US20180319798A1 - 1,3,4,8-Tetrahydro-2H-Pyrido[1,2-a]Pyrazine Derivative and Use of the Same as HIV Integrase Inhibitor - Google Patents
1,3,4,8-Tetrahydro-2H-Pyrido[1,2-a]Pyrazine Derivative and Use of the Same as HIV Integrase Inhibitor Download PDFInfo
- Publication number
- US20180319798A1 US20180319798A1 US16/045,594 US201816045594A US2018319798A1 US 20180319798 A1 US20180319798 A1 US 20180319798A1 US 201816045594 A US201816045594 A US 201816045594A US 2018319798 A1 US2018319798 A1 US 2018319798A1
- Authority
- US
- United States
- Prior art keywords
- group
- pharmaceutically acceptable
- atom
- compound
- solvate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940099797 HIV integrase inhibitor Drugs 0.000 title claims description 9
- 239000003084 hiv integrase inhibitor Substances 0.000 title claims description 9
- WDHNTLCEDYLROY-UHFFFAOYSA-N 2,3,4,8-tetrahydro-1h-pyrido[1,2-a]pyrazine Chemical class C1=CCC=C2CNCCN21 WDHNTLCEDYLROY-UHFFFAOYSA-N 0.000 title description 2
- 150000003839 salts Chemical class 0.000 claims abstract description 231
- 239000012453 solvate Substances 0.000 claims abstract description 89
- 150000001875 compounds Chemical class 0.000 claims description 408
- 239000000203 mixture Substances 0.000 claims description 170
- 229910052757 nitrogen Inorganic materials 0.000 claims description 128
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 124
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 98
- 125000001424 substituent group Chemical group 0.000 claims description 89
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 77
- 238000000034 method Methods 0.000 claims description 71
- 125000005842 heteroatom Chemical group 0.000 claims description 68
- 229910052799 carbon Inorganic materials 0.000 claims description 61
- 230000002401 inhibitory effect Effects 0.000 claims description 59
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 54
- 229910052717 sulfur Inorganic materials 0.000 claims description 54
- 125000004434 sulfur atom Chemical group 0.000 claims description 54
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 claims description 49
- 229910052701 rubidium Inorganic materials 0.000 claims description 36
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 32
- 229940124411 anti-hiv antiviral agent Drugs 0.000 claims description 25
- 239000002259 anti human immunodeficiency virus agent Substances 0.000 claims description 24
- 125000005843 halogen group Chemical group 0.000 claims description 23
- 239000008194 pharmaceutical composition Substances 0.000 claims description 23
- 125000004432 carbon atom Chemical group C* 0.000 claims description 21
- 108010002459 HIV Integrase Proteins 0.000 claims description 19
- 229910003827 NRaRb Inorganic materials 0.000 claims description 18
- 230000036436 anti-hiv Effects 0.000 claims description 18
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 17
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 17
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 14
- 238000011282 treatment Methods 0.000 claims description 13
- 241000124008 Mammalia Species 0.000 claims description 11
- 125000004043 oxo group Chemical group O=* 0.000 claims description 11
- 125000004916 (C1-C6) alkylcarbonyl group Chemical group 0.000 claims description 10
- 125000004739 (C1-C6) alkylsulfonyl group Chemical group 0.000 claims description 10
- 238000011321 prophylaxis Methods 0.000 claims description 10
- 239000013543 active substance Substances 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 9
- 208000037357 HIV infectious disease Diseases 0.000 claims description 8
- 125000002911 monocyclic heterocycle group Chemical group 0.000 claims description 8
- 239000004480 active ingredient Substances 0.000 claims description 7
- 150000001924 cycloalkanes Chemical class 0.000 claims description 6
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 927
- 238000005160 1H NMR spectroscopy Methods 0.000 description 634
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 486
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 202
- -1 isopropyloxy group Chemical group 0.000 description 145
- 239000000243 solution Substances 0.000 description 132
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 116
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 104
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 94
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 91
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 77
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 68
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 60
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 55
- 150000001721 carbon Chemical group 0.000 description 53
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 48
- 239000003814 drug Substances 0.000 description 46
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 45
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 40
- 238000004519 manufacturing process Methods 0.000 description 39
- 230000000694 effects Effects 0.000 description 36
- 239000011541 reaction mixture Substances 0.000 description 36
- 229920006395 saturated elastomer Polymers 0.000 description 34
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 34
- 235000017557 sodium bicarbonate Nutrition 0.000 description 34
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 33
- 239000012141 concentrate Substances 0.000 description 32
- 235000008504 concentrate Nutrition 0.000 description 32
- 241000725303 Human immunodeficiency virus Species 0.000 description 30
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 30
- 239000012044 organic layer Substances 0.000 description 30
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 27
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 27
- 238000010898 silica gel chromatography Methods 0.000 description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 24
- 102100034349 Integrase Human genes 0.000 description 24
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 23
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 21
- 108010061833 Integrases Proteins 0.000 description 21
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 21
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 16
- JTEGQNOMFQHVDC-NKWVEPMBSA-N lamivudine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)SC1 JTEGQNOMFQHVDC-NKWVEPMBSA-N 0.000 description 16
- 238000003756 stirring Methods 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 235000011054 acetic acid Nutrition 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 15
- 229960001627 lamivudine Drugs 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 14
- 108020004414 DNA Proteins 0.000 description 14
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 14
- 229940079593 drug Drugs 0.000 description 14
- VCMJCVGFSROFHV-WZGZYPNHSA-N tenofovir disoproxil fumarate Chemical compound OC(=O)\C=C\C(O)=O.N1=CN=C2N(C[C@@H](C)OCP(=O)(OCOC(=O)OC(C)C)OCOC(=O)OC(C)C)C=NC2=C1N VCMJCVGFSROFHV-WZGZYPNHSA-N 0.000 description 14
- HBOMLICNUCNMMY-XLPZGREQSA-N zidovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-XLPZGREQSA-N 0.000 description 14
- 125000006239 protecting group Chemical group 0.000 description 13
- 229960005486 vaccine Drugs 0.000 description 13
- XQSPYNMVSIKCOC-NTSWFWBYSA-N Emtricitabine Chemical compound C1=C(F)C(N)=NC(=O)N1[C@H]1O[C@@H](CO)SC1 XQSPYNMVSIKCOC-NTSWFWBYSA-N 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 229960003804 efavirenz Drugs 0.000 description 12
- XPOQHMRABVBWPR-ZDUSSCGKSA-N efavirenz Chemical compound C([C@]1(C2=CC(Cl)=CC=C2NC(=O)O1)C(F)(F)F)#CC1CC1 XPOQHMRABVBWPR-ZDUSSCGKSA-N 0.000 description 12
- 229960000366 emtricitabine Drugs 0.000 description 12
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 12
- 229960004556 tenofovir Drugs 0.000 description 12
- 229960002555 zidovudine Drugs 0.000 description 12
- 208000030507 AIDS Diseases 0.000 description 11
- XPOQHMRABVBWPR-UHFFFAOYSA-N Efavirenz Natural products O1C(=O)NC2=CC=C(Cl)C=C2C1(C(F)(F)F)C#CC1CC1 XPOQHMRABVBWPR-UHFFFAOYSA-N 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000001816 cooling Methods 0.000 description 11
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 11
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 10
- QAGYKUNXZHXKMR-UHFFFAOYSA-N CPD000469186 Natural products CC1=C(O)C=CC=C1C(=O)NC(C(O)CN1C(CC2CCCCC2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-UHFFFAOYSA-N 0.000 description 10
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 10
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- CBVCZFGXHXORBI-PXQQMZJSSA-N indinavir Chemical compound C([C@H](N(CC1)C[C@@H](O)C[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H]2C3=CC=CC=C3C[C@H]2O)C(=O)NC(C)(C)C)N1CC1=CC=CN=C1 CBVCZFGXHXORBI-PXQQMZJSSA-N 0.000 description 10
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 10
- QAGYKUNXZHXKMR-HKWSIXNMSA-N nelfinavir Chemical compound CC1=C(O)C=CC=C1C(=O)N[C@H]([C@H](O)CN1[C@@H](C[C@@H]2CCCC[C@@H]2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-HKWSIXNMSA-N 0.000 description 10
- 229960000884 nelfinavir Drugs 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 229960001936 indinavir Drugs 0.000 description 9
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 9
- 239000003419 rna directed dna polymerase inhibitor Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 239000000706 filtrate Substances 0.000 description 8
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine hydrate Chemical compound O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 8
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 8
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 8
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 8
- 208000031886 HIV Infections Diseases 0.000 description 7
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 7
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 125000001153 fluoro group Chemical group F* 0.000 description 7
- NCDNCNXCDXHOMX-XGKFQTDJSA-N ritonavir Chemical compound N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-XGKFQTDJSA-N 0.000 description 7
- 239000000741 silica gel Substances 0.000 description 7
- 229910002027 silica gel Inorganic materials 0.000 description 7
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 7
- 238000004809 thin layer chromatography Methods 0.000 description 7
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 6
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 6
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 6
- BXZVVICBKDXVGW-NKWVEPMBSA-N Didanosine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(NC=NC2=O)=C2N=C1 BXZVVICBKDXVGW-NKWVEPMBSA-N 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 6
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- NCDNCNXCDXHOMX-UHFFFAOYSA-N Ritonavir Natural products C=1C=CC=CC=1CC(NC(=O)OCC=1SC=NC=1)C(O)CC(CC=1C=CC=CC=1)NC(=O)C(C(C)C)NC(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- PUJDIJCNWFYVJX-UHFFFAOYSA-N benzyl carbamate Chemical compound NC(=O)OCC1=CC=CC=C1 PUJDIJCNWFYVJX-UHFFFAOYSA-N 0.000 description 6
- 238000002648 combination therapy Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 6
- 229960002656 didanosine Drugs 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 239000012046 mixed solvent Substances 0.000 description 6
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 6
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 6
- 229910000027 potassium carbonate Inorganic materials 0.000 description 6
- 235000011181 potassium carbonates Nutrition 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 229960000311 ritonavir Drugs 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 6
- 125000000037 tert-butyldiphenylsilyl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1[Si]([H])([*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 6
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 6
- 125000000025 triisopropylsilyl group Chemical group C(C)(C)[Si](C(C)C)(C(C)C)* 0.000 description 6
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 6
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 5
- KJHKTHWMRKYKJE-SUGCFTRWSA-N Kaletra Chemical compound N1([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=2C=CC=CC=2)NC(=O)COC=2C(=CC=CC=2C)C)CC=2C=CC=CC=2)CCCNC1=O KJHKTHWMRKYKJE-SUGCFTRWSA-N 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 description 5
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical compound C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 229950008138 carmellose Drugs 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 125000001309 chloro group Chemical group Cl* 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 5
- 239000000890 drug combination Substances 0.000 description 5
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 5
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 229910052938 sodium sulfate Inorganic materials 0.000 description 5
- 235000011152 sodium sulphate Nutrition 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 4
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- 108010050904 Interferons Proteins 0.000 description 4
- 102000014150 Interferons Human genes 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 4
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 4
- XNKLLVCARDGLGL-JGVFFNPUSA-N Stavudine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1C=C[C@@H](CO)O1 XNKLLVCARDGLGL-JGVFFNPUSA-N 0.000 description 4
- WMHSRBZIJNQHKT-FFKFEZPRSA-N abacavir sulfate Chemical compound OS(O)(=O)=O.C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1.C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1 WMHSRBZIJNQHKT-FFKFEZPRSA-N 0.000 description 4
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000000556 agonist Substances 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 4
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 4
- 229910000397 disodium phosphate Inorganic materials 0.000 description 4
- 235000019800 disodium phosphate Nutrition 0.000 description 4
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 229940079322 interferon Drugs 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229960004525 lopinavir Drugs 0.000 description 4
- 125000004674 methylcarbonyl group Chemical group CC(=O)* 0.000 description 4
- 239000008363 phosphate buffer Substances 0.000 description 4
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 4
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 4
- 239000000651 prodrug Substances 0.000 description 4
- 229940002612 prodrug Drugs 0.000 description 4
- 159000000000 sodium salts Chemical class 0.000 description 4
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 4
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 4
- ONDSBJMLAHVLMI-UHFFFAOYSA-N trimethylsilyldiazomethane Chemical compound C[Si](C)(C)[CH-][N+]#N ONDSBJMLAHVLMI-UHFFFAOYSA-N 0.000 description 4
- UXDWYQAXEGVSPS-GFUIURDCSA-N (4s)-6-chloro-4-[(e)-2-cyclopropylethenyl]-4-(trifluoromethyl)-1,3-dihydroquinazolin-2-one Chemical compound C(/[C@]1(C2=CC(Cl)=CC=C2NC(=O)N1)C(F)(F)F)=C\C1CC1 UXDWYQAXEGVSPS-GFUIURDCSA-N 0.000 description 3
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 3
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- KJSJBKBZMGSIPT-UHFFFAOYSA-N 4-oxo-3-phenylmethoxypyran-2-carboxylic acid Chemical compound O1C=CC(=O)C(OCC=2C=CC=CC=2)=C1C(=O)O KJSJBKBZMGSIPT-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- UXCAQJAQSWSNPQ-XLPZGREQSA-N Alovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](F)C1 UXCAQJAQSWSNPQ-XLPZGREQSA-N 0.000 description 3
- AXRYRYVKAWYZBR-UHFFFAOYSA-N Atazanavir Natural products C=1C=C(C=2N=CC=CC=2)C=CC=1CN(NC(=O)C(NC(=O)OC)C(C)(C)C)CC(O)C(NC(=O)C(NC(=O)OC)C(C)(C)C)CC1=CC=CC=C1 AXRYRYVKAWYZBR-UHFFFAOYSA-N 0.000 description 3
- 108010019625 Atazanavir Sulfate Proteins 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 108010078851 HIV Reverse Transcriptase Proteins 0.000 description 3
- 229940122440 HIV protease inhibitor Drugs 0.000 description 3
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 3
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 3
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 3
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 3
- 229960000531 abacavir sulfate Drugs 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 125000003172 aldehyde group Chemical group 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 229960003277 atazanavir Drugs 0.000 description 3
- AXRYRYVKAWYZBR-GASGPIRDSA-N atazanavir Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)OC)C(C)(C)C)[C@@H](O)CN(CC=1C=CC(=CC=1)C=1N=CC=CC=1)NC(=O)[C@@H](NC(=O)OC)C(C)(C)C)C1=CC=CC=C1 AXRYRYVKAWYZBR-GASGPIRDSA-N 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 3
- 229910000024 caesium carbonate Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- WHBIGIKBNXZKFE-UHFFFAOYSA-N delavirdine Chemical compound CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(NS(C)(=O)=O)C=C3C=2)CC1 WHBIGIKBNXZKFE-UHFFFAOYSA-N 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 238000006911 enzymatic reaction Methods 0.000 description 3
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 3
- 235000002864 food coloring agent Nutrition 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 239000004030 hiv protease inhibitor Substances 0.000 description 3
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 150000007529 inorganic bases Chemical class 0.000 description 3
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 3
- BYRPTKZOXNFFDB-UHFFFAOYSA-N lithium;bis(trimethylsilyl)azanide;oxolane Chemical compound [Li+].C1CCOC1.C[Si](C)(C)[N-][Si](C)(C)C BYRPTKZOXNFFDB-UHFFFAOYSA-N 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 235000019359 magnesium stearate Nutrition 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 235000019341 magnesium sulphate Nutrition 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 229940098779 methanesulfonic acid Drugs 0.000 description 3
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 150000007530 organic bases Chemical class 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 3
- 235000011056 potassium acetate Nutrition 0.000 description 3
- 239000011736 potassium bicarbonate Substances 0.000 description 3
- 235000015497 potassium bicarbonate Nutrition 0.000 description 3
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 3
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 3
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 3
- 229910000160 potassium phosphate Inorganic materials 0.000 description 3
- 235000011009 potassium phosphates Nutrition 0.000 description 3
- FYRHIOVKTDQVFC-UHFFFAOYSA-M potassium phthalimide Chemical compound [K+].C1=CC=C2C(=O)[N-]C(=O)C2=C1 FYRHIOVKTDQVFC-UHFFFAOYSA-M 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 3
- 238000007363 ring formation reaction Methods 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 3
- 239000012312 sodium hydride Substances 0.000 description 3
- 229910000104 sodium hydride Inorganic materials 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 229960001203 stavudine Drugs 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- DLQYXUGCCKQSRJ-UHFFFAOYSA-N tris(furan-2-yl)phosphane Chemical compound C1=COC(P(C=2OC=CC=2)C=2OC=CC=2)=C1 DLQYXUGCCKQSRJ-UHFFFAOYSA-N 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- NIDRYBLTWYFCFV-SEDUGSJDSA-N (+)-calanolide b Chemical compound C1=CC(C)(C)OC2=C1C(O[C@H](C)[C@@H](C)[C@H]1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-SEDUGSJDSA-N 0.000 description 2
- JWWLMJFURJYNEX-LURJTMIESA-N (2s)-1-(2-aminoacetyl)-n-(2-amino-2-oxoethyl)pyrrolidine-2-carboxamide Chemical compound NCC(=O)N1CCC[C@H]1C(=O)NCC(N)=O JWWLMJFURJYNEX-LURJTMIESA-N 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- CNPVJJQCETWNEU-CYFREDJKSA-N (4,6-dimethyl-5-pyrimidinyl)-[4-[(3S)-4-[(1R)-2-methoxy-1-[4-(trifluoromethyl)phenyl]ethyl]-3-methyl-1-piperazinyl]-4-methyl-1-piperidinyl]methanone Chemical compound N([C@@H](COC)C=1C=CC(=CC=1)C(F)(F)F)([C@H](C1)C)CCN1C(CC1)(C)CCN1C(=O)C1=C(C)N=CN=C1C CNPVJJQCETWNEU-CYFREDJKSA-N 0.000 description 2
- CGEJBZXGNPASAG-GKQHHHCTSA-N (4r,5s,6s,7r)-1-[(3-amino-1h-indazol-5-yl)methyl]-4,7-dibenzyl-3-butyl-5,6-dihydroxy-1,3-diazepan-2-one Chemical compound C([C@H]1N(C(N(CC=2C=C3C(N)=NNC3=CC=2)[C@H](CC=2C=CC=CC=2)[C@H](O)[C@H]1O)=O)CCCC)C1=CC=CC=C1 CGEJBZXGNPASAG-GKQHHHCTSA-N 0.000 description 2
- JJWJSIAJLBEMEN-ZDUSSCGKSA-N (4s)-6-chloro-4-(2-cyclopropylethynyl)-4-(trifluoromethyl)-1,3-dihydroquinazolin-2-one Chemical compound C([C@]1(C2=CC(Cl)=CC=C2NC(=O)N1)C(F)(F)F)#CC1CC1 JJWJSIAJLBEMEN-ZDUSSCGKSA-N 0.000 description 2
- 125000004867 1,1-dimethylpropylcarbonyl group Chemical group CC(CC)(C(=O)*)C 0.000 description 2
- LBUJPTNKIBCYBY-UHFFFAOYSA-N 1,2,3,4-tetrahydroquinoline Chemical compound C1=CC=C2CCCNC2=C1 LBUJPTNKIBCYBY-UHFFFAOYSA-N 0.000 description 2
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 2
- NUBQKPWHXMGDLP-UHFFFAOYSA-N 1-[4-benzyl-2-hydroxy-5-[(2-hydroxy-2,3-dihydro-1h-inden-1-yl)amino]-5-oxopentyl]-n-tert-butyl-4-(pyridin-3-ylmethyl)piperazine-2-carboxamide;sulfuric acid Chemical compound OS(O)(=O)=O.C1CN(CC(O)CC(CC=2C=CC=CC=2)C(=O)NC2C3=CC=CC=C3CC2O)C(C(=O)NC(C)(C)C)CN1CC1=CC=CN=C1 NUBQKPWHXMGDLP-UHFFFAOYSA-N 0.000 description 2
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 2
- PJUPKRYGDFTMTM-UHFFFAOYSA-N 1-hydroxybenzotriazole;hydrate Chemical compound O.C1=CC=C2N(O)N=NC2=C1 PJUPKRYGDFTMTM-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- HSBKFSPNDWWPSL-CAHLUQPWSA-N 4-amino-5-fluoro-1-[(2r,5s)-5-(hydroxymethyl)-2,5-dihydrofuran-2-yl]pyrimidin-2-one Chemical compound C1=C(F)C(N)=NC(=O)N1[C@H]1C=C[C@@H](CO)O1 HSBKFSPNDWWPSL-CAHLUQPWSA-N 0.000 description 2
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- 229940077274 Alpha glucosidase inhibitor Drugs 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 2
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 2
- 108010036239 CD4-IgG(2) Proteins 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 229940122041 Cholinesterase inhibitor Drugs 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- LVZWSLJZHVFIQJ-UHFFFAOYSA-N Cyclopropane Chemical compound C1CC1 LVZWSLJZHVFIQJ-UHFFFAOYSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 229940123014 DNA polymerase inhibitor Drugs 0.000 description 2
- 229940122029 DNA synthesis inhibitor Drugs 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 2
- 108010032976 Enfuvirtide Proteins 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- 229940033330 HIV vaccine Drugs 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 229940124753 IL-2 agonist Drugs 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 2
- ZSXGLVDWWRXATF-UHFFFAOYSA-N N,N-dimethylformamide dimethyl acetal Chemical compound COC(OC)N(C)C ZSXGLVDWWRXATF-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- WYNCHZVNFNFDNH-UHFFFAOYSA-N Oxazolidine Chemical compound C1COCN1 WYNCHZVNFNFDNH-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 229940123827 Purine nucleoside phosphorylase inhibitor Drugs 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- IRHXGOXEBNJUSN-YOXDLBRISA-N Saquinavir mesylate Chemical compound CS(O)(=O)=O.C([C@@H]([C@H](O)CN1C[C@H]2CCCC[C@H]2C[C@H]1C(=O)NC(C)(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)C=1N=C2C=CC=CC2=CC=1)C1=CC=CC=C1 IRHXGOXEBNJUSN-YOXDLBRISA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- SUJUHGSWHZTSEU-UHFFFAOYSA-N Tipranavir Natural products C1C(O)=C(C(CC)C=2C=C(NS(=O)(=O)C=3N=CC(=CC=3)C(F)(F)F)C=CC=2)C(=O)OC1(CCC)CCC1=CC=CC=C1 SUJUHGSWHZTSEU-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 239000007984 Tris EDTA buffer Substances 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- WREGKURFCTUGRC-POYBYMJQSA-N Zalcitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)CC1 WREGKURFCTUGRC-POYBYMJQSA-N 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229950004424 alovudine Drugs 0.000 description 2
- 239000003888 alpha glucosidase inhibitor Substances 0.000 description 2
- YMARZQAQMVYCKC-OEMFJLHTSA-N amprenavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 YMARZQAQMVYCKC-OEMFJLHTSA-N 0.000 description 2
- 230000003042 antagnostic effect Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- RYMCFYKJDVMSIR-RNFRBKRXSA-N apricitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1S[C@H](CO)OC1 RYMCFYKJDVMSIR-RNFRBKRXSA-N 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- YNHIGQDRGKUECZ-UHFFFAOYSA-L bis(triphenylphosphine)palladium(ii) dichloride Chemical compound [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- JORVRJNILJXMMG-OLNQLETPSA-N brecanavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=C2OCOC2=CC=1)NC(=O)O[C@@H]1[C@@H]2CCO[C@@H]2OC1)C(C=C1)=CC=C1OCC1=CSC(C)=N1 JORVRJNILJXMMG-OLNQLETPSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- NIDRYBLTWYFCFV-UHFFFAOYSA-N calanolide F Natural products C1=CC(C)(C)OC2=C1C(OC(C)C(C)C1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003067 chemokine receptor CCR5 antagonist Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000000544 cholinesterase inhibitor Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 229960005107 darunavir Drugs 0.000 description 2
- CJBJHOAVZSMMDJ-HEXNFIEUSA-N darunavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1[C@@H]2CCO[C@@H]2OC1)C1=CC=CC=C1 CJBJHOAVZSMMDJ-HEXNFIEUSA-N 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- MLILORUFDVLTSP-UHFFFAOYSA-N emivirine Chemical compound O=C1NC(=O)N(COCC)C(CC=2C=CC=CC=2)=C1C(C)C MLILORUFDVLTSP-UHFFFAOYSA-N 0.000 description 2
- 229960002062 enfuvirtide Drugs 0.000 description 2
- PEASPLKKXBYDKL-FXEVSJAOSA-N enfuvirtide Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(C)=O)[C@@H](C)O)[C@@H](C)CC)C1=CN=CN1 PEASPLKKXBYDKL-FXEVSJAOSA-N 0.000 description 2
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 2
- OAYLNYINCPYISS-UHFFFAOYSA-N ethyl acetate;hexane Chemical compound CCCCCC.CCOC(C)=O OAYLNYINCPYISS-UHFFFAOYSA-N 0.000 description 2
- 125000004672 ethylcarbonyl group Chemical group [H]C([H])([H])C([H])([H])C(*)=O 0.000 description 2
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 2
- 229960002049 etravirine Drugs 0.000 description 2
- PYGWGZALEOIKDF-UHFFFAOYSA-N etravirine Chemical compound CC1=CC(C#N)=CC(C)=C1OC1=NC(NC=2C=CC(=CC=2)C#N)=NC(N)=C1Br PYGWGZALEOIKDF-UHFFFAOYSA-N 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229960003142 fosamprenavir Drugs 0.000 description 2
- MLBVMOWEQCZNCC-OEMFJLHTSA-N fosamprenavir Chemical compound C([C@@H]([C@H](OP(O)(O)=O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 MLBVMOWEQCZNCC-OEMFJLHTSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 239000002835 hiv fusion inhibitor Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- SHFJWMWCIHQNCP-UHFFFAOYSA-M hydron;tetrabutylazanium;sulfate Chemical compound OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC SHFJWMWCIHQNCP-UHFFFAOYSA-M 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 239000002955 immunomodulating agent Substances 0.000 description 2
- 229940121354 immunomodulator Drugs 0.000 description 2
- 230000002584 immunomodulator Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229960004243 indinavir sulfate Drugs 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 description 2
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 2
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 210000001853 liver microsome Anatomy 0.000 description 2
- 229940031703 low substituted hydroxypropyl cellulose Drugs 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 2
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- VOWOEBADKMXUBU-UHFFFAOYSA-J molecular oxygen;tetrachlorite;hydrate Chemical compound O.O=O.[O-]Cl=O.[O-]Cl=O.[O-]Cl=O.[O-]Cl=O VOWOEBADKMXUBU-UHFFFAOYSA-J 0.000 description 2
- NQHXCOAXSHGTIA-SKXNDZRYSA-N nelfinavir mesylate Chemical compound CS(O)(=O)=O.CC1=C(O)C=CC=C1C(=O)N[C@H]([C@H](O)CN1[C@@H](C[C@@H]2CCCC[C@@H]2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 NQHXCOAXSHGTIA-SKXNDZRYSA-N 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- NQDJXKOVJZTUJA-UHFFFAOYSA-N nevirapine Chemical compound C12=NC=CC=C2C(=O)NC=2C(C)=CC=NC=2N1C1CC1 NQDJXKOVJZTUJA-UHFFFAOYSA-N 0.000 description 2
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- 102000013415 peroxidase activity proteins Human genes 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 125000000612 phthaloyl group Chemical group C(C=1C(C(=O)*)=CC=CC1)(=O)* 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 2
- 229940069328 povidone Drugs 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000784 purine nucleoside phosphorylase inhibitor Substances 0.000 description 2
- LEHBURLTIWGHEM-UHFFFAOYSA-N pyridinium chlorochromate Chemical compound [O-][Cr](Cl)(=O)=O.C1=CC=[NH+]C=C1 LEHBURLTIWGHEM-UHFFFAOYSA-N 0.000 description 2
- 238000006268 reductive amination reaction Methods 0.000 description 2
- 229960001852 saquinavir Drugs 0.000 description 2
- QWAXKHKRTORLEM-UGJKXSETSA-N saquinavir Chemical compound C([C@@H]([C@H](O)CN1C[C@H]2CCCC[C@H]2C[C@H]1C(=O)NC(C)(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)C=1N=C2C=CC=CC2=CC=1)C1=CC=CC=C1 QWAXKHKRTORLEM-UGJKXSETSA-N 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 235000011083 sodium citrates Nutrition 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- UDYFLDICVHJSOY-UHFFFAOYSA-N sulfur trioxide-pyridine complex Substances O=S(=O)=O.C1=CC=NC=C1 UDYFLDICVHJSOY-UHFFFAOYSA-N 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 125000006253 t-butylcarbonyl group Chemical group [H]C([H])([H])C(C(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- LDEKQSIMHVQZJK-CAQYMETFSA-N tenofovir alafenamide Chemical compound O([P@@](=O)(CO[C@H](C)CN1C2=NC=NC(N)=C2N=C1)N[C@@H](C)C(=O)OC(C)C)C1=CC=CC=C1 LDEKQSIMHVQZJK-CAQYMETFSA-N 0.000 description 2
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 2
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 2
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 2
- 150000003536 tetrazoles Chemical class 0.000 description 2
- 229960000838 tipranavir Drugs 0.000 description 2
- NZPXPXAGXYTROM-FYBSXPHGSA-N tipranavir Chemical compound C([C@@]1(CCC)OC(O)=C([C@H](CC)C=2C=C(NS(=O)(=O)C=3N=CC(=CC=3)C(F)(F)F)C=CC=2)C(=O)C1)CC1=CC=CC=C1 NZPXPXAGXYTROM-FYBSXPHGSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- PRXNKYBFWAWBNZ-UHFFFAOYSA-N trimethylphenylammonium tribromide Chemical compound Br[Br-]Br.C[N+](C)(C)C1=CC=CC=C1 PRXNKYBFWAWBNZ-UHFFFAOYSA-N 0.000 description 2
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 229960000523 zalcitabine Drugs 0.000 description 2
- 229940120938 zidovudine and lamivudine Drugs 0.000 description 2
- NIDRYBLTWYFCFV-FMTVUPSXSA-N (+)-calanolide A Chemical compound C1=CC(C)(C)OC2=C1C(O[C@H](C)[C@@H](C)[C@@H]1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-FMTVUPSXSA-N 0.000 description 1
- FTLYMKDSHNWQKD-UHFFFAOYSA-N (2,4,5-trichlorophenyl)boronic acid Chemical compound OB(O)C1=CC(Cl)=C(Cl)C=C1Cl FTLYMKDSHNWQKD-UHFFFAOYSA-N 0.000 description 1
- YFGBQHOOROIVKG-BHDDXSALSA-N (2R)-2-[[(2R)-2-[[2-[[2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-4-methylsulfanylbutanoic acid Chemical compound C([C@H](C(=O)N[C@H](CCSC)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 YFGBQHOOROIVKG-BHDDXSALSA-N 0.000 description 1
- FWRXDSRYWWYTPD-SECBINFHSA-N (2r)-3-hydroxy-2-methyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC(C)(C)OC(=O)N[C@](C)(CO)C(O)=O FWRXDSRYWWYTPD-SECBINFHSA-N 0.000 description 1
- MUVQIIBPDFTEKM-QWWZWVQMSA-N (2r,3r)-2-aminobutane-1,3-diol Chemical compound C[C@@H](O)[C@H](N)CO MUVQIIBPDFTEKM-QWWZWVQMSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- AOMZDQMIOCTPQP-QHQMVRJISA-N (2s)-4-(1-benzofuran-2-ylmethyl)-1-[(2s,4r)-4-benzyl-2-hydroxy-5-[[(1s,2r)-2-hydroxy-2,3-dihydro-1h-inden-1-yl]amino]-5-oxopentyl]-n-tert-butylpiperazine-2-carboxamide Chemical compound C([C@H](C[C@H](O)CN1CCN(CC=2OC3=CC=CC=C3C=2)C[C@H]1C(=O)NC(C)(C)C)C(=O)N[C@H]1C2=CC=CC=C2C[C@H]1O)C1=CC=CC=C1 AOMZDQMIOCTPQP-QHQMVRJISA-N 0.000 description 1
- PNIFFZXGBAYVMQ-RKKDRKJOSA-N (2s)-n-[(2s,3r)-4-[(3-aminophenyl)sulfonyl-(2-methylpropyl)amino]-3-hydroxy-1-phenylbutan-2-yl]-2-[[2-[(3-fluorophenyl)methylamino]acetyl]amino]-3,3-dimethylbutanamide Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=C(N)C=CC=1)NC(=O)[C@@H](NC(=O)CNCC=1C=C(F)C=CC=1)C(C)(C)C)C1=CC=CC=C1 PNIFFZXGBAYVMQ-RKKDRKJOSA-N 0.000 description 1
- CWVMWSZEMZOUPC-JUAXIXHSSA-N (3s,5s,8r,9s,10s,13s,14s,16r)-16-bromo-3-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,14,15,16-tetradecahydrocyclopenta[a]phenanthren-17-one Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C([C@H](Br)C4)=O)[C@@H]4[C@@H]3CC[C@H]21 CWVMWSZEMZOUPC-JUAXIXHSSA-N 0.000 description 1
- HINZVVDZPLARRP-YSVIXOAZSA-N (4r,5s,6s,7r)-1,3-bis[(3-aminophenyl)methyl]-4,7-dibenzyl-5,6-dihydroxy-1,3-diazepan-2-one;methanesulfonic acid Chemical compound CS(O)(=O)=O.CS(O)(=O)=O.NC1=CC=CC(CN2C(N(CC=3C=C(N)C=CC=3)[C@H](CC=3C=CC=CC=3)[C@H](O)[C@@H](O)[C@H]2CC=2C=CC=CC=2)=O)=C1 HINZVVDZPLARRP-YSVIXOAZSA-N 0.000 description 1
- NTWKGLJNQAZSHF-ZRTHHSRSSA-N (4r,5s,6s,7r)-1-[(3-amino-1h-indazol-5-yl)methyl]-3,4,7-tribenzyl-5,6-dihydroxy-1,3-diazepan-2-one Chemical compound C([C@H]1N(C(N(CC=2C=CC=CC=2)[C@H](CC=2C=CC=CC=2)[C@H](O)[C@H]1O)=O)CC1=CC=C2NN=C(C2=C1)N)C1=CC=CC=C1 NTWKGLJNQAZSHF-ZRTHHSRSSA-N 0.000 description 1
- VLSDXINSOMDCBK-BQYQJAHWSA-N (E)-1,1'-azobis(N,N-dimethylformamide) Chemical compound CN(C)C(=O)\N=N\C(=O)N(C)C VLSDXINSOMDCBK-BQYQJAHWSA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- 125000006133 1,1-dimethylpropyl sulfonyl group Chemical group 0.000 description 1
- GDAXJBDYNVDMDF-UHFFFAOYSA-N 1,2,4-benzotriazine Chemical compound N1=NC=NC2=CC=CC=C21 GDAXJBDYNVDMDF-UHFFFAOYSA-N 0.000 description 1
- BBVIDBNAYOIXOE-UHFFFAOYSA-N 1,2,4-oxadiazole Chemical compound C=1N=CON=1 BBVIDBNAYOIXOE-UHFFFAOYSA-N 0.000 description 1
- YGTAZGSLCXNBQL-UHFFFAOYSA-N 1,2,4-thiadiazole Chemical compound C=1N=CSN=1 YGTAZGSLCXNBQL-UHFFFAOYSA-N 0.000 description 1
- IRFSXVIRXMYULF-UHFFFAOYSA-N 1,2-dihydroquinoline Chemical compound C1=CC=C2C=CCNC2=C1 IRFSXVIRXMYULF-UHFFFAOYSA-N 0.000 description 1
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical compound C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 description 1
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical compound C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical compound C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- FTNJQNQLEGKTGD-UHFFFAOYSA-N 1,3-benzodioxole Chemical compound C1=CC=C2OCOC2=C1 FTNJQNQLEGKTGD-UHFFFAOYSA-N 0.000 description 1
- ZXSQEZNORDWBGZ-UHFFFAOYSA-N 1,3-dihydropyrrolo[2,3-b]pyridin-2-one Chemical compound C1=CN=C2NC(=O)CC2=C1 ZXSQEZNORDWBGZ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- OGYGFUAIIOPWQD-UHFFFAOYSA-N 1,3-thiazolidine Chemical compound C1CSCN1 OGYGFUAIIOPWQD-UHFFFAOYSA-N 0.000 description 1
- OKGNMRKOGWTADH-UHFFFAOYSA-N 1,4-dihydropyrimidine Chemical compound C1C=CNC=N1 OKGNMRKOGWTADH-UHFFFAOYSA-N 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- 125000004201 2,4-dichlorophenyl group Chemical group [H]C1=C([H])C(*)=C(Cl)C([H])=C1Cl 0.000 description 1
- UWKQJZCTQGMHKD-UHFFFAOYSA-N 2,6-di-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=N1 UWKQJZCTQGMHKD-UHFFFAOYSA-N 0.000 description 1
- JPOCDUMADVLNQZ-UHFFFAOYSA-N 2-(2,4-difluorophenyl)ethanethiohydrazide Chemical compound NNC(=S)CC1=CC=C(F)C=C1F JPOCDUMADVLNQZ-UHFFFAOYSA-N 0.000 description 1
- MGKPFALCNDRSQD-UHFFFAOYSA-N 2-(4-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=C(F)C=C1 MGKPFALCNDRSQD-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- CQVKMVQRSNNAGO-UHFFFAOYSA-N 2-[4-formyl-3-methyl-n-(2-methylsulfonyloxyethyl)anilino]ethyl methanesulfonate Chemical compound CC1=CC(N(CCOS(C)(=O)=O)CCOS(C)(=O)=O)=CC=C1C=O CQVKMVQRSNNAGO-UHFFFAOYSA-N 0.000 description 1
- UXFQFBNBSPQBJW-UHFFFAOYSA-N 2-amino-2-methylpropane-1,3-diol Chemical compound OCC(N)(C)CO UXFQFBNBSPQBJW-UHFFFAOYSA-N 0.000 description 1
- FBPINGSGHKXIQA-UHFFFAOYSA-N 2-amino-3-(2-carboxyethylsulfanyl)propanoic acid Chemical compound OC(=O)C(N)CSCCC(O)=O FBPINGSGHKXIQA-UHFFFAOYSA-N 0.000 description 1
- QDGZDCVAUDNJFG-CSMHCCOUSA-N 2-amino-9-[(1s,3s,4s)-4-hydroxy-3-(hydroxymethyl)-2-methylidenecyclopentyl]-3h-purin-6-one Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1C[C@H](O)[C@H](CO)C1=C QDGZDCVAUDNJFG-CSMHCCOUSA-N 0.000 description 1
- RTJUXLYUUDBAJN-KVQBGUIXSA-N 2-amino-9-[(2r,4s,5r)-4-fluoro-5-(hydroxymethyl)oxolan-2-yl]-3h-purin-6-one Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1C[C@H](F)[C@@H](CO)O1 RTJUXLYUUDBAJN-KVQBGUIXSA-N 0.000 description 1
- UXGVMFHEKMGWMA-UHFFFAOYSA-N 2-benzofuran Chemical compound C1=CC=CC2=COC=C21 UXGVMFHEKMGWMA-UHFFFAOYSA-N 0.000 description 1
- DJUWIZUEHXRECB-UHFFFAOYSA-N 2-bromo-1,3-thiazole-5-carbaldehyde Chemical compound BrC1=NC=C(C=O)S1 DJUWIZUEHXRECB-UHFFFAOYSA-N 0.000 description 1
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 1
- YZHIXLCGPOTQNB-UHFFFAOYSA-N 2-methyl-furan-3-carbothioic acid [4-chloro-3-(3-methyl-but-2-enyloxy)-phenyl]-amide Chemical compound C1=C(Cl)C(OCC=C(C)C)=CC(NC(=S)C2=C(OC=C2)C)=C1 YZHIXLCGPOTQNB-UHFFFAOYSA-N 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- UBVSIAHUTXHQTD-UHFFFAOYSA-N 2-n-(4-bromophenyl)-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(NC=2C=CC(Br)=CC=2)=N1 UBVSIAHUTXHQTD-UHFFFAOYSA-N 0.000 description 1
- QISAUDWTBBNJIR-UHFFFAOYSA-N 2-phenylmethoxyacetyl chloride Chemical compound ClC(=O)COCC1=CC=CC=C1 QISAUDWTBBNJIR-UHFFFAOYSA-N 0.000 description 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical compound C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical group NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 1
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- WEQPBCSPRXFQQS-UHFFFAOYSA-N 4,5-dihydro-1,2-oxazole Chemical compound C1CC=NO1 WEQPBCSPRXFQQS-UHFFFAOYSA-N 0.000 description 1
- GUUULVAMQJLDSY-UHFFFAOYSA-N 4,5-dihydro-1,2-thiazole Chemical compound C1CC=NS1 GUUULVAMQJLDSY-UHFFFAOYSA-N 0.000 description 1
- ILAYIAGXTHKHNT-UHFFFAOYSA-N 4-[4-(2,4,6-trimethyl-phenylamino)-pyrimidin-2-ylamino]-benzonitrile Chemical compound CC1=CC(C)=CC(C)=C1NC1=CC=NC(NC=2C=CC(=CC=2)C#N)=N1 ILAYIAGXTHKHNT-UHFFFAOYSA-N 0.000 description 1
- GWNOTCOIYUNTQP-FQLXRVMXSA-N 4-[4-[[(3r)-1-butyl-3-[(r)-cyclohexyl(hydroxy)methyl]-2,5-dioxo-1,4,9-triazaspiro[5.5]undecan-9-yl]methyl]phenoxy]benzoic acid Chemical compound N([C@@H](C(=O)N1CCCC)[C@H](O)C2CCCCC2)C(=O)C1(CC1)CCN1CC(C=C1)=CC=C1OC1=CC=C(C(O)=O)C=C1 GWNOTCOIYUNTQP-FQLXRVMXSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- LHCOVOKZWQYODM-CPEOKENHSA-N 4-amino-1-[(2r,5s)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one;1-[(2r,4s,5s)-4-azido-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)SC1.O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 LHCOVOKZWQYODM-CPEOKENHSA-N 0.000 description 1
- HSBKFSPNDWWPSL-VDTYLAMSSA-N 4-amino-5-fluoro-1-[(2s,5r)-5-(hydroxymethyl)-2,5-dihydrofuran-2-yl]pyrimidin-2-one Chemical compound C1=C(F)C(N)=NC(=O)N1[C@@H]1C=C[C@H](CO)O1 HSBKFSPNDWWPSL-VDTYLAMSSA-N 0.000 description 1
- YQDGQEKUTLYWJU-UHFFFAOYSA-N 5,6,7,8-tetrahydroquinoline Chemical compound C1=CC=C2CCCCC2=N1 YQDGQEKUTLYWJU-UHFFFAOYSA-N 0.000 description 1
- VHZYCYMLFDSENA-UHFFFAOYSA-N 6,7-dihydro-[1,4]dioxino[2,3-d]pyrimidine Chemical compound C1=NC=C2OCCOC2=N1 VHZYCYMLFDSENA-UHFFFAOYSA-N 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 229940023859 AIDSVAX Drugs 0.000 description 1
- WVLHHLRVNDMIAR-IBGZPJMESA-N AMD 070 Chemical compound C1CCC2=CC=CN=C2[C@H]1N(CCCCN)CC1=NC2=CC=CC=C2N1 WVLHHLRVNDMIAR-IBGZPJMESA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- WLDHEUZGFKACJH-ZRUFZDNISA-K Amaranth Chemical compound [Na+].[Na+].[Na+].C12=CC=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(O)=C1\N=N\C1=CC=C(S([O-])(=O)=O)C2=CC=CC=C12 WLDHEUZGFKACJH-ZRUFZDNISA-K 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- NIDRYBLTWYFCFV-IUUKEHGRSA-N Calanolide A Natural products C1=CC(C)(C)OC2=C1C(O[C@H](C)[C@H](C)[C@@H]1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-IUUKEHGRSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- ACTIUHUUMQJHFO-UHFFFAOYSA-N Coenzym Q10 Natural products COC1=C(OC)C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UHFFFAOYSA-N 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- NBSCHQHZLSJFNQ-GASJEMHNSA-N D-Glucose 6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O NBSCHQHZLSJFNQ-GASJEMHNSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 238000006646 Dess-Martin oxidation reaction Methods 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- VFRROHXSMXFLSN-UHFFFAOYSA-N Glc6P Natural products OP(=O)(O)OCC(O)C(O)C(O)C(O)C=O VFRROHXSMXFLSN-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- BIVBRWYINDPWKA-VLQRKCJKSA-L Glycyrrhizinate dipotassium Chemical compound [K+].[K+].O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@H]1CC[C@]2(C)[C@H]3C(=O)C=C4[C@@H]5C[C@](C)(CC[C@@]5(CC[C@@]4(C)[C@]3(C)CC[C@H]2C1(C)C)C)C(O)=O)C([O-])=O)[C@@H]1O[C@H](C([O-])=O)[C@@H](O)[C@H](O)[C@H]1O BIVBRWYINDPWKA-VLQRKCJKSA-L 0.000 description 1
- 239000007821 HATU Substances 0.000 description 1
- 108010010369 HIV Protease Proteins 0.000 description 1
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 101000685817 Homo sapiens Solute carrier family 7 member 13 Proteins 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- NJBBLOIWMSYVCQ-VZTVMPNDSA-N Kynostatin 272 Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)COC=1C2=CC=NC=C2C=CC=1)CSC)[C@H](O)C(=O)N1[C@@H](CSC1)C(=O)NC(C)(C)C)C1=CC=CC=C1 NJBBLOIWMSYVCQ-VZTVMPNDSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 101150049396 M10 gene Proteins 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 102400000988 Met-enkephalin Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108010042237 Methionine Enkephalin Proteins 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 206010048723 Multiple-drug resistance Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- XJLXINKUBYWONI-NNYOXOHSSA-N NADP zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-NNYOXOHSSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229940122313 Nucleoside reverse transcriptase inhibitor Drugs 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108010037442 SPL7013 Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000004288 Sodium dehydroacetate Substances 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 102100023135 Solute carrier family 7 member 13 Human genes 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- YPWFISCTZQNZAU-UHFFFAOYSA-N Thiane Chemical compound C1CCSCC1 YPWFISCTZQNZAU-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 1
- GCTFWCDSFPMHHS-UHFFFAOYSA-M Tributyltin chloride Chemical compound CCCC[Sn](Cl)(CCCC)CCCC GCTFWCDSFPMHHS-UHFFFAOYSA-M 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 208000012886 Vertigo Diseases 0.000 description 1
- 206010058874 Viraemia Diseases 0.000 description 1
- 241000221012 Viscum Species 0.000 description 1
- RLAHNGKRJJEIJL-RFZPGFLSSA-N [(2r,4r)-4-(2,6-diaminopurin-9-yl)-1,3-dioxolan-2-yl]methanol Chemical compound C12=NC(N)=NC(N)=C2N=CN1[C@H]1CO[C@@H](CO)O1 RLAHNGKRJJEIJL-RFZPGFLSSA-N 0.000 description 1
- ATSMZGDYBPOXMZ-HTQZYQBOSA-N [(2r,4r)-4-[2-amino-6-(cyclopropylamino)purin-9-yl]-1,3-dioxolan-2-yl]methanol Chemical compound C=12N=CN([C@@H]3O[C@H](CO)OC3)C2=NC(N)=NC=1NC1CC1 ATSMZGDYBPOXMZ-HTQZYQBOSA-N 0.000 description 1
- BINXAIIXOUQUKC-UIPNDDLNSA-N [(3as,4r,6ar)-2,3,3a,4,5,6a-hexahydrofuro[2,3-b]furan-4-yl] n-[(2s,3r)-3-hydroxy-4-[(4-methoxyphenyl)sulfonyl-(2-methylpropyl)amino]-1-phenylbutan-2-yl]carbamate Chemical compound C1=CC(OC)=CC=C1S(=O)(=O)N(CC(C)C)C[C@@H](O)[C@@H](NC(=O)O[C@@H]1[C@@H]2CCO[C@@H]2OC1)CC1=CC=CC=C1 BINXAIIXOUQUKC-UIPNDDLNSA-N 0.000 description 1
- TUXYPYQILWEWPJ-UHFFFAOYSA-N [1,3]dioxolo[4,5-c]pyridine Chemical compound C1=NC=C2OCOC2=C1 TUXYPYQILWEWPJ-UHFFFAOYSA-N 0.000 description 1
- NOXYEXFQXDRHTA-UHFFFAOYSA-N [O-2].[O-2].[O-2].[Cr+3].[Cr+3].C1=CC=NC=C1 Chemical compound [O-2].[O-2].[O-2].[Cr+3].[Cr+3].C1=CC=NC=C1 NOXYEXFQXDRHTA-UHFFFAOYSA-N 0.000 description 1
- GLWHPRRGGYLLRV-XLPZGREQSA-N [[(2s,3s,5r)-3-azido-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](N=[N+]=[N-])C1 GLWHPRRGGYLLRV-XLPZGREQSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000001980 alanyl group Chemical group 0.000 description 1
- 108700025316 aldesleukin Proteins 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 229960001830 amprenavir Drugs 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 238000011225 antiretroviral therapy Methods 0.000 description 1
- 229940124522 antiretrovirals Drugs 0.000 description 1
- 239000003903 antiretrovirus agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229940073608 benzyl chloride Drugs 0.000 description 1
- HSDAJNMJOMSNEV-UHFFFAOYSA-N benzyl chloroformate Chemical compound ClC(=O)OCC1=CC=CC=C1 HSDAJNMJOMSNEV-UHFFFAOYSA-N 0.000 description 1
- MZECFWFGBPDQLD-ZDUSSCGKSA-N benzyl n-[(2s)-2-(ethylamino)-3-methoxypropyl]carbamate Chemical compound CCN[C@H](COC)CNC(=O)OCC1=CC=CC=C1 MZECFWFGBPDQLD-ZDUSSCGKSA-N 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000031709 bromination Effects 0.000 description 1
- 238000005893 bromination reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000006226 butoxyethyl group Chemical group 0.000 description 1
- 125000006251 butylcarbonyl group Chemical group 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- PMDQGYMGQKTCSX-HQROKSDRSA-L calcium;[(2r,3s)-1-[(4-aminophenyl)sulfonyl-(2-methylpropyl)amino]-3-[[(3s)-oxolan-3-yl]oxycarbonylamino]-4-phenylbutan-2-yl] phosphate Chemical compound [Ca+2].C([C@@H]([C@H](OP([O-])([O-])=O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 PMDQGYMGQKTCSX-HQROKSDRSA-L 0.000 description 1
- 229940023860 canarypox virus HIV vaccine Drugs 0.000 description 1
- YQXCVAGCMNFUMQ-UHFFFAOYSA-N capravirine Chemical compound C=1C(Cl)=CC(Cl)=CC=1SC1=C(C(C)C)N=C(COC(N)=O)N1CC1=CC=NC=C1 YQXCVAGCMNFUMQ-UHFFFAOYSA-N 0.000 description 1
- 229950008230 capravirine Drugs 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- MKUVUOWJFDGHEU-UHFFFAOYSA-N carbamic acid;[5-(3,5-dichlorophenyl)sulfanyl-4-propan-2-yl-1-(pyridin-4-ylmethyl)imidazol-2-yl]methanol Chemical compound NC(O)=O.C=1C(Cl)=CC(Cl)=CC=1SC1=C(C(C)C)N=C(CO)N1CC1=CC=NC=C1 MKUVUOWJFDGHEU-UHFFFAOYSA-N 0.000 description 1
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000012320 chlorinating reagent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- VZWXIQHBIQLMPN-UHFFFAOYSA-N chromane Chemical compound C1=CC=C2CCCOC2=C1 VZWXIQHBIQLMPN-UHFFFAOYSA-N 0.000 description 1
- QZHPTGXQGDFGEN-UHFFFAOYSA-N chromene Chemical compound C1=CC=C2C=C[CH]OC2=C1 QZHPTGXQGDFGEN-UHFFFAOYSA-N 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- KMPWYEUPVWOPIM-UHFFFAOYSA-N cinchonidine Natural products C1=CC=C2C(C(C3N4CCC(C(C4)C=C)C3)O)=CC=NC2=C1 KMPWYEUPVWOPIM-UHFFFAOYSA-N 0.000 description 1
- KMPWYEUPVWOPIM-LSOMNZGLSA-N cinchonine Chemical compound C1=CC=C2C([C@@H]([C@H]3N4CC[C@H]([C@H](C4)C=C)C3)O)=CC=NC2=C1 KMPWYEUPVWOPIM-LSOMNZGLSA-N 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 235000017471 coenzyme Q10 Nutrition 0.000 description 1
- 229940110767 coenzyme Q10 Drugs 0.000 description 1
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229940014461 combivir Drugs 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229940088900 crixivan Drugs 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229960000475 delavirdine mesylate Drugs 0.000 description 1
- MEPNHSOMXMALDZ-UHFFFAOYSA-N delavirdine mesylate Chemical compound CS(O)(=O)=O.CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(NS(C)(=O)=O)C=C3C=2)CC1 MEPNHSOMXMALDZ-UHFFFAOYSA-N 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 108010017271 denileukin diftitox Proteins 0.000 description 1
- NKLCNNUWBJBICK-UHFFFAOYSA-N dess–martin periodinane Chemical compound C1=CC=C2I(OC(=O)C)(OC(C)=O)(OC(C)=O)OC(=O)C2=C1 NKLCNNUWBJBICK-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- OSIAURSWRZARKZ-UHFFFAOYSA-N dihydroxyphosphinothioylformic acid Chemical compound OC(=O)P(O)(O)=S OSIAURSWRZARKZ-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- MCSQQQQCSOKVKD-VLRMEJBNSA-N dimethyl 2-[[(2s)-1-[2-[(2s,3s)-3-[[(2s)-3,3-dimethyl-2-(methylamino)butanoyl]amino]-2-hydroxy-4-phenylbutyl]-2-[(4-pyridin-2-ylphenyl)methyl]hydrazinyl]-3,3-dimethyl-1-oxobutan-2-yl]amino]propanedioate Chemical compound C([C@H](NC(=O)[C@@H](NC)C(C)(C)C)[C@@H](O)CN(CC=1C=CC(=CC=1)C=1N=CC=CC=1)NC(=O)[C@@H](NC(C(=O)OC)C(=O)OC)C(C)(C)C)C1=CC=CC=C1 MCSQQQQCSOKVKD-VLRMEJBNSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 125000006222 dimethylaminomethyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000000532 dioxanyl group Chemical group 0.000 description 1
- SVABQOITNJTVNJ-UHFFFAOYSA-N diphenyl-2-pyridylphosphine Chemical compound C1=CC=CC=C1P(C=1N=CC=CC=1)C1=CC=CC=C1 SVABQOITNJTVNJ-UHFFFAOYSA-N 0.000 description 1
- 229940101029 dipotassium glycyrrhizinate Drugs 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- FZMGUXZZROZJIT-KMIZVRHLSA-L disodium;[(2r,3s)-1-[(4-aminophenyl)sulfonyl-(2-methylpropyl)amino]-3-[[(3s)-oxolan-3-yl]oxycarbonylamino]-4-phenylbutan-2-yl] phosphate Chemical compound [Na+].[Na+].C([C@@H]([C@H](OP([O-])([O-])=O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 FZMGUXZZROZJIT-KMIZVRHLSA-L 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 1
- 229960003586 elvitegravir Drugs 0.000 description 1
- JUZYLCPPVHEVSV-LJQANCHMSA-N elvitegravir Chemical compound COC1=CC=2N([C@H](CO)C(C)C)C=C(C(O)=O)C(=O)C=2C=C1CC1=CC=CC(Cl)=C1F JUZYLCPPVHEVSV-LJQANCHMSA-N 0.000 description 1
- 229950002002 emivirine Drugs 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229960000980 entecavir Drugs 0.000 description 1
- YXPVEXCTPGULBZ-WQYNNSOESA-N entecavir hydrate Chemical compound O.C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)C1=C YXPVEXCTPGULBZ-WQYNNSOESA-N 0.000 description 1
- 229940072253 epivir Drugs 0.000 description 1
- NJSUFZNXBBXAAC-UHFFFAOYSA-N ethanol;toluene Chemical compound CCO.CC1=CC=CC=C1 NJSUFZNXBBXAAC-UHFFFAOYSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000006232 ethoxy propyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 1
- OWZFULPEVHKEKS-UHFFFAOYSA-N ethyl 2-chloro-2-oxoacetate Chemical compound CCOC(=O)C(Cl)=O OWZFULPEVHKEKS-UHFFFAOYSA-N 0.000 description 1
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 1
- 125000006125 ethylsulfonyl group Chemical group 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229960002933 fosamprenavir calcium Drugs 0.000 description 1
- 229940108452 foscavir Drugs 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- JKFAIQOWCVVSKC-UHFFFAOYSA-N furazan Chemical compound C=1C=NON=1 JKFAIQOWCVVSKC-UHFFFAOYSA-N 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229950006191 gluconic acid Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 108010001931 glycylprolylglycine amide Proteins 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 125000003104 hexanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004871 hexylcarbonyl group Chemical group C(CCCCC)C(=O)* 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- ZUFVXZVXEJHHBN-UHFFFAOYSA-N hydron;1,2,3,4-tetrahydroacridin-9-amine;chloride Chemical compound [Cl-].C1=CC=C2C([NH3+])=C(CCCC3)C3=NC2=C1 ZUFVXZVXEJHHBN-UHFFFAOYSA-N 0.000 description 1
- RCBVKBFIWMOMHF-UHFFFAOYSA-L hydroxy-(hydroxy(dioxo)chromio)oxy-dioxochromium;pyridine Chemical compound C1=CC=NC=C1.C1=CC=NC=C1.O[Cr](=O)(=O)O[Cr](O)(=O)=O RCBVKBFIWMOMHF-UHFFFAOYSA-L 0.000 description 1
- 229940071676 hydroxypropylcellulose Drugs 0.000 description 1
- 229950010245 ibalizumab Drugs 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 229960001438 immunostimulant agent Drugs 0.000 description 1
- 239000003022 immunostimulating agent Substances 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 1
- 229960000598 infliximab Drugs 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 239000002850 integrase inhibitor Substances 0.000 description 1
- 229940124524 integrase inhibitor Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 108700027921 interferon tau Proteins 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229940088976 invirase Drugs 0.000 description 1
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 1
- 125000006328 iso-butylcarbonyl group Chemical group [H]C([H])([H])C([H])(C(*)=O)C([H])([H])[H] 0.000 description 1
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 1
- HEBMCVBCEDMUOF-UHFFFAOYSA-N isochromane Chemical compound C1=CC=C2COCCC2=C1 HEBMCVBCEDMUOF-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 229940112586 kaletra Drugs 0.000 description 1
- 108010075606 kynostatin 272 Proteins 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229950004697 lasinavir Drugs 0.000 description 1
- CFHGBZLNZZVTAY-UHFFFAOYSA-N lawesson's reagent Chemical compound C1=CC(OC)=CC=C1P1(=S)SP(=S)(C=2C=CC(OC)=CC=2)S1 CFHGBZLNZZVTAY-UHFFFAOYSA-N 0.000 description 1
- 229940121292 leronlimab Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 235000018977 lysine Nutrition 0.000 description 1
- 229960003511 macrogol Drugs 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- BRKADVNLTRCLOW-UHFFFAOYSA-M magnesium;fluorobenzene;bromide Chemical compound [Mg+2].[Br-].FC1=CC=[C-]C=C1 BRKADVNLTRCLOW-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- GSNHKUDZZFZSJB-QYOOZWMWSA-N maraviroc Chemical compound CC(C)C1=NN=C(C)N1[C@@H]1C[C@H](N2CC[C@H](NC(=O)C3CCC(F)(F)CC3)C=3C=CC=CC=3)CC[C@H]2C1 GSNHKUDZZFZSJB-QYOOZWMWSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229960003194 meglumine Drugs 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000005948 methanesulfonyloxy group Chemical group 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- UINDRDHKHRQLSW-GFCCVEGCSA-N methyl (2r)-3-(ethylamino)-2-methyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate Chemical compound CCNC[C@](C)(C(=O)OC)NC(=O)OC(C)(C)C UINDRDHKHRQLSW-GFCCVEGCSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 229960002900 methylcellulose Drugs 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 125000006203 morpholinoethyl group Chemical group [H]C([H])(*)C([H])([H])N1C([H])([H])C([H])([H])OC([H])([H])C1([H])[H] 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- AARXZCZYLAFQQU-UHFFFAOYSA-N motexafin gadolinium Chemical compound [Gd].CC(O)=O.CC(O)=O.C1=C([N-]2)C(CC)=C(CC)C2=CC(C(=C2C)CCCO)=NC2=CN=C2C=C(OCCOCCOCCOC)C(OCCOCCOCCOC)=CC2=NC=C2C(C)=C(CCCO)C1=N2 AARXZCZYLAFQQU-UHFFFAOYSA-N 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- PWDYHMBTPGXCSN-VCBMUGGBSA-N n,n'-bis[3,5-bis[(e)-n-(diaminomethylideneamino)-c-methylcarbonimidoyl]phenyl]decanediamide Chemical compound NC(N)=N/N=C(\C)C1=CC(C(=N/N=C(N)N)/C)=CC(NC(=O)CCCCCCCCC(=O)NC=2C=C(C=C(C=2)C(\C)=N\N=C(N)N)C(\C)=N\N=C(N)N)=C1 PWDYHMBTPGXCSN-VCBMUGGBSA-N 0.000 description 1
- KALYGJOYPFFBRF-UHFFFAOYSA-N n,n-dimethyltetradecan-1-amine oxide;2-[hexadecanoyl(dimethyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCCC[N+](C)(C)[O-].CCCCCCCCCCCCCCCC(=O)[N+](C)(C)CC([O-])=O KALYGJOYPFFBRF-UHFFFAOYSA-N 0.000 description 1
- OQJBFFCUFALWQL-UHFFFAOYSA-N n-(piperidine-1-carbonylimino)piperidine-1-carboxamide Chemical compound C1CCCCN1C(=O)N=NC(=O)N1CCCCC1 OQJBFFCUFALWQL-UHFFFAOYSA-N 0.000 description 1
- GAQZNFUDILDDDI-UHFFFAOYSA-N n-[4-[[2-[4-chloro-2-(3-chloro-5-cyanobenzoyl)phenoxy]acetyl]amino]-3-methylphenyl]sulfonylpropanamide Chemical compound CC1=CC(S(=O)(=O)NC(=O)CC)=CC=C1NC(=O)COC1=CC=C(Cl)C=C1C(=O)C1=CC(Cl)=CC(C#N)=C1 GAQZNFUDILDDDI-UHFFFAOYSA-N 0.000 description 1
- 229960005230 nelfinavir mesylate Drugs 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 229940042402 non-nucleoside reverse transcriptase inhibitor Drugs 0.000 description 1
- 239000002726 nonnucleoside reverse transcriptase inhibitor Substances 0.000 description 1
- 229940072250 norvir Drugs 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229940100027 ontak Drugs 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- FELGDWYLIIVCRC-UHFFFAOYSA-N oxolan-2-ylmethanol;hydrate Chemical compound O.OCC1CCCO1 FELGDWYLIIVCRC-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- DOHVAKFYAHLCJP-UHFFFAOYSA-N peldesine Chemical compound C1=2NC(N)=NC(=O)C=2NC=C1CC1=CC=CN=C1 DOHVAKFYAHLCJP-UHFFFAOYSA-N 0.000 description 1
- 229950000039 peldesine Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000004675 pentylcarbonyl group Chemical group C(CCCC)C(=O)* 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 1
- 125000005633 phthalidyl group Chemical group 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- FYPMFJGVHOHGLL-UHFFFAOYSA-N probucol Chemical compound C=1C(C(C)(C)C)=C(O)C(C(C)(C)C)=CC=1SC(C)(C)SC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FYPMFJGVHOHGLL-UHFFFAOYSA-N 0.000 description 1
- 229940087463 proleukin Drugs 0.000 description 1
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 1
- RZWZRACFZGVKFM-UHFFFAOYSA-N propanoyl chloride Chemical compound CCC(Cl)=O RZWZRACFZGVKFM-UHFFFAOYSA-N 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006233 propoxy propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])OC([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000006225 propoxyethyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- 125000005767 propoxymethyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])[#8]C([H])([H])* 0.000 description 1
- 125000004673 propylcarbonyl group Chemical group 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- USPWKWBDZOARPV-UHFFFAOYSA-N pyrazolidine Chemical compound C1CNNC1 USPWKWBDZOARPV-UHFFFAOYSA-N 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- ZVJHJDDKYZXRJI-UHFFFAOYSA-N pyrroline Natural products C1CC=NC1 ZVJHJDDKYZXRJI-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- LJPZHJUSICYOIX-UHFFFAOYSA-N quinolizidine Chemical compound C1CCCC2CCCCN21 LJPZHJUSICYOIX-UHFFFAOYSA-N 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 229940116176 remicade Drugs 0.000 description 1
- 229940063627 rescriptor Drugs 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 229940064914 retrovir Drugs 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- YIBOMRUWOWDFLG-ONEGZZNKSA-N rilpivirine Chemical compound CC1=CC(\C=C\C#N)=CC(C)=C1NC1=CC=NC(NC=2C=CC(=CC=2)C#N)=N1 YIBOMRUWOWDFLG-ONEGZZNKSA-N 0.000 description 1
- VHXNKPBCCMUMSW-FQEVSTJZSA-N rubitecan Chemical compound C1=CC([N+]([O-])=O)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VHXNKPBCCMUMSW-FQEVSTJZSA-N 0.000 description 1
- 229950009213 rubitecan Drugs 0.000 description 1
- 229940085605 saccharin sodium Drugs 0.000 description 1
- 229960003542 saquinavir mesylate Drugs 0.000 description 1
- 108010038379 sargramostim Proteins 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- LKZMBDSASOBTPN-UHFFFAOYSA-L silver carbonate Substances [Ag].[O-]C([O-])=O LKZMBDSASOBTPN-UHFFFAOYSA-L 0.000 description 1
- 229910001958 silver carbonate Inorganic materials 0.000 description 1
- QRUBYZBWAOOHSV-UHFFFAOYSA-M silver trifluoromethanesulfonate Chemical compound [Ag+].[O-]S(=O)(=O)C(F)(F)F QRUBYZBWAOOHSV-UHFFFAOYSA-M 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 235000019259 sodium dehydroacetate Nutrition 0.000 description 1
- 229940079839 sodium dehydroacetate Drugs 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- DSOWAKKSGYUMTF-GZOLSCHFSA-M sodium;(1e)-1-(6-methyl-2,4-dioxopyran-3-ylidene)ethanolate Chemical compound [Na+].C\C([O-])=C1/C(=O)OC(C)=CC1=O DSOWAKKSGYUMTF-GZOLSCHFSA-M 0.000 description 1
- LZKJPWJJSTWQEB-UHFFFAOYSA-M sodium;[4-[[2-[2-(3-chloro-5-cyanobenzoyl)phenoxy]acetyl]amino]-3-methylphenyl]sulfonyl-propanoylazanide Chemical compound [Na+].CC1=CC(S(=O)(=O)[N-]C(=O)CC)=CC=C1NC(=O)COC1=CC=CC=C1C(=O)C1=CC(Cl)=CC(C#N)=C1 LZKJPWJJSTWQEB-UHFFFAOYSA-M 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 238000003797 solvolysis reaction Methods 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 229960001685 tacrine Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229960004693 tenofovir disoproxil fumarate Drugs 0.000 description 1
- UDACWKHNECHEBB-UHFFFAOYSA-N tert-butyl 2-chloro-2-oxoacetate Chemical compound CC(C)(C)OC(=O)C(Cl)=O UDACWKHNECHEBB-UHFFFAOYSA-N 0.000 description 1
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 description 1
- XCICENOGGLCNFV-GFCCVEGCSA-N tert-butyl n-[(2r)-1-(2-methoxyethoxy)-3-(propan-2-ylamino)propan-2-yl]carbamate Chemical compound COCCOC[C@@H](CNC(C)C)NC(=O)OC(C)(C)C XCICENOGGLCNFV-GFCCVEGCSA-N 0.000 description 1
- DTYZDIAPNJZZSR-GFCCVEGCSA-N tert-butyl n-[(2r)-1-(cyclopropylamino)-3-(2-methoxyethoxy)propan-2-yl]carbamate Chemical compound COCCOC[C@H](NC(=O)OC(C)(C)C)CNC1CC1 DTYZDIAPNJZZSR-GFCCVEGCSA-N 0.000 description 1
- RIQNSCBRYGWVTD-SSDOTTSWSA-N tert-butyl n-[(2r)-1-amino-3-methoxypropan-2-yl]carbamate Chemical compound COC[C@@H](CN)NC(=O)OC(C)(C)C RIQNSCBRYGWVTD-SSDOTTSWSA-N 0.000 description 1
- MSIDLARYVJJEQY-CYBMUJFWSA-N tert-butyl n-[(2r)-1-hydroxy-3-phenylmethoxypropan-2-yl]carbamate Chemical compound CC(C)(C)OC(=O)N[C@H](CO)COCC1=CC=CC=C1 MSIDLARYVJJEQY-CYBMUJFWSA-N 0.000 description 1
- PDAFIZPRSXHMCO-ZCFIWIBFSA-N tert-butyl n-[(2r)-1-hydroxypropan-2-yl]carbamate Chemical compound OC[C@@H](C)NC(=O)OC(C)(C)C PDAFIZPRSXHMCO-ZCFIWIBFSA-N 0.000 description 1
- MSIDLARYVJJEQY-ZDUSSCGKSA-N tert-butyl n-[(2s)-1-hydroxy-3-phenylmethoxypropan-2-yl]carbamate Chemical compound CC(C)(C)OC(=O)N[C@@H](CO)COCC1=CC=CC=C1 MSIDLARYVJJEQY-ZDUSSCGKSA-N 0.000 description 1
- PDAFIZPRSXHMCO-LURJTMIESA-N tert-butyl n-[(2s)-1-hydroxypropan-2-yl]carbamate Chemical compound OC[C@H](C)NC(=O)OC(C)(C)C PDAFIZPRSXHMCO-LURJTMIESA-N 0.000 description 1
- BEUUJDAEPJZWHM-COROXYKFSA-N tert-butyl n-[(2s,3s,5r)-3-hydroxy-6-[[(2s)-1-(2-methoxyethylamino)-3-methyl-1-oxobutan-2-yl]amino]-6-oxo-1-phenyl-5-[(2,3,4-trimethoxyphenyl)methyl]hexan-2-yl]carbamate Chemical compound C([C@@H]([C@@H](O)C[C@H](C(=O)N[C@H](C(=O)NCCOC)C(C)C)CC=1C(=C(OC)C(OC)=CC=1)OC)NC(=O)OC(C)(C)C)C1=CC=CC=C1 BEUUJDAEPJZWHM-COROXYKFSA-N 0.000 description 1
- ULGTWBJGRYVXNR-UHFFFAOYSA-N tert-butyl n-[4-[(propan-2-ylamino)methyl]oxan-4-yl]carbamate Chemical compound CC(C)(C)OC(=O)NC1(CNC(C)C)CCOCC1 ULGTWBJGRYVXNR-UHFFFAOYSA-N 0.000 description 1
- DKACXUFSLUYRFU-UHFFFAOYSA-N tert-butyl n-aminocarbamate Chemical compound CC(C)(C)OC(=O)NN DKACXUFSLUYRFU-UHFFFAOYSA-N 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- QIQCZROILFZKAT-UHFFFAOYSA-N tetracarbon dioxide Chemical group O=C=C=C=C=O QIQCZROILFZKAT-UHFFFAOYSA-N 0.000 description 1
- 125000005958 tetrahydrothienyl group Chemical group 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 125000004632 tetrahydrothiopyranyl group Chemical group S1C(CCCC1)* 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- 229940034915 thalomid Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000001984 thiazolidinyl group Chemical group 0.000 description 1
- CBDKQYKMCICBOF-UHFFFAOYSA-N thiazoline Chemical compound C1CN=CS1 CBDKQYKMCICBOF-UHFFFAOYSA-N 0.000 description 1
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical compound C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000005951 trifluoromethanesulfonyloxy group Chemical group 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- DFHAXXVZCFXGOQ-UHFFFAOYSA-K trisodium phosphonoformate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)P([O-])([O-])=O DFHAXXVZCFXGOQ-UHFFFAOYSA-K 0.000 description 1
- 229940111527 trizivir Drugs 0.000 description 1
- 229940044950 vaginal gel Drugs 0.000 description 1
- 239000000029 vaginal gel Substances 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 231100000889 vertigo Toxicity 0.000 description 1
- 229940023080 viracept Drugs 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 229940098802 viramune Drugs 0.000 description 1
- 108010045913 viscum album peptide Proteins 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229940087450 zerit Drugs 0.000 description 1
- 229940052255 ziagen Drugs 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/4375—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4985—Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention relates to a novel 1,3,4,8-tetrahydro-2H-pyrido[1,2-a]pyrazine derivative useful as an anti-HIV agent, a pharmaceutically acceptable salt thereof, and a solvate thereof.
- the present invention relates to a pharmaceutical composition comprising the derivative or a pharmaceutically acceptable salt thereof, or a solvate thereof, and a pharmaceutically acceptable carrier; an anti-HIV agent, an HIV integrase inhibitor and the like, comprising the derivative or a pharmaceutically acceptable salt thereof, or a solvate thereof as an active ingredient; an anti-HIV agent comprising a combination of the derivative or a pharmaceutically acceptable salt thereof, or a solvate thereof, and one or more kinds of other anti-HIV active substances; and the like.
- HIV Human Immunodeficiency Virus (type 1) belonging to retrovirus is a causative virus of AIDS (Acquired Immunodeficiency Syndrome).
- HIV targets CD4 positive cell groups such as helper T cell, macrophage and dendritic cell and destroys these immunocompetent cells to cause immunodeficiency.
- CD4 positive cell groups such as helper T cell, macrophage and dendritic cell and destroys these immunocompetent cells to cause immunodeficiency.
- a medicament that eradicates HIV in a living organism or suppresses its growth is effective for the prophylaxis or treatment of AIDS.
- HIV possesses a bimolecular RNA gene in a shell, which is covered with an envelope protein.
- the RNA codes for several enzymes (protease, reverse transcriptase, integrase) characteristic of the virus and the like.
- protease is present inside and outside the shell.
- DNA is transcribed by reverse transcriptase, and a full length double stranded DNA is produced.
- the DNA moves into the nucleus of the host cell and is incorporated by integrase into the DNA of the host cell.
- the incorporated DNA is converted to an mRNA by polymerase of the host cell, from which mRNA various proteins necessary for forming a virus are synthesized by HIV protease and the like, and a virus particle is finally formed, which then undergoes budding and its release.
- zidovudine, didanosine, lamivudine and the like have been already on the market as reverse transcriptase inhibitors, and indinavir, nelfinavir and the like as protease inhibitors.
- a multiple drug combination therapy using these medicaments in combination (to be also referred to as HAART (highly active antiretroviral therapy)) is also used.
- 3 agent combination therapy using two agents from reverse transcriptase inhibitors zidovudine and lamivudine, or tenofovir and emtricitabine
- efavirenz non-nucleic acid reverse transcriptase inhibitor
- protease inhibitor lopinavir, fosamprenavir or atazanavir
- an anti-HIV agent is effective for the prophylaxis or treatment of AIDS, and particularly a compound having an integrase inhibitory activity can be an effective anti-HIV agent.
- the present invention aims at provision of a compound having an anti-HIV activity, particularly a compound having an integrase inhibitory activity.
- the present inventors have conducted intensive studies in an attempt to find a compound having an anti-HIV action, particularly a compound having an integrase inhibitory action, and completed the present invention.
- the present invention provides the following.
- R a and R b optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the following group B,
- R A1 and R A2 are the same or different and each is
- R A1 and R A2 optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the following group B,
- R A3 and R A4 are the same or different and each is
- R A3 and R A4 optionally form, together with the nitrogen atom bonded thereto, a hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by 1 or 2 oxo groups,
- R a and R b are the same or different and each is
- R a and R b optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from group B,
- R a and R b are the same or different and each is
- R a and R b optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from group B, or
- R a and R b are the same or different and each is
- R a and R b optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from group B, or
- R a and R b form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from group B,
- the compound of the present invention can be medicaments effective for the prophylaxis or treatment of HIV infections or AIDS, as anti-HIV agents, having an HIV integrase inhibitory activity.
- anti-HIV agents having an HIV integrase inhibitory activity.
- other anti-HIV agent(s) such as protease inhibitor, reverse transcriptase inhibitor and the like, they can be more effective anti-HIV agents.
- having high inhibitory activity specific for integrase they can be medicaments safe for human body with a fewer side effects.
- halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
- the “C 1-6 alkyl group” is a straight chain or branched chain alkyl group having 1 to 6 carbon atoms, preferably a straight chain or branched chain alkyl group having 1 to 4 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a 1,1-dimethylpropyl group, a 1,2-dimethylpropyl group, a 2,2-dimethylpropyl group, a 1-ethylpropyl group, a hexyl group and the like.
- the “C 1-6 alkoxy group” is a straight chain or branched chain alkoxy group having 1 to 6 carbon atoms, preferably a straight chain or branched chain alkoxy group having 1 to 4 carbon atoms. Specific examples include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, an isobutyloxy group, a tert-butyloxy group, a pentyloxy group, a hexyloxy group and the like.
- C 1-6 alkoxy-C 1-6 alkyl group is that wherein the alkoxy moiety is the “C 1-6 alkoxy group” defined above, and the alkyl moiety is the “C 1-6 alkyl group” defined above.
- Preferred is a C 1-6 alkoxy-C 1-6 alkyl group wherein the alkoxy moiety is a straight chain or branched chain alkoxy group having 1 to 4 carbon atoms, and the alkyl moiety is a straight chain or branched chain alkyl group having 1 to 4 carbon atoms.
- Examples of the C 1-6 alkoxy-C 1-6 alkyl group include a methoxymethyl group, a methoxyethyl group, a methoxypropyl group, a methoxybutyl group, a methoxypentyl group, a methoxyhexyl group, an ethoxymethyl group, an ethoxyethyl group, an ethoxypropyl group, an ethoxybutyl group, an ethoxypentyl group, an ethoxyhexyl group, a propoxymethyl group, a propoxyethyl group, a propoxypropyl group, a propoxybutyl group, a propoxypentyl group, a propoxyhexyl group, a butoxymethyl group, a butoxyethyl group, a butoxypropyl group, a butoxybutyl group, a butoxypentyl group, a butoxyhexyl group, a butoxy
- C 1-6 alkoxy-C 1-6 alkoxy group is that wherein the C 1-6 alkoxy moiety is the “C 1-6 alkoxy group” defined above, preferably a straight chain or branched chain alkoxy group having 1 to 4 carbon atoms.
- Examples thereof include a methoxymethoxy group, a methoxyethoxy group, a methoxypropoxy group, a methoxybutoxy group, a methoxypentyloxy group, a methoxyhexyloxy group, an ethoxymethoxy group, an ethoxyethoxy group, an ethoxypropoxy group, an ethoxybutoxy group, an ethoxypentyloxy group, an ethoxyhexyloxy group, a propoxymethoxy group, a propoxyethoxy group, a propoxypropoxy group, a propoxybutoxy group, a propoxypentyloxy group, a propoxyhexyloxy group, a butoxymethoxy group, a butoxyethoxy group, a butoxypropoxy group, a butoxybutoxy group, a butoxypentyloxy group, a butoxyhexyloxy group, a pentyloxymethoxy group, a pen
- C 1-6 alkyl-carbonyl group is an alkyl-carbonyl group wherein the C 1-6 alkyl moiety is the “C 1-6 alkyl group” defined above, preferably a straight chain or branched chain alkyl group having 1 to 4 carbon atoms.
- Examples thereof include a methylcarbonyl group, an ethylcarbonyl group, a propylcarbonyl group, an isopropylcarbonyl group, a butylcarbonyl group, an isobutylcarbonyl group, a sec-butylcarbonyl group, a tert-butylcarbonyl group, a pentylcarbonyl group, an isopentylcarbonyl group, a 1,1-dimethylpropylcarbonyl group, hexylcarbonyl group and the like.
- C 1-6 alkyl-sulfonyl group is an alkyl-sulfonyl group wherein the C 1-6 alkyl moiety is the “C 1-6 alkyl group” defined above, preferably a straight chain or branched chain alkyl group having 1 to 4 carbon atoms.
- Examples thereof include a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, an isopropylsulfonyl group, a butylsulfonyl group, an isobutylsulfonyl group, a sec-butylsulfonyl group, a tert-butylsulfonyl group, a pentylsulfonyl group, an isopentylsulfonyl group, a 1,1-dimethylpropylsulfonyl group, a hexylsulfonyl group and the like.
- the “C 3-8 cycloalkyl group” is a saturated cycloalkyl group having 3 to 8 carbon atoms, preferably 3 to 5 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group and the like.
- the “C 3-8 cycloalkane” is saturated cycloalkane having 3 to 8 carbon atoms, preferably 3 to 5 carbon atoms, and examples thereof include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
- hetero ring means a saturated or unsaturated (including partially unsaturated and completely unsaturated) monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, or a fused ring of the hetero rings, or a fused ring of a carbon ring selected from benzene, cyclopentane and cyclohexane, and the hetero ring.
- saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom examples include a 4- to 7-membered saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and the like.
- azetidine pyrrolidine, tetrahydrofuran, tetrahydrothiophene, imidazolidine, pyrazolidine, 1,3-dioxolane, 1,3-oxathioran, oxazolidine, thiazolidine, piperidine, piperazine, tetrahydropyran, tetrahydrothiopyran, dioxane, morpholine, thiomorpholine and the like.
- Examples of the above-mentioned “unsaturated (including partially unsaturated and completely unsaturated) monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom” include a 4- to 7-membered unsaturated (including partially unsaturated and completely unsaturated) monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and the like.
- pyrroline furan, thiophene, imidazole, imidazoline, pyrazole, oxazole, isoxazole, thiazole, isothiazole, 1,2,4-triazole, 1,2,3-triazole, tetrazole, 1,3,4-oxadiazole, 1,2,4-oxadiazole, 1,3,4-thiadiazole, 1,2,4-thiadiazole, furazan, pyridine, pyrimidine, 3,4-dihydropyrimidine, pyridazine, pyrazine, 1,3,5-triazine, pyrazoline, oxazoline, isooxazoline, thiazoline, isothiazoline, pyran and the like.
- fused ring of the hetero rings or fused ring of a carbon ring selected from benzene, cyclopentane and cyclohexane, and the hetero ring
- indole isoindole, benzimidazole, indazole, benzothiazole, benzofuran, isobenzofuran, indolizine, quinoline, isoquinoline, 1,2-dihydroquinoline, quinazoline, quinoxaline, cinnoline, phthalazine, quinolizidine, purine, pteridine, indoline, isoindoline, 5,6,7,8-tetrahydroquinoline, 1,2,3,4-tetrahydroquinoline, 1,3-benzodioxolane, 3,4-methylenedioxypyridine, 4,5-ethylenedioxypyrimidine, chromene, chromane, isochromane, 1,2,4-benzotri
- the “saturated monocyclic hetero ring” formed by R a and R b together with the nitrogen atom bonded thereto means a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and examples thereof include a 4- to 7-membered (e.g., 4- to 6-membered) saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 (e.g., 1 to 3, preferably 1) hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom, and the like.
- saturated monocyclic hetero ring examples include those exemplified as the above-mentioned “saturated monocyclic hetero ring containing, beside carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom”, which contain, beside carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom.
- the saturated monocyclic hetero ring is optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) substituents selected from the following group B.
- the “saturated monocyclic hetero ring” formed by R 2 and R 3 or R 4 and R 5 , together with the carbon atom bonded thereto means a saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and examples thereof include a 5- to 7-membered (e.g., 6-membered) saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 (e.g., 1 to 3, preferably 1) hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and the like.
- saturated monocyclic hetero ring examples include those similar to the saturated monocyclic hetero rings exemplified as the above-mentioned “saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom”.
- the “saturated monocyclic hetero ring” formed by R A1 and R A2 together with the nitrogen atom bonded thereto means a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and examples thereof include a 4- to 6-membered saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 3 (e.g., 1) hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom and the like.
- saturated monocyclic hetero ring examples include those exemplified as the above-mentioned “saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom”, which optionally contain, besides carbon atom and one nitrogen atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom.
- the saturated monocyclic hetero ring is optionally substituted by the same or different 1 to 5 substituents selected from the following group B.
- the “hetero ring” formed by R A3 and R A4 together with the nitrogen atom bonded thereto means a hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and examples thereof include a 4- to 6-membered (e.g., 5-membered) monocyclic hetero ring, a 8- to 10-membered (e.g., 9-membered) fused cyclic hetero ring and the like, optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom.
- hetero ring examples include those exemplified as the above-mentioned “hetero ring”, which optionally contain, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom.
- the hetero ring is optionally substituted by 1 or 2 oxo groups.
- the “saturated monocyclic heterocyclic group” for R 1 means a saturated monocyclic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and examples thereof include a 5- or 6-membered saturated monocyclic heterocyclic group containing, besides carbon atom, 1 to 3 (e.g., 1) hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and the like.
- saturated monocyclic heterocyclic group examples include groups derived from those exemplified as the above-mentioned “saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom”, which optionally contain, besides carbon atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom and the like.
- Examples thereof include a pyrrolidinyl group, a tetrahydrofuryl (e.g., 3-tetrahydrofuryl) group, a tetrahydrothienyl group, an imidazolidinyl group, a pyrazolidinyl group, a 1,3-dioxolanyl group, a 1,3-oxathioranyl group, an oxazolidinyl group, a thiazolidinyl group, a piperidinyl group, a piperazinyl group, a tetrahydropyranyl group, a tetrahydrothiopyranyl group, a dioxanyl group, a morpholinyl group, a thiomorpholinyl group and the like.
- a pyrrolidinyl group e.g., 3-tetrahydrofuryl
- a tetrahydrothienyl group an imidazolidinyl
- the “group A” includes the following substituents (a) to (i).
- R A1 and R A2 are the same or different and each is
- R A1 and R A2 optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the following group B,
- R A3 and R A4 are the same or different and each is
- R A3 and R A4 optionally form, together with the nitrogen atom bonded thereto, a hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by 1 or 2 oxo groups,
- C 1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A is that wherein the “C 1-6 alkyl group” defined above is optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) substituents selected from “group A” defined above, and includes an unsubstituted C 1-6 alkyl group.
- the “group B” includes the following substituents (a) to (e).
- the “C 1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group B” is that wherein the “C 1-6 alkyl group” defined above is optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) substituents selected from the “group B” defined above, and includes an unsubstituted C 1-6 alkyl group.
- the “saturated monocyclic hetero ring is optionally substituted by the same or different 1 to 5 substituents selected from group B” for R a and R b , or R A1 and R A2 means that the “saturated monocyclic hetero ring” defined above which is formed by R a and R b , or R A1 and R A2 together with the nitrogen atom bonded thereto is optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) substituents selected from the “group B” defined above, and includes an unsubstituted saturated monocyclic hetero ring.
- 1 to 5 e.g., 1 to 3, preferably 1 to 3
- R 1 is a C 1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
- R 1 is a C 1-6 alkyl group.
- R 1 is a C 1-6 alkyl group substituted by a C 3-8 cycloalkyl group.
- R 1 is a C 3-8 cycloalkyl group.
- R 1 is (1) a C 1-6 alkyl group optionally substituted by the same or different 1 to 3 C 3-8 cycloalkyl groups,
- a tetrahydrofuryl e.g., 3-tetrahydrofuryl
- R 2 , R 3 , R 4 and R 5 are the same or different and each is
- R a and R b are the same or different and each is
- R a and R b optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B,
- R 2 , R 3 , R 4 and R 5 one of R 2 , R 3 , R 4 and R 5 is —CO—NR a R b
- R a and R b are the same or different and each is
- R a and R b optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B.
- one of R 2 , R 3 , R 4 and R 5 is a C 1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group A.
- R 2 , R 3 , R 4 and R 5 are respectively shown below.
- R a and R b are the same or different and each is
- R 3 more preferred are a hydrogen atom, a methyl group and a methoxymethyl group.
- R 5 preferred are a hydrogen atom and a C 1-6 alkyl group optionally substituted by one substituent selected from a C 1-6 alkoxy group and a C 1-6 alkoxy-C 1-6 alkoxy group.
- R 5 more preferred are a hydrogen atom and a methyl group or an ethyl group, which is optionally substituted by one substituent selected from a methoxy group and a methoxyethoxy group.
- R 2 and R 3 , or R 4 and R 5 optionally form, together with the carbon atom bonded thereto, i) C 3-8 cycloalkane or ii) a saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom.
- R 2 and R 3 As the ring formed by R 2 and R 3 , or R 4 and R 5 together with the carbon atom bonded thereto, more preferred are cyclopropane and tetrahydropyran.
- R 2 , R 3 , R 4 and R 5 are not hydrogen atoms at the same time.
- R 6 preferred is a halogen atom.
- R 6 are a methyl group, a trifluoromethyl group, a methoxy group, an ethoxy group, a fluorine atom, a chlorine atom, a bromine atom and a cyclopropyl group.
- Y preferred is CH.
- Y is a nitrogen atom.
- n is an integer of 1 to 5, and when m is an integer of 2 to 5, the above-mentioned R 6 may be the same or different.
- n preferred is 1 to 3.
- n more preferred is 1 or 2.
- n is an integer of 1 to 3.
- n preferred is 1.
- R 11 those exemplified as the preferable embodiments of R 1 in the above-mentioned formula (I), which are within the scope of R 11 , are preferable.
- R 21 , R 31 , R 41 and R 51 are the same or different and each is
- R 21 preferred is a hydrogen atom.
- R 21 is a C 1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group A. More preferred is a C 1-6 alkyl group.
- R 21 examples include those exemplified as the preferable embodiments of R 2 in the above-mentioned formula (I), which are within the scope of R 21 .
- R 31 preferred is a hydrogen atom.
- R 31 examples include those exemplified as the preferable embodiments of R 3 in the above-mentioned formula (I), which are within the scope of R 31 .
- R 41 preferred is a hydrogen atom.
- R 41 is a C 1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group A. More preferred is a C 1-6 alkyl group.
- R 41 examples include those exemplified as the preferable embodiments of R 4 in the above-mentioned formula (I), those contained within the scope of R 41 .
- R 51 preferred is a hydrogen atom.
- R 51 is those exemplified as the preferable embodiments of R 5 in the above-mentioned formula (I), which are within the scope of R 51 .
- R 21 , R 31 , R 41 and R 51 are not hydrogen atoms at the same time.
- R 61 is a halogen atom.
- R 61 preferred are a fluorine atom and a chlorine atom.
- R 62 is a hydrogen atom or a halogen atom.
- R 62 preferred are a hydrogen atom, a fluorine atom and a bromine atom.
- R 12 is a C 1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
- R 12 those exemplified as the preferable embodiments of R 1 in the above-mentioned formula (I), which are within the scope of R 12 , are preferable.
- R 22 , R 32 , R 42 and R 52 are the same or different and each is
- R a and R b are the same or different and each is
- R a and R b optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B, or
- R 22 preferred is a hydrogen atom.
- R 22 are those exemplified as the preferable embodiments of R 2 in the above-mentioned formula (I), which are within the scope of R 22 .
- R 32 preferred is a hydrogen atom.
- R 32 are those exemplified as the preferable embodiments of R 3 in the above-mentioned formula (I), which are within the scope of R 32 .
- R 42 preferred is —CO—NR a R b
- R 42 are those exemplified as the preferable embodiments of R 4 in the above-mentioned formula (I), which are within the scope of R 42 .
- R 52 preferred is a C 1-6 alkyl group.
- R 52 is those exemplified as the preferable embodiments of R 5 in the above-mentioned formula (I), which are within the scope of R 52 .
- R 22 , R 32 , R 42 and R 52 are not hydrogen atoms at the same time.
- R 63 is a halogen atom.
- R 63 preferred is a fluorine atom.
- R 64 is a hydrogen atom or a halogen atom.
- R 64 preferred are a hydrogen atom and a fluorine atom.
- a pharmaceutically acceptable salt of the “compounds represented by the above-mentioned formula [I], the formula [I-1] and the formula [I-2]” may be any salt as long as it forms an atoxic salt with the compound of the present invention.
- examples thereof include a salt with an inorganic acid, a salt with an organic acid, a salt with an inorganic base, a salt with an organic base, a salt with an amino acid and the like.
- Examples of the salt with an inorganic acid include salts with hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrobromic acid and the like.
- Examples of the salt with an organic acid include salts with oxalic acid, malonic acid, maleic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid, trifluoroacetic acid, gluconic acid, ascorbic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid and the like.
- Examples of the salt with an inorganic base include sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt and the like.
- Examples of the salt with an organic base include salts with methylamine, diethylamine, trimethylamine, triethylamine, ethanolamine, diethanolamine, triethanolamine, ethylenediamine, tris(hydroxymethyl)methylamine, dicyclohexylamine, N,N′-dibenzylethylenediamine, guanidine, pyridine, picoline, choline, cinchonine, meglumine and the like.
- Examples of the salt with an amino acid include salts with lysine, arginine, aspartic acid, glutamic acid and the like.
- Each salt can be obtained by reacting a compound represented by the formula [I], the formula [I-1] and the formula [I-2] with an inorganic base, an organic base, an inorganic acid, an organic acid or an amino acid according to a method known per se.
- salts with hydrochloric acid e.g., 1 hydrochloride, 2 hydrochloride
- salts with hydrobromic acid e.g., 1 hydrobromide, 2 hydrobromide
- sodium salts with hydrochloric acid e.g., 1 hydrochloride, 2 hydrochloride
- hydrobromic acid e.g., 1 hydrobromide, 2 hydrobromide
- sodium salts with hydrochloric acid e.g., 1 hydrochloride, 2 hydrochloride
- hydrobromic acid e.g., 1 hydrobromide, 2 hydrobromide
- the “solvate” is a compound represented by the formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, with which a molecule of a solvent is coordinated, and also encompasses hydrates (also referred to as water-containing compound).
- the solvate is preferably a pharmaceutically acceptable solvate, such as a 1 hydrate, a 1 ⁇ 2 hydrate, a 2 hydrate, a 1 hydrate of sodium salt, a 1 methanolate, a 1 ethanolate, a 1 acetonitrilate, a 2 ⁇ 3 ethanolate of 2 hydrochloride of the compound represented by the formula [I], the formula [I-1] and the formula [I-2] and the like.
- a solvate of a compound represented by the formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof can be obtained according to a method known per se.
- the compound of the present invention one isolated and purified from various isomers, by-products, metabolites or prodrugs is preferable, and one having a purity of not less than 90% is preferable and one having a purity of not less than 95% is more preferable.
- the compounds represented by the formula [I], the formula [I-1] and the formula [I-2] may be crystal or amorphous.
- a compound represented by the formula [I], the formula [I-1] and the formula [I-2] may be labeled with an isotope (e.g., 3 H, 14 C, 35 S etc.).
- compounds represented by the formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, or a solvate thereof compounds represented by the formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, or a solvate thereof, which is substantially purified, is preferable. More preferred is compounds represented by the formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, or a solvate thereof, which has been purified to a purity of not less than 80%.
- a prodrug of a compound represented by the formula [I], the formula [I-1] and the formula [I-2] can also be a useful medicament.
- a “prodrug” is a derivative of the compound of the present invention, which has a chemically or metabolically decomposable group and which restores to the original compound to show its inherent efficacy after administration to the body by, for example, hydrolysis, solvolysis or decomposition under physiological conditions. It includes a complex and a salt, not involving a covalent bond.
- the prodrug is utilized, for example, for improving absorption by oral administration or targeting of a target site.
- Examples of the site to be modified include highly reactive functional groups in the compound of the present invention, such as hydroxyl group, carboxyl group, amino group and the like.
- hydroxyl-modifying group examples include acetyl group, propionyl group, isobutyryl group, pivaloyl group, palmitoyl group, benzoyl group, 4-methylbenzoyl group, dimethylcarbamoyl group, dimethylaminomethylcarbonyl group, sulfo group, alanyl group, fumaryl group and the like.
- a sodium salt of 3-carboxybenzoyl group, 2-carboxyethylcarbonyl group and the like can also be used.
- carboxyl-modifying group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pivaloyloxymethyl group, carboxymethyl group, dimethylaminomethyl group, 1-(acetyloxy) ethyl group, 1-(ethoxycarbonyloxy)ethyl group, 1-(isopropyloxycarbonyloxy)ethyl group, 1-(cyclohexyloxycarbonyloxy) ethyl group, (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl group, benzyl group, phenyl group, o-tolyl group, morpholinoethyl group, N,N-diethylcarbamoylmethyl group, phthalidyl group and the like.
- amino-modifying group examples include hexylcarbamoyl group, 3-methylthio-1-(acetylamino)propylcarbonyl group, 1-sulfo-1-(3-ethoxy-4-hydroxyphenyl)methyl group, (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl group and the like.
- compositions examples include oral preparations such as tablet, capsule, granule, powder, troche, syrup, emulsion, suspension and the like, and parenteral agents such as external preparation, suppository, injection, eye drop, transnasal agent, pulmonary preparation and the like.
- the pharmaceutical composition of the present invention (e.g., an anti-HIV composition, a pharmaceutical composition for HIV integrase inhibitory etc.) is produced by appropriately admixing a suitable amount of a compound represented by the formula [I], the formula [I-1] or the formula [I-2] of the present invention or a salt thereof, or a solvate thereof with at least one kind of a pharmaceutically acceptable carrier according to a method known per se in the technical field of pharmaceutical preparations.
- the content of the compound represented by the formula [I], the formula [I-1] or the formula [I-2] of the present invention or a salt thereof, or a solvate thereof in the pharmaceutical composition varies depending on the dosage form, the dose and the like, and the like. It is, for example, 0.1 to 100 wt % of the whole composition.
- “pharmaceutically acceptable carrier” examples include various organic or inorganic carrier substances conventionally used as preparation materials such as excipient, disintegrant, binder, fluidizer, lubricant and the like for solid dosage forms, and solvent, solubilizing agent, suspending agent, isotonicity agent, buffering agent, soothing agent and the like for liquid preparations. Where necessary, additives such as preservative, antioxidant, colorant, sweetening agent and the like are used.
- excipient examples include lactose, sucrose, D-mannitol, D-solbitol, cornstarch, dextrin, microcrystalline cellulose, crystalline cellulose, carmellose, carmellose calcium, sodium carboxymethyl starch, low-substituted hydroxypropylcellulose, gum arabic and the like.
- disintegrant examples include carmellose, carmellose calcium, carmellose sodium, sodium carboxymethyl starch, croscarmellose sodium, crospovidone, low-substituted hydroxypropylcellulose, hydroxypropylmethylcellulose, crystalline cellulose and the like.
- binder examples include hydroxypropylcellulose, hydroxypropylmethylcellulose, povidone, crystalline cellulose, sucrose, dextrin, starch, gelatin, carmellose sodium, gum arabic and the like.
- fluidizer examples include light anhydrous silicic acid, magnesium stearate and the like.
- lubricant examples include magnesium stearate, calcium stearate, talc and the like.
- solvent examples include purified water, ethanol, propylene glycol, macrogol, sesame oil, corn oil, olive oil and the like.
- Examples of the “solubilizing agent” include propylene glycol, D-mannitol, benzyl benzoate, ethanol, triethanolamine, sodium carbonate, sodium citrate and the like.
- suspending agent examples include benzalkonium chloride, carmellose, hydroxypropylcellulose, propylene glycol, povidone, methylcellulose, glycerol monostearate and the like.
- isotonicity agent examples include glucose, D-sorbitol, sodium chloride, D-mannitol and the like.
- buffering agent examples include sodium hydrogen phosphate, sodium acetate, sodium carbonate, sodium citrate and the like.
- Examples of the “soothing agent” include benzyl alcohol and the like.
- preservative examples include ethyl parahydroxybenzoate, chlorobutanol, benzyl alcohol, sodium dehydroacetate, sorbic acid and the like.
- antioxidant examples include sodium sulfite, ascorbic acid and the like.
- colorant examples include food colors (e.g., Food Color Red No. 2 or 3, Food Color yellow 4 or 5 etc.), ⁇ -carotene and the like.
- sweetening agent examples include saccharin sodium, dipotassium glycyrrhizinate, aspartame and the like.
- the pharmaceutical composition of the present invention can be administered not only to human but also to mammals other than human (e.g., mouse, rat, hamster, guinea pig, rabbit, cat, dog, swine, bovine, horse, sheep, monkey etc.) orally or parenterally (e.g., topical, rectal, intravenous administration etc.). While the dose varies depending on the subject of administration, disease, symptom, dosage form, administration route and the like, for example, the dose for oral administration to an adult patient (body weight: about 60 kg) is generally within the scope of about 1 mg to 1 g per day, based on the compound of the present invention as an active ingredient. The amount can be administered in one to several portions.
- mammals other than human e.g., mouse, rat, hamster, guinea pig, rabbit, cat, dog, swine, bovine, horse, sheep, monkey etc.
- parenterally e.g., topical, rectal, intravenous administration etc.
- the compounds represented by the above-mentioned formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, or a solvate thereof inhibits HIV integrase, and can be used as an active ingredient of a therapeutic agent or prophylactic agent for HIV infection.
- HIV integrase means to specifically inhibit the function as HIV integrase to eliminate or attenuate the activity thereof. For example, it means to specifically inhibit the function of HIV integrase under the conditions of the below-mentioned Experimental Example 1.
- HIV integrase inhibitor preferred is a “human HIV integrase inhibitor”.
- the compounds represented by the above-mentioned formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, or a solvate thereof can be used in combination (hereinafter to be referred to as combination use) with other single or plural medicaments (hereinafter to be also referred to as a concomitant drug) by a conventional method generally employed in the medicament field.
- the administration frequency of the compounds represented by the above-mentioned formula [I], the formula [I-1] and the formula [I-2], or a pharmaceutically acceptable salt thereof, or a solvate thereof, and a concomitant drug is not limited, and they may be administered as a combined agent to the subject of administration, or the two may be administered simultaneously or at certain time intervals. In addition, they may be used as a medicament in the form of a kit containing the pharmaceutical composition of the present invention and a concomitant drug.
- the dose of the concomitant drug may be determined according to the dosage used clinically, and can be appropriately determined depending on the subject of administration, disease, symptom, dosage form, administration route, administration time, combination and the like.
- the administration form of the concomitant drug is not particularly limited, and the compound of the present invention or a salt thereof, or a solvate thereof and the concomitant drug need only be combined.
- An anti-HIV agent is generally required to sustain its effect for a long time, so that can be effective not only for temporal suppression of viral growth but also prohibition of viral re-growth. This means that a prolonged administration is necessary and that a high single dose may be frequently inevitable to sustain effect for a longer period through the night. Such prolonged and high dose administration increases the risk of causing side effects.
- one of the preferable embodiments of the compound of the present invention is such compound permitting high absorption by oral administration, and such compound capable of maintaining blood concentration of the administered compound for an extended period of time.
- preferable embodiments of the compound of the present invention are a compound having fine pharmacological activity (e.g., a compound having strong HIV integrase inhibitory activity, a compound having high anti-HIV activity), a compound having fine bioavailability (e.g., a compound having high cellular membrane permeability, a compound stable to metabolic enzyme, a compound with low binding ability to protein and the like), a compound having an anti-HIV activity against HIV having G140S/Q148H mutation, and the like.
- a compound having fine pharmacological activity e.g., a compound having strong HIV integrase inhibitory activity, a compound having high anti-HIV activity
- a compound having fine bioavailability e.g., a compound having high cellular membrane permeability, a compound stable to metabolic enzyme, a compound with low binding ability to protein and the like
- a compound having an anti-HIV activity against HIV having G140S/Q148H mutation e.g., a compound having strong
- a compound having high pharmacological activity (concretely, IC 50 of HIV integrase inhibitory activity is less than 0.1 ⁇ M, preferably less than 0.01 ⁇ M) and high oral absorption, whose blood concentration is maintained for a long time after administration, is more preferable.
- dose and/or frequency of administration of the compound of the present invention to human are/is expected to be decreased.
- Preferable administration frequency is not more than twice a day, more preferably, not more than once a day (e.g., once a day, once in two days, etc.).
- the compound of the present invention can be used for the improvement of viremia due to HIV and/or maintenance of improved condition thereof, prophylaxis and treatment of virus infections, particularly, an HIV infection and/or maintenance of improved condition thereof.
- a decrease in the virus level or HIV RNA level in the body, particularly in blood can be used.
- the “prophylaxis of HIV infection” includes administration of a medicament to a person with suspected or possible HIV infection (infection due to transfusion, infection from mother to child), and the like.
- prophylaxis of AIDS is meant, for example, administration of a medicament to an individual who tested HIV positive but has not yet developed the disease state of AIDS; administration of a medicament to an individual who shows an improved disease state of AIDS after treatment but who carries HIV still to be eradicated and whose relapse of AIDS is concerned; administration of a medicament before infection with HIV out of a fear of possible infection; and the like.
- the “other anti-HIV agents” and “other anti-HIV active substances” to be used for a multiple drug combination therapy include an anti-HIV antibody or other antibody, an HIV vaccine or other vaccine, immunostimulants such as interferon, interferon agonist and the like, a ribozyme against HIV, an HIV antisense drug, an HIV reverse transcriptase inhibitor, an HIV protease inhibitor, an HIV integrase inhibitor, an inhibitor of attachment between a receptor (CD4, CXCR4, CCR5 and the like) of a host cell recognized by virus and the virus (CCR5 antagonist and the like), a DNA polymerase inhibitor or DNA synthesis inhibitor, a medicament acting on HIVp24, an HIV fusion inhibitor, an IL-2 agonist or antagonist, a TNF- ⁇ antagonist, an ⁇ -glucosidase inhibitor, a purine nucleoside phosphorylase inhibitor, an apoptosis agonist or inhibitor, a cholinesterase inhibitor, an immunomodulator and the like.
- HIV reverse transcriptase inhibitor examples include Retrovir® (zidovudine), Epivir® (lamivudine), Zerit® (sanilvudine), Videx® (didanosine), Hivid® (zalcitabine), Ziagen® (abacavir sulfate), Viramune® (nevirapine), Stocrin® (efavirenz), Rescriptor® (delavirdine mesylate), Combivir® (zidovudine+lamivudine), Trizivir® (abacavir sulfate+lamivudine+zidovudine), Coactinon® (emivirine), Phosphonovir®, Coviracil®, alovudine (3′-fluoro-3′-deoxythymidine), Thiovir (thiophosphonoformic acid), Capravirin (5-[(3,5-dichlorophenyl)thio]-4-isopropyl-1-(4-pyri)
- HIV protease inhibitor examples include Crixivan® (indinavir sulfate ethanolate), saquinavir, Invirase® (saquinavir mesylate), Norvir® (ritonavir), Viracept® (nelfinavir mesylate), lopinavir, Prozei® (amprenavir), Kaletra® (ritonavir+lopinavir), mozenavir dimesylate ([4R-(4 ⁇ ,5 ⁇ ,6 ⁇ )]-1,3-bis[(3-aminophenyl)methyl]-hexahydro-5,6-dihydroxy-4,7-bis(phenylmethyl)-2H-1,3-diazepin-2-one dimethanesulfonate), tipranavir (3′-[(1R)-1-[(6R)-5,6-dihydro-4-hydroxy-2-oxo-6-phenylethyl-6-propyl-2H-pyran
- the HIV integrase inhibitor is exemplified by S-1360, L-870810 and the like
- the DNA polymerase inhibitor or DNA synthesis inhibitor is exemplified by Foscavir®, ACH-126443 (L-2′,3′-didehydro-dideoxy-5-fluorocytidine), entecavir ((1S,3S,4S)-9-[4-hydroxy-3-(hydroxymethyl)-2-methylenecyclopentyl]guanine), calanolide A ([10R-(10 ⁇ ,11 ⁇ ,12 ⁇ )]-11,12-dihydro-12-hydroxy-6,6,10,11-tetramethyl-4-propyl-2H,6H,10H-benzo[1,2-b:3,4-b′:5,6-b′′]tripyran-2-one), calanolide B, NSC-674447 (1,1′-azobisformamide), Iscador (viscum alubm extract), Rubitecan and the like, the HIV antis
- Neurotropin® Lidakol®, Ancer 20®, Ampligen®, Anticort®, Inactivin®, PRO-2000, Rev M10 gene, HIV specific cytotoxic T cell (CTL immunotherapy, ACTG protocol 080 therapy, CD4- ⁇ gene therapy), SCA binding protein, RBC-CD4 complex, Motexafin gadolinium, GEM-92, CNI-1493, ( ⁇ )-FTC, Ushercell, D2S, BufferGel®, VivaGel®, Glyminox vaginal gel, sodium lauryl sulfate, 2F5, 2F5/2G12, VRX-496, Ad5gag2, BG-777, IGIV-C, BILR-255 and the like are exemplified.
- the compound of the present invention can be combined with one or more (e.g., 1 or 2) kinds of other anti-HIV active substances (to be also referred to as other anti-HIV agents), and used as an anti-HIV agent and the like for the prophylaxis or treatment of HIV infection.
- other anti-HIV agents e.g., 1 or 2
- other anti-HIV active substances e.g., 1 or 2
- the combination of medicaments include a combination of a group consisting of efavirenz, tenofovir, emtricitabine, indinavir, nelfinavir, atazanavir, ritonavir+indinavir, ritonavir+lopinavir, ritonavir+saquinavir, didanosine+lamivudine, zidovudine+didanosine, stavudine+didanosine, zidovudine+lamivudine, stavudine+lamivudine and tenofovir+emtricitabine, and the compound of the present invention (Guidelines for the Use of Antiretroviral Agents in HIV-Infected Adults and Adolescents.
- Particularly preferred is a combined use of two agents with efavirenz, indinavir, nelfinavir, tenofovir, emtricitabine, zidovudine or lamivudine, and a combined use of three agents with zidovudine+lamivudine, tenofovir+lamivudine, tenofovir+zidovudine, tenofovir+efavirenz, tenofovir+nelfinavir, tenofovir+indinavir, tenofovir+emtricitabine, emtricitabine+lamivudine, emtricitabine+zidovudine, emtricitabine+efavirenz, emtricitabine+nelfinavir, emtricitabine+indinavir, nelfinavir+lamivudine, nelfinavir+zidovudine, nelfinavir
- the compound of the present invention can be administered simultaneously with a medicament to be used in combination (hereinafter concomitant drug) or administered at certain time intervals.
- a pharmaceutical composition comprising the compound of the present invention and a concomitant drug can be administered.
- a pharmaceutical composition comprising the compound of the present invention and a pharmaceutical composition comprising a concomitant drug may be administered separately.
- the administration route of the compound of the present invention and that of the concomitant drug may be the same or different.
- the compound of the present invention can be administered once a day or several times a day in a single dose of 0.01 mg to 1 g, or may be administered at a smaller dose.
- the concomitant drug can be administered at a dose generally used for the prevention or treatment of an HIV infection, for example, at a single dose of 0.01 mg to 0.3 g. Alternatively, it may be administered in a smaller dose.
- the present invention is not limited to these production methods.
- the order of reactions can be appropriately changed.
- the reactions may be performed from a reasonable step or a reasonable substitution moiety.
- an appropriate substituent conversion (conversion or further modification of substituent) step may be inserted between respective steps.
- protection and deprotection may be appropriately performed.
- reagents other than those exemplified below may be used as appropriate.
- the starting compounds whose production methods are not described are commercially available or can be easily prepared by a combination of known synthesis reactions.
- the compound obtained in each step can be purified by conventional methods such as distillation, recrystallization, column chromatography and the like. In some cases, the next step may be performed without isolation and purification.
- room temperature means 1 to 40° C.
- compound [I-1-6] which is compound [I-3-1] wherein Y is CH can be synthesized by the following method.
- R 11a and R 11c are the same or different and each is a hydroxyl-protecting group such as an acetyl group, a benzyl group, a methyl group, an ethyl group, an isopropyl group, a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a triisopropylsilyl group, a tert-butyldiphenylsilyl group and the like
- R 11b is a carboxyl-protecting group such as a methyl group, an ethyl group, a benzyl group, a tert-butyl group and the like
- X 11a is a halogen atom such as a chlorine atom, a bromine atom and the like, and other symbols are each as described above.
- Compound [I-1-2] can be obtained by introducing a protecting group into the carboxyl group of compound [I-1-1] according to a known method.
- compound [I-1-2] when R 11b is a methyl group, compound [I-1-2] can be obtained by reacting compound [I-1-1] with trimethylsilyldiazomethane at a low temperature to room temperature in a single or mixed solvent such as tetrahydrofuran (THF), toluene, methanol, ethanol and the like.
- a single or mixed solvent such as tetrahydrofuran (THF), toluene, methanol, ethanol and the like.
- Compound [I-1-3] can be obtained by introducing a halogen atom X 11a into compound [I-1-2] according to a known method.
- compound [I-1-3] can be obtained by reacting compound [I-1-2] with a bromination reagent (e.g., bromine, trimethylphenylammonium tribromide etc.) at room temperature to under heating in a solvent such as chloroform, methylene chloride, acetic acid and the like.
- a bromination reagent e.g., bromine, trimethylphenylammonium tribromide etc.
- Compound [I-1-4] can be obtained by introducing a protecting group into a hydroxyl group of compound [I-1-3] according to a known method.
- compound [I-1-4] can be obtained by reacting compound [I-1-3] with benzyl halide (e.g., benzyl chloride, benzyl bromide etc.) at room temperature to under heating in the presence of a base such as potassium acetate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium phosphate, triethylamine, sodium hydrogen phosphate, cesium carbonate, sodium hydride, potassium t-butoxide, lithiumdiisopropylamide (LDA) and the like in a solvent such as N,N-dimethylformamide (DMF), dimethylacetamide (DMA), acetonitrile, 1,2-dimethoxyethane, THF, toluene and the like.
- benzyl halide e.g., benzyl chloride, benzyl bromide etc.
- a base such as potassium acetate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium phosphate,
- Compound [I-1-6] can be obtained by subjecting compound [I-1-4] to a coupling reaction with compound [I-1-5] in the presence of a palladium catalyst (e.g., tris(dibenzylideneacetone)dipalladium(0), tetrakis(triphenylphosphine)palladium(0) and bis(triphenylphosphine)palladium(II) dichloride etc.) at room temperature to under heating in a solvent such as DMF, DMA, acetonitrile, toluene, 1,4-dioxane and the like.
- a ligand e.g., tri(2-furyl)phosphine, tributylphosphine etc.
- a ligand e.g., tri(2-furyl)phosphine, tributylphosphine etc.
- compound [I-1-5] wherein n is 1 can be obtained in the same manner as in step 1R-2 and step 1R-3 of the below-mentioned Reference Example 1.
- compound [I-2-9] which is compound [I-3-1] wherein Y is a nitrogen atom and R 13b is an ethyl group can be synthesized by the following method.
- R 12a is a hydroxyl-protecting group such as acetyl group, benzyl group, methyl group, ethyl group, isopropyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, triisopropylsilyl group, tert-butyldiphenylsilyl group and the like
- R 12b is a carboxyl-protecting group such as methyl group, ethyl group, benzyl group, tert-butyl group and the like, and other symbols are each as described above.
- Compound [I-2-3] can be obtained by reacting compound [I-2-1] with compound [I-2-2] at ⁇ 78° C. to room temperature conditions in a solvent such as DMF, DMA, dimethyl sulfoxide (DMSO), THF, toluene and the like, in the presence of a base such as sodium hydride, lithiumdiisopropylamide (LDA), lithium hexamethyldisilazide (LHMDS) and the like.
- a solvent such as DMF, DMA, dimethyl sulfoxide (DMSO), THF, toluene and the like
- a base such as sodium hydride, lithiumdiisopropylamide (LDA), lithium hexamethyldisilazide (LHMDS) and the like.
- Compound [I-2-4] can be obtained by reacting Compound [I-2-3] with N,N-dimethylformamidedimethylacetal at room temperature to under heating in a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride, toluene and the like.
- a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride, toluene and the like.
- Compound [I-2-6] can be obtained by adding a base such as sodium hydride, LDA, LHMDS and the like to a solution of Compound [I-2-4] dissolved in a solvent such as DMF, DMA, DMSO, THF, toluene and the like at -78° C. to room temperature, reacting the compound with compound [I-2-5] and treating same with triethylamine, diisopropylethylamine or the like.
- a base such as sodium hydride, LDA, LHMDS and the like
- a solvent such as DMF, DMA, DMSO, THF, toluene and the like
- Compound [I-2-7] can be obtained by removing the carboxyl-protecting group R 12b of compound [I-2-6] by a known method.
- the protecting group is a tert-butyl group
- compound [I-2-7] can be obtained by stirring compound [I-2-6] at a low temperature to under heating in a single or mixed solvent of hexane, chloroform, methylene chloride, ethyl acetate, toluene, 1,2-dimethoxyethane, 1,4-dioxane, THF, methanol, ethanol, 2-propanol, DMSO, DMF, DMA, acetonitrile, water and the like in the presence of acid such as p-toluenesulfonic acid, methanesulfonic acid, boron trifluoride, boron trichloride, boron tribromide, aluminum trichloride, hydrochloric acid, hydrogen bromide, phosphoric acid,
- Compound [I-2-9] can be obtained by converting compound [I-2-7] to acid chloride by a known method, and further reacting the compound with compound [I-2-8].
- compound [I-2-9] can be obtained by converting compound [I-2-7] to acid chloride with a chlorinating agent such as oxalyl chloride, thionyl chloride, phosphorus trichloride and the like at a low temperature to room temperature in a single or mixed solvent of hexane, chloroform, methylene chloride, ethyl acetate, toluene, 1,2-dimethoxyethane, 1,4-dioxane, THF and the like in the presence of a catalytic amount of DMF where necessary, and reacting the compound with compound [I-2-8].
- a chlorinating agent such as oxalyl chloride, thionyl chloride, phosphorus trichloride and the like at a low temperature to room temperature in a single or
- a compound represented by the above-mentioned formula [I] can be synthesized by the following method.
- R 13a is a hydroxyl-protecting group such as acetyl group, benzyl group, methyl group, ethyl group, isopropyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, triisopropylsilyl group, tert-butyldiphenylsilyl group and the like
- R 13b is a carboxyl-protecting group such as methyl group, ethyl group, benzyl group, tert-butyl group and the like
- R 13c is an amino-protecting group such as benzyloxycarbonyl group, tert-butoxycarbonyl group, benzyl group and the like, and other symbols are each as described above.
- Compound [I-3-3] can be obtained by reacting compound [I-3-1] with compound [I-3-2], wherein amino-protecting group R 13c is removed in advance according to a known method at room temperature to under heating in a single or mixed solvent of chloroform, dichloromethane, DMF, DMA, DMSO, acetonitrile, 1,2-dimethoxyethane, THF, toluene, water and the like, and cyclizing the compound in the presence of a base such as triethylamine, diisopropylamine, diisopropylethylamine, diazabicycloundecene, sodium carbonate, potassium carbonate, sodium hydrogen carbonate and the like.
- a base such as triethylamine, diisopropylamine, diisopropylethylamine, diazabicycloundecene, sodium carbonate, potassium carbonate, sodium hydrogen carbonate and the like.
- the cyclization reaction can also be performed in the presence of acid such as acetic acid, p-toluenesulfonic acid, methanesulfonic acid, boron trifluoride, boron trichloride, boron tribromide, hydrochloric acid, hydrogen bromide, phosphoric acid, sulfuric acid and the like.
- acid such as acetic acid, p-toluenesulfonic acid, methanesulfonic acid, boron trifluoride, boron trichloride, boron tribromide, hydrochloric acid, hydrogen bromide, phosphoric acid, sulfuric acid and the like.
- Compound [I] can be obtained by removing the hydroxyl-protecting group R 13a of compound [I-3-3] by a known method.
- the protecting group is a benzyl group
- compound [I] can be obtained by stirring compound [I-3-3] at a low temperature to room temperature in a single or mixed solvent of hexane, chloroform, methylene chloride, ethyl acetate, toluene, methanol, ethanol, 2-propanol, THF, 1,4-dioxane, acetonitrile, water and the like, in the presence of acid such as hydrochloric acid, sulfuric acid, hydrogen bromide, phosphoric acid, acetic acid, trifluoroacetic acid and the like.
- the acid may be used as a solvent.
- Compound [I-3-2] in the above-mentioned production method I-3 (corresponding to the following compound [I-4-3]) can be synthesized by the following method.
- R 14a is an amino-protecting group such as benzyloxycarbonyl group, tert-butoxycarbonyl group, benzyl group and the like, and other symbols are each as described above.
- Compound [I-4-1] obtainable from a commercially available compound by a known method is reacted with phthalimide at a low temperature to under heating in a single or mixed solvent of THF, methylene chloride, chloroform, DMF, ethyl acetate, toluene and the like in the presence of a phosphorus reagent such as triphenylphosphine, diphenyl(2-pyridyl)phosphine, tributylphosphine, tri-tert-butylphosphine and the like and an azo compound such as diisopropylazodicarboxylate, diethylazodicarboxylate, N,N,N′,N′-tetramethylazodicarboxamide, 1,1′-(azodicarbonyl)dipiperidine and the like, and the obtained compound is further treated with hydrazine to remove a phthaloyl group to give amine compound [I-4-2].
- Compound [I-4-2] is reacted with a ketone compound or aldehyde compound at a low temperature to room temperature in a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride, toluene and the like, and the mixture is stirred in the presence of a reducing agent such as sodium borohydride, sodium triacetoxyborohydride and the like to introduce substituent R 1 into the amino group of compound [I-4-2], whereby compound [I-4-3] can be obtained.
- a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride, toluene and the like
- a compound which is compound [I-3-2] wherein particularly R 2 and R 3 are each a hydrogen atom, one of R 4 and R 5 is a carboxyl group or —CO—NR a R b wherein R a and R b are as described above, and the other is a C 1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the aforementioned group A, can be synthesized by the following method.
- R 15a is an amino-protecting group such as benzyloxycarbonyl group, tert-butoxycarbonyl group, benzyl group and the like
- R 15b is a carboxyl-protecting group such as methyl group, ethyl group, benzyl group, tert-butyl group and the like
- R 15c is a C 1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the aforementioned group A, and other symbols are each as described above.
- Compound [I-5-2] can be obtained by oxidizing the hydroxyl group of compound [I-5-1] obtainable from a commercially available compound by a known method, to a aldehyde group by a chromium oxide-pyridine complex (e.g., pyridinium chlorochromate, pyridinium dichromate and the like), a metal oxidant (e.g., chromium oxide, silver carbonate, manganese dioxide and the like), by DMSO oxidization using various DMSO activators such as oxalyl chloride, trifluoroacetic anhydride, acetic anhydride, dicyclohexylcarbodiimide (DCC), sulfur trioxide-pyridine complex and the like, Dess-Martin oxidization and the like according to a known method.
- a chromium oxide-pyridine complex e.g., pyridinium chlorochromate, pyridinium dichromate and the like
- Compound [I-5-3] can be obtained by subjecting the aldehyde group of compound [I-5-2] to a reductive amination under similar conditions as in production method I-4, step 2.
- the obtained compound [I-5-3] is cyclized by the above-mentioned method, and the carboxyl-protecting group R 15b is removed by a known method and, where necessary, the resulting compound is reacted with an amine compound by a known method to give the object compound.
- compound [II-1-6] which is compound [I] wherein Y is CH can be synthesized by the following method.
- R 21a is a hydroxyl-protecting group such as acetyl group, benzyl group, methyl group, ethyl group, isopropyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, triisopropylsilyl group, tert-butyldiphenylsilyl group and the like
- R 21b is an amino-protecting group such as benzyloxycarbonyl group, tert-butoxycarbonyl group, benzyl group and the like
- X 21a is a leaving group such as a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, iodine atom and the like), p-toluenesulfonyloxy group (OTs), methanesulfonyloxy group (OMs), trifluoromethanesulfonyloxy group (OTf
- Compound [II-1-3] can be obtained by converting compound [II-1-1] to acid chloride by a known method at a low temperature to under heating, reacting the acid chloride with compound [II-1-2], removing the amino-protecting group R 21b , and stirring the mixture in the presence of a base such as potassium acetate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium phosphate, triethylamine, diisopropylethylamine, sodium hydrogen phosphate, cesium carbonate and the like.
- a base such as potassium acetate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium phosphate, triethylamine, diisopropylethylamine, sodium hydrogen phosphate, cesium carbonate and the like.
- Compound [II-1-2] can be obtained by a method similar to that of Production method I-4.
- Compound [II-1-4] can be obtained by introducing leaving group X 21a into compound [II-1-3] by a known method.
- the bromine atom is introduced into compound [II-1-3] by a method similar to that in production method I-1, step 2 to give compound [II-1-4].
- a compound which is compound [I] wherein particularly R 2 and R 3 are each a hydrogen atom, and one of R 4 and R 5 is a methyl group substituted by —NR A3 R A4 wherein R A3 and A4 are as described above, and the other is a C 1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the aforementioned group A, can be synthesized by the following method.
- R 22a is an amino-protecting group such as benzyloxycarbonyl group, tert-butoxycarbonyl group, benzyl group and the like
- R 22b is a C 1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the aforementioned group A
- R 22a and R 22d are the same or different, and each is a hydroxyl-protecting group such as acetyl group, benzyl group, methyl group, ethyl group, isopropyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, triisopropylsilyl group, tert-butyldiphenylsilyl group and the like, and other symbols are each as described above.
- the hydroxyl group of compound [II-2-1] is oxidized, by a known method to give aldehyde group, whereby compound [II-2-2] can be obtained.
- the known method is the same as the one indicated for, for example, the production method I-5, step 1.
- Compound [II-2-3] can be obtained by subjecting compound [II-2-2] to reductive amination by the same method as in the production method I-5, step 2.
- Compound [II-2-4] can be obtained from compound [II-2-3] by the same method as in production method II-1, step 1 to step 3.
- the hydroxyl-protecting group R 22c of compound [II-2-4] is removed by a known method, and the hydroxyl group is appropriately subjected to substituent conversion to a leaving group (OTs, OMs, OTf etc.).
- a leaving group OTs, OMs, OTf etc.
- step 1 After reaction with potassium phthalimide, and the phthaloyl group is removed by a method similar to production method I-4, step 1 to give compound [II-2-5].
- the obtained compound [II-2-5] is subjected to an appropriately combination of removal of hydroxyl-protecting group R 22d by a method similar to production method I-3, step 2, and modification of amino group of compound [II-2-5] by a known method to give the object compound.
- compound [III-1-9] which is compound [I] wherein Y is a nitrogen atom can be synthesized by the following method.
- R 31a is a hydroxyl-protecting group such as acetyl group, benzyl group, methyl group, ethyl group, isopropyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, triisopropylsilyl group, tert-butyldiphenylsilyl group and the like
- R 31b and R 31c are the same or different and each is a carboxyl-protecting group such as methyl group, ethyl group, benzyl group, tert-butyl group and the like, and other symbols are each as described above.
- Compound [III-1-3] can be obtained by reacting compound [III-1-1] with compound [III-1-2] by a method similar to production method I-2, step 3.
- Compound [III-1-4] can be obtained by removing the carboxyl-protecting group R 31b of compound [III-1-3] by a method similar to production method I-2, step 4.
- Compound [III-1-5] can be obtained by reacting compound [III-1-4] with compound [I-2-8] by a method similar to production method I-2, step 5.
- Compound [III-1-6] can be obtained by removing the carboxyl-protecting group R 31c of compound [III-1-5] by a known method.
- Compound [III-1-7] can be obtained by converting compound [III-1-6] to acid chloride by a method similar to production method I-2, step 5, and reacting the acid chloride with compound [I-3-2] in a solvent such as hexane, chloroform, methylene chloride, ethyl acetate, toluene, 1,2-dimethoxyethane, 1,4-dioxane, THF and the like in the presence of a base such as potassium acetate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium phosphate, triethylamine, diisopropylethylamine, sodium hydrogen phosphate, cesium carbonate and the like.
- a solvent such as hexane, chloroform, methylene chloride, ethyl acetate, toluene, 1,2-dimethoxyethane, 1,4-dioxane, THF and the like
- a base such as potassium acetate, potassium carbon
- Compound [III-1-8] can be obtained by removing the amino-protecting group R 13c of compound [III-1-7] by a known method, and performing cyclization by a method similar to a cyclization reaction of production method II-1, step 1 in the presence of a base.
- Compound [III-1-9] can be obtained by removing the hydroxyl-protecting group R 31a of compound [III-1-8] by a known method.
- the protecting group is a benzyl group
- step 2 can be used.
- the obtained solid was dissolved in dimethylformamide (54 mL), potassium carbonate (7.1 g) and benzyl bromide (5.6 mL) were added, and the mixture was stirred at 80° C. for 40 min. The mixture was allowed to cool to room temperature and filtered. The filtrate was concentrated and 1N aqueous hydrochloric acid solution was added to the obtained residue. The mixture was extracted twice with ethyl acetate. The combined ethyl acetate layer was washed with saturated brine, dried, and concentrated.
- step 1R-2 To a solution of the compound (3.2 g) obtained in step 1R-2 in THF (50 mL) was added dropwise 1.6M n-butyllithium/hexane solution (8.1 mL) at ⁇ 78° C. and the mixture was stirred for 10 min. Tributyltin chloride (3.5 mL) was added, and the mixture was stirred at ⁇ 78° C. for 30 min and at room temperature for 30 min. Ice-cold water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, and concentrated to give the object compound (6.2 g) described in the above-mentioned scheme as a crude product.
- Tributyltin chloride 3.5 mL
- Ice-cold water was added and the mixture was extracted with ethyl acetate.
- the organic layer was washed with saturated brine, dried, and concentrated to give the object compound (6.2 g) described in the above-menti
- step 1R-1 In the same manner as in step 1R-1 except that 3-benzyloxy-4-oxo-4H-pyran-2-carboxylic acid (15.0 g) was ethylated with iodoethane, the object compound (10.97 g) described in the above-mentioned scheme was obtained.
- step 1R-4 the object compound (1.0 g) described in the above-mentioned scheme was obtained from the compound (1.2 g) obtained in step 2R-1.
- step 3R-1 To a solution of the compound (32.3 g) obtained in step 3R-1 in THF (300 mL) was added a Lawesson reagent (48.7 g), and the mixture was stirred at 50° C. overnight and allowed to cool. The reaction mixture was poured into a stirred saturated aqueous sodium hydrogen carbonate solution by small portions, and the mixture was stirred at room temperature for 30 min. The mixture was extracted twice with ethyl acetate, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, and concentrated. To the residue was added 4N hydrochloric acid/dioxane solution (300 mL), and the mixture was stirred at room temperature for 1 hr.
- a Lawesson reagent 48.7 g
- the precipitated salt was collected by filtration, and dissolved in water (200 mL), and the solution was neutralized with sodium hydrogen carbonate and extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate, and concentrated. To the residue was added ethyl acetate/hexane (1:4) solution and the mixture was slurry washed. The residue was collected by filtration, and dried to give the object compound (15.78 g) described in the above-mentioned scheme.
- step 1-2 Compound (56 mg) obtained in step 1-2 was dissolved in trifluoroacetic acid (1.0 mL), and the mixture was stood at room temperature for 1 hr. The reaction solution was concentrated, ethyl acetate was added and the mixture was concentrated. Ethyl acetate, 4N hydrochloric acid/ethyl acetate solution, and hexane were added to allow crystallization to give the object compound (28 mg) described in the above-mentioned scheme.
- step 2-8 The compound (155 mg) obtained in step 2-8 was dissolved in trifluoroacetic acid solution (1.0 mL), and the mixture was stirred at room temperature for 30 min. The mixture was concentrated, chloroform was added, and the mixture was 25 concentrated. This operation was performed twice. Toluene (5 mL), diisopropylethylamine (395 ⁇ L) and the compound (200 mg) obtained in step 2-5 were added, and the mixture was stirred at room temperature for 30 min. Toluene (5 mL) and 1,8-diazabicyclo[5.4.0]undec-7-ene (100 ⁇ L) were added, and the mixture was stirred at 120° C. for 1 hr.
- reaction mixture was allowed to cool to room temperature, acetic acid (1.0 mL) was added, and the mixture was further stirred at 110° C. for 1 hr. 2N Aqueous hydrochloric acid solution (30 mL) was added, and the mixture was extracted with ethyl acetate (60 mL). The organic layer was dried and concentrated, toluene was added, and this operation was repeated twice to give the object compound (263 mg) described in the above-mentioned scheme.
- step 2-10 The compound (25.0 mg) obtained in step 2-10 was dissolved in trifluoroacetic acid (1.0 mL), and the mixture was stirred at room temperature for 30 min. The reaction solution was concentrated, chloroform was added, and the mixture was concentrated. 4N Hydrochloric acid/ethyl acetate solution was added, and the mixture was concentrated. Crystallization from ethyl acetate-hexane gave the object compound (17.2 mg) described in the above-mentioned scheme.
- step 3-1 To a solution of the compound (2.8 g) obtained in step 3-1 in methanol (100 mL) was added a 7.5% palladium-carbon catalyst (1.4 g), and the mixture was stirred at room temperature for 17 hr under a hydrogen atmosphere and moderate pressure (0.4 MPa). The reaction mixture was filtered through celite and concentrated to give the object compound (2.05 g) described in the above-mentioned scheme.
- the obtained solid was dissolved in ethanol (30 mL)-toluene (30 mL), hydrazine monohydrate (1.6 mL) was added, and the mixture was stirred at 80° C. for 40 min. The mixture was allowed to cool to room temperature, the solid was filtered off, and the filtrate was concentrated. Toluene was added to the residue, and the precipitated solid was filtered off. The filtrate was concentrated to give the object compound (1.3 g) described in the above-mentioned scheme.
- step 3-4 To a solution of the compound (150 mg) obtained in step 3-4 in chloroform (4 mL) were added acetone (70 ⁇ L), acetic acid (54 ⁇ L) and sodium triacetoxyborohydride (200 mg) under ice-cooling, and the mixture was stirred at room temperature overnight. The reaction mixture was diluted with chloroform, saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was stirred. The chloroform layer was washed with saturated brine, dried, and concentrated to give the object compound (156 mg) described in the above-mentioned scheme.
- step 2-9 and step 2-11 the object compound (17.0 mg) described in the above-mentioned scheme was obtained from the compound (156 mg) obtained in step 3-5.
- a known method was used for removal of the amino-protecting group (benzyloxycarbonyl group) of the compound obtained in step 3-5 according to the protecting group.
- step 2-9 and step 2-11 the object compound (10.8 mg) described in the above-mentioned scheme was obtained from the compound (19.0 mg) obtained in step 4-1.
- step 3-3 the object compound (1.0 g) described in the above-mentioned scheme was obtained from (S)-2-hydroxy-1-methylethylcarbamic acid tert-butyl ester (1.4 g).
- step 4-1 the object compound (180 mg) described in the above-mentioned scheme was obtained from the compound (190 mg) obtained in step 5-1.
- step 2-9 and step 2-11 the object compound (27.5 mg) described in the above-mentioned scheme was obtained from the compound (30.0 mg) obtained in step 5-2.
- step 3-3 to step 3-5 the object compound (105 mg) described in the above-mentioned scheme was obtained from (R)-2-hydroxy-1-methylethylcarbamic acid tert-butyl ester (2.0 g).
- step 2-9 and step 2-11 the object compound (16.6 mg) described in the above-mentioned scheme was obtained from the compound (105 mg) obtained in step 6-1.
- a known method was used for removal of the amino-protecting group (benzyloxycarbonyl group) of the compound obtained in step 6-1 according to the protecting group.
- 2-Amino-2-methyl-1,3-propanediol (20.0 g) was suspended in tetrahydrofuran (400 mL), and di-tert-butyl dicarbonate (41.6 g) was added. The mixture was stirred at room temperature for 3 hr and concentrated. Dimethylformamide (200 mL) was added to dissolve the concentrate again, imidazole (13.0 g) and tert-butylchlorodimethylsilane (29.3 g) were added, and the mixture was stirred at room temperature for 15 hr. Water (500 mL) was added, and the mixture was extracted with ethyl acetate (800 mL).
- step 7-4 To the compound (9.65 g) obtained in step 7-4 was added 4N hydrochloric acid/ethyl acetate solution (100 mL), and the mixture was stirred at room temperature for 30 min. This was concentrated, ethanol (400 mL) and saturated aqueous sodium hydrogen carbonate solution (100 mL) were added, and the mixture was stirred at room temperature for 18 hr. The insoluble material was filtered off, and the filtrate was concentrated. Water (100 mL) was added, and the mixture was extracted twice with chloroform (200 mL, 100 mL).
- step 7-14 The compound (5.6 mg) obtained in step 7-14 was dissolved in trifluoroacetic acid (1.0 mL), and the mixture was stirred at room temperature for 1 hr. The reaction solution was concentrated, chloroform was added, and the mixture was concentrated. 4N Hydrochloric acid/ethyl acetate solution was added, and the mixture was concentrated. Crystallization from ethyl acetate-hexane gave the object compound (3.2 mg) described in the above-mentioned scheme.
- step 8-1 To a solution of the compound (4.49 g) obtained in step 8-1 in dioxane (5 mL) was added 4N hydrochloric acid/dioxane solution (20 mL) with stirring, and the mixture was stirred at room temperature for 20 min. The reaction mixture was concentrated, ethyl acetate/hexane (1:4) solution was added and the mixture was slurry washed. The residue was collected by filtration, and dried to give the object compound (3.30 g) described in the above-mentioned scheme.
- step 8-5 To the compound (18 mg) obtained in step 8-5 was added 4N hydrochloric acid/dioxane solution (1 mL), and the mixture was left standing at room temperature for 1.5 hr.
- the reaction mixture was concentrated, 2-propanol (6 mL), water (0.6 mL) and saturated aqueous sodium hydrogen carbonate solution (0.6 mL) were added, and the mixture was stirred with heating at 100° C. for 4 hr.
- the mixture was allowed to cool to room temperature once, left standing overnight, and stirred again with heating at 100° C. for 8 hr.
- saturated brine To the reaction mixture was added saturated brine, and the mixture was extracted with ethyl acetate, dried and concentrated.
- step 8-6 The compound (10 mg) obtained in step 8-6 was dissolved in trifluoroacetic acid (1.0 mL), and the mixture was stood at room temperature for 50 min. Trifluoroacetic acid solution was concentrated, 4N hydrochloric acid/dioxane solution was added and the mixture was concentrated. Toluene was added and the mixture was concentrated. The obtained residue was crystallized from ethyl acetate (0.5 mL)-hexane (2 mL) to give the object compound (4.7 mg) described in the above-mentioned scheme.
- step 2-11 the object compound (18.0 mg) described in the above-mentioned scheme was obtained from ((S)-2-ethylamino-3-methoxypropyl)carbamic acid benzyl ester (80 mg) obtainable from a commercially available compound by a known method.
- step 2-11 the object compound (10.7 mg) described in the above-mentioned scheme was obtained from ((S)-2-cyclopropylmethylamino-3-methoxypropyl)carbamic acid benzyl ester (36 mg) obtainable from a commercially available compound by a known method.
- step 2-11 the object compound (32.0 mg) described in the above-mentioned scheme was obtained from ((S)-2-cyclopropylmethylamino-3-ethoxypropyl)carbamic acid benzyl ester (295 mg) obtainable from a commercially available compound by a known method.
- step 2-11 the object compound (35.0 mg) described in the above-mentioned scheme was obtained from ((S)-3-ethoxy-2-isopropylaminopropyl)carbamic acid benzyl ester (230 mg) obtainable from a commercially available compound by a known method.
- step 2-11 the object compound (37.0 mg) described in the above-mentioned scheme was obtained from ((S)-3-ethoxy-2-ethylaminopropyl)carbamic acid benzyl ester (250 mg) obtainable from a commercially available compound by a known method.
- step 2-11 the object compound (32.9 mg) described in the above-mentioned scheme was obtained from ((1S,2S)-2-ethylamino-3-methoxy-1-methylpropyl)carbamic acid benzyl ester (51 mg) obtainable from a commercially available compound by a known method.
- step 2-9 and step 2-11 the object compound (6.2 mg) described in the above-mentioned scheme was obtained from [(R)-2-isopropylamino-1-((2-methoxyethoxy)methyl)ethyl]carbamic acid tert-butyl ester (19.3 mg) obtainable from a commercially available compound by a known method.
- step 2-9 and step 2-11 the object compound (10.7 mg) described in the above-mentioned scheme was obtained from [(R)-2-cyclopropylamino-1-((2-methoxyethoxy)methyl)ethyl]carbamic acid tert-butyl ester (16 mg) obtainable from a commercially available compound by a known method.
- step 2-9 to step 2-11 the object compound (39 mg) described in the above-mentioned scheme was obtained from (R)-2-tert-butoxycarbonylamino-3-ethylamino-2-methylpropionic acid methyl ester (60 mg) obtainable from a commercially available compound by a known method.
- step 340-1 To a solution of the compound (2.39 g) obtained in step 340-1 in toluene (12 mL) were added tetrabutylammonium hydrogen sulfate (76 mg), 50% aqueous sodium hydroxide solution (8 mL) and methyl sulfate (922 ⁇ L) under ice-cooling, and the mixture was stirred at room temperature for 90 min. Ice water was added, and the mixture was extracted with toluene. The organic layer was washed with saturated brine, dried, and concentrated.
- tetrabutylammonium hydrogen sulfate 76 mg
- 50% aqueous sodium hydroxide solution 8 mL
- methyl sulfate 922 ⁇ L
- the obtained solid was dissolved in ethanol (60 mL)-toluene (60 mL), hydrazine monohydrate (2.05 mL) was added, and the mixture was stirred at 80° C. for 4 hr. The mixture was allowed to cool to room temperature, the solid was filtered off, and the filtrate was concentrated. Toluene was added to the residue, and the precipitated solid was filtered off. The filtrate was concentrated to give the object compound (1.54 g) described in the above-mentioned scheme.
- step 340-2 To a solution of the compound (187 mg) obtained in step 340-2 in chloroform (3 mL) were added acetone (76 ⁇ L), acetic acid (59 ⁇ L) and sodium triacetoxyborohydride (218 mg) under ice-cooling, and the mixture was stirred at room temperature for 5 hr. The reaction mixture was diluted with chloroform, saturated aqueous sodium hydrogen carbonate solution was added and the mixture was stirred. The chloroform layer was dried and concentrated to give the object compound (190 mg) described in the above-mentioned scheme.
- step 340-3 The compound (190 mg) obtained in step 340-3 was dissolved in trifluoroacetic acid (2.0 mL), and the mixture was stood at room temperature for 20 min. Trifluoroacetic acid solution was concentrated, tetrahydrofuran (1.58 mL) and diisopropylethylamine (636 ⁇ L) were added to give a solution. To a solution of the compound (75 mg) obtained in step 2-5 in tetrahydrofuran (500 ⁇ L) was added the above-mentioned solution (634 ⁇ L), and the mixture was stirred at room temperature for 15 min.
- step 340-4 The compound (72 mg) obtained in step 340-4 was dissolved in trifluoroacetic acid (1.0 mL), and the mixture was stood at room temperature for 4 hr. Trifluoroacetic acid solution was concentrated, toluene was added and the mixture was concentrated. Ethyl acetate, 4N hydrochloric acid/ethyl acetate solution, and hexane were added to allow crystallization to give the object compound (65 mg) described in the above-mentioned scheme.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Tropical Medicine & Parasitology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- AIDS & HIV (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Engineering & Computer Science (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
wherein each symbol is as defined in the specification, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
Description
- The present invention relates to a novel 1,3,4,8-tetrahydro-2H-pyrido[1,2-a]pyrazine derivative useful as an anti-HIV agent, a pharmaceutically acceptable salt thereof, and a solvate thereof. In addition, the present invention relates to a pharmaceutical composition comprising the derivative or a pharmaceutically acceptable salt thereof, or a solvate thereof, and a pharmaceutically acceptable carrier; an anti-HIV agent, an HIV integrase inhibitor and the like, comprising the derivative or a pharmaceutically acceptable salt thereof, or a solvate thereof as an active ingredient; an anti-HIV agent comprising a combination of the derivative or a pharmaceutically acceptable salt thereof, or a solvate thereof, and one or more kinds of other anti-HIV active substances; and the like.
- HIV (Human Immunodeficiency Virus (type 1)) belonging to retrovirus is a causative virus of AIDS (Acquired Immunodeficiency Syndrome).
- HIV targets CD4 positive cell groups such as helper T cell, macrophage and dendritic cell and destroys these immunocompetent cells to cause immunodeficiency.
- Accordingly, a medicament that eradicates HIV in a living organism or suppresses its growth is effective for the prophylaxis or treatment of AIDS.
- HIV possesses a bimolecular RNA gene in a shell, which is covered with an envelope protein. The RNA codes for several enzymes (protease, reverse transcriptase, integrase) characteristic of the virus and the like. Translated reverse transcriptase and integrase are present in the shell, and protease is present inside and outside the shell.
- HIV contacts and invades a host cell, causes uncoating, and releases a complex of RNA and integrase and the like into the cytoplasm. From the RNA, DNA is transcribed by reverse transcriptase, and a full length double stranded DNA is produced. The DNA moves into the nucleus of the host cell and is incorporated by integrase into the DNA of the host cell. The incorporated DNA is converted to an mRNA by polymerase of the host cell, from which mRNA various proteins necessary for forming a virus are synthesized by HIV protease and the like, and a virus particle is finally formed, which then undergoes budding and its release.
- These virus specific enzymes are considered to be essential for the growth of HIV. These enzymes are drawing attention as the target of the development of antiviral agents, and several anti-HIV agents have been already developed.
- For example, zidovudine, didanosine, lamivudine and the like have been already on the market as reverse transcriptase inhibitors, and indinavir, nelfinavir and the like as protease inhibitors.
- In addition, a multiple drug combination therapy using these medicaments in combination (to be also referred to as HAART (highly active antiretroviral therapy)) is also used. For example, 3 agent combination therapy using two agents from reverse transcriptase inhibitors (zidovudine and lamivudine, or tenofovir and emtricitabine), and a non-nucleic acid reverse transcriptase inhibitor (efavirenz), or a protease inhibitor (lopinavir, fosamprenavir or atazanavir) in combination with ritonavir, and the like is used in clinical practice, and such multiple drug combination therapy is becoming the mainstream of the AIDS treatment.
- However, some of these medicaments are known to cause side effects such as liver function failure, central nervous disorders (e.g., vertigo), and the like. In addition, acquisition of resistance to a medicament causes a problem. Even worse, emergence of an HIV that shows multiple drug resistance in a multiple drug combination therapy has been known.
- Under the circumstances, a further development of a novel medicament, particularly a development of an anti-HIV agent based on a new mechanism, has been desired, wherein a development of an anti-HIV agent having an integrase inhibitory activity is expected, because an integrase characteristic of retrovirus is an essential enzyme for the growth of HIV.
- From the findings obtained from pharmacological studies and clinical results heretofore, an anti-HIV agent is effective for the prophylaxis or treatment of AIDS, and particularly a compound having an integrase inhibitory activity can be an effective anti-HIV agent.
- Therefore, the present invention aims at provision of a compound having an anti-HIV activity, particularly a compound having an integrase inhibitory activity.
- The present inventors have conducted intensive studies in an attempt to find a compound having an anti-HIV action, particularly a compound having an integrase inhibitory action, and completed the present invention.
- More specifically, the present invention provides the following.
- [1] A compound represented by the following formula [I] or a pharmaceutically acceptable salt thereof, or a solvate thereof (sometimes to be abbreviated as “the compound of the present invention” in the present specification):
- wherein
- R1 is
- (1) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
- (i) a C3-8 cycloalkyl group, and
- (ii) a C1-6 alkoxy group,
- (2) a C3-8 cycloalkyl group, or
- (3) a saturated monocyclic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom,
- R2, R3, R4 and R5 are the same or different and each is
- (1) a hydrogen atom,
- (2) a carboxyl group,
- (3) —CO—NRaRb wherein Ra and Rb are the same or different and each is
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the following group B, or
- (iii) a C3-8 cycloalkyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the following group B,
- (4) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the following group A, or
- (5) a cyano group, or
- R2 and R3, or R4 and R5 optionally form, together with the carbon atom bonded thereto,
- i) C3-8 cycloalkane, or
- ii) a saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom,
- wherein R2, R3, R4 and R5 are not hydrogen atoms at the same time,
- R6 is
- (1) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 halogen atoms,
- (2) a C1-6 alkoxy group,
- (3) a halogen atom, or
- (4) a C3-8 cycloalkyl group,
- Y is
- (1) CH, or
- (2) a nitrogen atom,
- m is an integer of 1 to 5, and when m is an integer of 2 to 5, then each R6 may be the same or different, and
- n is an integer of 1 to 3,
- group A:
- (a) —CO—NRA1RA2
- wherein RA1 and RA2 are the same or different and each is
-
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the following group B, or
- (iii) a C3-8 cycloalkyl group, or
- RA1 and RA2 optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the following group B,
- (b) a hydroxyl group,
- (c) a C1-6 alkoxy group,
- (d) a C1-6 alkoxy-C1-6 alkoxy group,
- (e) a cyano group,
- (f) —NRA3RA4
- wherein RA3 and RA4 are the same or different and each is
-
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group,
- (iii) a C1-6 alkyl-carbonyl group, or
- (iv) a C1-6 alkyl-sulfonyl group, or
- RA3 and RA4 optionally form, together with the nitrogen atom bonded thereto, a hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by 1 or 2 oxo groups,
- (g) a carboxyl group,
- (h) a C1-6 alkyl-sulfonyl group, and
- (i) a C1-6 alkyl-carbonyl group; group B:
- (a) a hydroxyl group,
- (b) a C1-6 alkoxy group,
- (c) a C1-6 alkoxy-C1-6 alkyl group
- (d) a C3-8 cycloalkyl group, and
- (e) an oxo group.
- [2] The compound of the above-mentioned [1], wherein R1 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
- (i) a C3-8 cycloalkyl group, and
- (ii) a C1-6 alkoxy group,
- or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [3] The compound of the above-mentioned [2], wherein R1 is a C1-6 alkyl group, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [4] The compound of the above-mentioned [2], wherein R1 is a C1-6 alkyl group substituted by a C3-8 cycloalkyl group, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [5] The compound of the above-mentioned [1], wherein R1 is a C3-8 cycloalkyl group, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [6] The compound of the above-mentioned [1], wherein one of R2, R3, R4 and R5 is —CO—NRaRb
- wherein Ra and Rb are the same or different and each is
-
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group B, or
- (iii) a C3-8 cycloalkyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from group B,
- or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [7] The compound of the above-mentioned [1], wherein one of R2, R3, R4 and R5 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [8] The compound of the above-mentioned [1], wherein R6 is a halogen atom, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [9] The compound of the above-mentioned [1], wherein Y is CH, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [10] The compound of the above-mentioned [1], wherein Y is a nitrogen atom, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [11] The compound of the above-mentioned [1], wherein m is 1 or 2, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [12] The compound of the above-mentioned [1], wherein n is 1, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [13] The compound of the above-mentioned [1], which is represented by the following formula [I-1], or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- wherein
- R11 is
- (1) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
- (i) a C3-8 cycloalkyl group, and
- (ii) a C1-6 alkoxy group, or
- (2) a C3-8 cycloalkyl group, R21, R31, R41 and R51 are the same or different and each is
- (1) a hydrogen atom,
- (2) —CO—NRaRb
- wherein Ra and Rb are the same or different and each is
-
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group B, or
- (iii) a C3-8 cycloalkyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from group B, or
- (3) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A, wherein R21, R31, R41 and R51 are not hydrogen atoms at the same time,
- R61 is a halogen atom, and
- R62 is a hydrogen atom or a halogen atom.
- [14] The compound of the above-mentioned [13], wherein R21 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A, and
- R31, R41 and R51 are each a hydrogen atom, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [15] The compound of the above-mentioned [13], wherein R21 is a C1-6 alkyl group, and
- R31, R41 and R51 are each a hydrogen atom,
- or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [16] The compound of the above-mentioned [13], wherein R41 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A, and
- R21, R31 and R51 are each a hydrogen atom,
- or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [17] The compound of the above-mentioned [13], wherein R21 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A,
- R41 is a C1-6 alkyl group, and
- R31 and R51 are each a hydrogen atom,
- or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [18] The compound of the above-mentioned [1], which is represented by the following formula [I-2], or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- wherein
- R12 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
- (i) a C3-8 cycloalkyl group, and
- (ii) a C1-6 alkoxy group,
- R22, R32, R42 and R52 are the same or different and each is
- (1) a hydrogen atom,
- (2) —CO—NRaRb
- wherein Ra and Rb are the same or different and each is
-
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group B, or
- (iii) a C3-8 cycloalkyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from group B, or
- (3) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A, wherein R22, R32, R42 and R52 are not hydrogen atoms at the same time,
- R63 is a halogen atom, and
- R64 is a hydrogen atom or a halogen atom.
- [19] The compound of the above-mentioned [18], wherein R42 is —CO—NRaRb
- wherein Ra and Rb form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from group B,
- R52 is a C1-6 alkyl group, and
- R22 and R32 is a hydrogen atom,
- or a pharmaceutically acceptable salt thereof, or a solvate thereof.
- [20] The compound of the above-mentioned [1], which is represented by the formula, or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- [21] The compound of the above-mentioned [1], which is represented by the formula, or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- [22] The compound of the above-mentioned [1], which is represented by the formula, or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- [23] The compound of the above-mentioned [1], which is represented by the formula, or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- [24] The compound of the above-mentioned [1], which is represented by the formula, or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- [25] The compound of the above-mentioned [1], which is represented by the formula, or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- [26] The compound of the above-mentioned [1], which is represented by the formula, or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- [27] The compound of the above-mentioned [1], which is represented by the formula, or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- [28] The compound of the above-mentioned [1], which is represented by the formula, or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- [29] The compound of the above-mentioned [1], which is represented by the formula, or a pharmaceutically acceptable salt thereof, or a solvate thereof:
- [30] A pharmaceutical composition comprising the compound of any one of the above-mentioned [1] to [29] or a pharmaceutically acceptable salt thereof, or a solvate thereof, and a pharmaceutically acceptable carrier.
- [31] An anti-HIV agent comprising the compound of any one of the above-mentioned [1] to [29] or a pharmaceutically acceptable salt thereof, or a solvate thereof, as an active ingredient.
- [32] An HIV integrase inhibitor comprising the compound of any one of the above-mentioned [1] to [29] or a pharmaceutically acceptable salt thereof, or a solvate thereof, as an active ingredient.
- [33] An anti-HIV agent comprising the compound of any one of the above-mentioned [1] to [29] or a pharmaceutically acceptable salt thereof, or a solvate thereof, in combination with one or more other kinds of anti-HIV active substances.
- [34] Use of the compound of any one of the above-mentioned [1] to [29] or a pharmaceutically acceptable salt thereof, or a solvate thereof, for the production of an anti-HIV agent.
- [35] Use of the compound of any one of the above-mentioned [1] to [29] or a pharmaceutically acceptable salt thereof, or a solvate thereof, for the production of an HIV integrase inhibitor.
- [36] A method for the prophylaxis or treatment of an HIV infectious disease in a mammal, which comprises administering an effective amount of the compound of any one of the above-mentioned [1] to [29] or a pharmaceutically acceptable salt thereof, or a solvate thereof, to said mammal.
- [37] The method of the above-mentioned [36], which further comprises administering an effective amount of one or more other kinds of anti-HIV active substances to the mammal.
- [38] A method for inhibiting HIV integrase in a mammal, which comprises administering an effective amount of the compound of any one of the above-mentioned [1] to [29] or a pharmaceutically acceptable salt thereof, or a solvate thereof, to said mammal.
- [39] An anti-HIV composition comprising the compound of any one of the above-mentioned [1] to [29] or a pharmaceutically acceptable salt thereof, or a solvate thereof, and a pharmaceutically acceptable carrier.
- [40] A pharmaceutical composition for inhibiting HIV integrase, comprising the compound of any one of the above-mentioned [1] to [29] or a pharmaceutically acceptable salt thereof, or a solvate thereof, and a pharmaceutically acceptable carrier.
- [41] A commercial package comprising the pharmaceutical composition of the above-mentioned [30] and a written matter associated therewith, which states that the pharmaceutical composition can or should be used for treating HIV.
- [42] A kit comprising the pharmaceutical composition of the above-mentioned [30] and a written matter associated therewith, which states that the pharmaceutical composition can or should be used for treating HIV.
- The compound of the present invention can be medicaments effective for the prophylaxis or treatment of HIV infections or AIDS, as anti-HIV agents, having an HIV integrase inhibitory activity. In addition, by a combined use with other anti-HIV agent(s) such as protease inhibitor, reverse transcriptase inhibitor and the like, they can be more effective anti-HIV agents. Furthermore, having high inhibitory activity specific for integrase, they can be medicaments safe for human body with a fewer side effects.
- The definitions of respective substituents and respective moieties used in the present specification are as follows.
- The “halogen atom” is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
- The “C1-6 alkyl group” is a straight chain or branched chain alkyl group having 1 to 6 carbon atoms, preferably a straight chain or branched chain alkyl group having 1 to 4 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a 1,1-dimethylpropyl group, a 1,2-dimethylpropyl group, a 2,2-dimethylpropyl group, a 1-ethylpropyl group, a hexyl group and the like.
- The “C1-6 alkoxy group” is a straight chain or branched chain alkoxy group having 1 to 6 carbon atoms, preferably a straight chain or branched chain alkoxy group having 1 to 4 carbon atoms. Specific examples include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, an isobutyloxy group, a tert-butyloxy group, a pentyloxy group, a hexyloxy group and the like.
- The “C1-6 alkoxy-C1-6 alkyl group” is that wherein the alkoxy moiety is the “C1-6 alkoxy group” defined above, and the alkyl moiety is the “C1-6 alkyl group” defined above. Preferred is a C1-6 alkoxy-C1-6 alkyl group wherein the alkoxy moiety is a straight chain or branched chain alkoxy group having 1 to 4 carbon atoms, and the alkyl moiety is a straight chain or branched chain alkyl group having 1 to 4 carbon atoms. Examples of the C1-6 alkoxy-C1-6 alkyl group include a methoxymethyl group, a methoxyethyl group, a methoxypropyl group, a methoxybutyl group, a methoxypentyl group, a methoxyhexyl group, an ethoxymethyl group, an ethoxyethyl group, an ethoxypropyl group, an ethoxybutyl group, an ethoxypentyl group, an ethoxyhexyl group, a propoxymethyl group, a propoxyethyl group, a propoxypropyl group, a propoxybutyl group, a propoxypentyl group, a propoxyhexyl group, a butoxymethyl group, a butoxyethyl group, a butoxypropyl group, a butoxybutyl group, a butoxypentyl group, a butoxyhexyl group, a pentyloxymethyl group, a pentyloxyethyl group, a pentyloxypropyl group, a pentyloxybutyl group, a pentyloxypentyl group, a pentyloxyhexyl group, a hexyloxymethyl group, a hexyloxyethyl group, a hexyloxypropyl group, a hexyloxybutyl group, a hexyloxypentyl group, a hexyloxyhexyl group and the like.
- The “C1-6 alkoxy-C1-6 alkoxy group” is that wherein the C1-6 alkoxy moiety is the “C1-6 alkoxy group” defined above, preferably a straight chain or branched chain alkoxy group having 1 to 4 carbon atoms. Examples thereof include a methoxymethoxy group, a methoxyethoxy group, a methoxypropoxy group, a methoxybutoxy group, a methoxypentyloxy group, a methoxyhexyloxy group, an ethoxymethoxy group, an ethoxyethoxy group, an ethoxypropoxy group, an ethoxybutoxy group, an ethoxypentyloxy group, an ethoxyhexyloxy group, a propoxymethoxy group, a propoxyethoxy group, a propoxypropoxy group, a propoxybutoxy group, a propoxypentyloxy group, a propoxyhexyloxy group, a butoxymethoxy group, a butoxyethoxy group, a butoxypropoxy group, a butoxybutoxy group, a butoxypentyloxy group, a butoxyhexyloxy group, a pentyloxymethoxy group, a pentyloxyethoxy group, a pentyloxypropoxy group, a pentyloxybutoxy group, a pentyloxypentyloxy group, a pentyloxyhexyloxy group, a hexyloxymethoxy group, a hexyloxyethoxy group, a hexyloxypropoxy group, a hexyloxybutoxy group, a hexyloxypentyloxy group, a hexyloxyhexyloxy group and the like.
- The “C1-6 alkyl-carbonyl group” is an alkyl-carbonyl group wherein the C1-6 alkyl moiety is the “C1-6 alkyl group” defined above, preferably a straight chain or branched chain alkyl group having 1 to 4 carbon atoms. Examples thereof include a methylcarbonyl group, an ethylcarbonyl group, a propylcarbonyl group, an isopropylcarbonyl group, a butylcarbonyl group, an isobutylcarbonyl group, a sec-butylcarbonyl group, a tert-butylcarbonyl group, a pentylcarbonyl group, an isopentylcarbonyl group, a 1,1-dimethylpropylcarbonyl group, hexylcarbonyl group and the like.
- The “C1-6 alkyl-sulfonyl group” is an alkyl-sulfonyl group wherein the C1-6 alkyl moiety is the “C1-6 alkyl group” defined above, preferably a straight chain or branched chain alkyl group having 1 to 4 carbon atoms. Examples thereof include a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, an isopropylsulfonyl group, a butylsulfonyl group, an isobutylsulfonyl group, a sec-butylsulfonyl group, a tert-butylsulfonyl group, a pentylsulfonyl group, an isopentylsulfonyl group, a 1,1-dimethylpropylsulfonyl group, a hexylsulfonyl group and the like.
- The “C3-8 cycloalkyl group” is a saturated cycloalkyl group having 3 to 8 carbon atoms, preferably 3 to 5 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group and the like.
- The “C3-8 cycloalkane” is saturated cycloalkane having 3 to 8 carbon atoms, preferably 3 to 5 carbon atoms, and examples thereof include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
- The “hetero ring” means a saturated or unsaturated (including partially unsaturated and completely unsaturated) monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, or a fused ring of the hetero rings, or a fused ring of a carbon ring selected from benzene, cyclopentane and cyclohexane, and the hetero ring.
- Examples of the above-mentioned “saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom” include a 4- to 7-membered saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and the like. Specific examples thereof include azetidine, pyrrolidine, tetrahydrofuran, tetrahydrothiophene, imidazolidine, pyrazolidine, 1,3-dioxolane, 1,3-oxathioran, oxazolidine, thiazolidine, piperidine, piperazine, tetrahydropyran, tetrahydrothiopyran, dioxane, morpholine, thiomorpholine and the like.
- Examples of the above-mentioned “unsaturated (including partially unsaturated and completely unsaturated) monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom” include a 4- to 7-membered unsaturated (including partially unsaturated and completely unsaturated) monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and the like. Specific examples thereof include pyrroline, furan, thiophene, imidazole, imidazoline, pyrazole, oxazole, isoxazole, thiazole, isothiazole, 1,2,4-triazole, 1,2,3-triazole, tetrazole, 1,3,4-oxadiazole, 1,2,4-oxadiazole, 1,3,4-thiadiazole, 1,2,4-thiadiazole, furazan, pyridine, pyrimidine, 3,4-dihydropyrimidine, pyridazine, pyrazine, 1,3,5-triazine, pyrazoline, oxazoline, isooxazoline, thiazoline, isothiazoline, pyran and the like.
- Examples of the above-mentioned “fused ring of the hetero rings, or fused ring of a carbon ring selected from benzene, cyclopentane and cyclohexane, and the hetero ring” include indole, isoindole, benzimidazole, indazole, benzothiazole, benzofuran, isobenzofuran, indolizine, quinoline, isoquinoline, 1,2-dihydroquinoline, quinazoline, quinoxaline, cinnoline, phthalazine, quinolizidine, purine, pteridine, indoline, isoindoline, 5,6,7,8-tetrahydroquinoline, 1,2,3,4-tetrahydroquinoline, 1,3-benzodioxolane, 3,4-methylenedioxypyridine, 4,5-ethylenedioxypyrimidine, chromene, chromane, isochromane, 1,2,4-benzotriazine and the like.
- The “saturated monocyclic hetero ring” formed by Ra and Rb together with the nitrogen atom bonded thereto means a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and examples thereof include a 4- to 7-membered (e.g., 4- to 6-membered) saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 (e.g., 1 to 3, preferably 1) hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom, and the like. Specific examples of the saturated monocyclic hetero ring include those exemplified as the above-mentioned “saturated monocyclic hetero ring containing, beside carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom”, which contain, beside carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom.
- The saturated monocyclic hetero ring is optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) substituents selected from the following group B.
- The “saturated monocyclic hetero ring” formed by R2 and R3 or R4 and R5, together with the carbon atom bonded thereto means a saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and examples thereof include a 5- to 7-membered (e.g., 6-membered) saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 (e.g., 1 to 3, preferably 1) hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and the like. Specific examples of the saturated monocyclic hetero ring include those similar to the saturated monocyclic hetero rings exemplified as the above-mentioned “saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom”.
- The “saturated monocyclic hetero ring” formed by RA1 and RA2 together with the nitrogen atom bonded thereto means a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and examples thereof include a 4- to 6-membered saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 3 (e.g., 1) hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom and the like. Specific examples of the saturated monocyclic hetero ring include those exemplified as the above-mentioned “saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom”, which optionally contain, besides carbon atom and one nitrogen atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom.
- The saturated monocyclic hetero ring is optionally substituted by the same or different 1 to 5 substituents selected from the following group B.
- The “hetero ring” formed by RA3 and RA4 together with the nitrogen atom bonded thereto means a hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and examples thereof include a 4- to 6-membered (e.g., 5-membered) monocyclic hetero ring, a 8- to 10-membered (e.g., 9-membered) fused cyclic hetero ring and the like, optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom. Specific examples of the hetero ring include those exemplified as the above-mentioned “hetero ring”, which optionally contain, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom.
- The hetero ring is optionally substituted by 1 or 2 oxo groups.
- The “saturated monocyclic heterocyclic group” for R1 means a saturated monocyclic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and examples thereof include a 5- or 6-membered saturated monocyclic heterocyclic group containing, besides carbon atom, 1 to 3 (e.g., 1) hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and the like. Specific examples of the saturated monocyclic heterocyclic group include groups derived from those exemplified as the above-mentioned “saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom”, which optionally contain, besides carbon atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom and the like. Examples thereof include a pyrrolidinyl group, a tetrahydrofuryl (e.g., 3-tetrahydrofuryl) group, a tetrahydrothienyl group, an imidazolidinyl group, a pyrazolidinyl group, a 1,3-dioxolanyl group, a 1,3-oxathioranyl group, an oxazolidinyl group, a thiazolidinyl group, a piperidinyl group, a piperazinyl group, a tetrahydropyranyl group, a tetrahydrothiopyranyl group, a dioxanyl group, a morpholinyl group, a thiomorpholinyl group and the like.
- The “group A” includes the following substituents (a) to (i).
- (a) —CO—NRA1RA2
- wherein RA1 and RA2 are the same or different and each is
-
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the following group B, or
- (iii) a C3-8 cycloalkyl group, or
- RA1 and RA2 optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the following group B,
- (b) a hydroxyl group,
- (c) a C1-6 alkoxy group,
- (d) a C1-6 alkoxy-C1-6 alkoxy group,
- (e) a cyano group,
- (f) —NRA3RA4
- wherein RA3 and RA4 are the same or different and each is
-
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group,
- (iii) a C1-6 alkyl-carbonyl group, or
- (iv) a C1-6 alkyl-sulfonyl group, or
- RA3 and RA4 optionally form, together with the nitrogen atom bonded thereto, a hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by 1 or 2 oxo groups,
- (g) a carboxyl group,
- (h) a C1-6 alkyl-sulfonyl group, and
- (i) a C1-6 alkyl-carbonyl group.
- The “C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A” is that wherein the “C1-6 alkyl group” defined above is optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) substituents selected from “group A” defined above, and includes an unsubstituted C1-6 alkyl group.
- The “group B” includes the following substituents (a) to (e).
- (a) a hydroxyl group,
- (b) a C1-6 alkoxy group,
- (c) a C1-6 alkoxy-C1-6 alkyl group,
- (d) a C3-8 cycloalkyl group, and
- (e) an oxo group.
- The “C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group B” is that wherein the “C1-6 alkyl group” defined above is optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) substituents selected from the “group B” defined above, and includes an unsubstituted C1-6 alkyl group.
- The “saturated monocyclic hetero ring is optionally substituted by the same or different 1 to 5 substituents selected from group B” for Ra and Rb, or RA1 and RA2 means that the “saturated monocyclic hetero ring” defined above which is formed by Ra and Rb, or RA1 and RA2 together with the nitrogen atom bonded thereto is optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) substituents selected from the “group B” defined above, and includes an unsubstituted saturated monocyclic hetero ring.
- In the above-mentioned formula [I], preferable groups are as described below.
- R1 is
- (1) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
- (i) a C3-8 cycloalkyl group, and
- (ii) a C1-6 alkoxy group,
- (2) a C3-8 cycloalkyl group, or
- (3) a saturated monocyclic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom.
- Preferable embodiment of R1 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
-
- (i) a C3-8 cycloalkyl group, and
- (ii) a C1-6 alkoxy group.
- More preferable embodiment of R1 is a C1-6 alkyl group.
- A different, more preferable embodiment of R1 is a C1-6 alkyl group substituted by a C3-8 cycloalkyl group.
- A different, preferable embodiment of R1 is a C3-8 cycloalkyl group.
- Further different preferable embodiments of R1 are (1) a C1-6 alkyl group optionally substituted by the same or different 1 to 3 C3-8 cycloalkyl groups,
- (2) a C3-8 cycloalkyl group,
- (3) a 5- or 6-membered saturated monocyclic heterocyclic group containing, besides carbon atom, 1 to 3 (e.g., 1) hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and the like.
- Of these, preferred are a methyl group, a cyclopropylmethyl group, an ethyl group, a 1-cyclopropylethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a 1,2-dimethylpropyl group, a 2,2-dimethylpropyl group, a 1-ethylpropyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a tetrahydrofuryl (e.g., 3-tetrahydrofuryl) group and the like.
- R2, R3, R4 and R5 are the same or different and each is
- (1) a hydrogen atom,
- (2) a carboxyl group,
- (3) —CO—NRaRb
- wherein Ra and Rb are the same or different and each is
-
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B, or
- (iii) a C3-8 cycloalkyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B,
- (4) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group A, or
- (5) a cyano group.
- In a preferable embodiment of R2, R3, R4 and R5, one of R2, R3, R4 and R5 is —CO—NRaRb
- wherein Ra and Rb are the same or different and each is
-
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B, or
- (iii) a C3-8 cycloalkyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B.
- In another preferable embodiment of R2, R3, R4 and R5, one of R2, R3, R4 and R5 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group A.
- Further preferable embodiments of R2, R3, R4 and R5 are respectively shown below.
- As R2, preferred are
- (1) a hydrogen atom,
- (2) a carboxyl group,
- (3) —CO—NRaRb
- wherein Ra and Rb are the same or different and each is
-
- (i) a hydrogen atom, and
- (ii) a C1-6 alkyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a 4- to 7-membered (e.g., 4- to 6-membered) saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 (e.g., 1 to 3, preferably 1) hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom,
- (4) a C1-6 alkyl group optionally substituted by the same or different 1 to 3 (e.g., 1) substituents selected from
- (a) —CO—NRA1RA2
- wherein RA1 and RA2 are the same or different and each is
- (i) a hydrogen atom, or
- (ii) a C1-6 alkyl group,
- wherein RA1 and RA2 are the same or different and each is
- (b) a hydroxyl group,
- (c) a C1-6 alkoxy group,
- (d) a C1-6 alkoxy-C1-6 alkoxy group,
- (e) a cyano group,
- (f) —NRA3RA4
- wherein RA3 and RA4 are the same or different and each is
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group,
- (iii) a C1-6 alkyl-carbonyl group, or
- (iv) a C1-6 alkyl-sulfonyl group, and
- wherein RA3 and RA4 are the same or different and each is
- (g) a carboxyl group, and
- (a) —CO—NRA1RA2
- (5) a cyano group.
- As R2, more preferred are
- (1) a hydrogen atom,
- (2) a carboxyl group,
- (3) —CO—NRaRb
- wherein Ra and Rb are the same or different and each is
- (i) a hydrogen atom,
- (ii) a methyl group,
- (ii′) an ethyl group,
- (ii″) an isopropyl group, or
- (ii′″) a tert-butyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring selected from azetidine, pyrrolidine and morpholine,
- wherein Ra and Rb are the same or different and each is
- (4) a methyl group, an ethyl group, a propyl group, or an isopropyl group, which is optionally substituted by the same or different 1 to 3 (e.g., 1) substituents selected from
- (a) —CO—NRA1RA2
- wherein RA1 and RA2 are the same or different and each is
- (i) a hydrogen atom, or
- (ii) a methyl group,
- wherein RA1 and RA2 are the same or different and each is
- (b) a hydroxyl group,
- (c) a methoxy group,
- (c′) an ethoxy group,
- (c″) an isopropoxy group,
- (d) a methoxyethoxy group,
- (e) a cyano group,
- (f) —NRA3RA4
- wherein RA3 and RA4 are the same or different and each is a hydrogen atom, a methyl group, a methylcarbonyl group, an isopropylcarbonyl group, a tert-butylcarbonyl group, a 1,1-dimethylpropylcarbonyl group or a methylsulfonyl group, and
- (g) a carboxyl group, and
- (a) —CO—NRA1RA2
- (5) a cyano group.
- As R3, preferred are
- (1) a hydrogen atom, and
- (2) a C1-6 alkyl group optionally substituted by a C1-6 alkoxy group.
- As R3, more preferred are a hydrogen atom, a methyl group and a methoxymethyl group.
- As R4, preferred are
- (1) a hydrogen atom,
- (2) a carboxyl group,
- (3) —CO—NRaRb
- wherein Ra and Rb are the same or different and each is
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) substituents selected from a C1-6 alkoxy group and a C3-8 cycloalkyl group, or
- (iii) a C3-8 cycloalkyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring which is a 4- to 7-membered (e.g., 4- to 6-membered) saturated monocyclic hetero ring which is optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 (e.g., 1 to 3, preferably 1) hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) substituents selected from (a) a hydroxyl group, (b) a C1-6 alkoxy group, (c) a C1-6 alkoxy-C1-6 alkyl group and (d) an oxo group,
- wherein Ra and Rb are the same or different and each is
- (4) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) substituents
- (a) —CO—NRA1RA2
- wherein RA1 and RA2 are the same or different and each is selected from
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 (e.g., 1 to 3, preferably 1) C1-6 alkoxy groups, or
- (iii) a C3-8 cycloalkyl group, or
- RA1 and RA2 optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring which is a 4- to 6-membered saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 3 (e.g., 1) hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by a C1-6 alkoxy group,
- wherein RA1 and RA2 are the same or different and each is selected from
- (b) a hydroxyl group,
- (c) a C1-6 alkoxy group,
- (d) a C1-6 alkoxy-C1-6 alkoxy group,
- (e) a cyano group,
- (f) —NRA3RA4
- wherein RA3 and RA4 are the same or different and each is
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group,
- (iii) a C1-6 alkyl-carbonyl group, or
- (iv) a C1-6 alkyl-sulfonyl group, or
- RA3 and RA4 optionally form, together with the nitrogen atom bonded thereto, a hetero ring which is a 4- to 7-membered (e.g., 6-membered) monocyclic hetero ring, or a 8- to 10-membered (e.g., 9-membered) fused cyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by 1 or 2 oxo groups,
- wherein RA3 and RA4 are the same or different and each is
- (g) a carboxyl group,
- (h) a C1-6 alkyl-sulfonyl group, and
- (i) a C1-6 alkyl-carbonyl group, and
- (a) —CO—NRA1RA2
- (5) a cyano group.
- As R4, more preferred are
- (1) a hydrogen atom,
- (2) a carboxyl group,
- (3) —CO—NRaRb
- wherein Ra and Rb are the same or different and each is
- (i) a hydrogen atom,
- (ii) a methyl group, an ethyl group, an isopropyl group or an isobutyl group, which is optionally substituted by the same or different one substituent selected from a methoxy group and a cyclopropyl group, or
- (iii) a cyclopropyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring selected from azetidine, pyrrolidine, piperidine and morpholine, which is optionally substituted by one substituent selected from a hydroxyl group, a methoxy group, a methoxymethyl group and an oxo group,
- wherein Ra and Rb are the same or different and each is
- (4) a methyl group, an ethyl group, a propyl group, an isopropyl group or a tert-butyl group, which is optionally substituted by one or two substituents selected from
- (a) —CO—NRA1RA2
- wherein RA1 and RA2 are the same or different and each is
- (i) a hydrogen atom,
- (ii) a methyl group, an ethyl group, an isopropyl group or an isobutyl group, which is optionally substituted by a methoxy group, or
- (iii) a cyclopropyl group, or
- RA1 and RA2 optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring selected from azetidine, piperidine and morpholine, and optionally substituted by a methoxy group,
- wherein RA1 and RA2 are the same or different and each is
- (b) a hydroxyl group,
- (c) a methoxy group,
- (c′) an ethoxy group,
- (c″) a propoxy group,
- (c′″) an isopropoxy group,
- (c″″) a butoxy group,
- (d) a methoxyethoxy group,
- (d′) an ethoxyethoxy group,
- (d″) a methoxypropoxy group,
- (d′″) a methoxyisopropoxy group,
- (d″″) an isopropoxyethoxy group,
- (e) a cyano group,
- (f) —NRA3RA4
- wherein RA3 and RA4 are the same or different and each is a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a methylcarbonyl group, an ethylcarbonyl group, an isopropylcarbonyl group, a methylsulfonyl group or a tert-butylsulfonyl group, or
- RA3 and RA4 optionally form, together with the nitrogen atom bonded thereto, pyrazole, triazole (e.g., 1,2,4-triazole), tetrazole, oxazolidine or isoindoline, which is optionally substituted by 1 or 2 oxo groups,
- (g) a carboxyl group,
- (h) a methylsulfonyl group, and
- (i) a methylcarbonyl group, and
- (a) —CO—NRA1RA2
- (5) a cyano group.
- As R5, preferred are a hydrogen atom and a C1-6 alkyl group optionally substituted by one substituent selected from a C1-6 alkoxy group and a C1-6 alkoxy-C1-6 alkoxy group.
- As R5, more preferred are a hydrogen atom and a methyl group or an ethyl group, which is optionally substituted by one substituent selected from a methoxy group and a methoxyethoxy group.
- R2 and R3, or R4 and R5 optionally form, together with the carbon atom bonded thereto, i) C3-8 cycloalkane or ii) a saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom.
- As the ring formed by R2 and R3, or R4 and R5 together with the carbon atom bonded thereto, preferred are
- i) C3-8 cycloalkane, and
- ii) a 5- to 7-membered (e.g., 6-membered) saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 (e.g., 1 to 3, preferably 1) hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom.
- As the ring formed by R2 and R3, or R4 and R5 together with the carbon atom bonded thereto, more preferred are cyclopropane and tetrahydropyran.
- Here, R2, R3, R4 and R5 are not hydrogen atoms at the same time.
- R6 is
- (1) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 (e.g., 1 to 3) halogen atoms,
- (2) a C1-6 alkoxy group,
- (3) a halogen atom, or
- (4) a C3-8 cycloalkyl group.
- As R6, preferred is a halogen atom.
- Other preferable embodiments of R6 are a methyl group, a trifluoromethyl group, a methoxy group, an ethoxy group, a fluorine atom, a chlorine atom, a bromine atom and a cyclopropyl group.
- Y is
- (1) CH, or
- (2) a nitrogen atom.
- As Y, preferred is CH.
- Other preferable embodiment of Y is a nitrogen atom.
- m is an integer of 1 to 5, and when m is an integer of 2 to 5, the above-mentioned R6 may be the same or different.
- As m, preferred is 1 to 3.
- As m, more preferred is 1 or 2.
- n is an integer of 1 to 3.
- As n, preferred is 1.
- In the above-mentioned formula [I-1], preferable groups are as described below.
- R11 is
- (1) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
- (i) a C3-8 cycloalkyl group, and
- (ii) a C1-6 alkoxy group, or
- (2) a C3-8 cycloalkyl group.
- As R11, those exemplified as the preferable embodiments of R1 in the above-mentioned formula (I), which are within the scope of R11, are preferable.
- R21, R31, R41 and R51 are the same or different and each is
- (1) a hydrogen atom,
- (2) —CO—NRaRb
- wherein Ra and Rb are the same or different and each is
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B, and
- (iii) a C3-8 cycloalkyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B, or
- wherein Ra and Rb are the same or different and each is
- (3) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group A.
- As R21, preferred is a hydrogen atom.
- Other preferable embodiment of R21 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group A. More preferred is a C1-6 alkyl group.
- Examples of yet other preferable embodiment of R21 include those exemplified as the preferable embodiments of R2 in the above-mentioned formula (I), which are within the scope of R21.
- As R31, preferred is a hydrogen atom.
- Examples of other preferable embodiment of R31 include those exemplified as the preferable embodiments of R3 in the above-mentioned formula (I), which are within the scope of R31.
- As R41, preferred is a hydrogen atom.
- Other preferable embodiment of R41 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group A. More preferred is a C1-6 alkyl group.
- Examples of yet other preferable embodiment of R41 include those exemplified as the preferable embodiments of R4 in the above-mentioned formula (I), those contained within the scope of R41.
- As R51, preferred is a hydrogen atom.
- Other preferable embodiments of R51 are those exemplified as the preferable embodiments of R5 in the above-mentioned formula (I), which are within the scope of R51.
- Here, R21, R31, R41 and R51 are not hydrogen atoms at the same time.
- R61 is a halogen atom.
- As R61, preferred are a fluorine atom and a chlorine atom.
- R62 is a hydrogen atom or a halogen atom.
- As R62, preferred are a hydrogen atom, a fluorine atom and a bromine atom.
- In the above-mentioned formula [I-2], preferable groups are as described below.
- R12 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
-
- (i) a C3-8 cycloalkyl group, and
- (ii) a C1-6 alkoxy group.
- As R12, those exemplified as the preferable embodiments of R1 in the above-mentioned formula (I), which are within the scope of R12, are preferable.
- R22, R32, R42 and R52 are the same or different and each is
- (1) a hydrogen atom,
- (2) —CO—NRaRb
- wherein Ra and Rb are the same or different and each is
-
- (i) a hydrogen atom,
- (ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B, or
- (iii) a C3-8 cycloalkyl group, or
- Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B, or
- (3) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group A.
- As R22, preferred is a hydrogen atom.
- Other preferable embodiments of R22 are those exemplified as the preferable embodiments of R2 in the above-mentioned formula (I), which are within the scope of R22.
- As R32, preferred is a hydrogen atom.
- Other preferable embodiments of R32 are those exemplified as the preferable embodiments of R3 in the above-mentioned formula (I), which are within the scope of R32.
- As R42, preferred is —CO—NRaRb
-
- wherein Ra and Rb form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the above-mentioned group B.
- Other preferable embodiments of R42 are those exemplified as the preferable embodiments of R4 in the above-mentioned formula (I), which are within the scope of R42.
- As R52, preferred is a C1-6 alkyl group.
- Other preferable embodiments of R52 are those exemplified as the preferable embodiments of R5 in the above-mentioned formula (I), which are within the scope of R52.
- Here, R22, R32, R42 and R52 are not hydrogen atoms at the same time.
- R63 is a halogen atom.
- As R63, preferred is a fluorine atom.
- R64 is a hydrogen atom or a halogen atom.
- As R64, preferred are a hydrogen atom and a fluorine atom.
- As the compound of the present invention, compounds represented by the above-mentioned formula [I], the formula [I-1] and the formula [I-2], and compounds described in the following Examples are preferable.
- A pharmaceutically acceptable salt of the “compounds represented by the above-mentioned formula [I], the formula [I-1] and the formula [I-2]” (hereinafter to be also referred to as the compound of the present invention) may be any salt as long as it forms an atoxic salt with the compound of the present invention. Examples thereof include a salt with an inorganic acid, a salt with an organic acid, a salt with an inorganic base, a salt with an organic base, a salt with an amino acid and the like.
- Examples of the salt with an inorganic acid include salts with hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrobromic acid and the like.
- Examples of the salt with an organic acid include salts with oxalic acid, malonic acid, maleic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid, trifluoroacetic acid, gluconic acid, ascorbic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid and the like.
- Examples of the salt with an inorganic base include sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt and the like.
- Examples of the salt with an organic base include salts with methylamine, diethylamine, trimethylamine, triethylamine, ethanolamine, diethanolamine, triethanolamine, ethylenediamine, tris(hydroxymethyl)methylamine, dicyclohexylamine, N,N′-dibenzylethylenediamine, guanidine, pyridine, picoline, choline, cinchonine, meglumine and the like.
- Examples of the salt with an amino acid include salts with lysine, arginine, aspartic acid, glutamic acid and the like.
- Each salt can be obtained by reacting a compound represented by the formula [I], the formula [I-1] and the formula [I-2] with an inorganic base, an organic base, an inorganic acid, an organic acid or an amino acid according to a method known per se.
- In the present invention, as the pharmaceutically acceptable salt of the compounds represented by the formula [I], the formula [I-1] and the formula [I-2], preferred are salts with hydrochloric acid (e.g., 1 hydrochloride, 2 hydrochloride), salts with hydrobromic acid (e.g., 1 hydrobromide, 2 hydrobromide), and sodium salt.
- The “solvate” is a compound represented by the formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, with which a molecule of a solvent is coordinated, and also encompasses hydrates (also referred to as water-containing compound). The solvate is preferably a pharmaceutically acceptable solvate, such as a 1 hydrate, a ½ hydrate, a 2 hydrate, a 1 hydrate of sodium salt, a 1 methanolate, a 1 ethanolate, a 1 acetonitrilate, a ⅔ ethanolate of 2 hydrochloride of the compound represented by the formula [I], the formula [I-1] and the formula [I-2] and the like.
- A solvate of a compound represented by the formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof can be obtained according to a method known per se.
- In addition, there can be various isomers of compounds represented by the above-mentioned formulas [I], [I-1] and [I-2]. For example, when E form and Z form are present as geometric isomers, and when an asymmetric carbon atom is present, enantiomers and diastereomers are present as stereo isomers based on them. In addition, when axial chirality is present, stereo isomers based thereon are present. Where necessary, tautomers can be present. Accordingly, all of such isomers and mixtures thereof are encompassed in the scope of the present invention. As the compound of the present invention, one isolated and purified from various isomers, by-products, metabolites or prodrugs is preferable, and one having a purity of not less than 90% is preferable and one having a purity of not less than 95% is more preferable.
- In addition, the compounds represented by the formula [I], the formula [I-1] and the formula [I-2] may be crystal or amorphous.
- In addition, a compound represented by the formula [I], the formula [I-1] and the formula [I-2] may be labeled with an isotope (e.g., 3H, 14C, 35S etc.).
- As the compounds represented by the formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, or a solvate thereof, compounds represented by the formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, or a solvate thereof, which is substantially purified, is preferable. More preferred is compounds represented by the formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, or a solvate thereof, which has been purified to a purity of not less than 80%.
- In the present invention, a prodrug of a compound represented by the formula [I], the formula [I-1] and the formula [I-2] can also be a useful medicament.
- A “prodrug” is a derivative of the compound of the present invention, which has a chemically or metabolically decomposable group and which restores to the original compound to show its inherent efficacy after administration to the body by, for example, hydrolysis, solvolysis or decomposition under physiological conditions. It includes a complex and a salt, not involving a covalent bond.
- The prodrug is utilized, for example, for improving absorption by oral administration or targeting of a target site.
- Examples of the site to be modified include highly reactive functional groups in the compound of the present invention, such as hydroxyl group, carboxyl group, amino group and the like.
- Examples of the hydroxyl-modifying group include acetyl group, propionyl group, isobutyryl group, pivaloyl group, palmitoyl group, benzoyl group, 4-methylbenzoyl group, dimethylcarbamoyl group, dimethylaminomethylcarbonyl group, sulfo group, alanyl group, fumaryl group and the like. In addition, a sodium salt of 3-carboxybenzoyl group, 2-carboxyethylcarbonyl group and the like can also be used.
- Examples of the carboxyl-modifying group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pivaloyloxymethyl group, carboxymethyl group, dimethylaminomethyl group, 1-(acetyloxy) ethyl group, 1-(ethoxycarbonyloxy)ethyl group, 1-(isopropyloxycarbonyloxy)ethyl group, 1-(cyclohexyloxycarbonyloxy) ethyl group, (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl group, benzyl group, phenyl group, o-tolyl group, morpholinoethyl group, N,N-diethylcarbamoylmethyl group, phthalidyl group and the like.
- Examples of the amino-modifying group include hexylcarbamoyl group, 3-methylthio-1-(acetylamino)propylcarbonyl group, 1-sulfo-1-(3-ethoxy-4-hydroxyphenyl)methyl group, (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl group and the like.
- Examples of the “pharmaceutical composition” include oral preparations such as tablet, capsule, granule, powder, troche, syrup, emulsion, suspension and the like, and parenteral agents such as external preparation, suppository, injection, eye drop, transnasal agent, pulmonary preparation and the like.
- The pharmaceutical composition of the present invention (e.g., an anti-HIV composition, a pharmaceutical composition for HIV integrase inhibitory etc.) is produced by appropriately admixing a suitable amount of a compound represented by the formula [I], the formula [I-1] or the formula [I-2] of the present invention or a salt thereof, or a solvate thereof with at least one kind of a pharmaceutically acceptable carrier according to a method known per se in the technical field of pharmaceutical preparations. The content of the compound represented by the formula [I], the formula [I-1] or the formula [I-2] of the present invention or a salt thereof, or a solvate thereof in the pharmaceutical composition varies depending on the dosage form, the dose and the like, and the like. It is, for example, 0.1 to 100 wt % of the whole composition.
- Examples of the “pharmaceutically acceptable carrier” include various organic or inorganic carrier substances conventionally used as preparation materials such as excipient, disintegrant, binder, fluidizer, lubricant and the like for solid dosage forms, and solvent, solubilizing agent, suspending agent, isotonicity agent, buffering agent, soothing agent and the like for liquid preparations. Where necessary, additives such as preservative, antioxidant, colorant, sweetening agent and the like are used.
- Examples of the “excipient” include lactose, sucrose, D-mannitol, D-solbitol, cornstarch, dextrin, microcrystalline cellulose, crystalline cellulose, carmellose, carmellose calcium, sodium carboxymethyl starch, low-substituted hydroxypropylcellulose, gum arabic and the like.
- Examples of the “disintegrant” include carmellose, carmellose calcium, carmellose sodium, sodium carboxymethyl starch, croscarmellose sodium, crospovidone, low-substituted hydroxypropylcellulose, hydroxypropylmethylcellulose, crystalline cellulose and the like.
- Examples of the “binder” include hydroxypropylcellulose, hydroxypropylmethylcellulose, povidone, crystalline cellulose, sucrose, dextrin, starch, gelatin, carmellose sodium, gum arabic and the like.
- Examples of the “fluidizer” include light anhydrous silicic acid, magnesium stearate and the like.
- Examples of the “lubricant” include magnesium stearate, calcium stearate, talc and the like.
- Examples of the “solvent” include purified water, ethanol, propylene glycol, macrogol, sesame oil, corn oil, olive oil and the like.
- Examples of the “solubilizing agent” include propylene glycol, D-mannitol, benzyl benzoate, ethanol, triethanolamine, sodium carbonate, sodium citrate and the like.
- Examples of the “suspending agent” include benzalkonium chloride, carmellose, hydroxypropylcellulose, propylene glycol, povidone, methylcellulose, glycerol monostearate and the like.
- Examples of the “isotonicity agent” include glucose, D-sorbitol, sodium chloride, D-mannitol and the like.
- Examples of the “buffering agent” include sodium hydrogen phosphate, sodium acetate, sodium carbonate, sodium citrate and the like.
- Examples of the “soothing agent” include benzyl alcohol and the like.
- Examples of the “preservative” include ethyl parahydroxybenzoate, chlorobutanol, benzyl alcohol, sodium dehydroacetate, sorbic acid and the like.
- Examples of the “antioxidant” include sodium sulfite, ascorbic acid and the like.
- Examples of the “colorant” include food colors (e.g., Food Color Red No. 2 or 3, Food Color yellow 4 or 5 etc.), β-carotene and the like.
- Examples of the “sweetening agent” include saccharin sodium, dipotassium glycyrrhizinate, aspartame and the like.
- The pharmaceutical composition of the present invention can be administered not only to human but also to mammals other than human (e.g., mouse, rat, hamster, guinea pig, rabbit, cat, dog, swine, bovine, horse, sheep, monkey etc.) orally or parenterally (e.g., topical, rectal, intravenous administration etc.). While the dose varies depending on the subject of administration, disease, symptom, dosage form, administration route and the like, for example, the dose for oral administration to an adult patient (body weight: about 60 kg) is generally within the scope of about 1 mg to 1 g per day, based on the compound of the present invention as an active ingredient. The amount can be administered in one to several portions.
- The compounds represented by the above-mentioned formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, or a solvate thereof inhibits HIV integrase, and can be used as an active ingredient of a therapeutic agent or prophylactic agent for HIV infection.
- To “inhibit HIV integrase” means to specifically inhibit the function as HIV integrase to eliminate or attenuate the activity thereof. For example, it means to specifically inhibit the function of HIV integrase under the conditions of the below-mentioned Experimental Example 1. As the “inhibition of HIV integrase”, preferred is “inhibition of human HIV integrase”. As the “HIV integrase inhibitor”, preferred is a “human HIV integrase inhibitor”.
- The compounds represented by the above-mentioned formula [I], the formula [I-1] and the formula [I-2] or a pharmaceutically acceptable salt thereof, or a solvate thereof can be used in combination (hereinafter to be referred to as combination use) with other single or plural medicaments (hereinafter to be also referred to as a concomitant drug) by a conventional method generally employed in the medicament field.
- The administration frequency of the compounds represented by the above-mentioned formula [I], the formula [I-1] and the formula [I-2], or a pharmaceutically acceptable salt thereof, or a solvate thereof, and a concomitant drug is not limited, and they may be administered as a combined agent to the subject of administration, or the two may be administered simultaneously or at certain time intervals. In addition, they may be used as a medicament in the form of a kit containing the pharmaceutical composition of the present invention and a concomitant drug. The dose of the concomitant drug may be determined according to the dosage used clinically, and can be appropriately determined depending on the subject of administration, disease, symptom, dosage form, administration route, administration time, combination and the like. The administration form of the concomitant drug is not particularly limited, and the compound of the present invention or a salt thereof, or a solvate thereof and the concomitant drug need only be combined.
- An anti-HIV agent is generally required to sustain its effect for a long time, so that can be effective not only for temporal suppression of viral growth but also prohibition of viral re-growth. This means that a prolonged administration is necessary and that a high single dose may be frequently inevitable to sustain effect for a longer period through the night. Such prolonged and high dose administration increases the risk of causing side effects.
- In view of this, one of the preferable embodiments of the compound of the present invention is such compound permitting high absorption by oral administration, and such compound capable of maintaining blood concentration of the administered compound for an extended period of time.
- In addition to the above-mentioned, preferable embodiments of the compound of the present invention are a compound having fine pharmacological activity (e.g., a compound having strong HIV integrase inhibitory activity, a compound having high anti-HIV activity), a compound having fine bioavailability (e.g., a compound having high cellular membrane permeability, a compound stable to metabolic enzyme, a compound with low binding ability to protein and the like), a compound having an anti-HIV activity against HIV having G140S/Q148H mutation, and the like.
- Of the compounds of the present invention, a compound having high pharmacological activity (concretely, IC50 of HIV integrase inhibitory activity is less than 0.1 μM, preferably less than 0.01 μM) and high oral absorption, whose blood concentration is maintained for a long time after administration, is more preferable.
- Using the above-mentioned compound, dose and/or frequency of administration of the compound of the present invention to human are/is expected to be decreased. Preferable administration frequency is not more than twice a day, more preferably, not more than once a day (e.g., once a day, once in two days, etc.).
- The compound of the present invention can be used for the improvement of viremia due to HIV and/or maintenance of improved condition thereof, prophylaxis and treatment of virus infections, particularly, an HIV infection and/or maintenance of improved condition thereof.
- As an index of the “treatment”, “improvement” or “effect”, a decrease in the virus level or HIV RNA level in the body, particularly in blood, can be used.
- The “prophylaxis of HIV infection” includes administration of a medicament to a person with suspected or possible HIV infection (infection due to transfusion, infection from mother to child), and the like.
- By the “prophylaxis of AIDS” is meant, for example, administration of a medicament to an individual who tested HIV positive but has not yet developed the disease state of AIDS; administration of a medicament to an individual who shows an improved disease state of AIDS after treatment but who carries HIV still to be eradicated and whose relapse of AIDS is worried; administration of a medicament before infection with HIV out of a fear of possible infection; and the like.
- Examples of the “other anti-HIV agents” and “other anti-HIV active substances” to be used for a multiple drug combination therapy include an anti-HIV antibody or other antibody, an HIV vaccine or other vaccine, immunostimulants such as interferon, interferon agonist and the like, a ribozyme against HIV, an HIV antisense drug, an HIV reverse transcriptase inhibitor, an HIV protease inhibitor, an HIV integrase inhibitor, an inhibitor of attachment between a receptor (CD4, CXCR4, CCR5 and the like) of a host cell recognized by virus and the virus (CCR5 antagonist and the like), a DNA polymerase inhibitor or DNA synthesis inhibitor, a medicament acting on HIVp24, an HIV fusion inhibitor, an IL-2 agonist or antagonist, a TNF-α antagonist, an α-glucosidase inhibitor, a purine nucleoside phosphorylase inhibitor, an apoptosis agonist or inhibitor, a cholinesterase inhibitor, an immunomodulator and the like.
- Specific examples of the HIV reverse transcriptase inhibitor include Retrovir® (zidovudine), Epivir® (lamivudine), Zerit® (sanilvudine), Videx® (didanosine), Hivid® (zalcitabine), Ziagen® (abacavir sulfate), Viramune® (nevirapine), Stocrin® (efavirenz), Rescriptor® (delavirdine mesylate), Combivir® (zidovudine+lamivudine), Trizivir® (abacavir sulfate+lamivudine+zidovudine), Coactinon® (emivirine), Phosphonovir®, Coviracil®, alovudine (3′-fluoro-3′-deoxythymidine), Thiovir (thiophosphonoformic acid), Capravirin (5-[(3,5-dichlorophenyl)thio]-4-isopropyl-1-(4-pyridylmethyl) imidazole-2-methanol carbamic acid), Tenofovir disoproxil fumarate ((R)-[[2-(6-amino-9H-purin-9-yl)-1-methylethoxy]methyl]phosphonic acid bis(isopropoxycarbonyloxymethyl)ester fumarate), DPC-083 ((4S)-6-chloro-4-[(1E)-cyclopropylethenyl]-3,4-dihydro-4-trifluoromethyl-2(1H)-quinazolinone), DPC-961 ((4S)-6-chloro-4-(cyclopropylethynyl)-3,4-dihydro-4-(trifluoromethyl)-2(1H)-quinazolinone), DAPD ((−)-β-D-2,6-diaminopurine dioxolane), Immunocal, MSK-055, MSA-254, MSH-143, NV-01, TMC-120, DPC-817, GS-7340, TMC-125, SPD-754, D-A4FC, capravirine, UC-781, emtricitabine, alovudine, Phosphazid, BCH-10618, DPC-083, Etravirine, BCH-13520, MIV-210, Abacavir sulfate/lamivudine, GS-7340, GW-5634, GW-695634, TMC-278 and the like, wherein ® means a registered trademark (hereinafter the same) and the names of other medicaments are general names.
- Specific examples of the HIV protease inhibitor include Crixivan® (indinavir sulfate ethanolate), saquinavir, Invirase® (saquinavir mesylate), Norvir® (ritonavir), Viracept® (nelfinavir mesylate), lopinavir, Prozei® (amprenavir), Kaletra® (ritonavir+lopinavir), mozenavir dimesylate ([4R-(4α,5α,6β)]-1,3-bis[(3-aminophenyl)methyl]-hexahydro-5,6-dihydroxy-4,7-bis(phenylmethyl)-2H-1,3-diazepin-2-one dimethanesulfonate), tipranavir (3′-[(1R)-1-[(6R)-5,6-dihydro-4-hydroxy-2-oxo-6-phenylethyl-6-propyl-2H-pyran-3-yl]propyl]-5-(trifluoromethyl)-2-pyridinesulfonamide), lasinavir (N-[5(S)-(tert-butoxycarbonylamino)-4(S)-hydroxy-6-phenyl-2(R)-(2,3,4-trimethoxybenzyl)hexanoyl]-L-valine 2-methoxyethylenamide), KNI-272 ((R)—N-tert-butyl-3-[(2S,3S)-2-hydroxy-3-N-1(R)-2-N-(isoquinolin-5-yloxyacetyl)amino-3-methylthiopropanoyl]amino-4-phenylbutanoyl]-5,5-dimethyl-1,3-thiazolidine-4-carboxamide), GW-433908, TMC-126, DPC-681, buckminsterfullerene, MK-944A (MK944 (N-(2(R)-hydroxy-1(S)-indanyl)-2(R)-phenylmethyl-4(S)-hydroxy-5-[4-(2-benzo[b]furanylmethyl)-2(S)-(tert-butylcarbamoyl)piperazin-1-yl]pentanamide)+indinavir sulfate), JE-2147 ([2(S)-oxo-4-phenylmethyl-3(S)-[(2-methyl-3-oxy)phenylcarbonylamino]-1-oxabutyl]-4-[(2-methylphenyl)methylamino]carbonyl-4(R)-5,5-dimethyl-1,3-thiazole), BMS-232632 (dimethyl (3S,8S,9S,12S)-3,12-bis(1,1-dimethylethyl)-8-hydroxy-4,11-dioxo-9-(phenylmethyl)-6-[[4-(2-pyridinyl)phenyl]methyl]-2,5,6,10,13-pentaazatetradecanedicarboxylate), DMP-850 ((4R,5S,6S,7R)-1-(3-amino-1H-indazol-5-ylmethyl)-4,7-dibenzyl-3-butyl-5,6-dihydroxyperhydro-1,3-diazepin-2-one), DMP-851, RO-0334649, Nar-DG-35, R-944, VX-385, TMC-114, Tipranavir, Fosamprenavir sodium, Fosamprenavir calcium, Darunavir, GW-0385, R-944, RO-033-4649, AG-1859 and the like.
- The HIV integrase inhibitor is exemplified by S-1360, L-870810 and the like, the DNA polymerase inhibitor or DNA synthesis inhibitor is exemplified by Foscavir®, ACH-126443 (L-2′,3′-didehydro-dideoxy-5-fluorocytidine), entecavir ((1S,3S,4S)-9-[4-hydroxy-3-(hydroxymethyl)-2-methylenecyclopentyl]guanine), calanolide A ([10R-(10α,11β,12α)]-11,12-dihydro-12-hydroxy-6,6,10,11-tetramethyl-4-propyl-2H,6H,10H-benzo[1,2-b:3,4-b′:5,6-b″]tripyran-2-one), calanolide B, NSC-674447 (1,1′-azobisformamide), Iscador (viscum alubm extract), Rubitecan and the like, the HIV antisense drug is exemplified by HGTV-43, GEM-92 and the like, the anti-HIV antibody or other antibody is exemplified by NM-01, PRO-367, KD-247, Cytolin®, TNX-355 (CD4 antibody), AGT-1, PRO-140 (CCR5 antibody), Anti-CTLA-4MAb and the like, the HIV vaccine or other vaccine is exemplified by ALVAC®, AIDSVAX®, Remune®, HIV gp41 vaccine, HIV gp120 vaccine, HIV gp140 vaccine, HIV gp160 vaccine, HIV p17 vaccine, HIV p24 vaccine, HIV p55 vaccine, AlphaVax Vector System, canarypox gp160 vaccine, AntiTat, MVA-F6 Nef vaccine, HIV rev vaccine, C4-V3 peptide, p2249f, VIR-201, HGP-30W, TBC-3B, PARTICLE-3B, Antiferon (interferon-α vaccine) and the like, the interferon or interferon agonist is exemplified by Sumiferon®, MultiFeron®, interferon-τ, Reticulose, human leukocyte interferon α and the like, the CCR5 antagonist is exemplified by SCH-351125 and the like, the medicament acting on HIV p24 is exemplified by GPG-NH2 (glycyl-prolyl-glycinamide) and the like, the HIV fusion inhibitor is exemplified by FP-21399 (1,4-bis[3-[(2,4-dichlorophenyl)carbonylamino]-2-oxo-5,8-disodium sulfonyl]naphthyl-2,5-dimethoxyphenyl-1,4-dihydrazone), T-1249, Synthetic Polymeric Construction No3, pentafuside, FP-21399, PRO-542, Enfuvirtide and the like, the IL-2 agonist or antagonist is exemplified by interleukin-2, Imunace®, Proleukin®, Multikine®, Ontak® and the like, the TNF-α antagonist is exemplified by Thalomid® (thalidomide), Remicade® (infliximab), curdlan sulfate and the like, the α-glucosidase inhibitor is exemplified by Bucast® and the like, the purine nucleoside phosphorylase inhibitor is exemplified by peldesine (2-amino-4-oxo-3H,5H-7-[(3-pyridyl)methyl]pyrrolo[3,2-d]pyrimidine) and the like, the apoptosis agonist or inhibitor is exemplified by Arkin Z®, Panavir®, Coenzyme Q10 (2-deca(3-methyl-2-butenylene)-5,6-dimethoxy-3-methyl-p-benzoquinone) and the like, the cholinesterase inhibitor is exemplified by Cognex® and the like, and the immunomodulator is exemplified by Imunox®, Prokine®, Met-enkephalin (6-de-L-arginine-7-de-L-arginine-8-de-L-valinamide-adrenorphin), WF-10 (10-fold dilute tetrachlorodecaoxide solution), Perthon, PRO-542, SCH-D, UK-427857, AMD-070, AK-602, TK-303 (Elvitegravir) and the like.
- In addition, Neurotropin®, Lidakol®, Ancer 20®, Ampligen®, Anticort®, Inactivin®, PRO-2000, Rev M10 gene, HIV specific cytotoxic T cell (CTL immunotherapy, ACTG protocol 080 therapy, CD4-ζ gene therapy), SCA binding protein, RBC-CD4 complex, Motexafin gadolinium, GEM-92, CNI-1493, (±)-FTC, Ushercell, D2S, BufferGel®, VivaGel®, Glyminox vaginal gel, sodium lauryl sulfate, 2F5, 2F5/2G12, VRX-496, Ad5gag2, BG-777, IGIV-C, BILR-255 and the like are exemplified.
- The compound of the present invention can be combined with one or more (e.g., 1 or 2) kinds of other anti-HIV active substances (to be also referred to as other anti-HIV agents), and used as an anti-HIV agent and the like for the prophylaxis or treatment of HIV infection. As the “other anti-HIV agents” and “other anti-HIV active substances” to be used for a multiple drug combination therapy with the compound of the present invention, preferred are an HIV reverse transcriptase inhibitor and an HIV protease inhibitor. Two or three, or even a greater number of medicaments can be used in combination, wherein a combination of medicaments having different action mechanisms is one of the preferable embodiments. In addition, selection of medicaments free of side effect duplication is preferable.
- Specific examples of the combination of medicaments include a combination of a group consisting of efavirenz, tenofovir, emtricitabine, indinavir, nelfinavir, atazanavir, ritonavir+indinavir, ritonavir+lopinavir, ritonavir+saquinavir, didanosine+lamivudine, zidovudine+didanosine, stavudine+didanosine, zidovudine+lamivudine, stavudine+lamivudine and tenofovir+emtricitabine, and the compound of the present invention (Guidelines for the Use of Antiretroviral Agents in HIV-Infected Adults and Adolescents. Aug. 13, 2001). Particularly preferred is a combined use of two agents with efavirenz, indinavir, nelfinavir, tenofovir, emtricitabine, zidovudine or lamivudine, and a combined use of three agents with zidovudine+lamivudine, tenofovir+lamivudine, tenofovir+zidovudine, tenofovir+efavirenz, tenofovir+nelfinavir, tenofovir+indinavir, tenofovir+emtricitabine, emtricitabine+lamivudine, emtricitabine+zidovudine, emtricitabine+efavirenz, emtricitabine+nelfinavir, emtricitabine+indinavir, nelfinavir+lamivudine, nelfinavir+zidovudine, nelfinavir+efavirenz, nelfinavir+indinavir, efavirenz+lamivudine, efavirenz+zidovudine or efavirenz+indinavir.
- In the case of combined administration, the compound of the present invention can be administered simultaneously with a medicament to be used in combination (hereinafter concomitant drug) or administered at certain time intervals. In the case of combined administration, a pharmaceutical composition comprising the compound of the present invention and a concomitant drug can be administered. Alternatively, a pharmaceutical composition comprising the compound of the present invention and a pharmaceutical composition comprising a concomitant drug may be administered separately. The administration route of the compound of the present invention and that of the concomitant drug may be the same or different.
- In the case of a combined administration, the compound of the present invention can be administered once a day or several times a day in a single dose of 0.01 mg to 1 g, or may be administered at a smaller dose. The concomitant drug can be administered at a dose generally used for the prevention or treatment of an HIV infection, for example, at a single dose of 0.01 mg to 0.3 g. Alternatively, it may be administered in a smaller dose.
- Now, production methods of the compound of the present invention are specifically explained. However, the present invention is not limited to these production methods. For production of the compound of the present invention, the order of reactions can be appropriately changed. The reactions may be performed from a reasonable step or a reasonable substitution moiety. In addition, an appropriate substituent conversion (conversion or further modification of substituent) step may be inserted between respective steps. When a reactive functional group is present, protection and deprotection may be appropriately performed. Furthermore, to promote the progress of reactions, reagents other than those exemplified below may be used as appropriate. The starting compounds whose production methods are not described are commercially available or can be easily prepared by a combination of known synthesis reactions. The compound obtained in each step can be purified by conventional methods such as distillation, recrystallization, column chromatography and the like. In some cases, the next step may be performed without isolation and purification.
- In the following production methods, the “room temperature” means 1 to 40° C.
- Of compounds [I-3-1] in the below-mentioned production method I-3, compound [I-1-6] which is compound [I-3-1] wherein Y is CH can be synthesized by the following method.
- wherein R11a and R11c are the same or different and each is a hydroxyl-protecting group such as an acetyl group, a benzyl group, a methyl group, an ethyl group, an isopropyl group, a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a triisopropylsilyl group, a tert-butyldiphenylsilyl group and the like, R11b is a carboxyl-protecting group such as a methyl group, an ethyl group, a benzyl group, a tert-butyl group and the like, X11a is a halogen atom such as a chlorine atom, a bromine atom and the like, and other symbols are each as described above.
- Compound [I-1-2] can be obtained by introducing a protecting group into the carboxyl group of compound [I-1-1] according to a known method.
- For example, when R11b is a methyl group, compound [I-1-2] can be obtained by reacting compound [I-1-1] with trimethylsilyldiazomethane at a low temperature to room temperature in a single or mixed solvent such as tetrahydrofuran (THF), toluene, methanol, ethanol and the like.
- Compound [I-1-3] can be obtained by introducing a halogen atom X11a into compound [I-1-2] according to a known method.
- For example, when X11a is a bromine atom, compound [I-1-3] can be obtained by reacting compound [I-1-2] with a bromination reagent (e.g., bromine, trimethylphenylammonium tribromide etc.) at room temperature to under heating in a solvent such as chloroform, methylene chloride, acetic acid and the like.
- Compound [I-1-4] can be obtained by introducing a protecting group into a hydroxyl group of compound [I-1-3] according to a known method.
- For example, when R11c is a benzyl group, compound [I-1-4] can be obtained by reacting compound [I-1-3] with benzyl halide (e.g., benzyl chloride, benzyl bromide etc.) at room temperature to under heating in the presence of a base such as potassium acetate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium phosphate, triethylamine, sodium hydrogen phosphate, cesium carbonate, sodium hydride, potassium t-butoxide, lithiumdiisopropylamide (LDA) and the like in a solvent such as N,N-dimethylformamide (DMF), dimethylacetamide (DMA), acetonitrile, 1,2-dimethoxyethane, THF, toluene and the like.
- Compound [I-1-6] can be obtained by subjecting compound [I-1-4] to a coupling reaction with compound [I-1-5] in the presence of a palladium catalyst (e.g., tris(dibenzylideneacetone)dipalladium(0), tetrakis(triphenylphosphine)palladium(0) and bis(triphenylphosphine)palladium(II) dichloride etc.) at room temperature to under heating in a solvent such as DMF, DMA, acetonitrile, toluene, 1,4-dioxane and the like. For preferable progress of the reaction, a ligand (e.g., tri(2-furyl)phosphine, tributylphosphine etc.) may be further added.
- For example, compound [I-1-5] wherein n is 1 can be obtained in the same manner as in step 1R-2 and step 1R-3 of the below-mentioned Reference Example 1.
- Of compounds [I-3-1] in the below-mentioned production method I-3, compound [I-2-9] which is compound [I-3-1] wherein Y is a nitrogen atom and R13b is an ethyl group can be synthesized by the following method.
- wherein R12a is a hydroxyl-protecting group such as acetyl group, benzyl group, methyl group, ethyl group, isopropyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, triisopropylsilyl group, tert-butyldiphenylsilyl group and the like, R12b is a carboxyl-protecting group such as methyl group, ethyl group, benzyl group, tert-butyl group and the like, and other symbols are each as described above.
- Compound [I-2-3] can be obtained by reacting compound [I-2-1] with compound [I-2-2] at −78° C. to room temperature conditions in a solvent such as DMF, DMA, dimethyl sulfoxide (DMSO), THF, toluene and the like, in the presence of a base such as sodium hydride, lithiumdiisopropylamide (LDA), lithium hexamethyldisilazide (LHMDS) and the like.
- Compound [I-2-4] can be obtained by reacting Compound [I-2-3] with N,N-dimethylformamidedimethylacetal at room temperature to under heating in a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride, toluene and the like.
- Compound [I-2-6] can be obtained by adding a base such as sodium hydride, LDA, LHMDS and the like to a solution of Compound [I-2-4] dissolved in a solvent such as DMF, DMA, DMSO, THF, toluene and the like at -78° C. to room temperature, reacting the compound with compound [I-2-5] and treating same with triethylamine, diisopropylethylamine or the like.
- Compound [I-2-7] can be obtained by removing the carboxyl-protecting group R12b of compound [I-2-6] by a known method. For example, when the protecting group is a tert-butyl group, compound [I-2-7] can be obtained by stirring compound [I-2-6] at a low temperature to under heating in a single or mixed solvent of hexane, chloroform, methylene chloride, ethyl acetate, toluene, 1,2-dimethoxyethane, 1,4-dioxane, THF, methanol, ethanol, 2-propanol, DMSO, DMF, DMA, acetonitrile, water and the like in the presence of acid such as p-toluenesulfonic acid, methanesulfonic acid, boron trifluoride, boron trichloride, boron tribromide, aluminum trichloride, hydrochloric acid, hydrogen bromide, phosphoric acid, sulfuric acid, acetic acid, trifluoroacetic acid and the like.
- Compound [I-2-9] can be obtained by converting compound [I-2-7] to acid chloride by a known method, and further reacting the compound with compound [I-2-8]. Specifically, compound [I-2-9] can be obtained by converting compound [I-2-7] to acid chloride with a chlorinating agent such as oxalyl chloride, thionyl chloride, phosphorus trichloride and the like at a low temperature to room temperature in a single or mixed solvent of hexane, chloroform, methylene chloride, ethyl acetate, toluene, 1,2-dimethoxyethane, 1,4-dioxane, THF and the like in the presence of a catalytic amount of DMF where necessary, and reacting the compound with compound [I-2-8].
- A compound represented by the above-mentioned formula [I] can be synthesized by the following method.
- wherein R13a is a hydroxyl-protecting group such as acetyl group, benzyl group, methyl group, ethyl group, isopropyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, triisopropylsilyl group, tert-butyldiphenylsilyl group and the like, R13b is a carboxyl-protecting group such as methyl group, ethyl group, benzyl group, tert-butyl group and the like, R13c is an amino-protecting group such as benzyloxycarbonyl group, tert-butoxycarbonyl group, benzyl group and the like, and other symbols are each as described above.
- Compound [I-3-3] can be obtained by reacting compound [I-3-1] with compound [I-3-2], wherein amino-protecting group R13c is removed in advance according to a known method at room temperature to under heating in a single or mixed solvent of chloroform, dichloromethane, DMF, DMA, DMSO, acetonitrile, 1,2-dimethoxyethane, THF, toluene, water and the like, and cyclizing the compound in the presence of a base such as triethylamine, diisopropylamine, diisopropylethylamine, diazabicycloundecene, sodium carbonate, potassium carbonate, sodium hydrogen carbonate and the like. The cyclization reaction can also be performed in the presence of acid such as acetic acid, p-toluenesulfonic acid, methanesulfonic acid, boron trifluoride, boron trichloride, boron tribromide, hydrochloric acid, hydrogen bromide, phosphoric acid, sulfuric acid and the like.
- Compound [I] can be obtained by removing the hydroxyl-protecting group R13a of compound [I-3-3] by a known method. For example, when the protecting group is a benzyl group, compound [I] can be obtained by stirring compound [I-3-3] at a low temperature to room temperature in a single or mixed solvent of hexane, chloroform, methylene chloride, ethyl acetate, toluene, methanol, ethanol, 2-propanol, THF, 1,4-dioxane, acetonitrile, water and the like, in the presence of acid such as hydrochloric acid, sulfuric acid, hydrogen bromide, phosphoric acid, acetic acid, trifluoroacetic acid and the like. The acid may be used as a solvent.
- Compound [I-3-2] in the above-mentioned production method I-3 (corresponding to the following compound [I-4-3]) can be synthesized by the following method.
- wherein R14a is an amino-protecting group such as benzyloxycarbonyl group, tert-butoxycarbonyl group, benzyl group and the like, and other symbols are each as described above.
- Compound [I-4-1] obtainable from a commercially available compound by a known method is reacted with phthalimide at a low temperature to under heating in a single or mixed solvent of THF, methylene chloride, chloroform, DMF, ethyl acetate, toluene and the like in the presence of a phosphorus reagent such as triphenylphosphine, diphenyl(2-pyridyl)phosphine, tributylphosphine, tri-tert-butylphosphine and the like and an azo compound such as diisopropylazodicarboxylate, diethylazodicarboxylate, N,N,N′,N′-tetramethylazodicarboxamide, 1,1′-(azodicarbonyl)dipiperidine and the like, and the obtained compound is further treated with hydrazine to remove a phthaloyl group to give amine compound [I-4-2].
- Compound [I-4-2] is reacted with a ketone compound or aldehyde compound at a low temperature to room temperature in a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride, toluene and the like, and the mixture is stirred in the presence of a reducing agent such as sodium borohydride, sodium triacetoxyborohydride and the like to introduce substituent R1 into the amino group of compound [I-4-2], whereby compound [I-4-3] can be obtained.
- Of compounds [I-3-2] in the above production method I-3, a compound, which is compound [I-3-2] wherein particularly R2 and R3 are each a hydrogen atom, one of R4 and R5 is a carboxyl group or —CO—NRaRb wherein Ra and Rb are as described above, and the other is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the aforementioned group A, can be synthesized by the following method.
- wherein R15a is an amino-protecting group such as benzyloxycarbonyl group, tert-butoxycarbonyl group, benzyl group and the like, R15b is a carboxyl-protecting group such as methyl group, ethyl group, benzyl group, tert-butyl group and the like, R15c is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the aforementioned group A, and other symbols are each as described above.
- Compound [I-5-2] can be obtained by oxidizing the hydroxyl group of compound [I-5-1] obtainable from a commercially available compound by a known method, to a aldehyde group by a chromium oxide-pyridine complex (e.g., pyridinium chlorochromate, pyridinium dichromate and the like), a metal oxidant (e.g., chromium oxide, silver carbonate, manganese dioxide and the like), by DMSO oxidization using various DMSO activators such as oxalyl chloride, trifluoroacetic anhydride, acetic anhydride, dicyclohexylcarbodiimide (DCC), sulfur trioxide-pyridine complex and the like, Dess-Martin oxidization and the like according to a known method.
- Compound [I-5-3] can be obtained by subjecting the aldehyde group of compound [I-5-2] to a reductive amination under similar conditions as in production method I-4, step 2. The obtained compound [I-5-3] is cyclized by the above-mentioned method, and the carboxyl-protecting group R15b is removed by a known method and, where necessary, the resulting compound is reacted with an amine compound by a known method to give the object compound.
- Production method II
- Of the compounds represented by the above-mentioned formula [I], compound [II-1-6], which is compound [I] wherein Y is CH can be synthesized by the following method.
- wherein R21a is a hydroxyl-protecting group such as acetyl group, benzyl group, methyl group, ethyl group, isopropyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, triisopropylsilyl group, tert-butyldiphenylsilyl group and the like, R21b is an amino-protecting group such as benzyloxycarbonyl group, tert-butoxycarbonyl group, benzyl group and the like, X21a is a leaving group such as a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, iodine atom and the like), p-toluenesulfonyloxy group (OTs), methanesulfonyloxy group (OMs), trifluoromethanesulfonyloxy group (OTf) and the like, and other symbols are each as described above.
- Compound [II-1-3] can be obtained by converting compound [II-1-1] to acid chloride by a known method at a low temperature to under heating, reacting the acid chloride with compound [II-1-2], removing the amino-protecting group R21b, and stirring the mixture in the presence of a base such as potassium acetate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium phosphate, triethylamine, diisopropylethylamine, sodium hydrogen phosphate, cesium carbonate and the like.
- Compound [II-1-2] can be obtained by a method similar to that of Production method I-4.
- Compound [II-1-4] can be obtained by introducing leaving group X21a into compound [II-1-3] by a known method.
- For example, when the leaving group X21a is a bromine atom, the bromine atom is introduced into compound [II-1-3] by a method similar to that in production method I-1, step 2 to give compound [II-1-4].
- Compound [II-1-4] is reacted with compound [II-1-5] by a method similar to that of production method I-1, step 4, and the hydroxyl-protecting group R21a is removed by a method similar to that of production method I-3, step 2, whereby compound [II-1-6] can be obtained.
- Of the compounds represented by the above-mentioned formula [I], a compound, which is compound [I] wherein particularly R2 and R3 are each a hydrogen atom, and one of R4 and R5 is a methyl group substituted by —NRA3RA4 wherein RA3 and A4 are as described above, and the other is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the aforementioned group A, can be synthesized by the following method.
- wherein R22a is an amino-protecting group such as benzyloxycarbonyl group, tert-butoxycarbonyl group, benzyl group and the like, R22b is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the aforementioned group A, R22a and R22d are the same or different, and each is a hydroxyl-protecting group such as acetyl group, benzyl group, methyl group, ethyl group, isopropyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, triisopropylsilyl group, tert-butyldiphenylsilyl group and the like, and other symbols are each as described above.
- The hydroxyl group of compound [II-2-1] is oxidized, by a known method to give aldehyde group, whereby compound [II-2-2] can be obtained. The known method is the same as the one indicated for, for example, the production method I-5, step 1.
- Compound [II-2-3] can be obtained by subjecting compound [II-2-2] to reductive amination by the same method as in the production method I-5, step 2.
- Compound [II-2-4] can be obtained from compound [II-2-3] by the same method as in production method II-1, step 1 to step 3.
- The hydroxyl-protecting group R22c of compound [II-2-4] is removed by a known method, and the hydroxyl group is appropriately subjected to substituent conversion to a leaving group (OTs, OMs, OTf etc.). After reaction with potassium phthalimide, and the phthaloyl group is removed by a method similar to production method I-4, step 1 to give compound [II-2-5]. The obtained compound [II-2-5] is subjected to an appropriately combination of removal of hydroxyl-protecting group R22d by a method similar to production method I-3, step 2, and modification of amino group of compound [II-2-5] by a known method to give the object compound.
- Of compounds represented by the above-mentioned formula [I], compound [III-1-9], which is compound [I] wherein Y is a nitrogen atom can be synthesized by the following method.
- wherein R31a is a hydroxyl-protecting group such as acetyl group, benzyl group, methyl group, ethyl group, isopropyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, triisopropylsilyl group, tert-butyldiphenylsilyl group and the like, R31b and R31c are the same or different and each is a carboxyl-protecting group such as methyl group, ethyl group, benzyl group, tert-butyl group and the like, and other symbols are each as described above.
- Compound [III-1-3] can be obtained by reacting compound [III-1-1] with compound [III-1-2] by a method similar to production method I-2, step 3.
- Compound [III-1-4] can be obtained by removing the carboxyl-protecting group R31b of compound [III-1-3] by a method similar to production method I-2, step 4.
- Compound [III-1-5] can be obtained by reacting compound [III-1-4] with compound [I-2-8] by a method similar to production method I-2, step 5.
- Compound [III-1-6] can be obtained by removing the carboxyl-protecting group R31c of compound [III-1-5] by a known method.
- Compound [III-1-7] can be obtained by converting compound [III-1-6] to acid chloride by a method similar to production method I-2, step 5, and reacting the acid chloride with compound [I-3-2] in a solvent such as hexane, chloroform, methylene chloride, ethyl acetate, toluene, 1,2-dimethoxyethane, 1,4-dioxane, THF and the like in the presence of a base such as potassium acetate, potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium phosphate, triethylamine, diisopropylethylamine, sodium hydrogen phosphate, cesium carbonate and the like.
- Compound [III-1-8] can be obtained by removing the amino-protecting group R13c of compound [III-1-7] by a known method, and performing cyclization by a method similar to a cyclization reaction of production method II-1, step 1 in the presence of a base.
- Compound [III-1-9] can be obtained by removing the hydroxyl-protecting group R31a of compound [III-1-8] by a known method. For example, when the protecting group is a benzyl group, a method similar to production method I-3, step 2 can be used.
- Now, the production methods of the compound of the present invention are specifically explained by referring to Examples, which are not to be construed as limitative.
- The abbreviations used in the Examples mean the following.
- Bn: benzyl group
- Boc: tert-butoxycarbonyl group
- Et: ethyl group
- Me: methyl group
- Ms: methanesulfonyl group
- TBS: tert-butyldimethylsilyl group
- TFA: trifluoroacetic acid
- THP: tetrahydropyranyl group
- Z: benzyloxycarbonyl group
- In addition, the following 1H-NMR values were measured by resolution 400 MHz.
-
- 3-benzyloxy-4-oxo-4H-pyran-2-carboxylic acid (11.43 g) was suspended in methanol (20 mL)-tetrahydrofuran (80 mL), 2M (trimethylsilyl)diazomethane/hexane solution (46.4 mL) was added dropwise under ice-cooling, and the mixture was stirred at room temperature for 1.5 hr. The solvent was evaporated under reduced pressure and the obtained residue was dissolved in chloroform (80 mL). Thereto was added bromine (23 mL) and the mixture was stirred for 2 days at 75° C. The mixture was allowed to cool to room temperature, hexane was added and the precipitated solid was collected by filtration. The obtained solid was dissolved in dimethylformamide (54 mL), potassium carbonate (7.1 g) and benzyl bromide (5.6 mL) were added, and the mixture was stirred at 80° C. for 40 min. The mixture was allowed to cool to room temperature and filtered. The filtrate was concentrated and 1N aqueous hydrochloric acid solution was added to the obtained residue. The mixture was extracted twice with ethyl acetate. The combined ethyl acetate layer was washed with saturated brine, dried, and concentrated. The concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:20-1:4), the eluate was concentrated, and the precipitated crystals were collected by filtration to give the object compound (7.65 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.11 (s, 1H), 7.49-7.44 (m, 2H), 7.40-7.32 (m, 3H), 5.32 (s, 2H), 3.89 (s, 3H).
-
- To a solution of 2-bromothiazole-5-carbaldehyde (14 g) in THF (300 mL) was added dropwise 1M (4-fluorophenyl)magnesium bromide/THF solution (80 mL) at −78° C., and the mixture was stirred for 1 hr. Saturated aqueous ammonium chloride solution was added, and the mixture was allowed to cool to room temperature, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, and concentrated. Trifluoroacetic acid (100 mL) and triethylsilane (58 mL) were added to the obtained residue, and the mixture was stirred for 100 min at 75° C. The mixture was allowed to cool to room temperature and concentrated, and the residue was purified by silica gel column chromatography (ethyl acetate:hexane=1:50-1:9) to give the object compound (16.8 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 7.31-7.29 (m, 1H), 7.21-7.14 (m, 2H), 7.05-6.98 (m, 2H), 4.07 (s, 2H).
-
- To a solution of the compound (3.2 g) obtained in step 1R-2 in THF (50 mL) was added dropwise 1.6M n-butyllithium/hexane solution (8.1 mL) at −78° C. and the mixture was stirred for 10 min. Tributyltin chloride (3.5 mL) was added, and the mixture was stirred at −78° C. for 30 min and at room temperature for 30 min. Ice-cold water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, and concentrated to give the object compound (6.2 g) described in the above-mentioned scheme as a crude product.
- 1H-NMR (THF) δ: 7.76-7.74 (m, 1H), 7.25-7.21 (m, 2H), 7.03-6.97 (m, 2H), 4.19 (s, 2H), 1.65-1.56 (m, 6H), 1.40-1.28 (m, 6H), 1.20-1.13 (m, 6H), 0.91-0.85 (m, 9H).
-
- Under an argon stream, tris(dibenzylideneacetone)dipalladium(0) (84 mg) and tri(2-furyl)phosphine (85 mg) were suspended in toluene (1.5 mL), and the suspension was stirred at room temperature for 15 min. The compound (890 mg) obtained in step 1R-3 and the compound (310 mg) obtained in step 1R-1 were added, and the mixture was stirred at 80° C. for 1 hr. The obtained reaction mixture was filtered through celite, and concentrated, and the concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:20-1:4) to give the object compound (190 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.91 (s, 1H), 7.62-7.61 (m, 1H), 7.51-7.45 (m, 2H), 7.40-7.32 (m, 3H), 7.25-7.19 (m, 2H), 7.04-6.97 (m, 2H), 5.37 (s, 2H), 4.19 (s, 2H), 3.91 (s, 3H).
-
- In the same manner as in step 1R-1 except that 3-benzyloxy-4-oxo-4H-pyran-2-carboxylic acid (15.0 g) was ethylated with iodoethane, the object compound (10.97 g) described in the above-mentioned scheme was obtained.
- 1H-NMR (CDCl3) δ: 8.11 (s, 1H), 7.50-7.46 (m, 2H), 7.40-7.32 (m, 3H), 5.31 (s, 2H), 4.36 (q, 2H, J=7.2 Hz), 1.33 (t, 3H, J=7.2 Hz).
-
- In the same manner as in step 1R-4, the object compound (1.0 g) described in the above-mentioned scheme was obtained from the compound (1.2 g) obtained in step 2R-1.
- 1H-NMR (CDCl3) δ: 8.91 (s, 1H), 7.62-7.61 (m, 1H), 7.51-7.47 (m, 2H), 7.39-7.31 (m, 3H), 7.25-7.20 (m, 2H), 7.04-6.97 (m, 2H), 5.37 (s, 2H), 4.38 (q, 2H, J=7.2 Hz), 4.19 (s, 2H), 1.34 (t, 3H, J=7.2 Hz).
-
- To a solution of 4-fluorophenylacetic acid (25 g) and tert-butyl carbazate (22.5 g) in DMF (200 mL) were added 1-hydroxybenzotriazole hydrate (HOBT.HZO (27.3 g)) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC.HCl (34.1 g)), and the mixture was stirred at room temperature overnight. Saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was stirred for a while and extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, and is concentrated to give the object compound (32.3 g) described in the above-mentioned scheme as a crude product.
-
- To a solution of the compound (32.3 g) obtained in step 3R-1 in THF (300 mL) was added a Lawesson reagent (48.7 g), and the mixture was stirred at 50° C. overnight and allowed to cool. The reaction mixture was poured into a stirred saturated aqueous sodium hydrogen carbonate solution by small portions, and the mixture was stirred at room temperature for 30 min. The mixture was extracted twice with ethyl acetate, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, and concentrated. To the residue was added 4N hydrochloric acid/dioxane solution (300 mL), and the mixture was stirred at room temperature for 1 hr. The precipitated salt was collected by filtration, and dissolved in water (200 mL), and the solution was neutralized with sodium hydrogen carbonate and extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate, and concentrated. To the residue was added ethyl acetate/hexane (1:4) solution and the mixture was slurry washed. The residue was collected by filtration, and dried to give the object compound (15.78 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.27-8.03 (br m, 1H), 7.26-7.20 (m, 2H), 7.10-7.03 (m, 2H), 4.88-4.75 (br m, 2H), 4.08 (s, 2H).
-
- To a solution of (S)-2-ethylamino-3-methoxypropylcarbamic acid benzyl ester (76 mg) in methanol (10 mL) was added a 7.5% palladium-carbon catalyst (100 mg), and the reaction mixture was stirred under a moderate-pressure (0.4 MPa) in a hydrogen atmosphere at room temperature for 3 hr. The reaction mixture was filtered through celite, trifluoroacetic acid (1 mL) was added and the mixture was concentrated to give the object compound (133 mg) described in the above-mentioned scheme as a crude product.
-
- To a solution of the compound (55 mg) obtained in step 1-1 in tetrahydrofuran (1.5 mL) was added diisopropylethylamine (160 μL), and the mixture was stirred for 10 min. A solution of the compound (46 mg) obtained in Reference Example 2 in tetrahydrofuran (1 mL) was added, and the mixture was stirred at room temperature for 30 min. The reaction mixture was concentrated, toluene (4 mL) and 1,8-diazabicyclo[5.4.0]undec-7-ene (200 μL) were added, and the mixture was stirred at 110° C. for 15 min. Acetic acid (500 μL) was added, and the mixture was stirred at 110° C. for 1 hr. The reaction mixture was allowed to cool to room temperature, and diluted with ethyl acetate. The mixture was washed with 5% aqueous potassium hydrogen sulfate solution, dried and concentrated, and the concentrate was purified by silica gel thin layer chromatography (ethyl acetate:methanol=20:1) to give the object compound (56 mg) described in the above-mentioned scheme.
-
- Compound (56 mg) obtained in step 1-2 was dissolved in trifluoroacetic acid (1.0 mL), and the mixture was stood at room temperature for 1 hr. The reaction solution was concentrated, ethyl acetate was added and the mixture was concentrated. Ethyl acetate, 4N hydrochloric acid/ethyl acetate solution, and hexane were added to allow crystallization to give the object compound (28 mg) described in the above-mentioned scheme.
- 1H-NMR (DMSO-d6) δ: 12.30 (br s, 1H), 8.64 (s, 1H), 7.66 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.11 (m, 2H), 4.57 (d, 1H, J=13.5 Hz), 4.39 (dd, 1H, J=13.5, 3.9 Hz), 4.19 (s, 2H), 4.12-4.10 (m 1H), 3.87-3.80 (m, 1H), 3.53-3.44 (m, 2H), 3.27-3.22 (m, 1H), 3.20 (s, 3H), 1.18 (t, 3H, J=7.1 Hz).
-
- Under nitrogen, a solution of 1M lithium bis(trimethylsilyl)amide-THF/ethylbenzene (100 mL) in THF (100 mL) was cooled to −70° C., and tert-butyl acetate (13.5 mL) was added dropwise under stirring. After stirring for 15 min, benzyloxyacetyl chloride (7.52 mL) was added dropwise. After stirring for 1 hr, 2N aqueous hydrochloric acid solution was added to the reaction mixture until its pH reached 3 and the mixture was allowed to warm to room temperature. The mixture was extracted with ethyl acetate, and the organic layer was washed with 2N aqueous hydrochloric acid solution and saturated brine, dried over sodium sulfate and concentrated. The above operation was repeated, and the both were combined to give the object compound (40.3 g) described in the above-mentioned scheme as a crude product.
-
- To a solution of the compound (38 g) obtained in step 2-1 in toluene (80 mL) was added dimethylformamidedimethylacetal (38 mL), and the mixture was stirred at 100° C. for 1 hr. The mixture was allowed to cool, and concentrated, and the concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:2-ethyl acetate) to give the object compound (11.3 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 7.66 (s, 1H), 7.40-7.13 (m, 5H), 4.60 (s, 2H), 4.42 (s, 2H), 3.40-2.65 (m, 6H), 1.45 (s, 9H).
-
- Under nitrogen, a solution of 1M lithium bis(trimethylsilyl)amide-THF/ethylbenzene (42.5 mL) in THF (150 mL) was cooled to −70° C., and a solution of the compound (11.3 g) obtained in step 2-2 in THF (50 mL) was added dropwise over 3 min under stirring. After stirring for 20 min, ethyl chloroglyoxylate (4.75 mL) was added at once. After stirring for 25 min, saturated aqueous potassium hydrogen sulfate solution and ethyl acetate were added and the mixture was allowed to warm to room temperature. The organic layer was separated, washed with saturated brine, dried over sodium sulfate, and concentrated. Toluene was added to the residue, and the mixture was concentrated once. Toluene (100 mL) and triethylamine (10 mL) were added and the mixture was stirred at room temperature. One hour later, the mixture was concentrated, and the concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:6-1:3) to give the object compound (6.03 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.39 (s, 1H), 7.51-7.47 (m, 2H), 7.39-7.30 (m, 3H), 5.32 (s, 2H), 4.34 (q, 2H, J=7.2 Hz), 1.57 (s, 9H), 1.31 (t, 3H, J=7.2 Hz).
-
- To a solution of the compound (18.7 g) obtained in step 2-3 in ethyl acetate (20 mL) was added 4N hydrochloric acid/ethyl acetate (200 mL) under stirring, and the mixture was stirred at room temperature for 1 hr. To the reaction mixture was added hexane (1 L), the mixture was stirred for a while, and the crystals were collected by filtration, and dried to give the object compound (11.1 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 13.03 (s, 1H), 8.80 (s, 1H), 7.47-7.43 (m, 2H), 7.41-7.35 (m, 3H), 5.38 (s, 2H), 4.40 (q, 2H, J=7.2 Hz), 1.35 (t, 3H, J=7.2 Hz).
-
- To a solution of the compound (6 g) obtained in step 2-4 in toluene (80 mL) were added oxalyl chloride (3.27 mL) and dimethylformamide (0.04 mL) under stirring, and the mixture was stirred at room temperature for 2 hr. The reaction mixture was concentrated, chloroform (100 ml) and the compound (5.22 g) obtained in Reference Example 3 were added, and the mixture was stirred at room temperature overnight. 5% Aqueous potassium hydrogen sulfate solution was added, and the mixture was extracted twice with chloroform. The organic layer was washed with 5% aqueous potassium hydrogen sulfate solution and saturated brine, dried over magnesium sulfate, and concentrated. The concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:4-1:3), ethyl acetate/hexane (1:3) solution was added, and the mixture was slurry washed. The residue was collected by filtration, and dried to give the object compound (6.348 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 9.07 (s, 1H), 7.49-7.44 (m, 2H), 7.39-7.28 (m, 5H), 7.07-7.00 (m, 2H), 5.35 (s, 2H), 4.46 (s, 2H), 4.39 (q, 2H, J=7.1 Hz), 1.34 (t, 3H, J=7.1 Hz).
-
- To a solution of (R)-2-tert-butoxycarbonylamino-3-hydroxy-2-methylpropionic acid (5.00 g) in dimethylformamide (50 mL) were added potassium carbonate (6.31 g) and iodomethane (2.84 mL), and the mixture was stirred at room temperature for 3 hr. Water (100 mL) was added, and the mixture was extracted with ethyl acetate (150 mL). The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution (100 mL), dried and concentrated to give the object compound (5.06 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 5.29 (br s, 1H), 3.99 (dd, 1H, J=11.6, 6.0 Hz), 3.83-3.73 (m, 1H), 3.78 (s, 3H), 3.23 (br s, 1H), 1.48 (s, 3H), 1.45 (s, 9H).
-
- To a solution of the compound (2.50 g) obtained in step 2-6 in dimethyl sulfoxide (25 mL) were added triethylamine (2.25 mL) and a pyridine-sulfur trioxide complex (2.62 g), and the mixture was stirred at room temperature for 1 hr. 1N Aqueous hydrochloric acid solution (100 mL) was added, and the mixture was extracted with ethyl acetate (200 mL). The organic layer was washed successively with 1N aqueous hydrochloric acid solution (100 mL) and saturated aqueous sodium hydrogen carbonate solution (100 mL), dried and concentrated to give the object compound (1.22 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 9.57 (s, 1H), 5.63 (br s, 1H), 3.81 (s, 3H), 1.57 (s, 3H), 1.45 (s, 9H).
-
- To a solution of the compound (660 mg) obtained in step 2-7 in chloroform (7.0 mL) were added isopropylamine (368 μL), acetic acid (245 μL) and sodium triacetoxyborohydride (955 mg), and the mixture was stirred at room temperature for 18 hr. Saturated aqueous sodium hydrogen carbonate solution (30 mL) and chloroform (50 mL) were added and the mixture was partitioned. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution (30 mL), dried and concentrated. The concentrate was purified by silica gel column chromatography (chloroform:methanol=10:1) to give the object compound (764 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 5.74 (br s, 1H), 3.74 (s, 3H), 2.89 (br s, 2H), 2.73 (sep, 1H, J=6.2 Hz), 1.52 (s, 3H), 1.44 (s, 9H), 1.02 (d, 3H, J=6.2 Hz), 1.02 (d, 3H, J=6.2 Hz).
-
- The compound (155 mg) obtained in step 2-8 was dissolved in trifluoroacetic acid solution (1.0 mL), and the mixture was stirred at room temperature for 30 min. The mixture was concentrated, chloroform was added, and the mixture was 25 concentrated. This operation was performed twice. Toluene (5 mL), diisopropylethylamine (395 μL) and the compound (200 mg) obtained in step 2-5 were added, and the mixture was stirred at room temperature for 30 min. Toluene (5 mL) and 1,8-diazabicyclo[5.4.0]undec-7-ene (100 μL) were added, and the mixture was stirred at 120° C. for 1 hr. The reaction mixture was allowed to cool to room temperature, acetic acid (1.0 mL) was added, and the mixture was further stirred at 110° C. for 1 hr. 2N Aqueous hydrochloric acid solution (30 mL) was added, and the mixture was extracted with ethyl acetate (60 mL). The organic layer was dried and concentrated, toluene was added, and this operation was repeated twice to give the object compound (263 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.87 (s, 1H), 7.59 (d, 2H, J=7.0 Hz), 7.41-7.13 (m, 4H), 7.08-6.98 (m, 3H), 5.46 (d, 1H, J=10.0 Hz), 5.23 (d, 1H, J=10.0 Hz), 4.86 (sep, 1H, J=6.3 Hz), 4.44 (s, 2H), 3.85 (d, 1H, J=13.5 Hz), 3.44 (d, 1H, J=13.5 Hz), 1.96 (s, 3H), 1.14 (d, 3H, J=6.3 Hz), 1.12 (d, 3H, J=6.3 Hz).
-
- To a solution of the compound (40.0 mg) obtained in step 2-9, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (28.0 mg) and 1-hydroxybenzotriazole hydrate (22.0 mg) in dimethylformamide (400 μL) was added azetidine (20 μL), and the mixture was stirred at room temperature for 18 hr. Saturated aqueous sodium hydrogen carbonate solution (10 mL) was added, and the mixture was extracted with ethyl acetate (25 mL). The organic layer was washed successively with 1N aqueous hydrochloric acid solution (10 mL) and saturated aqueous sodium hydrogen carbonate solution (10 mL), dried and concentrated. The concentrate was purified by silica gel thin layer chromatography (chloroform:methanol=15:1) to give the object compound (26.7 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.99 (s, 1H), 7.64-7.58 (m, 2H), 7.36-7.27 (m, 5H), 7.07-6.99 (m, 2H), 5.53 (d, 1H, J=10.0 Hz), 5.39 (d, 1H, J=10.0 Hz), 4.82 (sep, 1H, J=6.7 Hz), 4.46 (s, 2H), 4.10-3.92 (m, 2H), 3.97 (d, 1H, J=13.4 Hz), 3.75-3.66 (m, 1H), 3.61-3.51 (m, 1H), 3.27 (d, 1H, J=13.4 Hz), 2.19-2.05 (m, 2H), 1.97 (s, 3H), 1.15 (d, 6H, J=6.7 Hz).
-
- The compound (25.0 mg) obtained in step 2-10 was dissolved in trifluoroacetic acid (1.0 mL), and the mixture was stirred at room temperature for 30 min. The reaction solution was concentrated, chloroform was added, and the mixture was concentrated. 4N Hydrochloric acid/ethyl acetate solution was added, and the mixture was concentrated. Crystallization from ethyl acetate-hexane gave the object compound (17.2 mg) described in the above-mentioned scheme.
- 1H-NMR (DMSO-d6) δ: 12.91 (br s, 1H), 8.71 (s, 1H), 7.46-7.38 (m, 2H), 7.23-7.15 (m, 2H), 4.70 (sep, 1H, J=6.7 Hz), 4.48 (s, 2H), 4.29-4.18 (br m, 1H), 4.02 (d, 1H, J=13.9 Hz), 3.90-3.81 (br m, 2H), 3.80-3.72 (br m, 1H), 3.71 (d, 1H, J=13.9 Hz), 2.16-2.04 (br m, 2H), 1.99 (s, 3H), 1.16 (d, 3H, J=6.7 Hz), 1.14 (d, 3H, J=6.7 Hz).
-
- To a solution of (R)-1-benzyloxymethyl-2-hydroxyethylcarbamic acid tert-butyl ester (5.0 g) and 2,6-di-tert-butylpyridine (8.0 mL) in chloroform (50 mL) were added iodomethane (1.33 mL) and silver(I) trifluoromethanesulfonate (6.85 g) under ice-cooling, and the mixture was stirred for 30 min, and further stirred at room temperature for 1 hr. The reaction suspension was filtered through celite, and concentrated, and the concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:20-1:4) to give the object compound (2.8 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 7.38-7.27 (m, 5H), 4.97-4.85 (m, 1H), 4.53 (s, 15 2H), 4.00-3.81 (m, 1H), 3.59 (dd, 1H, J=9.4, 4.2 Hz), 3.51 (dd, 1H, J=9.4, 5.8 Hz), 3.51 (dd, 1H, J=9.4, 4.4 Hz), 3.44 (dd, 1H, J=9.4, 6.0 Hz), 3.34 (s, 3H), 1.44 (s, 9H).
-
- To a solution of the compound (2.8 g) obtained in step 3-1 in methanol (100 mL) was added a 7.5% palladium-carbon catalyst (1.4 g), and the mixture was stirred at room temperature for 17 hr under a hydrogen atmosphere and moderate pressure (0.4 MPa). The reaction mixture was filtered through celite and concentrated to give the object compound (2.05 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 5.22-5.10 (m, 1H), 3.84-3.64 (m, 3H), 3.60-3.49 (m, 2H), 3.37 (s, 3H), 2.73-2.55 (m, 1H), 1.45 (s, 9H).
-
- To a solution of the compound (1.6 g) obtained in step 3-2, phthalimide (1.38 g) and triphenylphosphine (2.47 g) in tetrahydrofuran (20 mL) was added dropwise 2.2M diethyl azodicarboxylate/toluene solution (4.3 mL) under ice-cooling, and the mixture was stirred at room temperature for 20 min. The reaction mixture was concentrated, and the concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:10-1:2). The obtained solid was dissolved in ethanol (30 mL)-toluene (30 mL), hydrazine monohydrate (1.6 mL) was added, and the mixture was stirred at 80° C. for 40 min. The mixture was allowed to cool to room temperature, the solid was filtered off, and the filtrate was concentrated. Toluene was added to the residue, and the precipitated solid was filtered off. The filtrate was concentrated to give the object compound (1.3 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 5.08-4.89 (m, 1H), 3.71-3.63 (m, 1H), 3.50 (dd, 1H, J=9.5, 3.7 Hz), 3.40 (dd, 1H, J=9.5, 5.1 Hz), 3.35 (s, 3H), 2.84 (dd, 1H, J=13.0, 6.0 Hz), 2.80 (dd, 1H, 25 J=13.0, 6.0 Hz), 1.45 (s, 9H).
-
- To a solution of the compound (0.8 g) obtained in step 3-3 in dioxane (8 mL) was added saturated aqueous sodium hydrogen carbonate solution (2 mL), benzyl chloroformate (0.84 mL) was added dropwise under ice-cooling, and the mixture was stirred for 40 min, and at room temperature for 10 min. Water (15 mL) was added, and the mixture was extracted with ethyl acetate. The extract was dried, and concentrated, and the concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:10-1:2). To the obtained solid was added 4N hydrochloric acid/dioxane solution (5 mL), and the mixture was stirred at room temperature for 30 min. The reaction mixture was concentrated, and the residue was dissolved in chloroform. Saturated aqueous sodium hydrogen carbonate solution (2 mL) was added, and the mixture was stirred. The mixture was extracted with chloroform, and the organic layer was dried and concentrated to give the object compound (639 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 7.39-7.28 (m, 5H), 5.27-5.20 (m, 1H), 5.10 (s, 2H), 3.41-3.24 (m, 3H), 3.35 (s, 3H), 3.18-3.01 (m, 2H), 1.39 (br s, 2H).
-
- To a solution of the compound (150 mg) obtained in step 3-4 in chloroform (4 mL) were added acetone (70 μL), acetic acid (54 μL) and sodium triacetoxyborohydride (200 mg) under ice-cooling, and the mixture was stirred at room temperature overnight. The reaction mixture was diluted with chloroform, saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was stirred. The chloroform layer was washed with saturated brine, dried, and concentrated to give the object compound (156 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 7.39-7.28 (m, 5H), 5.39-5.29 (m, 1H), 5.10 (s, 2H), 3.42-3.28 (m, 3H), 3.33 (s, 3H), 3.22-3.14 (m, 1H), 2.96-2.82 (m, 2H), 1.04 (d, 3H, J=6.8 Hz), 1.02 (d, 3H, J=6.8 Hz).
-
- In the same manner as in step 2-9 and step 2-11, the object compound (17.0 mg) described in the above-mentioned scheme was obtained from the compound (156 mg) obtained in step 3-5. For removal of the amino-protecting group (benzyloxycarbonyl group) of the compound obtained in step 3-5, a known method was used according to the protecting group.
- 1H-NMR (DMSO-d6) δ: 8.84 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.14 (m, 2H), 4.66 (d, 1H, J=13.2 Hz), 4.47 (sep, 1H, J=6.7 Hz), 4.47 (s, 2H), 4.34 (dd, 1H, J=13.5, 3.7 Hz), 4.22-4.17 (m, 1H), 3.49 (dd, 1H, J=10.6, 4.3 Hz), 3.39 (dd, 1H, J=10.6, 7.5 Hz), 3.21 (s, 3H), 1.30 (d, 3H, J=6.7 Hz), 1.28 (d, 3H, J=6.7 Hz).
-
- To a solution of (R)-1-aminomethyl-2-methoxyethylcarbamic acid tert-butyl ester (1.0 g) produced from (S)-1-benzyloxymethyl-2-hydroxyethylcarbamic acid tert-butyl ester in the same manner as in Example 3, step 3-1 to step 3-3 in chloroform (15 mL) were added acetone (432 μL) and acetic acid (337 μL) under ice-cooling, sodium triacetoxyborohydride (1.25 g) was added at room temperature, and the mixture was stirred at room temperature for 14 hr. To the reaction mixture was added saturated aqueous sodium hydrogen carbonate solution, and the mixture was extracted 3 times with chloroform. The combined chloroform layer was dried, and concentrated, and the concentrate was purified by silica gel column chromatography (chloroform:methanol=50:1-7:1) to give the object compound (1.12 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 5.09-4.90 (m, 1H), 3.81-3.69 (m, 1H), 3.49 (dd, 1H, J=9.5, 4.0 Hz), 3.43-3.37 (m, 1H), 3.34 (s, 3H), 2.82-2.68 (m, 3H), 1.45 (s, 9H), 1.04 (d, 3H, J=6.4 Hz), 1.03 (d, 3H, J=6.4 Hz).
-
- In the same manner as in step 2-9 and step 2-11 (known deprotection and condensation reactions may be omitted as necessary), the object compound (10.8 mg) described in the above-mentioned scheme was obtained from the compound (19.0 mg) obtained in step 4-1.
- 1H-NMR (DMSO-d6) δ: 12.82 (br s, 1H), 8.80 (s, 1H), 7.45-7.38 (m, 2H), 7.23-7.15 (m, 2H), 5.01-4.93 (m, 1H), 4.77 (sep, 1H, J=6.7 Hz), 4.47 (s, 2H), 3.84 (dd, 1H, J=13.8, 4.1 Hz), 3.75 (dd, 1H, J=13.8, 1.3 Hz), 3.65-3.54 (m, 2H), 3.25 (s, 3H), 1.16 (d, 3H, J=6.7 Hz), 1.16 (d, 3H, J=6.7 Hz).
-
- In the same manner as in step 3-3, the object compound (1.0 g) described in the above-mentioned scheme was obtained from (S)-2-hydroxy-1-methylethylcarbamic acid tert-butyl ester (1.4 g).
- 1H-NMR (CDCl3) δ: 4.68-4.49 (m, 1H), 3.71-3.58 (m, 1H), 2.74 (dd, 1H, J=13.0, 4.9 Hz), 2.62 (dd, 1H, J=13.0, 6.5 Hz), 1.45 (s, 9H), 1.12 (d, 3H, J=6.7 Hz).
-
- In the same manner as in step 4-1, the object compound (180 mg) described in the above-mentioned scheme was obtained from the compound (190 mg) obtained in step 5-1.
- 1H-NMR (CDCl3) δ: 4.91-4.66 (m, 1H), 3.81-3.66 (m, 1H), 2.81 (sep, 1H, J=6.4 Hz), 2.66 (dd, 1H, J=12.0, 4.9 Hz), 2.60 (dd, 1H, J=12.0, 6.7 Hz), 1.45 (s, 9H), 1.14 (d, 3H, J=6.6 Hz), 1.06 (d, 6H, J=6.4 Hz).
-
- In the same manner as in step 2-9 and step 2-11, the object compound (27.5 mg) described in the above-mentioned scheme was obtained from the compound (30.0 mg) obtained in step 5-2.
- 1H-NMR (DMSO-d6) δ: 12.81 (br s, 1H), 8.91 (s, 1H), 7.45-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.92 (ddd, 1H, J=6.8, 3.5, 2.2 Hz), 4.80 (t, 1H, J=6.8 Hz), 4.47 (s, 2H), 3.81 (dd, 1H, J=13.5, 3.5 Hz), 3.63 (dd, 1H, J=13.5, 2.2 Hz), 1.39 (d, 3H, J=6.8 Hz), 1.19 (d, 3H, J=6.8 Hz), 1.16 (d, 3H, J=6.8 Hz).
-
- In the same manner as in step 3-3 to step 3-5, the object compound (105 mg) described in the above-mentioned scheme was obtained from (R)-2-hydroxy-1-methylethylcarbamic acid tert-butyl ester (2.0 g).
- 1H-NMR (CDCl3) δ: 7.40-7.28 (m, 5H), 5.28 (br s, 1H), 5.10 (s, 2H), 3.29-3.17 (m, 1H), 3.02-2.92 (m, 1H), 2.92-2.80 (m, 2H), 1.04 (d, 6H, J=6.3 Hz), 0.99 (d, 3H, J=6.0 Hz).
-
- In the same manner as in step 2-9 and step 2-11 (known deprotection and condensation reactions may be omitted as necessary), the object compound (16.6 mg) described in the above-mentioned scheme was obtained from the compound (105 mg) obtained in step 6-1. For removal of the amino-protecting group (benzyloxycarbonyl group) of the compound obtained in step 6-1, a known method was used according to the protecting group.
- 1H-NMR (DMSO-d6) δ: 12.54 (br s, 1H), 8.85 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.62-4.53 (m, 1H), 4.51-4.44 (m, 3H), 4.32 (dd, 1H, J=13.1, 3.4 Hz), 4.26-4.18 (m, 1H), 1.27 (d, 3H, J=6.7 Hz), 1.26 (d, 3H, J=6.7 Hz), 1.21 (d, 3H, J=6.5 Hz).
-
- 2-Amino-2-methyl-1,3-propanediol (20.0 g) was suspended in tetrahydrofuran (400 mL), and di-tert-butyl dicarbonate (41.6 g) was added. The mixture was stirred at room temperature for 3 hr and concentrated. Dimethylformamide (200 mL) was added to dissolve the concentrate again, imidazole (13.0 g) and tert-butylchlorodimethylsilane (29.3 g) were added, and the mixture was stirred at room temperature for 15 hr. Water (500 mL) was added, and the mixture was extracted with ethyl acetate (800 mL). The organic layer was washed with water (400 mL), dried, and concentrated. The concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:10) to give the object compound (35.9 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 5.13 (br s, 1H), 4.00 (br s, 1H), 3.77 (d, 1H, J=9.7 Hz), 3.70 (dd, 1H, J=11.4, 4.2 Hz), 3.61 (d, 1H, J=9.7 Hz), 3.55 (dd, 1H, J=11.4, 8.4 Hz), 1.44 (s, 9H), 1.19 (s, 3H) , 0.90 (s, 9H) , 0.07 (s, 6H).
-
- To a solution of the compound (15.5 g) obtained in step 7-1 in dimethyl sulfoxide (120 mL) were added triethylamine (8.12 mL) and a sulfur trioxide-pyridine complex (11.9 g), and the mixture was stirred at room temperature for 3 hr. 1N Aqueous hydrochloric acid solution (300 mL) was added, and the mixture was extracted with ethyl acetate (700 mL). The organic layer was washed successively with 1N aqueous hydrochloric acid solution (150 mL) and saturated aqueous sodium hydrogen carbonate solution (200 mL), dried, and concentrated. The concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:20) to give the object compound (11.0 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 9.49 (s, 1H), 5.29 (br s, 1H), 3.86-3.71 (br m, 2H), 1.45 (s, 9H), 1.34 (s, 3H), 0.88 (s, 9H), 0.05 (s, 6H).
-
- To a solution of the compound (11.0 g) obtained in step 7-2 in chloroform (110 mL) were added isopropylamine (4.46 mL), acetic acid (2.97 mL) and sodium triacetoxyborohydride (11.6 g), and the mixture was stirred at room temperature for 15 hr. The mixture was partitioned between saturated aqueous sodium hydrogen carbonate solution (150 mL) and chloroform (200 mL). The organic layer was washed twice with saturated aqueous sodium hydrogen carbonate solution (100 mL), dried, and concentrated. The concentrate was purified by silica gel column chromatography (chloroformmethanol=10:1) to give the object compound (14.1 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 5.43 (br s, 1H), 3.73 (d, 1H, J=9.6 Hz), 3.58 (d, 1H, J=9.6 Hz), 2.80-2.66 (m, 2H), 2.55 (d, 1H, J=11.6 Hz), 1.43 (s, 9H), 1.24 (s, 3H), 1.05 (br s, 6H), 0.89 (s, 9H), 0.05 (s, 6H).
-
- To a solution of 3-benzyloxy-4-oxo-4H-pyran-2-carboxylic acid (5.00 g) in toluene (100 mL) were added triethylamine (3.40 mL) and thionyl chloride (1.78 mL) at 0° C., and the mixture was stirred at 0° C. for 30 min. The precipitated salt was filtered off, the filtrate was concentrated, and the concentrate was dissolved in tetrahydrofuran (40 mL). This tetrahydrofuran solution was added dropwise to a solution of the compound (10.3 g) obtained in step 7-3 and pyridine (30 mL) in tetrahydrofuran (60 mL) at 0° C., and the mixture was stirred at room temperature for 30 min. The reaction mixture was concentrated, toluene was added and the mixture was concentrated. This operation was performed twice. 1N Aqueous hydrochloric acid solution (150 mL) was added, and the mixture was extracted with ethyl acetate (250 mL). The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution (100 mL), dried, and concentrated. The concentrate was purified by silica gel column chromatography (chloroformmethanol=50:1) to give the object compound (9.65 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 7.74-7.66 (m, 1H), 7.46-7.28 (m, 5H), 6.50-6.42 (m, 1H), 5.96 (br s, 1H), 5.28-5.14 (m, 2H), 4.02-3.33 (m, 5H), 1.47-1.37 (m, 9H), 1.29-1.00 (m, 9H), 0.95-0.83 (m, 9H), 0.13-0.03 (m, 6H).
-
- To the compound (9.65 g) obtained in step 7-4 was added 4N hydrochloric acid/ethyl acetate solution (100 mL), and the mixture was stirred at room temperature for 30 min. This was concentrated, ethanol (400 mL) and saturated aqueous sodium hydrogen carbonate solution (100 mL) were added, and the mixture was stirred at room temperature for 18 hr. The insoluble material was filtered off, and the filtrate was concentrated. Water (100 mL) was added, and the mixture was extracted twice with chloroform (200 mL, 100 mL). The organic layer was dried, and concentrated, and the concentrate was purified by silica gel column chromatography (chloroform:methanol=30:1-20:1-10:1) to give the object compound (2.20 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 7.52 (d, 2H, J=7.9 Hz), 7.48 (d, 1H, J=7.9 Hz), 7.37-7.22 (m, 3H), 6.25 (d, 1H, J=7.9 Hz), 5.79 (br s, 1H), 5.20 (d, 1H, J=10.0 Hz), 5.17 (d, 1H, J=10.0 Hz), 4.85 (sep, 1H, J=6.5 Hz), 3.80 (d, 1H, J=12.1 Hz), 3.61 (d, 1H, J=12.1 Hz), 3.35 (d, 1H, J=14.2 Hz), 3.14 (d, 1H, J=14.2 Hz), 1.47 (s, 3H), 1.12 (d, 3H, J=6.5 Hz), 1.11 (d, 3H, J=6.5 Hz).
-
- The compound (2.20 g) obtained in step 7-5, trimethylphenylammonium tribromide (3.48 g) and sodium hydrogen carbonate (1.04 g) were dissolved in 2:1 chloroform-methanol (60 mL), and the mixture was stirred at room temperature for 30 min. Saturated aqueous sodium hydrogen carbonate solution (100 mL) was added, and the mixture was extracted with chloroform (200 mL). The organic layer was washed successively with 1N aqueous hydrochloric acid solution (100 mL) and saturated aqueous sodium hydrogen carbonate solution (100 mL), dried, and concentrated to give the object compound (2.23 g) described in the above-mentioned scheme.
- 1H-NMR (DMSO-d6) δ: 8.22 (s, 1H), 7.53 (d, 2H, J=7.0 Hz), 7.41-7.27 (m, 3H), 5.48 (br s, 1H), 5.10 (d, 1H, J=10.2 Hz), 5.03 (d, 1H, J=10.2 Hz), 4.67 (sep, 1H, J=6.7 Hz), 3.66 (d, 1H, J=11.6 Hz), 3.59 (d, 1H, J=11.6 Hz), 3.56 (d, 1H, J=14.2 Hz), 3.45 (d, 1H, J=14.2 Hz), 1.48 (s, 3H), 1.11 (d, 6H, J=6.7 Hz).
-
- To a solution of the compound (2.12 g) obtained in step 7-6 in chloroform (45 mL) were added 3,4-dihydro-2H-pyran (882 μL) and camphorsulfonic acid (56 mg), and the mixture was stirred at room temperature for 2 hr. The reaction mixture was concentrated, and the concentrate was purified by silica gel column chromatography (chloroform:methanol=30:1) to give the object compound (2.23 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 7.91-7.89 (m, 1H), 7.72-7.66 (m, 2H), 7.37-7.27 (m, 3H), 5.41-5.36 (m, 1H), 5.27-5.17 (m, 1H), 5.02-4.92 (m, 1H), 4.61-4.48 (m, 1H), 3.92-3.81 (m, 1H), 3.79-3.27 (m, 5H), 1.78-1.48 (m, 9H), 1.20-1.14 (m, 6H).
-
- The compound (250 mg) obtained in step 7-7, tris(dibenzylideneacetone)dipalladium (44 mg), tri(2-furyl)phosphine (45 mg) and 5-(2,4-difluorobenzyl)-2-tributylstanylthiazole (835 mg) were dissolved in dioxane (5.0 mL), and the mixture was heated in a microwave apparatus at 110° C. for 40 min. This operation was performed twice using the same amounts, and the reaction mixtures were combined and concentrated. The concentrate was purified by silica gel column chromatography (chloroform:methanol=30:1) to give the object compound (682 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.78-8.74 (m, 1H), 7.72-7.67 (m, 2H), 7.60-7.56 (m, 1H), 7.37-7.17 (m, 4H), 6.86-6.71 (m, 2H), 5.52-5.46 (m, 1H), 5.34-5.25 (m, 1H), 5.03-4.93 (m, 1H), 4.62-4.53 (m, 1H), 4.20-4.14 (m, 2H), 4.02-3.87 (m, 1H), 3.77-3.43 (m, 5H), 3.36-3.26 (m, 1H), 1.78-1.42 (m, 8H), 1.21-1.13 (m, 6H).
-
- The compound (682 mg) obtained in step 7-8 was dissolved in tetrahydrofuran-methanol-water (4:1:1, 6.0 mL). Acetic acid (2.0 mL) was added, and the mixture was stirred at 80° C. for 30 hr. The reaction mixture was concentrated, toluene was added, and the mixture was concentrated. This operation was performed twice, and the concentrate was purified by silica gel column chromatography (chloroformmethanol=40:1) to give the object compound (390 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.66 (s, 1H), 7.67-7.62 (m, 2H), 7.51 (s, 1H), 7.36-7.25 (m, 3H), 7.24-7.15 (m, 1H), 6.84-6.75 (m, 2H), 5.40 (d, 1H, J=9.7 Hz), 5.29 (d, 1H, J=9.7 Hz), 4.93 (sep, 1H, J=6.7 Hz), 4.14 (s, 2H), 3.86 (s, 2H), 3.51 (d, 1H, J=13.9 Hz), 3.25 (d, 1H, J=13.9 Hz), 1.65 (s, 3H), 1.16 (d, 3H, J=6.7 Hz), 1.15 (d, 3H, J=6.7 Hz).
-
- To a solution of the compound (250 mg) obtained in step 7-9 in chloroform (5.0 mL) were added triethylamine (93 μL) and methanesulfonyl chloride (41 μL) at 0° C., and the mixture was stirred at 0° C. for 1 hr. Triethylamine (93 μL) and methanesulfonyl chloride (41 μL) were added, and the mixture was further stirred at 0° C. for 1 hr. Saturated aqueous sodium hydrogen carbonate solution (20 mL) was added, and the mixture was extracted with chloroform (40 mL). The organic layer was washed with 1N aqueous hydrochloric acid solution (20 mL), dried, and concentrated to give the object compound (295 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 7.68-7.61 (m, 4H), 7.40-7.20 (m, 4H), 6.92-6.82 (m, 2H), 5.45 (d, 1H, J=9.8 Hz), 5.32 (d, 1H, J=9.8 Hz), 4.98 (sep, 1H, J=6.8 Hz), 4.80 (br s, 1H), 4.50 (d, 1H, J=10.1 Hz), 4.19 (s, 2H), 3.58 (d, 1H, J=14.1 Hz), 3.37 (d, 1H, J=14.1 Hz), 3.20 (br s, 3H), 1.85 (s, 3H), 1.22 (d, 3H, J=6.8 Hz), 1.19 (d, 3H, J=6.8 Hz).
-
- The compound (30 mg) obtained in step 7-10 and potassium phthalimide (26 mg) were dissolved in dimethylformamide (1.0 mL), and the mixture was heated in a microwave apparatus at 150° C. for 2 hr. This operation was performed two more times using the compound (115 mg) obtained in step 7-10, potassium phthalimide (100 mg) and dimethylformamide (4.0 mL), and all the reaction mixtures were combined. Water (30 mL) was added, and the mixture was extracted with ethyl acetate (60 mL). The organic layer was washed successively with 1N aqueous hydrochloric acid solution (30 mL) and saturated aqueous sodium hydrogen carbonate solution (30 mL), dried and concentrated. The concentrate was purified by silica gel column chromatography (chloroform:methanol=30:1) to give the object compound (277 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.45 (s, 1H), 7.91-7.58 (m, 7H), 7.40-7.14 (m, 4H), 6.85-6.76 (m, 2H), 5.60 (d, 1H, J=9.7 Hz), 5.31 (d, 1H, J=9.7 Hz), 5.07 (sep, 1H, J=6.7 Hz), 4.21 (d, 1H, J=14.4 Hz), 4.12 (s, 2H), 3.88 (d, 1H, J=14.4 Hz), 3.58 (d, 1H, J=13.9 Hz), 3.47 (d, 1H, J=13.9 Hz), 1.78 (s, 3H), 1.29 (d, 3H, J=6.7 Hz), 1.21 (d, 3H, J=6.7 Hz).
-
- To a solution of the compound (277 mg) obtained in step 7-11 in 1:1 ethanol-toluene (6.0 mL) was added hydrazine monohydrate (60 μL), and the mixture was stirred at 80° C. for 3 hr. Furthermore, hydrazine monohydrate (60 μL) was added, and the mixture was stirred at 80° C. for 2 hr. The precipitate was filtered off, and the filtrate was concentrated, and the concentrate was purified by silica gel column chromatography (chloroform:methanol=30:1-20:1) to give the object compound (104 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.71 (s, 1H), 7.71-7.63 (m, 2H), 7.59 (s, 1H), 7.38-7.27 (m, 3H), 7.25-7.16 (m, 1H), 6.85-6.76 (m, 2H), 5.53 (d, 1H, J=9.7 Hz), 5.26 (d, 1H, J=9.7 Hz), 4.97 (sep, 1H, J=6.7 Hz), 4.18 (s, 2H), 3.51 (d, 1H, J=13.9 Hz), 3.32 (d, 1H, J=13.9 Hz), 3.05 (d, 1H, J=13.7 Hz), 2.98 (d, 1H, J=13.7 Hz), 1.67 (s, 3H), 1.20 (d, 3H, J=6.7 Hz), 1.18 (d, 3H, J=6.7 Hz).
-
- To a solution of the compound (20.0 mg) obtained in step 7-12 in chloroform (400 μL) were added triethylamine (9.9 μL) and propionyl chloride (4.8 μL), and the mixture was stirred at room temperature for 1 hr. The obtained reaction mixture was directly purified by silica gel thin layer chromatography (chloroform:methanol=10:1) to give the object compound (14.2 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.58 (s, 1H), 7.64-7.59 (m, 2H), 7.52 (s, 1H), 7.36-7.27 (m, 3H), 7.25-7.17 (m, 1H), 6.86-6.78 (m, 2H), 6.21 (br s, 1H), 5.40 (d, 1H, J=9.7 Hz), 5.28 (d, 1H, J=9.7 Hz), 4.96 (sep, 1H, J=6.7 Hz), 4.15 (s, 2H), 3.76 (dd, 1H, J=14.7, 7.1 Hz), 3.55 (dd, 1H, J=14.7, 6.4 Hz), 3.39 (d, 1H, J=13.7 Hz), 3.35 (d, 1H, J=13.7 Hz), 2.28 (dt, 2H, J=14.5, 6.6 Hz), 1.61 (s, 3H), 1.17 (d, 3H, J=6.7 Hz), 1.16 (d, 3H, J=6.7 Hz), 1.14 (t, 3H, J=7.7 Hz).
-
- To a solution of the compound (14.0 mg) obtained in step 7-13 in tetrahydrofuran (1.0 mL) were added excess amounts of iodomethane and potassium tert-butoxide at 0° C. (until disappearance of starting materials). The obtained reaction mixture was directly purified by silica gel thin layer chromatography (chloroform:methanol=15:1) to give the object compound (5.6 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.60 (s, 1H), 7.68-7.63 (m, 2H), 7.58 (s, 1H), 7.36-7.27 (m, 3H), 7.25-7.19 (m, 1H), 6.86-6.77 (m, 2H), 5.58 (d, 1H, J=10.0 Hz), 5.32 (d, 1H, J=10.0 Hz), 4.98 (sep, 1H, J=6.7 Hz), 4.28 (d, 1H, J=14.4 Hz), 4.19 (s, 2H), 3.47 (d, 1H, J=14.2 Hz), 3.32 (d, 1H, J=14.2 Hz), 3.12 (d, 1H, J=14.4 Hz), 2.54 (s, 3H), 2.37 (dq, 1H, J=15.5, 7.0 Hz), 2.30 (dq, 1H, J=15.5, 7.0 Hz), 1.69 (s, 3H), 1.21 (d, 3H, J=6.7 Hz), 1.17 (d, 3H, J=6.7 Hz), 1.15 (t, 3H, J=7.0 Hz).
-
- The compound (5.6 mg) obtained in step 7-14 was dissolved in trifluoroacetic acid (1.0 mL), and the mixture was stirred at room temperature for 1 hr. The reaction solution was concentrated, chloroform was added, and the mixture was concentrated. 4N Hydrochloric acid/ethyl acetate solution was added, and the mixture was concentrated. Crystallization from ethyl acetate-hexane gave the object compound (3.2 mg) described in the above-mentioned scheme.
- 1H-NMR (DMSO-d6) δ: 13.18 (br s, 1H), 8.41 (s, 1H), 7.65 (s, 1H), 7.44 (td, 1H, J=8.8, 6.7 Hz), 7.25 (ddd, 1H, J=10.2, 9.3, 2.6 Hz), 7.07 (tdd, 1H, J=8.8, 2.6, 0.9 Hz), 4.80 (sep, 1H, J=6.7 Hz), 4.21 (s, 2H), 3.83 (d, 1H, J=14.1 Hz), 3.78 (d, 1H, J=13.7 Hz), 3.68 (d, 1H, J=13.7 Hz), 3.51 (d, 1H, J=14.1 Hz), 2.77 (s, 3H), 2.16-2.03 (m, 2H), 1.67 (s, 3H), 1.22 (d, 3H, J=6.7 Hz), 1.17 (d, 3H, J=6.7 Hz), 0.69 (t, 3H, J=7.3 Hz).
-
- Under nitrogen, a solution of 1.6M lithium hexamethyldisilazide-THF (11.73 mL) in THF (100 mL) was cooled to −78° C., and a solution of the compound (5 g) obtained in step 2-2 in THF (15 mL) was added dropwise over 2 min under stirring. After stirring for 13 min, tert-butyl chloroglyoxylate (3.58 mL) was added at once. After stirring for 25 min, saturated aqueous potassium hydrogen sulfate solution and ethyl acetate were added, and the mixture was allowed to warm to room temperature. The organic layer was separated, washed with saturated aqueous potassium hydrogen sulfate solution and saturated brine, dried over sodium sulfate, and concentrated. Toluene was added to the residue, and the mixture was concentrated once. Toluene (100 mL) and triethylamine (10 mL) were added and the mixture was stirred at room temperature, and concentrated 30 min later. The above-mentioned operation was repeated once more, and the both were combined and purified by silica gel column chromatography (ethyl acetate:hexane=1:9-1:6) to give the object compound (4.496 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.37 (s, 1H), 7.52-7.49 (m, 2H), 7.39-7.29 (m, 3H), 5.27 (s, 2H), 1.57 (s, 9H), 1.51 (s, 9H).
-
- To a solution of the compound (4.49 g) obtained in step 8-1 in dioxane (5 mL) was added 4N hydrochloric acid/dioxane solution (20 mL) with stirring, and the mixture was stirred at room temperature for 20 min. The reaction mixture was concentrated, ethyl acetate/hexane (1:4) solution was added and the mixture was slurry washed. The residue was collected by filtration, and dried to give the object compound (3.30 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.78 (s, 1H), 7.48-7.44 (m, 2H), 7.41-7.34 (m, 3H), 5.34 (s, 2H), 1.54 (s, 9H).
-
- To a solution of the compound (1 g) obtained in step 8-2 in toluene (20 mL)/chloroform (5 mL) were added oxalyl chloride (0.326 mL) and dimethylformamide (0.01 mL) under stirring, and the mixture was stirred at room temperature for 30 min. The reaction mixture was concentrated, THF (20 mL) was added, and the mixture was cooled to −78° C. under nitrogen. Triethylamine (1.21 mL) and (2,4-difluorophenyl)thioacetic acid hydrazide (555 mg) were added, and the temperature of the mixture was raised slowly. After 25 min, ethyl acetate and water were added, and the mixture was warmed to room temperature. The mixture was extracted twice with ethyl acetate, and the organic layer was washed with saturated brine, dried over sodium sulfate, and concentrated. To the residue was added acetic acid (20 mL), and the mixture was stirred at 100° C. for 2 hr. The mixture was allowed to cool to room temperature, and concentrated. The concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:9-1:4) to give the object compound (112 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 9.05 (s, 1H), 7.50-7.46 (m, 1H), 7.39-7.18 (m, 5H), 6.91-6.80 (m, 2H), 5.32 (s, 2H), 4.49 (s, 2H), 1.53 (s, 9H)
-
- A solution of the compound (1.01 g) obtained in step 8-3 in formic acid (20 mL) was stirred at room temperature for 2 hr. The reaction mixture was concentrated, ethyl acetate/hexane (1:4) solution was added and the mixture was slurry washed. The crystals were collected by filtration. The mother liquor was concentrated, formic acid (20 mL) was added, and the mixture was stirred at room temperature for 3 hr. The reaction mixture was concentrated, ethyl acetate/hexane (1:4) solution was added and the mixture was slurry washed. The crystals were collected by filtration. The both crystals were combined and dried to give the object compound (238 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 9.13 (s, 1H), 7.43-7.18 (m, 6H), 6.93-6.79 (m, 2H), 5.67 (s, 2H), 4.51 (s, 2H).
-
- To a solution of the compound (69 mg) obtained in step 8-4 in N,N-dimethylformamide (1.5 mL) were added O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) (86 mg), 1-hydroxy-7-azabenzotriazole (HOAt) (31 mg), triethylamine (1.1 mL) and [4-(isopropylaminomethyl)tetrahydropyran-4-yl]carbamic acid tert-butyl ester (49 mg) under ice-cooling, and the mixture was stirred at room temperature overnight. To the reaction mixture was added 5% aqueous potassium hydrogen sulfate solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution, dried, and concentrated. The concentrate was purified by silica gel thin layer chromatography (chloroform:methanol=10:1) to give the object compound (18 mg) described in the above-mentioned scheme.
-
- To the compound (18 mg) obtained in step 8-5 was added 4N hydrochloric acid/dioxane solution (1 mL), and the mixture was left standing at room temperature for 1.5 hr. The reaction mixture was concentrated, 2-propanol (6 mL), water (0.6 mL) and saturated aqueous sodium hydrogen carbonate solution (0.6 mL) were added, and the mixture was stirred with heating at 100° C. for 4 hr. The mixture was allowed to cool to room temperature once, left standing overnight, and stirred again with heating at 100° C. for 8 hr. To the reaction mixture was added saturated brine, and the mixture was extracted with ethyl acetate, dried and concentrated. The concentrate was purified by silica gel thin layer chromatography (chloroform:methanol=10:1) to give the object compound (10 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 9.05 (s, 1H), 7.66-7.62 (m, 2H), 7.38-7.28 (m, 4H), 6.88-6.81 (m, 2H), 5.38 (s, 2H), 4.97 (sep, 1H, J=7.0 Hz), 4.47 (s, 2H), 4.11-4.04 (m, 2H), 3.74-3.65 (m, 2H), 3.55 (s, 2H), 2.45-2.36 (m, 2H), 2.01-1.94 (m, 2H), 1.22 (d, 6H, J=7.0 Hz).
-
- The compound (10 mg) obtained in step 8-6 was dissolved in trifluoroacetic acid (1.0 mL), and the mixture was stood at room temperature for 50 min. Trifluoroacetic acid solution was concentrated, 4N hydrochloric acid/dioxane solution was added and the mixture was concentrated. Toluene was added and the mixture was concentrated. The obtained residue was crystallized from ethyl acetate (0.5 mL)-hexane (2 mL) to give the object compound (4.7 mg) described in the above-mentioned scheme.
- 1H-NMR (DMSO-dd 5: 13.25 (br s, 1H), 8.88 (s, 1H), 7.58-7.50 (m, 1H), 7.32-7.25 (m, 1H), 7.15-7.09 (m, 1H), 4.83 (sep, 1H, J=6.9 Hz), 4.50 (s, 2H), 3.89-3.82 (m, 2H), 3.88 (br s, 2H), 3.80-3.73 (m, 2H), 2.31-2.22 (m, 2H), 2.01-1.94 (m, 2H), 1.23 (d, 6H, J=6.9 Hz).
-
- In the same manner as in step 2-9 (amino-protecting group was removed by a known method according to the protecting group) and step 2-11, the object compound (18.0 mg) described in the above-mentioned scheme was obtained from ((S)-2-ethylamino-3-methoxypropyl)carbamic acid benzyl ester (80 mg) obtainable from a commercially available compound by a known method.
- 1H-NMR (DMSO-d6) δ: 12.64-12.34 (m, 1H), 8.83 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.14 (m, 2H), 4.64 (dd, 1H, J=13.4, 1.5 Hz), 4.47 (s, 2H), 4.42 (dd, 1H, J=13.4, 4.4 Hz), 4.17-4.11 (m, 1H), 3.86 (dq, 1H, J=14.0, 7.0 Hz), 3.54 (dd, 1H, J=10.4, 4.9 Hz), 3.50 (dd, 1H, J=10.4, 6.3 Hz), 3.27 (dq, 1H, J=14.0, 7.0 Hz), 3.22 (s, 3H), 1.20 (t, 3H, J=7.0 Hz).
-
- In the same manner as in step 2-9 (amino-protecting group was removed by a known method according to the protecting group) and step 2-11, the object compound (10.7 mg) described in the above-mentioned scheme was obtained from ((S)-2-cyclopropylmethylamino-3-methoxypropyl)carbamic acid benzyl ester (36 mg) obtainable from a commercially available compound by a known method.
- 1H-NMR (DMSO-d6) δ: 12.46 (br s, 1H), 8.85 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.67 (dd, 1H, J=13.7, 1.6 Hz), 4.47 (s, 2H), 4.45 (dd, 1H, J=13.7, 3.9 Hz), 4.27-4.20 (m, 1H), 3.69 (dd, 1H, J=14.0, 7.0 Hz), 3.58 (dd, 1H, J=10.3, 4.8 Hz), 3.51 (dd, 1H, J=10.3, 6.5 Hz), 3.21 (dd, 1H, J=14.0, 7.0 Hz), 3.21 (s, 3H), 1.21-1.10 (m, 1H), 0.59-0.47 (m, 2H), 0.44-0.36 (m, 1H), 0.36-0.27 (m, 1H).
-
- In the same manner as in step 2-9 (amino-protecting group was removed by a known method according to the protecting group) and step 2-11, the object compound (32.0 mg) described in the above-mentioned scheme was obtained from ((S)-2-cyclopropylmethylamino-3-ethoxypropyl)carbamic acid benzyl ester (295 mg) obtainable from a commercially available compound by a known method.
- 1H-NMR (DMSO-d6) δ: 12.50 (br s, 1H), 8.84 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.15 (m, 2H), 4.67 (d, 1H, J=12.3 Hz), 4.46 (s, 2H), 4.46-4.42 (m, 1H), 4.22-4.19 (m, 2H), 3.67 (dd, 1H, J=14.2, 7.2 Hz), 3.61 (dd, 1H, J=10.4, 4.4 Hz), 3.55 (dd, 1H, J=10.4, 6.2 Hz), 3.40-3.32 (m, 2H), 3.21 (dd, 1H, J=14.2, 7.0 Hz), 0.94 (t, 3H, J=7.0 Hz), 0.54-0.46 (m, 2H), 0.41-0.37 (m, 1H), 0.33-0.27 (m, 1H).
-
- In the same manner as in step 2-9 (amino-protecting group was removed by a known method according to the protecting group) and step 2-11, the object compound (35.0 mg) described in the above-mentioned scheme was obtained from ((S)-3-ethoxy-2-isopropylaminopropyl)carbamic acid benzyl ester (230 mg) obtainable from a commercially available compound by a known method.
- 1H-NMR (DMSO-d6) δ: 12.40 (br s, 1H), 8.85 (s, 1H), 7.43-7.40 (m, 2H), 7.22-7.16 (m, 2H), 4.67, (d, 1H, J=11.9 Hz), 4.51-4.47 (m, 1H), 4.47 (s, 2H), 4.35 (dd, 1H, J=13.3, 3.9 Hz), 4.20-4.16 (m, 1H), 3.54 (dd, 1H, J=10.5, 4.1 Hz), 3.45-3.32 (m, 3H), 1.30 (d, 3H, J=4.6 Hz), 1.28 (d, 3H, J=4.6 Hz), 0.96 (t, 3H, J=7.0 Hz).
-
- In the same manner as in step 2-9 (amino-protecting group was removed by a known method according to the protecting group) and step 2-11, the object compound (37.0 mg) described in the above-mentioned scheme was obtained from ((S)-3-ethoxy-2-ethylaminopropyl)carbamic acid benzyl ester (250 mg) obtainable from a commercially available compound by a known method.
- 1H-NMR (DMSO-d6) δ: 12.50 (br s, 1H), 8.84 (s, 1H), 7.43-7.40 (m, 2H), 7.22-7.16 (m, 2H), 4.67, (dd, 1H, J=13.5, 1.5 Hz), 4.47 (s, 2H), 4.35 (dd, 1H, J=13.5, 4.2 Hz), 4.14-4.11 (m, 1H), 3.91-3.82 (m, 1H), 3.60-3.53 (m, 2H), 3.41-3.34 (m, 2H), 3.31-3.23 (m, 1H), 1.20 (t, 3H, J=7.2 Hz), 0.96 (t, 3H, J=7.0 Hz).
-
- In the same manner as in step 2-9 (amino-protecting group was removed by a known method according to the protecting group) and step 2-11, the object compound (32.9 mg) described in the above-mentioned scheme was obtained from ((1S,2S)-2-ethylamino-3-methoxy-1-methylpropyl)carbamic acid benzyl ester (51 mg) obtainable from a commercially available compound by a known method.
- 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.62 (s, 1H), 7.42-7.38 (m, 2H), 7.20-7.16 (m, 2H), 4.77-4.71 (m, 1H), 4.47 (s, 2H), 4.14 (q, 1H, J=4.0 Hz), 3.92-3.84 (m, 1H), 3.59 (d, 2H, J=4.4 Hz), 3.33-3.26 (m, 1H), 3.18 (s, 3H), 1.64 (d, 3H, J=6.5 Hz), 1.21 (t, 3H, J=7.1 Hz).
-
- In the same manner as in step 2-9 and step 2-11, the object compound (6.2 mg) described in the above-mentioned scheme was obtained from [(R)-2-isopropylamino-1-((2-methoxyethoxy)methyl)ethyl]carbamic acid tert-butyl ester (19.3 mg) obtainable from a commercially available compound by a known method.
- 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.82 (s, 1H), 7.45-7.38 (m, 2H), 7.23-7.15 (m, 2H), 4.99-4.91 (m, 1H), 4.77 (sep, 1H, J=6.7 Hz), 4.47 (s, 2H), 3.84 (dd, 1H, J=13.8, 4.1 Hz), 20 3.78-3.68 (m, 2H), 3.64 (dd, 1H, J=10.4, 7.7 Hz), 3.58-3.45 (m, 2H), 3.34 (t, 2H, J=4.5 Hz), 3.11 (s, 3H), 1.17 (d, 3H, J=6.7 Hz), 1.16 (d, 3H, J=6.7 Hz).
-
- In the same manner as in step 2-9 and step 2-11, the object compound (10.7 mg) described in the above-mentioned scheme was obtained from [(R)-2-cyclopropylamino-1-((2-methoxyethoxy)methyl)ethyl]carbamic acid tert-butyl ester (16 mg) obtainable from a commercially available compound by a known method.
- 1H-NMR (DMSO-d6) δ: 8.81 (s, 1H), 7.45-7.37 (m, 2H), 7.22-7.14 (m, 2H), 4.92-4.84 (br m, 1H), 4.47 (s, 2H), 4.09-3.99 (m, 1H), 3.74-3.57 (m, 3H), 3.56-3.44 (m, 2H), 3.34 (t, 2H, J=4.6 Hz), 3.13 (s, 3H), 2.94-2.84 (m, 1H), 0.97-0.67 (m, 4H).
-
- In the same manner as in step 2-9 to step 2-11, the object compound (39 mg) described in the above-mentioned scheme was obtained from (R)-2-tert-butoxycarbonylamino-3-ethylamino-2-methylpropionic acid methyl ester (60 mg) obtainable from a commercially available compound by a known method.
- 1H-NMR (DMSO-d6) δ: 12.69 (m, 1H), 8.60 (s, 1H), 7.69 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.12 (m, 2H), 4.20 (s, 2H), 4.18-4.13 (m, 1H), 4.01 (d, 1H, J=13.5 Hz), 3.89 (d, 1H, J=13.5 Hz), 3.87-3.80 (m, 2H), 3.67-3.61 (m, 1H), 3.54-3.44 (m, 2H), 2.12-2.04 (m, 2H), 1.91 (s, 3H), 1.10 (t, 3H, J=7.2 Hz).
-
- To a solution of L-threoninol (2.05 g) in chloroform (14 mL) were added di-tert-butyl dicarbonate (4.26 g) and saturated aqueous sodium hydrogen carbonate solution (10 mL) and the mixture was stirred at room temperature for 3 hr and left standing for 3 days. To the reaction mixture was added saturated brine, and the mixture was extracted with chloroform. The organic layer was dried, and concentrated. The obtained residue was dissolved in dimethylformamide (40 mL) and, under ice-cooling, imidazole (2.97 g) and tert-butylchlorodimethylsilane (1.49 g) were added, and the mixture was stirred at room temperature for 45 min. Water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, and concentrated. The concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:10-1:3) to give the object compound (2.39 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 5.18 (d, 1H, J=8.2 Hz), 4.18-4.14 (m, 1H), 3.89 (dd, 1H, J=10.4, 3.3 Hz), 3.82 (dd, 1H, J=10.4, 2.6 Hz), 3.48-3.45 (m, 1H), 3.29 (s, 1H), 1.46 (s, 9H), 1.18 (d, 3H, J=6.2 Hz), 0.90 (s, 9H), 0.08 (s, 6H).
-
- To a solution of the compound (2.39 g) obtained in step 340-1 in toluene (12 mL) were added tetrabutylammonium hydrogen sulfate (76 mg), 50% aqueous sodium hydroxide solution (8 mL) and methyl sulfate (922 μL) under ice-cooling, and the mixture was stirred at room temperature for 90 min. Ice water was added, and the mixture was extracted with toluene. The organic layer was washed with saturated brine, dried, and concentrated. The obtained residue was dissolved in tetrahydrofuran (20 mL), 1.0M tetrabutylammonium fluoride/tetrahydrofuran solution (8.16 mL) was added and the mixture was stirred at room temperature for 100 min. Water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and concentrated. Toluene was added and the mixture was concentrated again. To a solution of the obtained residue in tetrahydrofuran (40 mL) were added phthalimide (1.85 g) and triphenylphosphine (3.30 g), 2.2M diethyl azodicarboxylate/toluene solution (5.05 mL) was added dropwise under ice-cooling, and the mixture was stirred at room temperature for 90 min. The reaction mixture was concentrated, and the concentrate was purified by silica gel column chromatography (ethyl acetate:hexane=1:10-1:2). The obtained solid was dissolved in ethanol (60 mL)-toluene (60 mL), hydrazine monohydrate (2.05 mL) was added, and the mixture was stirred at 80° C. for 4 hr. The mixture was allowed to cool to room temperature, the solid was filtered off, and the filtrate was concentrated. Toluene was added to the residue, and the precipitated solid was filtered off. The filtrate was concentrated to give the object compound (1.54 g) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 4.82 (br s, 1H), 3.52-3.45 (m, 2H), 3.31 (s, 3H), 2.81 (dd, 2H, J=13.0, 6.0 Hz), 2.76 (dd, 2H, J=13.0, 7.1 Hz), 1.51 (br s, 2H), 1.15 (d, 3H, J=6.2 Hz).
-
- To a solution of the compound (187 mg) obtained in step 340-2 in chloroform (3 mL) were added acetone (76 μL), acetic acid (59 μL) and sodium triacetoxyborohydride (218 mg) under ice-cooling, and the mixture was stirred at room temperature for 5 hr. The reaction mixture was diluted with chloroform, saturated aqueous sodium hydrogen carbonate solution was added and the mixture was stirred. The chloroform layer was dried and concentrated to give the object compound (190 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 4.84 (br s, 1H), 3.59-3.50 (m, 2H), 3.32 (s, 3H), 2.83-2.66 (m, 3H), 1.51 (br s, 1H), 1.14 (d, 3H, J=6.4 Hz), 1.04 (d, 3H, J=6.4 Hz), 1.04 (d, 3H, J=6.4 Hz).
-
- The compound (190 mg) obtained in step 340-3 was dissolved in trifluoroacetic acid (2.0 mL), and the mixture was stood at room temperature for 20 min. Trifluoroacetic acid solution was concentrated, tetrahydrofuran (1.58 mL) and diisopropylethylamine (636 μL) were added to give a solution. To a solution of the compound (75 mg) obtained in step 2-5 in tetrahydrofuran (500 μL) was added the above-mentioned solution (634 μL), and the mixture was stirred at room temperature for 15 min. Toluene (6 mL) and 1,8-diazabicyclo[5.4.0]undec-7-ene (250 μL) were added and the mixture was stirred at 100° C. for 20 min. Acetic acid (750 μL) was added and the mixture was stirred at 100° C. for 1 hr. The reaction mixture was allowed to cool to room temperature, 5% aqueous potassium hydrogen sulfate solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried, and concentrated. The concentrate was purified by silica gel thin layer chromatography (ethyl acetate:methanol=15:1) to give the object compound (73 mg) described in the above-mentioned scheme.
- 1H-NMR (CDCl3) δ: 8.65 (s, 1H), 7.65-7.62 (m, 2H), 7.35-7.25 (m, 5H), 7.04-6.98 (m, 2H), 5.51 (d, 1H, J=9.9 Hz), 5.24 (d, 1H, J=9.9 Hz), 4.94 (sep, 1H, J=6.8 Hz), 4.43 (s, 2H), 3.93-3.89 (m, 1H), 3.67 (dd, 1H, J=14.2, 3.9 Hz), 3.47 (dq, 1H, J=8.8, 6.0 Hz), 3.42 (dd, 1H, J=14.2, 1.5 Hz), 3.15 (s, 3H), 1.29 (d, 3H, J=6.0 Hz), 1.19 (d, 3H, J=6.8 Hz), 1.14 (d, 3H, J=6.8 Hz).
-
- The compound (72 mg) obtained in step 340-4 was dissolved in trifluoroacetic acid (1.0 mL), and the mixture was stood at room temperature for 4 hr. Trifluoroacetic acid solution was concentrated, toluene was added and the mixture was concentrated. Ethyl acetate, 4N hydrochloric acid/ethyl acetate solution, and hexane were added to allow crystallization to give the object compound (65 mg) described in the above-mentioned scheme.
- 1H-NMR (DMSO-D6) δ: 12.82 (br s, 1H), 8.72 (s, 1H), 7.44-7.41 (m, 2H), 7.21-7.17 (m, 2H), 4.77 (sep, 1H, J=6.6 Hz), 4.65 (ddd, 1H, J=8.2, 4.1, 0.9 Hz), 4.47 (s, 2H), 3.88 (dd, 1H, J=14.0, 4.1 Hz), 3.76 (dd, 1H, J=14.0, 0.9 Hz), 3.52 (dq, 1H, J=8.2, 6.2 Hz), 3.03 (s, 3H), 1.21 (d, 3H, J=6.2 Hz), 1.20 (d, 3H, J=6.6 Hz), 1.17 (d, 3H, J=6.6 Hz).
- The compounds of Examples 18 to 465 shown in the following Tables were produced in the same manner as in the above-mentioned Examples 1 to 17 and 340, or by using other conventional methods where necessary. The structural formulas and property data of the compounds of Examples 18 to 465 are shown in the following Tables.
-
TABLE 1-1 structural No. formula salt 1H-NMR 18 — 1H-NMR (DMSO-d6) δ: 12.82 (s, 1H), 8.80 (s, 1H), 7.54 (td, 1H, J = 8.8, 6.7 Hz), 7.29 (ddd, 1H, J = 10.2, 9.3, 2.6 Hz), 7.12 (tdd, 1H, J = 8.8, 2.6 0.9 Hz), 5.01-4.93 (br m, 1H), 4.77 (sep, 1H, J = 6.7 Hz), 4.49 (s, 2H), 3.84 (dd, 1H, J = 13.9, 3.9 Hz), 3.75 (dd, 1H, J = 13.9, 1.4 Hz), 3.62 (dd, 1H, J = 10.2, 5.8 Hz), 3.57 (dd, 1H, J = 10.2, 7.7 Hz), 3.25 (s, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 19 — 1H-NMR (DMSO-d6) δ: 12.69 (br s, 1H), 8.58 (s, 1H), 7.64 (s, 1H), 7.45 (td, 1H, J = 8.8, 6.8 Hz), 7.24 (ddd, 1H, J = 10.6, 9.7, 2.9 Hz), 7.07 (tdd, 1H, J = 8.8, 2.9, 1.0 Hz), 4.75 (sep, 1H, J = 6.6 Hz), 4.69-4.59 (br m, 1H), 4.21 (s, 2H), 3.81 (dd, 1H, J = 13.5, 3.7 Hz), 3.72 (dd, 1H, J = 13.5,1.5 Hz), 3.67 (dd, 1H, J = 11.7, 5.3 Hz), 3.53 (dd, 1H, J = 11.7, 8.6 Hz), 1.16 (d, 3H, J = 6.6 Hz), 1.15 (d, 3H, J = 6.6 Hz). 20 — 1H-NMR (DMSO-d6) δ: 13.11 (br s, 1H), 8.60 (s, 1H), 7.66 (s, 1H), 7.44 (td, 1H, J = 8.7, 6.7 Hz), 7.24 (ddd, 1H, J = 10.4, 9.3, 2.8 Hz), 7.07 (tdd, 1H, J = 8.7, 2.8, 0.9 Hz), 4.79 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 3.89 (d, 1H, J = 14.1 Hz), 3.79 (d, 1H, J = 14.1 Hz), 3.72 (d, 1H, J = 13.7 Hz), 3.63 (d, 1H, J = 13.7 Hz), 1.58 (s, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.17 (d, 3H, J = 6.7 Hz). -
TABLE 1-2 structural No. formula salt 1H-NMR 21 HCl 1H-NMR (DMSO-d6) δ: 12.67 (s, 1H), 8.71 (s, 1H), 7.65 (s, 1H), 7.49-7.41 (m, 1H), 7.33-7.20 (m, 1H), 7.11-7.02 (m, 1H), 5.11-5.02 (m, 1H), 4.84-4.73 (m, 1H), 4.21 (s, 2H), 3.87-3.73 (m, 2H), 2.89-2.82 (m, 2H), 2.86 (s, 3H), 2.79 (s, 3H), 1.13 (d, 3H, J = 7.0 Hz), 1.13 (d, 3H, J = 6.7 Hz). 22 — 1H-NMR (DMSO-d6) δ: 12.37 (s, 1H), 8.66 (s, 1H), 8.25 (q, 1H, J = 4.4 Hz), 7.64 (s, 1H), 7.45 (td, 1H, J = 8.6, 6.5 Hz), 7.25 (ddd, 1H, J = 10.4, 9.5, 2.8 Hz), 7.07 (tdd, 1H, J = 8.6, 2.8, 0.9 Hz), 5.52-5.46 (br m, 1H), 4.69 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 4.02 (dd, 1H, J = 13.9, 2.1 Hz), 3.94 (dd, 1H, J = 13.9, 3.5 Hz), 2.61 (d, 3H, J = 4.4 Hz), 1.12 (d, 3H, J = 6.7 Hz), 1.03 (d, 3H, J = 6.7 Hz). 23 — 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 8.75 (s. 1H), 7.65 (s, 1H), 7.46 (td, 1H, J = 8.8, 7.1 Hz), 7.24 (ddd, 1H, J = 10.6, 9.7, 2.4 Hz), 7.07 (tdd, 1H, J = 8.8, 2.4, 0.9 Hz), 5.71-5.66 (br m, 1H), 4.73 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 4.03 (dd, 1H, J = 13.5, 2.6 Hz), 3.95 (dd, 1H, J = 13.5, 4.0 Hz), 1.16 (d, 3H, J = 6.7 Hz), 1.11 (d, 3H, J = 6.7 Hz). -
TABLE 1-3 structural No. formula salt 1H-NMR 24 — 1H-NMR (DMSO-d6) δ: 12.90 (br s, 1H), 8.59 (s, 1H), 7.66 (s, 1H), 7.44 (td, 1H, J = 9.0, 7.3 Hz), 7.24 (ddd, 1H, J = 10.8, 9.3, 2.4 Hz), 7.07 (tdd, 1H, J = 9.0, 2.4, 1.0 Hz), 4.72 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 4.05 (d, 2H, J = 13.2 Hz), 3.74 (d, 1H, J = 13.2 Hz), 1.92 (s, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1.14 (d, 3H, J = 6.7 Hz). 25 — 1H-NMR (DMSO-d6) δ: 12.39 (s, 1H), 8.66 (s, 1H), 8.36 (t, 1H, J = 5.4 Hz), 7.64 (s, 1H), 7.45 (td, 1H, J = 8.7, 6.6 Hz), 7.25 (ddd, 1H, J = 10.4, 9.3, 2.6 Hz), 7.07 (tdd, 1H, J = 8.7, 2.6, 0.9 Hz), 5.50-5.43 (br m, 1H), 4.70 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 4.03 (dd, 1H, J = 13.9, 1.6 Hz), 3.95 (dd, 1H, J = 13.9, 3.7 Hz), 3.09 (qd, 2H, J = 7.4, 5.4 Hz), 1.13 (d, 3H, J = 6.7 Hz), 1.05 (d, 3H, J = 6.7 Hz), 1.02 (t, 3H, J = 7.4 Hz). 26 — 1H-NMR (DMSO-d6) δ: 12.32 (br s, 1H), 8.71 (s, 1H), 7.63 (s, 1H), 7.46 (td, 1H, J = 8.7, 6.6 Hz), 7.25 (ddd, 1H, J = 10.4, 9.5, 2.6 Hz), 7.07 (tdd, 1H, J = 8.7, 2.6, 1.2 Hz), 6.05-6.00 (br m, 1H), 4.71 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 3.98 (dd, 1H, J = 14.4, 3.9 Hz), 3.80 (dd, 1H, J = 14.4, 1.4 Hz), 3.17 (s, 3H), 2.82 (s, 3H), 1.14 (d, 3H, J = 6.7 Hz), 0.98 (d, 3H, J = 6.7 Hz). -
TABLE 1-4 structural No. formula salt 1H-NMR 27 — 1H-NMR (DMSO-d6) δ: 12.80 (s. 1H), 8.50 (s, 1H), 8.13 (t, 1H, J = 5.4 Hz), 7.66 (s, 1H), 7.44 (td, 1H, J = 8.7, 6.7 Hz), 7.24 (ddd, 1H, J = 10.4, 9.3, 2.7 Hz), 7.07 (tdd, 1H, J = 8.7, 2.7, 0.9 Hz), 4.71 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 4.08 (d, 1H, J = 13.8 Hz), 3.78 (d, 1H, J = 13.8 Hz), 3.17-2.98 (m, 2H), 1.92 (s, 3H), 1.15 (d, 3H, J = 6.7 Hz), 1.11 (d, 3H, J = 6.7 Hz), 1.00 (t, 3H, J = 7.2 Hz). 28 — 1H-NMR (DMSO-d6) δ: 12.85 (s, 1H), 8.42 (s, 1H), 7.66 (s, 1H), 7.45 (td, 1H, J = 8.7, 6.7 Hz), 7.24 (ddd, 1H, J = 10.4, 9.7, 2.8 Hz), 7.07 (tdd, 1H, J = 8.7, 2.8, 0.9 Hz), 4.73 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 4.12 (d, 1H, J = 14.1 Hz), 3.79 (d, 1H, J = 14.1 Hz), 2.93 (br s, 6H), 1.97 (s, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.11 (d, 3H, J = 6.7 Hz). 29 — 1H-NMR (DMSO-d6) δ: 12.78 (s, 1H), 8.51 (s, 1H), 8.05 (q, 1H, J = 4.2 Hz), 7.66 (s, 1H), 7.44 (td, 1H, J = 8.7, 6.6 Hz), 7.24 (ddd, 1H, J = 10.4, 9.5, 2.6 Hz), 7.07 (tdd, 1H, J = 8.7, 2.6, 0.9 Hz), 4.70 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 4.05 (d, 1H, J = 13.7 Hz), 3.78 (d, 1H, J = 13.7 Hz), 2.59 (d, 3H, J = 4.2 Hz), 1.92 (s, 3H), 1.14 (d, 3H, J = 6.7 Hz), 1.08 (d, 3H, J = 6.7 Hz). -
TABLE 1-5 structural No. formula salt 1H-NMR 30 HCl 1H-NMR (DMSO-d6) δ: 13.17 (br s, 1H), 8.87 (s, 1H), 7.54 (td, 1H, J = 8.5, 6.9 Hz), 7.29 (ddd, 1H, J = 10.5, 9.3, 2.4 Hz), 7.11 (tdd, 1H, J = 8.5, 2.4, 1.2 Hz), 4.49 (s, 2H), 3.90 (s, 2H), 3.88-3.81 (m, 2H), 3.74-3.66 (m, 2H), 2.98 (ddt, 1H, J = 7.3, 6.9, 4.0 Hz), 2.28-2.19 (m, 2H), 1.98-1.91 (m, 2H), 0.93-0.80 (m, 4H). 31 HCl 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 8.65 (s, 1H), 8.30 (d, 1H, J = 7.4 Hz), 7.64 (s, 1H), 7.45 (td, 1H, d = 8.6, 6.5 Hz), 7.25 (ddd, 1H, J = 10.4, 9.5, 2.6 Hz), 7.07 (tdd, 1H, J = 8.6, 2.6, 0.9 Hz), 5.46-5.41 (br m, 1H), 4.71 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 4.03 (dd, 1H, J = 14.0, 1.9 Hz), 3.95 (dd, 1H, J = 14.0, 3.6 Hz), 3.85-3.74 (m, 1H), 1.13 (d, 3H, J = 6.7 Hz), 1.09 (d, 3H, J = 6.7 Hz), 1.07 (d, 3H, J = 7.0 Hz), 1.05 (d, 3H, J = 7.0 Hz). 32 HCl 1H-NMR (DMSO-d6) δ: 12.40 (br s, 1H), 3.68 (s, 1H), 8.31 (dd, 1H, J = 6.2, 5.7 Hz), 7.64 (s, 1H), 7.45 (td, 1H, J = 8.7, 6.6 Hz), 7.24 (ddd, 1H, J = 10.4, 9.3, 2.8 Hz), 7.07 (tdd, 1H, J = 8.7, 2.8, 1.2 Hz), 5.51-5.46 (br m, 1H), 4.68 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 4.04 (dd, 1H, J = 14.1, 2.1 Hz), 3.94 (dd, 1H, J = 14.1, 3.6 Hz), 2.97 (ddd, 1H, J = 12.8, 6.6, 6.2 Hz), 2.78 (ddd, 1H, J = 12.8, 6.6, 5.7 Hz), 1.67 (sep, 1H, J = 6.5 Hz), 1.12 (d, 3H, J = 6.7 Hz), 1.04 (d, 3H, J = 6.7 Hz), 0.83 (d, 3H, J = 6.5 Hz), 0.82 (d, 3H, J = 6.5 Hz). -
TABLE 1-6 structural No. formula salt 1H-NMR 33 — 1H-NMR (DMSO-d6) δ: 8.69 (s, 1H), 7.65 (sm 1H), 7.50-7.40 (m, 1H), 7.33-7.20 (m, 1H), 7.11-7.03 (m, 1H), 5.16-5.04 (m, 1H), 4.84-4.71 (m, 1H), 4.21 (s, 2H), 3.89-3.68 (m, 2H), 2.92-2.64 (m, 2H), 1.15 (t, 6H, J = 6.3 Hz). 34 HCl 1H-NMR (DMSO-d6) δ: 12.64 (br s, 1H), 8.54 (s, 1H), 7.95-7.87 (m, 1H), 7.64 (s, 1H), 7.50-7.41 (m, 1H), 7.33-7.20 (m, 1H), 7.12-7.03 (m, 1H), 5.08-4.99 (m, 1H), 4.84-4.74 (m, 1H), 4.21 (s, 2H), 3.88-3.65 (m, 2H), 2.70-2.54 (m, 2H), 2.45 (d, 3H, J = 4.4 Hz), 1.17 (d, 3H, J = 6.5 Hz), 1.14 (d, 3H, J = 7.2 Hz). 35 HCl 1H-NMR (DMSO-d6) δ: 8.58 (s, 1H), 7.65 (s, 1H), 7.49-7.38 (m, 2H), 7.28-7.19 (m, 1H), 7.11-7.03 (m, 1H), 7.00 (br s, 1H), 5.07-4.97 (m, 1H), 4.85-4.73 (m, 1H), 4.21 (s, 2H), 3.91-3.65 (m, 2H), 2.71-2.51 (m, 2H), 1.18 (d, 3H, J = 7.0 Hz), 1.15 (d, 3H, J = 7.2 Hz). 36 HCl 1H-NMR (DMSO-d6) δ: 12.68 (br s, 1H), 8.46 (s, 1H), 7.85 (d, 1H, J = 7.7 Hz), 7.63 (s, 1H), 7.48-7.39 (m, 1H), 7.29-7.19 (m, 1H), 7.12-7.03 (m, 1H), 5.05-4.94 (m, 1H), 4.86-4.74 (m, 1H), 4.20 (s, 2H), 3.88-3.60 (m, 3H), 2.70-2.46 (m, 2H), 1.18 (d, 3H, J = 7.0 Hz), 1.15 (d, 3H, J = 7.2 Hz), 0.92 (d, 3H, J = 6.7 Hz), 0.69 (d, 3H, J = 6.7 Hz). -
TABLE 1-7 structural No. formula salt 1H-NMR 37 HCl 1H-NMR (DMSO-d6) δ: 8.80 (s, 1H), 7.57-7.49 (m, 1H), 7.32-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.67 (dd, 1H, J = 13.2, 1.4 Hz), 4.51 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.34 (dd, 1H, J = 13.2, 3.5 Hz), 4.00-3.93 (m, 1H), 3.57 (dd, 1H, J = 11.5, 3.5 Hz), 3.36 (dd, 1H, J = 11.5, 8.1 Hz), 1.29 (d, 3H, J = 6.7 Hz), 1.28 (d, 3H, J = 6.7 Hz). 38 — 1H-NMR (DMSO-d6) δ: 12.97 (br s, 1H), 8.38 (s, 1H), 7.67 (s, 1H), 7.45 (td, 1H, J = 8.8, 6.6 Hz), 7.25 (ddd, 1H, J = 10.2, 9.3, 2.6 Hz), 7.07 (tdd, 1H, J = 8.8, 2.6, 0.9 Hz), 4.75 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 4.03 (d, 1H, J = 13.9 Hz), 3.80 (d, 1H, J = 13.9 Hz), 3.56-3.35 (br m, 4H), 1.90 (s, 3H), 1.59-1.50 (br m, 2H), 1.49-1.40 (br m, 4H), 1.18 (d, 3H, J = 6.7 Hz), 1.14 (d, 3H, J = 6.7 Hz). 39 — 1H-NMR (DMSO-d6) δ: 12.79 (br s, 1H), 8.52 (s, 1H), 7.66 (s, 1H), 7.45 (td, 1H, J = 8.8, 6.6 Hz), 7.24 (ddd, 1H, J = 10.4, 9.5, 2.6 Hz), 7.07 (tdd, 1H, J = 8.8, 2.6, 0.9 Hz), 4.70 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 4.11 (d, 1H, J = 13.9 Hz), 3.74 (d, 1H, J = 13.9 Hz), 3.64-3.54 (br m, 1H), 3.42-3.32 (br m, 1H), 3.32-3.22 (br m, 1H), 3.15-3.05 (br m, 1H), 2.00 (s, 3H), 1.94-1.82 (br m, 1H), 1.79-1.57 (br m, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1.07 (d, 3H, J = 6.7 Hz). -
TABLE 1-8 structural No. formula salt 1H-NMR 40 HCl 1H-NMR (DMSO-d6) δ: 12.92-12.53 (m, 1H), 8.44 (s, 1H), 7.97 (t, 1H, J = 6.3 Hz), 7.64 (s, 1H), 7.49-7.40 (m, 1H), 7.29-7.19 (m, 1H), 7.12-7.02 (m, 1H), 5.10-4.98 (m, 1H), 4.86-4.75 (m, 1H), 4.21 (s, 2H), 3.90-3.81 (m, 1H), 3.75-3.67 (m, 1H), 2.92-2.82 (m, 1H), 2.77-2.66 (m, 1H), 2.61-2.48 (m, 2H), 1.44-1.30 (m, 1H), 1.18 (d, 3H, J = 7.2 Hz), 1.15 (d, 3H, J = 7.2 Hz), 0.54 (d, 3H, J = 6.7 Hz), 0.50 (d, 3H, J = 7.2 Hz). 41 HCl 1H-NMR (DMSO-d6) δ: 12.88-12.50 (m, 1H), 8.68 (s, 1H), 7.65 (s, 1H), 7.49-7.40 (m, 1H), 7.28-7.20 (m, 1H), 7.11-7.03 (m, 1H), 5.11-5.03 (m, 1H), 4.84-4.73 (m, 1H), 4.21 (s, 2H), 3.88-3.73 (m, 2H), 3.54-3.19 (m, 4H), 2.87 (d, 2H, J = 7.0 Hz), 1.59-1.43 (m, 2H), 1.42-1.29 (m, 4H), 1.13 (d, 3H, J = 6.7 Hz), 1.13 (d, 3H, J = 6.5 Hz). 42 HCl 1H-NMR (DMSO-d6) δ: 12.45 (br s, 1H), 8.84 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.07 (m, 1H), 4.66 (dd, 1H, J = 13.4, 1.6 Hz), 4.49 (s, 2H), 4.47 (sep, 1H, J = 6.8 Hz), 4.35 (dd, 1H, J = 13.4, 3.7 Hz), 4.23-4.17 (m, 1H), 3.49 (dd, 1H, J = 10.2, 4.2 Hz), 3.39 (dd, 1H, J = 10.2, 7.4 Hz), 3.21 (s, 3H), 1.30 (d, 3H, J = 6.8 Hz), 1.28 (d, 3H, J = 6.8 Hz). -
TABLE 1-9 structural No. formula salt 1H-NMR 43 HCl 1H-NMR (DMSO-d6) δ: 12.54 (br s, 1H), 8.83 (s, 1H), 7.57-7.49 (m, 1H), 7.32-7.25 (m, 1H), 7.14-7.07 (m, 1H), 4.65 (dd, 1H, J = 13.4, 1.4 Hz), 4.48 (s, 2H), 4.47 (dd, 1H, J = 13.4, 4.3 Hz), 4.10-4.04 (m, 1H), 3.80 (dd, 1H, J = 13.3, 8.0 Hz), 3.53 (dd, 1H, J = 10.4, 5.1 Hz), 3.49 (dd, 1H, J = 10.4, 6.3 Hz), 3.20 (s, 3H), 2.94 (dd, 1H, J = 13.3, 7.1 Hz), 2.08 (ddsep, 1H, J = 8.0, 7.1, 6.7 Hz), 0.95 (d, 3H, J = 6.7 Hz), 0.89 (d, 3H, J = 6.7 Hz). 44 HCl 1H-NMR (DMSO-d6) δ: 12.84 (br s, 1H), 8.81 (s, 1H), 7.59-7.49 (m, 1H), 7.33-7.23 (m, 1H), 7.16-7.07 (m, 1H), 4.99-4.90 (m, 1H), 4.77 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 3.93-3.60 (m, 4H), 3.58-3.44 (m, 2H), 3.33 (t, 2H, J = 4.6 Hz), 3.11 (s, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 45 HCl 1H-NMR (DMSO-d6) δ: 12.80 (br s, 1H), 8.80 (s, 1H), 7.59-7.50 (m, 1H), 7.35-7.24 (m, 1H), 7.16-7.07 (m, 1H), 4.97-4.86 (m, 1H), 4.49 (s, 2H), 4.06 (dd, 1H, J = 13.7, 4.2 Hz), 3.80-3.66 (m, 3H), 3.59-3.46 (m, 3H), 3.36-3.31 (m, 2H), 3.22 (dd, 1H, J = 7.1, 12.6 Hz), 3.11 (s, 3H), 2.00 (sept, 1H, J = 6.6 Hz), 0.91 (d, 6H, J = 6.6 Hz). -
TABLE 1-10 structural No. formula salt 1H-NMR 46 HCl 1H-NMR (DMSO-d6) δ: 12.84 (br s, 1H), 8.81 (s, 1H), 7.59-7.49 (m, 1H), 7.33-7.23 (m, 1H), 7.16-7.07 (m, 1H), 4.99-4.90 (m, 1H), 4.77 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 3.93-3.60 (m, 4H), 3.58-3.44 (m, 2H), 3.33 (t, 2H, J = 4.6 Hz), 3.11 (s, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 47 HCl 1H-NMR (DMSO-d6) δ: 12.80 (br s, 1H), 8.80 (s, 1H), 7.59-7.50 (m, 1H), 7.35-7.24 (m, 1H), 7.16-7.07 (m, 1H), 4.97-4.86 (m, 1H), 4.49 (s, 2H), 4.06 (dd, 1H, J = 13.7, 4.2 Hz), 3.80-3.66 (m, 3H), 3.59-3.46 (m, 3H), 3.36-3.31 (m, 2H), 3.22 (dd, 1H, J = 7.1, 12.6 Hz), 3.11 (s, 3H), 2.00 (sept, 1H, J = 6.6 Hz), 0.91 (d, 6H, J = 6.6 Hz). 48 HCl 1H-NMR (DMSO-d6) δ: 12.55 (br s, 1H), 8.81 (s, 1H), 7.59-7.49 (m, 1H), 7.35-7.24 (m, 1H), 7.16-7.07 (m, 1H), 4.65 (d, 1H, J = 13.2 Hz), 4.53-4.45 (m, 1H), 4.48 (s, 2H), 4.09-4.01 (m, 1H), 3.80 (dd, 1H, J = 13.4, 7.9 Hz), 3.67-3.57 (m, 2H), 3.50-3.39 (m, 2H), 3.30-3.24 (m, 2H), 3.08 (s, 3H), 2.95 (dd, 1H, J = 13.4, 7.0 Hz), 2.14-2.01 (m, 1H), 0.95 (d, 3H, J = 6.5 Hz), 0.90 (d, 3H, J = 6.7 Hz). 49 HCl 1H-NMR (DMSO-d6) δ: 12.73 (br s, 1H), 8.80 (s, 1H), 7.67 (s, 1H), 7.51-7.42 (m, 1H), 7.29-7.20 (m, 1H), 7.12-7.03 (m, 1H), 5.27-5.17 (m, 1H), 4.85-4.72 (m, 1H), 4.22 (s, 2H), 3.96-3.65 (m, 2H), 3.34-3.20 (m, 2H), 1.20 (d, 3H, J = 7.2 Hz), 1.14 (d, 3H, J = 7.0 Hz). -
TABLE 1-11 structural No. formula salt 1H-NMR 50 HCl 1H-NMR (DMSO-d6) δ: 12.38 (s, 1H), 8.95 (s, 1H), 7.57-7.50 (m, 1H),7.32-7.25 (m, 1H), 7.14-7.08 (m, 1H), 5.00-4.91 (m, 2H), 4.73 (sep, 1H, J = 6.6 Hz), 4.52 (dd, 1H, J = 13.6, 3.9 Hz), 4.48 (s, 2H), 1.24 (d, 3H, J = 6.6 Hz), 1.13 (d, 3H, J = 6.6 Hz). 51 HCl 1H-NMR (DMSO-d6) δ: 12.48 (s, 1H), 8.80 (s, 1H), 8.31 (q, 1H, J = 4.6 Hz), 7.57-7.49 (m, 1H), 7.33-7.24 (m, 1H), 7.14-7.07 (m, 1H), 4.76 (d, 1H, J = 14.2 Hz), 4.73 (sep, 1H, J = 6.8 Hz), 4.60 (d, 1H, J = 4.0 Hz), 4.54 (dd, 1H, J = 14.2, 4.0 Hz), 4.48 (s, 2H), 2.60 (d, 3H, J = 4.6 Hz), 1.21 (d, 3H, J = 6.8 Hz), 1.04 (d, 3H, J = 6.8 Hz). 52 HCl 1H-NMR (DMSO-d6) δ: 12.95 (br s, 1H), 8.39 (s, 1H), 7.68 (s, 1H), 7.45 (td, 1H, J = 8.6, 6.7 Hz), 7.25 (ddd, 1H, J = 10.2, 9.3, 2.6 Hz), 7.07 (tdd, 1H, J = 8.6, 2.6, 0.9 Hz), 4.75 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 4.02 (d, 1H, J = 14.4 Hz), 3.81 (d, 1H, J = 14.4 Hz), 3.60-3.41 (br m, 8H), 1.91 (s, 3H), 1.18 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 53 HCl 1H-NMR (DMSO-d6) δ: 12.57 (s, 1H), 8.81 (s, 1H), 7.57-7.49 (m, 1H), 7.32-7.25 (m, 1H), 7.14-7.07 (m, 1H), 5.17 (d, 1H, J = 3.0 Hz), 4.80 (d, 1H, J = 13.7 Hz), 4.70 (sep, 1H, J = 6.7 Hz), 4.52-4.46 (m, 1H), 4.48 (s, 2H), 3.20 (s, 3H), 2.81 (s, 3H), 1.24 (d, 3H, J = 6.7 Hz), 1.00 (d, 3H, J = 6.7 Hz). -
TABLE 1-12 structural No. formula salt 1H-NMR 54 HCl 1H-NMR (DMSO-d6) δ: 12.44 (br s, 1H), 8.81 (s, 1H), 7.59-7.48 (m, 1H), 7.34-7.23 (m, 1H), 7.16-7.06 (m, 1H), 4.69-4.61 (m, 1H), 4.53-4.43 (m, 1H), 4.48 (s, 2H), 4.36 (dd, 1H, J = 7.2, 13.4 Hz), 4.23-4.14 (m, 1H), 3.51-3.40 (m, 4H), 3.33-3.25 (m, 2H), 3.08 (s, 3H), 1.28 (d, 3H, J = 6.7 Hz), 1.29 (d, 3H, J = 6.5 Hz). 55 HCl 1H-NMR (DMSO-d6) δ: 12.55 (br s, 1H), 8.81 (s, 1H), 7.59-7.49 (m, 1H), 7.35-7.24 (m, 1H), 7.16-7.07 (m, 1H), 4.65 (d, 1H, J = 13.2 Hz), 4.53-4.45 (m, 1H), 4.48 (s, 2H), 4.09-4.01 (m, 1H), 3.80 (dd, 1H, J = 13.4, 7.9 Hz), 3.67-3.57 (m, 2H), 3.50-3.39 (m, 2H), 3.30-3.24 (m, 2H), 3.08 (s, 3H), 2.95 (dd, 1H, J = 13.4, 7.0 Hz), 2.14-2.01 (m, 1H), 0.95 (d, 3H, J = 6.5 Hz), 0.90 (d, 3H, J = 6.7 Hz). 56 HCl 1H-NMR (DMSO-d6) δ: 12.70 (br s, 1H), 8.65 (s, 1H), 7.65 (s, 1H), 7.49-7.42 (m, 1H), 7.28-7.21 (m, 1H), 7.10-7.04 (m, 1H), 4.93-4.87 (m, 1H), 4.77 (sep, 1H, J = 6.9 Hz), 4.21 (s, 2H), 3.82 (dd, 1H, J = 13.7, 4.0 Hz), 3.76-3.67 (m, 2H), 3.62 (dd, 1H, J = 10.5, 7.7 Hz), 3.56-3.45 (m, 2H), 3.35- 3.32 (m, 2H), 3.12 (s, 3H), 1.16 (d, 3H, J = 6.9 Hz), 1.15 (d, 3H, J = 6.9 Hz). -
TABLE 1-13 structural No. formula salt 1H-NMR 57 HCl 1H-NMR (DMSO-d6) δ: 12.66 (br s, 1H), 8.64 (s, 1H), 7.65 (s, 1H), 7.49-7.42 (m, 1H), 7.28-7.21 (m, 1H), 7.10-7.04 (m, 1H), 4.90-4.82 (m, 1H), 4.21 (s, 2H), 4.04 (dd, 1H, J = 13.7, 4.4 Hz), 3.78-3.64 (m, 3H), 3.56-3.45 (m, 2H), 3.45-3.28 (m, 3H), 3.21 (dd, 1H, J = 13.3, 6.9 Hz), 3.11 (s, 3H), 2.05-1.94 (m, 1H), 0.91 (d, 6H, J = 6.4 Hz). 58 HCl 1H-NMR (DMSO-d6) δ: 12.40 (br s, 1H), 8.63 (s, 1H), 7.64 (s, 1H), 7.49-7.41 (m, 1H), 7.28-7.20 (m, 1H), 7.11-7.04 (m, 1H), 4.62-4.55 (m, 1H), 4.46 (dd, 1H, J = 13.8, 4.4 Hz), 4.21 (s, 2H), 4.06-4.00 (m, 1H), 3.80 (dd, 1H, J = 13.4, 7.7 Hz), 3.64-3.54 (m, 2H), 3.50-3.40 (m, 2H), 3.33-3.24 (m, 2H), 3.10 (s, 3H), 2.94 (dd, 1H, J = 13.4, 7.1 Hz), 2.12-2.03 (m, 1H), 0.95 (d, 3H, J = 6.7 Hz), 0.89 (d, 3H, J = 6.7 Hz). 59 HCl 1H-NMR (DMSO-d6) δ: 12.30 (br s, 1H), 8.62 (s, 1H), 7.64 (s, 1H), 7.50-7.40 (m, 1H), 7.29-7.20 (m, 1H), 7.12-7.03 (m, 1H), 4.62-4.55 (m, 1H), 4.48 (sep, 1H, J = 6.7 Hz), 4.36-4.31 (m, 1H), 4.21 (s, 2H), 4.19-4.14 (m, 1H), 3.58 (dd, 1H, J = 10.3, 4.1 Hz), 3.52-3.39 (m, 3H), 3.33-3.27 (m, 2H), 3.10 (s, 3H), 1.29 (d, 3H, J = 6.7 Hz), 1.28 (d, 3H, J = 6.7 Hz). -
TABLE 1-14 structural No. formula salt 1H-NMR 60 HCl 1H-NMR (DMSO-d6) δ: 12.44 (br s, 1H), 8.81 (s, 1H), 7.59-7.48 (m, 1H), 7.34-7.23 (m, 1H), 7.16-7.06 (m, 1H), 4.69-4.61 (m, 1H), 4.53-4.43 (m, 1H), 4.48 (s, 2H), 4.36 (dd, 1H, J = 7.2, 13.4 Hz), 4.23-4.14 (m, 1H), 3.51-3.40 (m, 4H), 3.33-3.25 (m, 2H), 3.08 (s, 3H), 1.28 (d, 3H, J = 6.7 Hz), 1.29 (d, 3H, J = 6.5 Hz). 61 HCl 1H-NMR (DMSO-d6) δ: 8.66 (s, 1H), 7.49-7.41 (m, 1H), 7.29-7.21 (m, 1H), 7.11-7.03 (m, 1H), 4.60 (dd, 1H, J = 13.4, 1.4 Hz), 4.47 (sep, 1H, J = 6.8 Hz), 4.33 (dd, 1H, J = 13.4, 3.7 Hz), 4.22 (s, 2H), 4.14-4.10 (m, 1H), 3.48 (dd, 1H, J = 10.3, 4.3 Hz), 3.36 (dd, 1H, J = 10.3, 7.7 Hz), 3.21 (s, 3H), 1.29 (d, 3H, J = 6.8 Hz), 1.28 (d, 3H, J = 6.8 Hz). 62 HCl 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 8.65 (s, 1H), 7.65 (s, 1H), 7.50-7.41 (m, 1H), 7.30-7.21 (m, 1H), 7.11-7.03 (m, 1H), 4.59 (dd, 1H, J = 13.7, 1.2 Hz), 4.46 (dd, 1H, J = 13.7, 4.2 Hz), 4.21 (s, 2H), 4.08-4.01 (m, 1H), 3.80 (dd, 1H, J = 13.2, 7.9 Hz). 3.52 (dd, 1H, J = 10.4, 5.4 Hz), 3.48 (dd, 1H, J = 10.4, 6.4 Hz), 3.20 (s, 3H), 2.93 (dd, 1H, J = 13.2, 7.2 Hz), 2.08 (tt, 1H, J = 6.7, 6.7 Hz), 0.95 (d, 3H, J = 6.7 Hz), 0.89 (d, 3H, J = 6.7 Hz). -
TABLE 1-15 No. structural formula salt 1H-NMR 63 HCl 1H-NMR (CDCl3) δ: 12.78 (br s, 1H), 9.36 (s, 1H), 7.38-7.30 (m, 1H), 6.92-6.84 (m, 2H), 4.58-4.51 (m, 1H), 4.48 (s, 2H), 4.05-3.98 (m, 1H), 3.76-3.63 (m, 3H), 3.51 (dd, 1H, J = 13.4, 7.9 Hz), 3.39 (s, 3H), 3.29 (dd, 1H, J = 13.4, 7.0 Hz), 2.09-1.99 (m, 1H), 1.00 (d, 3H, J = 6.7 Hz), 0.99 (d, 3H, J = 6.7 Hz). 64 HCl 1H-NMR (DMSO-d6) δ: 9.03 (s, 1H), 7.59-7.51 (m, 1H), 7.33-7.25 (m, 1H), 7.16-7.08 (m, 1H), 5.66 (dd, 1H, J = 3.0, 1.9 Hz), 5.07 (dd, 1H, J = 13.8, 1.9 Hz), 4.78 (sep, 1H, J = 6.8 Hz), 4.61 (dd, 1H, J = 13.8, 3.0 Hz), 4.51 (s, 2H), 1.31 (d, 3H, J = 6.8 Hz), 1.24 (d, 3H, J = 6.8 Hz). 65 HCl 1H-NMR (DMSO-d6) δ: 8.31 (s, 1H), 7.78-7.73 (m, 2H), 7.72-7.67 (m, 2H), 7.38 (td, 1H, J = 8.8, 6.8 Hz), 7.36 (s, 1H), 7.25 (ddd, 1H, J = 10.4, 9.0, 2.6 Hz), 7.08 (tdd, 1H, J = 8.8, 2.6, 0.9 Hz), 4.99-4.91 (br m, 1H), 4.80 (sep, 1H, J = 6.7 Hz), 4.13 (s, 2H), 4.04 (dd, 1H, J = 14.3, 4.6 Hz), 3.96 (dd, 1H, J = 13.9, 2.0 Hz), 3.89 (dd, 1H, J = 13.9, 4.0 Hz), 3.82 (dd, 1H, J = 14.3,9.3 Hz), 1.27 (d, 3H, J = 6.7 Hz), 1.19 (d, 3H, J = 6.7 Hz). -
TABLE 1-16 No. structural formula salt 1H-NMR 66 2HCl 1H-NMR (DMSO-d6) δ: 12.56 (br s, 1H), 8.70 (s, 1H), 8.25-8.13 (br m, 2H), 7.66 (s, 1H), 7.45 (td, 1H, J = 8.7, 6.7 Hz), 7.25 (ddd, 1H, J = 10.4, 9.5, 2.6 Hz), 7.08 (tdd, 1H, J = 8.7, 2.6, 0.9 Hz), 4.95-4.86 (br m, 1H), 4.76 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 3.90 (dd, 1H, J = 13.8, 3.6 Hz), 3.84 (dd, 1H, J = 13.8, 1.9 Hz), 3.35-3.24 (br m, 1H), 3.22-3.09 (br m, 1H), 1.19 (d, 3H, J = 6.7 Hz), 1.15 (d, 3H, J = 6.7 Hz). 67 HCl 1H-NMR (DMSO-d6) δ: 12.68 (br s, 1H), 8.39 (s, 1H), 8.05 (t, 1H, J = 6.0 Hz), 7.64 (s, 1H), 7.46 (td, 1H, J = 8.8, 7.0 Hz), 7.25 (ddd, 1H, J = 10.4, 9.5, 2.6 Hz), 7.08 (tdd, 1H, J = 8.8, 2.6, 0.9 Hz), 4.77 (sep, 1H, J = 6.7 Hz), 4.67-4.59 (br m, 1H), 4.21 (s, 2H), 3.84 (dd, 1H, J = 13.8, 3.8 Hz), 3.74 (dd, 1H, J = 13.8, 0.9 Hz), 3.41-3.27 (m, 2H), 1.66 (s, 3H), 1.19 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 68 HCl 1H-NMR (DMSO-d6) δ: 12.68 (br s, 1H), 8.36 (s, 1H), 7.97 (t, 1H, J = 6.0 Hz), 7.62 (s, 1H), 7.45 (td, 1H, J = 8.7, 6.7 Hz), 7.25 (ddd, 1H, J = 10.4. 9.5, 2.6 Hz), 7.08 (tdd, 1H, J = 8.7, 2.6, 0.9 Hz), 4.77 (sep, 1H, J = 6.7 Hz), 4.68-4.60 (br m, 1H), 4.21 (s, 2H), 3.84 (dd, 1H, J = 13.7, 3.9 Hz), 3.75 (dd, 1H, J = 13.7, 1.4 Hz), 3.40-3.29 (m, 2H), 1.96-1.86 (m, 2H), 1.19 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz), 0.78 (t, 3H, J = 7.5 Hz). -
TABLE 1-17 No. structural formula salt 1H-NMR 69 HCl 1H-NMR (DMSO-d6) δ: 12.66 (s, 1H), 8.33 (s, 1H), 7.93 (t, 1H, J = 6.0 Hz), 7.61 (s, 1H), 7.43 (td, 1H, J = 8.7, 6.6 Hz), 7.25 (ddd, 1H, J = 10.4, 9.5, 2.6 Hz), 7.07 (tdd, 1H, J = 8.7, 2.6, 0.9 Hz), 4.78 (sep, 1H, J = 6.7 Hz), 4.69-4.61 (br m, 1H), 4.20 (s, 2H), 3.84 (dd, 1H, J = 13.7, 3.9 Hz), 3.74 (dd, 1H, J = 13.7, 1.4 Hz), 3.38-3.32 (m, 2H), 2.15 (sep, 1H, J = 6.7 Hz), 1.19 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz), 0.85 (d, 3H, J = 6.7 Hz), 0.73 (d, 3H, J = 6.7 Hz). 70 HCl 1H-NMR (DMSO-d6) δ: 12.55 (br s, 1H), 8.75 (s, 1H), 7.58-7.50 (m, 1H), 7.34-7.24 (m, 1H), 7.16-7.07 (m, 1H), 4.49 (s, 2H), 4.43-4.30 (m, 3H), 4.03 (q, 1H, J = 7.8 Hz), 3.92-3.48 (m, 3H), 2.36-2.26 (m, 1H), 2.12-2.00 (m, 1H), 1.39 (s, 3H), 1.36 (s, 3H). 71 HCl 1H-NMR (DMSO-d6) δ: 12.64 (br s, 1H), 8.49 (s, 1H), 8.04 (d, 1H, J = 3.9 Hz), 7.65 (s, 1H), 7.50-7.40 (m, 1H), 7.29-7.20 (m, 1H), 7.11-7.03 (m, 1H), 5.07-4.96 (m, 1H), 4.84-4.72 (m, 1H), 4.21 (s, 2H), 3.87-3.59 (m, 2H), 2.71-2.30 (m, 3H), 1.15 (t, 6H, J = 7.4 Hz), 0.55-0.35 (m, 2H), 0.24-0.06 (m, 2H). -
TABLE 1-18 No. sructural formula salt 1H-NMR 72 HCl 1H-NMR (DMSO-d6) δ: 12.69 (br s, 1H), 8.70 (s, 1H), 7.65 (s, 1H), 7.49-7.39 (m, 1H), 7.29-7.19 (m, 1H), 7.11-7.00 (m, 1H), 5.14-5.01 (m, 1H), 4.86-4.71 (m, 1H), 4.21 (s, 2H), 3.91-3.67 (m, 2H), 3.51-3.22 (m, 8H), 2.91 (d, 2H, J = 6.5 Hz), 1.14 (d, 3H, J = 6.7 Hz), 1.13 (d, 3H, J = 6.7 Hz). 73 HCl 1H-NMR (DMSO-d6) δ: 8.69 (s, 1.0H), 7.65 (s, 1.0H), 7.49-7.40 (m, 1.0H), 7.29-7.19 (m, 1.0H), 7.11-7.02 (m, 1.0H), 5.13-5.03 (m, 1.0H), 4.84-4.72 (m, 1.0H), 4.21 (s, 2.0H), 3.88-3.55 (m, 2.0H), 3.55-3.25 (m, 4.0H), 3.15 (s, 1.5H), 3.12 (s, 1.5H), 3.02-2.82 (m, 2.0H), 2.88 (s, 1.5H), 2.79 (s. 1.5H), 1.13 (d, 6.0H, J = 6.5 Hz). 74 HCl 1H-NMR (DMSO-d6) δ: 8.85 (s, 1H), 7.57-7.50 (m, 1H), 7.32-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.62-4.56 (m, 1H), 4.53-4.30 (m, 3H), 4.49 (s, 2H), 2.69-2.45 (m, 2H), 1.30 (d, 3H, J = 7.2 Hz), 1.28 (d, 3H, J = 7.2 Hz). 75 HCl 1H-NMR (DMSO-d6) δ: 12.50 (s, 1H), 8.80 (s, 1H), 7.57-7.49 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.57-4.46 (m, 2H), 4.48 (s, 2H), 4.45-4.34 (m, 2H), 2.84 (s, 3H), 2.83 (s, 3H), 2.81-2.54 (m, 2H), 1.28 (d, 3H, J = 6.8 Hz), 1.25 (d, 3H, J = 6.8 Hz). -
TABLE 1-19 No. structural formula salt 1H-NMR 76 HCl 1H-NMR (DMSO-d6) δ: 12.81-12.55 (m, 1H), 8.70 (d, 1H, J = 3.7 Hz), 7.65 (s, 1H), 7.50-7.40 (m, 1H), 7.29-7.19 (m, 1H), 7.11-7.03 (m, 1H), 5.13-5.02 (m, 1H), 4.86-4.72 (m, 1H), 4.21 (s, 2H), 3.88-3.73 (m, 2H), 3.42-3.10 (m, 3H), 2.90-2.80 (m, 1H), 2.83 (s, 1.8H), 2.76 (s, 1.2H), 1.13 (d, 3H, J = 7.0 Hz), 1.12 (d, 3H, J = 6.7 Hz), 0.99 (t, 1.2H, J = 7.2 Hz), 0.93 (t 1.8H, J = 7.4 Hz). 77 HCl 1H-NMR (DMSO-d6) δ: 12.67 (br s, 1H), 8.68 (s, 1H), 7.65 (s, 1H), 7.50-7.40 (m, 1H), 7.29-7.19 (m, 1H), 7.12-7.03 (m, 1H), 5.14-5.04 (m, 1H), 4.85-4.73 (m, 1H), 4.21 (s, 2H), 3.90-3.76 (m, 2H), 3.35-3.10 (m, 4H), 2.84 (d, 2H, J = 6.7 Hz), 1.13 (t, 6H, J = 6.7 Hz), 0.98 (t, 3H, J = 7.4 Hz), 0.94 (t, 3H, J = 7.4 Hz). 78 HCl 1H-NMR (DMSO-d6) δ: 12.66 (br s, 1H), 8.57 (s, 1H), 7.65 (s, 1H), 7.45 (td, 1H, J = 8.7, 6.6 Hz), 7.36 (dd, 1H, J = 6.7, 6.1 Hz), 7.24 (ddd, 1H, J = 10.4, 9.5, 2.8 Hz), 7.07 (tdd, 1H, J = 8.7, 2.8, 0.9 Hz), 4.75 (sep, 1H, J = 6.7 Hz), 4.71-4.63 (br m, 1H), 4.21 (s, 2H), 3.85 (dd, 1H, J = 13.8, 4.1 Hz), 3.75 (dd, 1H, J = 13.8, 1.2 Hz), 3.38 (ddd. 1H, J = 14.1, 6.1, 5.6 Hz), 3.16 (ddd, 1H, J = 14.1, 9.0, 6.7 Hz), 2.89 (s, 3H), 1.21 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). -
TABLE 1-20 No. structural formula salt 1H-NMR 79 HCl 1H-NMR (DMSO-d6) δ: 8.94 (s, 1H), 7.70 (s, 1H), 7.47 (td, 1H, J = 8.6, 6.8 Hz), 7.25 (ddd, 1H, J = 10.1, 9.5, 2.6 Hz), 7.08 (tdd, 1H, J = 8.6, 2.6, 1.1 Hz), 6.30-6.25 (br m, 1H), 4.80 (sep, 1H, J = 6.8 Hz), 4.24 (dd, 1H, J = 14.1, 2.0 Hz), 4.23 (s, 2H), 4.02 (dd, 1H, J = 14.1, 3.5 Hz), 1.23 (d, 3H, J = 6.8 Hz), 1.16 (d, 3H, J = 6.8 Hz). 80 HCl 1H-NMR (DMSO-d6) δ: 8.35 (s, 1H), 7.64 (s, 1H), 7.46 (td, 1H, J = 8.8, 7.1 Hz), 7.25 (ddd, 1H, J = 10.6, 9.5, 2.6 Hz), 7.08 (tdd, 1H, J = 8.8, 2.6, 1.3 Hz), 4.92-4.84 (br m, 1H), 4.78 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 3.87 (dd, 1H, J = 14.1, 4.4 Hz), 3.83 (dd, 1H, J = 14.1, 10.8 Hz), 3.71 (dd, 1H, J = 13.9, 1.1 Hz), 3.39 (dd, 1H, J = 13.9, 4.0 Hz), 2.90 (s, 3H), 1.77 (s, 3H), 1.19 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 81 HCl 1H-NMR (DMSO-d6) δ: 12.42 (s, 1H), 8.80 (s, 1H), 7.92 (q, 1H, J = 4.4 Hz), 7.57-7.50 (m, 1H), 7.33-7.26 (m, 1H), 7.15-7.08 (m, 1H), 4.53-4.30 (m, 4H), 4.49 (s, 2H), 2.56 (d, 3H, J = 4.4 Hz), 2.44-2.37 (m, 2H), 1.29 (d, 3H, J = 6.8 Hz), 1.27 (d, 3H, J = 6.8 Hz). -
TABLE 1-21 No. structural formula salt 1H-NMR 82 HCl 1H-NMR (DMSO-d6) δ: 8.88 (s, 1H), 7.58-7.50 (m, 1H), 7.32-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.64 (d, 1H, J = 13.2 Hz), 4.54-4.41 (m, 3H), 4.49 (s, 2H), 3.12 (dd, 1H, J = 17.5, 7.0 Hz), 3.01 (dd, 1H, J = 17.5, 4.2 Hz), 1.31 (d, 3H, J = 6.8 Hz), 1.31 (d, 3H, d = 6.8 Hz). 83 HCl 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 8.82 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.14 (m, 2H), 4.68-4.62 (m, 1H), 4.55-4.42 (m, 1H), 4.47 (s, 2H), 4.36 (dd, 1H, J = 13.1, 3.6 Hz), 4.23-4.13 (m, 1H), 3.52-3.39 (m, 4H), 3.32-3.25 (m, 2H), 3.09 (s, 3H), 1.29 (d, 3H, J = 6.7 Hz), 1.28 (d, 3H, J = 6.7 Hz). 84 HCl 1H-NMR (DMSO-d6) δ: 12.48 (br s, 1H), 8.82 (s, 1H), 7.44-7.36 (m, 2H), 7.22-7.15 (m, 2H), 4.70-4.64 (m, 1H), 4.61-4.50 (m, 1H), 4.47 (s, 2H), 4.45-4.37 (m, 1H), 4.31-4.23 (m, 1H), 3.58-3.39 (m, 4H), 3.31-3.25 (m, 2H), 3.09 (s, 3H), 2.37-2.12 (m, 4H), 1.75-1.62 (m, 2H). 85 HCl 1H-NMR (DMSO-d6) δ: 12.82 (s, 1H), 8.80 (s, 1H), 7.54 (td, 1H, J = 8.8, 6.7 Hz), 7.29 (ddd, 1H, J = 10.2, 9.3, 2.6 Hz), 7.12 (tdd, 1H, J = 8.8, 2.6 0.9 Hz), 5.01-4.93 (br m, 1H), 4.77 (sep, 1H, J = 6.7 Hz), 4.49 (s, 2H), 3.84 (dd, 1H, J = 13.9, 3.9 Hz), 3.75 (dd, 1H, J = 13.9, 1.4 Hz), 3.62 (dd, 1H, J = 10.2, 5.8 Hz), 3.57 (dd, 1H, J = 10.2, 7.7 Hz), 3.25 (s, 3H), 1.16 (d, 3H, J = 6.7 Hz). 1.16 (d, 3H. J = 6.7 Hz). -
TABLE 1-22 No. structural formula salt 1H-NMR 86 HCl 1H-NMR (DMSO-d6) δ: 12.73 (br s, 1H), 8.82 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 5.00-4.84 (m, 2H), 4.49 (s. 2H), 3.98-3.87 (m, 2H), 3.74 (dd, 1H, J = 10.4, 6.0 Hz), 3.64 (dd, 1H, J = 10.4, 7.4 Hz), 3.58-3.46 (m, 2H), 3.34 (t, 2H, J = 4.6 Hz), 3.12 (s, 3H), 2.34-2.03 (m, 4H), 1.76-1.65 (m. 2H). 87 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.80 (s, 1H), 7.59-7.49 (m, 1H), 7.35-7.24 (m, 1H), 7.16-7.07 (m, 1H), 5.01-4.93 (m, 1H), 4.77 (t, 1H, J = 6.7 Hz), 4.49 (s, 2H), 3.84 (dd, 1H, J = 13.7, 3.9 Hz), 3.75 (dd, 1H, J = 13.7, 2.5 Hz), 3.62 (dd, 1H, J = 10.2, 5.8 Hz), 3.57 (dd, 1H, J = 10.2, 7.7 Hz), 3.25 (s, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 88 HCl 1H-NMR (DMSO-d6) δ: 12.82 (br s, 1H), 8.80 (s, 1H), 7.45-7.39 (m, 2H), 7.22-7.15 (m, 2H), 5.01-4.94 (m, 1H), 4.77 (sep, 1H, J = 6.7 Hz), 4.47 (s, 2H), 3.84 (dd, 1H, J = 13.7, 3.9 Hz), 3.75 (dd, 1H, J = 13.7, 1.6 Hz), 3.62 (dd, 1H, J = 10.4, 5.8 Hz), 3.57 (dd, 1H, J = 10.4, 7.7 Hz), 3.25 (s, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1,16 (d, 3H, J = 6.7 Hz). 89 HCl 1H-NMR (DMSO-d6) δ: 12.76 (br s, 1H), 8.78 (s, 1H), 7.58-7.50 (m, 1H), 7.32-7.26 (m, 1H), 7.14-7.08 (m, 1H), 4.99-4.89 (m, 1H), 4.49 (s, 2H), 4.07 (dd, 1H, J = 13.7, 4.4 Hz), 3.74-3.56 (m, 4H), 3.44-3.33 (m, 1H), 3.25 (s, 3H), 1.14 (t, 3H, J = 7.2 Hz). -
TABLE 1-23 No. structural formula salt 1H-NMR 90 HCl 1H-NMR (DMSO-d6) δ: 12.47 (s, 1H), 8.87 (s, 1H), 7.57-7.49 (m, 1H), 7.32-7.24 (m, 1H), 7.15-7.07 (m, 1H), 4.66 (dd, 1H, J = 13.5, 1.7 Hz), 4.53 (sep, 1H, J = 6.8 Hz), 4.49 (s, 2H), 4.35-4.28 (m, 1H), 4.14-4.07 (m, 1H), 3.62-3.47 (m, 2H), 1.81-1.51 (m, 2H), 1.29 (d, 6H, J = 6.8 Hz). 91 HCl 1H-NMR (DMSO-d6) δ: 12.76-12.55 (br m, 1H), 8.61 (s, 1H), 7.61 (s, 1H), 7.25 (dd, 1H, J = 8.5, 6.9 Hz), 6.92 (dd, 1H, J = 11.3, 2.4 Hz), 6.73 (td, 1H, J = 8.5, 2.4 Hz), 4.94-4.86 (br m, 1H), 4.77 (sep, 1H, J = 6.9 Hz), 4.09 (s, 2H), 3.84-3.79 (m, 1H), 3.83 (s, 3H), 3.76-3.69 (m, 1H), 3.60 (dd, 1H, J = 10.5, 5.6 Hz), 3.54 (dd, 1H, J = 10.5, 7.7 Hz), 3.23 (s, 3H), 1.16 (d, 3H, J = 6.9 Hz), 1.15 (d, 3H, J = 6.9 Hz). 92 HCl 1H-NMR (DMSO-d6) δ: 12.70 (br s, 1H), 8.81 (s, 1H), 7.45-7.38 (m, 2H), 7.22-7.15 (m, 2H), 5.02-4.85 (m, 2H), 4.47 (s, 2H), 3.98-3.87 (m, 2H), 3.65 (dd, 1H, J = 10.3, 5.8 Hz), 3.57 (dd, 1H, J = 10.3, 7.5 Hz), 3.25 (s, 3H), 2.31-2.04 (m, 4H), 1.77-1.65 (m, 2H). -
TABLE 1-24 No. structural formula salt 1H-NMR 93 HCl 1H-NMR (DMSO-d6) δ: 8.84 (s, 1H), 7.57-7.49 (m, 1H), 7.32-7.25 (m, 1H), 7.15-7.07 (m, 1H), 4.68 (d, 1H, J = 13.2 Hz), 4.60-4.49 (m, 1H), 4.48 (s, 2H), 4.41 (dd, 1H, J = 13.2, 3.7 Hz), 4.32-4.25 (m, 1H), 3.43 (dd, 1H, J = 10.4, 4.6 Hz), 3.39 (dd, 1H, J = 10.4, 6.8 Hz), 3.21 (s, 3H), 2.39-2.11 (m, 4H), 1.77-1.63 (m, 2H). 94 HCl 1H-NMR (DMSO-d6) δ: 12.79 (br s, 1H), 8.60 (s, 1H), 7.67 (s, 1H), 7.45 (td, 1H, J = 8.2, 6.0 Hz), 7.24 (ddd, 1H, J = 10.4, 9.5, 2.6 Hz), 7.07 (tdd, 1H, J = 8.2, 2.6, 0.9 Hz), 4.70 (sep, 1H, J = 6.7 Hz), 4.22 (s, 2H), 4.19-4.14 (br m, 1H), 4.09 (d, 1H, J = 14.1 Hz), 4.00 (d, 1H, J = 14.1 Hz), 3.88-3.81 (br m, 2H), 3.74-3.69 (br m, 1H), 2.14-2.04 (br m, 2H), 1.94 (s, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1.13 (d, 3H, J = 6.7 Hz). 95 HCl 1H-NMR (DMSO-d6) δ: 8.84 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.14 (m, 2H), 4.66 (d, 1H, J = 13.2 Hz), 4.47 (sep, 1H, J = 6.7 Hz), 4.47 (s, 2H), 4.34 (dd, 1H, J = 13.5, 3.7 Hz), 4.22-4.17 (m, 1H), 3.49 (dd, 1H, J = 10.6, 4.3 Hz), 3.39 (dd, 1H, J = 10.6, 7.5 Hz), 3.21 (s, 3H), 1.30 (d, 3H, J = 6.7 Hz), 1.28 (d, 3H, J = 6.7 Hz). -
TABLE 1-25 No. structural formula salt 1H-NMR 96 HCl 1H-NMR (DMSO-d6) δ: 12.45 (br s, 1H), 8.84 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.07 (m, 1H), 4.66 (dd, 1H, J = 13.4, 1.6 Hz), 4.49 (s, 2H), 4.47 (sep, 1H, J = 6.8 Hz), 4.35 (dd, 1H, J = 13.4, 3.7 Hz), 4.23-4.17 (m, 1H), 3.49 (dd, 1H, J = 10.2, 4.2 Hz), 3.39 (dd, 1H, J = 10.2, 7.4 Hz), 3.21 (s, 3H), 1.30 (d, 3H, J = 6.8 Hz), 1.28 (d, 3H, J = 6.8 Hz). 97 HCl 1H-NMR (DMSO-d6) δ: 12.76 (br s, 1H), 8.78 (s, 1H), 7.58-7.50 (m, 1H), 7.32-7.26 (m, 1H), 7.14-7.08 (m, 1H), 4.99-4.89 (m, 1H), 4.49 (s, 2H), 4.07 (dd, 1H, J = 13.7, 4.4 Hz), 3.74-3.56 (m, 4H), 3.44-3.33 (m, 1H), 3.25 (s, 3H), 1.14 (t, 3H, J = 7.2 Hz). 98 HCl 1H-NMR (DMSO-d6) δ: 12.51 (br s, 1H), 8.84 (s, 1H), 7.58-7.49 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.71-4.64 (m, 1H), 4.60-4.46 (m, 3H), 4.41 (dd, 1H, J = 13.7, 3.9 Hz), 4.31-4.25 (m, 1H), 3.46-3.36 (m, 2H), 3.21 (s, 3H), 2.37-2.12 (m, 4H), 1.77-1.64 (m, 2H). -
TABLE 1-26 No. structural formula salt 1H-NMR 99 HCl 1H-NMR (DMSO-d6) δ: 12.46 (br s, 1H), 8.84 (s, 1H), 7.57-7.50 (m, 1H), 7.32-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.56 (dd, 1H, J = 13.2, 1.6 Hz), 4.52-4.42 (m, 1H), 4.49 (s, 2H), 4.35 (dd, 1H, J = 13.2, 4.0 Hz), 4.23-4.17 (m, 1H), 3.49 (dd, 1H, J = 10.4, 4.3 Hz), 3.39 (dd, 1H, J = 10.4, 7.5 Hz), 3.21 (s, 3H), 1.30 (d, 3H, J = 6.8 Hz), 1.28 (d, 3H, J = 6.8 Hz). 100 HCl 1H-NMR (DMSO-d6) δ: 12.56 (br s, 1H), 9.02 (s, 1H), 7.53 (td, 1H, J = 8.5, 6.4 Hz), 7.29 (ddd, 1H, J = 10.5, 9.7, 2.4 Hz), 7.12 (tdd, 1H, J = 8.5. 2.4, 1.2 Hz), 4.72 (s, 2H), 4.49 (s, 2H), 4.16-4.02 (br m, 1H), 3.82-3.78 (m, 2H), 3.74-3.66 (m, 2H), 2.21-2.13 (m, 2H), 1.64-1.58 (m, 2H), 1.43 (d, 6H, J = 6.4 Hz). 101 HCl 1H-NMR (DMSO-d6) δ: 12.66 (br s, 1H), 8.66 (s, 1H), 7.66 (s, 1H), 7.51-7.40 (m, 1H), 7.29-7.20 (m, 1H), 7.11-7.03 (m, 1H), 5.45-5.34 (m, 1H), 4.83-4.70 (m, 1H), 4.21 (s, 2H), 3.95-3.85 (m, 2H), 3.81-3.59 (m, 2H), 3.05 (s, 3H), 1.20 (d, 3H, J = 6.7 Hz), 1.14 (d, 3H, J = 6.7 Hz). -
TABLE 1-27 No. structural formula salt 1H-NMR 102 HCl 1H-NMR (DMSO-d6) δ: 12.50 (br s, 1H), 8.83 (s, 1H), 7.57-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.64 (dd, 1H, J = 13.7, 1.6 Hz), 4.49 (s, 2H), 4.43 (dd, 1H, J = 13.7, 4.1 Hz), 4.17-4.12 (m, 1H), 3.86 (dq, 1H, J = 13.4, 7.0 Hz), 3.54 (dd, 1H, J = 10.2, 5.1 Hz), 3.50 (dd, 1H, J = 10.2, 6.3 Hz), 3.27 (dq, 1H, J = 13.4, 7.0 Hz), 3.21 (s, 3H), 1.18 (t, 3H, J = 7.0 Hz). 103 HCl 1H-NMR (DMSO-d6) δ: 8.61 (s, 1H), 7.70 (s, 1H), 7.36-7.29 (m, 2H), 7.18-7.11 (m, 2H), 4.80 (sep, 1H, J = 6.7 Hz), 4.20 (s, 2H), 3.74 (d, 1H, J = 13.7 Hz), 3.64 (d, 1H, J = 10.4 Hz), 3.64 (d, 1H, J = 13.7 Hz), 3.58 (d, 1H, J = 10.4 Hz), 3.24 (s, 3H), 1.63 (s, 3H), 1.18 (d, 3H, J = 6.7 Hz), 1.17 (d, 3H, J = 6.7 Hz). 104 HCl 1H-NMR (DMSO-d6) δ: 12.79 (br s, 1H), 8.53 (s, 1H), 8.14 (q, 1H, J = 4.4 Hz), 7.69 (s, 1H), 7.36-7.30 (m, 2H), 7.18-7.11 (m, 2H), 4.70 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 4.09 (d, 1H, J = 13.9 Hz), 3.77 (d, 1H, J = 13.9 Hz), 2.60 (d, 3H, J = 4.4 Hz), 1.93 (s, 3H), 1.14 (d, 3H, J = 6.7 Hz), 1.09 (d, 3H, J = 6.7 Hz). -
TABLE 1-28 No. structural formula salt 1H-NMR 105 HCl 1H-NMR (DMSO-d6) δ: 12.80 (br s, 1H), 8.52 (s, 1H), 8.18 (t, 1H, J = 5.2 Hz), 7.68 (s, 1H), 7.36-7.30 (m, 2H), 7.18-7.11 (m, 2H), 4.71 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 4.11 (d, 1H, J = 13.9 Hz), 3.78 (d, 1H, J = 13.9 Hz), 3.18-2.98 (m, 2H), 1.92 (s, 3H), 1.15 (d, 3H, J = 6.7 Hz), 1.11 (d, 3H, J = 6.7 Hz), 1.00 (t, 3H, J = 7.2 Hz). 106 HCl 1H-NMR (DMSO-d6) δ: 12.84 (br s, 1H), 8.50 (s, 1H), 8.07 (d, 1H, J = 7.4 Hz), 7.68 (s, 1H), 7.36-7.30 (m, 2H), 7.18-7.11 (m, 2H), 4.72 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 4.16 (d, 1H, J = 14.1 Hz), 3.81 (sep, 1H, J = 6.7 Hz), 3.79 (d, 1H, J = 14.1 Hz), 1.93 (s, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1.15 (d, 3H, J = 6.7 Hz), 1.07 (d, 3H, J = 6.7 Hz), 1.06 (d, 3H, J = 6.7 Hz). 107 HCl 1H-NMR (DMSO-d6) δ: 12.85 (s, 1H), 8.43 (s, 1H), 7.69 (s, 1H), 7.37-7.29 (m, 2H), 7.19-7.11 (m, 2H), 4.73 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 4.12 (d, 1H, J = 14.1 Hz), 3.79 (d, 1H, J = 14.1 Hz), 2.93 (s, 6H), 1.98 (s, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.11 (d, 3H, J = 6.7 Hz). -
TABLE 1-29 No. structural formula salt 1H-NMR 108 HCl 1H-NMR (DMSO-d6) δ: 12.96 (br s, 1H), 8.39 (s, 1H), 7.69 (s, 1H), 7.37-7.30 (m, 2H), 7.19-7.11 (m, 2H), 4.75 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 4.03 (d, 1H, J = 14.4 Hz), 3.80 (d, 1H, J = 14.4 Hz), 3.56-3.37 (br m, 4H), 1.90 (s, 3H), 1.59-1.50 (br m, 2H), 1.50-1.41 (br m, 4H), 1.18 (d, 3H, J = 6.7 Hz), 1.14 (d, 3H, J = 6.7 Hz). 109 HCl 1H-NMR (DMSO-d6) δ: 12.79 (br s, 1H), 8.54 (s, 1H), 7.69 (s, 1H), 7.37-7.30 (m, 2H), 7.19-7.11 (m, 2H), 4.70 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 4.12 (d, 1H, J = 14.1 Hz), 3.75 (d, 1H, J = 14.1 Hz), 3.65-3.53 (br m, 1H), 3.43-3.33 (br m, 1H), 3.33-3.23 (br m, 1H), 3.16-3.05 (br m, 1H), 2.01 (s, 3H), 1.94-1.84 (br m, 1H), 1.81-1.56 (br m, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1.08 (d, 3H, J = 6.7 Hz). 110 HCl 1H-NMR (DMSO-d6) δ: 13.12 (s, 1H), 8.63 (s, 1H), 7.69 (s, 1H), 7.36-7.30 (m, 2H), 7.18-7.11 (m, 2H), 4.79 (sep, 1H, J = 6.7 Hz), 4.20 (s, 2H), 3.74 (d, 1H, J = 10.2 Hz), 3.73 (d, 1H, J = 13.9 Hz), 3.66 (d, 1H, J = 10.2 Hz), 3.65 (d, 1H, J = 13.9 Hz), 3.54-3.42 (m, 2H), 3.38-3.30 (m, 2H), 3.11 (s, 3H), 1.63 (s, 3H), 1.18 (d, 3H, J = 6.7 Hz), 1.17 (d, 3H, J = 6.7 Hz). -
TABLE 1-30 No. structural formula salt 1H-NMR 111 HCl 1H-NMR (DMSO-d6) δ: 13.14 (s, 1H), 8.63 (s, 1H), 7.69 (s, 1H), 7.36-7.30 (m, 2H), 7.18-7.11 (m, 2H), 4.79 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 3.72 (d, 1H, J = 13.7 Hz), 3.64 (d, 1H, J = 13.7 Hz), 3.61 (s, 2H), 1.59 (s, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.17 (d, 3H, J = 6.7 Hz). 112 HCl 1H-NMR (DMSO-d6) δ: 12.87 (br s, 1H), 8.61 (s, 1H), 7.70 (s, 1H), 7.37-7.30 (m, 2H), 7.18-7.11 (m, 2H), 4.73 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 4.06 (d, 1H, J = 13.7 Hz), 3.80 (d, 1H, J = 13.7 Hz), 1.98 (s, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1.14 (d, 3H, J = 6.7 Hz). 113 HCl 1H-NMR (DMSO-d6) δ: 12.64-12.34 (m, 1H), 8.83 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.14 (m, 2H), 4.64 (dd, 1H, J = 13.4, 1.5 Hz), 4.47 (s, 2H), 4.42 (dd, 1H, J = 13.4, 4.4 Hz), 4.17-4.11 (m, 1H), 3.86 (dq, 1H, J = 14.0, 7.0 Hz), 3.54 (dd, 1H, J = 10.4, 4.9 Hz), 3.50 (dd, 1H, J = 10.4, 6.3 Hz), 3.27 (dq, 1H, J = 14.0, 7.0 Hz), 3.22 (s, 3H), 1.20 (t, 3H, J = 7.0 Hz). -
TABLE 1-31 No. structural formula salt 1H-NMR 114 HCl 1H-NMR (DMSO-d6) δ: 12.50 (br s, 1H), 8.83 (s, 1H), 7.57-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.64 (dd, 1H, J = 13.7, 1.6 Hz), 4.49 (s, 2H), 4.43 (dd, 1H, J = 13.7, 4.1 Hz), 4.17-4.12 (m, 1H), 3.86 (dq, 1H, J = 13.4, 7.0 Hz), 3.54 (dd, 1H, J = 10.2, 5.1 Hz), 3.50 (dd, 1H, J = 10.2, 6.3 Hz), 3.27 (dq, 1H, J = 13.4, 7.0 Hz), 3.21 (s, 3H), 1.18 (t, 3H, J = 7.0 Hz). 115 HCl 1H-NMR (DMSO-d6) δ: 12.72 (br s, 1H), 8.79 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.15 (m, 2H), 4.61 (dd, 1H, J = 13.6, 1.6 Hz), 4.47 (s, 2H), 4.35 (dd, 1H, J = 13.6, 4.2 Hz), 3.86-3.80 (m, 1H), 3.62 (dd, 1H, J = 11.5, 3.8 Hz), 3.52 (dd, 1H, J = 11.5, 7.1 Hz), 2.95-2.88 (m, 1H), 1.03-0.94 (m, 1H), 0.90-0.83 (m, 1H), 0.83-0.72 (m, 2H). 116 HCl 1H-NMR (DMSO-d6) δ: 12.75 (s, 1H), 8.79 (s, 1H), 7.46-7.38 (m, 2H), 7.24-7.15 (m, 2H), 5.02-4.90 (m, 1H), 4.47 (s, 2H), 4.12 (dd, 1H, J = 13.7, 3.9 Hz), 3.87-3.79 (m, 1H), 3.73-3.58 (m, 2H), 3.45 (dd, 1H, J = 14.0, 7.3 Hz), 3.31 (dd, 1H, J = 14.0, 6.8 Hz), 3.26 (s, 3H), 1.15- 1.03 (m, 1H), 0.58-0.46 (m, 2H), 0.39-0.26 (m, 2H). -
TABLE 1-32 No. structural formula salt 1H-NMR 117 HCl 1H-NMR (DMSO-d6) δ: 12.75 (br s, 1H), 8.79 (s, 1H), 7.59-7.50 (m, 1H), 7.33-7.26 (m, 1H), 7.15-7.08 (m, 1H), 4.99-4.92 (m, 1H), 4.49 (s, 2H), 4.12 (dd, 1H, J = 13.8, 4.3 Hz), 3.87-3.80 (m, 1H), 3.69 (dd, 1H, J = 10.4, 5.6 Hz), 3.62 (dd, 1H, J = 10.4, 7.9 Hz), 3.45 (dd, 1H, J = 13.8, 7.3 Hz), 3.31 (dd, 1H, J = 13.9, 7.0 Hz), 3.26 (s, 3H), 1.14-1.03 (m, 1H), 0.57-0.46 (m, 2H), 0.39-0.27 (m, 2H). 118 HCl 1H-NMR (DMSO-d6) δ: 12.76 (s, 1H), 8.80 (s, 1H), 7.45-7.38 (m, 2H), 7.23-7.15 (m, 2H), 4.96-4.89 (m, 1H), 4.47 (s, 2H), 4.11 (dd, 1H, J = 13.7, 4.2 Hz), 3.84 (dd, 1H, J = 13.7, 1.2 Hz), 3.78 (dd, 1H, J = 10.5, 5.6 Hz), 3.70 (dd, 1H, J = 10.5, 7.7 Hz), 3.59-3.39 (m, 3H), 3.37-3.29 (m, 3H), 3.10 (s, 3H), 1.13-1.04 (m, 1H), 0.58-0.46 (m, 2H), 0.38-0.27 (m, 2H). 119 HCl 1H-NMR (DMSO-d6) δ: 12.75 (br s, 1H), 8.80 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.16-7.08 (m, 1H), 4.97-4.89 (m, 1H), 4.49 (s, 2H), 4.12 (dd, 1H, J = 13.7, 4.4 Hz), 3.84 (dd, 1H, J = 13.7, 1.2 Hz), 3.78 (dd, 1H, J = 10.5, 5.6 Hz), 3.70 (dd, 1H, J = 10.5, 7.7 Hz), 3.59-3.40 (m, 3H), 3.37-3.29 (m, 3H), 3.10 (s, 3H), 1.14-1.04 (m, 1H), 0.58-0.47 (m, 2H), 0.38-0.27 (m, 2H). -
TABLE 1-33 No. structural formula salt 1H-NMR 120 HCl 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 8.82 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.14 (m, 2H), 4.65 (d, 1H, J = 12.5 Hz), 4.55-4.42 (m, 1H), 4.47 (s, 2H), 4.36 (dd, 1H, J = 13.1, 3.6 Hz), 4.23-4.13 (m, 1H), 3.52-3.39 (m, 4H), 3.32-3.25 (m, 2H), 3.09 (s, 3H), 1.29 (d, 3H, J = 6.7 Hz), 1.28 (d, 3H, J = 6.7 Hz). 121 HCl 1H-NMR (DMSO-d6) δ: 13.10 (br s, 1H), 8.58 (s, 1H), 7.66 (s, 1H), 7.44 (td, 1H, J = 8.7, 6.7 Hz), 7.23 (ddd, 1H, J = 10.4, 9.5, 2.6 Hz), 7.06 (tdd, 1H, J = 8.7, 2.6, 0.9 Hz), 4.78 (sep, 1H, J = 6.7 Hz), 4.20 (s, 2H), 3.73 (d, 1H, J = 13.9 Hz), 3.63 (d, 1H, J = 13.9 Hz), 3.63 (d, 1H, J = 10.2 Hz), 3.56 (d, 1H, J = 10.2 Hz), 3.22 (s, 3H), 1.61 (s, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 122 HCl 1H-NMR (DMSO-d6) δ: 13.12 (br s, 1H), 8.62 (s, 1H), 7.67 (s, 1H), 7.45 (td, 1H, J = 8.8, 7.0 Hz), 7.25 (ddd, 1H, J = 10.4, 9.3, 2.6 Hz), 7.07 (tdd, 1H, J = 8.8, 2.6, 1.0 Hz), 4.79 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 3.78-3.70 (m, 2H), 3.66 (d, 1H, J = 10.2 Hz), 3.65 (d, 1H, J = 13.9 Hz), 3.54-3.42 (m, 2H), 3.37-3.29 (m, 2H), 3.11 (s, 3H), 1.63 (s, 3H), 1.18 (d, 3H, J = 6.7 Hz), 1.17 (d, 3H, J = 6.7 Hz). -
TABLE 1-34 No. structural formula salt 1H-NMR 123 HCl 1H-NMR (DMSO-d6) δ: 12.78 (s, 1H), 8.82 (s, 1H), 7.45-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.93-4.86 (m, 1H), 4.47 (s, 2H), 4.19 (dd, 1H, J = 13.7, 4.2 Hz), 3.82 (dd, 1H, J = 10.4, 5.6 Hz), 3.78-3.70 (m, 2H), 3.58-3.47 (m, 2H), 3.42 (d, 1H, J = 13.4 Hz), 3.35-3.31 (m, 2H), 3.23 (d, 1H, J = 13.4 Hz), 3.11 (s, 3H), 0.98 (s, 9H). 124 HCl 1H-NMR (DMSO-d6) δ: 12.78 (br s, 1H), 8.80 (s, 1H), 7.57-7.50 (m, 1H), 7.32-7.24 (m, 1H), 7.14-7.07 (m, 1H), 4.92-4.85 (m, 1H), 4.48 (s, 2H), 4.18 (dd, 1H, J = 13.7, 4.2 Hz), 3.81 (dd, 1H, J = 10.6, 5.7 Hz), 3.76-3.69 (m, 2H), 3.56-3.46 (m, 2H), 3.41 (d, 1H, J = 13.4 Hz), 3.34-3.30 (m, 2H), 3.22 (d, 1H, J = 13.4 Hz), 3.09 (s, 3H), 0.97 (s, 9H). 125 HCl 1H-NMR (DMSO-d6) δ: 12.78 (br s, 1H), 8.79 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.96-4.88 (m, 1H), 4.49 (s, 2H), 4.07 (dd, 1H, J = 13.6, 4.3 Hz), 3.79-3.59 (m, 4H), 3.57-3.45 (m, 2H), 3.45-3.36 (m, 1H), 3.33 (t, 2H, J = 4.6 Hz), 3.10 (s, 3H), 1.15 (t, 3H, J = 7.2 Hz). -
TABLE 1-35 No. structural formula salt 1H-NMR 126 HCl 1H-NMR (DMSO-d6) δ: 12.47 (br s, 1H), 8.83 (s, 1H), 7.56-7.49 (m, 1H), 7.32-7.24 (m, 1H), 7.14-7.07 (m, 1H), 4.66 (dd, 1H, J = 13.4, 1.6 Hz), 4.48 (s, 2H), 4.44 (dd, 1H, J = 13.4, 4.2 Hz), 4.25-4.20 (m, 1H), 3.68 (dd, 1H, J = 14.0, 7.0 Hz), 3.57 (dd, 1H, J = 10.2, 4.6 Hz), 3.50 (dd, 1H, J = 10.2, 6.5 Hz), 3.20 (dd, 1H, J = 14.0, 7.0 Hz), 3.20 (s, 3H), 1.20-1.09 (m, 1H), 0.58-0.46 (m, 2H), 0.43-0.35 (m, 1H), 0.35-0.27 (m, 1H). 127 HCl 1H-NMR (DMSO-d6) δ: 12.78 (br s, 1H), 8.79 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.96-4.88 (m, 1H), 4.49 (s, 2H), 4.07 (dd, 1H, J = 13.6, 4.3 Hz), 3.79-3.59 (m, 4H), 3.57-3.45 (m, 2H), 3.45-3.36 (m, 1H), 3.33 (t, 2H, J = 4.6 Hz), 3.10 (s, 3H), 1.15 (t, 3H, J = 7.2 Hz). 128 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.80 (s, 1H), 7.44-7.39 (m, 2H), 7.22-7.15 (m, 2H), 4.95-4.88 (m, 1H), 4.47 (s, 2H), 4.07 (dd, 1H, J = 13.6, 4.3 Hz), 3.78-3.60 (m, 4H), 3.57-3.46 (m, 2H), 3.43-3.37 (m, 1H), 3.33 (t, 2H, J = 4.6 Hz), 3.10 (s, 3H), 1.15 (t, 3H, J = 7.2 Hz). -
TABLE 1-36 No. structural formula salt 1H-NMR 129 HCl 1H-NMR (DMSO-d6) δ: 12.67 (s, 1H), 8.83 (s, 1H), 7.59-7.49 (m, 1H), 7.34-7.25 (m, 1H), 7.16-7.07 (m, 1H), 4.70-4.55 (m, 2H), 4.49 (s, 2H), 4.03-3.97 (br m, 1H), 3.95 (d, 1H, J = 13.4 Hz), 3.66-3.59 (m, 2H), 3.47-3.41 (m, 2H), 3.27- 3.22 (m, 2H), 3.07 (s, 3H), 2.85 (d, 1H, J = 13.4 Hz), 0.98 (s, 9H). 130 HCl 1H-NMR (DMSO-d6) δ: 12.50 (s, 1H), 8.80 (s, 1H), 7.59-7.49 (m, 1H), 7.34-7.25 (m, 1H), 7.15-7.07 (m, 1H), 4.68-4.59 (m, 1H), 4.48 (s, 2H), 4.43 (dd, 1H, J = 13.4, 4.2 Hz), 4.17-4.09 (m, 1H), 3.86 (td, 1H, J = 13.9, 7.0 Hz), 3.67- 3.56 (m, 2H), 3.52-3.41 (m, 2H), 3.34-3.22 (m, 3H), 3.09 (s, 3H), 1.20 (t, 3H, J = 7.0 Hz). 131 HCl 1H-NMR (DMSO-d6) δ: 12.97-12.84 (br m, 1H), 8.76 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.92-4.85 (br m, 1H), 4.48 (s, 2H), 3.98-3.84 (m, 2H), 3.67 (dd, 1H, J = 10.1, 5.6 Hz), 3.59 (dd, 1H, J = 10.1, 7.7 Hz), 3.28 (s, 3H), 1.48 (s, 9H). -
TABLE 1-37 No. structural formula salt 1H-NMR 132 HCl 1H-NMR (DMSO-d6) δ: 12.79 (br s, 1H), 8.90 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.97-4.88 (m, 1H), 4.84-4.74 (m, 1H), 4.49 (s, 2H), 3.81 (dd, 1H, J = 13.5, 3.7 Hz), 3.63 (dd, 1H, J = 13.5, 2.2 Hz), 1.39 (d, 3H, J = 6.6 Hz), 1.19 (d, 3H, J = 6.8 Hz), 1.16 (d, 3H, J = 6.8 Hz). 133 HCl 1H-NMR (DMSO-d6) δ: 12.48 (s, 1H), 8.80 (s, 1H), 7.57-7.50 (m, 1H), 7.32-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.67 (d, 1H, J = 13.1 Hz), 4.51 (sep, 1H, J = 6.8 Hz), 4.49 (s, 2H), 4.34 (dd, 1H, J = 13.1, 3.7 Hz), 4.00-3.93 (m, 1H), 3.57 (dd, 1H, J = 11.4, 3.7 Hz), 3.37 (dd, 1H, J = 11.4, 8.3 Hz), 1.29 (d, 3H, J = 6.7 Hz), 1.28 (d, 3H, J = 6.7 Hz). 134 HCl 1H-NMR (DMSO-d6) δ: 12.88 (br s, 1H), 8.83-8.80 (m, 1H), 7.59-7.50 (m, 1H), 7.33-7.24 (m, 1H), 7.16-7.08 (m, 1H), 5.01-4.90 (br m, 1H), 4.60-4.50 (m, 1H), 4.49 (s, 2H) 3.87-3.63 (m, 4H), 3.57-3.46 (m, 2H), 3.35-3.30 (m, 2H), 3.12-3.10 (m, 3H), 1.59-1.48 (m, 2H), 1.15 (d, 3H, J = 6.7 Hz), 0.91-0.78 (m, 3H). -
TABLE 1-38 No. structural formula salt 1H-NMR 135 HCl 1H-NMR (DMSO-d6) δ: 12.89 (br s, 1H), 8.81 (s, 1H), 7.59-7.50 (m, 1H), 7.34-7.25 (m, 1H), 7.16-7.06 (m, 1H), 5.03-4.92 (br m, 1H), 4.59-4.50 (m, 1H), 4.49 (s, 2H), 3.73-3.54 (m, 4H), 3.26-3.23 (m, 3H), 1.61-1.45 (m, 2H), 1.15 (d, 3H, J = 6.7 Hz), 0.91-0.80 (m, 3H). 136 HCl 1H-NMR (DMSO-d6) δ: 12.96 (br s, 1H), 8.82 (s, 1H), 7.59-7.49 (m, 1H), 7.35-7.24 (m, 1H), 7.17-7.06 (m, 1H), 5.04-4.91 (m, 1H), 4.49 (s, 2H), 4.30-3.57 (m, 5H), 3.27-3.22 (m, 3H), 1.87-1.69 (m, 1H), 1.17 (d, 3H, J = 6.8 Hz), 0.97-0.79 (m, 6H). 137 HCl 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 8.71 (s, 1H), 8.23-8.17 (m, 1H), 7.58-7.50 (m, 1H), 7.33-7.26 (m, 1H), 7.15-7.08 (m, 1H), 4.58 (sep, 1H, J = 6.7 Hz), 4.49 (s, 2H), 4.43 (dd, 1H, J = 13.0, 1.3 Hz), 4.31 (dd, 1H, J = 13.0, 3.0 Hz), 3.97-3.91 (m, 1H), 3.45-3.36 (m, 1H), 2.97-2.86 (m, 1H), 1.80 (s, 3H), 1.34 (d, 3H, J = 6.7 Hz), 1.27 (d, 3H, J = 6.7 Hz). 138 HCl 1H-NMR (DMSO-d6) δ: 12.49 (br s, 1H), 8.72 (s, 1H), 7.88-7.83 (m, 1H), 7.57-7.50 (m, 1H), 7.32-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.57 (sep, 1H, J = 6.7 Hz), 4.49 (s, 2H), 4.38-4.28 (m, 2H), 3.99-3.92 (m, 1H), 3.38-3.29 (m, 1H), 3.04-2.95 (m, 1H), 1.38 (d, 3H, J = 6.7 Hz), 1.29 (d, 3H, J = 6.7 Hz), 1.08 (s, 9H). -
TABLE 1-39 No. structural formula salt 1H-NMR 139 HCl 1H-NMR (DMSO-d6) δ: 13.18 (br s, 1H), 8.47 (s, 1H), 7.67 (s, 1H), 7.46 (td, 1H, J = 8.8, 6.6 Hz), 7.25 (ddd, 1H, J = 10.4, 9.3, 2.6 Hz), 7.08 (tdd, 1H, J = 8.8, 2.6, 0.9 Hz), 4.79 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 3.79 (d, 1H, J = 13.9 Hz), 3.74 (d, 1H, J = 14.6 Hz), 3.68 (d, 1H, J = 13.9 Hz), 3.57 (d, 1H, J = 14.6 Hz), 2.75 (s, 3H), 1.81 (s, 3H), 1.67 (s, 3H), 1.22 (d, 3H, J = 6.7 Hz), 1.17 (d, 3H, J = 6.7 Hz). 140 HCl 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 8.71 (s, 1H), 8.22-8.17 (m, 1H), 7.57-7.50 (m, 1H), 7.33-7.26 (m, 1H), 7.15-7.08 (m, 1H), 4.58 (sep, 1H, J = 6.8 Hz), 4.49 (s, 2H), 4.43 (d, 1H, J = 13.0 Hz), 4.30 (dd, 1H, J = 13.0, 3.0 Hz), 3.98-3.91 (m, 1H), 2.96-2.86 (m, 1H), 2.56-2.50 (m, 1H), 1.80 (s, 3H), 1.34 (d, 3H, J = 6.8 Hz), 1.27 (d, 3H, J = 6.8 Hz). 141 HCl 1H-NMR (DMSO-d6) δ: 12.84 (s, 1H), 8.82 (s, 1H), 7.45-7.38 (m, 2H), 7.23-7.15 (m, 2H), 4.99-4.91 (m, 1H), 4.77 (sep, 1H, J = 6.8 Hz), 4.47 (s, 2H), 3.84 (dd, 1H, J = 13.8, 4.1 Hz), 3.75 (dd, 1H, J = 13.8, 1.7 Hz), 3.66 (dd, 1H, J = 10.4, 6.0 Hz), 3.59 (dd, 1H, J = 10.4, 7.5 Hz), 3.50-3.34 (m, 2H), 1.17 (d, 3H, J = 6.8 Hz), 1.16 (d, 3H, J = 6.8 Hz), 1.02 (t, 3H, J = 7.1 Hz). -
TABLE 1-40 No. structural formula salt 1H-NMR 142 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.81 (s, 1H), 7.58-7.51 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.07 (m, 1H), 4.98-4.91 (m, 1H), 4.77 (sep, 1H, J = 6.8 Hz), 4.49 (s, 2H), 3.84 (dd, 1H, J = 13.7, 4.0 Hz), 3.78-3.73 (m, 1H), 3.69-3.56 (m, 2H), 3.50-3.34 (m, 2H), 1.17 (d, 3H, J = 6.8 Hz), 1.16 (d, 3H, J = 6.8 Hz), 1.02 (t, 3H, J = 7.1 Hz). 143 HCl 1H-NMR (DMSO-d6) δ: 12.85 (br s, 1H), 8.80 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.99-4.92 (m, 1H), 4.77 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 3.84 (dd, 1H, J = 13.8, 4.1 Hz), 3.79-3.68 (m, 2H), 3.65 (dd, 1H, J = 10.4, 7.9 Hz), 3.56-3.44 (m, 2H), 3.38-3.34 (m, 2H), 3.30-3.22 (m, 2H), 1.17 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz), 0.91 (t, 3H, J = 7.0 Hz). 144 HCl 1H-NMR (DMSO-d6) δ: 12.82 (br s, 1H), 8.81 (s, 1H), 7.52-7.38 (m, 2H), 7.26-7.21 (m, 1H), 5.00-4.94 (m, 1H), 4.77 (sep, 1H, J = 6.9 Hz), 4.49 (s, 2H), 3.84 (dd, 1H, J = 13.7, 4.0 Hz), 3.75 (dd, 1H, J = 13.7, 1.2 Hz), 3.66-3.54 (m, 2H), 3.25 (s, 3H), 1.16 (d, 3H, J = 6.9 Hz), 1.16 (d, 3H, J = 6.9 Hz). -
TABLE 1-41 No. structural formula salt 1H-NMR 145 HCl 1H-NMR (DMSO-d6) δ: 12.45 (br s, 1H), 8.85 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.71-4.65 (m, 1H), 4.49 (s, 2H), 4.38-4.27 (m, 2H), 4.17-4.11 (m, 1H), 3.50 (dd, 1H, J = 10.5, 4.1 Hz), 3.39 (dd, 1H, J = 10.5, 7.7 Hz), 3.20 (s, 3H), 1.78-1.59 (m, 2H), 1.25 (d, 3H, J = 6.8 Hz), 0.86 (t, 3H, J = 7.4 Hz). 146 HCl 1H-NMR (DMSO-d6) δ: 12.48 (br s, 1H), 8.83 (s, 1H), 7.57-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.65 (dd, 1H, J = 13.5, 1.1 Hz), 4.49 (s, 2H), 4.38 (dd, 1H, J = 13.5, 4.1 Hz), 4.15-4.03 (m, 2H), 3.50 (dd, 1H, J = 10.1, 4.2 Hz), 3.42 (dd, 1H, J = 10.1, 7.1 Hz), 3.20 (s, 3H), 1.83-1.73 (m, 1H), 1.63-1.53 (m, 1H), 1.33 (d, 3H, J = 6.8 Hz), 0.91 (t, 3H, J = 7.4 Hz). 147 HCl 1H-NMR (DMSO-d6) δ: 12.85 (br s, 1H), 8.81 (s, 1H), 7.59-7.49 (m, 1H), 7.33-7.25 (m, 1H), 7.16-7.08 (m, 1H), 5.05-4.86 (br m, 1H), 4.60-4.50 (m, 1H), 4.49 (s, 2H), 3.87-3.56 (m, 4H), 3.25-3.25 (m, 3H), 1.54-1.50 (m, 2H), 1.15 (d, 3H, J = 6.5 Hz), 0.91-0.80 (m, 3H). -
TABLE 1-42 No. structural formula salt 1H-NMR 148 HCl 1H-NMR (DMSO-d6) δ: 12.87 (br s, 1H), 8.81 (s, 1H), 7.58-7.52 (m, 1H), 7.32-7.27 (m, 1H), 7.16-7.07 (m, 1H), 5.05-4.90 (m, 1H), 4.49 (s, 2H), 4.32-4.20 (m, 1H), 3.90-3.57 (m, 4H), 3.26-3.24 (m, 3H), 1.87-1.69 (m, 1H), 1.19-1.10 (m, 3H), 0.97-0.79 (m, 6H). 149 HCl 1H-NMR (DMSO-d6) δ: 12.79 (br s, 1H), 8.90 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.97-4.88 (m, 1H), 4.84-4.74 (m, 1H), 4.49 (s, 2H), 3.81 (dd, 1H, J = 13.5, 3.7 Hz), 3.63 (dd, 1H, J = 13.5, 2.2 Hz), 1.39 (d, 3H, J = 6.6 Hz), 1.19 (d, 3H, J = 6.8 Hz), 1.16 (d, 3H, J = 6.8 Hz). 150 HCl 1H-NMR (DMSO-d6) δ: 12.44 (br s, 1H), 8.85 (s, 1H), 7.53-7.37 (m, 2H), 7.26-7.19 (m, 1H), 4.66 (dd, 1H, J = 13.5, 1.5 Hz), 4.51-4.43 (m, 1H), 4.49 (s, 2H), 4.38-4.32 (m, 1H), 4.23-4.17 (m, 1H), 3.49 (dd, 1H, J = 10.4, 4.4 Hz), 3.39 (dd, 1H, J = 10.4, 7.5 Hz), 3.22 (s, 3H), 1.30 (d, 3H, J = 6.6 Hz), 1.29 (d, 3H, J = 6.8 Hz). -
TABLE 1-43 No. structural formula salt 1H-NMR 151 HCl 1H-NMR (DMSO-d6) δ: 12.86-12.34 (m, 1H), 8.68 (s, 1H), 7.66 (s, 1H), 7.49-7.39 (m, 1H), 7.29-7.20 (m, 1H), 7.11-7.02 (m, 1H), 5.12-5.03 (m, 1H), 4.84-4.70 (m, 1H), 4.21 (s, 2H), 3.82-3.55 (m, 2H), 3.15-2.96 (m, 2H), 2.08 (s, 3H), 1.17-1.09 (m, 6H). 152 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.43 (s, 1H), 7.68 (s, 1H), 7.50-7.41 (m, 1H), 7.29-7.20 (m, 1H), 7.11-7.03 (m, 1H), 4.24-4.16 (m, 1H), 4.22 (s, 2H), 3.91 (d, 1H, J = 13.9 Hz), 3.07 (s, 3H), 2.89 (s, 6H), 1.92 (s, 3H). 153 HCl 1H-NMR (DMSO-d6) δ: 12.64 (br s, 1H), 8.53 (s, 1H), 8.34-8.23 (m, 1H), 7.68 (s, 1H),7.50-7.40 (m, 1H), 7.30-7.20 (m, 1H), 7.13-7.02 (m, 1H) 4.23 (s, 2H), 4.12 (d, 1H, J = 14.1 Hz), 4.01 (d, 1H, J = 14.1 Hz), 3.17-2.97 (m, 2H), 3.03 (s, 3H), 1.87 (s, 3H), 0.99 (t, 3H, J = 7.4 Hz). 154 HCl 1H-NMR (DMSO-d6) δ: 12.32 (s, 1H), 8.79 (s, 1H), 7.58-7.50 (m, 1H), 7.32-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.60 (d, 1H, J = 13.0 Hz), 4.55 (sep, 1H, J = 6.8 Hz), 4.48 (s, 2H), 4.35 (dd, 1H, J = 13.0, 3.0 Hz), 4.27-4.20 (m, 1H), 3.26 (dd, 1H, J = 13.7, 10.5 Hz), 2.99 (dd, 1H, J = 13.7, 3.0 Hz), 2.87 (s, 3H), 2.84 (s, 3H), 1.30 (d, 6H, J = 6.8 Hz). -
TABLE 1-44 No. structural formula salt 1H-NMR 155 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.82 (s, 1H), 7.52-7.37 (m, 2H), 7.27-7.20 (m, 1H), 4.99-4.91 (m, 1H), 4.77 (sep, 1H, J = 6.9 Hz), 4.49 (s, 2H), 3.84 (dd, 1H, J = 13.7, 4.0 Hz), 3.79-3.69 (m, 2H), 3.64 (dd, 1H, J = 10.5, 7.7 Hz), 3.58-3.45 (m, 2H), 3.34 (t, 2H, J = 4.6 Hz), 3.11 (s, 3H), 1.17 (d, 3H, J = 6.9 Hz), 1.16 (d, 3H, J = 6.9 Hz). 156 HCl 1H-NMR (DMSO-d6) δ: 8.84 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.62-4.53 (m, 1H), 4.51-4.45 (m, 3H), 4.32 (dd, 1H, J = 13.1, 3.4 Hz), 4.26-4.18 (m, 1H), 1.27 (d, 3H, J = 6.9 Hz), 1.26 (d, 3H, J = 6.9 Hz), 1.21 (d, 3H, J = 6.4 Hz). 157 HCl 1H-NMR (DMSO-d6) δ: 12.96 (s, 1H), 8.56 (s, 1H), 7.53-7.19 (m, 3H), 4.80-4.66 (m, 1H), 4.50 (s, 2H), 4.15 (d, 1H, J = 14.3 Hz), 3.82 (d, 1H, J = 14.3 Hz), 3.09-2.83 (m, 6H), 2.04 (s, 3H), 1.18 (d, 3H, J = 7.1 Hz), 1.11 (d, 3H, J = 7.1 Hz). 158 HCl 1H-NMR (DMSO-d6) δ: 12.35 (s, 1H), 8.75 (s, 1H), 7.57-7.49 (m, 2H), 7.32-7.25 (m, 1H), 7.15- 7.08 (m, 1H), 4.61-4.53 (m, 2H), 4.49 (s, 2H), 4.40-4.33 (m, 1H), 4.00-3.93 (m, 1H), 3.21-3.12 (m, 1H), 3.02-2.92 (m, 1H), 2.90 (s, 3H), 1.30 (d, 3H, J = 6.7 Hz), 1.28 (d, 3H, J = 6.7 Hz). -
TABLE 1-45 structural No. formula salt 1H-NMR 159 HCl 1H-NMR (DMSO-d6) δ: 12.39 (br s, 1H), 8.83 (s, 1H), 7.58-7.49 (m, 1H), 7.32-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.56 (sep, 1H, J = 6.7 Hz), 4.49 (s, 2H), 4.42-4.28 (m, 2H), 4.26-4.18 (m, 1H), 3.41-3.36 (m, 2H), 3.04 (s, 3H), 2.83 (t, 1H, J = 6.7 Hz), 1.34 (d, 3H, J = 6.7 Hz), 1.29 (d, 3H, J = 6.7 Hz), 1.00 (d, 3H, J = 6.7 Hz), 0.99 (d, 3H, J = 6.7 Hz). 160 HCl 1H-NMR (DMSO-d6) δ: 12.67 (br s, 1H), 8.53 (s, 1H), 8.12-8.02 (m, 1H), 7.67 (s, 1H), 7.49-7.40 (m, 1H), 7.29-7.20 (m, 1H), 7.12-7.02 (m, 1H), 4.22 (s, 2H), 4.07 (d, 1H, J = 14.1 Hz), 3.99 (d, 1H, J = 14.1 Hz), 3.03 (s, 3H), 2.60 (d, 3H, J = 4.6 Hz), 1.86 (s, 3H). 161 HCl 1H-NMR (DMSO-d6) δ: 12.76 (br s, 1H), 8.41 (s, 1H), 7.66 (s, 1H), 7.50-7.40 (m, 1H), 7.29-7.20 (m, 1H), 7.12-7.03 (m, 1H), 4.22 (s, 2H), 4.17 (d, 1H, J = 13.9 Hz), 3.91 (d, 1H, J = 13.9 Hz), 3.46-3.17 (m, 2H), 3.06 (s, 3H), 2.84 (s, 3H), 1.90 (s, 3H), 0.99 (t, 3H, J = 7.4 Hz). 162 HCl 1H-NMR (DMSO-d6) δ: 12.71 (br s, 1H), 8.52 (s, 1H), 8.31-8.22 (m, 1H), 7.67 (s, 1H), 7.50-7.39 (m, 1H), 7.31-7.19 (m, 1H), 7.13-7.03 (m, 1H), 4.22 (s, 2H), 4.14 (d, 1H, J = 13.7 Hz), 3.99 (d, 1H, J = 13.7 Hz), 3.66-3.28 (m, 2H), 3.15-3.00 (m, 2H), 1.89 (s, 3H), 1.11 (t, 3H, J = 7.4 Hz), 0.99 (t, 3H, J = 7.4 Hz). -
TABLE 1-46 structural No. formula salt 1H-NMR 163 HCl 1H-NMR (DMSO-d6) δ: 12.34 (br s, 1H), 8.78 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.55 (sep, 1H, J = 6.7 Hz), 4.47 (s, 2H), 4.43 (d, 1H, J = 12.4 Hz), 4.38-4.27 (m, 1H), 4.25-4.17 (m, 1H), 3.44 (dd, 1H, J = 13.3, 10.0 Hz), 3.34-3.28 (m, 1H), 3.00 (s, 3H), 1.99 (s, 3H), 1.33 (d, 3H, J = 6.7 Hz), 1.29 (d, 3H, J = 6.7 Hz). 164 HCl 1H-NMR (DMSO-d6) δ: 8.71 (s, 1H), 7.66 (s, 1H), 7.49-7.40 (m, 1H), 7.29-7.20 (m, 1H), 7.12-7.03 (m, 1H), 5.06-4.95 (m, 1H), 4.21 (s, 2H), 4.04 (dd, 1H, J = 13.4, 3.5 Hz), 3.68-3.60 (m, 1H), 2.97-2.88 (m, 1H), 2.88-2.82 (m, 2H), 2.87 (s, 3H), 2.79 (s, 3H), 0.96-0.83 (m, 2H), 0.83-0.72 (m, 1H), 0.67-0.55 (m, 1H). 165 HCl 1H-NMR (DMSO-d6) δ: 8.52 (s, 1H), 7.99 (t, 1H, J = 4.9 Hz), 7.65 (s, 1H), 7.49-7.40 (m, 1H), 7.29-7.20 (m, 1H), 7.12-7.03 (m, 1H), 5.00-4.89 (m, 1H), 4.21 (s, 2H), 4.03 (dd, 1H, J = 13.9, 3.9 Hz), 3.58-3.50 (m, 1H), 3.03-2.83 (m, 3H), 2.56 (d, 2H, J = 7.4 Hz), 1.01-0.71 (m, 4H), 0.80 (t, 3H, J = 7.2 Hz). 166 HCl 1H-NMR (DMSO-d6) δ: 8.81 (s, 1H), 7.47-7.36 (m, 2H), 7.23-7.12 (m, 2H), 5.04-4.91 (m, 1H), 4.60-4.49 (m, 1H), 4.47 (s, 2H), 3.88-3.54 (m, 4H), 3.27-3.23 (m, 3H), 1.61-1.46 (m, 2H), 1.15 (d, 3H, J = 6.4 Hz), 0.91-0.80 (m, 3H). -
TABLE 1-47 structural No. formula salt 1H-NMR 167 HCl 1H-NMR (DMSO-d6) δ: 8.81 (s, 1H), 7.46-7.38 (m, 2H), 7.23-7.14 (m, 2H), 5.02-4.92 (m, 1H), 4.60-4.49 (m, 1H), 4.47 (s, 2H), 3.89-3.54 (m, 4H), 3.27-3.23 (m, 3H), 1.59-1.47 (m, 2H), 1.15 (d, 3H, J = 6.4 Hz), 0.91-0.80 (m, 3H). 168 HCl 1H-NMR (DMSO-d6) δ: 8.66 (s, 1H), 7.65 (s, 1H), 7.49-7.40 (m, 1H), 7.30-7.20 (m, 1H), 7.12-7.02 (m, 1H), 4.64-4.56 (m, 1H), 4.47 (sep, 1H, J = 6.7 Hz), 4.33 (dd, 1H, J = 13.3, 3.6 Hz), 4.24-4.14 (m, 3H), 3.48 (dd, 1H, J = 10.2, 4.2 Hz), 3.36 (dd, 1H, J = 10.2, 7.7 Hz), 3.21 (s, 3H), 1.29 (d, 3H, J = 6.7 Hz), 1.28 (d, 3H, J = 6.7 Hz). 169 HCl 1H-NMR (DMSO-d6) δ: 12.96 (br s, 1H), 8.55 (s, 1H), 7.54 (td, 1H, J = 8.6, 6.6 Hz), 7.29 (ddd, 1H, J = 10.2, 9.3, 2.6 Hz), 7.11 (tdd, 1H, J = 8.6, 2.6, 0.9 Hz), 4.73 (sep, 1H, J = 6.7 Hz), 4.49 (s, 2H), 4.15 (d, 1H, J = 14.4 Hz), 3.82 (d, 1H, J = 14.4 Hz), 2.95 (br s, 6H), 2.03 (s, 3H), 1.18 (d, 3H, J = 6.7 Hz), 1.11 (d, 3H, J = 6.7 Hz). 170 HCl 1H-NMR (DMSO-d6) δ: 12.91 (br s, 1H), 8.64 (s, 1H), 7.54 (td, 1H, J = 8.8, 6.6 Hz), 7.29 (ddd, 1H, J = 10.4, 9.5, 2.8 Hz), 7.12 (tdd, 1H, J = 8.8, 2.8, 1.2 Hz), 4.70 (sep, 1H, J = 6.7 Hz), 4.49 (s, 2H), 4.14 (d, 1H, J = 14.1 Hz), 3.77 (d, 1H, J = 14.1 Hz), 3.71-3.50 (br m, 2H), 3.36-3.24 (br m, 1H), 3.21-3.08 (br m, 1H), 2.06 (s, 3H), 1.97-1.86 (br m, 1H), 1.83-1.59 (br m, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.08 (d, 3H, J = 6.7 Hz). -
TABLE 1-48 structural No. formula salt 1H-NMR 171 HCl 1H-NMR (DMSO-d6) δ: 12.96 (br s, 1H), 8.55 (s, 1H), 7.54 (td, 1H, J = 8.6, 6.6 Hz), 7.29 (ddd, 1H, J = 10.2, 9.3, 2.6 Hz), 7.11 (tdd, 1H, J = 8.6, 2.6, 0.9 Hz), 4.73 (sep, 1H, J = 6.7 Hz), 4.49 (s. 2H), 4.15 (d, 1H, J = 14.4 Hz), 3.82 (d, 1H, J = 14.4 Hz), 2.95 (br s, 6H), 2.03 (s, 3H), 1.18 (d, 3H, J = 6.7 Hz), 1.11 (d, 3H, J = 6.7 Hz). 172 HCl 1H-NMR (DMSO-d6) δ: 12.91 (br s, 1H), 8.64 (s, 1H), 7.54 (td, 1H, J = 8.8, 6.6 Hz), 7.29 (ddd, 1H, J = 10.4, 9.5, 2.8 Hz), 7.12 (tdd, 1H, J = 8.8, 2.8, 1.2 Hz), 4.70 (sep, 1H, J = 6.7 Hz), 4.49 (s, 2H), 4.14 (d, 1H, J = 14.1 Hz), 3.77 (d, 1H, J = 14.1 Hz), 3.71-3.50 (br m, 2H), 3.36-3.24 (br m, 1H), 3.21-3.08 (br m, 1H), 2.06 (s, 3H), 1.97-1.86 (br m, 1H), 1.83-1.59 (br m, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.08 (d, 3H, J = 6.7 Hz). 173 HCl 1H-NMR (DMSO-d6) δ: 12.93 (br s, 1H), 8.62 (s, 1H), 8.19 (t, 1H, J = 5.2 Hz), 7.54 (td, 1H, J = 8.7, 6.6 Hz), 7.29 (ddd, 1H, J = 10.4, 9.3, 2.6 Hz), 7.12 (tdd, 1H, J = 8.7, 2.6, 0.9 Hz), 4.71 (sep, 1H, J = 6.7 Hz), 4.50 (s, 2H), 4.11 (d, 1H, J = 13.9 Hz), 3.80 (d, 1H, J = 13.9 Hz), 3.18-2.98 (m, 2H), 1.96 (s, 3H), 1.15 (d, 3H, J = 6.7 Hz), 1.12 (d, 3H, J = 6.7 Hz), 1.00 (t, 3H, J = 7.2 Hz). -
TABLE 1-49 structural No. formula salt 1H-NMR 174 HCl 1H-NMR (DMSO-d6) δ: 12.93 (br s, 1H), 8.62 (s, 1H), 8.19 (t, 1H, J = 5.2 Hz), 7.54 (td, 1H, J = 8.7, 6.6 Hz), 7.29 (ddd, 1H, J = 10.4, 9.3, 2.6 Hz), 7.12 (tdd, 1H, J = 8.7, 2.6, 0.9 Hz), 4.71 (sep, 1H, J = 6.7 Hz), 4.50 (s, 2H), 4.11 (d, 1H, J = 13.9 Hz), 3.80 (d, 1H, J = 13.9 Hz), 3.18-2.98 (m, 2H), 1.96 (s, 3H), 1.15 (d, 3H, J = 6.7 Hz), 1.12 (d, 3H, J = 6.7 Hz), 1.00 (t, 3H, J = 7.2 Hz). 175 HCl 1H-NMR (DMSO-d6) δ: 8.43 (s, 1H), 7.42-7.37 (m, 2H), 7.21-7.15 (m, 2H), 4.76 (sep, 1H, J = 6.9 Hz), 4.46 (s, 2H), 3.66 (s, 2H), 1.66-1.61 (m, 2H), 1.13-1.18 (m, 2H), 1.16 (d, 6H, J = 6.9 Hz). 176 HCl 1H-NMR (DMSO-d6) δ: 8.67 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.47 (s, 2H), 4.31 (s, 2H), 4.15 (sep, 1H, J = 6.9 Hz), 1.35-1.29 (m, 2H), 1.32 (d, 6H, J = 6.9 Hz), 1.07-1.02 (m, 2H). 177 HCl 1H-NMR (DMSO-d6) δ: 12.95 (s, 1H), 8.55 (s, 1H), 7.44-7.36 (m, 2H), 7.21-7.15 (m, 2H), 4.73 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.15 (d, 1H, J = 14.1 Hz), 3.82 (d, 1H, J = 14.1 Hz), 3.07-2.81 (br m, 6H), 2.04 (s, 3H), 1.18 (d, 3H, J = 6.7 Hz), 1.11 (d, 3H, J = 6.7 Hz). -
TABLE 1-50 structural No. formula salt 1H-NMR 178 HCl 1H-NMR (DMSO-d6) δ: 12.87 (s, 1H), 8.55 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.14 (m, 2H), 4.48 (s, 2H), 4.15 (d, 1H, J = 13.9 Hz), 3.85 (d, 1H, J = 13.9 Hz), 2.95-2.83 (m, 1H), 2.89 (s, 6H), 1.97 (s, 3H), 0.95-0.80 (m, 2H), 0.76-0.62 (m, 2H). 179 HCl 1H-NMR (DMSO-d6) δ: 12.90 (s, 1H), 8.65 (s, 1H), 7.45-7.38 (m, 2H), 7.23-7.15 (m, 2H), 4.70 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.14 (d, 1H, J = 13.9 Hz), 3.77 (d, 1H, J = 13.9 Hz), 3.72-3.62 (br m, 1H), 3.36-3.23 (br m, 2H), 3.20-3.09 (br m, 1H), 2.06 (s, 3H), 1.98-1.84 (br m, 1H), 1.83-1.59 (br m, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.08 (d, 3H, J = 6.7 Hz). 180 HCl 1H-NMR (DMSO-d6) δ: 12.92 (s, 1H), 8.62 (s, 1H), 8.17 (t, 1H, J = 5.2 Hz), 7.44-7.37 (m, 2H), 7.23-7.15 (m, 2H), 4.71 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.10 (d, 1H, J = 13.9 Hz), 3.80 (d, 1H, J = 13.9 Hz), 3.18-2.99 (m, 2H), 1.96 (s, 3H), 1.15 (d, 3H, J = 6.7 Hz), 1.12 (d, 3H, J = 6.7 Hz), 1.01 (t, 3H, J = 7.2 Hz). 181 HCl 1H-NMR (DMSO-d6) δ: 12.98 (br s, 1H), 8.59 (s, 1H), 7.45-7.37 (m, 2H), 7.23-7.15 (m, 2H), 4.47 (s, 2H), 4.32 (d, 1H, J = 14.4 Hz), 3.82 (d, 1H, J = 14.4 Hz), 2.90 (s, 6H), 2.03 (s, 3H), 1.45 (s, 9H). -
TABLE 1-51 structural No. formula salt 1H-NMR 182 HCl 1H-NMR (DMSO-d6) δ: 8.91 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.55 (sep, 1H, J = 6.7 Hz), 4.47 (s, 2H), 4.43-4.29 (m, 2H), 4.26-4.19 (m, 1H), 3.47 (dd, 1H, J = 13.3, 4.0 Hz), 3.28 (dd, 1H, J = 13.3, 10.0 Hz), 3.12 (s, 3H), 1.35 (d, 3H, J = 6.7 Hz), 1.30 (d, 3H, J = 6.7 Hz), 1.20 (s, 9H). 183 HCl 1H-NMR (DMSO-d6) δ: 8.92 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.55 (sep, 1H, J = 6.7 Hz), 4.47 (s, 2H), 4.38-4.33 (m, 2H), 4.22-4.16 (m, 1H), 3.47 (dd, 1H, J = 13.5, 3.5 Hz), 3.28 (dd, 1H, J = 13.5, 10.0 Hz), 3.12 (s, 3H), 1.65-1.57 (m, 2H), 1.35 (d, 3H, J = 6.7 Hz), 1.30 (d, 3H, J = 6.7 Hz), 1.17 (s, 3H), 1.16 (s, 3H), 0.79 (t, 3H, J = 7.5 Hz). 184 HCl 1H-NMR (DMSO-d6) δ: 12.41 (br s, 1H), 8.90 (s, 1H), 7.58-7.50 (m, 1H), 7.32-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.56 (sep, 1H, J = 6.6 Hz), 4.49 (s, 2H), 4.41-4.29 (m, 2H), 4.27-4.18 (m, 1H), 3.48-3.44 (m, 1H), 3.29 (dd, 1H, J = 13.5, 10.0 Hz), 3.12 (s, 3H), 1.35 (d, 3H, J = 6.7 Hz), 1.30 (d, 3H, J = 6.7 Hz), 1.20 (s, 9H). 185 HCl 1H-NMR (DMSO-d6) δ: 12.90 (br s, 1H), 8.63 (s, 1H), 8.12 (q, 1H, J = 4.4 Hz), 7.45-7.37 (m, 2H), 7.23-7.15 (m, 2H), 4.70 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.08 (d, 1H, J = 13.9 Hz), 3.80 (d, 1H, J = 13.9 Hz), 2.59 (d, 3H, J = 4.4 Hz), 1.97 (s, 3H), 1.15 (d, 3H, J = 6.7 Hz), 1.09 (d, 3H, J = 6.7 Hz). -
TABLE 1-52 structural No. formula salt 1H-NMR 186 HCl 1H-NMR (DMSO-d6) δ: 12.93 (br s, 1H), 8.64 (s, 1H), 8.09 (t, 1H, J = 6.0 Hz), 7.43-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.69 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.14 (d, 1H, J = 13.9 Hz), 3.79 (d, 1H, J = 13.9 Hz), 3.10-3.01 (m, 1H), 2.71-2.62 (m, 1H), 1.97 (s, 3H), 1.75-1.61 (m, 1H), 1.15 (d, 3H, J = 6.7 Hz), 1.11 (d, 3H, J = 6.7 Hz), 0.79 (d, 6H, J = 6.7 Hz). 187 HCl 1H-NMR (DMSO-d6) δ: 12.85 (br s, 1H), 8.62 (s, 1H), 8.19 (t, 1H, J = 5.2 Hz), 7.45-7.36 (m, 2H), 7.22-7.15 (m, 2H), 4.48 (s, 2H), 4.00 (d, 1H, J = 13.7 Hz), 3.96 (d, 1H, J = 13.7 Hz), 3.11-3.02 (m, 2H), 2.88 (sep, 1H, J = 3.9 Hz), 1.92 (s, 3H), 0.98 (t, 3H, J = 7.0 Hz), 0.96-0.89 (m, 1H), 0.85-0.69 (m, 2H), 0.65-0.56 (m, 1H). 188 HCl 1H-NMR (DMSO-d6) δ: 12.93 (br s, 1H), 8.69 (s, 1H), 7.45-7.39 (m, 2H), 7.22-7.15 (m, 2H), 4.48 (s, 2H), 4.32 (d, 1H, J = 13.9 Hz), 3.77 (d, 1H, J = 13.9 Hz), 3.44-3.23 (br m, 4H), 2.01 (s, 3H), 1.92-1.54 (br m, 4H), 1.44 (s, 9H). 189 HCl 1H-NMR (DMSO-d6) δ: 12.98 (br s, 1H), 8.59 (s, 1H), 8.19 (t, 1H, J = 7.0 Hz), 7.44-7.37 (m, 2H), 7.23-7.15 (m, 2H), 4.48 (s, 2H), 4.23 (d, 1H, J = 13.7 Hz), 3.83 (d, 1H, J = 13.7 Hz), 3.10 (dq, 2H, J = 7.0, 7.0 Hz), 1.94 (s, 3H), 1.45 (s, 9H), 1.02 (t, 3H, J = 7.0 Hz). -
TABLE 1-53 structural No. formula salt 1H-NMR 190 HCl 1H-NMR (DMSO-d6) δ: 12.90 (br s, 1H), 8.62 (s, 1H), 8.10 (q, 1H, J = 4.4 Hz), 7.53 (td, 1H, J = 8.6, 6.5 Hz), 7.28 (ddd, 1H, J = 10.2, 9.5, 2.6 Hz), 7.11 (tdd, 1H, J = 8.6, 2.6, 1.1 Hz), 4.69 (sep, 1H, J = 6.7 Hz), 4.49 (s, 2H), 4.06 (d, 1H, J = 13.9 Hz), 3.78 (d, 1H, J = 13.9 Hz), 2.58 (d, 3H, J = 4.4 Hz), 1.95 (s, 3H), 1.13 (d, 3H, J = 6.7 Hz), 1.08 (d, 3H, J = 6.7 Hz). 191 HCl 1H-NMR (DMSO-d6) δ: 12.90 (br s, 1H), 8.62 (s, 1H), 8.10 (q, 1H, J = 4.4 Hz), 7.53 (td, 1H, J = 8.6, 6.5 Hz), 7.28 (ddd, 1H, J = 10.2, 9.5, 2.6 Hz), 7.11 (tdd, 1H, J = 8.6, 2.6, 1.1 Hz), 4.69 (sep, 1H, J = 6.7 Hz), 4.49 (s, 2H), 4.06 (d, 1H, J = 13.9 Hz), 3.78 (d, 1H, J = 13.9 Hz), 2.58 (d, 3H, J = 4.4 Hz), 1.95 (s, 3H), 1.13 (d, 3H, J = 6.7 Hz), 1.08 (d, 3H, J = 6.7 Hz). 192 HCl 1H-NMR (DMSO-d6) δ: 12.88 (br s, 1H), 8.82 (s, 1H), 7.45-7.39 (m, 2H), 7.22-7.16 (m, 2H), 4.77 (sep, 1H, J = 6.9 Hz), 4.63-4.59 (m, 1H), 4.47 (s, 2H), 3.89-3.82 (m, 2H), 1.27 (d, 3H, J = 6.9 Hz), 1.19 (d, 3H, J = 6.9 Hz), 0.96 (s, 9H). 193 HCl 1H-NMR (DMSO-d6) δ: 12.88 (br s, 1H), 8.82 (s, 1H), 7.45-7.39 (m, 2H), 7.22-7.16 (m, 2H), 4.77 (sep, 1H, J = 6.9 Hz), 4.63-4.59 (m, 1H), 4.47 (s, 2H), 3.89-3.83 (m, 2H), 1.28 (d, 3H, J = 6.9 Hz), 1.19 (d, 3H, J = 6.9 Hz), 0.96 (s, 9H). -
TABLE 1-54 structural No. formula salt 1H-NMR 194 HCl 1H-NMR (DMSO-d6) δ: 12.76 (br s, 1H), 8.90 (s, 1H), 7.45-7.39 (m, 2H), 7.22-7.16 (m, 2H), 4.79-4.79 (sep, 1H, J = 6.7 Hz), 4.50-4.43 (m, 1H), 4.47 (s, 2H), 3.86-3.78 (m, 2H), 2.03-1.92 (m, 1H), 1.20 (d, 3H, J = 6.7 Hz), 1.18 (d, 3H, J = 6.7 Hz), 1.04 (d, 3H, J = 6.7 Hz), 0.69 (d, 3H, J = 6.7 Hz). 195 HCl 1H-NMR (DMSO-d6) δ: 12.49 (br s, 1H), 8.85 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.68 (dd, 1H, J = 13.5, 1.3 Hz), 4.61-4.49 (m, 1H), 4.47 (s, 2H), 4.41 (dd, 1H, J = 13.5, 4.0 Hz), 4.31-4.25 (m, 1H), 3.43 (dd, 1H, J = 10.6, 5.0 Hz), 3.39 (dd, 1H, J = 10.6, 6.8 Hz), 3.21 (s, 3H), 2.38-2.11 (m, 4H), 1.77-1.64 (m, 2H). 196 HCl 1H-NMR (DMSO-d6) δ: 12.49 (br s, 1H), 8.85 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.15 (m, 2H), 4.65 (dd, 1H, J = 13.7, 1.5 Hz), 4.47 (s, 2H), 4.44-4.34 (m, 2H), 4.20-4.13 (m, 1H), 3.47 (dd, 1H, J = 10.4, 4.6 Hz), 3.41 (dd, 1H, J = 10.4, 7.3 Hz), 3.21 (s, 3H), 1.95-1.72 (m, 6H), 1.63-1.49 (m, 2H). 197 HCl 1H-NMR (DMSO-d6) δ: 13.29 (br s, 1H), 8.52 (s, 1H), 7.60-7.50 (m, 1H), 7.36-7.25 (m, 1H), 7.17-7.08 (m, 1H), 4.86-4.73 (m, 1H), 4.49 (s, 2H), 3.91-3.64 (m, 4H), 2.82 (s, 3H), 1.81 (s, 3H), 1.71 (s, 3H), 1.23 (d, 3H, J = 6.7 Hz), 1.17 (d, 3H, J = 7.0 Hz). -
TABLE 1-55 structural No. formula salt 1H-NMR 198 HCl 1H-NMR (DMSO-d6) δ: 8.88 (s, 1H), 7.45-7.37 (m, 2H), 7.23-7.15 (m, 2H), 4.70 (d, 1H, J = 13.0 Hz), 4.47 (s, 2H), 4.39-4.27 (m, 2H), 3.73-3.61 (m, 2H), 3.49-3.41 (m, 1H), 3.22 (s, 3H), 1.34 (d, 3H, J = 6.7 Hz), 1.26-1.13 (m, 1H), 0.69-0.60 (m, 1H), 0.54-0.45 (m, 1H), 0.42-0.27 (m, 2H). 199 HCl 1H-NMR (DMSO-d6) δ: 12.87 (s, 1H), 8.56 (s, 1H), 7.45-7.37 (m, 2H), 7.23-7.15 (m, 2H), 4.48 (s, 2H), 4.21 (d, 1H, J = 13.9 Hz), 3.98 (d, 1H, J = 13.9 Hz), 3.53 (q, 2H, J = 7.0 Hz), 2.50 (s, 6H), 2.01 (s, 3H), 1.11 (t, 3H, J = 7.0 Hz). 200 HCl 1H-NMR (DMSO-d6) δ: 12.81 (br s, 1H), 8.67 (s, 1H), 7.45-7.39 (m, 2H), 7.22-7.15 (m, 2H), 4.48 (s, 2H), 4.19 (d, 1H, J = 13.9 Hz), 3.96 (d, 1H, J = 13.9 Hz), 3.59-3.25 (br m, 3H), 3.53 (dq, 1H, J = 14.0, 7.0 Hz), 3.49 (dq, 1H, J = 14.0, 7.0 Hz), 3.12-2.96 (br m, 1H), 2.01 (s, 3H), 1.96-1.48 (m, 4H), 1.09 (t, 3H, J = 7.0 Hz). 201 HCl 1H-NMR (DMSO-d6) δ: 12.81 (br s, 1H), 8.62 (s, 1H), 8.26 (t, 1H, J = 5.6 Hz), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.48 (s, 2H), 4.13 (d, 1H, J = 13.9 Hz), 4.01 (d, 1H, J = 13.9 Hz), 3.62 (dq, 1H, J = 14.2, 7.1 Hz), 3.36 (dq, 1H, J = 14.2, 7.1 Hz), 3.14-3.04 (m, 2H), 1.93 (s, 3H), 1.11 (t, 3H, J = 7.1 Hz), 1.00 (t, 3H, J = 7.1 Hz). -
TABLE 1-56 structural No. formula salt 1H-NMR 202 HCl 1H-NMR (DMSO-d6) δ: 13.00 (br s, 1H), 8.57 (s, 1H), 7.45-7.37 (m, 2H), 7.22-7.15 (m, 2H), 4.72 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.18 (d, 1H, J = 14.4 Hz), 3.81 (d, 1H, J = 14.4 Hz), 3.64 (br s, 3H), 3.42 (t, 2H, J = 5.3 Hz), 3.20 (s, 3H), 3.05-2.92 (br m, 2H), 2.02 (s, 3H), 1.18 (d, 3H, J = 6.7 Hz), 1.13 (d, 3H, J = 6.7 Hz). 203 HCl 1H-NMR (DMSO-d6) δ: 13.06 (br s, 1H), 8.52 (s, 1H), 7.46-7.38 (m, 2H), 7.23-7.15 (m, 2H), 4.75 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.05 (d, 1H, J = 14.4 Hz), 3.84 (d, 1H, J = 14.4 Hz), 3.62-3.48 (br m, 8H), 1.98 (s, 3H), 1.18 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 204 HCl 1H-NMR (DMSO-d6) δ: 12.95 (br s, 1H), 8.68-8.61 (m, 1H), 7.45-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.69 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.23-4.15 (br m, 1H), 4.11 (d, 1H, J = 13.9 Hz), 3.76 (d, 1H, J = 13.9 Hz), 3.69-3.59 (br m, 1H), 3.46-3.36 (br m, 2H), 3.30-2.88 (br m, 1H), 2.09-2.00 (m, 3H), 2.02-1.55 (br m, 2H), 1.21-1.06 (m, 6H). 205 HCl 1H-NMR (DMSO-d6) δ: 12.91 (br s, 1H), 8.71-8.61 (m, 1H), 7.46-7.37 (m, 2H), 7.24-7.14 (m, 2H), 4.69 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.33-4.13 (br m, 2H), 4.08 (d, 1H, J = 13.9 Hz), 3.77 (d, 1H, J = 13.9 Hz), 3.51-3.15 (br m, 3H), 2.14-2.01 (m, 3H), 1.89-1.61 (br m, 2H), 1.21-1.02 (m, 6H). -
TABLE 1-57 structural No. formula salt 1H-NMR 206 HCl 1H-NMR (DMSO-d6) δ: 8.87 (s, 1H), 7.44-7.38 (m, 2H), 7.23-7.15 (m, 2H), 4.72 (d, 1H, J = 12.3 Hz), 4.47 (s, 2H), 4.43-4.33 (m, 2H), 3.67-3.58 (m, 1H), 3.57-3.51 (m, 1H), 3.47-3.40 (m, 1H), 3.22 (s, 3H), 1.34 (d, 3H, J = 6.7 Hz), 1.31-1.21 (m, 1H), 0.68-0.59 (m, 1H), 0.54-0.46 (m, 1H), 0.44-0.36 (m, 1H), 0.32-0.24 (m, 1H). 207 HCl 1H-NMR (DMSO-d6) δ: 13.31 (br s, 1H), 8.48 (s, 1H), 7.59-7.49 (m, 1H), 7.38-7.22 (m, 1H), 7.20-7.05 (m, 1H), 4.87-4.73 (m, 1H), 4.48 (s, 2H), 4.02-3.86 (m, 1H), 3.80 (d, 1H, J = 13.7 Hz), 3.71 (d, 1H, J = 13.7 Hz), 3.47-3.32 (m, 1H), 2.85 (s, 3H), 2.17-2.04 (m, 2H), 1.71 (s, 3H), 1.23 (d, 3H, J = 7.0 Hz), 1.17 (d, 3H, J = 7.0 Hz), 0.65 (t, 3H, J = 7.4 Hz). 208 HCl 1H-NMR (DMSO-d6) δ: 12.93 (br s, 1H), 8.72 (s, 1H), 7.45-7.38 (m, 2H), 7.23-7.15 (m, 2H), 4.69 (sep, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.44-4.27 (br m, 2H), 4.11-3.82 (br m, 2H), 4.02 (d, 1H, J = 13.9 Hz), 3.72 (d, 1H, J = 13.9 Hz), 3.64-3.40 (br m, 1H), 1.99 (s, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1.12 (d, 3H, J = 6.7 Hz). -
TABLE 1-58 structural No. formula salt 1H-NMR 209 HCl 1H-NMR (DMSO-d6) δ: 12.89 (br s, 1H), 8.71 (s, 1H), 7.45-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.70 (sep, 1H, J = 6.8 Hz), 4.48 (s, 2H), 4.22-3.90 (br m, 4H), 4.00 (d, 1H, J = 13.9 Hz), 3.74-3.57 (br m, 1H), 3.74 (d, 1H, J = 13.9 Hz), 3.14 (s, 3H), 2.00 (s, 3H), 1.19-1.09 (m, 6H). 210 HCl 1H-NMR (DMSO-d6) δ: 13.30 (s, 1H), 8.60 (s, 1H), 7.56-7.50 (m, 1H), 7.35-7.25 (m, 1H), 7.13-7.08 (m, 1H), 4.80-4.74 (m, 1H), 4.47 (s, 2H), 3.75 (s, 2H), 3.48-3.30 (m, 2H), 2.84 (s, 3H), 2.57 (s, 3H), 1.74 (s, 3H), 1.24 (d, 3H, J = 6.7 Hz), 1.15 (d, 3H, J = 6.7 Hz). 211 HCl 1H-NMR (DMSO-d6) δ: 12.91 (s, 0.5H), 12.86 (s, 0.5H), 8.68 (s, 0.5H), 8.60 (s, 0.5H), 7.42-7.38 (m, 2H), 7.20-7.15 (m, 2H), 4.72-4.65 (m, 1H), 4.47 (s, 2H), 4.16 (d, 0.5H, J = 13.7 Hz), 4.08 (d, 0.5H, J = 13.7 Hz), 4.00-3.98 (m, 0.5H), 3.86-3.84 (m, 0.5H) 3.81-3.74 (m, 2H), 3.51-3.33 (m, 3H), 3.17 (s, 3H), 2.54-2.49 (m, 2H), 2.07 (s, 3H), 1.15 (d, 3H, J = 6.7 Hz), 1.05 (d, 3H, J = 6.7 Hz). -
TABLE 1-59 structural No. formula salt 1H-NMR 212 HCl 1H-NMR (DMSO-d6) δ: 12.94 (s, 1H), 8.66 (s, 0.5H), 8.62 (s, 0.5H), 7.42-7.38 (m, 2H), 7.20-7.15 (m, 2H), 4.70-4.65 (m, 1H), 4.47 (s, 2H), 4.11-4.06 (m, 1H), 3.93-3.90 (m, 1H), 3.87-3.84 (m, 1H), 3.81-3.75 (m, 1H) 3.69-3.65 (m, 1H), 3.62-3.45 (m, 1H), 3.17 (s, 1.5H), 3.15 (s, 1.5H), 3.10-3.06 (m, 1H), 2.07 (s, 1.5H), 2.05 (s, 1.5H), 1.99-1.96 (m, 1H), 1.79-1.76 (m, 1H), 1.16 (d, 3H, J = 6.7 Hz), 1.06 (d, 3H, J = 6.7 Hz). 213 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.55 (s, 0.5H), 8.48 (s, 0.5H), 7.67 (s, 1H), 7.34-7.29 (m, 2H), 7.17-7.11 (m, 2H), 4.71-4.65 (m, 1H), 4.25-4.04 (m, 1H), 4.20 (s, 2H), 3.98-3.86 (m, 0.5H), 3.85-3.84 (m, 0.5H), 3.78-3.68 (m, 2H), 3.50-3.25 (m, 2H), 3.17 (s, 1.5H), 3.15 (s, 1.5H), 2.54-2.49 (m, 1H), 2.02 (s, 3H), 1.91-1.85 (m, 1H), 1.78-1.71 (m, 1H), 1.15 (d, 3H, J = 6.7 Hz), 1.05 (d, 3H, J = 6.7 Hz). 214 HCl 1H-NMR (DMSO-d6) δ: 12.84 (br s, 1H), 8.54 (s, 0.5H), 8.50 (s, 0.5H), 7.68 (s, 1H), 7.34-7.31 (m, 2H), 7.17-7.11 (m, 2H), 4.71-4.65 (m, 1H), 4.20 (s, 2H), 4.07 (dd, 1H, J = 13.9, 5.3 Hz), 3.90-3.85 (m, 1H), 3.75 (dd, 1H, J = 13.9, 7.4 Hz), 3.59-3.36 (m, 3H), 3.15 (s, 3H), 2.54-2.49 (m, 1H), 2.02 (s, 1.5H), 1.99 (s, 1.5H), 1.99-1.97 (m, 1H), 1.78-1.71 (m, 1H), 1.16 (d, 3H, J = 6.7 Hz), 1.08 (d, 3H, J = 6.7 Hz). -
TABLE 1-60 structural No. formula salt 1H-NMR 215 HCl 1H-NMR (DMSO-d6) δ: 13.20 (br s, 1H), 8.44 (s, 1H), 7.67 (s, 1H), 7.35-7.31 (m, 2H), 7.16-7.11 (m, 2H), 4.81-4.74 (m, 1H), 4.19 (s, 2H), 3.79-3.65 (m, 3H), 3.57 (d, 1H, J = 14.4 Hz), 2.74 (s, 3H), 1.81 (s, 3H), 1.66 (s, 3H), 1.21 (d, 3H, J = 6.7 Hz), 1.15 (d, 3H, J = 6.7 Hz). 216 HCl 1H-NMR (DMSO-d6) δ: 12.60 (br s, 1H), 8.63 (s, 1H), 7.66 (s, 1H), 7.35-7.30 (m, 2H), 7.17-7.11 (m, 2H), 4.89-4.85 (m, 1H), 4.19 (s, 2H), 4.08 (dd, 1H, J = 13.7, 4.2 Hz), 3.81 (d, 1H, J = 13.7 Hz), 3.57 (dd, 1H, J = 10.5, 5.7 Hz), 3.66 (dd, 1H, J = 10.5, 7.9 Hz), 3.56-3.39 (m, 3H), 3.33-3.27 (m, 3H), 3.10 (s, 3H), 1.10-1.04 (m, 1H), 0.55-0.46 (m, 2H), 0.36-0.26 (m, 2H). 217 HCl 1H-NMR (DMSO-d6) δ: 12.30 (br s, 1H), 8.65 (s, 1H), 7.66 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.11 (m, 2H), 4.60 (d, 1H, J = 13.2 Hz), 4.42 (dd, 1H, J = 13.2, 3.9 Hz), 4.24-4.19 (m, 1H), 4.19 (s, 2H), 3.67 (dd, 1H, J = 14.2, 7.0 Hz), 3.55 (dd, 1H, J = 10.3, 4.8 Hz), 3.47 (dd, 1H, J = 10.3, 7.0 Hz), 3.20 (s, 3H), 3.19 (dd, 1H, J = 14.2, 7.4 Hz), 1.18-1.12 (m, 1H), 0.55-0.46 (m, 2H), 0.41-0.37 (m, 1H), 0.31-0.28 (m, 1H). -
TABLE 1-61 structural No. formula salt 1H-NMR 218 HCl 1H-NMR (DMSO-d6) δ: 12.30 (br s, 1H), 8.65 (s, 1H), 7.66 (s, 1H), 7.34-7.31 (m, 2H), 7.16-7.11 (m, 2H), 4.61 (d, 1H, J = 13.5 Hz), 4.42 (dd, 1H, J = 13.5, 4.2 Hz), 4.24-4.19 (m, 1H), 4.19 (s, 2H), 3.67 (dd, 1H, J = 14.0, 7.1 Hz), 3.60 (dd, 1H, J = 10.3, 4.2 Hz), 3.52 (dd, 1H, J = 10.3, 6.4 Hz), 3.42-3.30 (m, 2H), 3.20 (dd, 1H, J = 14.0, 7.0 Hz), 1.16-1.11 (m, 1H), 0.95 (t, 3H, J = 7.0 Hz), 0.56-0.46 (m, 2H), 0.41-0.37 (m, 1H), 0.31-0.27 (m, 1H). 219 HCl 1H-NMR (DMSO-d6) δ : 12.79 (br s, 1H), 8.78 (s, 1H), 7.35 (dd, 1H, J = 8.4, 7.0 Hz), 6.93 (dd, 1H, J = 11.4, 2.6 Hz), 6.74 (td, 1H, J = 8.4, 2.6 Hz), 4.97-4.93 (m, 1H), 4.79-4.72 (m, 1H), 4.33 (s, 2H), 406 (q, 2H, J = 7.0 Hz), 3.79-3.65 (m, 2H), 3.61 (dd, 1H, J = 10.3, 5.7 Hz), 3.55 (dd, 1H, J = 10.3, 7.7 Hz), 3.23 (s, 3H), 1.31 (t, 3H, J = 7.0 Hz), 1.15 (d, 3H, J = 2.3 Hz), 1.14 (d, 3H, J = 2.3 Hz). 220 HCl 1H-NMR (DMSO-d6) δ: 12.80 (s, 1H), 8.76 (s, 1H), 6.93-6.87 (m, 2H), 4.97-4.93 (m, 1H), 4.79-4.72 (m, 1H), 4.33 (s, 2H), 3.85 (s, 3H), 3.84-3.72 (m, 2H), 3.61 (dd, 1H, J = 10.3, 5.7 Hz), 3.55 (dd, 1H, J = 10.3, 7.8 Hz), 3.23 (s, 3H), 1.15 (d, 3H, J = 2.3 Hz), 1.14 (d, 3H, J = 2.3 Hz). -
TABLE 1-62 structural No. formula salt 1H-NMR 221 HCl 1H-NMR (DMSO-d6) δ: 12.50 (br s, 1H), 9.02 (s, 1H), 7.43-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.76 (d, 1H, J = 13.3 Hz), 4.47 (s, 2H), 4.30 (dd, 1H, J = 13.3, 4.6 Hz), 4.21-4.14 (m, 1H), 3.83 (br t, 1H, J = 4.6 Hz), 2.04-1.99 (m, 1H), 1.39 (d, 3H, J = 6.9 Hz), 1.35 (d, 3H, J = 6.9 Hz), 1.05 (d, 3H, J = 6.9 Hz), 0.64 (d, 3H, J = 6.9 Hz). 222 HCl 1H-NMR (DMSO-d6) δ: 12.30 (br s, 1H), 8.65 (s, 1H), 7.67 (s, 1H), 7.35-7.31 (m, 2H), 7.18-7.13 (m, 2H), 4.59 (br d, 1H, J = 13.3 Hz), 4.41 (dd, 1H, J = 13.3, 4.1 Hz), 4.20 (s, 2H), 4.12-4.09 (m, 1H), 3.89-3.84 (m, 1H), 3.58-3.50 (m, 2H), 3.41-3.34 (m, 2H), 3.29-3.24 (m, 1H), 1.20 (t, 3H, J = 7.2 Hz), 0.97 (t, 3H, J = 7.0 Hz). 223 HCl 1H-NMR (DMSO-d6) δ: 12.80 (m, 1H), 8.59 (s, 1H), 7.69 (s, 1H), 7.34-7.30 (m, 2H), 7.17-7.11 (m, 2H), 4.72-4.65 (m, 1H), 4.20 (s, 2H), 4.20-4.13 (m, 1H), 4.00 (d, 1H, J = 13.5 Hz), 3.86-3.80 (m, 2H), 3.75-3.66 (m, 2H), 2.12-2.03 (m, 2H), 1.93 (s, 3H), 1.14 (d, 3H, J = 6.7 Hz), 1.12 (d, 3H, J = 6.7 Hz). 224 HCl 1H-NMR (DMSO-d6) δ: 12.55 (br s, 1H), 9.02 (s, 1H), 7.43-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.76 (d, 1H, J = 13.3 Hz), 4.47 (s, 2H), 4.30 (dd, 1H, J = 13.3, 4.6 Hz), 4.21-4.14 (m, 1H), 3.83 (br t, 1H, J = 4.6 Hz), 2.04-1.99 (m, 1H), 1.39 (d, 3H, J = 6.9 Hz), 1.35 (d, 3H, J = 6.9 Hz), 1.05 (d, 3H, J = 6.9 Hz), 0.64 (d, 3H, J = 6.9 Hz). -
TABLE 1-63 structural No. formula salt 1H-NMR 225 HCl 1H-NMR (DMSO-d6) ι: 12.78 (s, 1H), 8.52 (s, 1H), 7.67 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.12 (m, 2H), 4.72-4.66 (m, 1H), 4.19 (s, 2H), 4.11 (d, 1H, J = 13.9 Hz), 3.74 (d, 1H, J = 13.9 Hz), 3.41-3.25 (m, 1H), 3.13-3.06 (m, 1H), 3.81-3.74 (m, 2H), 2.00 (s, 3H), 1.92-1.84 (m, 1H), 1.75-1.61 (m, 3H), 1.15 (d, 3H, J = 6.7 Hz), 1.07 (d, 3H, J = 6.7 Hz). 226 HCl 1H-NMR (DMSO-d6) δ: 12.81 (br s, 1H), 8.51 (s, 1H), 8.20 (br t, 1H, J = 5.5 Hz), 7.67 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.11 (m, 2H), 4.73-4.66 (m, 1H), 4.20 (s, 2H), 4.11 (d, 1H, J = 13.7 Hz), 3.77 (d, 1H, J = 13.7 Hz), 3.13-2.99 (m, 2H), 1.92 (s, 3H), 1.14 (d, 3H, J = 6.7 Hz), 1.10 (d, 3H, J = 6.7 Hz), 0.99 (t, 3H, J = 7.2 Hz). 227 HCl 1H-NMR (DMSO-d6) δ: 12.80 (br s, 1H), 8.54 (s, 1H), 8.22 (d, 1H, J = 4.4 Hz), 7.69 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.12 (m, 2H), 4.73-4.66 (m, 1H), 4.20 (s, 2H), 4.13 (d, 1H, J = 13.7 Hz), 3.78 (d, 1H, J = 13.7 Hz), 2.57 (d, 3H, J = 4.4 Hz), 1.93 (s, 3H), 1.13 (d, 3H, J = 7.0 Hz), 1.08 (d, 3H, J = 7.0 Hz). -
TABLE 1-64 structural No. formula salt 1H-NMR 228 HCl 1H-NMR (DMSO-d6) δ: 12.85 (br s, 1H), 8.81 (s, 1H), 7.48-7.46 (m, 1H), 7.42-7.33 (m, 3H), 4.98-4.96 (m, 1H), 4.80-4.73 (m, 1H), 4.50 (s, 2H), 3.84 (dd, 1H, J = 13.8, 4.1 Hz), 3.75 (br d, 1H, J = 13.8 Hz), 3.63 (dd, 1H, J = 10.4, 5.7 Hz), 3.57 (dd, 1H, J = 10.4, 7.5 Hz), 3.25 (s, 3H), 1.17 (d, 3H, J = 2.0 Hz), 1.15 (d, 3H, J = 2.0 Hz). 229 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.80 (s, 1H), 7.51 (t, 1H, J = 8.3 Hz), 7.48 (dd, 1H, J = 8.3, 2.0 Hz), 7.32 (dd, 1H, J = 8.3, 2.0 Hz), 5.00-4.95 (m, 1H), 4.80-4.74 (m, 1H), 4.50 (s, 2H), 3.84 (dd, 1H, J = 13.7, 4.0 Hz), 3.75 (dd, 1H, J = 13.7, 1.6 Hz), 3.62 (dd, 1H, J = 10.3, 5.8 Hz), 3.57 (dd, 1H, J = 10.3, 7.7 Hz), 3.25 (s, 3H), 1.17 (d, 3H, J = 2.0 Hz), 1.15 (d, 3H, J = 2.0 Hz). 230 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.79 (s, 1H), 7.66 (dd, 1H, J = 8.7, 2.6 Hz), 7.61 (dd, 1H, J = 8.7, 6.0 Hz), 7.32 (td, 1H, J = 8.7, 2.6 Hz), 4.99-4.95 (m, 1H), 4.80-4.74 (m, 1H), 4.57 (s, 2H), 3.84 (dd, 1H, J = 13.7, 4.0 Hz), 3.75 (dd, 1H, J = 13.7, 1.6 Hz), 3.62 (dd, 1H, J = 10.3, 5.8 Hz), 3.57 (dd, 1H, J = 10.3, 7.7 Hz), 3.25 (s, 3H), 1.17 (d, 3H, J = 2.0 Hz), 1.15 (d, 3H, J = 2.0 Hz). -
TABLE 1-65 structural No. formula salt 1H-NMR 231 HCl 1H-NMR (DMSO-d6) δ: 12.80 (br s, 1H), 8.79 (s, 1H), 7.37 (dd, 1H, J = 8.5, 6.1 Hz), 7.10-7.01 (m, 2H), 4.99-4.95 (m, 1H), 4.80-4.74 (m, 1H), 4.45 (s, 2H), 3.84 (dd, 1H, J = 13.7, 4.1 Hz), 3.75 (br d, 1H, J = 13.7 Hz), 3.62 (dd, 1H, J = 10.4, 5.7 Hz), 3.57 (dd, 1H, J = 10.4, 7.6 Hz), 3.25 (s, 3H), 2.29 (s, 3H), 1.17 (d, 3H, J = 2.0 Hz), 1.15 (d, 3H, J = 2.0 Hz). 232 HCl 1H-NMR (DMSO-d6) δ: 12.75 (br s, 1H), 8.56 (s, 1H), 7.42-7.38 (m, 2H), 7.20-7.16 (m, 2H), 4.66-4.64 (m, 1H), 4.47 (s, 2H), 4.45-4.40 (m, 1H), 4.08-4.05 (m, 1H), 3.56 (dd, 1H, J = 11.3, 3.2 Hz), 3.50 (dd, 1H, J = 11.3, 4.2 Hz), 3.11 (s, 3H), 1.75 (d, 3H, J = 6.5 Hz), 1.33 (d, 3H, J = 6.0 Hz), 1.32 (d, 3H, J = 6.0 Hz). 233 HCl 1H-NMR (DMSO-d6) δ: 12.54 (br s, 1H), 8.85 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.62-4.53 (m, 1H), 4.51-4.44 (m, 3H), 4.32 (dd, 1H, J = 13.1, 3.4 Hz), 4.26-4.18 (m, 1H), 1.27 (d, 3H, J = 6.7 Hz), 1.26 (d, 3H, J = 6.7 Hz), 1.21 (d, 3H, J = 6.5 Hz). 234 HCl 1H-NMR (DMSO-d6) δ: 12.85 (s, 1H), 8.43 (s, 1H), 7.69 (s, 1H), 7.37-7.29 (m, 2H), 7.19-7.11 (m, 2H), 4.73 (sep, 1H, J = 6.7 Hz), 4.21 (s, 2H), 4.12 (d, 1H, J = 14.1 Hz), 3.79 (d, 1H, J = 14.1 Hz), 2.93 (s, 6H), 1.98 (s, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.11 (d, 3H, J = 6.7 Hz). -
TABLE 1-66 structural No. formula salt 1H-NMR 235 HCl 1H-NMR (DMSO-d6) δ: 12.89 (br s, 1H), 8.46 (s, 1H), 7.69 (s, 1H), 7.34-7.31 (m, 2H), 7.16-7.12 (m, 2H), 4.74-4.68 (m, 1H), 4.20 (s, 2H), 4.15 (d, 1H, J = 14.2 Hz), 3.78 (d, 1H, J = 14.2 Hz), 3.60-3.53 (m, 1H), 3.40 (br t, 2H, J = 5.2 Hz), 3.36-3.28 (m, 1H), 3.18 (s, 3H), 2.95 (br s, 3H), 1.97 (s, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.12 (d, 3H, J = 6.7 Hz). 236 HCl 1H-NMR (DMSO-d6) δ: 12.80 (m, 1H), 8.59 (s, 1H), 7.69 (s, 1H), 7.34-7.30 (m, 2H), 7.17-7.11 (m, 2H), 4.72-4.65 (m, 1H), 4.20 (s, 2H), 4.20-4.13 (m, 1H), 4.00 (d, 1H, J = 13.5 Hz), 3.86-3.80 (m, 2H), 3.75-3.66 (m, 2H), 2.12-2.03 (m, 2H), 1.93 (s, 3H), 1.14 (d, 3H, J = 6.7 Hz), 1.12 (d, 3H, J = 6.7 Hz). 237 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.55 (s, 1H), 7.69 (s, 1H), 7.34-7.30 (m, 2H), 7.17-7.11 (m, 2H), 4.72-4.66 (m, 1H), 4.20 (s, 2H), 4.17-3.96 (m, 4H), 3.73-3.53 (m, 3H), 3.12 (s, 3H), 2.95 (s, 3H), 1.18-1.07 (m, 6H). 238 HCl 1H-NMR (DMSO-d6) δ: 1.280 (br s, 1H), 8.58-8.53 (m, 1H), 7.69-7.68 (m, 1H), 7.34-7.30 (m, 2H), 7.16-7.12 (m, 2H), 4.72-4.66 (m, 2H), 4.20 (s, 2H), 3.99-3.84 (m, 2H), 3.78-3.67 (m, 1H), 3.60-3.47 (m, 2H), 3.36-3.33 (m, 2H), 3.27-3.25 (m, 1H), 3.28-3.16 (m, 3H), 1.93 (s, 3H), 1.15-1.10 (m, 6H). -
TABLE 1-67 structural No. formula salt 1H-NMR 239 HCl 1H-NMR (DMSO-d6) δ: 12.81 (br s, 1H), 8.51 (s, 1H), 8.20 (br t, 1H, J = 5.5 Hz), 7.67 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.11 (m, 2H), 4.73-4.66 (m, 1H), 4.20 (s, 2H), 4.11 (d, 1H, J = 13.7 Hz), 3.77 (d, 1H, J = 13.7 Hz), 3.13-2.99 (m, 2H), 1.92 (s, 3H), 1.14 (d, 3H, J = 6.7 Hz), 1.10 (d, 3H, J = 6.7 Hz), 0.99 (t, 3H, J = 7.2 Hz). 240 HCl 1H-NMR (DMSO-d6) δ: 1.280 (br s, 1H), 8.80 (s, 1H), 7.29 (d, 2H, J = 8.9 Hz), 6.92 (d, 2H, J = 8.9 Hz), 4.99-4.94 (m, 1H), 4.80-4.73 (m, 1H), 4.39 (s, 2H), 3.84 (dd, 1H, J = 13.7, 4.0 Hz), 3.75 (d, 1H, J = 13.7 Hz), 3.74 (s, 3H), 3.62 (dd, 1H, J = 10.3, 5.8 Hz), 3.57 (dd, 1H, J = 10.3, 7.7 Hz), 3.25 (s, 3H), 1.17 (d, 3H, J = 2.4 Hz), 1.15 (d, 3H, J = 2.4 Hz). 241 HCl 1H-NMR (DMSO-d6) δ: 12.80 (br s, 1H), 8.80 (s, 1H), 7.32 (dd, 2H, J = 8.5, 5.6 Hz), 7.11 (t, 2H, J = 8.5 Hz), 4.98-4.94 (m, 1H), 4.81-4.74 (m, 1H), 3.84 (dd, 1H, J = 13.9, 3.8 Hz), 3.76 (d, 1H, J = 13.9 Hz), 3.63 (dd, 1H, J = 10.3, 5.8 Hz), 3.57 (dd, 1H, J = 10.3, 7.5 Hz), 3.41 (t, 2H, J = 7.7 Hz), 3.26 (s, 3H), 3.09 (t, 2H, J = 7.7 Hz), 1.17 (d, 3H, J = 1.6 Hz), 1.15 (d, 3H, J = 1.6 Hz). -
TABLE 1-68 structural No. formula salt 1H-NMR 242 HCl 1H-NMR (DMSO-d6) δ: 12.81 (br s, 1H), 8.81 (s, 1H), 7.28 (dd, 2H, J = 8.5, 5.6 Hz), 7.11 (t, 2H, J = 8.5 Hz), 4.98-4.94 (m, 1H), 4.81-4.74 (m ,1H), 3.85 (dd, 1H, J = 13.9, 4.0 Hz), 3.76 (dd, 1H, J = 13.9, 1.4 Hz), 3.63 (dd, 1H, J = 10.3, 5.8 Hz), 3.58 (dd, 1H, J = 10.3, 7.7 Hz), 3.26 (s, 3H), 3.10 (t, 2H, J = 7.7 Hz), 2.68 (t, 2H, J = 7.7 Hz), 2.09-2.01 (m, 2H), 1.18 (d, 3H, J = 2.0 Hz), 1.16 (d, 3H, J = 2.0 Hz). 243 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.81 (s, 1H), 7.65-7.63 (m, 1H), 7.41-7.39 (m, 2H), 5.00-4.95 (m, 1H), 4.80-4.74 (m, 1H), 4.50 (s, 2H), 3.84 (dd, 1H, J = 13.7, 4.0 Hz), 3.76 (dd, 1H, J = 13.7, 1.6 Hz), 3.63 (dd, 1H, J = 10.1, 5.6 Hz), 3.57 (dd, 1H, J = 10.1, 7.7 Hz), 3.25 (s, 3H), 1.17 (d, 3H, J = 2.0 Hz), 1.15 (d, 3H, J = 2.0 Hz). 244 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.81 (s, 1H), 7.73 (d, 2H, J = 8.1 Hz), 7.60 (d, 2H, J = 8.1 Hz), 4.99-4.94 (m, 1H), 4.80-4.73 (m, 1H), 4.61 (s, 2H), 3.84 (dd, 1H, J = 13.7, 4.0 Hz), 3.76 (dd, 1H, J = 13.7, 1.6 Hz), 3.63 (dd, 1H, J = 10.1, 5.6 Hz), 3.57 (dd, 1H, J = 10.1, 7.7 Hz), 3.25 (s, 3H), 1.17 (d, 3H, J = 2.0 Hz), 1.15 (d, 3H, J = 2.0 Hz). -
TABLE 1-69 structural No. formula salt 1H-NMR 245 HCl 1H-NMR (DMSO-d6) δ: 12.79 (br s, 1H), 8.48 (s, 1H), 8.34-8.33 (m, 1H), 7.67 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.12 (m, 2H), 4.73-4.67 (m, 1H), 4.20 (s, 2H), 4.06 (d, 1H, J = 13.7 Hz), 3.78 (d, 1H, J = 13.7 Hz), 3.61-3.44 (m, 1H), 1.90 (s, 3H), 1.13 (d, 3H, J = 6.7 Hz), 1.09 (d, 3H, J = 6.7 Hz), 0.62 (d, 2H, J = 7.4 Hz), 0.46-0.41 (m, 2H). 246 HCl 1H-NMR (DMSO-d6) δ: 12.82 (br s, 1H), 8.51 (s, 1H), 8.28 (t, 1H, J = 5.5 Hz), 7.67 (s, 1H), 7.33-7.30 (m, 2H), 7.16-7.11 (m, 2H), 4.73-4.66 (m, 1H), 4.20 (s, 2H), 4.15 (d, 1H, J = 13.9 Hz), 3.78 (d, 1H, J = 13.9 Hz), 2.98-2.84 (m, 2H), 1.93 (s, 3H), 1.14 (d, 3H, J = 7.2 Hz), 1.12 (d, 3H, J = 7.2 Hz), 0.89-0.85 (m, 1H), 0.40-0.37 (m, 2H), 0.14-0.10 (m, 2H). 247 HCl 1H-NMR (DMSO-d6) δ: 12.70 (br s, 1H), 8.51 (s, 1H), 7.71 (s, 1H), 7.34-7.30 (m, 2H), 7.18-7.12 (m, 2H), 4.64-4.62 (m, 1H), 4.45-4.49 (m, 1H), 4.21 (s, 2H), 4.06-4.02 (m, 1H), 3.53 (dd, 1H, J = 11.1, 3.4 Hz), 3.48 (dd, 1H, J = 11.1, 4.2 Hz), 3.11 (s, 3H), 1.72 (d, 3H, J = 6.5 Hz), 1.33 (d, 3H, J = 5.6 Hz), 1.31 (d, 3H, J = 5.6 Hz). 248 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.44 (s, 1H), 7.68 (s, 1H), 7.37-7.29 (m, 2H), 7.16-7.11 (m, 2H), 4.20 (s, 2H), 4.19 (d, 1H, J = 14.1 Hz), 3.93 (d, 1H, J = 14.1 Hz), 3.56-3.44 (m, 2H), 2.90 (s, 6H), 1.94 (s, 3H), 1.10 (s, 3H, J = 7.2 Hz). -
TABLE 1-70 structural No. formula salt 1H-NMR 249 HCl 1H-NMR (DMSO-d6) δ: 12.68 (br s, 1H), 8.50 (s, 1H), 8.20 (br t, 1H, J = 5.1 Hz), 7.67 (s, 1H), 7.33-7.30 (m, 2H), 7.16-7.11 (m, 2H), 4.20 (s, 2H), 4.09 (d, 1H, J = 13.7 Hz), 3.97 (d, 1H, J = 13.7 Hz), 3.64-3.55 (m, 1H), 3.38-3.32 (m, 1H), 3.11-3.04 (m, 2H), 1.88 (s, 3H), 1.10 (s, 3H, J = 7.2 Hz), 0.96 (s, 3H, J = 7.2 Hz). 250 HCl 1H-NMR (DMSO-d6) δ: 12.79 (br s, 1H), 8.81 (s, 1H), 7.23-7.16 (m, 2H), 6.94-6.90 (m, 1H), 4.99-4.95 (m, 1H), 4.80-4,74 (m, 1H), 4.45 (s, 2H), 3.86-3.83 (m, 1H), 3.83 (s, 3H), 3.76 (dd, 1H, J = 13.9, 1.4 Hz), 3.63 (dd, 1H, J = 10.3, 5.8 Hz), 3.57 (dd, 1H, J = 10.3, 7.7 Hz), 3.25 (s, 3H), 1.17 (d, 3H, J = 2.0 Hz), 1.15 (d, 3H, J = 2.0 Hz). 251 HCl 1H-NMR (DMSO-d6) δ: 12.80 (br s, 1H), 8.79 (s, 1H), 7.38 (dd, 1H, J = 8.5, 6.5 Hz), 7.02 (td, 1H, 8.5, 2.8 Hz), 6.81 (dd, 1H, J = 8.5, 2.8 Hz), 4.98-4.94 (m, 1H), 4.78-4.64 (m, 1H), 4.60 (s, 2H), 3.83 (dd, 1H, J = 13.7, 4.0 Hz), 3.75 (dd, 1H, J = 13.7, 1.4 Hz), 3.62 (dd, 1H, J = 10.3, 5.8 Hz), 3.57 (dd, 1H, J = 10.3, 7.7 Hz), 3.25 (s, 3H), 2.06-1.99 (m, 1H), 1.17 (d, 3H, J = 2.0 Hz), 1.15 (d, 3H, J = 2.0 Hz), 0.90-0.84 (m, 2H), 0.66-0.63 (m, 2H). -
TABLE 1-71 structural No. formula salt 1H-NMR 252 HCl 1H-NMR (DMSO-d6) δ: 12.40 (br s, 1H), 8.52 (s, 1H), 8.09-8.05 (m, 1H), 7.65 (s, 1H), 7.34-7.29 (m, 2H), 7.16-7.10 (m, 2H), 4.67 (d, 1H, J = 13.5 Hz), 4.37 (d, 1H, J = 13.5 Hz), 4.19 (s, 2H), 3.76-3.68 (m, 1H), 3.38-3.29 (m, 1H), 2.54 (d, 3H, J = 4.4 Hz), 1.65 (s, 3H), 1.51 (t, 3H, J = 7.1 Hz). 253 HCl 1H-NMR (DMSO-d6) δ: 12.40 (br s, 1H), 8.68 (s, 1H), 7.66 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.11 (m, 2H), 4.86 (d, 1H, J = 14.1 Hz), 4.46 (d, 1H, J = 14.1 Hz), 4.19 (s, 2H), 3.78-3.69 (m, 1H), 3.18-3.09 (m, 1H), 2.99 (br s, 6H), 1.71 (s, 3H), 1.19 (t, 3H, J = 7.1 Hz). 254 HCl 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 8.69 (s, 1H), 7.65 (s, 1H), 7.34-7.29 (m, 2H), 7.16-7.11 (m, 2H), 4.86 (d, 1H, J = 13.9 Hz), 4.46 (d, 1H, J = 13.9 Hz), 4.30-4.03 (m, 1H), 4.19 (s, 2H), 3.78-3.68 (m, 2H), 3.46-3.17 (m, 3H), 1.98-1.78 (m, 4H), 1.73 (s, 3H), 1.17 (t, 3H, J = 7.1 Hz). 255 HCl 1H-NMR (DMSO-d6) δ: 12.70 (br s, 1H), 8.61 (s, 1H), 7.70 (s, 1H), 7.35-7.32 (m, 2H), 7.17-7.13 (m, 2H), 4.21 (s, 2H), 4.21-4.17 (m, 1H), 4.11 (d, 1H, J = 13.7 Hz), 3.96 (d, 1H, J = 13.7 Hz), 3.89-3.82 (m, 2H), 3.78-3.73 (m, 1H), 3.46 (dd, 1H, J = 13.9, 6.9 Hz), 3.25 (dd, 1H, J = 13.9, 7.5 Hz), 2.14-2.06 (m, 2H), 1.94 (s, 3H), 1.09-1.03 (m, 1H), 0.52-0.49 (m, 1H), 0.34-0.31 (m, 2H). -
TABLE 1-72 structural No. formula salt 1H-NMR 256 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.78 (s, 1H), 7.42-7.30 (m, 2H), 7.20-7.16 (m, 2H), 4.72-4.70 (m, 1H), 4.60-4.53 (m, 1H), 4.47 (s, 2H), 4.18-4.10 (m, 2H), 3.94 (dd, 1H, J = 11.9, 2.2 Hz), 3.46 (s, 3H), 1.29 (d, 3H, J = 6.9 Hz), 1.27 (d, 3H, J = 6.9 Hz), 1.05 (d, 3H, J = 6.5 Hz). 257 HCl 1H-NMR (DMSO-d6) δ: 12.76 (br s, 1H), 8.62 (s, 1H), 7.42-7.38 (m, 2H), 7.20-7.16 (m, 2H), 4.77-4.74 (m, 1H), 4.47 (s, 2H), 4.19 (q, 1H, J = 4.0 Hz), 3.71 (dd, 1H, J = 14.1, 7.3 Hz), 3.62 (d, 2H, J = 4.4 Hz) 3.23 (dd, 1H, J = 14.1, 6.9 Hz), 3.16 (s, 3H), 1.69 (d, 3H, J = 6.9 Hz), 1.22-1.16 (m, 1H), 0.58-0.48 (m, 2H), 0.44-0.39 (m, 1H), 0.34-0.29 (m, 1H). 258 HCl 1H-NMR (DMSO-d6) δ: 12.82 (br s, 1H), 8.72 (s, 1H), 7.43-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.84-4.79 (m, 1H), 4.47 (s, 2H), 4.26-4.21 (m, 1H), 3.89-3.76 (m, 3H), 3.33 (s, 3H), 3.33-3.26 (m, 1H), 1.24 (d, 3H, J = 6.9 Hz), 1.17 (t, 3H, J = 7.3 Hz). 259 HCl 1H-NMR (DMSO-d6) δ: 12.78 (br s, 1H), 8.74 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.85-4.81 (m, 1H), 4.47 (s, 2H), 4.30-4.24 (m, 1H), 3.93 (dd, 1H, J = 11.5, 8.5 Hz), 3.85 (dd, 1H, J = 11.5, 3.0 Hz), 3.56 (dd, 1H, J = 14.1, 7.5 Hz), 3.37 (s, 3H), 3.30 (dd, 1H, J = 14.1, 6.9 Hz), 1.24 (d, 3H, J = 6.9 Hz), 1.15-1.09 (m, 1H), 0.58-0.48 (m, 2H), 0.41-0.30 (m, 2H). -
TABLE 1-73 structural No. formula salt 1H-NMR 260 HCl 1H-NMR (DMSO-d6) δ: 12.67 (br s, 1H), 8.53 (s, 1H), 7.69 (s, 1H), 7.33-7.29 (m, 2H), 7.17-7.11 (m, 2H), 4.73-4.67 (m, 1H), 4.19 (s, 2H), 4.10 (q, 1H, J = 4.1 Hz), 3.90-3.83 (m, 1H), 3.56 (d, 2H, J = 4.6 Hz), 3.33-3.32 (m, 1H), 3.16 (s, 3H), 1.61 (d, 3H, J = 6.5 Hz), 1.20 (t, 3H, J = 7.1 Hz). 261 HCl 1H-NMR (DMSO-d6) δ: 12.69 (br s, 1H), 8.59 (s, 1H), 7.67 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.11 (m, 2H), 4.79-4.75 (m, 1H), 4.22-4.19 (m, 1H), 4.19 (s, 2H), 3.85-3.73 (m, 3H), 3.31 (s, 3H), 3.31-3.24 (m, 1H), 1.22 (d, 3H, J = 6.7 Hz), 1.15 (t, 3H, J = 7.1 Hz). 262 HCl 1H-NMR (DMSO-d6) δ: 12.71 (br s, 1H), 8.60 (s, 1H), 7.70 (s, 1H), 7.35-7.31 (m, 2H), 7.16-7.12 (m, 2H), 4.41-4.38 (m, 1H), 4.20 (s, 2H), 4.10-4.02 (m, 4H), 3.98 (d, 1H, J = 13.7 Hz), 3.68-3.59 (m, 1H), 3.43-3.35 (m, 1H), 3.32-3.26 (m, 1H), 3.13 (s, 3H), 1.94 (s, 3H), 1.07-1.00 (m, 1H), 0.53-0.45 (m, 2H), 0.34-0.28 (m, 2H). 263 HCl 1H-NMR (DMSO-d6) δ: 12.69 (br s, 1H), 8.60 (s, 1H), 7.69 (s, 1H), 7.34-7.31 (m, 2H), 7.14 (br t, 2H, J = 8.8 Hz), 4.39-4.36 (m, 1H), 4.20 (s, 2H), 4.11-3.90 (m, 5H), 3.69-3.65 (m, 1H), 3.57-3.40 (m, 2H), 3.12 (s, 3H), 1.92 (s, 3H), 1.09 (t, 3H, J = 6.6 Hz). -
TABLE 1-74 structural No. formula salt 1H-NMR 264 HCl 1H-NMR (DMSO-d6) δ: 12.75 (s, 1H), 8.41 (s, 1H), 7.68 (s, 1H), 7.32 (dd, 2H, J = 8.2, 5.9 Hz), 7.16-7.13 (m, 2H), 4.19 (s, 2H), 4.18 (d, 1H, J = 13.9 Hz), 3.90 (d, 1H, J = 13.9 Hz), 3.05 (s, 3H), 2.88 (s, 6H), 1.91 (s, 3H). 265 HCl 1H-NMR (DMSO-d6) δ: 12.75 (s, 1H), 8.40 (s, 1H), 7.67 (s, 1H), 7.35-7.29 (m, 2H), 7.16-7.11 (m, 2H), 4.19 (s, 2H), 4.17 (d, 1H, J = 13.9 Hz), 3.89 (d, 1H, J = 13.9 Hz), 3.43-3.35 (m, 1H), 3.28-3.19 (m, 1H), 3.05 (s, 3H), 2.83 (s, 3H), 1.89 (s, 3H), 0.98 (t, 3H, J = 7.1 Hz). 266 HCl 1H-NMR (DMSO-d6) δ: 12.66 (br s, 1H), 8.62 (s, 1H), 7.70 (s, 1H), 7.34-7.31 (m, 2H), 7.16-7.12 (m, 2H), 4.20 (s, 2H), 4.18-4.11 (m, 1H), 4.04-3.97 (m, 1H), 3.91-3.82 (m, 2H), 3.28-3.19 (m, 1H), 3.64-3.57 (m, 1H), 3.03 (s, 3H), 2.09-2.03 (m, 2H), 1.90 (s, 3H). 267 HCl 1H-NMR (DMSO-d6) δ: 12.73 (br s, 1H), 8.50 (s, 1H), 8.18 (br t, 1H, J = 5.6 Hz), 7.67 (s, 1H), 7.34-7.29 (m, 2H), 7.17-7.11 (m, 2H), 4.20 (s, 2H), 3.99 (d, 1H, J = 13,7 Hz), 3.93 (d, 1H, J = 13.7 Hz), 3.08-3.01 (m, 2H), 2.87-2.84 (m, 1H), 1.87 (s, 3H), 0.96 (t, 3H, J = 7.2 Hz), 0.94-0.89 (m, 1H), 0.81-0.69 (m, 2H), 0.62-0.56 (m, 1H). -
TABLE 1-75 No. structural formula salt 1H-NMR 268 HCl 1H-NMR (DMSO-d6) δ: 12.70 (br s, 1H), 8.61 (s, 1H), 7.69 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.11 (m, 2H), 4.20 (s, 2H), 4.07-4.01 (m, 1H), 3.92 (d, 1H, J = 13.2 Hz), 3.87-3.82 (m, 2H), 3.80 (d, 1H, J = 13.2 Hz), 3.50-3.42 (m, 1H), 2.89-2.84 (m, 1H), 2.08-2.00 (m, 2H), 1.89 (s, 3H), 0.91-0.85 (m, 1H), 0.82-0.73 (m, 2H), 0.67-0.61 (m, 1H). 269 HCl 1H-NMR (DMSO-d6) δ: 13.18 (br s, 1H), 8.67 (s, 1H), 7.42-7.38 (m, 2H), 7.20-7.14 (m, 2H), 4.46 (s, 2H), 3.83 (d, 1H, J = 13.7 Hz), 3.74 (d, 1H, J = 13.7 Hz), 3.64 (d, 1H, J = 11.8 Hz), 3.62 (d, 1H, J = 11.8 Hz), 3.60-3.44 (m, 3H), 1.59 (s, 3H), 1.15 (t, 3H, J = 7.2 Hz). 270 HCl 1H-NMR (DMSO-d6) δ: 12.69 (br s, 1H), 8.75 (s, 1H), 7.41-7.38 (m, 2H), 7.20-7.15 (m, 2H), 4.53 (d, 1H, J = 13.7 Hz), 4.46 (s, 2H), 4.30 (d, 1H, J = 13.7 Hz), 3.68-3.59 (m, 1H), 3.51 (d, 1H, J = 10.4 Hz), 3.48-3.43 (m, 2H), 3.20 (s, 3H), 1.35 (s, 3H), 1.19 (t, 3H, J = 7.1 Hz). 271 HCl 1H-NMR (DMSO-d6) δ: 12.69 (br s, 1H), 8.61 (s, 1H), 7.69 (s, 1H), 7.34-7.31 (m, 2H), 7.16-7.12 (m, 2H), 4.20 (s, 2H), 4.17-4.15 (m, 1H), 4.02 (d, 1H, J = 13.5 Hz), 4.00-3.87 (m, 2H), 3.89 (d, 1H, J = 13.5 Hz), 3.65-3.63 (m, 1H), 3.54-3.44 (m, 2H), 2.10-2.06 (m, 2H), 1.91 (s, 3H), 1.10 (t, 3H, J = 7.1 Hz). -
TABLE 1-76 No. structural formula salt 1H-NMR 272 HCl 1H-NMR (DMSO-d6) δ: 12.65 (br s, 1H), 8.66 (s, 1H), 7.64 (s, 1H), 7.47-7.41 (m, 1H), 7.24 (dt, 1H, J = 14.0, 5.0 Hz), 7.06 (td, 1H, J = 8.5, 2.3 Hz), 5.10-5.03 (m, 1H), 4.80-4.73 (m, 1H), 4.20 (s, 2H), 4.18-4.04 (m, 2H), 3.98-3.85 (m, 1H), 3.87-3.71 (m, 3H), 3.61-3.53 (m, 1H), 3.15 (s, 1.5H), 3.08 (s, 1.5H), 2.66-2.58 (m, 2H), 1.15-1.11 (m, 6H). 273 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.59 (s, 1H), 7.70 (s, 1H), 7.35-7.32 (m, 2H), 7.17-7.13 (m, 2H), 4.21 (s, 2H), 4.21-4.17 (m, 1H), 4.14 (d, 1H, J = 13.7 Hz), 3.93-3.76 (m, 5H), 2.16-2.08 (m, 2H), 1.97 (s, 3H), 1.24 (d, 3H, J = 6.8 Hz), 1.13-1.10 (m, 1H), 0.64-0.58 (m, 1H), 0.43-0.38 (m, 2H), 0.20-0.15 (m, 1H). 274 HCl 1H-NMR (DMSO-d6) δ: 12.81 (br s, 1H), 8.58 (s, 1H), 7.70 (s, 1H), 7.35-7.32 (m, 2H), 7.17-7.13 (m, 2H), 4.21 (s, 2H), 4.21-4.14 (m, 3H), 4.06-4.00 (m, 1H), 3.87-3.64 (m, 4H), 3.15 (s, 3H), 1.98 (s, 3H), 1.24 (d, 3H, J = 6.6 Hz), 1.13-1.09 (m, 1H), 0.61-0.57 (m, 1H), 0.49-0.36 (m, 2H), 0.15-0.07 (m, 1H). -
TABLE 1-77 No. structural formula salt 1H-NMR 275 HCl 1H-NMR (DMSO-d6) δ: 12.84 (br s, 1H), 8.48 (s, 1H), 7.69 (s, 1H), 7.35-7.32 (m, 2H), 7.17-7.13 (m, 2H), 4.31 (d, 1H, J = 14.3 Hz), 4.21 (s, 2H), 3.93 (d, 1H, J = 14.3 Hz), 3.83-3.75 (m, 1H), 2.98 (br s, 6H), 2.05 (s, 3H), 1.25 (d, 3H, J = 6.8 Hz), 1.10-1.03 (m, 1H), 0.64-0.58 (m, 1H), 0.42-0.33 (m, 2H), 0.12-0.08 (m, 1H). 276 HCl 1H-NMR (DMSO-d6) δ: 12.86 (br s, 1H), 8.52 (s, 1H), 8.21 (t, 1H, J = 5.4 Hz), 7.69 (s, 1H), 7.36-7.31 (m, 2H), 7.18-7.13 (m, 2H), 4.29 (d, 1H, J = 13.7 Hz), 4.21 (s, 2H), 3.87 (d, 1H, J = 13.7 Hz), 3.81-3.73 (m, 1H), 3.20-3.14 (m, 1H), 3.02-2.96 (m, 1H), 1.94 (s, 3H), 1.24 (d, 3H, J = 6.8 Hz), 1.13-1.07 (m, 1H), 1.01 (t, 3H, J = 7.2 Hz), 0.62-0.57 (m, 1H), 0.37-0.31 (m, 2H), 0.18-0.12 (m, 1H). 277 HCl 1H-NMR (DMSO-d6) δ: 12.82 (br s, 1H), 8.80 (s, 1H), 7.38-7.32 (m, 2H), 4.99-4.97 (m, 1H), 4.80-4.74 (m, 1H), 4.46 (s, 2H), 3.84 (dd, 1H, J = 13.5, 4.2 Hz), 3.83 (s, 3H), 3.75 (dd, 1H, J = 13.5, 1.2 Hz), 3.63 (dd, 1H, J = 10.3, 5.8 Hz), 3.57 (dd, 1H, J = 10.3, 7.7 Hz), 3.25 (s, 3H), 1.17 (d, 3H, J = 2.0 Hz), 1.15 (d, 3H, J = 2.0 Hz). -
TABLE 1-78 No. structural formula salt 1H-NMR 278 HCl 1H-NMR (DMSO-d6) δ: 12.45 (br s, 1H), 8.98 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.71-4.67 (m, 1H), 4.56-4.49 (m, 1H), 4.47 (s, 2H), 4.30-4.25 (m, 1H), 3.93-3.90 (m, 1H), 1.65-1.61 (m, 1H), 1.46-1.38 (m, 1H), 1.29 (d, 3H, J = 2.4 Hz), 1.27 (d, 3H, J = 2.0 Hz), 0.92 (t, 3H, J = 7.5 Hz). 279 HCl 1H-NMR (DMSO-d6) δ: 12.60 (br s, 1H), 8.84 (s, 1H), 7.43-7.38 (m, 2H), 7.20-7.15 (m, 2H), 4.50-4.46 (m, 1H), 4.46 (s, 2H), 4.41 (dd, 1H, J = 13.1, 3.6 Hz), 4.20-4.17 (m, 1H), 3.57 (dd, 1H, J = 14.0, 7.1 Hz), 3.22 (dd, 1H, J = 14.0, 7.0 Hz), 1.24 (d, 3H, J = 6.5 Hz), 1.14-1.10 (m, 1H), 0.56-0.47 (m, 2H), 0.39-0.36 (m, 1H), 0.33-0.29 (m, 1H). 280 HCl 1H-NMR (DMSO-d6) δ: 12.75 (br s, 1H), 8.61 (s, 1H), 7.70 (s, 1H), 7.35-7.32 (m, 2H), 7.18-7.13 (m, 2H), 4.21 (s, 2H), 4.21-4.13 (m, 2H), 3.86-3.73 (m, 5H), 2.14-2.06 (m, 2H), 1.96 (s, 3H), 1.20 (d, 3H, J = 6.6 Hz), 1.15-1.07 (m, 1H), 0.64-0.58 (m, 1H), 0.45-0.38 (m, 2H), 0.23-0.20 (m, 1H). 281 HCl 1H-NMR (DMSO-d6) δ: 12.74 (br s, 1H), 8.60 (s, 1H), 7.70 (s, 1H), 7.36-7.32 (m, 2H), 7.17-7.13 (m, 2H), 4.21 (s, 2H), 4.15-4.04 (m, 4H), 3.89-3.78 (m, 2H), 3.68-3.58 (m, 2H), 3.15 (s, 1.5H), 3.14 (s, 1.5H), 1.98 (s, 3H), 1.19-1.11 (m, 4H), 0.61-0.57 (m, 1H), 0.49-0.38 (m, 2H), 0.22-0.19 (m, 1H). -
TABLE 1-79 No. structural formula salt 1H-NMR 282 HCl 1H-NMR (DMSO-d6) δ: 12.84 (br s, 1H), 8.42 (s, 1H), 7.69 (s, 1H), 7.35-7.32 (m, 2H), 7.18-7.12 (m, 2H), 4.24 (d, 1H, J = 14.3 Hz), 4.21 (s, 2H), 3.93 (d, 1H, J = 14.3 Hz), 3.89-3.81 (m, 1H), 2.94 (br s, 6H), 1.99 (s, 3H), 1.19 (d, 3H, J = 6.6 Hz), 1.15-1.09 (m, 1H), 0.63-0.58 (m, 1H), 0.48-0.39 (m, 2H), 0.26-0.22 (m, 1H). 283 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.53 (s, 1H), 8.25 (t, 1H, J = 5.4 Hz), 7.69 (s, 1H), 7.35-7.32 (m, 2H), 7.17-7.13 (m, 2H), 4.29 (d, 1H, J = 13.9 Hz), 4.21 (s, 2H), 3.92 (d, 1H, J = 13.9 Hz), 3.89-3.83 (m, 1H), 3.16-3.02 (m, 2H), 1.95 (s, 3H), 1.18 (d, 3H, J = 6.8 Hz), 1.03-1.01 (m, 1H), 1.01 (t, 3H, J = 7.2 Hz), 0.62-0.58 (m, 1H), 0.47-0.39 (m, 2H), 0.24-0.19 (m, 1H). 284 HCl 1H-NMR (DMSO-d6) δ: 12.66 (br s, 1H), 8.82 (s, 1H), 7.43-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.83 (br t, 1H, J = 6.6 Hz), 4.48 (s, 2H), 4.04 (q, 1H, J = 6.2 Hz), 3.95-3.86 (m, 1H), 3.64 (dd, 1H, J = 10.4, 5.3 Hz), 3.53 (dd, 1H, J = 10.4, 7.9 Hz), 3.24 (s, 3H), 3.16-3.07 (m, 1H), 1.26 (d, 3H, J = 6.6 Hz), 1.16 (t, 3H, J = 7.1 Hz). -
TABLE 1-80 No. structural formula salt 1H-NMR 285 HCl 1H-NMR (DMSO-d6) δ: 12.67 (br s, 1H), 8.82 (s, 1H), 7.43-7.39 (m, 2H), 7.22-7.15 (m, 2H), 4.82 (br t, 1H, J = 6.0 Hz), 4.65-4.58 (m, 1H), 4.48 (s, 2H), 4.16 (q, 1H, J = 6.5 Hz), 3.60 (dd, 1H, J = 10.3, 5.4 Hz), 3.49 (dd, 1H, J = 10.3, 7.9 Hz), 3.24 (s, 3H), 1.21 (d, 3H, J = 2.0 Hz), 1.26 (d, 3H, J = 2.0 Hz), 1.21 (t, 3H, J = 6.8 Hz). 286 HCl 1H-NMR (DMSO-d6) δ: 12.53 (br s, 1H), 9.01 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.15 (m, 2H), 4.75 (d, 1H, J = 13.8 Hz), 4.47 (s, 2H), 4.34 (dd, 1H, J = 13.8, 4.3 Hz), 4.01 (td, 1H, J = 13.8, 6.9 Hz), 3.74 (br t, 1H, J = 5.0 Hz), 3.74 (td, 1H, J = 13.8, 6.9 Hz), 1.92 (td, 1H, J = 13.8, 6.9 Hz), 1.20 (t, 3H, J = 6.9 Hz), 0.99 (d, 3H, J = 6.9 Hz), 0.79 (d, 3H, J = 6.9 Hz). 287 HCl 1H-NMR (DMSO-d6) δ: 12.53 (br s, 1H), 9.01 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.15 (m, 2H), 4.75 (d, 1H, J = 13.8 Hz), 4.47 (s, 2H), 4.34 (dd, 1H, J = 13.8, 4.3 Hz), 4.01 (td, 1H, J = 13.8, 6.9 Hz), 3.74 (br t, 1H, J = 5.0 Hz), 3.74 (td, 1H, J = 13.8, 6.9 Hz), 1.92 (td, 1H, J = 13.8, 6.9 Hz), 1.20 (t, 3H, J = 6.9 Hz), 0.99 (d, 3H, J = 6.9 Hz), 0.79 (d, 3H, J = 6.9 Hz). -
TABLE 1-81 No. structural formula salt 1H-NMR 288 HCl 1H-NMR (DMSO-d6) δ: 12.67 (br s, 1H), 8.82 (s, 1H), 7.43-7.39 (m, 2H), 7.22-7.15 (m, 2H), 4.82 (br t, 1H, J = 6.0 Hz), 4.65-4.58 (m, 1H), 4.48 (s, 2H), 4.16 (q, 1H, J = 6.5 Hz), 3.60 (dd, 1H, J = 10.3, 5.4 Hz), 3.49 (dd, 1H, J = 10.3, 7.9 Hz), 3.24 (s, 3H), 1.27 (d, 3H, J = 2.0 Hz), 1.26 (d, 3H, J = 2.0 Hz), 1.21 (t, 3H, J = 6.8 Hz). 289 HCl 1H-NMR (DMSO-d6) δ: 12.66 (br s, 1H), 8.82 (s, 1H), 7.43-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.83 (br t, 1H, J = 6.6 Hz), 4.48 (s, 2H), 4.04 (q, 1H, J = 6.2 Hz), 3.95-3.86 (m, 1H), 3.64 (dd, 1H, J =10.4, 5.3 Hz), 3.53 (dd, 1H, J = 10.4, 7.9 Hz), 3.24 (s, 3H), 3.16-3.07 (m, 1H), 1.26 (d, 3H, J = 6.6 Hz), 1.16 (t, 3H, J = 7.1 Hz). 290 HCl 1H-NMR (DMSO-d6) δ: 12.86 (br s, 1H), 8.56 (s, 1H), 7.70 (s, 1H), 7.37-7.31 (m, 2H), 7.19-7.12 (m, 2H), 4.73-4.66 (m, 1H), 4.21 (s, 2H), 4.19-4.07 (m, 2H), 3.86-3.70 (m, 6H), 2.03 (s, 3H), 1.17 (d, 3H, J = 6.5 Hz), 1.10 (d, 3H, J = 6.5 Hz). 291 HCl 1H-NMR (DMSO-d6) δ: 12.53 (br s, 1H), 8.96 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.65 (d, 1H, J = 13.5 Hz), 4.47 (s, 2H), 4.35 (dd, 1H, J = 13.5, 3.8 Hz), 3.92-3.84 (m, 2H), 3.24-3.16 (m, 1H), 1.72-1.66 (m, 1H), 1.51-1.41 (m, 1H), 1.20 (t, 3H, J = 7.3 Hz), 0.92 (t, 3H, J = 7.5 Hz). -
TABLE 1-82 No. structural formula salt 1H-NMR 292 HCl 1H-NMR (DMSO-d6) δ: 12.40 (br s, 1H), 8.52 (s, 1H), 8.09-8.05 (m, 1H), 7.65 (s, 1H), 7.34-7.29 (m, 2H), 7.16-7.10 (m, 2H), 4.67 (d, 1H, J = 13.5 Hz), 4.37 (d, 1H, J = 13.5 Hz), 4.19 (s, 2H), 3.76-3.68 (m, 1H), 3.38-3.29 (m, 1H), 2.54 (d, 3H, J = 4.4 Hz), 1.65 (s, 3H), 1.51 (t, 3H, J = 7.1 Hz). 293 HCl 1H-NMR (DMSO-d6) δ: 12.40 (br s, 1H), 8.68 (s, 1H), 7.66 (s, 1H), 7.34-7.30 (m, 2H), 7.16-7.11 (m, 2H), 4.86 (d, 1H, J = 14.1 Hz), 4.46 (d, 1H, J = 14.1 Hz), 4.19 (s, 2H), 3.78-3.69 (m, 1H), 3.18-3.09 (m, 1H), 2.99 (br s, 6H), 1.71 (s, 3H), 1.19 (t, 3H, J = 7.1 Hz). 294 HCl 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 8.69 (s, 1H), 7.65 (s, 1H), 7.34-7.29 (m, 2H), 7.16-7.11 (m, 2H), 4.86 (d, 1H, J = 13.9 Hz), 4.46 (d, 1H, J = 13.9 Hz), 4.30-4.03 (m, 1H), 4.19 (s, 2H), 3.78-3.68 (m, 2H), 3.46-3.17 (m, 3H), 1.98-1.78 (m, 4H), 1.73 (s, 3H), 1.17 (t, 3H, J = 7.1 Hz). 295 HCl 1H-NMR (DMSO-d6) δ: 12.46 (br s, 1H), 8.84 (s, 1H), 7.43-7.39 (m, 2H), 7.20-7.15 (m, 2H), 4.68 (d, 1H, J = 13.5 Hz), 4.46 (s, 2H), 4.36 (dd, 1H, J = 13.5, 3.7 Hz), 4.08-4.00 (m, 2H), 3.49 (dd, 1H, J = 10.2, 3.9 Hz), 3.41 (dd, 1H, J = 10.2, 7.0 Hz), 3.17 (s, 3H), 1.77-1.59 (m, 4H), 0.90 (t, 3H, J = 7.3 Hz), 0.85 (t, 3H, J = 7.3 Hz). -
TABLE 1-83 No. structural formula salt 1H-NMR 296 HCl 1H-NMR (DMSO-d6) δ: 13.19 (br s, 1H), 8.71 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.47 (s, 2H), 3.86-3.76 (m, 3H), 3.70 (d, 1H, J = 10.4 Hz), 3.63-3.45 (m, 4H), 3.35-3.33 (m, 2H), 3.11 (s, 3H), 1.64 (s, 3H), 1.17 (t, 3H, J = 7.2 Hz). 297 HCl 1H-NMR (DMSO-d6) δ: 13.21 (br s, 1H), 8.71 (s, 1H), 7.42-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.47 (s, 2H), 3.80-3.63 (m, 4H), 3.51-3.44 (m, 2H), 3.35-3.33 (m, 2H), 3.12 (s, 3H), 2.95-2.90 (m, 1H), 1.62 (s, 3H), 0.93-0.76 (m, 4H). 298 HCl 1H-NMR (DMSO-d6) δ: 12.51 (br s, 1H), 8.93 (s, 1H), 7.42-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.91 (q, 1H, J = 6.8 Hz), 4.48 (s, 2H), 4.04-3.95 (m, 2H), 3.52 (dd, 1H, J = 10.3, 5.2 Hz), 3.46 (dd, 1H, J = 10.3, 6.5 Hz), 3.22 (s, 3H), 3.20-3.13 (m, 1H), 1.42 (d, 3H, J = 6.6 Hz), 1.19 (t, 3H, J = 7.1 Hz). 299 HCl 1H-NMR (DMSO-d6) δ: 12.48 (br s, 1H), 8.95 (s, 1H), 7.42-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.95 (q, 1H, J = 6.5 Hz), 4.58-4.51 (m, 1H), 4.48 (s, 2H), 4.07-4.04 (m, 1H), 3.50 (dd, 1H, J = 10.5, 4.1 Hz), 3.36 (dd, 1H, J = 10.5, 7.9 Hz), 3.22 (s, 3H), 1.39 (d, 3H, J = 6.8 Hz), 1.29 (d, 3H, J = 5.0 Hz), 1.27 (d, 3H, J = 5.0 Hz). -
TABLE 1-84 No. structural formula salt 1H-NMR 300 HCl 1H-NMR (DMSO-d6) δ: 12.50 (br s, 1H), 8.82 (s, 1H), 7.39 (dd, 1H, J = 15.3, 8.7 Hz), 7.22-7.16 (m, 1H), 7.02 (td, 1H, J = 8.7, 2.4 Hz), 4.63 (d, 1H, J = 13.3 Hz), 4.42 (dd, 1H, J = 13.3, 4.3 Hz), 4.17-4.13 (m, 1H), 3.87 (td, 1H, J = 14.0. 7.1 Hz), 3.56-3.49 (m, 2H), 3.40 (t, 2H, J = 7.5 Hz), 3.32-3.25 (m, 1H), 3.22 (s, 3H), 3.09 (t, 2H, J = 7.5 Hz), 1.21 (t, 3H, J = 7.1 Hz). 301 HCl 1H-NMR (DMSO-d6) δ: 12.61 (br s, 1H), 8.78 (s, 1H), 7.42-7.39 (m, 2H), 7.20-7.16 (m, 2H), 4.51 (s, 2H), 4.47 (s, 2H), 3.65-3.53 (m, 6H), 3.26 (s, 6H), 1.19 (t, 3H, J = 7.1 Hz). 302 HCl 1H-NMR (DMSO-d6) δ: 12.75 (br s, 1H), 8.80 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.15 (m, 2H), 4.99-4.95 (m, 1H), 4.46 (s, 2H), 3.99-3.84 (m, 3H), 3.63 (dd, 1H, J = 10.3, 5.7 Hz), 3.57 (dd, 1H, J = 10.3, 7.7 Hz), 3.24 (s, 3H), 1.22 (d, 3H, J = 7.0 Hz), 1.08-1.00 (m, 1H), 0.61-0.55 (m, 1H), 0.47-0.36 (m, 2H), 0.23-0.18 (m, 1H). 303 HCl 1H-NMR (DMSO-d6) δ: 12.50 (br s, 1H), 8.97 (s, 1H), 7.43-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.69 (d, 1H, J = 13.3 Hz), 4.48 (s, 2H), 4.38 (dd, 1H, J = 13.3, 3.4 Hz), 3.95-3.93 (m, 1H), 3.69 (dd, 1H, J = 13.9, 7.1 Hz), 3.16 (dd, 1H, J = 13.9, 7.2 Hz), 1.79-1.72 (m, 1H), 1.48-1.40 (m, 1H), 1.19-1.12 (m, 1H), 0.93 (t, 3H, J = 7.4 Hz), 0.55-0.48 (m, 2H), 0.42-0.37 (m, 1H), 0.34-0.30 (m, 1H). -
TABLE 1-85 No. structural formula salt 1H-NMR 304 HCl 1H-NMR (DMSO-d6) δ: 12.48 (br s, 1H), 8.95 (s, 1H), 7.42-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.95 (q, 1H, J = 6.5 Hz), 4.58-4.51 (m, 1H), 4.48 (s, 2H), 4.07-4.04 (m, 1H), 3.50 (dd, 1H, J = 10.5, 4.1 Hz), 3.36 (dd, 1H, J = 10.5, 7.9 Hz), 3.22 (s, 3H), 1.39 (d, 3H, J = 6.8 Hz), 1.29 (d, 3H, J = 5.0 Hz), 1.27 (d, 3H, J = 5.0 Hz). 305 HCl 1H-NMR (DMSO-d6) δ: 12.51 (br s, 1H), 8.93 (s, 1H), 7.42-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.91 (q, 1H, J = 6.8 Hz), 4.48 (s, 2H), 4.04-3.95 (m, 2H), 3.52 (dd, 1H, J = 10.3, 5.2 Hz), 3.46 (dd, 1H, J = 10.3, 6.5 Hz), 3.22 (s, 3H), 3.20-3.13 (m, 1H), 1.42 (d, 3H, J = 6.6 Hz), 1.19 (t, 3H, J = 7.1 Hz). 306 HCl 1H-NMR (DMSO-d6) δ: 12.70 (br s, 1H), 8.86 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.80 (d, 1H, J = 14.0 Hz), 4.49 (d, 1H, J = 14.0 Hz), 4.47 (s, 2H), 4.11-3.06 (m, 4H), 3.60 (sep, 1H, J = 6.6 Hz), 2.06-1.63 (m, 4H), 1.73 (s, 3H), 1.46 (d, 3H, J = 6.6 Hz), 1.43 (d, 3H, J = 6.6 Hz). 307 HCl 1H-NMR (DMSO-d6) δ: 12.65 (br s, 1H), 8.74 (s, 1H), 8.31 (t, 1H, J = 5.5 Hz), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.58 (d, 1H, J = 13.5 Hz), 4.48 (d, 1H, J = 13.5 Hz), 4.47 (s, 2H), 3.53 (sep, 1H, J = 6.6 Hz), 3.20-3.09 (m, 2H), 1.58 (s, 3H), 1.48 (d, 3H, J = 6.6 Hz), 1.41 (d, 3H, J = 6.6 Hz), 1.01 (t, 3H, J = 7.2 Hz). -
TABLE 1-86 No. structural formula salt 1H-NMR 308 HCl 1H-NMR (DMSO-d6) δ: 12.68 (br s, 1H), 8.74 (s, 1H), 8.11 (d, 1H, J = 7.7 Hz), 7.45-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.61 (d, 1H, J = 14.0 Hz), 4.49 (d, 1H, J = 14.0 Hz), 4.47 (s, 2H), 3.91 (sep, 1H, J = 6.6 Hz), 3.48 (sep, 1H, J = 6.6 Hz), 1.55 (s, 3H), 1.51 (d, 3H, J = 6.6 Hz), 1.41 (d, 3H, J = 6.6 Hz), 1.09 (d, 3H, J = 6.6 Hz), 1.06 (d, 3H, J = 6.6 Hz). 309 HCl 1H-NMR (DMSO-d6) δ: 12.75 (br s, 1H), 8.75 (s, 1H), 7.77 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.15 (m, 2H), 4.67 (d, 1H, J = 13.5 Hz), 4.49 (d, 1H, J = 13.5 Hz), 4.47 (s, 2H), 3.40 (sep, 1H, J = 6.7 Hz), 1.54 (d, 3H, J = 6.7 Hz), 1.50 (s, 3H), 1.41 (d, 3H, J = 6.7 Hz), 1.29 (s, 9H). 310 HCl 1H-NMR (DMSO-d6) δ: 12.66 (br s, 1H), 8.85 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.68-3.76 (m, 4H), 4.64 (d, 1H, J = 13.9 Hz), 4.47 (s, 2H), 4.46 (d, 1H, J = 13.9 Hz), 3.69 (sep, 1H, J = 6.7 Hz), 2.28-2.15 (m, 2H), 1.66 (s, 3H), 1.44 (d, 3H, J = 6.7 Hz), 1.43 (d, 3H, J = 6.7 Hz). 311 HCl 1H-NMR (DMSO-d6) δ: 12.67 (br s, 1H), 8.81 (s, 1H), 7.45-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.71 (d, 1H, J = 14.0 Hz), 4.58 (d, 1H, J = 14.0 Hz), 4.47 (s, 2H), 3.75-3.40 (m, 9H), 1.66 (s, 3H), 1.53 (d, 3H, J = 6.6 Hz), 1.42 (d, 3H, J = 6.6 Hz). -
TABLE 1-87 No. structural formula salt 1H-NMR 312 HCl 1H-NMR (DMSO-d6) δ: 13.99 (br s, 1H), 12.50 (br s, 1H), 8.83 (s, 1H), 7.45-7.37 (m, 2H), 7.23-7.13 (m, 2H), 4.78 (d, 1H, J = 14.0 Hz), 4.49 (d, 1H, J = 14.0 Hz), 4.47 (s, 2H), 3.85 (sep, 1H, J = 6.8 Hz), 1.66 (s, 3H), 1.49 (d, 3H, J = 6.8 Hz), 1.45 (d, 3H, J = 6.8 Hz). 313 HCl 1H-NMR (DMSO-d6) δ: 12.88 (br s, 1H), 8.55 (s, 1H), 7.45-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.48 (s, 2H), 4.21 (d, 1H, J = 14.0 Hz), 3.96 (d, 1H, J = 14.0 Hz), 3.07 (s, 3H), 2.91 (s, 6H), 1.98 (s, 3H). 314 HCl 1H-NMR (DMSO-d6) δ: 12.75 (br s, 1H), 8.42 (s, 1H), 7.69 (s, 1H), 7.36-7.30 (m, 2H), 7.18-7.11 (m, 2H), 4.21 (s, 2H), 4.20 (d, 1H, J = 13.9 Hz), 3.91 (d, 1H, J = 13.9 Hz), 3.07 (s, 3H), 2.89 (s, 6H), 1.92 (s, 3H). 315 HCl 1H-NMR (DMSO-d6) δ: 12.70 (br s, 1H), 8.84 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.16 (m, 2H), 4.80 (d, 1H, J = 13.9 Hz), 4.53 (d, 1H, J = 13.9 Hz), 4.47 (s, 2H), 3.45 (sep, 1H, J = 6.6 Hz), 3.08 (s, 6H), 1.05 (s, 3H), 1.49 (d, 3H, J = 6.6 Hz), 1.42 (d, 3H, J = 6.6 Hz). -
TABLE 1-88 No. structural formula salt 1H-NMR 316 HCl 1H-NMR (DMSO-d6) δ: 12.79 (br s, 1H), 8.80 (s, 1H), 7.45-7.39 (m, 2H), 7.23-7.15 (m, 2H), 5.06-4.97 (m, 1H), 4.48 (s, 2H), 3.94-3.91 (m, 2H), 3.90-3.80 (m, 1H), 3.72-3.58 (m, 2H), 3.26 (s, 3H), 1.23 (d, 3H, J = 6.8 Hz), 1.18-1.07 (m, 1H), 0.66-0.57 (m, 1H), 0.50-0.37 (m, 2H), 0.31-0.20 (m, 1H). 317 HCl 1H-NMR (DMSO-d6) δ: 12.48 (br s, 1H), 8.84 (s, 1H), 7.44-7.36 (m, 1H), 7.23-7.15 (m, 1H), 7.06-6.98 (m, 1H), 4.66 (dd, 1H, J = 13.6, 1.4 Hz), 4.48 (sep, 1H, J = 6.8 Hz), 4.35 (dd, 1H, J = 13.6, 3.6 Hz), 4.24-4.17 (m, 1H), 3.50 (dd, 1H, J = 10.4, 4.2 Hz), 3.44-3.37 (m, 3H), 3.22 (s, 3H), 3.09 (t, 2H, J = 7.5 Hz), 1.30 (d, 3H, J = 6.8 Hz), 1.29 (d, 3H, J = 6.8 Hz). 318 HCl 1H-NMR (DMSO-d6) δ: 12.71 (br s, 1H), 8.76 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.15 (m, 2H), 4.55 (d, 1H, J = 13.5 Hz), 4.47 (s, 2H), 4.31 (d, 1H, J = 13.5 Hz), 3.71-3.59 (m, 1H), 3.56-3.42 (m, 3H), 3.21 (s, 3H), 1.37 (s, 3H), 1.20 (t, 3H, J = 7.1 Hz). 319 HCl 1H-NMR (DMSO-d6) δ: 12.63 (br s, 1H), 8.77 (s, 1H), 7.58-7.48 (m, 1H), 7.33-7.25 (m, 1H), 7.16-7.08 (m, 1H), 4.52 (s, 2H), 4.49 (s, 2H), 3.63 (d, 2H, J = 10.6 Hz), 3.58 (q, 2H, J = 7.1 Hz), 3.54 (d, 2H, J = 10.6 Hz), 3.26 (s, 6H), 1.19 (t, 3H, J = 7.1 Hz). -
TABLE 1-89 No. structural formula salt 1H-NMR 320 HCl 1H-NMR (DMSO-d6) δ: 12.74 (br s, 1H), 8.74 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.14 (m, 2H), 4.50 (s, 2H), 4.47 (s, 2H), 3.94 (sep, 1H, J = 6.6 Hz), 3.66 (d, 2H, J = 10.6 Hz), 3.51 (d, 2H, J = 10.6 Hz), 3.27 (s, 6H), 1.45 (d, 6H, J = 6.6 Hz). 321 HCl 1H-NMR (DMSO-d6) δ: 12.71 (br s, 1H), 8.83 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.26 (m, 1H), 7.15-7.08 (m, 1H), 4.80 (d, 1H, J = 14.0 Hz), 4.54 (d, 1H, J = 14.0 Hz), 4.49 (s, 2H), 3.45 (sep, 1H, 6.7 Hz), 3.07 (s, 6H), 1.65 (s, 3H), 1.49 (d, 3H, J = 6.7 Hz), 1.42 (d, 3H, J = 6.7 Hz). 322 HCl 1H-NMR (DMSO-d6) δ: 13.25 (br s, 1H), 8.71 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.79 (sep, 1H, J = 6.8 Hz), 4.47 (s, 2H), 3.80-3.73 (m, 2H), 3.71-3.64 (m, 2H), 3.55-3.43 (m, 2H), 3.37-3.31 (m, 2H), 3.11 (s, 3H), 1.65 (s, 3H), 1.18 (d, 3H, J = 6.8 Hz), 1.18 (d, 3H, J = 6.8 Hz). 323 HCl 1H-NMR (DMSO-d6) δ: 12.69 (br s, 1H), 8.73 (s, 1H), 7.44-7.38 (m, 2H), 7.23-7.15 (m, 2H), 4.55 (d, 1H, J = 13.5 Hz), 4.47 (s, 2H), 4.31 (d, 1H, J = 13.5 Hz), 3.71-3.46 (m, 4H), 3.46-3.42 (m, 2H), 3.29-3.24 (m, 2H), 3.07 (s, 3H), 1.37 (s, 3H), 1.20 (t, 3H, J = 7.1 Hz). -
TABLE 1-90 No. structural formula salt 1H-NMR 324 HCl 1H-NMR (DMSO-d6) δ: 12.52 (br s, 1H), 8.91 (s, 1H), 7.44-7.36 (m, 2H), 7.22-7.14 (m, 2H), 4.82 (d, 1H, J = 13.5 Hz), 4.47 (s, 2H), 4.35 (sep, 1H, J = 6.8 Hz), 4.30 (dd, 1H, J = 13.5, 4.5 Hz), 4.01-3.96 (m, 1H), 3.64-3.55 (m, 1H), 3.05 (s, 3H), 1.35 (d, 3H, J = 6.8 Hz), 1.33 (d, 3H, J = 6.8 Hz), 1.19 (d, 3H, J = 6.2 Hz). 325 HCl 1H-NMR (DMSO-d6) δ: 12.64 (br s, 1H), 8.83 (s, 1H), 7.44-7.35 (m, 1H), 7.23-7.15 (m, 1H), 7.05-6.98 (m, 1H), 4.50-4.37 (m, 2H), 4.16-4.07 (m, 1H), 3.88-3.76 (m, 1H), 3.40 (t, 2H, J = 7.5 Hz), 3.30-3.19 (m, 1H), 3.10 (t, 2H, J = 7.5 Hz), 1.24 (d, 3H, J = 6.6 Hz), 1.20 (t, 3H, J = 7.2 Hz). 326 HCl 1H-NMR (DMSO-d6) δ: 12.50 (br s, 1H), 8.91 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.15 (m, 2H), 4.80 (d, 1H, J = 13.5 Hz), 4.47 (s, 2H), 4.36 (dd, 1H, J = 13.5, 4.6 Hz), 4.00-3.87 (m, 2H), 3.66-3.58 (m, 1H), 3.31-3.18 (m, 1H), 3.08 (s, 3H), 1.21 (t, 3H, J = 7.1 Hz), 1.16 (d, 3H, J = 6.4 Hz). 327 HCl 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 8.76 (s, 1H), 7.67 (s, 1H), 7.36-7.30 (m, 2H), 7.19-7.11 (m, 2H), 4.61 (d, 1H, J = 13.2 Hz), 4.33 (dd, 1H, J = 13.2, 3.7 Hz), 4.20 (s, 2H), 3.95-3.83 (m, 1H), 3.88-3.80 (m, 1H), 3.22-3.11 (m, 1H), 1.74-1.62 (m, 1H), 1.50-1.36 (m, 1H), 1.20 (t, 3H, J = 7.2 Hz), 0.91 (t, 3H, J = 7.4 Hz). -
TABLE 1-91 No. structural formula salt 1H-NMR 328 HCl 1H-NMR (DMSO-d6) δ: 12.62 (br s, 1H), 8.84 (s, 1H), 7.45-7.37 (m, 2H), 7.23-7.14 (m, 2H), 4.49-4.35 (m, 2H), 4.47 (s, 2H), 4.15-4.07 (m, 1H), 3.87-3.75 (m, 1H), 3.31-3.18 (m, 1H), 1.26-1.14 (m, 6H). 329 HCl 1H-NMR (DMSO-d6) δ: 12.33 (br s, 1H), 8.82 (s, 1H), 7.67 (s, 1H), 7.37-7.30 (m, 2H), 7.18-7.11 (m, 2H), 4.71 (d, 1H, J = 13.9 Hz), 4.32 (dd, 1H, J = 13.9, 4.4 Hz), 4.20 (s, 2H), 4.07-3.94 (m, 1H), 3.75-3.69 (m, 1H), 3.16-3.04 (m, 1H), 1.97-1.85 (m, 1H), 1.20 (t, 3H, J = 7.1 Hz), 0.98 (d, 3H, J = 6.8 Hz), 0.78 (d, 3H, J = 6.8 Hz). 330 HCl 1H-NMR (DMSO-d6) δ: 12.52 (br s, 1H), 8.66 (s, 1H), 7.67 (s, 1H), 7.37-7.30 (m, 2H), 7.19-7.11 (m, 2H), 4.46-4.33 (m, 2H), 4.20 (s, 2H), 4.14-4.04 (m, 1H), 3.86-3.75 (m, 1H), 3.29-3.18 (m, 1H), 1.22 (d, 3H, J = 6.6 Hz), 1.19 (t, 3H, J = 7.2 Hz). 331 HCl 1H-NMR (DMSO-d6) δ: 12.68 (br s, 1H), 8.83 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.77 (d, 1H, J = 13.7 Hz), 4.55 (d, 1H, J = 13.7 Hz), 4.47 (s, 2H), 4.16-3.03 (m, 5H), 3.44 (sep, 1H, J = 6.6 Hz), 1.63 (s, 3H), 1.49 (d, 3H, J = 6.6 Hz), 1.42 (d, 3H, J = 6.6 Hz), 1.09-1.00 (m, 3H). -
TABLE 1-92 No. structural formula salt 1H-NMR 332 HCl 1H-NMR (DMSO-d6) δ: 12.50 (br s, 1H), 8.95 (s, 1H), 7.44-7.36 (m, 2H), 7.22-7.15 (m, 2H), 4.69 (dd, 1H, J = 14.0, 1.5 Hz), 4.47 (s, 2H), 4.39 (dd, 1H, J = 14.0, 4.2 Hz), 4.04-3.98 (m, 1H), 3.97-3.92 (m, 1H), 3.51-3.43 (m, 1H), 3.26-3.18 (m, 1H), 3.18 (s, 3H), 1.19 (t, 3H, J = 7.2 Hz), 1.10 (d, 3H, J = 6.2 Hz). 333 HCl 1H-NMR (DMSO-d6) δ: 8.76 (s, 1H), 7.67 (s, 1H), 7.36-7.30 (m, 2H), 7.18-7.11 (m, 2H), 4.64 (dd, 1H, J = 13.6, 1.5 Hz), 4.37 (dd, 1H, J = 13.6, 4.0 Hz), 4.20 (s, 2H), 4.06-3.97 (m, 1H), 3.95-3.90 (m, 1H), 3.51-3.40 (m, 1H), 3.27-3.19 (m, 1H), 3.19 (s, 3H), 1.19 (t, 3H, J = 6.8 Hz), 1.08 (d, 3H, J = 6.4 Hz). 334 HCl 1H-NMR (DMSO-d6) δ: 12.47 (br s, 1H), 8.96 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.68 (dd, 1H, J = 13.9, 1.3 Hz), 4.47 (s, 2H), 4.35 (dd, 1H, J = 13.9, 3.5 Hz), 4.14-4.06 (m, 1H), 3.98-3.93 (m, 1H), 3.41 (sep, 1H, J = 6.7 Hz), 3.24 (s, 3H), 1.39 (d, 3H, J = 6.7 Hz), 1.34 (d, 3H, J = 6.7 Hz), 1.02 (d, 3H, J = 6.3 Hz). 335 HCl 1H-NMR (DMSO-d6) δ: 12.85 (br s, 1H), 8.54 (s, 1H), 7.58-7.50 (m, 1H), 7.33-7.25 (m, 1H), 7.15-7.08 (m, 1H), 4.49 (s, 2H), 4.21 (d, 1H, J = 13.9 Hz), 3.97 (d, 1H, J = 13.9 Hz), 3.07 (s, 3H), 2.91 (s, 6H), 1.97 (s, 3H). -
TABLE 1-93 No. structural formula salt 1H-NMR 336 HCl 1H-NMR (DMSO-d6) δ: 12.75 (br s, 1H), 8.46 (s, 1H), 7.69 (s, 1H), 7.50-7.42 (m, 1H), 7.29-7.21 (m, 1H), 7.11-7.05 (m, 1H), 4.22 (s, 2H), 4.21 (d, 1H, J = 14.0 Hz), 3.93 (d, 1H, J = 14.0 Hz), 3.07 (s, 3H), 2.89 (s, 6H), 1.93 (s, 3H). 337 HCl 1H-NMR (DMSO-d6) δ: 12.86 (br s, 1H), 8.83 (s, 1H), 7.45-7.39 (m, 2H), 7.23-7.16 (m, 2H), 5.02-4.94 (m, 1H), 4.47 (s, 2H), 4.40-4.29 (m, 1H), 3.83-3.56 (m, 4H), 3.26 (s, 3H), 1.64-1.43 (m, 4H), 0.92-0.78 (m, 6H). -
TABLE 1-94 No. structural formula salt 1H-NMR 338 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.92 (s, 1H), 7.44-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.78 (quint, 1H, J = 6.9 Hz), 4.71 (ddd, 1H, J = 6.4, 4.0, 1.6 Hz), 4.47 (s, 2H), 3.87 (dd, 1H, J = 13.7, 1.6 Hz), 3.78 (dd, 1H, J = 13.7, 4.0 Hz), 3.58 (dq, 1H, J = 6.4, 6.0 Hz), 3.22 (s, 3H), 1.19 (d, 3H, J = 6.9 Hz), 1.17 (d, 3H, J = 6.9 Hz), 1.03 (d, 3H, J = 6.0 Hz). 339 1H-NMR (DMSO-d6) δ: 8.21 (s, 1H), 7.42-7.39 (m, 2H), 7.20-7.16 (m, 2H), 4.85 (quint, 1H, J = 6.6 Hz), 4.71-4.65 (m, 1H), 4.41 (s, 2H), 3.58-3.53 (m, 3H), 3.48-3.44 (m, 1H), 3.24 (s, 3H), 1.09 (d, 6H, J = 6.6 Hz). 340 HCl 1H-NMR (DMSO-d6) δ: 12.82 (br s, 1H), 8.72 (s, 1H), 7.44-7.41 (m, 2H), 7.21-7.17 (m, 2H), 4.77 (sep, 1H, J = 6.6 Hz), 4.65 (ddd, 1H, J = 8.2, 4.1, 0.9 Hz), 4.47 (s, 2H), 3.88 (dd, 1H, J = 14.0, 4.1 Hz), 3.76 (dd, 1H, J = 14.0, 0.9 Hz), 3.52 (dq, 1H, J = 8.2, 6.2 Hz), 3.03 (s, 3H), 1.21 (d, 3H, J = 6.2 Hz), 1.20 (d, 3H, J = 6.6 Hz), 1.17 (d, 3H, J = 6.6 Hz). 341 HCl 1H-NMR (DMSO-d6) δ: 8.95 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.68 (dd, 1H, J = 13.8, 1.5 Hz), 4.47 (s, 2H), 4.35 (dd, 1H, J = 13.8, 3.9 Hz), 4.10 (quint, 1H, J = 6.6 Hz), 3.96 (ddd, 1H, J = 6.6, 3.9, 1.5 Hz), 3.41 (dq, 1H, J = 6.6, 6.4 Hz), 3.24 (s, 3H), 1.39 (d, 3H, J = 6.6 Hz), 1.34 (d, 3H, J = 6.6 Hz), 1.02 (d, 3H, J = 6.4 Hz). 342 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8 72 (s, 1H), 7.45-7.41 (m, 3H), 7.22-7.17 (m, 2H), 4.77 (quint, 1H, J = 6.8 Hz), 4.60 (ddd, 1H, J = 8.4, 4.2, 0.9 Hz), 4.47 (s, 2H), 3.88 (dd, 1H, J = 14.3, 4.2 Hz), 3.74 (dd, 1H, J = 14.3, 0.9 Hz), 3.56 (dq, 1H, J = 8.4, 6.2 Hz), 3.41 (dq, 1H, J = 9.5, 7.1 Hz), 2.91 (dq, 1H, J = 9.5, 7.1 Hz), 1.22 (d, 3H, J = 6.2 Hz), 1.20 (d, 3H, J = 6.8 Hz), 1.17 (d, 3H, J = 6.8 Hz), 0.75 (t, 3H, J = 7.1 Hz). -
TABLE 1-95 No. structural formula salt 1H-NMR 343 HCl 1H-NMR (DMSO-d6) δ: 8.85 (s, 1H), 7.43-7.39 (m, 2H), 7.21-7.15 (m, 2H), 4.66 (dd, 1H, J = 12.4, 1.5 Hz), 4.48 (sep, 1H, J = 6.6 Hz), 4.47 (s, 2H), 4.35 (dd, 1H, J = 13.2, 3.7 Hz), 4.20-4.16 (m, 1H), 3.54 (dd, 1H, J = 10.5, 4.1 Hz), 3.45-3.30 (m, 3H), 1.30 (d, 3H, J = 6.6 Hz), 1.28 (d, 3H, J = 6.6 Hz), 0.96 (t, 3H, J = 6.9 Hz). 344 1H-NMR (DMSO-d6) δ: 12.81 (s, 1H), 8.80 (s, 1H), 7.44-7.39 (m, 2H), 7.22-7.16 (m, 2H), 4.99-4.95 (m, 1H), 4.77 (sep, 1H, J = 6.7 Hz), 4.47 (s, 2H), 3.84 (dd, 1H, J = 13.7, 3.9 Hz), 3.75 (dd, 1H, J = 13.9, 1.6 Hz), 3.63 (dd, 1H, J = 10.2, 6.0 Hz), 3.57 (dd, 1H, J = 10.2, 7.7 Hz), 3.25 (s, 3H), 1.16 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 345 1H-NMR (DMSO-d6) δ: 8.10 (s, 1H), 7.41-7.36 (m, 2H), 7.20-7.14 (m, 2H), 4.83 (quint, 1H, J = 6.7 Hz), 4.62-4.57 (m, 1H), 4.38 (s, 2H), 3.57-3.44 (m, 4H), 3.25 (s, 3H), 1.05 (d, 6H, J = 6.7 Hz). 346 1H-NMR (DMSO-d6) δ: 12.44 (br s, 1H), 8.85 (s, 1H), 7.44-7.37 (m, 2H), 7.23-7.14 (m, 2H), 4.70- 4.61 (m, 1H), 4.54-4.41 (m, 1H), 4.47 (s, 2H), 4.39-4.30 (m, 1H), 4.25-4.14 (m, 1H), 3.53-3.34 (m, 2H), 3.21 (s, 3H), 1.30 (d, 3H, J = 6.3 Hz), 1.28 (d, 3H, J = 6.3 Hz). 347 1H-NMR (DMSO-d6) δ: 8.02 (br s, 1H), 7.42-7.33 (m, 2H), 7.21-7.13 (m, 2H), 4.73-4.59 (m, 1H), 4.38 (s, 2H), 4.34-4.22 (m, 1H), 4.07-3.96 (m, 1H), 3.89-3.78 (m, 1H), 3.30-3.05 (m, 2H), 3.24 (s, 3H), 1.13 (d, 3H, J = 7.0 Hz), 1.06 (d, 3H, J = 7.0 Hz). -
TABLE 1-96 No. structural formula salt 1H-NMR 348 HCl 1H-NMR (DMSO-d6) δ: 12.81 (br s, 1H), 8.72 (s, 1H), 7.47-7.37 (m, 2H), 7.23-7.14 (m, 2H), 4.83- 4.71 (m, 1H), 4.69-4.60 (m, 1H), 4.47 (s, 2H), 3.88 (dd, 1H, J = 14.1, 3.7 Hz), 3.81-3.71 (m, 1H), 3.56-3.47 (m, 1H), 3.03 (s, 3H), 1.24-1.13 (m, 9H). 349 HCl 1H-NMR (DMSO-d6) δ: 12.52 (s, 1H), 8.90 (s, 1H), 7.40 (dd, 2H, J = 8.3, 5.6 Hz), 7.17 (dd, 2H, J = 8.3, 8.4 Hz), 4.81 (d, 1H, J = 14.1 Hz), 4.46 (s, 2H), 4.38-4.27 (m, 2H), 3.98 (s, 1H), 3.62-3.56 (m, 1H), 3.04 (s, 3H), 1.33 (t, 6H, J = 6.0 Hz), 1.18 (d, 3H, J = 7.0 Hz). 350 HCl 1H-NMR (DMSO-d6) δ: 12.80 (s, 1H), 8.91 (s, 1H), 7.43-7.39 (m, 2H), 7.21-7.15 (m, 2H), 4.78 (quint, 1H, J = 6.9 Hz), 4.70 (dd, 1H, J = 6.4, 4.2 Hz), 4.47 (s, 2H), 3.86 (d, 1H, J = 13.7 Hz), 3.77 (dd, 1H, J = 13.7, 4.2 Hz), 3.58 (dq, 1H, J = 6.4, 6.0 Hz), 3.21 (s, 3H), 1.19 (d, 3H, J = 6.9 Hz), 1.17 (d, 3H, J = 6.9 Hz), 1.02 (d, 3H, J = 6.0 Hz). 351 HCl 1H-NMR (DMSO-d6) δ: 12.71 (br s, 1H), 8.56 (s, 1H), 7.44-7.36 (m, 2H), 7.23-7.14 (m, 2H), 4.70- 4.60 (m, 1H), 4.50-4.38 (m, 1H), 4.47 (s, 2H), 4.08-4.02 (m, 1H), 3.61 (dd, 1H, J = 11.1, 3.7 Hz), 3.53 (dd, 1H, J = 11.1, 3.9 Hz), 3.27 (q, 2H, J = 7.4 Hz), 1.75 (d, 3H, J = 6.5 Hz), 1.32 (t, 6H, J = 7.0 Hz), 0.82 (t, 3H, J = 7.0 Hz). 352 1H-NMR (DMSO-d6) δ: 12.79 (br s, 1H), 8.74 (s, 1H), 7.45-7.38 (m, 2H), 7.23-7.15 (m, 2H), 5.32- 5.23 (m, 1H), 4.81-4.65 (m, 2H), 4.47 (s, 2H), 3.86-3.64 (m, 3H), 3.60-3.51 (m, 1H), 1.16 (d, 3H, J = 6.7 Hz), 1.15 (d, 3H, J = 6.7 Hz). -
TABLE 1-97 No. structural formula salt 1H-NMR 353 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.56 (s, 1H), 7.44-7.36 (m, 2H), 7.23-7.14 (m, 2H), 4.70- 4.59 (m, 1H), 4.49-4.37 (m, 1H), 4.47 (s, 2H), 4.11-4.03 (m, 1H), 3.59-3.46 (m, 2H), 3.11 (s, 3H), 1.75 (d, 3H, J = 6.5 Hz), 1.32 (t, 6H, J = 6.5 Hz). 354 HBr 1H-NMR (DMSO-D6) δ: 8.80 (s, 1H), 7.43-7.37 (m, 2H), 7.21-7.14 (m, 2H), 4.70-4.64 (m, 1H), 4.55- 4.44 (m, 3H), 4.33 (dd, 1H, J = 13.3, 3.6 Hz), 3.99- 3.93 (m, 1H), 3.56 (dd, 1H, J = 11.4, 3.7 Hz), 3.35 (dd, 1H, J = 11.4, 8.1 Hz), 1.28 (d, 3H, J = 6.7 Hz), 1.27 (d, 3H, J = 6.7 Hz). 355 HCl 1H-NMR (DMSO-d6) δ: 12.78 (br s, 1H), 8.76 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.14 (m, 2H), 4.47 (s, 2H), 4.34 (s, 2H), 3.55 (q, 2H, J = 7.1 Hz), 1.36 (s, 6H), 1.19 (t, 3H, J = 7.1 Hz). 356 HCl 1H-NMR (DMSO-d6) δ: 12.76 (s, 1H), 8.77 (s, 1H), 7.42-7.36 (m, 2H), 7.21-7.14 (m, 2H), 4.71 (ddd, 1H, J = 8.0, 2.2, 2.0 Hz), 4.56 (quint, 1H, J = 6.9 Hz), 4.46 (s, 2H), 4.19-4.09 (m, 2H), 3.93 (dd, 1H, J = 11.7, 2.2 Hz), 3.45 (s, 3H), 1.29 (d, 3H, J = 6.9 Hz), 1.27 (d, 3H, J = 6.9 Hz), 1.04 (d, 3H, J = 6.5 Hz). 357 HCl 1H-NMR (DMSO-d6) δ: 12.76 (s, 1H), 8.80 (s, 1H), 7.41 (tt, 2H, J = 8.7, 3.1 Hz), 7.18 (tt, 2H, J = 8.9, 2.5 Hz), 4.94-4.88 (m, 1H), 4.46 (s, 2H), 4.06 (dd, 1H, J = 13.8, 4.3 Hz), 3.73-3.67 (m, 2H), 3.64-3.52 (m, 2H), 3.49-3.27 (m, 3H), 1.63-1.53 (m, 2H), 1.01 (t, 3H, J = 7.0 Hz), 0.89 (t, 3H, J = 8.2 Hz). -
TABLE 1-98 No. structural formula salt 1H-NMR 358 HCl 1H-NMR (DMSO-d6) δ: 12.90 (br s, 1H), 8.37 (s, 1H), 8.07 (s, 1H), 8.00 (s, 1H), 7.45-7.37 (m, 2H), 7.23-7.13 (m, 2H), 5.28-5.18 (m, 1H), 4.89-4.60 (m, 3H), 4.44 (s, 2H), 3.98-3.83 (m, 2H), 1.25 (d, 3H, J = 6.7 Hz), 1.18 (d, 3H, J = 6.7 Hz). 359 HCl 1H-NMR (DMSO-d6) δ: 12.88 (br s, 1H), 8.99 (s, 1H), 8.20 (s, 1H), 7.46-7.37 (m, 2H), 7.24-7.14 (m, 2H), 5.48-5.38 (m, 1H), 5.37-5.19 (m, 2H), 4.84- 4.72 (m, 1H), 4.45 (s, 2H), 3.96 (d, 2H, J = 3.0 Hz), 1.25 (d, 3H, J = 6.7 Hz), 1.17 (d, 3H, J = 6.7 Hz). 360 HCl 1H-NMR (DMSO-d6) δ: 12.85 (br s, 1H), 8.75 (s, 1H), 7.45-7.37 (m, 2H), 7.22-7.14 (m, 2H), 5.52- 5.41 (m, 1H), 4.81-4.71 (m, 1H), 4.47 (s, 2H), 3.98-3.81 (m, 2H), 3.66 (d, 2H, J = 7.0 Hz), 1.29 (s, 9H), 1.21 (d, 3H, J = 6.5 Hz), 1.15 (d, 3H, J = 6.5 Hz). 361 HCl 1H-NMR (DMSO-d6) δ: 12.94 (s, 1H), 8.80 (s, 1H), 7.43-7.39 (m, 2H), 7.21-7.15 (m, 2H), 4.89-4.85 (m, 1H), 4.47 (s, 2H), 3.96 (dd, 1H, J = 14.0, 1.5 Hz), 3.87 (dd, 1H, J = 14.0, 3.0 Hz), 3.70 (dd, 1H, J = 10.2, 6.7 Hz), 3.62 (dd, 1H, J = 10.2, 7.5 Hz), 3.50-3.41 (m, 2H), 1.49 (s, 9H), 1.05 (t, 3H, J = 6.9 Hz). 362 HCl 1H-NMR (DMSO-d6) δ: 8.80 (s, 1H), 7.44-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.94-4.89 (m, 1H), 4.47 (s, 2H), 4.06 (dd, 1H, J = 13.6, 4.3 Hz), 3.77-3.72 (m, 2H), 3.70-3.46 (m, 5H), 3.38-3.31 (m, 3H), 3.11 (s, 3H), 1.60-1.52 (m, 2H), 1.37-1.27 (m, 2H), 0.92 (t, 3H, J = 7.4 Hz). -
TABLE 1-99 No. structural formula salt 1H-NMR 363 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.82 (s, 1H), 7.46-7.38 (m, 2H), 7.24-7.14 (m, 2H), 5.01- 4.91 (br m, 1H), 4.77 (sep, 1H, J = 6.7 Hz), 4.47 (s, 2H), 3.88-3.54 (m, 4H), 3.41-3.24 (m, 2H), 1.41 (td, 2H, J = 13.9, 7.2 Hz), 1.17 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz), 0.74 (t, 3H, J = 7.2 Hz). 364 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.80 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.13 (m, 2H), 4.99- 4.89 (m, 1H), 4.76 (sep, 1H, J = 7.0), 4.46 (s, 2H), 3.88-3.52 (m, 4H), 3.43-3.24 (m, 2H), 1.40-1.29 (m, 2H), 1.22-1.09 (m, 8H), 0.69 (t, 3H, J = 7.3 Hz). 365 HCl 1H-NMR (DMSO-d6) δ: 12.84 (br s, 1H), 8.83 (s, 1H), 7.46-7.38 (m, 2H), 7.23-7.15 (m, 2H), 4.94- 4.71 (m, 2H), 4.47 (s, 2H), 3.85-3.45 (m, 5H), 1.21-1.12 (m, 6H), 1.02 (d, 3H, J = 6.0 Hz), 0.96 (d, 3H, J = 6.3 Hz). 366 1H-NMR (DMSO-d6) δ: 12.77 (s, 1H), 8.80 (s, 1H), 7.45-7.38 (m, 2H), 7.23-7.14 (m, 2H), 4.91-4.83 (m, 1H), 4.83-4.73 (m, 2H), 4.47 (s, 2H), 3.86 (dd, 1H, J = 14.1, 3.5 Hz), 3.76-3.67 (m, 1H), 3.54-3.43 (m, 1H), 1.96-1.71 (m, 2H), 1.19 (d, 3H, J = 7.0 Hz), 1.16 (d, 3H, J = 6.7 Hz). 367 HCl 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 8.84 (s, 1H), 7.45-7.37 (m, 2H), 7.23-7.14 (m, 2H), 4.69- 4.63 (m, 1H), 4.53-4.44 (m, 3H), 4.35 (dd, 1H, J = 13.3, 4.0 Hz), 4.18-4.11 (m, 1H), 3.55 (dd, 1H, J = 10.5, 3.6 Hz), 3.48-3.39 (m, 2H), 1.30 (d, 3H, J = 6.9 Hz), 1.28 (d, 3H, J = 6.9 Hz), 0.95-0.90 (m, 6H). -
TABLE 1-100 No. structural formula salt 1H-NMR 368 HCl 1H-NMR (DMSO-d6) δ: 8.78 (s, 1H), 7.44-7.40 (m, 2H), 7.22-7.16 (m, 2H), 4.74-4.70 (m, 1H), 4.74 (quint, 1H, J = 7.1 Hz), 4.47 (s, 2H), 3.91-3.82 (m, 2H), 3.05 (s, 3H), 1.20 (d, 3H, J = 7.1 Hz), 1.19 (s, 3H), 1.18 (d, 3H, J = 7.1 Hz), 1.10 (s, 3H). 369 HCl 1H-NMR (DMSO-d6) δ: 12.80 (s, 1H), 8.81 (s, 1H), 7.44-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.95 (s, 1H), 4.80-4.73 (m, 1H), 4.47 (s, 2H), 3.85 (dd, 1H, J = 13.7, 4.0 Hz), 3.75 (d, 1H, J = 13.7 Hz), 3.67 (dd, 1H, J = 10.3, 5.4 Hz), 3.58 (dd, 1H, J = 10.3, 7.7 Hz), 3.45 (dt, 1H, J = 11.4, 4.6 Hz), 3.34 (dt, 1H, J = 11.4, 4.8 Hz), 3.20-3.13 (m, 2H), 3.00 (s, 3H), 1.64-1.58 (m, 2H), 1.16 (dd, 6H, J = 6.9, 2.4 Hz). 370 HCl 1H-NMR (DMSO-d6) δ: 12.78 (br s, 1H), 8.72 (s, 1H), 7.46-7.38 (m, 2H), 7.24-7.15 (m, 2H), 4.91- 4.81 (m, 1H), 4.84-4.72 (m, 1H), 4.47 (s, 2H), 3.89-3.65 (m, 2H), 3.45-3.35 (m, 1H), 3.20-3.07 (m, 1H), 3.18 (s, 3H), 2.07-1.93 (m, 1H), 1.93-1.80 (m, 1H), 1.18 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 371 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.75 (s, 1H), 7.47-7.37 (m, 2H), 7.24-7.15 (m, 2H), 4.91- 4.73 (m, 2H), 4.47 (s, 2H), 3.90-3.63 (m, 2H), 3.58-3.01 (m, 4H), 2.11-1.79 (m, 2H), 1.19 (d, 3H, J = 7.2 Hz), 1.16 (d, 3H, J = 7.2 Hz), 1.03 (t, 3H, J = 7.2 Hz). 372 HCl 1H-NMR (DMSO-d6) δ: 12.81 (br s, 1H), 8.80 (s, 1H), 7.44-7.36 (m, 2H), 7.23-7.14 (m, 2H), 4.93- 4.84 (m, 1H), 4.47 (s, 2H), 4.04 (dd, 1H, J = 13.7, 4.0 Hz), 3.69 (dd, 1H, J = 10.5, 5.6 Hz), 3.66-3.59 (m, 2H), 3.53-3.32 (m, 5H), 2.93-2.85 (m, 1H), 0.96-0.69 (m, 4H), 0.93 (d, 3H, J = 6.0 Hz), 0.90 (d, 3H, J = 6.0 Hz). -
TABLE 1-101 No. structural formula salt 1H-NMR 373 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.80 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 5.00- 4.91 (m, 1H), 4.77 (sep, 1H, J = 6.9 Hz), 4.47 (s, 2H), 3.84 (dd, 1H, J = 13.7, 4.0 Hz), 3.80-3.74 (m, 1H), 3.71 (dd, 1H, J = 10.3, 5.8 Hz), 3.65 (dd, 1H, J = 10.3, 7.9 Hz), 3.54-3.32 (m, 5H), 1.17 (d, 3H, J = 6.9 Hz), 1.16 (d, 3H, J = 6.9 Hz), 0.92 (d, 3H, J = 6.0 Hz), 0.89 (d, 3H, J = 6.0 Hz). 374 HCl 1H-NMR (DMSO-d6) δ: 8.89 (s, 1H), 7.70 (d, 1H, J = 2.2 Hz), 7.45 (d, 1H, J = 1.8 Hz), 7.44-7.39 (m, 2H), 7.22-7.16 (m, 2H), 6.20 (dd, 1H, J = 2.2, 1.8 Hz), 4.86-4.82 (m, 1H), 4.78 (quint, 1H, J = 7.1 Hz), 4.47 (s, 2H), 4.26-4.14 (m, 2H), 3.84 (dd, 1H, J = 13.6, 3.6 Hz), 3.68 (dd, 1H, J = 13.6, 0.9 Hz), 2.27-2.20 (m, 2H), 1.18 (d, 3H, J = 7.1 Hz), 1.14 (d, 3H, J = 7.1 Hz). 375 HCl 1H-NMR (DMSO-d6) δ: 13.19 (br s, 1H), 8.41 (s, 1H), 7.46-7.38 (m, 2H), 7.23-7.14 (m, 2H), 4.80- 4.68 (m, 1H), 4.47 (s, 2H), 4.08 (d, 1H, J = 14.1 Hz), 3.81 (d, 1H, J = 14.1 Hz), 2.93 (s, 6H), 2.61- 2.11 (m, 2H), 1.19 (d, 3H, J = 7.0 Hz), 1.16 (d, 3H, J = 7.0 Hz), 0.91 (t, 3H, J = 7.2 Hz). 376 HCl 1H-NMR (DMSO-d6) δ: 13.09 (br s, 1H), 8.30 (s, 1H), 7.70 (s, 1H), 7.38-7.28 (m, 2H), 7.19-7.10 (m, 2H), 4.80-4.69 (m, 1H), 4.20 (s, 2H), 4.06 (d, 1H, J = 14.1 Hz), 3.78 (d, 1H, J = 14.1 Hz), 2.91 (s, 6H), 2.47-2.07 (m, 2H), 1.22-1.12 (m, 6H), 0.87 (t, 3H, J = 7.2 Hz). 377 HCl 1H-NMR (DMSO-d6) δ: 12.78 (br s, 1H), 8.96 (s, 1H), 7.43-7.40 (m, 2H), 7.21-7.16 (m, 2H), 4.87- 4.80 (m, 1H), 4.80 (quint, 1H, J = 6.6 Hz), 4.47 (s, 2H), 4.23 (t, 2H, J = 7.9 Hz), 3.87-3.82 (m, 1H), 3.76-3.73 (m, 1H), 3.57-3.46 (m, 2H), 3.33-3.25 (m, 1H), 3.19-3.11 (m, 1H), 1.95 (dt, 2H, J = 7.1, 7.9 Hz), 1.22 (d, 3H, J = 6.6 Hz), 1.16 (d, 3H, J = 6.6 Hz). -
TABLE 1-102 No. structural formula salt 1H-NMR 378 HCl 1H-NMR (DMSO-d6) δ: 12.75 (br s, 1H), 8.75 (s, 1H), 7.44-7.40 (m, 2H), 7.21-7.16 (m, 2H), 4.88- 4.83 (m, 1H), 4.78 (sep, 1H, J = 6.7 Hz), 4.47 (s, 2H), 3.85 (dd, 1H, J = 13.6, 3.6 Hz), 3.73 (dd, 1H, J = 13.6, 0.9 Hz), 3.53-3.48 (m, 1H), 3.45-3.31 (m, 4H), 3.29-3.18 (m, 1H), 3.15 (s, 3H), 2.04-1.96 (m, 1H), 1.91-1.83 (m, 1H), 1.19 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 379 HCl 1H-NMR (DMSO-d6) δ: 12.78 (br s, 1H), 8.91 (s, 1H), 7.44-7.39 (m, 2H), 7.22-7.16 (m, 2H), 4.83- 4.81 (m, 1H), 4.79 (sep, 1H, J = 6.7 Hz), 4.47 (s, 2H), 3.83 (dd, 1H, J = 13.8, 3.6 Hz), 3.72 (dd, 1H, J = 13.8, 1.5 Hz), 3.35-3.22 (m, 2H), 3.18 (s, 3H), 1.81-1.71 (m, 1H), 1.70-1.58 (m, 2H), 1.37-1.33 (m, 1H), 1.18 (d, 3H, J = 6.7 Hz), 1.16 (d, 3H, J = 6.7 Hz). 380 HCl 1H-NMR (DMSO-d6) δ: 12.85 (br s, 1H), 8.83 (s, 1H), 7.46-7.39 (m, 2H), 7.23-7.15 (m, 2H), 4.92- 4.83 (br m, 1H), 4.81-4.70 (m, 1H), 4.47 (s, 2H), 3.85-3.62 (m, 4H), 3.59-3.48 (m, 1H), 3.26-3.18 (m, 2H), 3.17 (s, 3H), 1.21-1.12 (m, 6H), 0.91 (d, 3H, J = 6.5 Hz). 381 HCl 1H-NMR (DMSO-d6) δ: 12.85 (br s, 1H), 8.83 (s, 1H), 7.45-7.37 (m, 2H), 7.23-7.15 (m, 2H), 4.86- 4.76 (br m, 1H), 4.47 (s, 2H), 4.02 (dd, 1H, J = 13.4, 4.2 Hz), 3.77-3.58 (m, 3H), 3.57-3.48 (m, 1H), 3.26-3.19 (m, 2H), 3.18 (s, 3H), 2.93-2.84 (m, 1H), 0.92 (d, 3H, J = 6.3 Hz), 0.91-0.70 (m, 4H). 382 HCl 1H-NMR (DMSO-d6) δ: 12.80 (s, 1H), 8.71 (s, 1H), 7.44-7.42 (m, 2H), 7.21-7.17 (m, 2H), 4.78 (quint, 1H, J = 6.9 Hz), 4.70 (dd, 1H, J = 9.0, 3.7 Hz), 4.47 (s, 2H), 3.87 (dd, 1H, J = 14.5, 3.7 Hz), 3.74 (d, 1H, J = 14.5 Hz), 3.32 (ddd, 1H, J = 9.0, 3.6, 6.0 Hz), 2.96 (s, 3H), 1.79-1.70 (m, 1H), 1.54-1.43 (m, 1H), 1.19 (dd, 6H, J = 10.9, 6.9 Hz), 0.94 (t, 3H, J = 7.5 Hz). -
TABLE 1-103 No. structural formula salt 1H-NMR 383 HCl 1H-NMR (DMSO-d6) δ: 12.88 (s, 1H), 7.44-7.40 (m, 2H), 7.21-7.16 (m, 2H), 4.86-4.82 (m, 1H), 4.77 (quint, 1H, J = 6.9 Hz), 4.47 (s, 2H), 3.83- 3.78 (m, 2H), 3.47-3.42 (m, 1H), 3.18 (s, 3H), 1.53-1.47 (m, 1H), 1.33-1.25 (m, 1H), 1.19 (d, 3H, J = 6.9 Hz), 1.17 (d, 3H, J = 6.9 Hz), 0.87 (t, 3H, J = 7.5 Hz). 384 HCl 1H-NMR (DMSO-d6) δ: 12.82 (br s, 1H), 8.81 (s, 1H), 7.46-7.36 (m, 2H), 7.23-7.15 (m, 2H), 4.93- 4.86 (m, 1H), 4.47 (s, 2H), 4.04 (dd, 1H, J = 13.2, 4.2 Hz), 3.75-3.57 (m, 3H), 3.39-3.25 (m, 3H), 3.10 (s, 3H), 2.92-2.87 (m, 1H), 0.93 (d, 3H, J = 5.8 Hz), 0.91-0.67 (m, 4H). 385 HCl 1H-NMR (DMSO-d6) δ: 12.84 (br s, 1H), 8.82 (s, 1H), 7.45-7.38 (m, 2H), 7.23-7.15 (m, 2H), 5.00- 4.92 (br m, 1H), 4.83-4.72 (m, 1H), 4.47 (s, 2H), 3.89-3.59 (m, 4H), 3.41-3.24 (m, 3H), 3.09 (s, 3H), 1.17 (d, 3H, J = 6.7 Hz), 1.15 (d, 3H, J = 6.7 Hz), 0.93 (d, 3H, J = 6.3 Hz). 386 HCl 1H-NMR (DMSO-d6) δ: 12.69 (br s, 1H), 8.56 (s, 1H), 7.66 (s, 1H), 7.39-7.30 (m, 2H), 7.19-7.11 (m, 2H), 4.83-4.71 (m, 1H), 4.63-4.54 (m, 1H), 4.20 (s, 2H), 3.86 (dd, 1H, J = 14.1. 4.2 Hz), 3.78-3.70 (m, 1H), 3.55-3.45 (m, 1H), 3.02 (s, 3H), 1.23-1.14 (m, 9H). 387 HCl 1H-NMR (DMSO-d6) δ: 12.68 (br s, 1H), 8.74 (s, 1H), 7.68 (s, 1H), 7.37-7.30 (m, 2H), 7.19-7.11 (m, 2H), 4.84-4.73 (m, 1H), 4.69-4.63 (m, 1H), 4.20 (s, 2H), 3.89-3.81 (m, 1H), 3.76 (dd, 1H, J = 13.7, 4.0 Hz), 3.60-3.52 (m, 1H), 3.22 (s, 3H), 1.21-1.15 (m, 6H), 1.00 (d, 3H, J = 6.0 Hz). -
TABLE 1-104 No. structural formula salt 1H-NMR 388 HCl 1H-NMR (DMSO-d6) δ: 8.74 (s, 1H), 7.68 (s, 1H), 7.37-7.31 (m, 2H), 7.18-7.11 (m, 2H), 4.84-4.73 (m, 1H), 4.69-4.63 (m, 1H), 4.20 (s, 2H), 3.89-3.81 (m, 1H), 3.76 (dd, 1H, J = 13.7, 4.0 Hz), 3.60-3.51 (m, 1H), 3.22 (s, 3H), 1.21-1.14 (m, 6H), 1.00 (d, 3H, J = 6.0 Hz). 389 HCl 1H-NMR (DMSO-d6) δ: 12.81 (s, 1H), 8.73 (s, 1H), 7.45-7.42 (m, 2H), 7.21-7.18 (m, 2H), 4.82- 4.75 (m, 1H), 4.65 (dd, 1H, J = 9.1, 2.6 Hz), 4.47 (s, 3H), 3.87 (dd, 1H, J = 13.3, 3.8 Hz), 3.74 (d, 1H, J = 13.3 Hz), 3.39-3.27 (m, 2H), 2.77-2.73 (m, 1H), 1.79-1.70 (m, 1H), 1.51-1.43 (m, 1H), 1.20 (d, 3H, J = 6.9 Hz), 1.17 (d, 3H, J = 6.9 Hz), 0.96 (t, 3H, J = 7.5 Hz), 0.74 (t, 3H, J = 6.9 Hz). 390 HCl 1H-NMR (DMSO-d6) δ: 12.72 (s, 1H), 7.44-7.42 (m, 2H), 7.21-7.17 (m, 2H), 4.62 (d, 1H, J = 5.6 Hz), 4.47 (s, 2H), 4.05 (dd, 1H, J = 13.9, 3.8 Hz), 3.57 (d, 1H, J = 13.3 Hz), 3.47-3.45 (m, 1H), 3.34 (dd, 1H, J = 9.3, 6.9 Hz), 2.94 (dd, 1H, J = 7.7, 3.6 Hz), 2.86 (dd, 1H, J = 9.3, 7.3 Hz), 1.55-1.38 (m, 2H), 0.94 (t, 3H, J = 7.0 Hz), 0.78 (t, 3H, J = 6.5 Hz), 0.42-0.36 (m, 1H), 0.34-0.27 (m, 2H), 0.24- 0.20 (m, 1H). 391 HCl 1H-NMR (DMSO-d6) δ: 12.90 (s, 1H), 8.86 (s, 1H), 7.47-7.37 (m, 2H), 7.23-7.15 (m, 2H), 4.81- 4.65 (m, 1H), 4.47 (s, 2H), 4.41 (d, 1H, J = 12.1 Hz), 4.25 (d, 1H, J = 12.1 Hz), 4.06 (d, 1H, J = 14.1 Hz), 3.81 (d, 1H, J = 14.1 Hz), 3.75-3.63 (m, 2H), 3.62-3.36 (m, 2H), 3.21 (s, 3H), 3.11-2.73 (m, 6H), 1.16 (d, 3H, J = 6.8 Hz), 1.10 (d, 3H, J = 6.8 Hz). 392 HCl 1H-NMR (DMSO-d6) δ: 13.04 (s, 1H), 8.69 (s, 1H), 7.46-7.38 (m, 2H), 7.23-7.14 (m, 2H), 4.76-4.62 (m, 1H), 4.48 (s, 2H), 4.18-4.04 (m, 1H), 3.98 (d, 1H, J = 13.5 Hz), 3.94-3.82 (m, 2H), 3.78 (d, 1H, J = 13.5 Hz), 3.70-3.57 (m, 1H), 2.50-2.22 (m, 2H), 2.15-2.00 (m, 2H), 1.16 (t, 6H, J = 6.8 Hz), 1.03 (t, 3H, J = 7.5 Hz). -
TABLE 1-105 No. structural formula salt 1H-NMR 393 HCl 1H-NMR (DMSO-d6) δ: 8.80 (s, 1H), 8.16 (t, 1H, J = 5.5 Hz), 7.67 (s, 1H), 7.38-7.28 (m, 2H), 7.19- 7.10 (m, 2H), 4.76-4.63 (m, 1H), 4.20 (s, 2H), 4.17 (d, 1H, J = 11.9 Hz), 4.12 (d, 1H, J = 11.9 Hz), 4.03 (d, 1H, J = 13.9 Hz), 3.76 (d, 1H, J = 13.9 Hz), 3.40 (s, 3H), 3.21-2.92 (m, 2H), 1.13 (d, 3H, J = 6.8 Hz), 1.10 (d, 3H, J = 6.8 Hz), 0.99 (t, 3H, J = 7.5 Hz). 394 HCl 1H-NMR (DMSO-d6) δ: 8.88 (s, 1H), 8.17 (t, 1H, J = 5.1 Hz), 7.66 (s, 1H), 7.37-7.29 (m, 2H), 7.19- 7.10 (m, 2H), 4.76-4.64 (m, 1H), 4.33-4.16 (m, 2H), 4.20 (s, 2H), 4.04 (d, 1H, J = 13.9 Hz), 3.78 (d, 1H, J = 13.9 Hz), 3.72-3.66 (m, 2H), 3.57-3.50 (m, 2H), 3.25 (s, 3H), 3.20-2.96 (m, 2H), 1.14 (d, 3H, J = 6.8 Hz), 1.10 (d, 3H, J = 6.8 Hz), 1.04 (t, 3H, J = 7.3 Hz). 395 HCl 1H-NMR (DMSO-d6) δ: 12.50 (br s, 1H), 8.95 (s, 1H), 7.44-7.36 (m, 2H), 7.22-7.15 (m, 2H), 4.69 (dd, 1H, J = 14.0, 1.5 Hz), 4.47 (s, 2H), 4.39 (dd, 1H, J = 14.0, 4.2 Hz), 4.04-3.98 (m, 1H), 3.97-3.92 (m, 1H), 3.51-3.43 (m, 1H), 3.26-3.18 (m, 1H), 3.18 (s, 3H), 1.19 (t, 3H, J = 7.2 Hz), 1.10 (d, 3H, J = 6.2 Hz). 396 HCl 1H-NMR (DMSO-d6) δ: 12.92 (s, 1H), 8.77 (s, 1H), 7.47-7.37 (m, 2H), 7.23-7.14 (m, 2H), 4.79- 4.66 (m, 1H), 4.47 (s, 2H), 4.28 (d, 1H, J = 11.9 Hz), 4.12 (d, 1H, J = 11.9 Hz), 4.06 (d, 1H, J = 14.3 Hz), 3.82 (d, 1H, J = 14.3 Hz), 3.47-3.29 (m, 5H), 3.05-2.78 (m, 3H), 1.16 (d, 3H, J = 7.1 Hz), 1.12 (d, 3H, J = 7.1 Hz), 1.08-0.97 (m, 3H). 397 HCl 1H-NMR (DMSO-d6) δ: 12.93 (s, 1H), 8.85 (s, 1H), 7.48-7.34 (m, 2H), 7.24-7.13 (m, 2H), 4.77- 4.65 (m, 1H), 4.47 (s, 2H), 4.38 (d, 1H, J = 11.9 Hz), 4.23 (d, 1H, J = 11.9 Hz), 4.06 (d, 1H, J = 14.3 Hz), 3.82 (d, 1H, J = 14.3 Hz), 3.73-3.24 (m, 6H), 3.19 (s, 3H), 3.06-2.84 (m, 3H), 1.16 (d, 3H, J = 6.6 Hz), 1.12 (d, 3H, J = 6.6 Hz), 1.07-0.94 (m, 3H). -
TABLE 1-106 No. structural formula salt 1H-NMR 398 HCl 1H-NMR (DMSO-d6) δ: 12.69 (br s, 1H), 8.78 (s, 1H), 7.44-7.36 (m, 2H), 7.22-7.14 (m, 2H), 4.84- 4.79 (m, 1H), 4.47 (s, 2H), 4.46-4.37 (m, 1H), 4.22-4.13 (m, 2H), 4.01 (dd, 1H, J = 11.9, 2.2 Hz), 3.49-3.39 (m, 2H), 3.46 (s, 3H), 3.14 (s, 3H), 1.33 (d, 3H, J = 6.9 Hz), 1.30 (d, 3H, J = 6.9 Hz). 399 HCl 1H-NMR (DMSO-d6) δ: 12.75 (s, 1H), 8.73 (s, 1H), 7.47-7.39 (m, 2H), 7.23-7.15 (m, 2H), 4.60- 4.52 (m, 1H), 4.47 (s, 2H), 4.06 (dd, 1H, J = 14.1 4.0 Hz), 3.65-3.55 (m, 2H), 3.47-3.36 (m, 1H), 3.02-2.88 (m, 2H), 1.16 (d, 3H, J = 6.2 Hz), 0.94- 0.82 (m, 3H), 0.79 (t, 3H, J = 7.3 Hz), 0.75-0.64 (m, 1H). 400 HCl 1H-NMR (DMSO-d6) δ: 12.83 (s, 1H), 8.72 (s, 1H), 7.47-7.39 (m, 2H), 7.24-7.15 (m, 2H), 4.84- 4.71 (m, 1H), 4.60 (dd, 1H, J = 8.6, 2.6 Hz), 4.47 (s, 2H), 3.88 (dd, 1H, J = 14.3, 4.0 Hz), 3.75 (d, 1H, J = 13.9 Hz), 3.58-3.53 (m, 1H), 3.46-3.34 (m, 1H), 2.97-2.85 (m, 1H), 1.26-1.14 (m, 9H), 0.75 (t, 3H, J = 6.9 Hz). 401 HCl 1H-NMR (DMSO-d6) δ: 8.72 (s, 1H), 7.47-7.39 (m, 2H), 7.24-7.15 (m, 2H), 4.60-4.53 (m, 1H), 4.47 (s, 2H), 4.11 (dd, 1H, J = 14.1, 4.2 Hz), 3.75 (d, 1H, J = 13.5 Hz), 3.65-3.37 (m, 4H), 3.00-2.90 (m, 1H), 1.22 (d, 3H, J = 5.2 Hz), 1.16 (t, 3H, J = 7.1 Hz), 0.77 (t, 3H, J = 6.9 Hz). 402 HCl 1H-NMR (DMSO-d6) δ: 12.90 (s, 1H), 8.32 (s, 1H), 7.44-7.40 (m, 2H), 7.22-7.17 (m, 2H), 4.81-4.74 (m, 1H), 4.71 (t, 1H, J = 4.8 Hz), 4.47 (s, 2H), 3.87 (d, 1H, J = 12.5 Hz), 3.78 (dd, 1H, J = 13.9, 4.2 Hz), 3.71-3.65 (m, 1H), 3.57-3.50 (m, 1H), 3.17- 3.10 (m, 1H), 1.19 (t, 6H, J = 7.0 Hz), 1.06 (d, 3H, J = 6.0 Hz), 1.02 (t, 3H, J = 6.9 Hz). -
TABLE 1-107 No. structural formula salt 1H-NMR 403 HCl 1H-NMR (DMSO-d6) δ: 12.80 (s, 1H), 8.91 (s, 1H), 7.43-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.69 (t, 1H, J = 4.6 Hz), 4.47 (s, 2H), 4.02 (dd, 1H, J = 14.1, 4.4 Hz), 3.84 (d, 1H, J = 13.7 Hz), 3.73-3.67 (m, 1H), 3.65-3.58 (m, 1H), 3.56-3.39 (m, 2H), 3.21- 3.15 (m, 1H), 1.16 (t, 3H, J = 7.1 Hz), 1.07 (d, 3H, J = 6.0 Hz), 1.01 (t, 3H, J = 6.9 Hz). 404 HCl 1H-NMR (DMSO-d6) δ: 12.80 (s, 1H), 8.90 (s, 1H), 7.43-7.39 (m, 2H), 7.22-7.16 (m, 2H), 4.66 (t, 1H, J = 4.4 Hz), 4.47 (s, 2H), 3.98 (dd, 1H, J = 13.9, 4.2 Hz), 3.74-3.65 (m, 2H), 3.56-3.48 (m, 1H), 3.20-3.14 (m, 1H), 2.92-2.87 (m, 1H), 1.04 (d, 3H, J = 7.0 Hz), 1.02 (t, 3H, J = 7.2 Hz), 0.94-0.89 (m, 1H), 0.87-0.80 (m, 2H), 0.75-0.70 (m, 1H). 405 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.62 (s, 1H), 7.42-7.38 (m, 2H), 7.20-7.16 (m, 2H), 4.77- 4.71 (m, 1H), 4.47 (s, 2H), 4.14 (q, 1H, J = 4.0 Hz), 3.92-3.84 (m, 1H), 3.59 (d, 2H, J = 4.4 Hz), 3.33- 3.26 (m, 1H), 3.18 (s, 3H), 1.64 (d, 3H, J = 6.5 Hz), 1.21 (t, 3H, J = 7.1 Hz). 406 HCl 1H-NMR (DMSO-d6) δ: 12.44 (br s, 1H), 8.89 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.66- 4.60 (m, 1H), 4.56-4.45 (m, 3H), 4.34-4.27 (m, 1H), 4.10-4.04 (m, 1H), 3.50-3.36 (m, 2H), 3.24 (s, 3H), 1.89-1.79 (m, 1H), 1.73-1.62 (m, 1H), 1.28 (d, 6H, J = 6.9 Hz). 407 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.88 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.15 (m, 2H), 4.71- 4.66 (m, 1H), 4.62-4.52 (m, 1H), 4.47 (s, 2H), 4.21-4.07 (m, 2H), 3.99 (dd, 1H, J = 11.7, 2.0 Hz), 3.71-3.62 (m, 2H), 1.32-1.22 (m, 9H), 1.05 (d, 3H, J = 6.4 Hz). -
TABLE 1-108 No. structural formula salt 1H-NMR 408 HCl 1H-NMR (DMSO-d6) δ: 12.73 (s, 1H), 8.72 (s, 1H), 7.44-7.40 (m, 2H), 7.22-7.16 (m, 2H), 4.64-4.55 (m, 1H), 4.47 (s, 2H), 4.06 (dd, 1H, J = 14.1, 4.2 Hz), 3.66-3.49 (m, 2H), 3.06 (s, 3H), 2.96-2.86 (m, 1H), 1.15 (d, 3H, J = 6.0 Hz), 0.96-0.78 (m, 3H), 0.75-0.63 (m, 1H). 409 HCl 1H-NMR (DMSO-D6) δ: 12.73 (br s, 1H), 8.71 (s, 1H), 7.47-7.39 (m, 2H), 7.24-7.15 (m, 2H), 4.66- 4.56 (m, 1H), 4.47 (s, 2H), 4.11 (dd, 1H, J = 14.1, 4.2 Hz), 3.76 (d, 1H, J = 13.7 Hz), 3.66-3.42 (m, 3H), 3.06 (s, 3H), 1.21 (d, 3H, J = 5.7 Hz), 1.16 (t, 3H, J = 7.3 Hz). 410 HCl 1H-NMR (DMSO-d6) δ: 12.71 (br s, 1H), 8.71 (s, 1H), 7.47-7.39 (m, 2H), 7.24-7.15 (m, 2H), 4.65- 4.57 (m, 1H), 4.47 (s, 2H), 4.10 (dd, 1H, J = 14.1 4.0 Hz), 3.77 (d, 1H, J = 14.8 Hz), 3.59-3.38 (m, 3H), 3.05 (s, 3H), 1.60 (dt, 2H, J = 7.4, 7.4 Hz), 1.21 (d, 3H, J = 6.2 Hz), 0.90 (t, 3H, J = 7.4 Hz). 411 HCl 1H-NMR (DMSO-d6) δ: 12.67 (s, 1H), 8.83 (s, 1H), 7.45-7.37 (m, 2H), 7.23-7.14 (m, 2H), 4.81 (t, 1H, J = 6.3 Hz), 4.48 (s, 2H), 4.09-3.99 (m, 1H), 3.97- 3.85 (m, 1H), 3.68 (dd, 1H, J = 10.6, 5.7 Hz), 3.55 (dd, 1H, J = 10.6, 7.6 Hz), 3.51-3.30 (m, 2H), 3.19-3.06 (m, 1H), 1.27 (d, 3H, J = 6.6 Hz), 1.17 (t, 3H, J = 6.8 Hz), 1.01 (t, 3H, J = 7.3 Hz). 412 HCl 1H-NMR (DMSO-d6) δ: 12.68 (br s, 1H), 8.83 (s, 1H), 7.46-7.37 (m, 2H), 7.23-7.15 (m, 2H), 4.85- 4.76 (m, 1H), 4.67-4.57 (m, 1H), 4.48 (s, 2H), 4.20-4.10 (m, 1H), 3.64 (dd, 1H, J = 10.5, 5.8 Hz), 3.56-3.32 (m, 3H), 1.31-1.18 (m, 9H), 1.02 (t, 3H, J = 7.1 Hz). -
TABLE 1-109 No. structural formula salt 1H-NMR 413 HCl 1H-NMR (DMSO-d6) δ: 12.70 (s, 1H), 8.87 (s, 1H), 7.43-7.40 (m, 2H), 7.21-7.16 (m, 2H), 4.69 (t, 1H, J = 4.4 Hz), 4.47 (s, 2H), 4.09-4.04 (m, 1H), 3.76 (d, 1H, J = 12.9 Hz), 3.66-3.60 (m, 1H), 3.23 (s, 3H), 3.07 (s, 3H), 1.04 (d, 3H, J = 6.4 Hz). 414 HCl 1H-NMR (DMSO-d6) δ: 12.76 (s, 1H), 8.90 (s, 1H), 7.44-7.39 (m, 2H), 7.21-7.17 (m, 2H), 4.69 (t, 1H, J = 4.4 Hz), 4.47 (s, 2H), 4.05-4.00 (m, 1H), 3.83 (d, 1H, J = 13.3 Hz), 3.67-3.59 (m, 2H), 3.45-3.39 (m, 1H), 3.23 (s, 3H), 1.16 (t, 3H, J = 7.1 Hz), 1.04 (d, 3H, J = 6.0 Hz). 415 HCl 1H-NMR (DMSO-d6) δ: 12.75 (s, 1H), 8.89 (s, 1H), 7.43-7.40 (m, 2H), 7.21-7.16 (m, 2H), 4.66 (t, 1H, J = 4.6 Hz), 4.47 (s, 2H), 3.98 (dd, 1H, J = 13.7, 4.0 Hz), 3.71 (d, 1H, J = 12.5 Hz), 3.59-3.53 (m, 1H), 3.22 (s, 3H), 2.94-2.88 (m, 1H), 1.02 (d, 3H, J = 6.0 Hz), 0.95-0.89 (m, 1H), 0.85-0.80 (m, 2H), 0.75-0.69 (m, 1H). 416 HCl 1H-NMR (DMSO-d6) δ: 12.75 (s, 1H), 8.90 (s, 1H), 7.43-7.40 (m, 2H), 7.21-7.16 (m, 2H), 4.69 (t, 1H, J = 4.8 Hz), 4.47 (s, 2H), 4.01 (dd, 1H, J = 13.9, 4.2 Hz), 3.83 (d, 1H, J = 12.9 Hz), 3.64-3.58 (m, 1H), 3.55-3.48 (m, 1H), 3.41-3.34 (m, 1H), 3.21 (s, 3H), 1.63-1.58 (m, 2H), 1.05 (d, 3H, J = 6.0 Hz), 0.91 (t, 3H, J = 7.3 Hz). 417 HCl 1H-NMR (DMSO-d6) δ: 8.86 (s, 1H), 7.44-7.35 (m, 2H), 7.19-7.09 (m, 2H), 4.86-4.68 (m, 2H), 4.45 (s, 2H), 3.90-3.80 (m, 1H), 3.76-3.67 (m, 1H), 3.46- 2.59 (m, 3H), 2.14-1.65 (m, 5H), 1.24 (d, 3H, J = 7.1 Hz), 1.19 (d, 3H, J = 7.1 Hz), 1.14-0.98 (m, 6H). -
TABLE 1-110 No. structural formula salt 1H-NMR 418 HCl 1H-NMR (DMSO-d6) δ: 8.84 (s, 1H), 7.46-7.36 (m, 2H), 7.23-7.14 (m, 2H), 5.21-5.10 (m, 1H), 4.86- 4.73 (m, 1H), 4.47 (s, 2H), 3.84 (d, 2H, J = 2.2 Hz), 3.37-3.11 (m, 4H), 2.87 (d, 2H, J = 7.1 Hz), 1.13 (t, 6H, J = 7.3 Hz), 0.99 (t, 3H, J = 7.1 Hz), 0.95 (t, 3H, J = 7.1 Hz). 419 HCl 1H-NMR (DMSO-d6) δ: 8.73 (s, 1H), 7.47-7.38 (m, 2H), 7.23-7.15 (m, 2H), 4.89-4.76 (m, 1H), 4.47 (s, 2H), 4.20-3.99 (m, 2H), 3.72-3.57 (m, 2H), 3.51- 3.32 (m, 2H), 3.18 (s, 3H), 2.15-1.83 (m, 2H), 1.16 (t, 3H, J = 7.3 Hz). 420 HCl 1H-NMR (DMSO-d6) δ: 12.75 (br s, 1H), 8.64 (s, 1H), 7.46-7.39 (m, 2H), 7.22-7.15 (m, 2H), 4.77- 4.71 (m, 1H), 4.47 (s, 2H), 4.11 (dd, 1H, J = 13.7, 4.0 Hz), 3.77-3.71 (m, 1H), 3.64-3.44 (m, 5H), 3.33 (s, 3H), 3.10 (s, 3H), 1.20-1.13 (m, 3H). 421 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.61 (s, 1H), 7.46-7.34 (m, 2H), 7.24-7.14 (m, 2H), 4.81- 4.69 (m, 1H), 4.47 (s, 2H), 4.15-4.08 (m, 1H), 3.90 (td, 1H, J = 13.9, 7.0 Hz), 3.64 (d, 2H, J = 4.2 Hz), 3.38-3.21 (m, 3H), 1.65 (d, 3H, J = 7.0 Hz), 1.22 (t, 3H, J = 7.3 Hz), 0.89 (t, 3H, J = 6.8 Hz). 422 HCl 1H-NMR (DMSO-d6) δ: 12.72 (br s, 1H), 8.55 (s, 1H), 7.45-7.36 (m, 2H), 7.23-7.14 (m, 2H), 4.72- 4.61 (m, 1H), 4.49-4.38 (m, 1H), 4.47 (s, 2H), 4.09-4.02 (m, 1H), 3.61 (dd, 1H, J = 11.1, 3.0 Hz), 3.54 (dd, 1H, J = 11.1, 3.9 Hz), 3.27 (q, 2H, J = 7.0 Hz), 1.75 (d, 3H, J = 6.6 Hz), 1.32 (t, 6H, J = 6.8 Hz), 0.82 (t, 3H, J = 7.0 Hz). -
TABLE 1-111 No. structural formula salt 1H-NMR 423 HCl 1H-NMR (DMSO-d6) δ: 8.83 (s, 1H), 7.44-7.35 (m, 2H), 7.18-7.09 (m, 2H), 4.84-4.66 (m, 2H), 4.45 (s, 2H), 3.90-3.79 (m, 1H), 3.77-3.64 (m, 1H), 3.48- 2.60 (m, 4H), 2.33-2.17 (m, 2H), 2.08-1.77 (m, 2H), 1.24 (d, 3H, J = 6.4 Hz), 1.19 (d, 3H, J = 6.6 Hz), 1.12-1.00 (m, 3H), 0.97 (t, 3H, J = 7.7 Hz). 424 HCl 1H-NMR (DMSO-d6) δ: 9.02 (s, 0.25H), 8.94 (s, 0.75H), 7.46-7.36 (m, 2H), 7.23-7.14 (m, 2H), 4.95-4.66 (br m, 2H), 4.47 (s, 2H), 3.92-3.67 (m, 2H), 3.53-2.98 (br m, 4H), 2.87-2.53 (br m, 1H), 2.14-1.63 (br m, 2H), 1.29-0.86 (br m, 15H). 425 HCl 1H-NMR (DMSO-d6) δ: 8.86 (s, 1H), 7.44-7.35 (m, 2H), 7.19-7.08 (m, 2H), 4.85-4.69 (m, 2H), 4.45 (s, 2H), 4.22-3.98 (m, 2H), 3.90-3.80 (m. 1H), 3.78- 3.68 (m, 1H), 3.13-3.00 (m, 1H), 2.35-2.15 (m, 2H), 2.09-1.93 (m, 1H), 1.87-1.71 (m, 1H), 1.24 (d, 3H, J = 6.6 Hz), 1.19 (d, 3H, J = 6.8 Hz), 1.07 (t, 6H, J = 6.4 Hz), 0.96 (t, 3H, J = 7.3 Hz). 426 HCl 1H-NMR (DMSO-d6) δ: 12.49 (s, 1H), 8.91 (s, 1H), 7.42-7.39 (m, 2H), 7.20-7.16 (m, 2H), 4.80 (d, 1H, J = 13.3 Hz), 4.47 (s, 2H), 4.36 (dd, 1H, J = 13.7, 4.8 Hz), 3.96-3.89 (m, 2H), 3.65-3.60 (m, 1H), 3.28-3.20 (m, 1H), 3.08 (s, 3H), 1.21 (t, 3H, J = 7.1 Hz), 1.16 (d, 3H, J = 6.4 Hz). 427 HCl 1H-NMR (DMSO-d6) δ: 8.65 (s, 1H), 7.44-7.39 (m, 2H), 7.22-7.16 (m, 2H), 4.88-4.84 (m, 1H), 4.46 (s, 2H), 4.08 (dd, 1H, J = 13.5, 3.8 Hz), 3.65-3.62 (m, 1H), 3.62 (dq, 1H, J = 13.7, 7.3 Hz), 3.45 (dq, 1H, J = 13.7, 7.3 Hz), 3.21 (s, 3H), 3.02-2.97 (m, 1H), 1.93-1.78 (m, 2H), 1.16 (t, 3H, J = 7.3 Hz), 1.04 (d, 3H, J = 6.0 Hz). -
TABLE 1-112 No. structural formula salt 1H-NMR 428 HCl 1H-NMR (DMSO-d6) δ: 12.80 (s, 1H), 8.64 (s, 1H), 7.44-7.40 (m, 2H), 7.21-7.17 (m, 2H), 4.91-4.87 (m, 1H), 4.78 (sep, 1H, J = 6.8 Hz), 4.46 (s, 2H), 3.84 (dd, 1H, J = 13.5, 3.6 Hz), 3.68 (dd, 1H, J = 13.5, 1.3 Hz), 3.22 (s, 3H), 2.99-2.95 (m, 1H), 1.86 (ddd, 1H, J = 14.6, 9.9, 3.1 Hz), 1.77 (ddd, 1H, J = 14.6, 10.4, 4.9 Hz), 1.18 (d, 3H, J = 6.8 Hz), 1.15 (d, 3H, J = 6.8 Hz), 1.04 (d, 3H, J = 6.0 Hz). 429 HCl 1H-NMR (DMSO-d6) δ: 12.77 (br s, 1H), 8.65 (s, 1H), 7.44-7.40 (m, 2H), 7.21-7.16 (m, 2H), 4.85- 4.80 (m, 1H), 4.46 (s, 2H), 4.02 (dd, 1H, J = 13.2, 3.7 Hz), 3.54 (dd, 1H, J = 13.2, 0.9 Hz), 3.21 (s, 3H), 3.03-2.96 (m, 1H), 2.97-2.91 (m, 1H), 1.85- 1.75 (m, 2H), 1.03 (d, 3H, J = 6.0 Hz), 0.95-0.72 (m, 4H). 430 HCl 1H-NMR (DMSO-d6) δ: 12.48 (br s, 1H), 8.95 (s, 1H), 7.45-7.37 (m, 2H), 7.23-7.14 (m, 2H), 5.01- 4.90 (m, 1H), 4.56 (sep, 1H, J = 6.8 Hz), 4.48 (s, 2H), 4.08-4.01 (m, 1H), 3.55 (dd, 1H, J = 10.5, 3.9 Hz), 3.45-3.31 (m, 3H), 1.40 (d, 3H, J = 6.6 Hz), 1.29 (d, 3H, J = 6.8 Hz), 1.28 (d, 3H, J = 6.8 Hz), 0.98 (t, 3H, J = 6.9 Hz). 431 HCl 1H-NMR (DMSO-d6) δ: 12.50 (br s, 1H), 8.93 (s, 1H), 7.45-7.36 (m, 2H), 7.23-7.14 (m, 2H), 4.92 (q, 1H, J = 6.7 Hz), 4.48 (s, 2H), 4.04-3.96 (m, 2H), 3.59-3.47 (m, 2H), 3.44-3.31 (m, 2H), 3.22- 3.09 (m, 1H), 1.42 (d, 3H, J = 6.7 Hz), 1.20 (t, 3H J = 7.1 Hz), 0.97 (t, 3H, J = 6.9 Hz). 432 HCl 1H-NMR (DMSO-d6) δ: 8.80-8.74 (m, 1H), 7.68 (s, 1H), 7.38-7.29 (m, 2H), 7.20-7.10 (m, 2H), 4.97- 4.55 (m, 2H), 4.20 (s, 2H), 3.92-3.60 (m, 2H), 3.60-3.02 (m, 2H), 2.93 (s, 2H), 2.72 (s, 1H), 2.08- 1.59 (m, 5H), 1.22 (d, 3H, J = 7.1 Hz), 1.16 (d, 3H, J = 6.4 Hz). -
TABLE 1-113 No. structural formula salt 1H-NMR 433 HCl 1H-NMR (DMSO-d6) δ: 8.66 (s, 1H), 7.61 (s, 1H), 7.36-7.27 (m, 2H), 7.16-7.04 (m, 2H), 4.84-4.56 (m, 2H), 4.19 (s, 2H), 3.88-3.76 (m, 1H), 3.75-3.63 (m, 1H), 3.52-3.14 (m, 2H), 3.03-2.70 (m, 3H), 2.33-2.17 (m, 2H), 2.06-1.76 (m, 2H), 1.24 (d, 3H, J = 6.6 Hz), 1.19 (d, 3H, J = 6.6 Hz), 0.96 (t, 3H, J = 7.5 Hz). 434 HCl 1H-NMR (DMSO-d6) δ: 12.63 (br s, 1H), 8.73 (s, 1H), 7.44-7.41 (m, 2H), 7.21-7.17 (m, 2H), 4.60- 4.55 (m, 1H), 4.47 (s, 2H), 4.05 (dd, 1H, J = 13.9, 3.4 Hz), 3.78 (dd, 1H, J = 13.9, 1.1 Hz), 3.63 (dq, 1H, J = 13.5, 7.1 Hz), 3.48 (dq, 1H, J = 13.5, 7.1 Hz), 3.18 (dd, 1H, J = 9.9, 4.2 Hz), 3.02 (s, 3H), 2.88 (dd, 1H, J = 9.9, 3.4 Hz), 2.11-2.04 (m, 1H), 1.16 (t, 3H, J = 7.1 Hz), 1.07 (d, 3H, J = 6.8 Hz). 435 HCl 1H-NMR (DMSO-d6) δ: 12.71 (br s, 1H), 8.75 (s, 1H), 7.44-7.41 (m, 2H), 7.22-7.17 (m, 2H), 4.79 (sep, 1H, J = 6.8 Hz), 4.60-4.57 (m, 1H), 4.46 (s, 2H), 3.82 (dd, 1H, J = 14.3, 3.5 Hz), 3.77 (dd, 1H, J = 14.3, 1.3 Hz), 3.16 (dd, 1H, J = 9.9, 4.1 Hz), 2.99 (s, 3H), 2.83 (dd, 1H, J = 9.9, 3.3 Hz), 2.06- 2.02 (m, 1H), 1.20 (d, 3H, J = 6.8 Hz), 1.19 (d, 3H, J = 6.8 Hz), 1.08 (d, 3H, J = 6.8 Hz). 436 HCl 1H-NMR (DMSO-d6) δ: 12.64 (br s, 1H), 8.73 (s, 1H), 7.44-7.40 (m, 2H), 7.21-7.17 (m, 2H), 4.57- 4.54 (m, 1H), 4.46 (s, 2H), 4.01 (dd, 1H, J = 13.7, 3.6 Hz), 3.61 (dd, 1H, J = 13.7, 1.2 Hz), 3.17 (dd, 1H, J = 9.9, 4.4 Hz), 3.02 (s, 3H), 2.98-2.92 (m, 1H), 2.88 (dd, 1H, J = 9.9, 3.4 Hz), 2.07-1.99 (m, 1H), 1.03 (d, 3H, J = 6.9 Hz), 0.93-0.81 (m, 3H), 0.72-0.65 (m, 1H). 437 HCl 1H-NMR (DMSO-d6) δ: 12.83 (br s, 1H), 8.65 (s, 1H), 7.46-7.40 (m, 2H), 7.22-7.16 (m, 2H), 4.83- 4.71 (m, 2H), 4.47 (s, 2H), 3.93-3.86 (m, 1H), 3.79-3.73 (m, 1H), 3.60-3.47 (m, 3H), 3.33 (s, 3H), 3.08 (s, 3H), 1.22 (d, 3H, J = 6.9 Hz), 1.18 (d, 3H, J = 6.9 Hz). -
TABLE 1-114 No. structural formula salt 1H-NMR 438 HCl 1H-NMR (DMSO-d6) δ: 12.74 (br s, 1H), 8.64 (s, 1H), 7.46-7.39 (m, 2H), 7.22-7.15 (m, 2H), 4.76- 4.70 (m, 1H), 4.47 (s, 2H), 4.10-4.02 (m, 1H), 3.67-3.60 (m, 1H), 3.60-3.53 (m, 1H), 3.48 (dd, 1H, J = 10.9, 4.0 Hz), 3.43 (dd, 1H, J = 10.9, 5.2 Hz), 3.32 (s, 3H), 3.10 (s, 3H), 2.96-2.88 (m, 1H), 0.95-0.73 (m, 4H). 439 HCl 1H-NMR (DMSO-d6) δ: 12.46 (br s, 1H), 8.87 (s, 1H), 7.45-7.36 (m, 2H), 7.23-7.14 (m, 2H), 4.65- 4.56 (m, 1H), 4.47 (s, 2H), 4.38 (dd, 1H, J = 13.7, 3.6 Hz), 4.07-3.98 (m, 1H), 3.91 (td, 1H, J = 13.9, 7.1 Hz), 3.48-3.33 (m, 2H), 3.23 (s, 3H), 3.11 (td, 1H, J = 13.9, 7.1 Hz), 1.91-1.79 (m, 1H), 1.79-1.67 (m, 1H), 1.20 (t, 3H, J = 7.1 Hz). 440 HCl 1H-NMR (DMSO-d6) δ: 12.63 (s, 1H), 8.76 (s, 1H), 7.44-7.40 (m, 2H), 7.21-7.16 (m, 2H), 4.66 (dd, 1H, J = 9.7, 4.4 Hz), 4.47 (s, 2H), 3.97 (dd, 1H, J = 13.9, 6.2 Hz), 3.92-3.86 (m, 1H), 3.41-3.36 (m, 1H), 3.17-3.10 (m, 5H), 2.08-2.01 (m, 1H), 1.87- 1.80 (m, 1H), 1.24 (d, 3H, J = 6.4 Hz), 1.19 (t, 3H, J = 7.1 Hz). 441 HCl 1H-NMR (DMSO-d6) δ: 12.77 (s, 1H), 8.64 (s, 1H), 7.44-7.40 (m, 2H), 7.22-7.17 (m, 2H). 4.71-4.67 (m, 1H), 4.47 (s, 2H), 4.33-4.27 (m, 1H), 3.76 (td, 1H, J = 14.1, 7.1 Hz), 3.43-3.36 (m, 2H), 3.15 (s, 3H), 3.12-3.05 (m, 1H), 2.09-2.02 (m, 1H), 1.94- 1.84 (m, 1H), 1.33 (d, 3H, J = 5.2 Hz), 1.14 (t, 3H, J = 7.1 Hz). 442 HCl 1H-NMR (DMSO-d6) δ: 12.65 (s, 1H), 8.75 (s, 1H), 7.43-7.40 (m, 2H), 7.21-7.17 (m, 2H), 4.67-4.58 (m, 2H), 4.47 (s, 2H), 4.10-4.04 (m, 1H), 3.42-3.37 (m, 1H), 3.17 (s, 3H), 3.15-3.09 (m, 1H), 2.05-1.97 (m, 1H), 1.82-1.75 (m, 1H), 1.28-1.23 (m, 9H). -
TABLE 1-115 No. structural formula salt 1H-NMR 443 HCl 1H-NMR (DMSO-d6) δ: 12.76 (s, 1H), 8.65 (s, 1H), 7.42-7.39 (m, 2H), 7.20-7.16 (m, 2H), 4.56-4.51 (m, 2H), 4.47 (s, 2H), 4.09-4.03 (m, 1H), 3.63-3.54 (m, 2H), 3.31 (s, 3H), 2.50-2.48 (m, 1H), 2.12-2.06 (m, 1H), 1.30 (d, 3H, J = 7.0 Hz), 1.28 (d, 3H, J = 7.0 Hz), 1.09 (d, 3H, J = 6.0 Hz). 444 HCl 1H-NMR (DMSO-d6) δ: 12.48 (br s, 1H), 8.80 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.55 (dd, 1H, J = 13.2, 1.5 Hz), 4.47 (s, 2H), 4.38 (dd, 1H, J = 13.2, 3.5 Hz), 4.08-4.04 (m, 1H), 3.98 (dq, 1H, J = 13.5, 7.1 Hz), 3.42-3.37 (m, 1H), 3.20 (s, 3H), 3.06 (dq, 1H, J = 13.5, 7.1 Hz), 1.71-1.59 (m, 2H), 1.20 (t, 3H, J = 7.1 Hz), 1.06 (d, 3H, J = 6.2 Hz). 445 HCl 1H-NMR (DMSO-d6) δ: 8.81 (s, 1H), 7.44-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.57 (dd, 1H, J = 13.2, 1.3 Hz), 4.47 (s, 2H), 4.45 (sep, 1H, J = 6.8 Hz), 4.31 (dd, 1H, J = 13.2, 3.3 Hz), 4.11-4.06 (m, 1H), 3.50-3.45 (m, 1H), 3.19 (s, 3H), 1.68-1.57 (m, 2H), 1.31 (d, 3H, J = 6.8 Hz), 1.28 (d, 3H, J = 6.8 Hz), 1.08 (d, 3H, J = 6.2 Hz). 446 HCl 1H-NMR (DMSO-d6) δ: 12.80 (br s, 1H), 8.75 (s, 1H), 7.45-7.39 (m, 2H), 7.22-7.16 (m, 2H), 4.86- 4.75 (m, 2H), 4.47 (s, 2H), 3.86-3.80 (m, 1H), 3.76 (dd, 1H, J = 13.3, 3.6 Hz), 3.61 (dd, 1H, J = 11.7, 2.8 Hz), 3.58-3.51 (m, 1H), 3.30 (s, 3H), 3.18 (s, 3H), 2.97 (dd, 1H, J = 11.7, 2.8 Hz), 1.20 (d, 3H, J = 6.9 Hz), 1.17 (d, 3H, J = 6.9 Hz). 447 HCl 1H-NMR (DMSO-d6) δ: 12.47 (br s, 1H), 8.99 (s, 1H), 7.44-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.73 (d, 1H, J = 13.7 Hz), 4.47 (s, 2H), 4.34 (dd, 1H, J = 13.7, 4.4 Hz), 4.23-4.14 (m, 1H), 4.05-4.00 (m, 1H), 3.46 (dd, 1H, J = 9.7, 8.1 Hz), 3.37 (dd, 1H, J = 9.7, 5.2 Hz), 3.30 (s, 3H), 2.22-2.11 (m, 1H), 1.38 (d, 3H, J = 6.9 Hz), 1.34 (d, 3H, J = 6.9 Hz), 0.60 (d, 3H, J = 7.3 Hz). -
TABLE 1-116 No. structural formula salt 1H-NMR 448 HCl 1H-NMR (DMSO-d6) δ: 12.42 (br s, 1H), 9.00 (s, 1H), 7.44-7.37 (m, 2H), 7.22-7.14 (m, 2H), 4.76- 4.68 (m, 1H), 4.47 (s, 2H), 4.37 (dd, 1H, J = 14.1, 4.0 Hz), 4.07-3.96 (m, 1H), 3.93-3.86 (m, 1H), 3.38-3.28 (m, 2H), 3.26 (s, 3H), 3.11-2.99 (m, 1H), 2.05-1.95 (m, 1H), 1.19 (t, 3H, J = 7.1 Hz), 0.81 (d, 3H, J = 6.9 Hz). 449 HCl 1H-NMR (DMSO-d6) δ: 12.50 (s, 1H), 8.57 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.65-4.59 (m, 1H), 4.47 (s, 2H), 4.30-4.24 (m, 1H), 4.01-3.96 (m, 1H), 3.33-3.24 (m, 2H), 3.11 (s, 3H), 1.92-1.86 (m, 1H), 1.70 (d, 3H, J = 6.4 Hz), 1.66-1.59 (m, 1H), 1.38 (d, 3H, J = 6.9 Hz), 1.33 (d, 3H, J = 6.9 Hz). 450 HCl 1H-NMR (DMSO-d6) δ: 12.52 (s, 1H), 8.93 (s, 1H), 7.43-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.88-4.84 (m, 1H), 4.48 (s, 2H), 4.08-4.02 (m, 1H), 3.83 (t, 1H, J = 7.1 Hz), 3.44-3.37 (m, 2H), 3.23 (s, 3H), 3.04-2.96 (m, 1H), 1.84-1.73 (m, 2H), 1.41 (d, 3H, J = 6.9 Hz), 1.19 (t, 3H, J = 7.0 Hz). 451 HCl 1H-NMR (DMSO-d6) δ: 12.50 (s, 1H), 8.95 (s, 1H), 7.42-7.38 (m, 2H), 7.21-7.16 (m, 2H), 4.91 (dd, 1H, J = 12.7, 5.8 Hz), 4.61-4.54 (m, 1H), 4.48 (s, 2H), 3.88 (d, 1H, J = 8.9 Hz), 3.50-3.39 (m, 2H), 3.24 (s, 3H), 1.91-1.85 (m, 1H), 1.69-1.61 (m, 1H), 1.39 (d, 3H, J = 6.9 Hz), 1.28 (d, 3H, J = 6.4 Hz), 1.26 (d, 3H, J = 6.4 Hz). 452 HCl 1H-NMR (DMSO-d6) δ: 12.70 (s, 1H), 8.65 (s, 1H), 7.42-7.38 (m, 2H), 7.22-7.15 (m, 2H), 4.75-4.70 (m, 1H), 4.47 (s, 2H), 4.08-3.96 (m, 2H), 3.37-3.31 (m, 2H), 3.20 (s, 3H), 3.15-3.07 (m, 1H), 1.94-1.87 (m, 1H), 1.68-1.58 (m, 4H), 1.20 (t, 3H, J = 7.1 Hz). -
TABLE 1-117 No. structural formula salt 1H-NMR 453 HCl 1H-NMR (DMSO-d6) δ: 12.72 (br s, 1H), 8.81 (s, 1H), 7.45-7.39 (m, 2H), 7.23-7.15 (m, 2H), 4.95- 4.88 (m, 1H), 4.78 (sep, 1H, J = 6.9 Hz), 4.47 (s, 2H), 3.81 (dd, 1H, J = 13.5, 3.4 Hz), 3.74-3.65 (m, 1H), 3.58-3.48 (m, 1H), 3.03 (s, 3H), 1.88-1.80 (m, 1H), 1.78-1.68 (m, 1H), 1.19 (d, 3H, J = 6.9 Hz), 1.16 (d, 3H, J = 6.9 Hz), 1.07 (d, 3H, J = 6.0 Hz). 454 HCl 1H-NMR (DMSO-d6) δ: 12.67 (br s, 1H), 8.82 (s, 1H), 7.45-7.38 (m, 2H), 7.23-7.14 (m, 2H), 4.93- 4.83 (m, 1H), 4.47 (s, 2H), 4.05 (dd, 1H, J = 13.5, 3.8 Hz), 3.71-3.42 (m, 4H), 3.05 (s, 3H), 1.95-1.86 (m, 1H), 1.82-1.71 (m, 1H), 1.16 (t, 3H, J = 7.1 Hz), 1.09 (d, 3H, J = 6.0 Hz). 455 HCl 1H-NMR (DMSO-d6) δ: 8.82 (s, 1H), 7.43-7.40 (m, 2H), 7.21-7.16 (m, 2H), 4.88-4.83 (m, 1H), 4.46 (s, 2H), 3.98 (dd, 1H, J = 13.3, 3.6 Hz), 3.53 (dd, 1H, J = 13.3, 1.8 Hz), 3.52-3.46 (m, 1H), 3.02 (s, 3H), 2.98-2.93 (m, 1H), 1.86 (ddd, 1H, J = 14.3, 6.2, 2.6 Hz), 1.71 (ddd, 1H, J = 14.3, 8.8, 7.9 Hz), 1.08 (d, 3H, J = 6.0 Hz), 0.94-0.79 (m, 3H), 0.75-0.70 (m, 1H). 456 HCl 1H-NMR (DMSO-d6) δ: 8.66 (s, 0.7H), 8.50 (s, 0.3H), 7.70-7.64 (m, 1.0H), 7.37-7.30 (m, 2.0H), 7.19-7.11 (m, 2.0H), 4.70-4.62 (m, 0.3H), 4.59- 4.51 (m, 0.7H), 4.44-4.34 (m, 0.7H), 4.20 (s, 2.0H), 4.08-3.99 (m, 1.0H), 3.80-3.70 (m, 0.3H), 3.69-3.47 (m, 3.0H), 2.80 (s, 2.1H), 2.69 (s, 0.9H), 2.12-1.86 (m, 4.3H), 1.83-1.73 (m, 0.7H), 1.22- 1.12 (m, 3.0H), 1.05 (d, 0.9H, J = 6.4 Hz), 1.00 (d, 2.1H, J = 6.4 Hz). 457 HCl 1H-NMR (DMSO-d6) δ: 12.80 (br s, 1H), 8.82 (s, 1H), 7.44-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.77 (sep, 1H, J = 6.9 Hz), 4.69-4.65 (m, 1H), 4.47 (s, 2H), 3.86 (d, 2H, J = 2.8 Hz), 3.37 (d, 2H, J = 5.2 Hz), 3.28 (s, 3H), 2.22-2.15 (m, 1H), 1.21 (d, 3H, J = 6.9 Hz), 1.18 (d, 3H, J = 6.9 Hz), 0.66 (d, 3H, J = 6.9 Hz). -
TABLE 1-118 No. structural formula salt 1H-NMR 458 HCl 1H-NMR (DMSO-d6) δ: 8.63 (s, 0.67H), 8.46 (s, 0.33H), 7.71-7.61 (m, 1H), 7.39-7.28 (m, 2H), 7.21-7.10 (m, 2H), 4.67-4.31 (m, 2H), 4.26-4.16 (m, 2H), 4.07-3.42 (br m, 2H), 3.03-2.56 (br m, 4H), 2.14-1.59 (m, 5H), 1.28-0.60 (m, 7H). 459 HCl 1H-NMR (DMSO-d6) δ: 9.18-8.08 (m, 1H), 7.49- 7.10 (m, 4H), 5.28-3.81 (m, 6H), 3.07-2.45 (m, 4H), 2.36-1.64 (m, 5H), 1.38-0.32 (m, 7H). 460 HCl 1H-NMR (DMSO-d6) δ: 12.72 (br s, 1H), 8.92-8.63 (m, 1H), 7.47-7.37 (m, 2H), 7.24-7.13 (m, 2H), 4.80-4.19 (m, 4H), 4.10-3.39 (m, 2H), 3.04-2.48 (m, 4H), 2.15-1.61 (m, 5H), 1.18-0.59 (m, 7H). 461 HCl 1H-NMR (DMSO-d6) δ: 8.63 (s, 1H), 7.68 (s, 1H), 7.37-7.29 (m, 2H), 7.19-7.10 (m, 2H), 4.90-4.65 (m, 2H), 4.61-4.45 (m, 1H), 4.20 (s, 2H), 3.89-3.55 (m, 2H), 2.81 (s, 3H), 2.00 (s, 3H), 1.95-1.76 (m, 2H), 1.29-1.11 (br m, 6H), 1.02 (d, 3H, J = 7.1 Hz). -
TABLE 1-119 No. structural formula salt 1H-NMR 462 HCl 1H-NMR (DMSO-d6) δ: 8.63 (s, 0.75H), 8.44 (s, 0.25H), 7.69-7.63 (m, 1H), 7.39-7.29 (m, 2H), 7.19-7.10 (m, 2H), 4.85-3.97 (m, 3H), 4.20 (s, 2H), 3.85-3.54 (m, 2H), 2.81 (s, 2.25H), 2.72 (s, 0.75H), 2.06-1.61 (m, 5H), 1.33-1.08 (m, 6H), 1.08-0.93 (m, 3H). 463 HCl 1H-NMR (DMSO-d6) δ: 12.58 (br s, 1.0H), 8.62 (s, 0.9H), 8.58 (s, 0.1H), 7.68 (s, 0.9H), 7.67 (s, 0.1H), 7.36-7.30 (m, 2.0H), 7.18-7.11 (m, 2.0H), 4.76-4.65 (m, 1.0H), 4.57-4.49 (m, 1.0H), 4.20 (s, 2.0H), 3.99-3.93 (m, 1.0H), 3.75-3.59 (m, 1.9H), 3.59-3.38 (m, 1.1H), 2.80 (s, 2.7H), 2.58 (s, 0.3H), 1.98 (s, 2.7H), 1.92-1.83 (m, 2.3H), 1.22-1.13 (m, 3.3H), 1.03 (d, 2.7H, J = 6.9 Hz). 464 HCl 1H-NMR (DMSO-d6) δ: 12.72 (br s, 1H), 8.81 (s, 1H), 7.44-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.65- 4.62 (m, 1H), 4.47 (s, 2H), 4.09 (dd, 1H, J = 13.7, 4.0 Hz), 3.82 (dd, 1H, J = 13.7, 0.8 Hz), 3.58 (dq, 1H, J = 13.3, 7.3 Hz), 3.53 (dq, 1H, J = 13.3, 7.3 Hz), 3.37 (dd, 1H, J = 9.7, 4.8 Hz), 3.32 (dd, 1H, J = 9.7, 6.4 Hz), 3.26 (s, 3H), 2.24-2.17 (m, 1H), 1.17 (t, 3H, J = 7.3 Hz), 0.72 (d, 3H, J = 6.9 Hz). 465 HCl 1H-NMR (DMSO-d6) δ: 12.71 (br s, 1H), 8.81 (s, 1H), 7.43-7.39 (m, 2H), 7.21-7.16 (m, 2H), 4.64- 4.61 (m, 1H), 4.47 (s, 2H), 4.01 (dd, 1H, J = 13.7, 4.0 Hz), 3.72 (dd, 1H, J = 13.7, 1.2 Hz), 3.34-3.29 (m, 2H), 3.27 (s, 3H), 2.98-2.92 (m, 1H), 2.20-2.14 (m, 1H), 0.90-0.79 (m, 4H), 0.67 (d, 3H, J = 6.9 Hz). - The following explains evaluation methods of the HIV integrase inhibitory activity of the compound of the present invention.
- A full-length gene sequence (Accession No.: M19921) of HIV-1 pNL4-3 integrase was inserted into restriction enzyme Nde I and Xho I sites of plasmid pET21a(+) (manufactured by Novagen) to construct an integrase expression vector pET21a-IN-Wild type.
- Escherichia coli recombinant BL21(DE3) transformed with plasmid pET21a-IN-Wild type obtained in (i) was shake cultured at 30° C. in a liquid medium containing ampicillin. When the culture reached the logarithmic growth phase, isopropyl-β-D-thiogalactopyranoside was added to promote expression of integrase gene. The culture was continued for 5 hr to promote accumulation of the integrase protein. The recombinant E. coli was collected in pellets by centrifugal separation and preserved at −80° C.
- This Escherichia coli was suspended in Lysis buffer (50 mM Tris-HCl (pH 7.6), 10 mM MgCl2, 5 mM DTT), and disrupted by repeating treatments of pressurization and depressurization, and insoluble fraction was collected by centrifugation at 4° C., 18,000 rpm for 60 min. This was suspended in Lysis buffer containing a protease inhibitor, 1.25 mM sodium chloride and 10 mM CHAPS were added, and the mixture was stirred at 4° C. for 30 min. Water-soluble fraction was collected by centrifugation at 4° C., 9,000 rpm for 30 min. The obtained fraction was diluted with a column buffer (50 mM Tris-HCl (pH 7.6), 1 mM DTT, 10% Glycerol, 10 mM CHAPS) to 5-fold, and the mixture was applied to heparin column (HiPrep 16/10 Heparin FF column: manufactured by GE Healthcare Bio-Sciences). Using a column buffer containing 1M NaCl, a protein was eluted with 0-1M NaCl concentration gradient, and an eluted fraction containing an integrase protein was collected. The obtained fraction was diluted 5-fold with a column buffer (50 mM Tris-HCl (pH 7.6), 1 mM DTT, 10% Glycerol, 10 mM CHAPS), and the mixture was applied to cation exchange column (Mono-S column: manufactured by GE Healthcare Bio-Sciences). Using a column buffer containing 1M NaCl, a protein was eluted with 0-1M NaCl concentration gradient, and an eluted fraction containing an integrase protein was collected. The obtained fractions of the integrase protein were collected, and preserved at −80° C.
- (iii) Preparation of DNA Solution
- The following DNA synthesized by FASMAC was dissolved in TE buffer (10 mM Tris-hydrochloric acid (pH 8.0), 1 mM EDTA) and mixed with donor DNA, target DNA, and each complementary strand (+ and − strands) to 1 μM. The mixture was heated at 95° C. for 5 min, 80° C. for 10 min, 70° C. for 10 min, 60° C. for 10 min, 50° C. for 10 min and 40° C. for 10 min and kept at 25° C. to give a double stranded DNA, which was used for the test.
-
Donor DNA (+ strand having biotin attached to the 5′ terminal) Donor + strand: (SEQ ID NO: 1) 5′-Biotin-ACC CTT TTA GTC AGT GTG GAA AAT CTC TAG CA-3′ Donor − strand: (SEQ ID NO: 2) 5′-ACT GCT AGA GAT TTT CCA CAC TGA CTA AAA G-3′ Target DNA (+, − strands both having digoxigenin attached to the 3′ terminal) Target + strand: (SEQ ID NO: 3) 5′-TGA CCA AGG GCT AAT TCA CT-Dig-3′ Target − strand: (SEQ ID NO: 4) 5′-AGT GAA TTA GCC CTT GGT CA-Dig-3′ - The donor DNA was diluted with TE buffer to 20 nM, of which 50 μL was added to each well of streptavidin-coated black plate (manufactured by PIAS Corporation) and allowed to adsorb at 37° C. for 20 min. The plate was washed with phosphate buffer (Dulbecco's PBS, Sanko Junyaku Co., Ltd.) containing 0.1% Tween 20 and phosphate buffer. Then, an enzyme reaction mixture (70 μL), a test substance (10 μL) diluted with the enzyme reaction mixture and 0.75 μM integrase protein (10 μL) were added to each well and the mixture was reacted at 37° C. for 60 min. composition of enzyme reaction mixture: 30 mM MOPS (3-morpholinopropanesulfonic acid), 5 mM magnesium chloride, 3 mM DTT (dithiothreitol), 0.1 mg/mL BSA (bovine serum albumin), 5% glycerol, 10% DMSO (dimethyl sulfoxide), 0.01% Tween 20.
- Then, 25 nM target DNA (10 μL) was added, and the mixture was reacted at 37° C. for 20 min and washed with phosphate buffer containing 0.1% Tween 20 to stop the reaction.
- Then, 100 mU/mL peroxidase labeled anti-digoxigenin antibody solution (Roche, 100 μL) was added, and the mixture was reacted at 37° C. for 60 min, followed by washing with phosphate buffer containing 0.1% Tween 20.
- Then, peroxidase fluorescence substrate solution (manufactured by PIAS Corporation, 100 μL) was added, and the mixture was reacted at room temperature for 20 min to 30 min. A reaction quenching liquid (manufactured by PIAS Corporation, 100 μL) was added to discontinue the reaction, and fluorescence intensity at excitation wavelength 325 nm/fluorescence wavelength 420 nm was measured.
- The HIV integrase inhibitory activity (IC50) of the compound of the present invention was calculated from the inhibition rate according to the following formula:
-
inhibition rate(%)=[1−(Object-Blank)/(Control-Blank)]×100 - Object: fluorescence intensity of well in the presence of test compound
- Control: fluorescence intensity of well in the absence of test compound
- Blank: fluorescence intensity of well in the absence of test compound and integrase protein
- The results are shown in the following Tables.
-
TABLE 2-1 inhibitory Example activity No. IC50 (μM) 2 0.013 3 0.0085 4 0.01 5 0.0074 6 0.0056 7 0.013 8 0.0089 9 0.0091 10 0.0088 11 0.0064 12 0.0073 13 0.0064 14 0.01 15 0.013 16 0.02 17 0.0079 18 0.0082 19 0.0081 20 0.017 -
TABLE 2-2 inhibitory Example activity No. IC50 (μM) 21 0.0094 22 0.007 23 0.012 24 0.023 25 0.011 26 0.0076 27 0.01 28 0.015 29 0.01 30 0.009 31 0.0083 32 0.0077 33 0.0062 34 0.0082 35 0.0067 36 0.013 37 0.0063 38 0.012 39 0.01 40 0.013 -
TABLE 2-3 inhibitory Example activity No. IC50 (μM) 41 0.0072 42 0.0034 43 0.0046 44 0.0081 45 0.011 46 0.011 47 0.012 48 0.0069 49 0.0051 50 0.0064 51 0.0057 52 0.013 53 0.01 54 0.0075 55 0.021 56 0.01 57 0.011 58 0.017 59 0.012 60 0.017 -
TABLE 2-4 inhibitory Example activity No. IC50 (μM) 61 0.0066 62 0.0092 63 0.0083 64 0.0061 65 0.013 66 0.0064 67 0.0076 68 0.0098 69 0.013 70 0.0089 71 0.011 72 0.011 73 0.0077 74 0.0057 75 0.0091 76 0.0083 77 0.011 78 0.0089 79 0.0064 80 0.0098 -
TABLE 2-5 inhibitory Example activity No. IC50 (μM) 81 0.0075 82 0.0049 83 0.0071 84 0.011 85 0.0075 86 0.0095 87 0.0077 88 0.0087 89 0.008 90 0.0067 92 0.0087 93 0.0078 94 0.0088 95 0.0095 96 0.0067 97 0.0066 98 0.0075 99 0.0061 100 0.0081 101 0.0064 -
TABLE 2-6 inhibitory Example activity No. IC50 (μM) 102 0.0071 103 0.018 104 0.015 105 0.017 106 0.02 107 0.019 108 0.018 109 0.021 110 0.023 111 0.02 112 0.019 113 0.013 114 0.0081 115 0.012 116 0.0096 117 0.0094 118 0.013 119 0.011 120 0.015 121 0.016 -
TABLE 2-7 inhibitory Example activity No. IC50 (μM) 122 0.019 123 0.027 124 0.015 125 0.011 126 0.0073 127 0.014 128 0.019 129 0.012 130 0.013 131 0.013 132 0.0091 133 0.0074 134 0.016 135 0.012 136 0.011 137 0.0086 138 0.011 139 0.012 140 0.0058 141 0.008 -
TABLE 2-8 inhibitory Example activity No. IC50 (μM) 142 0.0064 143 0.0069 144 0.0077 145 0.0056 146 0.0059 147 0.0083 148 0.0098 149 0.0059 150 0.0061 151 0.0054 152 0.0059 153 0.0058 154 0.0073 155 0.01 156 0.0046 157 0.029 158 0.0054 159 0.0066 160 0.0061 161 0.0078 -
TABLE 2-9 inhibitory Example activity No. IC50 (μM) 162 0.0071 163 0.0077 164 0.0065 165 0.0074 166 0.012 167 0.01 168 0.0058 169 0.012 170 0.012 171 0.016 172 0.014 173 0.016 174 0.014 175 0.0095 176 0.0085 177 0.017 178 0.02 179 0.019 180 0.01 181 0.014 -
TABLE 2-10 inhibitory Example activity No. IC50 (μM) 182 0.0097 183 0.01 184 0.006 185 0.015 186 0.018 187 0.019 188 0.018 189 0.02 190 0.011 191 0.012 192 0.015 193 0.011 194 0.0082 195 0.0059 196 0.0067 197 0.014 198 0.0057 199 0.0084 200 0.0096 201 0.0095 -
TABLE 2-11 inhibitory Example activity No. IC50 (μM) 202 0.013 203 0.013 204 0.013 205 0.013 206 0.0059 207 0.024 208 0.012 209 0.012 210 0.023 211 0.016 212 0.014 213 0.015 214 0.016 217 0.0053 218 0.0065 219 0.015 220 0.0068 221 0.0084 222 0.0065 223 0.012 -
TABLE 2-12 inhibitory Example activity No. IC50 (μM) 224 0.0073 225 0.018 226 0.013 227 0.013 228 0.011 229 0.012 230 0.069 231 0.011 232 0.015 233 0.0064 234 0.018 235 0.016 236 0.013 237 0.013 238 0.018 239 0.016 240 0.052 241 0.014 242 0.013 243 0.0076 -
TABLE 2-13 inhibitory Example activity No. IC50 (μM) 244 0.074 245 0.0081 246 0.0084 247 0.01 248 0.014 249 0.012 250 0.017 251 0.011 252 0.0092 253 0.0077 254 0.0076 255 0.009 256 0.0082 257 0.0091 258 0.0093 259 0.009 260 0.012 261 0.011 262 0.01 263 0.009 -
TABLE 2-14 inhibitory Example activity No. IC50 (μM) 264 0.0085 265 0.0093 266 0.011 267 0.011 268 0.015 269 0.0094 270 0.0095 271 0.011 272 0.0089 273 0.014 274 0.012 275 0.014 276 0.016 277 0.012 278 0.0099 279 0.0063 280 0.016 281 0.016 282 0.015 283 0.018 -
TABLE 2-15 inhibitory Example activity No. IC50 (μM) 284 0.011 285 0.011 286 0.0078 287 0.008 288 0.0088 289 0.01 290 0.014 291 0.0087 292 0.0073 293 0.0096 294 0.011 295 0.012 296 0.019 -
TABLE 2-16 inhibitory Example activity No. IC50 (μM) 297 0.02 298 0.009 299 0.0098 300 0.009 301 0.008 302 0.0099 303 0.0058 304 0.0091 305 0.0095 306 0.01 307 0.011 308 0.013 309 0.0088 310 0.0099 311 0.0097 312 0.012 313 0.0097 314 0.0079 315 0.0088 -
TABLE 2-17 inhibitory Example activity No. IC50 (μM) 316 0.012 317 0.0098 318 0.0065 319 0.0058 320 0.0094 321 0.007 323 0.014 -
TABLE 2-18 inhibitory Example activity No. IC50 (μM) 327 0.0059 328 0.0071 329 0.0061 330 0.0064 331 0.0093 332 0.012 333 0.0075 334 0.0091 335 0.0098 336 0.0072 337 0.017 338 0.0071 353 0.013 354 0.0080 355 0.0066 356 0.0089 357 0.0073 358 0.012 359 0.0048 360 0.011 -
TABLE 2-19 inhibitory Example activity No. IC50 (μM) 361 0.015 362 0.010 363 0.0087 364 0.010 365 0.012 382 0.0087 383 0.0079 384 0.012 385 0.0082 386 0.015 387 0.011 388 0.0086 389 0.014 391 0.024 392 0.011 393 0.015 394 0.014 395 0.010 396 0.015 397 0.019 - The effect of combined use of the compound of the present invention and existent anti-HIV agents can be determined in the following manner.
- For example, the effect of combined use of two agents from existent nucleoside reverse transcriptase inhibitors (zidovudine, lamivudine, tenofovir), non-nucleoside reverse transcriptase inhibitors (efavirenz) or protease inhibitors (indinavir, nelfinavir) and test substance A and the like are evaluated using CEM-SS cells infected with HIV-1 IIIB by XTT method.
- In addition, the effect of combined use of three agents of test substance A, zidovudine and lamivudine, or test substance A, tenofovir and lamivudine, and the like is evaluated.
- Prior to the combined use test, IC50 and CC50 of each medicament alone are measured. 5 concentrates of medicament A and 9 concentrates of medicament B, determined based on these results, are combined to evaluate the effect of combined use of two agents. For combined use of three agents, a high concentrated medicament B and a medicament C are mixed and medicament A and concentration thereof are combined for evaluation.
- The test results of the test substance and concomitant drug alone or in combination thereof are analyzed based on the programs of Prichard and Shipman MacSynergy II version 2.01 and Deltagraph version 1.5d. A three-dimensional plot is drawn from % inhibition at the concentrations of each combined medicament, the obtained from 3 times of tests, with 95% (or 68%, 99%) confidence limits, and the effect of the combined use is evaluated based on the numerical values of μM2% calculated therefrom. The criteria of evaluation are shown in the following.
-
Definition of interaction μM2 % Strong synergistic action >100 Slight synergistic action +51-+100 Additive action +50-−50 Slight antagonistic action −51-−100 Strong antagonistic action <−100 - Liver microsome of human or animal species (rat or monkey) (manufactured by Xenotech LLC (Lenexa, Kans., USA), 20 mg protein/mL) (2.5 μL) and NADPH-generating system coenzyme solution (β-nicotinamide adenine dinucleotide phosphate: 5.2 mM, D-glucose-6-phosphate: 13.2 mM, magnesium chloride: 13.2 mM, glucose-6-phosphate dehydrogenase: 1.8 U/mL) (50 μL) are suspended in 100 mM potassium phosphate buffer (pH 7.4, 147.5 μL), and mixed with a test substance (2 μL) dissolved in acetonitrile containing 0.5% DMSO. After incubation at 37° C. for 0, 10 and 60 min, acetonitrile containing formic acid (final concentrated 0.1%) is added and the mixture is centrifuged. The test substance (unchanged form) in the supernatant is measured by high performance liquid chromatography/Mass Spectrometry (LC/MS). The residual ratio (%) is calculated from the obtained measurement values according to the following formula. residual ratio (%)=amount of test substance after incubation (0, 10 or 60 min)/amount of test substance at incubation 0 min×100
- Preferred as the compound of the present invention is a compound with a residual ratio at 60 min later of not less than 40%, more preferably not less than 60%, further preferably not less than 80%.
- Formulation Example is given below. This example is merely for the exemplification purpose and does not limit the invention.
-
-
(a) compound of Example 1 10 g (b) lactose 50 g (c) corn starch 15 g (d) sodium carboxymethylcellulose 44 g (e) magnesium stearate 1 g - The entire amounts of (a), (b) and (c) and 30 g of (d) are kneaded with water, dried in vacuo and granulated. The obtained granules are mixed with 14 g of (d) and 1 g of (e) and processed into tablets with a tableting machine to give 1000 tablets each containing 10 mg of (a).
- The compounds of the present invention show a high inhibitory activity against HIV integrase.
- Therefore, these compounds can be medicaments effective for, for example, the prophylaxis or treatment of AIDS, as integrase inhibitors, antiviral agents, anti-HIV agents and the like, having an HIV integrase inhibitory activity. In addition, by a combined use with other anti-HIV agent(s) such as protease inhibitor, reverse transcriptase inhibitor and the like, they can be more effective anti-HIV agents. Furthermore, having high inhibitory activity specific for integrase, they can be medicaments safe for human body with a fewer side effects.
-
- SEQ ID NO: 1: Donor+ chain for HIV integrase activity measurement
- SEQ ID NO: 2: Donor− chain for HIV integrase activity measurement
- SEQ ID NO: 3: Target+ chain for HIV integrase activity measurement
- SEQ ID NO: 4: Target− chain for HIV integrase activity measurement
Claims (43)
1. A compound represented by the following formula [I]or a pharmaceutically acceptable salt thereof, or a solvate thereof:
wherein
R1 is
(1) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
(i) a C3-8 cycloalkyl group, and
(ii) a C1-6 alkoxy group,
(2) a C3-8 cycloalkyl group, or
(3) a saturated monocyclic heterocyclic group containing, besides carbon atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom,
R2, R3, R4 and R5 are the same or different and each is
(1) a hydrogen atom,
(2) a carboxyl group,
(3) —CO—NRaRb wherein Ra and Rb are the same or different and each is
(i) a hydrogen atom,
(ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the following group B, or
(iii) a C3-8 cycloalkyl group, or
Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the following group B,
(4) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the following group A, or
(5) a cyano group, or
R2 and R3, or R4 and R5 optionally form, together with the carbon atom bonded thereto,
i) C3-8 cycloalkane, or
ii) a saturated monocyclic hetero ring containing, besides carbon atom, 1 to 6 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom,
wherein R2, R3, R4 and R5 are not hydrogen atoms at the same time,
R6 is
(1) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 halogen atoms,
(2) a C1-6 alkoxy group,
(3) a halogen atom, or
(4) a C3-8 cycloalkyl group,
Y is
a nitrogen atom,
m is an integer of 1 to 5, and when m is an integer of 2 to 5, then each R6 may be the same or different, and
n is an integer of 1 to 3,
and wherein group A is selected from
(a) —CO—NRA1RA2
wherein RA1 and RA2 are the same or different and each is
(i) a hydrogen atom,
(ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from the following group B, or
(iii) a C3-8 cycloalkyl group, or
RA1 and RA2 optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 3 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from the following group B,
(b) a hydroxyl group,
(c) a C1-6 alkoxy group,
(d) a C1-6 alkoxy-C1-6 alkoxy group,
(e) a cyano group,
(f) —NRA3RA4
wherein RA3 and RA4 are the same or different and each is
(i) a hydrogen atom,
(ii) a C1-6 alkyl group,
(iii) a C1-6 alkyl-carbonyl group, or
(iv) a C1-6 alkyl-sulfonyl group, or
RA3 and RA4 optionally form, together with the nitrogen atom bonded thereto, a hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by 1 or 2 oxo groups,
(g) a carboxyl group,
(h) a C1-6 alkyl-sulfonyl group, and
(i) a C1-6 alkyl-carbonyl group;
and group B is selected from
(a) a hydroxyl group,
(b) a C1-6 alkoxy group,
(c) a C1-6 alkoxy-C1-6 alkyl group
(d) a C3-8 cycloalkyl group, and
(e) an oxo group.
2. The compound according to claim 1 , wherein R1 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
(i) a C3-8 cycloalkyl group, and
(ii) a C1-6 alkoxy group,
or a pharmaceutically acceptable salt thereof, or a solvate thereof.
3. The compound according to claim 2 , wherein R1 is a C1-6 alkyl group, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
4. The compound according to claim 2 , wherein R1 is a C1-6 alkyl group substituted by a C3-8 cycloalkyl group, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
5. The compound according to claim 1 , wherein R1 is a C3-8 cycloalkyl group, or a pharmaceutically acceptable salt thereof, or a solvate thereof,
6. The compound according to claim 1 , wherein one of R2, R3, R4 and R5 is —CO—NRaRb
wherein Ra and Rb are the same or different and each is
(i) a hydrogen atom,
(ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group B, or
(iii) a C3-8 cycloalkyl group, or
Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from group B,
or a pharmaceutically acceptable salt thereof, or a solvate thereof.
7. The compound according to claim 1 , wherein one of R2, R3, R4 and R5 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A,
or a pharmaceutically acceptable salt thereof, or a solvate thereof.
8. The compound according to claim 1 , wherein R6 is a halogen atom, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
9. (canceled)
10. (canceled)
11. The compound according to claim 1 , wherein m is 1 or 2, or a pharmaceutically acceptable salt thereof.
12. The compound according to claim 1 , wherein n is 1, or a pharmaceutically acceptable salt thereof, or a solvate thereof.
13. The compound according to claim 1 , which is represented by the following formula [I-1], or a pharmaceutically acceptable salt thereof, or a solvate thereof:
wherein
R11 is
(1) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from
(i) a C3-8 cycloalkyl group, and
(ii) a C1-6 alkoxy group, or
(2) a C3-8 cycloalkyl group,
R21, R31, R41 and R51 are the same or different and each is
(1) a hydrogen atom,
(2) —CO—NRaRb wherein Ra and Rb are the same or different and each is
(i) a hydrogen atom,
(ii) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group B, or
(iii) a C3-8 cycloalkyl group, or
Ra and Rb optionally form, together with the nitrogen atom bonded thereto, a saturated monocyclic hetero ring optionally containing, besides carbon atom and one nitrogen atom, 1 to 5 hetero atoms selected from a nitrogen atom, an oxygen atom and a sulfur atom, and optionally substituted by the same or different 1 to 5 substituents selected from group B, or
(3) a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A,
wherein R21, R31, R41 and R51 are not hydrogen atoms at the same time,
R61 is a halogen atom, and
R62 is a hydrogen atom or a halogen atom.
14. The compound according to claim 13 , wherein R21 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A, and
R31, R41 and R51 are each a hydrogen atom,
or a pharmaceutically acceptable salt thereof, or a solvate thereof.
15. The compound according to claim 13 , wherein R21 is a C1-6 alkyl group, and
R31, R41 and R51 are each a hydrogen atom,
or a pharmaceutically acceptable salt thereof, or a solvate thereof.
16. The compound according to claim 13 , wherein R41 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A, and
R21, R31 and R51 are each a hydrogen atom,
or a pharmaceutically acceptable salt thereof, or a solvate thereof.
17. The compound according to claim 13 , wherein R21 is a C1-6 alkyl group optionally substituted by the same or different 1 to 5 substituents selected from group A,
R41 is a C1-6 alkyl group, and
R31 and R51 are each a hydrogen atom,
or a pharmaceutically acceptable salt thereof, or a solvate thereof.
18. (canceled)
19. (canceled)
30. A pharmaceutical composition comprising the compound according to claim 1 or a pharmaceutically acceptable salt thereof, or a solvate thereof, and a pharmaceutically acceptable carrier.
31. An anti-HIV agent comprising the compound according to claim 1 or a pharmaceutically acceptable salt thereof, or a solvate thereof, as an active ingredient.
32. An HIV integrase inhibitor comprising the compound according to claim 1 or a pharmaceutically acceptable salt thereof, or a solvate thereof, as an active ingredient.
33. An anti-HIV agent comprising the compound according to claim 1 or a pharmaceutically acceptable salt thereof, or a solvate thereof, in combination with one or more other kinds of anti-HIV active substances.
34. (canceled)
35. (canceled)
36. A method for the prophylaxis or treatment of an HIV infectious disease in a mammal, which comprises administering an effective amount of the compound according to claim 1 or a pharmaceutically acceptable salt thereof, or a solvate thereof, to said mammal.
37. The method according to claim 36 , which further comprises administering an effective amount of one or more other kinds of anti-HIV active substances to the mammal.
38. A method for inhibiting HIV integrase in a mammal, which comprises administering an effective amount of the compound according to claim 1 or a pharmaceutically acceptable salt thereof, or a solvate thereof, to said mammal.
39. An anti-HIV composition comprising the compound according to claim 1 or a pharmaceutically acceptable salt thereof, or a solvate thereof, and a pharmaceutically acceptable carrier.
40. A pharmaceutical composition for inhibiting HIV integrase, comprising the compound according to claim 1 or a pharmaceutically acceptable salt thereof, or a solvate thereof, and a pharmaceutically acceptable carrier.
41. A commercial package comprising the pharmaceutical composition according to claim 30 and a written matter associated therewith, which states that the pharmaceutical composition can or should be used for treating HIV,
42. A kit comprising the pharmaceutical composition according to claim 30 and a written matter associated therewith, which states that the pharmaceutical composition can or should be used for treating HIV.
43. A pharmaceutical composition according to claim 30 , which further comprises one or more other anti-HIV active substances.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/045,594 US20180319798A1 (en) | 2010-02-26 | 2018-07-25 | 1,3,4,8-Tetrahydro-2H-Pyrido[1,2-a]Pyrazine Derivative and Use of the Same as HIV Integrase Inhibitor |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010043567 | 2010-02-26 | ||
| JP2010-043567 | 2010-02-26 | ||
| US33972910P | 2010-03-09 | 2010-03-09 | |
| US13/034,866 US10065950B2 (en) | 2010-02-26 | 2011-02-25 | Substituted thiazoles as HIV integrase inhibitors |
| US16/045,594 US20180319798A1 (en) | 2010-02-26 | 2018-07-25 | 1,3,4,8-Tetrahydro-2H-Pyrido[1,2-a]Pyrazine Derivative and Use of the Same as HIV Integrase Inhibitor |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/034,866 Division US10065950B2 (en) | 2010-02-26 | 2011-02-25 | Substituted thiazoles as HIV integrase inhibitors |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180319798A1 true US20180319798A1 (en) | 2018-11-08 |
Family
ID=44506987
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/034,866 Expired - Fee Related US10065950B2 (en) | 2010-02-26 | 2011-02-25 | Substituted thiazoles as HIV integrase inhibitors |
| US16/045,594 Abandoned US20180319798A1 (en) | 2010-02-26 | 2018-07-25 | 1,3,4,8-Tetrahydro-2H-Pyrido[1,2-a]Pyrazine Derivative and Use of the Same as HIV Integrase Inhibitor |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/034,866 Expired - Fee Related US10065950B2 (en) | 2010-02-26 | 2011-02-25 | Substituted thiazoles as HIV integrase inhibitors |
Country Status (19)
| Country | Link |
|---|---|
| US (2) | US10065950B2 (en) |
| EP (1) | EP2540720B1 (en) |
| JP (1) | JP5765965B2 (en) |
| KR (1) | KR20120130185A (en) |
| CN (1) | CN102858771A (en) |
| AR (1) | AR080314A1 (en) |
| AU (1) | AU2011221037A1 (en) |
| BR (1) | BR112012021595A2 (en) |
| CA (1) | CA2789457A1 (en) |
| CL (1) | CL2012002355A1 (en) |
| CO (1) | CO6571861A2 (en) |
| MX (1) | MX2012009869A (en) |
| NZ (1) | NZ601847A (en) |
| PE (1) | PE20130010A1 (en) |
| PH (1) | PH12012501689A1 (en) |
| RU (1) | RU2012140961A (en) |
| SG (1) | SG183484A1 (en) |
| TW (1) | TW201139437A (en) |
| WO (1) | WO2011105590A1 (en) |
Families Citing this family (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10065950B2 (en) * | 2010-02-26 | 2018-09-04 | Japan Tobacco Inc. | Substituted thiazoles as HIV integrase inhibitors |
| KR20140090197A (en) * | 2011-10-12 | 2014-07-16 | 시오노기세야쿠 가부시키가이샤 | Polycyclic pyridone derivative having integrase-inhibiting activity |
| WO2014099586A1 (en) * | 2012-12-17 | 2014-06-26 | Merck Sharp & Dohme Corp. | 4-pyridinonetriazine derivatives as hiv integrase inhibitors |
| PH12019501848A1 (en) | 2012-12-21 | 2020-03-02 | Gilead Sciences Inc | Polycyclic-carbamoylpyridone compounds and their pharmaceutical use |
| EP2940019B1 (en) * | 2012-12-27 | 2018-03-28 | Japan Tobacco Inc. | SUBSTITUTED SPIROPYRIDO[1,2-a]PYRAZINE DERIVATIVE AND MEDICINAL USE THEREOF AS HIV INTEGRASE INHIBITOR |
| EP2997033B1 (en) | 2013-05-17 | 2017-11-15 | Merck Sharp & Dohme Corp. | Fused tricyclic heterocyclic compounds as hiv integrase inhibitors |
| WO2014200880A1 (en) | 2013-06-13 | 2014-12-18 | Merck Sharp & Dohme Corp. | Fused tricyclic heterocyclic compounds as hiv integrase inhibitors |
| WO2015006731A1 (en) | 2013-07-12 | 2015-01-15 | Gilead Sciences, Inc. | Polycyclic-carbamoylpyridone compounds and their use for the treatment of hiv infections |
| NO2865735T3 (en) | 2013-07-12 | 2018-07-21 | ||
| WO2015038655A1 (en) | 2013-09-12 | 2015-03-19 | Alios Biopharma, Inc. | Aza-pyridone compounds and uses thereof |
| CN103736081A (en) * | 2013-12-18 | 2014-04-23 | 首都医科大学附属北京佑安医院 | Application of ONTAK in preparing medicine for eliminating latent HIV (Human Immunodeficiency Virus) |
| WO2015089847A1 (en) | 2013-12-20 | 2015-06-25 | Merck Sharp & Dohme Corp. | Spirocyclic heterocycle compounds useful as hiv integrase inhibitors |
| TW201613936A (en) | 2014-06-20 | 2016-04-16 | Gilead Sciences Inc | Crystalline forms of(2R,5S,13aR)-8-hydroxy-7,9-dioxo-n-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepine-10-carboxamide |
| TWI744723B (en) | 2014-06-20 | 2021-11-01 | 美商基利科學股份有限公司 | Synthesis of polycyclic-carbamoylpyridone compounds |
| NO2717902T3 (en) | 2014-06-20 | 2018-06-23 | ||
| JPWO2016027879A1 (en) | 2014-08-22 | 2017-06-01 | 塩野義製薬株式会社 | Polycyclic pyridone derivatives having integrase inhibitory activity |
| WO2016094198A1 (en) * | 2014-12-09 | 2016-06-16 | Merck Sharp & Dohme Corp. | Spirocyclic heterocycle compounds useful as hiv integrase inhibitors |
| WO2016090545A1 (en) | 2014-12-09 | 2016-06-16 | Merck Sharp & Dohme Corp. | Spirocyclic heterocycle compounds useful as hiv integrate inhibitors |
| TWI695003B (en) | 2014-12-23 | 2020-06-01 | 美商基利科學股份有限公司 | Polycyclic-carbamoylpyridone compounds and their pharmaceutical use |
| CA2972366C (en) * | 2014-12-24 | 2020-04-21 | National Institute Of Biological Sciences, Beijing | Necrosis inhibitors |
| BR112017020837A2 (en) | 2015-04-02 | 2018-07-03 | Gilead Sciences, Inc. | polycyclic carbamoylpyridone compounds and their pharmaceutical use |
| WO2016187788A1 (en) | 2015-05-25 | 2016-12-01 | Merck Sharp & Dohme Corp. | Fused tricyclic heterocyclic compounds useful for treating hiv infection |
| US10548910B2 (en) | 2015-11-17 | 2020-02-04 | Merck Sharp & Dohme Corp. | Amido-substituted pyridotriazine derivatives useful as HIV integrase inhibitors |
| EP3377065B1 (en) * | 2015-11-17 | 2022-05-18 | Merck Sharp & Dohme Corp. | Spirocyclic pyridotriazine derivatives useful as hiv integrase inhibitors |
| JOP20190130A1 (en) | 2016-12-02 | 2019-06-02 | Merck Sharp & Dohme | Tetracyclic heterocyclic compounds useful as integrated enzyme inhibitors for human immunodeficiency virus (HIV) |
| WO2019070059A1 (en) | 2017-10-06 | 2019-04-11 | 塩野義製薬株式会社 | Method for stereoselectively producing substituted polycyclic pyridone derivative |
| US11453669B2 (en) | 2018-05-31 | 2022-09-27 | Shionogi & Co., Ltd. | Polycyclic pyridone derivative |
| WO2019230858A1 (en) | 2018-05-31 | 2019-12-05 | 塩野義製薬株式会社 | Polycyclic carbamoylpyridone derivative |
| HUE059677T2 (en) | 2019-03-22 | 2022-12-28 | Gilead Sciences Inc | Bridged tricyclic carbamoylpyridone compounds and their pharmaceutical application |
| US20200398978A1 (en) | 2019-06-20 | 2020-12-24 | Bell Helicopter Textron Inc. | Low-drag rotor blade extension |
| US20230059640A1 (en) | 2019-11-28 | 2023-02-23 | Shionogi & Co., Ltd. | Prophylactic and therapeutic pharmaceutical agent for hiv infectious diseases characterized by comprising combination of integrase inhibitor and anti-hiv agent |
| EP4110783A1 (en) | 2020-02-24 | 2023-01-04 | Gilead Sciences, Inc. | Tetracyclic compounds for treating hiv infection |
| CA3192145A1 (en) | 2020-09-30 | 2022-04-07 | Gilead Sciences, Inc. | Bridged tricyclic carbamoylpyridone compounds and uses thereof |
| CN112574155A (en) * | 2020-11-25 | 2021-03-30 | 南京杰运医药科技有限公司 | Synthetic method of 3- (benzyloxy) -4-oxo-4H-pyran-2-carboxylic acid |
| PE20231297A1 (en) | 2021-01-19 | 2023-08-22 | Gilead Sciences Inc | SUBSTITUTED PYRIDOTRIAZINE COMPOUNDS AND USES OF THESE |
| TW202446773A (en) | 2022-04-06 | 2024-12-01 | 美商基利科學股份有限公司 | Bridged tricyclic carbamoylpyridone compounds and uses thereof |
| CN116969940B (en) * | 2023-08-03 | 2025-08-12 | 浙江大学 | 3-Hydroxypyridone-5-amide compounds and their medical uses |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2789457A1 (en) * | 2010-02-26 | 2011-09-01 | Susumu Miyazaki | 1,3,4,8-tetrahydro-2h-pyrido[1,2-a]pyrazine derivative and use of same as hiv integrase inhibitor |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1549315A4 (en) | 2002-09-11 | 2007-05-23 | Merck & Co Inc | 1,6-DIONED DIHYDROXYPYRIDOPYRAZINE COMPOUNDS USEFUL AS INHIBITORS OF HIV INTEGRASE |
| ATE404563T1 (en) | 2002-09-11 | 2008-08-15 | Merck & Co Inc | 8-HYDROXY-1-OXOTETRAHYDROPYRROLOPYRAZINE COMPOUNDS ACTIVE AS INHIBITORS OF HIV INTEGRASE |
| TW200510425A (en) * | 2003-08-13 | 2005-03-16 | Japan Tobacco Inc | Nitrogen-containing fused ring compound and use thereof as HIV integrase inhibitor |
| US7435735B2 (en) | 2003-10-20 | 2008-10-14 | Merck & Co., Inc. | Hydroxy pyridopyrrolopyrazine dione compounds useful as HIV integrase inhibitors |
| WO2005092099A1 (en) | 2004-03-09 | 2005-10-06 | Merck & Co., Inc. | Hiv integrase inhibitors |
| AU2005221864A1 (en) | 2004-03-09 | 2005-09-22 | Istituto Di Ricerche Di Biologia Molecolare P Angeletti Spa | HIV integrase inhibitors |
| WO2005110414A2 (en) | 2004-05-07 | 2005-11-24 | Merck & Co., Inc. | Hiv integrase inhibitors |
| WO2006066414A1 (en) | 2004-12-23 | 2006-06-29 | Virochem Pharma Inc. | Hydroxydihydropyridopy razine-1,8-diones and methods for inhibiting hiv integrase |
| EP1852434B1 (en) | 2005-02-21 | 2011-07-13 | Shionogi Co., Ltd. | Bicyclic carbamoylpyridone derivative having hiv integrase inhibiting activity |
| LT3372281T (en) | 2005-04-28 | 2021-12-10 | Viiv Healthcare Company | POLYCYCLIC CARBAMOYLPYRIDONE DERIVATIVE WITH HIV INTEGRATION INHIBITOR ACTIVITY |
| CN101346376A (en) * | 2005-10-27 | 2009-01-14 | 盐野义制药株式会社 | Polycyclic carbamoylpyridone derivative having inhibitory activity on HIV integrase |
| CA2625673A1 (en) | 2005-10-27 | 2007-05-03 | Merck & Co., Inc. | Hiv integrase inhibitors |
| BRPI0617842A2 (en) * | 2005-10-27 | 2011-08-09 | Shionogi & Co | compound or a pharmaceutically acceptable salt or solvate thereof, and, pharmaceutical composition |
| WO2010000031A1 (en) | 2008-07-02 | 2010-01-07 | Avexa Limited | Imidazopyrimidinones and uses thereof |
| MX2011000149A (en) | 2008-07-02 | 2011-02-24 | Avexa Ltd | Compounds having antiviral properties. |
| PL2247601T3 (en) | 2008-07-02 | 2013-09-30 | Avexa Ltd | Thiazopyrimidinones and uses thereof |
| AU2011219764A1 (en) | 2010-02-26 | 2012-08-16 | Boehringer Ingelheim International Gmbh | Thienopyrimidines containing a substituted alkyl group for pharmaceutical compositions |
| MY165117A (en) | 2010-02-26 | 2018-02-28 | Xenon Pharmaceuticals Inc | Pharmaceutical compositions of spiro-oxindole compound for topical administration and their use as therapeutic agents |
| UY33241A (en) | 2010-02-26 | 2011-09-30 | Boehringer Ingelheim Int | ? Tienopyrimidines containing heterocycloalkyl for pharmaceutical compositions ?. |
| JP5575274B2 (en) | 2010-02-26 | 2014-08-20 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | 4- [Cycloalkyloxy (hetero) arylamino] thieno "2,3-D] pyrimidines having MNKL / MNK2 inhibitory activity for pharmaceutical compositions |
| JP5766690B2 (en) | 2010-04-12 | 2015-08-19 | 塩野義製薬株式会社 | Pyridone derivatives having integrase inhibitory activity |
-
2011
- 2011-02-25 US US13/034,866 patent/US10065950B2/en not_active Expired - Fee Related
- 2011-02-25 JP JP2011040159A patent/JP5765965B2/en not_active Expired - Fee Related
- 2011-02-25 RU RU2012140961/04A patent/RU2012140961A/en not_active Application Discontinuation
- 2011-02-25 WO PCT/JP2011/054404 patent/WO2011105590A1/en not_active Ceased
- 2011-02-25 SG SG2012062881A patent/SG183484A1/en unknown
- 2011-02-25 PH PH1/2012/501689A patent/PH12012501689A1/en unknown
- 2011-02-25 BR BR112012021595A patent/BR112012021595A2/en not_active IP Right Cessation
- 2011-02-25 MX MX2012009869A patent/MX2012009869A/en active IP Right Grant
- 2011-02-25 CA CA2789457A patent/CA2789457A1/en not_active Abandoned
- 2011-02-25 AR ARP110100588A patent/AR080314A1/en not_active Application Discontinuation
- 2011-02-25 PE PE2012001366A patent/PE20130010A1/en not_active Application Discontinuation
- 2011-02-25 AU AU2011221037A patent/AU2011221037A1/en not_active Abandoned
- 2011-02-25 KR KR1020127022133A patent/KR20120130185A/en not_active Withdrawn
- 2011-02-25 EP EP11747546.7A patent/EP2540720B1/en active Active
- 2011-02-25 NZ NZ601847A patent/NZ601847A/en not_active IP Right Cessation
- 2011-02-25 TW TW100106352A patent/TW201139437A/en unknown
- 2011-02-25 CN CN2011800206206A patent/CN102858771A/en active Pending
-
2012
- 2012-08-24 CL CL2012002355A patent/CL2012002355A1/en unknown
- 2012-09-20 CO CO12163009A patent/CO6571861A2/en active IP Right Grant
-
2018
- 2018-07-25 US US16/045,594 patent/US20180319798A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2789457A1 (en) * | 2010-02-26 | 2011-09-01 | Susumu Miyazaki | 1,3,4,8-tetrahydro-2h-pyrido[1,2-a]pyrazine derivative and use of same as hiv integrase inhibitor |
Non-Patent Citations (2)
| Title |
|---|
| Jordan, V. C. Nature Reviews: Drug Discovery, 2, 2003, 205. * |
| Vippagunta, et al. Advanced Drug Delivery Reviews, 48, 2001, 18. * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2011105590A1 (en) | 2011-09-01 |
| CN102858771A (en) | 2013-01-02 |
| EP2540720A4 (en) | 2013-07-31 |
| NZ601847A (en) | 2014-03-28 |
| AU2011221037A1 (en) | 2012-09-06 |
| CA2789457A1 (en) | 2011-09-01 |
| EP2540720B1 (en) | 2015-04-15 |
| CL2012002355A1 (en) | 2013-01-25 |
| US10065950B2 (en) | 2018-09-04 |
| JP5765965B2 (en) | 2015-08-19 |
| MX2012009869A (en) | 2012-09-12 |
| KR20120130185A (en) | 2012-11-29 |
| US20120108564A1 (en) | 2012-05-03 |
| SG183484A1 (en) | 2012-09-27 |
| BR112012021595A2 (en) | 2017-02-21 |
| RU2012140961A (en) | 2014-04-10 |
| TW201139437A (en) | 2011-11-16 |
| AR080314A1 (en) | 2012-03-28 |
| JP2011195585A (en) | 2011-10-06 |
| EP2540720A1 (en) | 2013-01-02 |
| CO6571861A2 (en) | 2012-11-30 |
| PE20130010A1 (en) | 2013-02-05 |
| PH12012501689A1 (en) | 2012-11-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10065950B2 (en) | Substituted thiazoles as HIV integrase inhibitors | |
| US10087178B2 (en) | Substituted spiropyrido[1,2-a]pyrazine derivative and medicinal use thereof as HIV integrase inhibitor | |
| US11161847B2 (en) | KRAS mutant protein inhibitors | |
| US11986531B2 (en) | Compounds and methods for the targeted degradation of rapidly accelerated fibrosarcoma polypeptides | |
| JP2023521698A (en) | Compounds and methods for targeted degradation of KRAS | |
| US20080161311A1 (en) | Nitrogen-containing fused ring compound and use thereof as HIV integrase inhibitor | |
| US20100105661A1 (en) | Condensed pyridine compound | |
| KR20240028539A (en) | Polycyclic compounds and methods for the targeted degradation of rapidly accelerated fibrosarcoma polypeptides | |
| US7872004B2 (en) | 6-(heterocyclyl-substituted benzyl)-4-oxoquinoline compound and use thereof as HIV integrase inhibitor | |
| US20120034250A1 (en) | Condensed pyrrolopyridine derivative | |
| US20230103494A1 (en) | Novel spiropyrrolidine derived antiviral agents | |
| WO2021214136A1 (en) | Rsv inhibiting 3-substituted quinoline and cinnoline derivatives | |
| KR20060114374A (en) | Therapeutic Combinations | |
| HK1179615A (en) | 1,3,4,8-tetrahydro-2h-pyrido[1,2-a]pyrazine derivative and use of same as hiv integrase inhibitor | |
| RU2830173C2 (en) | Polycyclic compounds and methods for targeted degradation of polypeptides of fast accelerated fibrosarcoma | |
| KR20060127939A (en) | Composition comprising HIB protease inhibitor and cytochrome P450 enzyme activity inhibitor | |
| HK1237783B (en) | 5-amino-4-carbamoyl-pyrazole compounds as selective and irreversible t790m over wt-egfr kinase inhibitors and use thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |