additional ammonium carbamate may further enhance stability in such one component coating formulations.
- In another embodiment, the present invention provides for the crosslinkable coating composition wherein ingredient A, ingredient B and the carbonate initiator are contained in a container having two or more chambers, which are separated from one another. In one such embodiment, ingredient A and ingredient B are contained in separate chambers to inhibit any reaction. In another such embodiment, the carbonate initiator is contained in the chamber having ingredient A, and optionally containing CO2 and/or ammonium carbamate. In another such embodiment, the carbonate initiator is contained in the chamber having ingredient B, and optionally containing CO2 and/or ammonium carbamate.
- In another embodiment, the present invention provides for the crosslinkable coating composition such that ingredient A and ingredient B are contained in the same chamber and the carbonate initiator is contained in a separate chamber to inhibit any reaction and said separate chamber optionally containing CO2 and/or ammonium carbamate.
- Malonate esters are known to be susceptible to base hydrolysis, particularly when water is present. Water potentially can lead to undesirable destruction of initiator by means of formation of malonate salt and it can degrade malonate oligomers or polymers, which in turn can lead to altered coatings performance. Transesterification reactions also can occur with malonate esters and alcohol solvent. These reactions potentially can be limiting to the formulation of an acceptable working life, as a coatings formulator seeks to increase pot life and gel time for a crosslinkable composition formulated either as a one or two component system. However, primary alcohols such as methanol and ethanol are much more active in transesterification reactions than secondary alcohols such as isopropanol, while tertiary alcohols are generally least active. Furthermore, additional resistance towards hydrolysis and transesterification can be obtained when malonate polyester resins are derived from malonic acid, or a dialkylmalonate such as diethylmalonate, and polyols bearing secondary alcohol groups; such as 2,3-butanediol, 2,4-pentanediol and 2,5-hexanediol and the like. The combination of such polyester resins and non-primary alcohol solvents, such as isopropanol or butanol, is particularly useful in achieving desirable resistance towards transesterification reactions. In a preferred approach, resin ingredient A comprises malonate moieties that have been esterified with polyols bearing secondary alcohol groups and where secondary alcohol is present as solvent in the crosslinkable composition of this invention. In yet another approach, tertiary alcohols are used as solvent or solvents as used that do not participate in transesterification reactions. Other resins may also be formulated using such stabilizing approaches towards resin breakdown and such approaches are well known to one skilled in the art and need not be further described here.
- The number of reactive protons for ingredients A, and the number of α,β-unsaturated carbonyl moieties on resin ingredient B can be utilized to express desirable ratio's and ranges for ingredients A and B. Typically, the mole ratio of reactive protons of ingredient A that can be activated with subsequent carbanion formation relative to the activated unsaturated groups on ingredient B is in the range between 10/1 and 0.1/1, preferably between 4/1 and 0.25/1, and more preferably 3.3/1 and 0.67/1. However, the optimal amount strongly depends also on the number of such active functionalities present on ingredients A and/or B. Although good tack free time may be obtained over a wide ratio range, coatings properties, such as hardness for instance may show a smaller preference range.
- The crosslinkable composition of this invention comprising ingredients A, B and C may optionally contain an additional ingredient D, which once activated, can react with the Michael acceptor. Ingredient D has one or more reactive protons that are more reactive, i.e. more acidic than those of ingredient A (the pKa of ingredient D is lower than that of ingredient A). The reactive protons of ingredient D are present at a fraction based on the reactive protons of ingredient A. The fraction ranges from 0 to 0.5, more preferably from 0 to 0.35, even more preferable between 0 and 0.15.
- Examples of ingredient D include; succinimide, isatine, ethosuximide, phthalimide, 4-nitro-2-methylimidazole, 5,5-dimethylhydantioin, phenol, 1,2,4-triazole, ethylacetoacetate, 1,2,3-triazole, ethyl cyanoacetate, benzotriazole, acetylacetone, benzenesulfonamide, 1,3-cyclohexanedione, nitromethane, nitroethane, 2-nitropropane, diethylmalonate, 1,2,3-triazole-4,5-dicarboxylic acid ethyl ester, 1,2,4-triazole-3-carboxylic acid ethyl ester, 3-Amino-1,2,4-triazole, 1H-1,2,3-triazole-5-carboxylic acid ethyl ester, 1H-[1,2,3]triazole-4-carbaldehyde, morpholine, purines such as purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid and isoguanine; pyrimidines, such as thymine and cytosine; uracil, glycine, ethanimidamide, cysteamine, allantoin, N,N-dimethylglycine, allopurinol, N-methylpyrrolidine, benzeneboronic acid, salicyl aldehyde, 3-hydroxybenzaldehyde, 1-naphthol, methylphenidate and Vitamin E.
- In other embodiments, ingredient D may be incorporated into resin ingredient A. In such embodiments, substituted succinimides, including hydroxyl group containing succinimide derivatives, 3-hydroxy-2,5-pyrrolidinedione and 3-(hydroxymethyl)-2,5-pyrrolidinedione, or carboxylic acid group containing succinimide derivative, 2,5-dioxo-3-pyrrolidinecarboxylic acid can undergo condensation reactions with either acid/ester groups or hydroxyl groups at the end of resin A polymer chain, where the succinimide moiety will be incorporated into the polymer backbone as end cap.
- The amount of carbonate initiator used, expressed as mole ratio of protons that can be abstracted to form an activated Michael donor species (e.g. the methylene group of malonate can provide two protons for reactions, while a methine group can provide one proton to form an activated species) relative to initiator, ranges from about 1000/1 to 1/1, more preferably from 250/1 to 10/1, even more preferable from 125/1 to 20/1 but the optimal amount to be used depends also on the amount of solvent present, reactivity of various acidic protons present on ingredient A and, if present, ingredient D, on pigments or dyes present in the system, on the number of active functionalities present on ingredients A and/or B and the like. Hence, the optimal amount needs to be determined experimentally to arrive at preferred curing characteristics.
- The crosslinkable coating composition of this invention can comprise one or more pigments, dyes, effect pigments, phosphorescent pigments, flakes and fillers. Metal flake effect pigments may also be used in the crosslinkable coating composition of this invention and this is an advantage over UV curable nail gel coatings as the UV cure process is hindered by such pigments and these metal flakes are therefore typically not used in such long lasting nail coatings. The cross-linkable coating composition of this invention can comprise other Michael addition reactive and non-reactive resins or polymers, for instance to facilitate adhesion, and/or aid in coating removal. Such removal aids may be solvent-dissolvable compounds, resins, oligomers or polymers, which are dispersed in the polymerized structure and can be easily dissolved by a solvent to facilitate solvent absorption and migration during removal of the coating.
- The crosslinkable coating compositions of this invention may contain one or more of FD&C or D&C dyes, pigments and/or lakes. Lakes are colorants where one or more of the FD&C or D&C dyes are adsorbed on a substratum, such as alumina, blanc fixe, gloss white, clay, titanium dioxide, zinc oxide, talc, rosin, aluminum benzoate or calcium carbonate. In certain embodiments, the D&C dye is independently selected from D&C Red 21, D&C Red No. 22, D&C Red No. 28, D&C Red No. 30, D&C Red No. 40, D&C Red No. 33, D&C Black No. 2, D&C Yellow No. 5, D&C Green No. 5, Annatto, Caramel and combinations thereof. In certain embodiments, the inorganic pigment is selected from the group consisting of red iron oxide; yellow iron oxide; titanium dioxide; brown iron oxide; chromium oxide green; iron blue (ferric ferrocyanide blue); ultramarine blue; ultramarine violet; ultramarine pink; black iron oxide; bismuth oxychloride; aluminum powder; manganese violet; mica; bronze powder; copper powder; guanine and combinations thereof.
- Certain embodiments of the formulation may optionally comprise resins, such as, but not limited to nitrocellulose, polyvinylbutyral, tosylamide formaldehyde and/or tosylamide expoxy resins. Certain other embodiments, the crosslinkable coating compositions may comprise a cellulose acetate alkylate selected from the group consisting of cellulose acetate butyrate, cellulose acetate propionate, and mixtures thereof.
- Such resins may act as film formers, adhesion promoters, and aids to removal. These resins may also qualify as solvent-dissolvable resins.
- The cross-linkable coating composition of this invention can comprise additives such as wetting agents, defoamers, rheological control agents, ultraviolet (UV) light stabilizers, dispersing agents, flow and leveling agents, optical brighteners, gloss additives, radical inhibitors, radical initiators, adhesions promotors, gloss additives, radical inhibitors, radical initiators, plasticizers and combinations thereof. The selection of these materials and additives will, of course, depend on the intended use of the coating composition. However, all these materials need to be carefully screened as some of these may react with the carbonate initiator and therefore are not suitable for use in the crosslinkable composition should such a reaction occur and significantly interfere with the curing process. The above described materials and additives are commonly used in the coatings industry and are well known to one skilled in the art and need not be further described here.
- In certain embodiments, the crosslinkable composition of this invention formulated as a nail polish may be packaged in a single unit package good for one time use. Such single serve units contain enough coating material to decorate all finger and toe nails. A single use package may contain a nail polish formulated as a one component system where all ingredients are mixed in one chamber, potentially with extra ammonium carbamate and carbon dioxide to push back on the dormant carbonate initiator in one chamber filled to capacity with essentially no space remaining for other solid, liquid or gaseous ingredients. The single unit package may contain more than one chambers when the nail polish system is formulated as a multi component system, e.g. two chambers when the nail polish is formulated as a two component system, or three chambers when ingredients A, B and C are all kept separate until use. Packages are known where a seal between chambers is broken to allow for materials to be mixed in the merged chambers and a proper ratio of components is maintained by virtue of the design of the package. Flexible packages and more rigid containers such as bottles that have more than one chamber where contents can be mixed upon demand are known and are readily available. Single unit packages may also include a brush for application. In another approach deviating from a single use concept, material may be dispensed from a single chamber (flexible) package that can be resealed. Multi chamber package that utilize plungers are also known and proper mixing of components can be insured by use of a mixing nozzle for instance. Material may be dispensed multiple times provided the time between uses does not exceed the working life of the nail polish in a mixing chamber or if the working life is to be exceeded, the mixing nozzle is removed and the package capped and stored until future use when a new mixing nozzle will be used. Many packaging solutions are available from packaging providers and these are well known to one skilled in the art.
- In certain embodiments, the cross-linkable coating composition of this invention is particularly useful to decorate finger and toe nails, and can be applied as a three coat nail polish system, with a base coat applied directly on top of the base nail surface, followed by a color coat and finished with a glossy top coat. In another preferred approach, the nail polish system is formulated as a two coat system, where a color coat is applied directly on the bare nail surface, and finished with a glossy top coat, but in yet another approach, and base coat is applied to the nail surface to provide adhesion for a glossy color coat. Another particularly useful approach to decorate nails is where the cross-linkable coating composition of this invention is used as a single coat system, which has good adhesion to the nail surface, color and gloss all in a one coat system. It is understood that multiple coats can be applied over a same coat for any of these one, two or three coat systems.
- The following examples further describe and demonstrate illustrative embodiments within the scope of the present invention. The examples are given solely for illustration and are not to be construed as limitations of this invention as many variations are possible without departing from the spirit and scope thereof.
- Tack free time was evaluated by lightly pressing a gloved index finger periodically onto the coating. The time when visible marks in the film are no longer left by the pressed finger, was then recorded as the tack free time.
- Gel time was taken as the amount of time it takes for a mixed, reactive resin system to gel or become so highly viscous that it has lost fluidity. Typically, the various ingredients were charged into a 4 ml vial and closed with headspace volume as constant as possible to allow for comparison and the sample was kept at room temperature and tilted at regular time intervals to determine whether the material still flows. If no flow is observed during tiling, the vial was held upside down and if no further flow occurs the materials is gelled.
- Fineness of Grind was evaluated with a Hegman Gauge according to the ASTM D1210 test method.
- General Synthesis of Carbonate Catalyst from Diethylcarbonate.
- Most of the methanol solvent from a 40 g tetrabutylammonium hydroxide (TBA OH) solution in methanol (1 M) was removed with a rotary evaporator. The material was not allowed to become completely dry without solvent as dry quaternary ammonium hydroxide base is susceptible to decomposition. Next, 40 grams of ethanol was added and most of the solvent was again removed. This procedure was repeated at least two more times until the methanol effectively had been replaced as determined by NMR. The solution strength is determined by titration (typically 1.7 mmol base/g solution). Next, a precise amount of the TBA OH in solution was mixed with diethyl carbonate (DEtC) in a 1:5 molar ratio respectively and stirred for 1 hour at room temperature using magnetic stirrer. The final clear initiator solution was analyzed by means of titration and NMR. In a similar manner, clear solutions were obtained in 1-propanol and 2-propanol. A solution made using the TBA OH base in methanol resulted in white precipitate which is removed by centrifuge followed by filtration using 0.45μ syringe filter. Transesterification reaction products were observed in the NMR for all cases where the carbonate alkyl group was different from the solvent, e.g. ethanol formation was observed when DEtC was added to TBA OH in isopropanol and isopropyl groups associated with carbonates were also observed.
- A 500 ml reactor was charged with 149.8 g of Polyethylene glycol (PEG 300), 100 g of diethyl malonate (DEM), 32.5 g of 1-octanol and 4-5 drops of titanium (IV) butoxide. The reactor was equipped with a Dean-Stark apparatus, mechanical stirrer, nitrogen flow and heating equipment. The mixture was heated to about 180° C. with stirring under nitrogen atmosphere. During an eight-hour reaction time, about 70 ml of ethanol was collected. The final product was a lightly yellow colored liquid with less than 0.15 wt. % of residual DEM as determined by gas chromatography (GC). Gel permeation chromatography (GPC) analysis showed Mw/Mn (PDI) of 4191/2818 (1.49) in gram/mole and a malonate methylene equivalent molecular weight of 360 g/mole.
- FD&C and D&C dyes commonly used in nail enamel formulations were evaluated in Michael addition based crosslinkable compositions. Such colorants may also be used in other coating application industries such as automotive and industrial paints, architectural paints, plastics, adhesives and others. Concentrated dispersions of dye in Malonate resin from example 2 were prepared first. Said dispersions were then used to formulate simple nail enamel color coat formulations. All nail enamel color coats were formulated to contain dye concentrations at 3% dye loading by weight. Finally, nail enamel coatings of controlled thickness are prepared to evaluate certain applications and color properties. The following is an example how a dye dispersion and color nail enamel coat is prepared and serves as general preparative example:
- First, 10.04 g of Malonate resin (I) from example 2 was weighed directly into a tared 60 ml capacity mortar and 3.00 g of D&C Red 30 Indigoid dye was weighed in next. A spatula was briefly used to hand blend the dye into the resin and a pestle was then used to grind the paste in the mortar to a fine consistency. The mixture was ground/milled by hand for approximately 10-25 minutes using the pestle and mortar until a Hegman Fineness of Grind value of 7 was achieved. The pigment dispersion was then transferred to a glass jar and sealed for later use.
- Into a 20 ml glass vial, 0.65 g of the above D&C Red 30 dye dispersion was added. An additional 1.95 g of Malonate resin (I) from example 2 was charged to the vial and 1.58 g of DTMPTA was added next. The materials in the vial were mixed by hand using a spatula to achieve homogeneity. After this, 0.41 g of butylacetate (BA) was mixed in as well. The vial was sealed and vigorously shaken until homogenous. Test panels to be coated were placed into position at this point. Bird Bars (3 & 6 mil) for coating application were made ready. The glass vial was unsealed and 0.41 g of the methanol based catalyst of example 1 was added. The lid was placed back on the vial. The complete mixture was vigorously shaken for 1-3 minutes to make it homogenous. Once mixing was completed, the mixture was promptly cast as films using the Bird Bars on 4″×6″ polycarbonate panels. Tack free time was recorded and coating surface wrinkling was observed as the films cured. Nail enamel coatings typically are about 1.0-1.5 mil thick, sometimes up to 2 mil thick per coating layer when applied by brush on finger- and/or toe nails although even thicker coatings are applied by consumers that are less experienced.
- Various dyes were thus evaluated and compared to a dye free (uncolored) control and results are shown in Table 1.
- The uncolored nail coating used as a reference film exhibits slight surface wrinkling without any dye present. The amount of surface wrinkling is inherent in the resin/formula combination used for this evaluation. Any worsening of this surface wrinkling is considered less desirable.
- The films prepared at 3% dye concentration and 3 mil film wet applied film thickness, were additionally evaluated by color spectrophotometry to monitor color change upon aging. Once the applied coating became tack free, a timer was started. Color measurements were carried out for each film. Each coated panel was measured at 3 different points during the aging process: (1) 1 hr.; (2) overnight (>16 hours); and (3) after 1 week. Color analyses were performed using a calibrated DataColor 800 Spectrophotometer to measure the coated panels. The panels sat in ambient laboratory conditions during the period of aging. The color measurement changes (CIELAB system, L*(0=Black,100=White), a*(+Red,−Green), b*(+Yellow,−Blue), total color change ΔE,) for overnight and 1 week of aging, were determined using the 1 hr. color measurement as the reference point from which the instrument's software calculated the delta values. Whether a color change is noticeable to the eye is a matter of personal opinion for end users of nail color cosmetics. For purposes of this example, color changes of ΔE of <=1.0 were interpreted as Good. Color change of ΔE>1.0 but<=2.0 were interpreted as Fair yet still considered acceptable as being viewed that such a color change would be likely detected by a trained eye only. Color changes of ΔE>2.0 were less desirable as this color change is likely to be readily noticeable even to an untrained eye. A color change ΔE>4.0 is significant, while a color change of ΔE>5 is an entirely different color. The results are shown in Table 2.
-
TABLE 1 Films - 3 Films - 6 mils applied Thickness mils applied Thickness Tack free Coating Tack free Coating Dye used, time, Surface time, Surface Dye name Wt. % [min] Wrinkling [min] Wrinkling Blank no dye 1.7 slight 2.0 slight Control FD&C 3% 5.3 slight 22.0 moderate Yellow 5 D&C 3% 4.5 none 5.3 none Red 30 -
TABLE 2 3 mil Wet Film Same Day Color Overnight Cured Analysis Color Change ~7 Day Color DYE (Reference Point) Analysis Change Analysis Name L* a* b* ΔL* Δa* Δb* ΔE* ΔL* Δa* Δb* ΔE* FD&C 59.18 4.14 58.68 0.12 −0.5 −1.78 1.86 −1.94 2.70 −0.82 3.44 Yellow 5 D&C 33.83 31.45 13.40 0.29 0.02 1.07 1.11 0.40 0.23 1.28 1.36 Red 30 - Tributylmethylammonium chloride (TBMA Cl), (10 g) was dissolved in ethanol (8.7 g) and mixed with a 20 wt. % solution of potassium ethoxide in ethanol (17.8 g) in 1:1 molar ratio. Anhydrous ethanol was used. The mixture was allowed to mix under agitation for 30 min, and was then centrifuged at 5000 rpm for 15 min to remove potassium chloride precipitate. The concentration of tributylmethylammonium ethoxide was determined potentiometrically by titrating it against 0.1 N HCl solution. Dry carbon dioxide gas was passed through the tributylmethylammonium ethoxide solution with stirring for 1 hour as to obtain the desired initiator. The tributylmethylammonium ethylcarbonate (TBMA EC) solution in ethanol is light yellow in color and is characterized by means of acid and base titrations (potentiometric and with indicator) and NMR.
- A tributylmethylammonium isopropylcarbonate (TBMA IPC) catalyst solution was prepared in a similar manner. Tributylmethylammonium chloride was reacted with potassium tert-butoxide in essentially water free isopropanol followed by centrifugation prior to passing carbon dioxide through the solution. NMR analysis confirmed isopropylcarbonate as the anionic species.
- A 3 L reactor was charged with 700.0 g of diethyl malonate, 619.8 g of 1,6-hexanediol (HDO) and 227.5 g of ethyl acetoacetate (EAA). The reactor was equipped with a Dean-Stark apparatus, overhead mechanical stirrer, nitrogen flow and heating equipment. The mixture was heated to about 120° C. with stirring under nitrogen and then 0.62 g of phosphoric acid was added. Temperature was then increased to 145° C. and ethanol started to distill at this temperature. Temperature was then stepwise increased to 180° C. and continued until ethanol distillation stopped. In total, 588 ml of ethanol was collected. The reaction was then cooled to 120° C. and vacuum was applied for 4 hours while driving molecular weight. The final product is clear with less than 0.1% of residual monomer. GPC analysis showed Mw/Mn (PD) of 4143/1792 (2.31) in g/mole.
- A 5 L reactor was charged with 2075.0 g (8.12 moles) of diethyl malonate (DEM), 1182.9 g (9.74 moles) of 1,3-propanediol (PD) and 674.4 g (3.25 moles) of ethyl acetoacetate (EAA). The reactor was equipped with a Dean-Stark apparatus, overhead mechanical stirrer, nitrogen flow and heating equipment. The mixture was heated to about 120° C. with stirring under nitrogen and then 1.57 g of phosphoric acid was added. Temperature was then increased to 145° C. and ethanol started to distill at this temperature. Temperature was then stepwise increased to 180° C. and continued until ethanol distillation stopped. In total, 1396 g of ethanol was collected. The reaction was then cooled to 120° C. and vacuum was applied for 4 hours while driving the molecular weight. The final product was very light yellow in color with less than 0.5% of residual monomer. GPC analysis showed Mw/Mn (PD) of 2337/1507 (1.55) in g/mole and malonate methylene equivalent molecular weight of 169 g/mole.
- The TBMA EC solution of Example 4 was tested as an initiator catalyst. In a vial, 2.0 g of the malonate resin II of Example 5 was mixed with 2.68 g of DTMPTA, 0.4 g of BA and 0.80 g of the TBMA EC solution was added. The complete formulation was mixed well prior to observing gel time and applying a 3 mil test film on a polycarbonate substrate to test coating curing behavior. The ambient relative humidity was low at 15%, while the temperature was 21° C. The absolute humidity was 2.8 [g/m3]. A similar test was carried out with the TBMA IPC catalyst using 0.90 g of the TBMA IPC solution to keep molar amounts of catalyst constant versus the resin. Data in Table 3 shows that a notably shorter gel time for the isopropanol based catalyst was observed in comparison to the ethanol based catalyst.
-
TABLE 3 Tack free Gel time Catalyst Solvent time [m:s] [min] TBMA EC Ethanol 1:30 50 TBMA IPC 2-Propanol 2:00 25 - The procedure as per Example 7 was repeated except that varying amounts of dimethylammonium dimethylcarbamate (DMADMC) were added to the TBMA EC solution prior to adding said solution to the resin/DTMPTA solvent mix. The DMADMC was obtained from commercial sources and purity was checked via NMR. DMADMC is the reaction product between dimethylamine and carbon dioxide in a 2:1 molar ratio, albeit small deviations from this stoichiometry are possible in commercially available DMADMC materials. Such commercial materials may also contain ammonium carbonates depending on source purity. All ingredient amounts were kept the same and the DMADMC amount is thus on top of the formulation. Only in experiment #4, was DMADMC added to the resin/DTMPTA solvent mix rather than to the catalyst solution. The complete formulation was mixed well prior to observing gel time and applying a 3 mil test film on a polycarbonate substrate to test coating curing behavior. The ambient relative humidity was 48% while the temperature was 21° C. The absolute humidity was 8.8 [g/m3]. Results in Table 4 shows that addition of DMADMC greatly increases gel time while the tack free time only marginally increases unless significant amounts of DMADMC in excess to the catalyst are added. No significant effect of DMADMC addition on film properties were noted after cure.
-
TABLE 4 DMADMC/carbonate Tack free # catalyst (molar ratio) time [m:s] Gel time 1 0 2:30 1 hr 2 0.5 2:20 12 hr 3 1 2:30 2 days 4 1 2:45 2 days 5 2 2:55 4 days 6 5 4:00 >4 days - A basic nail color formulation was prepared and evaluated per the general procedures as outlined in example 3, however, malonate resin II of example 5 was used to prepare a D&C Red 7 dye dispersion. The final overall formulation contained 0.167 g D&C Red 7 dye, 0.948 g resin II of example 5, 0.632 g resin III of example 6, 0.837 g ethanol and 2.449 g DTMPTA. 1.1604 g of TBMA EC catalyst solution of example 4 was used to cure the formulation. Another such formulation was prepared except that 4 wt % water (relative to the total weight of the formulation) was added to this second formulation. All formulations were mixed well and then a 3 mil test film was applied on a polycarbonate substrate to test the curing behavior and coating final color. The relative humidity and temperature was kept constant as the films cured and the absolute humidity was 9.4 [g/m3]. Data in Table 5 shows that significant and undesirable color change occurs as water is added to the formulation.
-
TABLE 5 Water Tack free content, time, # wt. % [m:s] L* a* b* ΔE* Color 1 0 2:15 42.7 51.1 32.2 — Red/Orange 2 4 2:30 51.5 46.1 47.6 18.5 Orange/Yellow - The procedure as per Experiment 9 was repeated except that a D&C Red 33 was used as pigment to color the coating formulation. Data in Table 6 shows that color does not change as water is added to the formulation.
-
TABLE 6 Water Tack free content, time, # wt. % [m:s] L* a* b* ΔE* Color 1 0 1:45 44.28 47.44 19.19 — Red 2 4 2:15 44.17 47.22 19.25 0.3 Red - The procedure as per Experiment 9 was repeated except that a D&C Red 7 Calcium Lake was used as pigment. No additional water was added and 0.967 g of the TBMA EC catalyst solution of Example 4 was used. However, two different rooms with controlled humidity and temperatures were utilized to explore influence of low-to-medium and high relative humidity levels coupled with temperatures at about 20 and 25° C. respectively. This represents nail polish application use under normal and high humidity conditions. The complete formulation was mixed well, split in two and then 3 mil test films were applied on polycarbonate substrates to test curing behavior and coating final color. Results in Table 7 show drastic color changes for this D&C Red 7 Calcium Lake system as the nail coating cures at high humidity conditions—the color changes notably as the film cures. The color displayed by the film cured under low humidity conditions is considered the normal D&C Red 7 Calcium Lake color and no color change is observed during cure.
-
TABLE 7 Absolute Tack free humidity, time, # [g/m3] [m:s] L* a* b* ΔE* Color 1a 2.9 <2:30 37.39 46.14 18.23 — Dark Red 1b 10.5 <2:30 62.31 36.09 62.28 51.6 Yellow - The procedure as per experiment 11 was repeated exploring a variety of D&C and FD&C dyes. Data is presented in Table 8. D&C Red No. 17 and D&C Red No. 36 are incompatible with the nail polish chemistry as significant color changes are observed during the curing process at both humidity levels. D&C Red No. 7 and D&C Red No. 33 show observable and undesirable color changes during cure at higher humidity levels. D&C Red No. 6 does show a measurable color difference for the cured films but the color change during cure is less apparent. The other dyes show minor color differences when the cured films are compared but no visible color change during the cure is observed. Since the formulation is split in two and brought into a higher temperature and humidity environment during the experiment, it is speculated that condensation of water at high humidity levels on the colder film may potentially have affected film surface and therewith moved the color CIELAB results slightly yet systematically. Since only a minor color change was observed for these dyes, the panels prepared under high humidity conditions were re-measured one week later to assess dye color stability. Results shown in Table 9 show minor color changes for the cured films and these dyes are assessed as stable.
-
TABLE 8 Tack Absolute free Dye humidity, time, # Dye class [g/m3] [m:s] L* a* b* ΔE* Color 1a D&C Red Monoazo 7.0 1.5 51.96 51.52 39.82 — Red/Orange No. 6 1b D&C Red Monoazo 19.5 2.5 52.24 48.51 47.04 7.8 Red/Orange No. 6 2a D&C Red Monoazo 7.2 1.5 38.93 46.25 23.28 — Red No. 7 2b D&C Red Monoazo 20.0 7 55.05 42.22 53.41 34.4 Yellow No. 7 3a D&C Red Diazo 8.8 1.5 Significant and immediate color change/dye No. 17 breakdown to brown 3b D&C Red Diazo 19.6 2 Significant and immediate color change/dye No. 17 breakdown to brown 4a D&C Red Xanthene 9.0 2.5 61.06 55.69 35.84 — Red/Orange No. 21 4b D&C Red Xanthene 19.3 3.5 61.76 56.05 31.57 4.3 Red/Orange No. 21 5a D&C Red Xanthene 9.0 2 63.58 56.03 24.02 — Red/Orange No. 22 5b D&C Red Xanthene 19.5 5 63.42 56.51 28.57 4.6 Red/Orange No. 22 6a D&C Red Xanthene 8.5 1.5 58.76 70.41 −5.17 — Bright No. 28 Red/Pink 6b D&C Red Xanthene 20.8 4 55.99 71.61 −2.15 4.3 Bright No. 28 Red/Pink 7a D&C Red Indigoid 9 1.5 51.41 43.81 13.45 — Red No. 30 7b D&C Red Indigoid 20.8 2.5 53.61 39.86 12.71 4.6 Red No. 30 8a D&C Red Monoazo 8.7 1.5 34.31 42.79 −3.88 — Dark Red No. 33 8b D&C Red Monoazo 21 4 40.23 39.3 −11.74 10.4 Dark Red No. 33 9a D&C Red Monoazo 9.0 1.5 Significant and immediate color change/dye No. 36 breakdown to black 9b D&C Red Monoazo 20.9 2.0 Significant and immediate color change/dye No. 36 breakdown to black 10a FD&C Monoazo 8.6 1.5 46.19 50.28 30.66 — Red Red No. 40 10b FD&C Monoazo 19.6 2.5 47.79 49.64 28.03 3.1 Red Red No. 40 -
TABLE 9 # Dye Dye class L* a* b* ΔE* Color 1b D&C Red Monoazo 52.24 48.51 47.04 Red/ No. 6 Orange 1c D&C Red Monoazo 52.44 49.48 48.02 1.4 Red/ No. 6 Orange 4b D&C Red Xanthene 61.76 56.05 31.57 Red/ No. 21 Orange 4c D&C Red 2 Xanthene 63.02 57.09 31.37 1.6 Red/ No. 1 Orange 5b D&C Red Xanthene 63.42 56.51 28.57 Red/ No. 22 Orange 5c D&C Red Xanthene 64.30 56.14 27.50 1.4 Red/ No. 22 Orange 6b D&C Red Xanthene 55.99 71.61 −2.15 Bright No. 28 Red/ Pink 6c D&C Red Xanthene 56.77 71.71 0.57 2.83 Bright No. 28 Red/ Pink 7b D&C Red Indigoid 53.61 39.86 12.71 Red No. 30 7c D&C Red Indigoid 53.6 40.51 13.07 0.74 Red No. 30 8b D&C Red Monoazo 40.23 39.3 −11.74 — Dark No. 33 Red 8c D&C Red Monoazo 39.65 40.02 −10.70 1.4 No. 33 10b FD&C Red Monoazo 47.79 49.64 28.03 — Red No. 40 10c FD&C Red Monoazo 45.45 47.84 25.86 3.7 Red No. 40 -
-
BA butyl acetate DEM diethyl malonate DEtC diethyl carbonate DMADMC dimethylammonium dimethylcarbamate DTMPTA di-trimethylolpropane tetraacrylate EAA ethyl acetoacetate HDO 1,6-hexanediol PD 1,3-propanediol PEG 300 polyethylene glycol, Mw = 300 TBA OH tetrabutylammonium hydroxide TBMA Cl tributylmethylammonium chloride TBMA EC tributylmethylammonium ethylcarbonate TBMA IPC tributylmethylammonium isopropylcarbonate TMPTA trimethylolpropane triacrylate - The present disclosure may be embodied in other specific forms without departing from the spirit or essential attributes of the invention. Accordingly, reference should be made to the appended claims, rather than the foregoing specification, as indicating the scope of the disclosure. Although the foregoing description is directed to the preferred embodiments of the disclosure, it is noted that other variations and modification will be apparent to those skilled in the art, and may be made without departing from the spirit or scope of the disclosure.
Claims (30)
1. A nail polish composition containing a crosslinkable coating composition comprising:
ingredient A that has at least two protons that can be activated to form a Michael carbanion donor;
ingredient B that functions as a Michael acceptor having at least two ethylenically unsaturated functionalities each activated by an electron-withdrawing group; and
a carbonate initiator of Formula (1)
wherein R7 is selected from hydrogen, a linear or branched substituted or unsubstituted alkyl group having 1 to 22 carbon atoms; 1 to 8 carbon atoms; 1 to 3 carbon atoms; and An+ is a cationic species or polymer and n is an integer equal or greater than 1 with the proviso that An+ is not an acidic hydrogen;
at least one colorant independently selected from the group consisting of (i) a dye; (ii) an inorganic pigment; or an (iii) a lake;
and optionally further comprising ammonium carbamate (H2NR8R9+—OC═ONR8R9), wherein R8 R9 are each independently selected from hydrogen, a linear or branched substituted or unsubstituted alkyl group having 1 to 22 carbon atoms; 1 to 8 carbon atoms; 1 to 3 carbon atoms.
2. The nail polish composition according to claim 1 , wherein the dye is selected from the group consisting of D&C Red 21, D&C Red No. 22, D&C Red No. 28, D&C Red No. 30, D&C Red No. 40, D&C Red No. 33, D&C Black No. 2, D&C Yellow No. 5, D&C Green No. 5, Annatto, Caramel and combinations thereof.
3. The nail polish composition according to claim 1 , wherein the inorganic pigment is selected from the group consisting of red iron oxide; yellow iron oxide; titanium dioxide; brown iron oxide; chromium oxide green; iron blue (ferric ferrocyanide blue); ultramarine blue; ultramarine violet; ultramarine pink; black iron oxide; bismuth oxychloride; aluminum powder; manganese violet; mica; bronze powder; copper powder; guanine and combinations thereof.
4. The nail polish composition according to claim 1 , wherein the lake is a D&C lake.
5. The nail polish composition according to claim 1 , wherein ingredient A is selected from the group consisting of compounds, oligomers or polymers.
6. The nail polish composition according to claim 5 , wherein the ingredient A is independently selected from a malonate group containing compound, a malonate group containing oligomer, a malonate group containing polymer, an acetoacetate group containing compound, an acetoacetate group containing oligomer, an acetoacetate group containing polymer or combinations thereof.
7. The nail polish composition according to claim 6 , wherein the malonate group containing compound, malonate group containing oligomer, malonate group containing polymer, an acetoacetate group containing compound, acetoacetate group containing oligomer, or acetoacetate group containing polymer are each selected from the group consisting of: polyurethanes, polyesters, polyacrylates, epoxy polymers, polyamides, polyesteramides or polyvinyl polymers, wherein such compounds, oligomers or polymers have a malonate group or acetoacetate group located in a main chain of such compound or oligomer or polymer or a side chain of such compound or oligomer or polymer.
8. The nail polish composition according to claim 7 , wherein ingredient B is selected from the group consisting of acrylates, fumarates, maleates and combinations thereof.
9. The nail polish composition according to claim 8 , wherein the acrylate is independently selected from the group consisting of hexanediol diacrylate, trimethylol propane triacrylate, pentaerythritol triacrylate, di-trimethylolpropane tetraacrylate, bis(2-hydroxyethyl acrylate), trimethylhexyl dicarbamate, bis(2-hydroxyethyl acrylate) 1,3,3-trimethylcyclohexyl dicarbamate, bis(2-hydroxylethyl acrylate) methylene dicyclohexyl dicarbamate and combinations thereof.
10. The nail polish composition according to claim 9 , wherein ingredient B is independently selected from the group consisting of polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least two pendant ethylenically unsaturated groups each activated by an electron-withdrawing group.
11. The nail polish composition according to claim 10 , wherein ingredient B is independently selected from the group consisting of polyesters, polyurethanes, polyethers and/or alkyd resins each containing at least one pendant acryloyl functional group.
12. The nail polish composition according to claim 1 , further comprising an ingredient D having one or more reactive protons that are more acidic than the two protons of ingredient A, with respect to pKa.
13. The nail polish composition according to claim 12 , wherein the one or more reactive protons of ingredient D are less acidic than the ammonium cation of the optional ammonium carbamate, with respect to pKa.
14. The nail polish composition according to claim 1 , further comprising water concentration selected from the group consisting of less than 10 wt. %, less than 5 wt. %; less than 1 wt. %; less than 0.1 wt. %; less than 0.01 wt. % water.
15. The nail polish composition coating composition according to claim 1 , further comprising an organic solvent.
16. The nail polish composition according to claim 15 , wherein the organic solvent is independently selected from the group consisting of an alcohol, ester, ether, glycol ether, ketone, aromatic and combinations thereof.
17. The nail polish composition according to claim 16 , wherein the alcohol is independently selected from the group consisting of methanol, ethanol, iso-propanol, butanol, iso-butanol, t-butanol and combinations thereof.
18. The nail polish composition according to claim 1 , wherein An+ is a monovalent quaternary ammonium compound of Formula (2)
wherein R3, R4 and R5 are independently selected from linear or branched alkyl chains having from 1 to 22 carbon atoms; or 1 to 8 carbon atoms; or 1 to 4 carbon atoms and combinations thereof and wherein R6 is independently selected from the group consisting of: methyl, an alkyl group having from 2 to 6 carbon atoms or a benzyl group.
19. The nail polish composition according to claim 1 , wherein the dormant carbonate initiator initiates Michael Addition to achieve crossing linking when the crosslinkable coating composition is applied to a surface.
20. The nail polish composition according to claim 1 , wherein ingredient A, ingredient B and the carbonate initiator are contained in a container having two or more chambers, which are separated from one another.
21. The nail polish composition according to claim 20 , wherein ingredient A and ingredient B are contained in separate chambers to inhibit any reaction.
22. The nail polish composition according to claim 20 , wherein the carbonate initiator is contained in the chamber having ingredient A, and optionally containing CO2 and/or ammonium carbamate.
23. The nail polish composition according to claim 20 , wherein ingredient A and ingredient B are contained in the same chamber and the carbonate initiator is contained in a separate chamber to inhibit any reaction and said separate chamber optionally containing CO2 and/or ammonium carbamate.
24. The nail polish composition according to claim 1 wherein ingredient A and ingredient B and carbonate initiator are contained in a container having a single chamber, wherein the container optionally (i) contains CO2 and/or ammonium carbamate.
25. The nail polish composition according to claim 20 , further comprising at least one solvent selected from the group consisting of acetone, ethyl acetate, butyl acetate, isopropyl alcohol, ethanol, methyl ethyl ketone, and combinations thereof.
26. The nail polish composition according to claim 1 , further comprising a rheological additive to modify rheology.
27. The nail polish composition according to claim 1 , further comprising a wetting agent.
28. The nail polish composition according to claim 1 , further comprising an adhesion promotor.
29. The nail polish composition according to claim 1 , further comprising nitrocellulose, polyvinylbutyral, tosylamide formaldehyde and/or tosylamide epoxy resins.
30. The polymerizable nail coating composition according to claim 1 , further comprising a cellulose acetate alkylate selected from the group consisting of cellulose acetate butyrate, cellulose acetate propionate, and mixtures thereof.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/007,177 US20180353400A1 (en) | 2017-06-13 | 2018-06-13 | Nail color coating system |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762518791P | 2017-06-13 | 2017-06-13 | |
| US16/007,177 US20180353400A1 (en) | 2017-06-13 | 2018-06-13 | Nail color coating system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180353400A1 true US20180353400A1 (en) | 2018-12-13 |
Family
ID=64562140
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/007,177 Abandoned US20180353400A1 (en) | 2017-06-13 | 2018-06-13 | Nail color coating system |
| US16/007,225 Active US10894886B2 (en) | 2017-06-13 | 2018-06-13 | Coating system |
| US17/128,322 Abandoned US20210108088A1 (en) | 2017-06-13 | 2020-12-21 | Coating system |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/007,225 Active US10894886B2 (en) | 2017-06-13 | 2018-06-13 | Coating system |
| US17/128,322 Abandoned US20210108088A1 (en) | 2017-06-13 | 2020-12-21 | Coating system |
Country Status (9)
| Country | Link |
|---|---|
| US (3) | US20180353400A1 (en) |
| EP (1) | EP3638417B1 (en) |
| JP (1) | JP2020523452A (en) |
| KR (1) | KR20200018582A (en) |
| CN (1) | CN110958913B (en) |
| BR (1) | BR112019024811A2 (en) |
| CA (1) | CA3065564A1 (en) |
| MX (1) | MX2019014529A (en) |
| WO (2) | WO2018231920A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200172743A1 (en) * | 2017-08-16 | 2020-06-04 | Covestro Deutschland Ag | Acid indicator system |
| WO2020224523A1 (en) * | 2019-05-07 | 2020-11-12 | 广东华润涂料有限公司 | Coating composition and wood product made from coating composition |
| CN113181965A (en) * | 2021-04-23 | 2021-07-30 | 山西师范大学 | Preparation method and application of nano-cellulose-loaded bismuth oxychloride composite photocatalyst |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3689986A1 (en) | 2019-02-01 | 2020-08-05 | ALLNEX AUSTRIA GmbH | Binder for aqueous coating compositions |
| CN113366069B (en) | 2019-02-01 | 2023-04-21 | 湛新奥地利有限公司 | Binder for aqueous coating compositions |
| EP3712190A1 (en) | 2019-03-18 | 2020-09-23 | ALLNEX AUSTRIA GmbH | Binder for an aqueous coating composition |
| EP3702423A1 (en) * | 2019-02-26 | 2020-09-02 | Allnex Netherlands B.V. | A coating system for rma crosslinkable coating compositions |
| CN110105799B (en) * | 2019-05-07 | 2021-10-01 | 广东华润涂料有限公司 | Wood coating compositions and wood products made therefrom |
| KR20200133288A (en) | 2019-05-16 | 2020-11-27 | 삼성디스플레이 주식회사 | Polymer resin, window module including the same, and display apparatus including the same |
| KR102836622B1 (en) | 2020-09-03 | 2025-07-21 | 삼성디스플레이 주식회사 | Display device |
| CN214177292U (en) * | 2021-01-27 | 2021-09-10 | 奥托立夫开发公司 | Touch panel switch system and steering wheel |
| CN117363074B (en) * | 2023-11-03 | 2025-09-23 | 苏州瀚海新材料有限公司 | A UV-Michael dual-curing conformal coating and its preparation method |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4602061A (en) * | 1984-03-29 | 1986-07-22 | Akzo N.V. | Liquid, 2-component coating composition curable at ambient temperature comprising a malonate compound and an unsaturated carbonyl compound, and the Michael addition product thereof |
| US20130053505A1 (en) * | 2010-04-07 | 2013-02-28 | Nuplex Resins B.V. | Crosslinkable composition crosslinkable with a latent base catalyst |
| US20140341824A1 (en) * | 2013-05-17 | 2014-11-20 | Mycone Dental Supply Co., Inc. | Nail polish composition and method of making a nail polish |
Family Cites Families (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2759913A (en) | 1952-05-20 | 1956-08-21 | Hercules Powder Co Ltd | Copolymers of compounds containing activated ethylene double bonds with active hydrogen compounds |
| US3981984A (en) | 1968-04-01 | 1976-09-21 | Colorcon Incorporated | Color film coating of tablets and the like |
| US4217396A (en) | 1979-05-10 | 1980-08-12 | Armstrong Cork Company | Acrylate-acetoacetate polymers useful as protective agents for floor coverings |
| US4408018A (en) | 1982-10-29 | 1983-10-04 | Rohm And Haas Company | Acetoacetate functionalized polymers and monomers useful for crosslinking formulations |
| CA1262594A (en) * | 1984-02-17 | 1989-10-31 | Girish Girdhar Parekh | Hydroxyalkylcarbamate-containing self-cross-linking polymers |
| US4897435A (en) * | 1984-02-17 | 1990-01-30 | American Cyanamid Company | Water based hydroxyalkyl carbamate-containing resins and method of making the same |
| DE3572829D1 (en) | 1984-04-04 | 1989-10-12 | Hoechst Ag | Reaction product of olefinically unsaturated compounds with active hydrogen compounds, process for their preparation and 2-component coating systems based thereon |
| DE3523206A1 (en) * | 1985-06-28 | 1987-01-02 | Bayer Ag | METHOD FOR PRODUCING POLY (DIORGANOSILOXANES) WITH ALKOXY END GROUPS |
| US5945489A (en) * | 1997-09-19 | 1999-08-31 | Ashland, Inc. | Liquid oligomers containing unsaturation |
| CA2249705C (en) * | 1997-11-12 | 2006-09-12 | Basf Corporation | High solids thermosetting compositions with dual cure mechanism |
| US5945499A (en) * | 1997-11-12 | 1999-08-31 | Basf Corporation | High solids thermosetting compositions with dual cure mechanism |
| US6624241B2 (en) * | 1999-05-21 | 2003-09-23 | Basf Corporation | Waterborne coating compositions containing materials dispersed with water-soluble carbamate materials |
| KR20030059207A (en) * | 2000-10-20 | 2003-07-07 | 유씨비 소시에떼아노님 | Dimethylamine/ester adducts and their use in polymerizable compositions |
| BR0309389B1 (en) * | 2002-04-19 | 2014-04-22 | Ciba Sc Holding Ag | Processes for curing a composition, coated substrate, coating thus obtained, as well as a process for producing composite material moldings |
| US20040171721A1 (en) | 2002-12-16 | 2004-09-02 | Esemplare Pascal E. | Stabilizing polyalkylene carbonate resins |
| US20070066777A1 (en) | 2004-09-03 | 2007-03-22 | Bzowej Eugene I | Methods for producing crosslinkable oligomers |
| DE102005006030A1 (en) * | 2005-02-09 | 2006-08-10 | Basf Ag | Hyperbranched polymers as demulsifiers for cracking crude oil emulsions |
| KR100853170B1 (en) * | 2006-04-29 | 2008-08-20 | 주식회사 잉크테크 | Manufacturing method of high gloss aluminum wheel |
| GB0822674D0 (en) | 2008-12-12 | 2009-01-21 | Nuplex Resins Bv | A crosslinkable polymer binder |
| CN102985872B (en) * | 2010-03-16 | 2015-07-01 | 汉阳大学校产学协力团 | Liquid crystal display device having an alignment control film including polymerized liquid crystal and its manufacturing method |
| US9328187B2 (en) | 2010-03-31 | 2016-05-03 | Nuplex Resins B.V. | Waterborne hybrid polymer dispersion |
| JP5401395B2 (en) | 2010-04-22 | 2014-01-29 | 株式会社ニフコ | Filter device |
| EP2436710A1 (en) * | 2010-09-30 | 2012-04-04 | Cytec Technology Corp. | Mixtures of crosslinking agents |
| EP2764036B9 (en) | 2011-10-07 | 2017-04-05 | Nuplex Resins B.V. | A crosslinkable composition comprising a latent base catalyst and latent base catalyst compositions |
| WO2013050624A1 (en) * | 2011-10-07 | 2013-04-11 | Nuplex Resins B.V. | Crosslinkable composition |
| JP5910952B2 (en) | 2011-10-07 | 2016-04-27 | ヌプレックス レジンズ ビー.ヴィー. | Crosslinkable composition crosslinkable by true Michael addition (RMA) reaction |
| EP2457846A3 (en) * | 2012-02-16 | 2012-06-27 | Bayer MaterialScience AG | Dispensing module for cosmetic compounds |
| EP3486269B1 (en) * | 2012-05-24 | 2023-12-20 | Saudi Aramco Technologies Company | Polymerization system for the copolymerization of co2 and epoxides and related method |
| JP6373965B2 (en) | 2013-04-08 | 2018-08-15 | オールネックス・ネザーランズ・ビー.ブイ.Allnex Netherlands B.V. | Composition crosslinkable by true Michael addition (RMA) reaction |
| WO2015107163A1 (en) | 2014-01-17 | 2015-07-23 | Nuplex Resins B.V. | Waterborne coating composition with improved open time |
| US20150359724A1 (en) * | 2014-06-16 | 2015-12-17 | Elementis Specialties, Inc. | Acrylate Gel Nail Coating Compositions |
| WO2016007331A1 (en) * | 2014-07-11 | 2016-01-14 | Elementis Specialties, Inc. | Organoclay compositions having quaternary ammonium ion having one or more branched alkyl substituents |
| KR102306205B1 (en) | 2015-04-17 | 2021-09-29 | 알넥스 네덜란드 비. 브이. | RMA Crosslinkable Composition and RMA Crosslinkable Resin Easy to Clean Coatings |
| CA2982864C (en) | 2015-04-17 | 2022-06-14 | Allnex Netherlands B.V. | Floor coating compositions |
| WO2016166334A1 (en) * | 2015-04-17 | 2016-10-20 | Nuplex Resins B.V. | Process for the manufacture of a crosslinkable composition |
| CA2983150C (en) | 2015-04-17 | 2022-06-07 | Allnex Netherlands B.V. | Adhesion promotor for real michael addition crosslinkable compositions |
| JP2019527247A (en) * | 2016-06-30 | 2019-09-26 | エレメンティス スペシャルティーズ,インコーポレイテッド., | Crosslinkable coating composition containing dormant carbamate initiator |
-
2018
- 2018-06-13 BR BR112019024811A patent/BR112019024811A2/en not_active IP Right Cessation
- 2018-06-13 KR KR1020207000537A patent/KR20200018582A/en not_active Ceased
- 2018-06-13 WO PCT/US2018/037239 patent/WO2018231920A1/en not_active Ceased
- 2018-06-13 EP EP18818506.0A patent/EP3638417B1/en active Active
- 2018-06-13 WO PCT/US2018/037241 patent/WO2018231922A1/en not_active Ceased
- 2018-06-13 CN CN201880038627.2A patent/CN110958913B/en not_active Expired - Fee Related
- 2018-06-13 US US16/007,177 patent/US20180353400A1/en not_active Abandoned
- 2018-06-13 US US16/007,225 patent/US10894886B2/en active Active
- 2018-06-13 JP JP2019568388A patent/JP2020523452A/en active Pending
- 2018-06-13 MX MX2019014529A patent/MX2019014529A/en unknown
- 2018-06-13 CA CA3065564A patent/CA3065564A1/en active Pending
-
2020
- 2020-12-21 US US17/128,322 patent/US20210108088A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4602061A (en) * | 1984-03-29 | 1986-07-22 | Akzo N.V. | Liquid, 2-component coating composition curable at ambient temperature comprising a malonate compound and an unsaturated carbonyl compound, and the Michael addition product thereof |
| US20130053505A1 (en) * | 2010-04-07 | 2013-02-28 | Nuplex Resins B.V. | Crosslinkable composition crosslinkable with a latent base catalyst |
| US20140341824A1 (en) * | 2013-05-17 | 2014-11-20 | Mycone Dental Supply Co., Inc. | Nail polish composition and method of making a nail polish |
Non-Patent Citations (2)
| Title |
|---|
| 2457846_abstract * |
| Unknown author, title: Red 21 Lake, Cosmetic info, downloaded from https://cosmeticinfo/organic on 06/12/19 (Year: 2019) * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200172743A1 (en) * | 2017-08-16 | 2020-06-04 | Covestro Deutschland Ag | Acid indicator system |
| WO2020224523A1 (en) * | 2019-05-07 | 2020-11-12 | 广东华润涂料有限公司 | Coating composition and wood product made from coating composition |
| CN113181965A (en) * | 2021-04-23 | 2021-07-30 | 山西师范大学 | Preparation method and application of nano-cellulose-loaded bismuth oxychloride composite photocatalyst |
Also Published As
| Publication number | Publication date |
|---|---|
| US10894886B2 (en) | 2021-01-19 |
| EP3638417A4 (en) | 2021-02-24 |
| US20210108088A1 (en) | 2021-04-15 |
| BR112019024811A2 (en) | 2020-06-09 |
| WO2018231922A1 (en) | 2018-12-20 |
| CA3065564A1 (en) | 2018-12-20 |
| EP3638417B1 (en) | 2022-10-12 |
| MX2019014529A (en) | 2020-08-31 |
| WO2018231920A1 (en) | 2018-12-20 |
| US20180355185A1 (en) | 2018-12-13 |
| JP2020523452A (en) | 2020-08-06 |
| KR20200018582A (en) | 2020-02-19 |
| EP3638417A1 (en) | 2020-04-22 |
| CN110958913B (en) | 2023-05-05 |
| CN110958913A (en) | 2020-04-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11801214B2 (en) | Crosslinkable coating compositions formulated with dormant carbamate initiator | |
| US20180353400A1 (en) | Nail color coating system | |
| EP2560948B2 (en) | Radiation curable amino(meth)acrylates | |
| US20180353421A1 (en) | Clear coat formulations for use over nail polish | |
| WO2022169729A1 (en) | Crosslinkable coating compositions | |
| JP2018028019A (en) | Polyisocyanate composition, aqueous coating composition, and cured coating film thereof | |
| JP2022141201A (en) | Polyisocyanate composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| AS | Assignment |
Owner name: ELEMENTIS SPECIALTIES, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IJDO, WOUTER;CHEN, YANHUI;DESHMUKH, PRASHANT;AND OTHERS;SIGNING DATES FROM 20170707 TO 20170713;REEL/FRAME:049834/0828 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |