US20180312543A1 - Cyclosporin a form 2 and method of making same - Google Patents
Cyclosporin a form 2 and method of making same Download PDFInfo
- Publication number
- US20180312543A1 US20180312543A1 US16/028,956 US201816028956A US2018312543A1 US 20180312543 A1 US20180312543 A1 US 20180312543A1 US 201816028956 A US201816028956 A US 201816028956A US 2018312543 A1 US2018312543 A1 US 2018312543A1
- Authority
- US
- United States
- Prior art keywords
- hours
- cyclosporin
- solution
- water
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical group CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 title claims abstract description 91
- 238000004519 manufacturing process Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 29
- 108010036949 Cyclosporine Proteins 0.000 claims description 41
- 229930105110 Cyclosporin A Natural products 0.000 claims description 40
- 229960001265 ciclosporin Drugs 0.000 claims description 37
- 239000000725 suspension Substances 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 21
- 238000003756 stirring Methods 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 8
- 239000000243 solution Substances 0.000 description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 238000001816 cooling Methods 0.000 description 16
- 239000013078 crystal Substances 0.000 description 14
- 238000000634 powder X-ray diffraction Methods 0.000 description 14
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- 239000007858 starting material Substances 0.000 description 12
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 10
- 210000000795 conjunctiva Anatomy 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 208000002205 allergic conjunctivitis Diseases 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 210000004175 meibomian gland Anatomy 0.000 description 7
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 7
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 7
- 229920000053 polysorbate 80 Polymers 0.000 description 7
- 229940068968 polysorbate 80 Drugs 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 206010010744 Conjunctivitis allergic Diseases 0.000 description 6
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 6
- 206010013774 Dry eye Diseases 0.000 description 6
- 206010061218 Inflammation Diseases 0.000 description 6
- 230000004054 inflammatory process Effects 0.000 description 6
- 208000024998 atopic conjunctivitis Diseases 0.000 description 5
- 208000010217 blepharitis Diseases 0.000 description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- 206010027137 Meibomianitis Diseases 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 description 3
- 206010069664 atopic keratoconjunctivitis Diseases 0.000 description 3
- 229930182912 cyclosporin Natural products 0.000 description 3
- AEDZKIACDBYJLQ-UHFFFAOYSA-N ethane-1,2-diol;hydrate Chemical compound O.OCCO AEDZKIACDBYJLQ-UHFFFAOYSA-N 0.000 description 3
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229940053174 restasis Drugs 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000004489 tear production Effects 0.000 description 3
- 208000009319 Keratoconjunctivitis Sicca Diseases 0.000 description 2
- 206010034960 Photophobia Diseases 0.000 description 2
- 208000003251 Pruritus Diseases 0.000 description 2
- 206010039792 Seborrhoea Diseases 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 206010047571 Visual impairment Diseases 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 150000004683 dihydrates Chemical class 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000007803 itching Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001565 modulated differential scanning calorimetry Methods 0.000 description 2
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 208000008742 seborrheic dermatitis Diseases 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 208000018464 vernal keratoconjunctivitis Diseases 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- RNHDAKUGFHSZEV-UHFFFAOYSA-N 1,4-dioxane;hydrate Chemical compound O.C1COCCO1 RNHDAKUGFHSZEV-UHFFFAOYSA-N 0.000 description 1
- LMUFQMFBHXXJNF-CWKDXJDWSA-N C.C/C=C/C[C@@H](C)[C@@H](O)C1C(=O)N[C@@H](CC)C(=O)N(C)CC(=O)N(C)[C@@H](CC(C)C)C(=O)C[C@@H](C(C)C)C(=O)N(C)[C@@H](CC(C)C)C(=O)C[C@@H](C)C(=O)N[C@H](C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)N1C.O Chemical compound C.C/C=C/C[C@@H](C)[C@@H](O)C1C(=O)N[C@@H](CC)C(=O)N(C)CC(=O)N(C)[C@@H](CC(C)C)C(=O)C[C@@H](C(C)C)C(=O)N(C)[C@@H](CC(C)C)C(=O)C[C@@H](C)C(=O)N[C@H](C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)N1C.O LMUFQMFBHXXJNF-CWKDXJDWSA-N 0.000 description 1
- QBQLAIFLFPPDLJ-IJNDFCENSA-N C/C=C/C[C@@H](C)[C@@H](O)C1C(=O)N[C@@H](CC)C(=O)N(C)CC(=O)N(C)[C@@H](CC(C)C)C(=O)C[C@@H](C(C)C)C(=O)N(C)[C@@H](CC(C)C)C(=O)C[C@@H](C)C(=O)N[C@H](C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)N1C Chemical compound C/C=C/C[C@@H](C)[C@@H](O)C1C(=O)N[C@@H](CC)C(=O)N(C)CC(=O)N(C)[C@@H](CC(C)C)C(=O)C[C@@H](C(C)C)C(=O)N(C)[C@@H](CC(C)C)C(=O)C[C@@H](C)C(=O)N[C@H](C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N(C)[C@@H](CC(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)N1C QBQLAIFLFPPDLJ-IJNDFCENSA-N 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 206010010726 Conjunctival oedema Diseases 0.000 description 1
- 206010055665 Corneal neovascularisation Diseases 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- 206010061842 Entropion Diseases 0.000 description 1
- 206010015993 Eyelid oedema Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 208000014260 Fungal keratitis Diseases 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 102000006354 HLA-DR Antigens Human genes 0.000 description 1
- 108010058597 HLA-DR Antigens Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 1
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 1
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 1
- 206010023644 Lacrimation increased Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 206010037508 Punctate keratitis Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 206010044604 Trichiasis Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 201000001891 corneal deposit Diseases 0.000 description 1
- 201000000159 corneal neovascularization Diseases 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003112 degranulating effect Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002497 edematous effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003560 epithelium corneal Anatomy 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 210000002175 goblet cell Anatomy 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 229960004716 idoxuridine Drugs 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 206010023332 keratitis Diseases 0.000 description 1
- 206010023365 keratopathy Diseases 0.000 description 1
- 230000004317 lacrimation Effects 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- -1 polyoxyethylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 201000003827 punctate epithelial keratoconjunctivitis Diseases 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 210000001732 sebaceous gland Anatomy 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 208000024205 superior limbic keratoconjunctivitis Diseases 0.000 description 1
- 230000004488 tear evaporation Effects 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000029257 vision disease Diseases 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/12—Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
- A61K38/13—Cyclosporins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/30—Extraction; Separation; Purification by precipitation
- C07K1/306—Extraction; Separation; Purification by precipitation by crystallization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/64—Cyclic peptides containing only normal peptide links
- C07K7/645—Cyclosporins; Related peptides
Definitions
- Disclosed herein is a method for making a new crystalline form of cyclosporin A.
- Cyclosporin A is a cyclic peptide having the following chemical structure:
- Restasis® (Allergan, Inc., Irvine, Calif.), an emulsion comprising 0.05% (w/v) cyclosporin. Restasis® is approved in the United States to increase tear production in patients whose tear production is presumed to be suppressed due to ocular inflammation associated with keratoconjunctivitis sicca.
- Cyclosporin A is known to exist in an amorphous form, liquid crystal form, tetragonal crystalline form (Form 1), and an orthorhombic form (Form 3). The inventors describe here a method of making a new crystalline form, cyclosporin A Form 2.
- FIG. 1 depicts characteristic X-ray powder diffraction (XRPD) patterns of CsA in a new crystalline form (designated as Form 2 herein), tetragonal form (designated as Form 1 herein), and orthorhombic form (designated as Form 3 herein).
- XRPD characteristic X-ray powder diffraction
- FIG. 2 depicts the XRPD diffractogram of CsA crystalline Form 2.
- FIG. 3 depicts the water sorption/desorption profile of CsA Form 2.
- FIG. 4 depicts MDSC analysis of CsA Form 2 recovered from 0.04% formulation with 1% PS80.
- FIG. 5 depicts a cycle of heating and cooling used to generate the CsA Form 2 generated by a method according to the invention.
- FIG. 6 shows the x-ray diffraction pattern (XRPD) of CsA Form 2 obtained according to a method of the invention, using amorphous cyclosporin A as the starting material.
- FIG. 7 shows the XRPD of CsA Form 2 obtained according to a method of the invention, using tetragonal cyclosporin A as the starting material.
- FIG. 8 shows the XRPD of CsA Form 2 obtained according to a method of the invention, using orthorhombic cyclosporin A as the starting material.
- FIG. 9 shows the simulated XRPD pattern of cyclosporine A forms.
- the XRPD pattern of CsA Form 2 differs significantly from the tetragonal form and orthorhombic form ( FIG. 1 ).
- These major peaks are defined as those being unique to Form 2 relative to the orthorhombic or tetragonal forms; as well as, peaks having an intensity greater than 5 times the background.
- the new crystalline form (Form 2) of CsA is a nonstoichiometric hydrate of Cyclosporin A.
- the crystalline Form 2 is represented by the formula:
- X is the number of molecules of water and varies from 0 to 3. In one embodiment, X in the above formula is 2.
- Form 2 appears to be a kinetically stable form of CsA in aqueous suspensions. Suspensions containing Form 2 show no conversion to other known polymorphic or pseudomorphic forms upon storage. It has been found that Form 1 and the amorphous form convert to Form 2 in the presence of water.
- the asymmetric unit of this CsA Form 2 contains one cyclosporine A molecule and two water molecules. It is possible that any small molecule that can hydrogen bond to water could play the role of space filler, which would give a range of potential structures running from the orthorhombic dihydrate to distorted monoclinic dihydrate.
- the XRPD pattern calculated from the single-crystal structure is shown in FIG. 9 and it matches the experimental pattern shown in FIG. 2 . These matching patterns further corroborate that Form 2 is a unique and pure crystalline form of cyclosporine A.
- thermogravimetric analysis combined with KF titration and vapor sorption desorption analysis suggest that CsA Form 2 is a non-stoichiometric hydrate of CsA.
- the vapor sorption analysis of Cyclosporine Form 2 indicates that water content in the new crystal form reversibly varies with relative humidity as shown in FIG. 3 .
- the new CsA form undergoes a phase transition to a liquid crystal or amorphous form at 124.4° C. prior to melting as indicated by the modulated differential calorimetric (MDSC) analysis ( FIG. 4 ).
- MDSC modulated differential calorimetric
- Cyclosporin A Form 2 may be obtained by suspending amorphous cyclosporin A in water containing Polysorbate 80 (polyoxyethylene sorbitan-mono-olleate), followed by heating the solution in to a temperature of between about 55° C. and about 75° C., and storing it at that temperature for at least between about 18 and about 48 hours, after which one removes the precipitate, cyclosporin A Form 2.
- Polysorbate 80 polyoxyethylene sorbitan-mono-olleate
- cyclosporin A at a concentration of between about 0.001% and about 10%.
- the term “about,” when used in connection with a value, means a value that is reasonably close to the stated value.
- cyclosporin A at a concentration of about 0.001% (w/v), about 0.005% (w/v), about 0.01% (w/v), about 0.02% (w/v), about 0.03% (w/v), about 0.04% (w/v), about 0.05% (w/v), about 0.06% (w/v), about 0.07% (w/v), about 0.08% (w/v), about 0.09% (w/v), about 0.1% (w/v), about 0.2% (w/v), about 0.3% (w/v), about 0.4% (w/v), about 0.5% (w/v), about 0.6% (w/v), about 0.7% (w/v), about 0.8% (w/v), about 0.9% (w/v), about 1% (w/v), about 2% (w/v), about 3% (w/v), about 4% (w/v), about 5% (w/v), about 0.6% (w/v), about 0.7% (w/v), about 0.8% (w/v), about 0.9% (w/v),
- Polysorbate 80 at a concentration of between about 0.1% and 10%, such as about 0.1% (w/v), about 0.2% (w/v), about 0.3% (w/v), about 0.4% (w/v), about 0.5% (w/v), about 0.6% (w/v), about 0.7% (w/v), about 0.8% (w/v), about 0.9% (w/v), about 1% (w/v), about 2% (w/v), about 3% (w/v), about 4% (w/v), about 5% (w/v), about 6% (w/v), about 7% (w/v), about 8% (w/v), about 9% (w/v), or about 10% (w/v) Polysorbate 80.
- the resulting precipitated solid may be recovered by any standard method, such as by vacuum filtration. Following the recovery, the precipitate may then be washed and dried. For example, it may be washed with water and then dried under vacuum at an elevated temperature (for example, about 40° C.), then at room temperature. Other washing and drying techniques may also be used.
- Cyclosporin A Form 2 may also be formed using cyclosporin A Form 2 as a seed crystal.
- this method one can suspend amorphous cyclosporin A in an aqueous solution of Polysorbate 80 and heat the solution as described above.
- cyclosporin A for example, one can suspend about 30 g cyclosporin A in a solution of 900 ml water containing 1% (w/v) Polysorbate 80. One can heat the solution to 65° C., and then seed it with 0.2 g of cyclosporin A Form 2 at a temperature of 52° C. The solution is stirred for about 22 hours at a temperature of between about 61° C. and 65° C. The resulting precipitate may be recovered as described above.
- cyclosporin A Form 2 may be obtained by 1) suspending cyclosporin A in either water, or in a solution of water and acetonitrile, 1,4-dioxane, or ethanol; 2) heating the suspension at a certain rate; 3) cooling the suspension at a certain rate; 4) repeating the cycle of heating and cooling; 5) and recovering the precipitate that results.
- the choice of solvent is critical: the inventors were able to find no structural feature or other property that predicted whether a solvent would or would not cause CsA Form 2 to form.
- cyclosporin A of the liquid crystal, tetragonal, or orthorhombic form or one can use an amorphous form.
- the choice of starting material yields CsA Form 2 having very slightly different characteristics (see Figures X and Y), but the important point is that one can use different starting material and still obtain CsA Form 2.
- the first step of this method one prepares a solution by suspending the desired starting material (that is, liquid crystal, tetragonal, orthorhombic form, or amorphous cyclosporin A) in water, or by suspending the starting material in acetonitrile, in 1,4-dioxane, or in ethanol, each dissolved in water.
- the desired starting material that is, liquid crystal, tetragonal, orthorhombic form, or amorphous cyclosporin A
- acetonitrile in 1,4-dioxane, or in ethanol
- the desired solvent acetonitrile, 1,4-dioxane, or ethanol
- the solvent is added in an amount resulting in the solution having a mole fraction of about 0.75, about 0.76, about 0.77, about 0.78, about 0.79, about 0.80, about 0.81, about 0.82, about 0.83, about 0.84, about 0.85, about 0.86, about 0.87, about 0.88, about 0.89, about 0.90, about 0.91, about 0.92, about 0.93, about 0.94, about 0.95, about 0.96, about 0.97, about 0.98, about 0.99, and about 1.
- the solution may be cooled at the same or different rate at which it is heated. In one embodiment, one cools the solution at a rate of about 0.01° C./min to about 0.05° C./min, about 0.05° C./min to 0.1° C. per minute, about 0.1° C./min to about 0.2° C.
- one repeats the steps of heating and cooling once that is, one first heats then cools the solution, then heats and cools the solution again.
- one repeats the steps of heating and cooling two times that is, one first heats then cools the solution, then heats and cools the solution a second time, then heats and cooling the solution a third time.
- one begins to cool the solution immediately after heating the solution to the desired temperature.
- one maintains the solution at the heated temperature for between about 0 and about 25 hours before beginning to cool it.
- one can maintain the solution at the heated temperature for about 0 to about 5 hours, about 5 to about 10 hours, about 10 to about 15 hours, about 15 to about 20 hours, or about 20 to 25 hours; in another embodiment, one can maintain the solution at the heated temperature for about 0 to about 10 hours, about 5 to about 15 hours, about 10 to about 20 hours, or about 15 to about 25 hours.
- Cyclosporin A either of the amorphous, tetragonal (F1), or orthorhombic form, was suspended in water, acetonitrile, dioxane, or ethanol, as described in Table 1, below:
- FIG. 6 the XRPD of cyclosporin A form 2 obtained using tetragonal cyclosporin A as the starting material is illustrated at FIG. 7 ; the XRPD of cyclosporin A form 2 obtained using orthorhombic cyclosporin A as the starting material is illustrated at FIG. 8 .
- CsA Form 2 obtained by the methods of the invention may be used to treat any condition of the eye which is known to be amenable to topical treatment with cyclosporin A (such as with Restasis®).
- compositions of the invention may be used to treat patients suffering from dry eye, to treat blepharitis and meibomian gland disease, to restore corneal sensitivity that has been impaired due to refractive surgery on the eye, to treat allergic conjunctivitis and atopic and vernal keratoconjunctivitis, and to treat ptyregia, conjunctival and corneal inflammation, keratoconjuntivitis, graft versus host disease, post-transplant glaucoma, corneal transplants, mycotic keratitis, Thygeson's superficial punctate keratitis, uveitis, and Theodore's superior limbic keratoconjunctivitis, among other conditions.
- the International Dry Eye Workshop defines dry eye as “a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface, accompanied by increased osmolarity of the tear film and inflammation of the ocular surface.” It includes those conditions, such as keratoconjunctivitis sicca, that are caused by tear deficiency or excessive evaporation of tears.
- Blepharitis is a chronic disorder producing inflammation of the anterior and posterior lid margin, with involvement of skin and its related structures (hairs and sebaceous glands), the mucocutaneous junction, and the meibomian glands. It can also affect the conjunctiva, tear film, and the corneal surface in advanced stages and may be associated with dry eye. Blepharitis is commonly classified into anterior or posterior blepharitis, with anterior affecting the lash bearing region of the lids, and posterior primarily affecting the meibomian gland orifices.
- Meibomian gland disease most often occurs as one of three forms: primary meibomitis, secondary meibomitis, and meibomian seborrhea.
- Meibomian seborrhea is characterized by excessive meibomian secretion in the absence of inflammation (hypersecretory meibomian gland disease).
- Primary meibomitis by contrast, is distinguished by stagnant and inspissated meibomian secretions (obstructive hypersecretory meibomian gland disease).
- Secondary meibomitis represents a localized inflammatory response in which the meibomian glands are secondarily inflamed in a spotty fashion from an anterior lid margin blepharitis.
- Impaired corneal sensitivity often occurs after refractive surgery, such as photorefractive keratectomy, laser assisted sub-epithelium keratomileusis (LASEK), EPI-LASEK, customized transepithelial non-contact ablation, or other procedures in which the corneal nerves are severed. Impaired corneal sensitivity may also occur after viral infection, such as by HSV-1, HSV-2, and VZV viruses. Patients with impaired corneal sensitivity often complain that their eyes feel dry, even though tear production and evaporation may be normal, suggesting that “dryness” in such patients is actually a form of corneal neuropathy that results when corneal nerves are severed by surgery or inflamed after viral infection.
- Allergic conjunctivitis is an inflammation of the conjunctiva resulting from hypersensitivity to one or more allergens. It may be acute, intermittent, or chronic. It occurs seasonally, that is, at only certain time of the year, or it occurs perennially, that is, chronically throughout the year. Symptoms of seasonal and perennial allergic conjunctivitis include, in addition to inflammation of the conjunctiva, lacrimation, tearing, conjunctival vascular dilation, itching, papillary hyperlasia, chemosis, eyelid edema, and discharge from the eye. The discharge may form a crust over the eyes after a night's sleep.
- Atopic keratoconjunctivitis is a chronic, severe form of allergic conjunctivitis that often leads to visual impairment. Symptoms include itching, burning, pain, redness, foreign body sensation, light sensitivity and blurry vision. There is often a discharge, especially on awakening from a night's sleep; the discharge may be stringy, ropy, and mucoid. The lower conjunctiva is often more prominently affected than the upper conjunctiva. The conjunctiva may range from pale, edematous, and featureless to having the characteristics of advanced disease, including papillary hypertrophy, subepithelial fibrosis, formix foreshortening, trichiasis, entropion, and madurosis.
- the disease progresses to punctate epithelial erosions, corneal neovascularization, and other features of keratopathy which may impair vision.
- CD25+T lymphocytes, macrophages, and dendritic cells are significantly elevated in the substantia intestinal.
- vernal keratoconjunctivitis is a severe form of allergic conjunctivitis, but it tends to affect the upper conjunctiva more prominently than the lower. It occurs in two forms. In the palpebral form, square, hard, flattened, closely packed papillae are present; in the bulbar (limbal) form, the circumcorneal conjunctiva becomes hypertrophied and grayish. Both forms are often accompanied by a mucoid discharge. Corneal epithelium loss may occur, accompanied by pain and photophobia, as may central corneal plaques and Trantas' dots.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Gastroenterology & Hepatology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analytical Chemistry (AREA)
- Ophthalmology & Optometry (AREA)
- Pulmonology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
- This patent application is a continuation of copending U.S. patent application Ser. No. 15/165,997, filed May 26, 2016, which is a continuation of Ser. No. 15/14/309,547, filed Jun. 19, 2014, which is a divisional of U.S. patent application Ser. No. 13/676,339, filed Nov. 14, 2012, which claims priority to U.S. Provisional Patent Application No. 61/559,830, filed Nov. 15, 2011, the entire contents of all aforementioned applications are hereby incorporated by reference.
- Disclosed herein is a method for making a new crystalline form of cyclosporin A.
- Cyclosporin A (CsA) is a cyclic peptide having the following chemical structure:
- Its chemical name is cyclo[[(E)-(2S,3R,4R)-3-hydroxy-4-methyl-2-(methylamino)-6-octenoyl]-L-2-aminobutyryl-N-methylglycyl-N-methyl-Lleucyl-L-valyl-N-methyl-L-leucyl-L-alanyl-D-alanyl-N-methyl-L-leucyl-N-methyl-L-leucyl-Nmethyl-L-valyl]. It is also known by the names cyclosporine, cyclosporine A, ciclosporin, and ciclosporin A. It is the active ingredient in Restasis® (Allergan, Inc., Irvine, Calif.), an emulsion comprising 0.05% (w/v) cyclosporin. Restasis® is approved in the United States to increase tear production in patients whose tear production is presumed to be suppressed due to ocular inflammation associated with keratoconjunctivitis sicca.
- Cyclosporin A is known to exist in an amorphous form, liquid crystal form, tetragonal crystalline form (Form 1), and an orthorhombic form (Form 3). The inventors describe here a method of making a new crystalline form,
cyclosporin A Form 2. -
FIG. 1 depicts characteristic X-ray powder diffraction (XRPD) patterns of CsA in a new crystalline form (designated asForm 2 herein), tetragonal form (designated as Form 1 herein), and orthorhombic form (designated as Form 3 herein). -
FIG. 2 depicts the XRPD diffractogram of CsAcrystalline Form 2. -
FIG. 3 depicts the water sorption/desorption profile of CsAForm 2. -
FIG. 4 depicts MDSC analysis ofCsA Form 2 recovered from 0.04% formulation with 1% PS80. -
FIG. 5 depicts a cycle of heating and cooling used to generate theCsA Form 2 generated by a method according to the invention. -
FIG. 6 shows the x-ray diffraction pattern (XRPD) ofCsA Form 2 obtained according to a method of the invention, using amorphous cyclosporin A as the starting material. -
FIG. 7 shows the XRPD ofCsA Form 2 obtained according to a method of the invention, using tetragonal cyclosporin A as the starting material. -
FIG. 8 shows the XRPD ofCsA Form 2 obtained according to a method of the invention, using orthorhombic cyclosporin A as the starting material. -
FIG. 9 shows the simulated XRPD pattern of cyclosporine A forms. - The XRPD pattern of
CsA Form 2 differs significantly from the tetragonal form and orthorhombic form (FIG. 1 ). The major crystalline peaks forCsA form 2 appear at (2θ) when scanned by an X-ray diffractometer with X-ray source as Cu Kα radiation, λ=1.54 Å, at 30 kV/15 mA: 7.5, 8.8, 10.2, 11.3, 12.7, 13.8, 14.5, 15.6 and 17.5 (d-spacing in crystal lattice at about 11.8; 10.0, 8.7, 7.8; 7.0, 6.4, 6.1, 5.6 and 5.1{acute over (Å)}, respectively,FIG. 2 ). These major peaks are defined as those being unique toForm 2 relative to the orthorhombic or tetragonal forms; as well as, peaks having an intensity greater than 5 times the background. - In one embodiment, the new crystalline form (Form 2) of CsA is a nonstoichiometric hydrate of Cyclosporin A. In another embodiment; the
crystalline Form 2 is represented by the formula: - wherein X is the number of molecules of water and varies from 0 to 3. In one embodiment, X in the above formula is 2.
-
Form 2 appears to be a kinetically stable form of CsA in aqueous suspensions.Suspensions containing Form 2 show no conversion to other known polymorphic or pseudomorphic forms upon storage. It has been found that Form 1 and the amorphous form convert toForm 2 in the presence of water. - The single crystal structure of the hydrate form of
CsA Form 2 has been determined and the crystal structure parameters are listed in Table 2. These results indicate thatForm 2 is unique compared to other known crystalline forms of cyclosporine A. -
TABLE 1 Crystal data and data collection parameters of crystal structure solution of CsA Form 2.formula C62H115N11O14 formula weight 1238.67 space group P 212121 (No. 19) a (Å) 12.6390(5) b (Å) 19.7582(8) c (Å) 29.568(2) volume (Å2) 7383.8(7) Z 4 dcalc (g cm−2) 1.114 crystal dimensions (mm) 0.27 × 0.18 × 0.12 temperature (K) 150 radiation (wavelength in Å) Cu K3 (1.54184) monochromator confocal optics linear abs coef (mm−1) 0.640 absorption correction applied empirical* transmission factors (min, max) 0.80, 0.93 diffractometer Rigaku RAPID-II h, k, l range −13 to 13 −21 to 21 −32 to 21 2θ range (deg) 5.38-115.00 mosaicity (deg) 1.31 programs used SHELXTL Fcos 2704.0 weighting 1/[σ2(Fo2) + (0.0845P)2 + 0.0000P] where P = (Fo2 + 2Fc2)/3 data collected 37360 unique data 9964 Rint 0.077 data used in refinement 9964 cutoff used in R-factor calculations Fo 2 > 2.0 s(Fo 2) data with I > 2.0 s(I) 6597 number of variables 834 largest shift/esd in final cycle 0.00 R(Fo) 0.061 Rw(Fo 2) 0.145 goodness of fit 1.037 absolute structure determination Flack parameterb (0.0(3)) - The asymmetric unit of this
CsA Form 2 contains one cyclosporine A molecule and two water molecules. It is possible that any small molecule that can hydrogen bond to water could play the role of space filler, which would give a range of potential structures running from the orthorhombic dihydrate to distorted monoclinic dihydrate. The XRPD pattern calculated from the single-crystal structure is shown inFIG. 9 and it matches the experimental pattern shown inFIG. 2 . These matching patterns further corroborate thatForm 2 is a unique and pure crystalline form of cyclosporine A. - Without wishing to be bound by theory, thermogravimetric analysis combined with KF titration and vapor sorption desorption analysis (VSA) suggest that
CsA Form 2 is a non-stoichiometric hydrate of CsA. The vapor sorption analysis of CyclosporineForm 2 indicates that water content in the new crystal form reversibly varies with relative humidity as shown inFIG. 3 . Similar to the tetragonal form, the new CsA form undergoes a phase transition to a liquid crystal or amorphous form at 124.4° C. prior to melting as indicated by the modulated differential calorimetric (MDSC) analysis (FIG. 4 ). - Further details regarding CsA
Form 2 may be found in U.S. patent application Ser. No. 13/480,710, the entire contents of which are incorporated by reference herein. - By Precipitation from Polysorbate 80
- Cyclosporin A
Form 2 may be obtained by suspending amorphous cyclosporin A in water containing Polysorbate 80 (polyoxyethylene sorbitan-mono-olleate), followed by heating the solution in to a temperature of between about 55° C. and about 75° C., and storing it at that temperature for at least between about 18 and about 48 hours, after which one removes the precipitate,cyclosporin A Form 2. - One can use in this method cyclosporin A at a concentration of between about 0.001% and about 10%. As used here, the term “about,” when used in connection with a value, means a value that is reasonably close to the stated value.
- One can therefore use in this method cyclosporin A at a concentration of about 0.001% (w/v), about 0.005% (w/v), about 0.01% (w/v), about 0.02% (w/v), about 0.03% (w/v), about 0.04% (w/v), about 0.05% (w/v), about 0.06% (w/v), about 0.07% (w/v), about 0.08% (w/v), about 0.09% (w/v), about 0.1% (w/v), about 0.2% (w/v), about 0.3% (w/v), about 0.4% (w/v), about 0.5% (w/v), about 0.6% (w/v), about 0.7% (w/v), about 0.8% (w/v), about 0.9% (w/v), about 1% (w/v), about 2% (w/v), about 3% (w/v), about 4% (w/v), about 5% (w/v), about 6% (w/v), about 7% (w/v), about 8% (w/v), about 9% (w/v), or about 10% (w/v) cyclosporin A.
- One can use in this
method Polysorbate 80 at a concentration of between about 0.1% and 10%, such as about 0.1% (w/v), about 0.2% (w/v), about 0.3% (w/v), about 0.4% (w/v), about 0.5% (w/v), about 0.6% (w/v), about 0.7% (w/v), about 0.8% (w/v), about 0.9% (w/v), about 1% (w/v), about 2% (w/v), about 3% (w/v), about 4% (w/v), about 5% (w/v), about 6% (w/v), about 7% (w/v), about 8% (w/v), about 9% (w/v), or about 10% (w/v)Polysorbate 80. - After suspending the cyclosporin A in the
Polysorbate 80, one can heat the solution to a temperature of between about 55° C. and about 75° C., such as about 55° C., about 56° C., about 57° C., about 58° C., about 59° C., about 60° C., about 61° C., about 62° C., about 63° C., about 64° C., about 65° C., about 66° C., about 66° C., about C, about 68° C., about 69° C., about 70° C., about 71° C., about 72° C., about 73° C., about 74° C., or about 75° C. - One can store the heated solution at one of the foregoing temperatures for a length of time of between about 18 and about 48 hours, such as about 18 hours, about 19 hours, about 20 hours, about 21 hours, about 22 hours, about 23 hours, about 24 hours, about 25 hours, about 26 hours, about 27 hours, about 28 hours, about 29 hours, about 30 hours, about 31 hours, about 32 hours, about 33 hours, about 34 hours, about 35 hours, about 36 hours, about 37 hours, about 38 hours, about 39 hours, about 40 hours, about 41 hours, about 42 hours, about 43 hours, about 44 hours, about 45 hours, about 46 hours, about 47 hours, or about 48 hours.
- After preparing and heating the solution, and maintaining it at the desired temperature, the resulting precipitated solid may be recovered by any standard method, such as by vacuum filtration. Following the recovery, the precipitate may then be washed and dried. For example, it may be washed with water and then dried under vacuum at an elevated temperature (for example, about 40° C.), then at room temperature. Other washing and drying techniques may also be used.
- Cyclosporin A
Form 2 may also be formed usingcyclosporin A Form 2 as a seed crystal. In this method, one can suspend amorphous cyclosporin A in an aqueous solution ofPolysorbate 80 and heat the solution as described above. One can then seed the solution withcyclosporin A Form 2, then maintain the solution at the temperatures and for the durations described above, constantly stirring the solution while doing so. At the conclusion of this process, one can then recover the precipitate as described above. - One can use between about 0.01 to about 1 g seed crystal/L water in this process. For example, one can use about 0.01 g/L, about 0.02 g/L, about 0.03 g/L, about 0.04 g/L, about 0.05 g/L, about 0.06 g/L, about 0.07 g/L, about 0.08 g/L, about 0.09 g/L, about 0.1 g/L, about 0.2 g/L, about 0.3 g/L, about 0.4 g/L, about 0.5 g/L, about 0.6 g/L, about 0.7 g/L, about 0.8 g/L, about 0.9 g/L, or about 1 g of seed crystal per liter of water.
- One can heat the suspension of amorphous cyclosporin A seed crystal of
cyclosporin A Form 2 to a temperature of between about 45° C. to about 65° C. before adding it to the solution, or one can leave the seed crystal at room temperature before adding it. For example, one can heat the seed crystal ofcyclosporin A Form 2 to about 45° C., about 46° C., about 47° C., about 48° C. about, about 49° C., about 50° C., about 51° C., about 52° C., about 53° C., about 54° C., about 55° C., about 56° C., about 57° C., about 58° C., about 59° C., about 60° C., about 61° C., about 62° C., about 63° C., about 64° C., or about 65° C. before adding it to the solution. - For example, one can suspend about 30 g cyclosporin A in a solution of 900 ml water containing 1% (w/v)
Polysorbate 80. One can heat the solution to 65° C., and then seed it with 0.2 g ofcyclosporin A Form 2 at a temperature of 52° C. The solution is stirred for about 22 hours at a temperature of between about 61° C. and 65° C. The resulting precipitate may be recovered as described above. - In very general terms,
cyclosporin A Form 2 may be obtained by 1) suspending cyclosporin A in either water, or in a solution of water and acetonitrile, 1,4-dioxane, or ethanol; 2) heating the suspension at a certain rate; 3) cooling the suspension at a certain rate; 4) repeating the cycle of heating and cooling; 5) and recovering the precipitate that results. The choice of solvent is critical: the inventors were able to find no structural feature or other property that predicted whether a solvent would or would not causeCsA Form 2 to form. - One can use in this embodiment cyclosporin A of the liquid crystal, tetragonal, or orthorhombic form, or one can use an amorphous form. The choice of starting material yields
CsA Form 2 having very slightly different characteristics (see Figures X and Y), but the important point is that one can use different starting material and still obtainCsA Form 2. - In the first step of this method, one prepares a solution by suspending the desired starting material (that is, liquid crystal, tetragonal, orthorhombic form, or amorphous cyclosporin A) in water, or by suspending the starting material in acetonitrile, in 1,4-dioxane, or in ethanol, each dissolved in water. One can use in this step between about 0.01 to about 1 g starting material/L water. For example, one can use about 0.01 g/L, about 0.02 g/L, about 0.03 g/L, about 0.04 g/L, about 0.05 g/L, about 0.06 g/L, about 0.07 g/L, about 0.08 g/L, about 0.09 g/L, about 0.1 g/L, about 0.2 g/L, about 0.3 g L, about 0.4 g/L, about 0.5 g/L, about 0.6 g/L, about 0.7 g/L, about 0.8 g/L, about 0.9 g/L, or about 1 g of starting material per liter of water. The desired solvent (acetonitrile, 1,4-dioxane, or ethanol) is added in that amount which results in the solution having a mole fraction of water of between about 0.75 and 1. For example, the solvent is added in an amount resulting in the solution having a mole fraction of about 0.75, about 0.76, about 0.77, about 0.78, about 0.79, about 0.80, about 0.81, about 0.82, about 0.83, about 0.84, about 0.85, about 0.86, about 0.87, about 0.88, about 0.89, about 0.90, about 0.91, about 0.92, about 0.93, about 0.94, about 0.95, about 0.96, about 0.97, about 0.98, about 0.99, and about 1.
- In the second step of this method, one then heats the solution to a temperature of about 5° C. to about 50° C. at the rate of about 0.01° C. per minute to about 1° C. per minute. In one embodiment, one can heat the solution to a temperature of about 5° C. to about 10° C., about 10° C. to about 15° C., about 15° C. to about 20° C., about 20° C. to about 25° C., about 25° C. to about 30° C., about 30° C. to about 35° C., about 35° C. to about 40° C., about 40° C. to about 45° C., or about 45° C. to about 50° C. In another embodiment, one can heat the solution to a temperature of about 5° C. to about 15° C., about 15° C. to about 25° C., about 25° C. to about 35° C., about 35° C. to about 45° C., or about 40° C. to about 50° C. For example, one can heat the solution to a temperature of about 1° C., about 2° C., about 3° C., about 4° C., about 5° C., about 6° C., about 7° C., about 8° C., about 9° C., about 10° C., about 11° C., about 12° C., about 13° C., about 14° C., about 15° C., about 16° C., about 17° C., about 18° C., about 19° C., about 20° C., about 21° C., about 22° C., about 23° C., about 24° C., about 25° C., about 26° C., about 27° C., about 28° C., about 29° C., about 30° C., about 31° C., about 32° C., about 33° C., about 34° C., about 35° C., about 36° C., about 37° C., about 38° C., about 39° C., about 40° C., 41° C., about 42° C., about 43° C., about 44° C., about 45° C., about 46° C., about 47° C., about 48° C., about 49° C., or about 50° C.
- In one embodiment, one heats the solution at a rate of about 0.01° C./min to about 0.05° C./min, about 0.05° C./min−0.1° C. per minute, about 0.1° C./min to about 0.2° C./min, about 0.2° C./min to about 0.3° C./min, about 0.3° C./min to about 0.4° C./min, about 0.4° C./min to about 0.5° C./min, about 0.5° C./min to about 0.6° C./min, about 0.6° C./min to about 0.7° C./min, about 0.7° C./min to about 0.8° C./min, about 0.8° C./min to about 0.9° C./min, or about 0.9° C./min to about 1° C./min. For example, one can heat the solution at the rate of about 0.01° C./min, about 0.02° C./min, about 0.03° C./min, about 0.04° C./min, about 0.05° C./min, about 0.06° C./min, about 0.07° C./min, about 0.08° C./min, about 0.09° C./min, about 0.1° C./min, about 0.2° C./min, about 0.3° C./min, about 0.4° C./min, about 0.5° C./min, about 0.6° C./min, about 0.7° C./min, about 0.8° C./min, about 0.9° C./min, or about 1° C./min.
- In the third step of this method, one then cools the solution to a temperature of between about 1° C. to about 22° C. In one embodiment, one can cool the solution to a temperature of about 1° C. to about 5° C., about 5° C. to about 10° C., about 10° C. to about 15° C., about 15° C. to about 20° C., or about 17° C. to about 22° C. In another embodiment, one can cool the solution to a temperature of about 1° C. to about 10° C., about 5° C. to about 15° C., about 10° C. to about 20° C., or about 15° C. to about 22° C. For example, one can cool the solution to a temperature of about 1° C., about 2° C., about 3° C., about 4° C., about 5° C., about 6° C., about 7° C., about 8° C., about 9° C., about 10° C., about 11° C., about 12° C., about 13° C., about 14° C., about 15° C., about 16° C., about 17° C., about 18° C., about 19° C., about 20° C., about 21° C., or about 22° C.
- The solution may be cooled at the same or different rate at which it is heated. In one embodiment, one cools the solution at a rate of about 0.01° C./min to about 0.05° C./min, about 0.05° C./min to 0.1° C. per minute, about 0.1° C./min to about 0.2° C. min, about 0.2° C./min to about 0.3° C./min, about 0.3° C./min to about 0.4° C./min, about 0.4° C./min to about 0.5° C./min, about 0.5° C./min to about 0.6° C./min, about 0.6° C./min to about 0.7° C./min, about 0.7° C./min to about 0.8° C./min, about 0.8° C./min to about 0.9° C./min, or about 0.9° C./min to about 1° C./min. For example, one can cool the solution at the rate of about 0.01° C./min, about 0.02° C./min, about 0.03° C./min, about 0.04° C./min, about 0.05° C./min, about 0.06° C./min, about 0.07° C./min, about 0.08° C./min, about 0.09° C./min, about 0.1° C./min, about 0.2° C./min, about 0.3° C./min, about 0.4° C./min, about 0.5° C./min, about 0.6° C./min, about 0.7° C./min, about 0.8° C./min, about 0.9° C./min, or about 1° C./min.
- One may then proceed to recover any precipitate that has formed, using the methods described above, or one may repeat the steps of heating and cooling, using the same or different temperatures and the same or different rates of heating and cooling. In one embodiment, one repeats the steps of heating and cooling once, that is, one first heats then cools the solution, then heats and cools the solution again. In another embodiment, one repeats the steps of heating and cooling two times, that is, one first heats then cools the solution, then heats and cools the solution a second time, then heats and cooling the solution a third time. In another embodiment, one repeats the steps of heating and cooling three times, that is, one first heats then cools the solution, then heats and cools the solution a second time, then heats and cooling the solution a third time, and then heats and cooling the solution a fourth time. During each of the heating steps, one can heat the solution to the same or different temperature, and at the same or different rate; likewise, during each of the cooling steps, one can heat the solution to the same or different temperature, and at the same or different rate.
- In one embodiment, one begins to cool the solution immediately after heating the solution to the desired temperature. In another embodiment, one maintains the solution at the heated temperature for between about 0 and about 25 hours before beginning to cool it. For example, one can maintain the solution at the heated temperature for about 0 to about 5 hours, about 5 to about 10 hours, about 10 to about 15 hours, about 15 to about 20 hours, or about 20 to 25 hours; in another embodiment, one can maintain the solution at the heated temperature for about 0 to about 10 hours, about 5 to about 15 hours, about 10 to about 20 hours, or about 15 to about 25 hours. For example, one can maintain the solution at the heated temperature for about 0.5 hours, about 1 hours, about 2 hours, about 3 hours, about 4 hours, about 5 hours, about 6 hours, about 7 hours, about 8 hours, about 9 hours, about 10 hours, about 11 hours, about 12 hours, about 13 hours, about 14 hours, about 15 hours, about 16 hours, about 17 hours, about 18 hours, about 19 hours, about 20 hours, about 21 hours, about 22 hours, about 23 hours, about 24 hours, or about 25 hours.
- If repeating a heating-cooling cycle, one can immediately heat the solution after it has cooled to the desired temperature, or one can maintain the solution at the cooled temperature for between about 0 and about 24 hours before beginning to heat it again. For example, one can maintain the solution for about 0 to about 5 hours, about 5 to about 10 hours, about 10 to about 15 hours, about 15 to about 20 hours, or about 20 to 25 hours; in another embodiment, one can maintain the solution at the cooled temperature for about 0 to about 10 hours, about 5 to about 15 hours, about 10 to about 20 hours, or about 15 to about 25 hours. For example, one can maintain the solution at the cooled temperature for about 0.5 hours, about 1 hours, about 2 hours, about 3 hours, about 4 hours, about 5 hours, about 6 hours, about 7 hours, about 8 hours, about 9 hours, about 10 hours, about 11 hours, about 12 hours, about 13 hours, about 14 hours, about 15 hours, about 16 hours, about 17 hours, about 18 hours, about 19 hours, about 20 hours, about 21 hours, about 22 hours, about 23 hours, about 24 hours, or about 25 hours
- At the conclusion of the heating and cooling cycle, one can hold the solution at the final, cooled temperature for about 0 to about 24 hours before recovering the precipitate as described above.
- The invention is further illustrated by way of the following examples.
- Cyclosporin A (CsA), either of the amorphous, tetragonal (F1), or orthorhombic form, was suspended in water, acetonitrile, dioxane, or ethanol, as described in Table 1, below:
-
TABLE 1 Cyclosporin suspension used to make cyclosporin form 2MOLE SOLVENT FRACTION CsA FORM 1 2 OF WATER amorphous Water acetonitrile 0.87 F1 Water acetonitrile 0.87 F3 Water acetonitrile 0.87 F1 water none 1.00 F1 water dioxane 0.90 F1 Water Ethanol 0.89 - Each of the above solutions was heated to 50° C. at a rate of 0.1° C. per minute, and maintained at that temperature for 600 min; the solution was then cooled to 20° C. at the same rate, and held at that temperature for 300 min; this cycle of heating and cooling was repeated twice more, as illustrated in
FIG. 5 and summarized at Table 2: -
TABLE 2 Thermocycling profile Heating Rate Duration Step Temp (° C.) (° C./min) (min) Total time Hold 20 — 30.00 00:30:00 Ramp 50 0.1000 300.00 05:30:00 Hold 50 — 600.00 15:30:00 Ramp 20 −0.1000 300.00 20:30:00 Hold 20 — 600.00 1.06:30:00 Ramp 50 0.1000 300.00 1.11:30:00 Hold 50 — 600.00 1.21:30:00 Ramp 20 −0.1000 300.00 2.02:30:00 Hold 20 — 600.00 2.12:30:00 Ramp 50 0.1000 300.00 2.17:30:00 Hold 50 — 600.00 3.03:30:00 Ramp 20 −0.1000 300.00 3.06:30:00 Hold 20 — 300.00 3.13:30:00
The x-ray powder diffraction pattern (XRPD) ofcyclosporin A form 2 thus obtained, using amorphous cyclosporin A as the starting material, is illustrated atFIG. 6 ; the XRPD ofcyclosporin A form 2 obtained using tetragonal cyclosporin A as the starting material is illustrated atFIG. 7 ; the XRPD ofcyclosporin A form 2 obtained using orthorhombic cyclosporin A as the starting material is illustrated atFIG. 8 . XRPD patterns of CsA forms were obtained using a Rigaku MiniFlex X-ray diffractometer (Cu Kα radiation, λ=1.54 Å, at 30 kV and 15 mA). The instrument was calibrated with a silicon standard with a reference peak at 28.44° (2-theta). The X-ray diffraction experiments were performed from 3° to 45° (2-theta) at a scan rate of 0.5° or 1° (2-theta) per minute and a step width of 0.05° (2-theta). - Experimental conditions that did not produce
cyclosporin A Form 2 are shown below in Table 3: -
TABLE 3 Experimental conditions that did not produce cyclosporin A Form 2CsA Solvent Volume (μL) Mole fraction # CsA Form Weight (mg) 1 2 1 2 Final Form of water 1 Amorphous 53.77 water acetone 100 42 F1 + F2 0.91 2 Amorphous 61.70 water ethylene glycol 100 42 amorphous 0.88 4 Amorphous 41.17 water n/a 100 n/a amorphous 1.00 5 F1 65.74 water acetone 100 42 F1 + F2 0.91 6 F1 74.51 water ethylene glycol 100 42 F1 0.68 8 F1 68.59 water n/a 100 n/a amorphous 1.00 9 F3 49.70 water acetone 100 42 F3 0.91 10 F3 69.45 water ethylene glycol 100 42 F3 0.68 12 F3 70.87 water n/a 100 n/a F3 1.00 15 F1 43.07 water methanol 100 42 amorphous + F2 0.84 -
CsA Form 2 obtained by the methods of the invention may be used to treat any condition of the eye which is known to be amenable to topical treatment with cyclosporin A (such as with Restasis®). For example, compositions of the invention may be used to treat patients suffering from dry eye, to treat blepharitis and meibomian gland disease, to restore corneal sensitivity that has been impaired due to refractive surgery on the eye, to treat allergic conjunctivitis and atopic and vernal keratoconjunctivitis, and to treat ptyregia, conjunctival and corneal inflammation, keratoconjuntivitis, graft versus host disease, post-transplant glaucoma, corneal transplants, mycotic keratitis, Thygeson's superficial punctate keratitis, uveitis, and Theodore's superior limbic keratoconjunctivitis, among other conditions. - The International Dry Eye Workshop (DEWS) defines dry eye as “a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface, accompanied by increased osmolarity of the tear film and inflammation of the ocular surface.” It includes those conditions, such as keratoconjunctivitis sicca, that are caused by tear deficiency or excessive evaporation of tears.
- Blepharitis is a chronic disorder producing inflammation of the anterior and posterior lid margin, with involvement of skin and its related structures (hairs and sebaceous glands), the mucocutaneous junction, and the meibomian glands. It can also affect the conjunctiva, tear film, and the corneal surface in advanced stages and may be associated with dry eye. Blepharitis is commonly classified into anterior or posterior blepharitis, with anterior affecting the lash bearing region of the lids, and posterior primarily affecting the meibomian gland orifices.
- Meibomian gland disease most often occurs as one of three forms: primary meibomitis, secondary meibomitis, and meibomian seborrhea. Meibomian seborrhea is characterized by excessive meibomian secretion in the absence of inflammation (hypersecretory meibomian gland disease). Primary meibomitis, by contrast, is distinguished by stagnant and inspissated meibomian secretions (obstructive hypersecretory meibomian gland disease). Secondary meibomitis represents a localized inflammatory response in which the meibomian glands are secondarily inflamed in a spotty fashion from an anterior lid margin blepharitis.
- Impaired corneal sensitivity often occurs after refractive surgery, such as photorefractive keratectomy, laser assisted sub-epithelium keratomileusis (LASEK), EPI-LASEK, customized transepithelial non-contact ablation, or other procedures in which the corneal nerves are severed. Impaired corneal sensitivity may also occur after viral infection, such as by HSV-1, HSV-2, and VZV viruses. Patients with impaired corneal sensitivity often complain that their eyes feel dry, even though tear production and evaporation may be normal, suggesting that “dryness” in such patients is actually a form of corneal neuropathy that results when corneal nerves are severed by surgery or inflamed after viral infection.
- Allergic conjunctivitis is an inflammation of the conjunctiva resulting from hypersensitivity to one or more allergens. It may be acute, intermittent, or chronic. It occurs seasonally, that is, at only certain time of the year, or it occurs perennially, that is, chronically throughout the year. Symptoms of seasonal and perennial allergic conjunctivitis include, in addition to inflammation of the conjunctiva, lacrimation, tearing, conjunctival vascular dilation, itching, papillary hyperlasia, chemosis, eyelid edema, and discharge from the eye. The discharge may form a crust over the eyes after a night's sleep.
- Atopic keratoconjunctivitis is a chronic, severe form of allergic conjunctivitis that often leads to visual impairment. Symptoms include itching, burning, pain, redness, foreign body sensation, light sensitivity and blurry vision. There is often a discharge, especially on awakening from a night's sleep; the discharge may be stringy, ropy, and mucoid. The lower conjunctiva is often more prominently affected than the upper conjunctiva. The conjunctiva may range from pale, edematous, and featureless to having the characteristics of advanced disease, including papillary hypertrophy, subepithelial fibrosis, formix foreshortening, trichiasis, entropion, and madurosis. In some patients the disease progresses to punctate epithelial erosions, corneal neovascularization, and other features of keratopathy which may impair vision. There is typically goblet cell proliferation in the conjunctiva, epithelial pseudotubular formation, and an increased number of degranulating eosinophils and mast cells in the epithelium. CD25+T lymphocytes, macrophages, and dendritic cells (HLA-DR.sup.+, HLA-CD1+) are significantly elevated in the substantia propria.
- Like atopic keratoconjunctivitis, vernal keratoconjunctivitis is a severe form of allergic conjunctivitis, but it tends to affect the upper conjunctiva more prominently than the lower. It occurs in two forms. In the palpebral form, square, hard, flattened, closely packed papillae are present; in the bulbar (limbal) form, the circumcorneal conjunctiva becomes hypertrophied and grayish. Both forms are often accompanied by a mucoid discharge. Corneal epithelium loss may occur, accompanied by pain and photophobia, as may central corneal plaques and Trantas' dots.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/028,956 US20180312543A1 (en) | 2011-11-15 | 2018-07-06 | Cyclosporin a form 2 and method of making same |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161559830P | 2011-11-15 | 2011-11-15 | |
| US13/676,339 US8796221B2 (en) | 2011-11-15 | 2012-11-14 | Cyclosporin A form 2 and method of making same |
| US14/309,547 US9352014B2 (en) | 2011-11-15 | 2014-06-19 | Cyclosporin A form 2 and method of making same |
| US15/165,997 US10017541B2 (en) | 2011-11-15 | 2016-05-26 | Cyclosporin a form 2 and method of making same |
| US16/028,956 US20180312543A1 (en) | 2011-11-15 | 2018-07-06 | Cyclosporin a form 2 and method of making same |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/165,997 Continuation US10017541B2 (en) | 2011-11-15 | 2016-05-26 | Cyclosporin a form 2 and method of making same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180312543A1 true US20180312543A1 (en) | 2018-11-01 |
Family
ID=47222337
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/676,339 Active US8796221B2 (en) | 2011-11-15 | 2012-11-14 | Cyclosporin A form 2 and method of making same |
| US14/309,547 Active US9352014B2 (en) | 2011-11-15 | 2014-06-19 | Cyclosporin A form 2 and method of making same |
| US15/165,997 Active US10017541B2 (en) | 2011-11-15 | 2016-05-26 | Cyclosporin a form 2 and method of making same |
| US16/028,956 Abandoned US20180312543A1 (en) | 2011-11-15 | 2018-07-06 | Cyclosporin a form 2 and method of making same |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/676,339 Active US8796221B2 (en) | 2011-11-15 | 2012-11-14 | Cyclosporin A form 2 and method of making same |
| US14/309,547 Active US9352014B2 (en) | 2011-11-15 | 2014-06-19 | Cyclosporin A form 2 and method of making same |
| US15/165,997 Active US10017541B2 (en) | 2011-11-15 | 2016-05-26 | Cyclosporin a form 2 and method of making same |
Country Status (11)
| Country | Link |
|---|---|
| US (4) | US8796221B2 (en) |
| EP (2) | EP2780358B1 (en) |
| JP (2) | JP6204921B2 (en) |
| KR (1) | KR102072252B1 (en) |
| CN (1) | CN104039813B (en) |
| AU (3) | AU2012339693B2 (en) |
| BR (1) | BR112014011768A2 (en) |
| CA (1) | CA2856034C (en) |
| ES (2) | ES2666191T3 (en) |
| RU (1) | RU2635547C2 (en) |
| WO (1) | WO2013074608A1 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6204921B2 (en) * | 2011-11-15 | 2017-09-27 | アラーガン、インコーポレイテッドAllergan,Incorporated | Form 2 of cyclosporin A and method for producing the same |
| US9266927B2 (en) | 2012-06-01 | 2016-02-23 | Allergan, Inc. | Cyclosporin A analogs |
| RU2713953C2 (en) | 2014-07-18 | 2020-02-11 | Аллерган, Инк. | Suspension compositions of cyclosporine a for subconjunctival and periocular injection |
| US9914755B2 (en) | 2015-01-08 | 2018-03-13 | Allergan, Inc. | Cyclosporin derivatives wherein the MeBmt sidechain has been cyclized |
| CN113117359B (en) * | 2021-03-05 | 2022-08-26 | 湘雅生物医药(湖州)有限公司 | A aseptic formula retort for collagen draws usefulness |
| JPWO2024085235A1 (en) | 2022-10-20 | 2024-04-25 | ||
| WO2024195801A1 (en) | 2023-03-20 | 2024-09-26 | 中外製薬株式会社 | Method for producing eutectic of cyclic peptide |
| CN116879437A (en) * | 2023-07-11 | 2023-10-13 | 苏州欧康维视生物科技有限公司 | Method for detecting in vitro release of ocular implant |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4208281B2 (en) * | 1998-02-26 | 2009-01-14 | キヤノン株式会社 | Multilayer photovoltaic device |
| US9352014B2 (en) * | 2011-11-15 | 2016-05-31 | Allergan, Inc. | Cyclosporin A form 2 and method of making same |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR920003601B1 (en) | 1987-09-03 | 1992-05-04 | 유니버시티 어브 죠지아 리서취 화운데이션 인코포레이티드 | Composition of Eye Drop Cyclosporin |
| HU203564B (en) | 1987-12-21 | 1991-08-28 | Sandoz Ag | Process for producing new orthorombos cyclosporin without solvatation |
| GB8916901D0 (en) * | 1989-07-24 | 1989-09-06 | Sandoz Ltd | Improvements in or relating to organic compounds |
| GB9105705D0 (en) * | 1991-03-18 | 1991-05-01 | Sandoz Ltd | Improvements in or relating to organic compounds |
| US5382714A (en) * | 1994-03-17 | 1995-01-17 | The Catholic University Of America | Process for isolation, purification, and recrystallization of lutein from saponified marigold oleoresin and uses thereof |
| SK164796A3 (en) * | 1994-11-03 | 1997-06-04 | Dresden Arzneimittel | Novel cyclosporine preparation forms for oral administration of and process for producing them |
| TW581681B (en) * | 1998-02-20 | 2004-04-01 | Nektar Therapeutics | Liquid crystal forms of cyclosporin |
| US7732404B2 (en) | 1999-12-30 | 2010-06-08 | Dexcel Ltd | Pro-nanodispersion for the delivery of cyclosporin |
| AU2005209201B2 (en) | 2004-01-20 | 2010-06-03 | Allergan, Inc. | Compositions for localized therapy of the eye, comprising preferably triamcinolone acetonide and hyaluronic acid |
| US10137083B2 (en) | 2006-03-07 | 2018-11-27 | SGN Nanopharma Inc | Ophthalmic preparations |
| UA113627C2 (en) * | 2011-05-27 | 2017-02-27 | CRYSTAL FORM OF CYCLOSPORIN A, PHARMACEUTICAL COMPOSITION AND METHOD OF TREATMENT |
-
2012
- 2012-11-14 JP JP2014542396A patent/JP6204921B2/en not_active Expired - Fee Related
- 2012-11-14 WO PCT/US2012/064985 patent/WO2013074608A1/en not_active Ceased
- 2012-11-14 ES ES16156092.5T patent/ES2666191T3/en active Active
- 2012-11-14 US US13/676,339 patent/US8796221B2/en active Active
- 2012-11-14 CA CA2856034A patent/CA2856034C/en active Active
- 2012-11-14 AU AU2012339693A patent/AU2012339693B2/en not_active Ceased
- 2012-11-14 CN CN201280066581.8A patent/CN104039813B/en not_active Expired - Fee Related
- 2012-11-14 ES ES12791059.4T patent/ES2578154T3/en active Active
- 2012-11-14 RU RU2014123468A patent/RU2635547C2/en active
- 2012-11-14 EP EP12791059.4A patent/EP2780358B1/en active Active
- 2012-11-14 KR KR1020147016151A patent/KR102072252B1/en not_active Expired - Fee Related
- 2012-11-14 BR BR112014011768A patent/BR112014011768A2/en not_active Application Discontinuation
- 2012-11-14 EP EP16156092.5A patent/EP3067363B1/en active Active
-
2014
- 2014-06-19 US US14/309,547 patent/US9352014B2/en active Active
-
2016
- 2016-05-26 US US15/165,997 patent/US10017541B2/en active Active
-
2017
- 2017-09-01 JP JP2017168227A patent/JP6513755B2/en active Active
- 2017-12-06 AU AU2017272197A patent/AU2017272197A1/en not_active Abandoned
-
2018
- 2018-07-06 US US16/028,956 patent/US20180312543A1/en not_active Abandoned
-
2019
- 2019-06-28 AU AU2019204591A patent/AU2019204591B2/en not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4208281B2 (en) * | 1998-02-26 | 2009-01-14 | キヤノン株式会社 | Multilayer photovoltaic device |
| US9352014B2 (en) * | 2011-11-15 | 2016-05-31 | Allergan, Inc. | Cyclosporin A form 2 and method of making same |
| US10017541B2 (en) * | 2011-11-15 | 2018-07-10 | Allergan, Inc. | Cyclosporin a form 2 and method of making same |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6204921B2 (en) | 2017-09-27 |
| EP3067363A1 (en) | 2016-09-14 |
| AU2012339693B2 (en) | 2017-09-07 |
| AU2019204591A1 (en) | 2019-07-18 |
| RU2635547C2 (en) | 2017-11-14 |
| US9352014B2 (en) | 2016-05-31 |
| EP3067363B1 (en) | 2018-01-17 |
| US8796221B2 (en) | 2014-08-05 |
| CA2856034A1 (en) | 2013-05-23 |
| BR112014011768A2 (en) | 2017-05-09 |
| US10017541B2 (en) | 2018-07-10 |
| US20160272681A1 (en) | 2016-09-22 |
| HK1202124A1 (en) | 2015-09-18 |
| KR102072252B1 (en) | 2020-01-31 |
| RU2014123468A (en) | 2015-12-27 |
| KR20140101790A (en) | 2014-08-20 |
| EP2780358A1 (en) | 2014-09-24 |
| CN104039813A (en) | 2014-09-10 |
| JP6513755B2 (en) | 2019-05-15 |
| EP2780358B1 (en) | 2016-03-23 |
| CN104039813B (en) | 2017-08-29 |
| JP2017210488A (en) | 2017-11-30 |
| AU2017272197A1 (en) | 2018-01-04 |
| US20130123193A1 (en) | 2013-05-16 |
| CA2856034C (en) | 2017-12-12 |
| WO2013074608A1 (en) | 2013-05-23 |
| AU2019204591B2 (en) | 2021-03-25 |
| JP2014533300A (en) | 2014-12-11 |
| AU2012339693A1 (en) | 2014-06-05 |
| ES2666191T3 (en) | 2018-05-03 |
| ES2578154T3 (en) | 2016-07-21 |
| US20140303343A1 (en) | 2014-10-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10017541B2 (en) | Cyclosporin a form 2 and method of making same | |
| US20190343917A1 (en) | Suspensions of cyclosporin a form 2 | |
| HK1228924B (en) | A process for crystallization of cyclosporin a form 2 | |
| HK1228924A (en) | A process for crystallization of cyclosporin a form 2 | |
| HK1228924A1 (en) | A process for crystallization of cyclosporin a form 2 | |
| HK1202124B (en) | Cyclosporine a form 2 and method of making same | |
| HK1202066B (en) | Suspensions of cyclosporin a form 2 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ALLERGAN, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, KE;SMITH, SCOTT W.;REEL/FRAME:046282/0264 Effective date: 20111121 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |