[go: up one dir, main page]

US20180250864A1 - Polymer extruders with a dual vacuum arrangement and related methods - Google Patents

Polymer extruders with a dual vacuum arrangement and related methods Download PDF

Info

Publication number
US20180250864A1
US20180250864A1 US15/910,853 US201815910853A US2018250864A1 US 20180250864 A1 US20180250864 A1 US 20180250864A1 US 201815910853 A US201815910853 A US 201815910853A US 2018250864 A1 US2018250864 A1 US 2018250864A1
Authority
US
United States
Prior art keywords
vacuum pump
pressure
millibars
polymer
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/910,853
Other languages
English (en)
Inventor
Thomas R. Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aladdin Manufacturing Corp
Original Assignee
Mohawk Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mohawk Industries Inc filed Critical Mohawk Industries Inc
Priority to US15/910,853 priority Critical patent/US20180250864A1/en
Assigned to MOHAWK INDUSTRIES, INC. reassignment MOHAWK INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLARK, THOMAS R.
Publication of US20180250864A1 publication Critical patent/US20180250864A1/en
Assigned to ALADDIN MANUFACTURING CORPORATION reassignment ALADDIN MANUFACTURING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOHAWK INDUSTRIES, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/426Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with consecutive casings or screws, e.g. for charging, discharging, mixing
    • B29C47/0881
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/485Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with three or more shafts provided with screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/487Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with consecutive casings or screws, e.g. for feeding, discharging, mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7461Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/748Plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7485Systems, i.e. flow charts or diagrams; Plants with consecutive mixers, e.g. with premixing some of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/86Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/006Degassing moulding material or draining off gas during moulding
    • B29C47/0014
    • B29C47/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/27Cleaning; Purging; Avoiding contamination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/27Cleaning; Purging; Avoiding contamination
    • B29C48/2715Cleaning; Purging; Avoiding contamination of plasticising units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/38Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in the same barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/425Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders using three or more screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/425Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders using three or more screws
    • B29C48/43Ring extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D13/00Complete machines for producing artificial threads
    • D01D13/02Elements of machines in combination
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B2013/005Degassing undesirable residual components, e.g. gases, unreacted monomers, from material to be moulded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B2017/001Pretreating the materials before recovery
    • B29B2017/0015Washing, rinsing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/006Using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92019Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/922Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92466Auxiliary unit, e.g. for external melt filtering, re-combining or transfer between units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92723Content, e.g. percentage of humidity, volatiles, contaminants or degassing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • B29C48/44Planetary screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/731Filamentary material, i.e. comprised of a single element, e.g. filaments, strands, threads, fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/732Floor coverings
    • B29L2031/7322Carpets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/04Floor or wall coverings; Carpets

Definitions

  • Downtimes in polymer extrusion resulting from having to clean and maintain various components used during the extrusion process may lead to lost revenue. It may be desirable to reduce or eliminate downtime in the extrusion process to increase an output of material produced from the extrusion process. For example, when recycling polyethylene terephthalate (PET) into bulked continuous filament (BCF) for use in producing carpet, it may be desirable to reduce a downtime of a particular extruder that is extruding recycled PET in order to avoid a loss of BCF that could have been produced in the down time. Accordingly, there is a need for systems and methods that reduce downtimes in polymer extrusion.
  • PET polyethylene terephthalate
  • BCF bulked continuous filament
  • a method of manufacturing bulked continuous carpet filament comprises: (A) providing a multi-screw extruder that comprises an MRS Section comprising a plurality of satellite screws, each of the plurality of satellite screws mounted to rotate about its respective central axis; (B) providing a first vacuum pump configured to independently maintain a pressure within the MRS Section between about 0 millibars and about 40 millibars, the first vacuum pump being operatively coupled to the MRS Section via a first opening; (C) providing a second vacuum pump arranged in parallel with the first vacuum pump and configured to independently maintain a pressure within the MRS Section between about 0 millibars and about 40 millibars and cooperate with the first vacuum pump to maintain a pressure within the MRS Section between about 0 millibars and about 5 millibars; (D) using the first vacuum pump and the second vacuum pump to maintain the pressure within the MRS Section to between about 0 millibars and about 5 millibars; (E) passing a polymer melt comprising recycled
  • the method of manufacturing bulked continuous carpet filament further comprises: (A) providing a first spinning machine; (B) using the first spinning machine to produce bulked continuous carpet filament via the first polymer transfer line; (C) providing a second spinning machine; and (D) using the second spinning machine to produce bulked continuous carpet filament via the second polymer transfer line.
  • the method further includes shutting down the second vacuum pump for cleaning; and, while the second vacuum pump is shut down for cleaning, using the first vacuum pump to maintain the pressure within the MRS Section between about 20 millibars and about 40 millibars.
  • the method includes continuing to use the first and second spinning machines to produce bulked continuous carpet filament while the second vacuum pump is shut down for cleaning.
  • a method of manufacturing bulked continuous carpet filament comprises: (A) providing a multi-screw extruder that comprises: (1) an multi-rotating screw (MRS) section housing a plurality of satellite screws, each of the plurality of satellite screws being at least partially housed within a respective extruder barrel and mounted to rotate about its respective central axis; and (2) a satellite screw extruder support system that is adapted to orbitally rotate each of the plurality of satellite screws about a main axis as each of the plurality of satellite screws rotate about its respective central axis, the main axis being substantially parallel to each respective central axis; (B) providing a pressure regulation system configured to reduce a pressure within the multi-rotating screw section to between about 0 mbar and about 5 mbar, the pressure regulation system comprising at least a first catch pot and a second catch pot, wherein the first catch pot and the second catch pot are both configured to collect one or more volatile organics and other material removed from a polymer melt by a low-pressure
  • MRS multi-
  • the pressure regulation system comprises a first vacuum pump
  • at least partially shutting down the pressure regulation system comprises shutting down the first vacuum pump
  • the first catch pot and the second catch pot are operably connected to a vacuum chamber of the first vacuum pump
  • cleaning at least the first catch pot comprises cleaning the first catch pot and the second catch pot.
  • the first catch pot and the second catch pot are operably connected to a vacuum chamber of the first vacuum pump;
  • at least partially shutting down the pressure regulation system comprises mechanically isolating the first catch pot from the vacuum chamber of the first vacuum pump;
  • cleaning at least the first catch pot comprises cleaning the first catch pot;
  • the method further comprises, while the first catch pot is mechanically isolated from the vacuum chamber of the first vacuum pump: (1) continuing to use the pressure regulation system to maintain the pressure within the MRS Section to between about 0 millibars and about 5 millibars; and (2) continuing to pass the polymer melt comprising recycled PET through the multi-screw extruder while the pressure regulation system is maintaining the pressure in the MRS Section between about 0 millibars and about 5 millibars.
  • the second catch pot may be configured to collect the one or more volatile organics and other material removed from the polymer melt by the low-pressure vacuum created by the pressure regulation system while the first catch pot is mechanically isolated from the vacuum
  • the pressure regulation system comprises a first vacuum pump and a second vacuum pump
  • at least partially shutting down the pressure regulation system comprises shutting down the first vacuum pump and using the second vacuum pump to maintain a pressure within the MRS Section of between about 20 mbar and about 40 mbar
  • cleaning at least the first catch pot comprises cleaning one or more components of the first vacuum pump.
  • at least partially shutting down the pressure regulation system further comprises mechanically isolating the first vacuum pump from the MRS Section. In some embodiments, continuing to produce bulked continuous carpet filament via the first and second polymer transfer lines while the pressure regulation system is at least partially shut down.
  • FIG. 1 depicts a process flow, according to a particular embodiment, for manufacturing bulked continuous carpet filament.
  • FIG. 2 depicts a process flow depicting the flow of polymer through a Multi-Rotating Screw (MRS) extruder with a dual vacuum arrangement according to a particular embodiment.
  • MRS Multi-Rotating Screw
  • FIG. 3 depicts a process flow, according to yet another embodiment, for manufacturing bulked continuous carpet filament.
  • FIG. 4 depicts a process flow, according to a particular embodiment, for manufacturing bulked continuous carpet filament.
  • FIG. 5 is a perspective view of an MRS extruder that is suitable for use in the process of FIG. 1 .
  • FIG. 6 is a cross-sectional view of an exemplary MRS section of the MRS extruder of FIG. 5 .
  • FIG. 7 depicts a process flow depicting the flow of polymer through an MRS extruder and filtration system according to a particular embodiment.
  • FIG. 8 is a high-level flow chart of a method, according to various embodiments, of manufacturing bulked continuous carpet filament.
  • New processes for making fiber from recycled polymer are described below.
  • these new processes utilize a dual vacuum arrangement (e.g., at least two vacuum pumps) operably coupled to the MRS section of an MRS extruder in order to remove one or more impurities from recycled polymer as the recycled polymer passes through the MRS section such that the new process: (1) is more effective than earlier processes in removing contaminates and water from the recycled polymer; (2) allows for an increased throughput through a single MRS extruder, which may, for example, result in a doubling of a number of thread lines produced from a single MRS extruder; (3) results in a desired intrinsic viscosity for the extruded recycled polymer at the increased throughput; and/or (4) reduces an amount of downtime of a particular production line that includes a single MRS extruder.
  • a dual vacuum arrangement e.g., at least two vacuum pumps
  • the improved process results in a recycled PET polymer having a polymer quality that is high enough that the PET polymer may be used in producing bulked continuous carpet filament from 100% recycled PET content (e.g., 100% from PET obtained from previously used PET bottles or other source of recycled PET).
  • a BCF (bulked continuous filament) manufacturing process may generally be broken down into three steps: (1) preparing flakes of PET polymer from post-consumer bottles for use in the process; (2) passing the flakes through an extruder that melts the flakes and purifies the resulting PET polymer; and (3) feeding the purified polymer into one or more spinning machines (e.g., two spinning machines, three spinning machines, four spinning machines, eight spinning machines, up to twenty spinning machines, or any other suitable number of spinning machines) that turn the polymer into filament for use in manufacturing carpets.
  • spinning machines e.g., two spinning machines, three spinning machines, four spinning machines, eight spinning machines, up to twenty spinning machines, or any other suitable number of spinning machines
  • a BCF manufacturing process utilizes a single MRS extruder to feed a single polymer transfer line.
  • the MRS extruder may feed two or more polymer transfer lines in order to increase an amount of BCF (e.g., or recycled polymer pellets) produced in a particular period of time using a single extrusion line.
  • MRS Extruder multi-rotating screw extruder
  • spinning machines e.g., two or more spinning machines.
  • the process may enable an increase in a total amount of BCF produced over systems that utilize a single MRS Extruder to feed a single polymer transfer line or spinning machine over the same period of time.
  • increasing a throughput in the MRS Extruder may increase a frequency with which a vacuum pump or other pressure regulation system that is configured to remove volatile organics and other contaminants present in the melted polymer as the melted polymer passes through the MRS Section of the MRS Extruder needs to be cleaned.
  • the process may require the vacuum pump or pressure regulation system to reduce a pressure within the MRS Section below about 5 millibars (e.g., below about 2 millibars) in order to sufficiently remove volatile organics and other contaminants from the recycled polymer.
  • a dirty vacuum pump or pressure regulation system may run less efficiently than a clean vacuum pump or pressure regulation system, such that the system may be unable to maintain a pressure within the MRS Section at a pressure that is sufficiently low to sufficiently remove the volatile organics and other contaminants from the recycled polymer.
  • the process is configured to produce recycled PET polymer that has an intrinsic viscosity of at least about 0.79 dL/g (e.g., of between about 0.79 dL/g and about 1.00 dL/g).
  • the process is configured to achieve the desired intrinsic viscosity by doubling an exposure time of the polymer melt to the vacuum in the MRS Section.
  • shutting down the MRS Extruder may result in lost production time due to an inability to produce BCF during the down-time required to clean the vacuum pump or other pressure regulation system.
  • the process may involve cleaning the vacuum pump every six or seven days.
  • the vacuum pump may require cleaning at any other suitable interval necessary to maintain the vacuum pump in a manner sufficient to reduce a pressure within the MRS Section below a suitable level.
  • cleaning a vacuum pump may take between about 15 minutes and about 1 hour.
  • cleaning a vacuum pump may include cleaning one or more catch pots that are configured to collect one or more volatile organics and other material removed from the polymer melt by the low-pressure vacuum created by the vacuum pump (e.g., one or more vacuum pumps).
  • cleaning each particular catch pot may take between about three minutes and about five minute (e.g., about three minutes).
  • cleaning the vacuum pump may include cleaning one or more valves, elbows, pipes, etc. that make up the vacuum pump, or provide one or more connections between the vacuum pump, the MRS Extruder, the one or more catch pots, etc.
  • cleaning the pressure regulation system may take between about twenty minutes and about twenty five minutes).
  • reference to cleaning of a particular vacuum pump or particular pressure regulation system may refer to cleaning any particular component of the particular pump or pressure regulation system (e.g., one or more pipes, valves, elbows, catch pots, etc.).
  • a particular MRS Extruder may be configured to produce up to about 4,000 pounds of fiber per hour.
  • a particular spinning machine may produce up to about 36 fiber ends (e.g., 24 ends) via one or more spinnerets. Shutting down two spinning machines as a result of having to clean a vacuum pump, pressure regulation system, or other component thereof may result in having to shut down up to about 48 fiber ends (e.g., up to about 72 fiber ends) for a particular period of time. Accordingly, in light of the above, even a short amount of downtime may, for example, reduce a profitability of a particular MRS Extruder's BCF production line.
  • the process may utilize a plurality of vacuum pumps to reduce the pressure within the MRS Section below about 5 millibars (e.g., below about 2 millibars).
  • the plurality of vacuum pumps are arranged in series with one another.
  • the plurality of vacuum pumps are arranged in parallel.
  • the plurality of vacuum pumps comprise two vacuum pumps. In such embodiments, the two vacuum pumps may cooperate to maintain the pressure in the MRS Section below a suitable pressure for sufficiently removing volatile organics and other contaminants from the recycled polymer melt.
  • the use of a plurality of vacuum pumps may reduce a frequency with which each of the plurality of vacuum pumps requires cleaning.
  • the process may involve alternating cleaning of the two vacuum pumps in order to enable cleaning of each particular vacuum pump without having to shut down a particular MRS Extruder's production line in order to perform the cleaning (e.g., because the first vacuum pump is configured to independently maintain the pressure within the MRS Section below the threshold value while the second vacuum pump is cleaned).
  • each of the plurality of vacuums are independently configured for and capable of maintaining a pressure within the MRS section below about 5 millibars.
  • the system is configured such that while any one of the plurality of vacuums is offline for cleaning, any one or more of the remaining plurality of vacuum pumps is maintaining the desired pressure within the MRS Section (e.g., below about 5 millibars).
  • FIG. 1 depicts an exemplary process flow that utilizes a dual vacuum arrangement as described above.
  • the process begins by running PET 102 through an MRS extruder 100 .
  • PET 102 is used for exemplary purposes, and that other embodiments may utilize one or more other polymers in the process (e.g., one or more polymers other than PET).
  • the PET 102 may include PET 102 from any suitable source (e.g., recycled PET, virgin PET, etc.).
  • the PET 102 may include PET 102 that has gone through one or more suitable pre-processing steps (e.g., washing, drying, grinding, etc.).
  • these one or more suitable-preprocessing steps may include any suitable step described in U.S. Pat. No. 9,409,363 B2 entitled “Method of Manufacturing Bulked Continuous Filaments,” filed Apr. 18, 2014, which is incorporated herein by reference in its entirety.
  • the PET 102 comprises a polymer melt.
  • the MRS Extruder 100 includes any suitable MRS Extruder 100 , such as any suitable MRS extruder is described in U.S. Published Patent Application 2005/0047267, entitled “Extruder for Producing Molten Plastic Materials”, which was published on Mar. 3, 2005, and which is hereby incorporated herein in its entirety.
  • the PET 102 is fed into the MRS Extruder 100 where it melts into molten polymer.
  • the MRS Extruder 100 then separates the melt flow into a plurality of different streams (e.g., 4, 6, 8, or more streams) through respective open chambers. These streams, as shown in FIG. 2 , are subsequently fed, respectively, through a plurality of satellite screws in an MRS Section 120 (e.g., eight satellite screws).
  • the MRS Extruder 100 further comprises a first single screw section 110 that feeds the polymer into the MRS Section 120 and a second single screw section 130 that recombines the polymer stream into a single stream following the MRS Section 120 .
  • the MRS extruder's MRS Section 120 is fitted with one or more Vacuum Pumps (e.g., Vacuum Pump A 140 A and Vacuum Pump B 140 B) that are operatively coupled to the MRS section 120 so that Vacuum Pump A 140 A and Vacuum Pump B 140 B are each in communication with the interior of the MRS section 120 via a suitable respective opening in the MRS section's housing.
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B are in operative communication with opposing portions of the MRS section 120 (e.g., via one or more respective openings).
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B are operatively coupled to the MRS Extruder 100 and configured to maintain a pressure within the MRS Section 120 below a particular threshold pressure (e.g., using one or more suitable computer-controllers).
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B are arranged in series with one another. In still other embodiments, Vacuum Pump A 140 A and Vacuum Pump B 140 B are arranged in parallel. Although in the embodiment shown in this Figure, a dual vacuum arrangement is shown, it should be understood in light of this disclosure that various other embodiments of a multi-vacuum extruder system may include any other suitable number of (e.g., 1, 3, 4, 5, 6, 7, etc.) vacuum pumps or pressure regulation systems in communication with the interior portion MRS section 120 in any suitable arrangement.
  • each particular Vacuum Pump is configured to maintain the pressure within the MRS Section 120 within a particular pressure range.
  • one or more of a plurality of Vacuum Pumps are configured to cooperate to maintain the pressure within the particular range.
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B are configured to maintain a pressure within the MRS Section 120 below a particular pressure (e.g., or within a particular range of pressure), for example, using a suitable computer-controller.
  • a particular pressure e.g., or within a particular range of pressure
  • the particular pressure is below about 5 millibars.
  • the particular pressure is below about 2 millibars.
  • the particular pressure is a particular pressure within a particular pressure range between about 0 millibars and about 10 millibars.
  • the particular pressure or pressure range is any suitable pressure or pressure range utilized for any suitable application, such as in the production of BCF from recycled PET as described herein.
  • the low-pressure vacuum created by Vacuum Pump A 140 A and Vacuum Pump B 140 B in the MRS Section 120 may remove, for example: (1) volatile organics present in the melted polymer as the melted polymer passes through the MRS Section 120 ; and/or (2) at least a portion of any interstitial water that was present in the recycled polymer when it entered the MRS Extruder 100 .
  • the low-pressure vacuum removes substantially all (e.g., all) of the water and contaminants from the recycled polymer melt.
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B each comprise a jet vacuum pump fit to the MRS extruder 100 .
  • Vacuum Pump A 140 A and Vacuum Pump B 140 B comprise one or more mechanical lobe pumps (which may, for example, require repeated cleaning due to volatiles coming off of and condensing on the lobes of the pump).
  • one or more of the Vacuum Pump A 140 A and Vacuum Pump B 140 B comprise a jet vacuum pump made by Arpuma GmbH of Bergheim, Germany.
  • the process includes splitting the resulting polymer melt into two polymer transfer lines (e.g., 108 A and 108 B) in order to feed at least two spinning machines (e.g., Spinning Machine A 112 A and Spinning Machine B 112 B).
  • the process may enable up to a doubling (or more) of an amount of BCF produced from the single MRS Extruder 100 .
  • the embodiment shown in this figure depicts a single extruder feeding two spinning machines, it should be understood that in other embodiments of the process described herein, the process may include feeding any other suitable number of spinning machines.
  • the extruder is configured to feed up to twenty-four spinning machines (e.g., two spinning machines, four spinning machines, six spinning machines, eight spinning machines, ten spinning machines, sixteen spinning machines, etc.).
  • the at least two spinning machines used in the process described above comprise at least two Sytec One spinning machines manufactured by Oerlikon Neumag of Neumuenster, Germany.
  • the Sytec One machine may be especially adapted for hard-to-run fibers, such as nylon or solution-dyed fibers, where the filaments are prone to breakage during processing.
  • the Sytec One machines keep the runs downstream of the spinneret as straight as possible, use only one threadline each, and are designed to be quick to rethread when there are filament breaks.
  • Such spinning machines may include, for example, any suitable one-threadline or three-threadline spinning machine made by Oerlikon Neumag of Neumuenster, Germany or any other company.
  • the process may be implemented in the context of a production line for producing BCF from recycled PET (e.g., recycled PET bottles).
  • the process includes a single MRS Extruder coupled to a first vacuum pump 140 A and a second vacuum pump 140 B.
  • the first vacuum pump and second vacuum pump are configured to cooperate to maintain a pressure within an MRS Section of the MRS Extruder below about 5 millibars during extrusion of the recycled PET.
  • the first and second vacuum pumps are further configured to independently maintain pressure within an MRS Section of the MRS Extruder below about 5 millibars during extrusion of the recycled PET (e.g., while the other vacuum pump may be offline for cleaning).
  • the first and second vacuum pump may alternately be cleaned according to a particular cleaning schedule such that for example, the first vacuum pump is cleaned at a first time and the second vacuum pump is cleaned at a second time that does not coincide with the first time.
  • the production line continues to produce BCF via the MRS Extruder and the second vacuum pump is configured to maintain the pressure within the MRS Section below about 5 millibars (e.g., while the first vacuum pump is offline for cleaning).
  • the production line continues to produce BCF via the MRS Extruder and the second vacuum pump is configured to maintain the pressure within the MRS Section at a pressure other than below about 5 millibars (e.g., while the first vacuum pump is offline for cleaning).
  • the process involves raising a pressure level within the MRS Section using the second vacuum pump while the first vacuum pump is offline for cleaning.
  • the system may be configured to maintain a pressure of up to about 40 mbar (e.g., up to about 25 mbar, up to about 30 mbar, etc.) within the MRS Section using the second vacuum pump while the first vacuum pump is offline for cleaning.
  • the process may be configured to continue to produce BCF while the first vacuum pump is offline.
  • the process may, for example, involve: (1) shutting down the first vacuum pump; (2) raising the pressure in the MRS Section using the second vacuum pump to about 25 mbar; (2) cleaning the first vacuum pump; (3) powering up the first vacuum pump after cleaning; and (4) reducing the pressure within the MRS Section back to below about 5 mbar using the first and second vacuum pumps.
  • the system may, in various embodiments, perform similar steps in order to independently clean the second vacuum pump.
  • the process may involve mechanically isolating either of the first vacuum pump or the second vacuum pump (e.g., before or after the first or second vacuum pumped has been shut down). In this way, the process may enable the remaining vacuum pump to achieve the desired pressure within the MRS Section without pulling air from the shut-off pump.
  • the process may allow for access to one or more components of the powered-off pump (e.g., one or more catch pots, valves, pipes, hoses, elbows, etc.) for cleaning without affecting the vacuum within the MRS Section.
  • the MRS Extruder feeds two polymer transfer lines (e.g., which feed two spinning machines), which may, for example, double a production capacity of the production line when compared to a production line that feeds a single spinning machine (e.g., via a single polymer transfer line).
  • the process may result in the process running without any downtime (e.g., with limited downtime) associated with or resulting from cleaning a vacuum pump (e.g., is configured to run substantially continuously).
  • the process may involve mechanically isolating a particular one of the vacuum pumps using: (1) one or more valves; (2) one or more plates or other mechanical components to at least temporarily mechanically seal off the particular vacuum pump from the MRS Section.
  • closing off the particular vacuum pump from the MRS Section may include sufficiently mechanically isolating the particular vacuum pump such that air cannot flow between a vacuum chamber of the vacuum pump and the MRS Section.
  • FIG. 3 depicts a process flow for producing BCF according to yet another embodiment.
  • the process includes a single vacuum pump 140 A operably coupled to the extruder 100 that is configured to remove at least a portion of volatile organics and interstitial water from the polymer melt as the melt passes through the extruder.
  • the Vacuum Pump 140 A includes a first catch pot 142 A and a second catch pot 142 B.
  • a vacuum pump 140 A may be equipped with any suitable number of catch pots (e.g., one catch pot, two catch pots, three catch pots, four catch pots, etc.).
  • each of the one or more catch pots e.g., the first catch pot 142 A and the second catch pot 142 B
  • each catch pot may be operably connected to the vacuum pump (e.g., a vacuum chamber of the vacuum pump) in any suitable manner (e.g., via one or more pipes, elbows, valves, etc.).
  • the process may include cleaning one or more of the individual catch pots (e.g., the first catch pot 142 A and/or the second catch pot 142 B) that make up part of the vacuum system.
  • the process involves shutting down the entire extrusion line in order to clean each of the catch pots (e.g., the first catch pot 142 A and/or the second catch pot 142 B) that make up part of the vacuum system while the extrusion line (e.g., and the vacuum pump 140 A) are offline).
  • the process may involve cleaning one or more of the catch pots (e.g., the first catch pot 142 A and/or the second catch pot 142 B) that make up part of the vacuum system while the extrusion line is still running.
  • the process may, for example, include the steps of: (1) mechanically isolating the first catch pot 142 A from the Vacuum Pump A 140 A; (2) continuing to maintain a desired pressure within the extruder 100 using the Vacuum Pump A 140 A (e.g., less than about 5 mbarr); (3) cleaning the first catch pot 142 A; and (4) ceasing mechanical isolation of the cleaned first catch pot 142 from the Vacuum Pump A 140 A.
  • the use of one or more additional catch pots may reduce a frequency with which a single vacuum pumped used as part of the process requires cleaning.
  • a dual or more catch pot arrangement may reduce a downtime of the process resulting from a need to clean one or more vacuum components.
  • any embodiment of a dual vacuum and/or dual catch-pot arrangement described herein may be used in the context of any suitable BCF (bulked continuous filament) manufacturing process described below.
  • any vacuum pump or pressure regulation technique described herein may be utilized in the any process flow described below with respect to a BCF extrusion line.
  • the process may feed any suitable number of polymer transfer lines (e.g., spinning machines) such as is described above.
  • a BCF (bulked continuous filament) manufacturing process may generally be broken down into three steps: (1) preparing flakes of PET polymer from post-consumer bottles for use in the process; (2) passing the flakes through an extruder that melts the flakes and purifies the resulting PET polymer; and (3) feeding the purified polymer into a spinning machine that turns the polymer into filament for use in manufacturing carpets. These three steps are described in greater detail below.
  • the step of preparing flakes of PET polymer from post-consumer bottles comprises: (A) sorting post-consumer PET bottles and grinding the bottles into flakes; (B) washing the flakes; and (C) identifying and removing any impurities or impure flakes.
  • bales of clear and mixed colored recycled post-consumer (e.g., “curbside”) PET bottles (or other containers) obtained from various recycling facilities make-up the post-consumer PET containers for use in the process.
  • the source of the post-consumer PET containers may be returned ‘deposit’ bottles (e.g., PET bottles whose price includes a deposit that is returned to a customer when the customer returns the bottle after consuming the bottle's contents).
  • the curbside or returned “post-consumer” or “recycled” containers may contain a small level of non-PET contaminates.
  • the contaminants in the containers may include, for example, non-PET polymeric contaminants (e.g., PVC, PLA, PP, PE, PS, PA, etc.), metal (e.g., ferrous and non-ferrous metal), paper, cardboard, sand, glass or other unwanted materials that may find their way into the collection of recycled PET.
  • non-PET polymeric contaminants e.g., PVC, PLA, PP, PE, PS, PA, etc.
  • metal e.g., ferrous and non-ferrous metal
  • paper e.g., cardboard, sand, glass or other unwanted materials that may find their way into the collection of recycled PET.
  • the non-PET contaminants may be removed from the desired PET components, for example, through one or more of the various processes described below.
  • smaller components and debris are removed from the whole bottles via a rotating trammel.
  • Various metal removal magnets and eddy current systems may be incorporated into the process to remove any metal contaminants.
  • Near Infra-Red optical sorting equipment such as the NRT Multi Sort IR machine from Bulk Handling Systems Company of Eugene, Oreg., or the Spyder IR machine from National Recovery Technologies of Nashville, Tenn., may be utilized to remove any loose polymeric contaminants that may be mixed in with the PET flakes (e.g., PVC, PLA, PP, PE, PS, and PA).
  • automated X-ray sorting equipment such as a VINYLCYCLE machine from National Recovery Technologies of Nashville, Tenn. may be utilized to remove remaining PVC contaminants.
  • a binary segregation of the clear materials from the colored materials is achieved using automated color sorting equipment equipped with a camera detection system (e.g., an Multisort ES machine from National Recovery Technologies of Nashville, Tenn.).
  • manual sorters are stationed at various points on the line to remove contaminants not removed by the sorter and any colored bottles.
  • the sorted material is taken through a granulation step (e.g., using a 50 B Granulator machine from Cumberland Engineering Corporation of New Berlin, Wis.) to size reduce (e.g., grind) the bottles down to a size of less than one half of an inch.
  • the bottle labels are removed from the resultant “dirty flake” (e.g., the PET flakes formed during the granulation step) via an air separation system prior to entering the wash process.
  • the “dirty flake” is then mixed into a series of wash tanks.
  • an aqueous density separation is utilized to separate the olefin bottle caps (which may, for example, be present in the “dirty flake” as remnants from recycled PET bottles) from the higher specific gravity PET flakes.
  • the flakes are washed in a heated caustic bath to about 190 degrees Fahrenheit.
  • the caustic bath is maintained at a concentration of between about 0.6% and about 1.2% sodium hydroxide.
  • soap surfactants as well as defoaming agents are added to the caustic bath, for example, to further increase the separation and cleaning of the flakes.
  • a double rinse system then washes the caustic from the flakes.
  • the flake is centrifugally dewatered and then dried with hot air to at least substantially remove any surface moisture.
  • the resultant “clean flake” is then processed through an electrostatic separation system (e.g., an electrostatic separator from Carpco, Inc. of Jacksonville, Fla.) and a flake metal detection system (e.g., an MSS Metal Sorting System) to further remove any metal contaminants that remain in the flake.
  • an air separation step removes any remaining label from the clean flake.
  • the flake is then taken through a flake color sorting step (e.g., using an OPTIMIX machine from TSM Control Systems of Dundalk, Ireland) to remove any remaining color contaminants remaining in the flake.
  • an electro-optical flake sorter based at least in part on Raman technology (e.g., a Powersort 200 from Unisensor Sensorsysteme GmbH of Düsseldorf, Germany) performs the final polymer separation to remove any non-PET polymers remaining in the flake. This step may also further remove any remaining metal contaminants and color contaminants.
  • Raman technology e.g., a Powersort 200 from Unisensor Sensorsysteme GmbH of Düsseldorf, Germany
  • the combination of these steps delivers substantially clean (e.g., clean) PET bottle flake comprising less than about 50 parts per million PVC (e.g., 25 ppm PVC) and less than about 15 parts per million metals for use in the downstream extrusion process described below.
  • substantially clean e.g., clean
  • PET bottle flake comprising less than about 50 parts per million PVC (e.g., 25 ppm PVC) and less than about 15 parts per million metals for use in the downstream extrusion process described below.
  • the flakes are fed down a conveyor and scanned with a high-speed laser system 300 .
  • particular lasers that make up the high-speed laser system 300 are configured to detect the presence of particular contaminates (e.g., PVC or Aluminum). Flakes that are identified as not consisting essentially of PET may be blown from the main stream of flakes with air jets. In various embodiments, the resulting level of non-PET flakes is less than 25 ppm.
  • the system is adapted to ensure that the PET polymer being processed into filament is substantially free of water (e.g., entirely free of water).
  • the flakes are placed into a pre-conditioner for between about 20 and about 40 minutes (e.g., about 30 minutes) during which the pre-conditioner blows the surface water off of the flakes.
  • interstitial water remains within the flakes.
  • these “wet” flakes e.g., flakes comprising interstitial water
  • an extruder is used to turn the wet flakes described above into a molten recycled PET polymer and to perform a number of purification processes to prepare the polymer to be turned into BCF for carpet.
  • the recycled PET polymer flakes are wet (e.g., surface water is substantially removed (e.g., fully removed) from the flakes, but interstitial water remains in the flakes).
  • these wet flakes are fed into a Multiple Rotating Screw (“MRS”) extruder 400 .
  • MRS Multiple Rotating Screw
  • the wet flakes are fed into any other suitable extruder (e.g., a twin screw extruder, a multiple screw extruder, a planetary extruder, or any other suitable extrusion system).
  • a twin screw extruder e.g., a twin screw extruder, a multiple screw extruder, a planetary extruder, or any other suitable extrusion system.
  • An exemplary MRS Extruder 400 is shown in FIGS. 5 and 6 .
  • a particular example of such an MRS extruder is described in U.S. Published Patent Application 2005/0047267, entitled “Extruder for Producing Molten Plastic Materials”, which was published on Mar. 3, 2005, and which is hereby incorporated herein by reference.
  • the MRS extruder includes a first single-screw extruder section 410 for feeding material into an MRS section 420 and a second single-screw extruder section 440 for transporting material away from the MRS section.
  • the wet flakes are fed directly into the MRS extruder 400 substantially immediately (e.g., immediately) following the washing step described above (e.g., without drying the flakes or allowing the flakes to dry).
  • a system that feeds the wet flakes directly into the MRS Extruder 400 substantially immediately (e.g., immediately) following the washing step described above may consume about 20% less energy than a system that substantially fully pre-dries the flakes before extrusion (e.g., a system that pre-dries the flakes by passing hot air over the wet flakes for a prolonged period of time).
  • a system that feeds the wet flakes directly into the MRS Extruder 400 substantially immediately (e.g., immediately) following the washing step described above avoids the need to wait a period of time (e.g., up to eight hours) generally required to fully dry the flakes (e.g., remove all of the surface and interstitial water from the flakes).
  • FIG. 7 depicts a process flow that illustrates the various processes performed by the MRS Extruder 400 in a particular embodiment.
  • the wet flakes are first fed through the MRS extruder's first single-screw extruder section 410 , which may, for example, generate sufficient heat (e.g., via shearing) to at least substantially melt (e.g., melt) the wet flakes.
  • the resultant polymer melt (e.g., comprising the melted flakes), in various embodiments, is then fed into the extruder's MRS section 420 , in which the extruder separates the melt flow into a plurality of different streams (e.g., 4, 6, 8, or more streams) through a plurality of open chambers.
  • FIG. 3 shows a detailed cutaway view of an MRS Section 420 according to a particular embodiment.
  • the MRS Section 420 separates the melt flow into eight different streams, which are subsequently fed through eight satellite screws 425 A-H.
  • these satellite screws are substantially parallel (e.g., parallel) to one other and to a primary screw axis of the MRS Machine 400 .
  • the satellite screws 425 A-H may, for example, rotate faster than (e.g., about four times faster than) in previous systems.
  • the satellite screws 425 A-H are arranged within a single screw drum 428 that is mounted to rotate about its central axis; and (2) the satellite screws 425 A-H are configured to rotate in a direction that is opposite to the direction in which the single screw drum rotates 428 .
  • the satellite screws 425 A-H and the single screw drum 428 rotate in the same direction.
  • the rotation of the satellite screws 425 A-H is driven by a ring gear.
  • the single screw drum 428 rotates about four times faster than each individual satellite screw 425 A-H.
  • the satellite screws 425 A-H rotate at substantially similar (e.g., the same) speeds.
  • the satellite screws 425 A-H are housed within respective extruder barrels, which may, for example be about 30% open to the outer chamber of the MRS section 420 .
  • the rotation of the satellite screws 425 A-H and single screw drum 428 increases the surface exchange of the polymer melt (e.g., exposes more surface area of the melted polymer to the open chamber than in previous systems).
  • the MRS section 420 creates a melt surface area that is, for example, between about twenty and about thirty times greater than the melt surface area created by a co-rotating twin screw extruder.
  • the MRS section 420 creates a melt surface area that is, for example, about twenty five times greater than the melt surface area created by a co-rotating twin screw extruder
  • the MRS extruder's MRS Section 420 is fitted with a Vacuum Pump 430 that is attached to a vacuum attachment portion 422 of the MRS section 420 so that the Vacuum Pump 430 is in communication with the interior of the MRS section via a suitable opening 424 in the MRS section's housing.
  • the MRS Section 420 is fitted with a series of Vacuum Pumps.
  • the Vacuum Pump 430 is configured to reduce the pressure within the interior of the MRS Section 420 to a pressure that is between about 0.5 millibars and about 5 millibars.
  • the Vacuum Pump 430 is configured to reduce the pressure in the MRS Section 420 to less than about 1.5 millibars (e.g., about 1 millibar or less).
  • the low-pressure vacuum created by the Vacuum Pump 430 in the MRS Section 420 may remove, for example: (1) volatile organics present in the melted polymer as the melted polymer passes through the MRS Section 420 ; and/or (2) at least a portion of any interstitial water that was present in the wet flakes when the wet flakes entered the MRS Extruder 400 .
  • the low-pressure vacuum removes substantially all (e.g., all) of the water and contaminants from the polymer stream.
  • the Vacuum Pump 430 comprises three mechanical lobe vacuum pumps (e.g., arranged in series) to reduce the pressure in the chamber to a suitable level (e.g., to a pressure of about 1.0 millibar).
  • the Vacuum Pump 430 includes a jet vacuum pump fit to the MRS extruder.
  • the jet vacuum pump is configured to achieve about 1 millibar of pressure in the interior of the MRS section 420 and about the same results described above regarding a resulting intrinsic viscosity of the polymer melt.
  • using a jet vacuum pump can be advantageous because jet vacuum pumps are steam powered and therefore substantially self-cleaning (e.g., self-cleaning), thereby reducing the maintenance required in comparison to mechanical lobe pumps (which may, for example, require repeated cleaning due to volatiles coming off and condensing on the lobes of the pump).
  • the Vacuum Pump 430 is a jet vacuum pump is made by Arpuma GmbH of Bergheim, Germany.
  • the streams of molten polymer are recombined and flow into the MRS extruder's second single screw section 440 .
  • the single stream of molten polymer is next run through a filtration system 450 that includes at least one filter.
  • the filtration system 450 includes two levels of filtration (e.g., a 40 micron screen filter followed by a 25 micron screen filter).
  • water and volatile organic impurities are removed during the vacuum process as discussed above, particulate contaminates such as, for example, aluminum particles, sand, dirt, and other contaminants may remain in the polymer melt.
  • this filtration step may be advantageous in removing particulate contaminates (e.g., particulate contaminates that were not removed in the MRS Section 420 ).
  • a viscosity sensor 460 (see FIG. 7 ) is used to sense the melt viscosity of the molten polymer stream following its passage through the filtration system 450 .
  • the viscosity sensor 460 measures the melt viscosity of the stream, for example, by measuring the stream's pressure drop across a known area.
  • the system in response to measuring an intrinsic viscosity of the stream that is below a predetermined level (e.g., below about 0.8 g/dL), the system may: (1) discard the portion of the stream with low intrinsic viscosity; and/or (2) lower the pressure in the MRS Section 420 in order to achieve a higher intrinsic viscosity in the polymer melt.
  • decreasing the pressure in the MRS Section 420 is executed in a substantially automated manner (e.g., automatically) using the viscosity sensor in a computer-controlled feedback control loop with the vacuum section 430 .
  • removing the water and contaminates from the polymer improves the intrinsic viscosity of the recycled PET polymer by allowing polymer chains in the polymer to reconnect and extend the chain length.
  • the recycled polymer melt has an intrinsic viscosity of at least about 0.79 dL/g (e.g., of between about 0.79 dL/g and about 1.00 dL/g).
  • passage through the low pressure MRS Section 420 purifies the recycled polymer melt (e.g., by removing the contaminants and interstitial water) and makes the recycled polymer substantially structurally similar to (e.g., structurally the same as) pure virgin PET polymer.
  • the water removed by the vacuum includes both water from the wash water used to clean the recycled PET bottles as described above, as well as from unreacted water generated by the melting of the PET polymer in the single screw heater 410 (e.g., interstitial water).
  • the majority of water present in the polymer is wash water, but some percentage may be unreacted water.
  • the resulting polymer is a recycled PET polymer (e.g., obtained 100% from post-consumer PET products, such as PET bottles or containers) having a polymer quality that is suitable for use in producing PET carpet filament using substantially only (e.g., only) PET from recycled PET products.
  • a recycled PET polymer e.g., obtained 100% from post-consumer PET products, such as PET bottles or containers
  • Step 3 Purified PET Polymer Fed into Spinning Machine to be Turned into Carpet Yarn
  • the resulting molten recycled PET polymer is fed directly into a BCF (or “spinning”) machine 500 that is configured to turn the molten polymer into bulked continuous filament.
  • a BCF or “spinning” machine 500 that is configured to turn the molten polymer into bulked continuous filament.
  • the output of the MRS extruder 400 is connected substantially directly (e.g., directly) to the input of the spinning machine 500 so that molten polymer from the extruder is fed directly into the spinning machine 500 .
  • This process may be advantageous because molten polymer may, in certain embodiments, not need to be cooled into pellets after extrusion (as it would need to be if the recycled polymer were being mixed with virgin PET polymer).
  • not cooling the recycled molten polymer into pellets serves to avoid potential chain scission in the polymer that might lower the polymer's intrinsic viscosity.
  • the spinning machine 500 extrudes molten polymer through small holes in a spinneret in order to produce carpet yarn filament from the polymer.
  • the molten recycled PET polymer cools after leaving the spinneret.
  • the carpet yarn is then taken up by rollers and ultimately turned into filaments that are used to produce carpet.
  • the carpet yarn produced by the spinning machine 500 may have a tenacity between about 3 gram-force per unit denier (gf/den) and about 9 gf/den.
  • the resulting carpet yarn has a tenacity of at least about 3 gf/den.
  • the spinning machine 500 used in the process described above is the Sytec One spinning machine manufactured by Oerlika Neumag of Neumuenster, Germany.
  • the Sytec One machine may be especially adapted for hard-to-run fibers, such as nylon or solution-dyed fibers, where the filaments are prone to breakage during processing.
  • the Sytec One machine keeps the runs downstream of the spinneret as straight as possible, uses only one threadline, and is designed to be quick to rethread when there are filament breaks.
  • Such spinning machines may include, for example, any suitable one-threadline or three-threadline spinning machine made by Oerlika Neumag of Neumuenster, Germany or any other company.
  • the improved strength of the recycled PET polymer generated using the process above allows it to be run at higher speeds through the spinning machine 500 than would be possible using pure virgin PET polymer. This may allow for higher processing speeds than are possible when using virgin PET polymer.
  • FIG. 8 provides a high-level summary of the method of manufacturing bulked continuous filament described above.
  • the method begins at Step 602 , where recycled PET bottles are ground into a group of flakes.
  • the group of flakes is washed to remove contaminants from the flakes' respective outer surfaces.
  • the group of flakes is scanned (e.g., using one or more of the methods discussed above) to identify impurities, including impure flakes. These impurities, and impure flakes, are then removed from the group of flakes.
  • the group of flakes is passed through an MRS extruder while maintaining the pressure within an MRS portion of the extruder below about 1.5 millibars.
  • the resulting polymer melt is passed through at least one filter having a micron rating of less than about 50 microns.
  • the recycled polymer is formed into bulked continuous carpet filament, which may be used in producing carpet. The method then ends at Step 614 .
  • the process described herein that utilizes a dual or other multi-vacuum arrangement with a single MRS Extruder may be used in the production of PET nurdles (e.g., from recycled PET).
  • the process may utilize a slower throughput in the MRS Extruder in order to remove a sufficient amount of impurities from the molten polymer such that the resultant extruded polymer melt is sufficiently free of impurities to be suitable for formation into PET nurdles.
  • the dual vacuum system discussed above is described in some embodiments as being configured to maintain the pressure in the open chambers of the MRS extruder to about 5 millibars, in other embodiments, the vacuum system may be adapted to maintain the pressure in the open chambers of the MRS extruder at pressures greater than, or less than, 1 millibars. For example, the vacuum system may be adapted to maintain this pressure at between about 0.5 millibars and about 12 millibars.
  • any numerical ranges described herein are intended to capture every integer and fractional value within the described range (e.g., every rational number value within the described range).
  • a range describing a pressure range of between about zero millibars and about ten millibars is intended to capture and disclose every rational number pressure between zero millibars and ten millibars (e.g., 1 millibars, 2 millibars, 3 millibars, 4 millibars, 2.1 millibars, 2.01 millibars, 2.001 millibars . . . . 9.999 millibars and so on).
  • substantially rectangular is intended to describe shapes that are both exactly rectangular (e.g., have four sides that meet at ninety degree angles) as well as shapes that are not quite exactly rectangular (e.g., shapes having four sides that meet at an angle in an acceptable tolerance of ninety degrees, such as 90°+/ ⁇ 4°.
  • the system may be adapted to produce carpet filament from a combination of recycled PET and virgin PET.
  • the resulting carpet filament may, for example, comprise, consist of, and/or consist essentially of between about 80% and about 100% recycled PET, and between about 0% and about 20% virgin PET.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
US15/910,853 2017-03-03 2018-03-02 Polymer extruders with a dual vacuum arrangement and related methods Abandoned US20180250864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/910,853 US20180250864A1 (en) 2017-03-03 2018-03-02 Polymer extruders with a dual vacuum arrangement and related methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762466632P 2017-03-03 2017-03-03
US15/910,853 US20180250864A1 (en) 2017-03-03 2018-03-02 Polymer extruders with a dual vacuum arrangement and related methods

Publications (1)

Publication Number Publication Date
US20180250864A1 true US20180250864A1 (en) 2018-09-06

Family

ID=61692102

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/489,875 Active 2038-10-08 US11279071B2 (en) 2017-03-03 2018-03-02 Method of manufacturing bulked continuous carpet filament
US15/910,853 Abandoned US20180250864A1 (en) 2017-03-03 2018-03-02 Polymer extruders with a dual vacuum arrangement and related methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/489,875 Active 2038-10-08 US11279071B2 (en) 2017-03-03 2018-03-02 Method of manufacturing bulked continuous carpet filament

Country Status (5)

Country Link
US (2) US11279071B2 (fr)
EP (1) EP3589473A1 (fr)
AU (1) AU2018227587A1 (fr)
EA (1) EA201992067A1 (fr)
WO (1) WO2018161021A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250301A1 (en) * 2021-02-10 2022-08-11 Nxp Usa, Inc. Conduit inserts for encapsulant compound formulation kneading and encapsulation back-end assembly processes
US20230278261A1 (en) * 2020-11-13 2023-09-07 Gneuss Gmbh Multi-shaft preparation unit for plastic melts

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487422B2 (en) 2012-05-31 2019-11-26 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from colored recycled pet
US11045979B2 (en) 2012-05-31 2021-06-29 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
US10538016B2 (en) 2012-05-31 2020-01-21 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US9630353B2 (en) 2012-05-31 2017-04-25 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US10695953B2 (en) 2012-05-31 2020-06-30 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US9636860B2 (en) 2012-05-31 2017-05-02 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US8597553B1 (en) 2012-05-31 2013-12-03 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
EP4219114B1 (fr) 2017-01-30 2024-10-30 Aladdin Manufacturing Corporation Systèmes et procédés de fabrication d'articles à partir de pet recyclé coloré
AU2018227587A1 (en) 2017-03-03 2019-08-22 Aladdin Manufacturing Corporation Method of manufacturing bulked continuous carpet filament
US11618973B2 (en) 2017-09-15 2023-04-04 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring systems and methods
US11242622B2 (en) 2018-07-20 2022-02-08 Aladdin Manufacturing Corporation Bulked continuous carpet filament manufacturing from polytrimethylene terephthalate
EP3980587A1 (fr) 2019-06-05 2022-04-13 Aladdin Manufacturing Corporation Procédé de fabrication de filament de tapis continu gonflant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150069655A1 (en) * 2012-05-31 2015-03-12 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
US20150343672A1 (en) * 2013-01-10 2015-12-03 Brückner Maschinenbau Gmbh & Co.Kg Device for degassing polymer melts

Family Cites Families (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1490918A (en) 1922-09-22 1924-04-22 Gaede Wolfgang High-vacuum pump
CH170967A (de) 1933-03-18 1934-08-15 Duerst Sen Emanuel Verfahren und Strangpresse zur Entgasung von knetbarem Pressmaterial.
US2146532A (en) 1936-03-13 1939-02-07 Du Pont Extrusion process
NL286268A (fr) 1961-12-06 1900-01-01
BE626177A (fr) 1961-12-22 1900-01-01
CH430182A (de) 1964-12-18 1967-02-15 Spindler Wolfgang Vorrichtung zur Regelung von Extrudern für die Kunststoffverarbeitung
US3608001A (en) 1969-08-26 1971-09-21 Exxon Research Engineering Co Controlled degradation of polypropylene in extruder-reactor
DD98691A1 (fr) 1971-09-10 1973-07-12
DE2158246C3 (de) 1971-11-24 1979-06-28 Eickhoff-Kleinewefers Kunststoffmaschinen Gmbh, 4630 Bochum Vorrichtung zum Aufbereiten und Strangpressen von thermoplastischen Kunststoffen
US3865528A (en) 1973-11-01 1975-02-11 Moog Inc Extrusion apparatus having electronic interpolator
US3938924A (en) 1974-03-28 1976-02-17 Celanese Corporation Thermoplastic melt apparatus
FR2319479A1 (fr) 1975-08-01 1977-02-25 Creusot Loire Dispositif de degazage de matieres plastiques
DE2534724C3 (de) 1975-08-04 1981-08-13 Dynamit Nobel Ag, 5210 Troisdorf Vorrichtung zum Extrudieren von gemusterten Bahnen oder Platten aus thermoplastischen Kunststoffmassen
US4057607A (en) 1975-12-19 1977-11-08 Celanese Corporation Process for preparing shear degradable particle-containing resin powders
JPS5399268A (en) 1977-02-12 1978-08-30 Shiyouki Chiyou Low temperature fabrication process of polyethylene telephthalate
DE2719095C2 (de) 1977-04-29 1984-07-05 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Schneckenpresse zur Verarbeitung von plastischen Massen, insbesondere von Kunststoffen und Kautschuk
DE2732696A1 (de) 1977-07-20 1979-02-22 Leybold Heraeus Gmbh & Co Kg Verfahren und vorrichtung zur evakuierung eines rezipienten
GB1601699A (en) 1977-11-03 1981-11-04 Gen Eng Radcliffe Method and apparatus for dispersing a liquid additive throughout a plastics material
US4269798A (en) 1978-10-23 1981-05-26 Ives Frank E Method for producing a curable, filled resin composition, e.g., artificial marble
DE2900988C2 (de) 1979-01-12 1982-07-01 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Vorrichtung zum Aufbereiten von thermoplastischen Massen
DE2906324C2 (de) 1979-02-19 1982-06-24 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Mehrstufige Vorrichtung zum Plastifizieren und Strangpressen von plastischen Massen
FI792972A7 (fi) 1979-09-25 1981-01-01 Nokia Oy Ab Menetelmä nestemäisen lisäaineen ruiskuttamiseksi muovipuristimen sylinteriin.
US4370302A (en) 1980-01-04 1983-01-25 Teijin Limited Machine for solid phase polymerization
DE3030541C2 (de) 1980-08-13 1988-09-08 Rudolf P. 7000 Stuttgart Fritsch Vorrichtung zur kontinuierlichen Herstellung hochmolekularer Polymerer
DE3315184C1 (de) 1983-04-27 1984-06-28 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Verfahren und Strangpresseinrichtung zum UEberwachen der Herstellung von Profilen aus einer oder mehreren Kautschuk- oder Kunststoffmischungen
US4564349A (en) 1983-06-01 1986-01-14 Union Carbide Corporation Extruder assembly for extruding water-curable silane modified polymers
US4675378A (en) 1986-05-19 1987-06-23 Celanese Corporation Process control system
JPS63191823A (ja) 1987-02-04 1988-08-09 Unitika Ltd ポリエステルチツプの連続固相重合槽
DE3801574C2 (de) 1988-01-20 1998-05-07 Wilfried Ensinger Verfahren und Vorrichtung zum Extrudieren, insbesondere Strangpressen, von heißen Kunststoffschmelzen
NL8800904A (nl) 1988-04-08 1989-11-01 Reko Bv Werkwijze voor het verwerken van een thermoplastisch polycondensatie-polymeer.
US4919872A (en) 1988-04-25 1990-04-24 E. I. Du Pont De Nemours And Company Process for metering color concentrates to thermoplastic polymer melts
DE4001986C1 (fr) 1990-01-24 1991-09-19 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De
US5306803A (en) 1990-06-02 1994-04-26 Bayer Aktiengesellschaft Process for cleaning thermoplasts by friction compacting
DE4034459A1 (de) 1990-10-30 1992-05-07 Hoechst Ag Verfahren zur aufbereitung thermisch beanspruchter polyester-abfaelle
US5143308A (en) 1991-03-26 1992-09-01 Plastic Recycling Alliance, Lp Recycling system
US5224383A (en) 1991-06-14 1993-07-06 Industrial Sensors, Inc. Melt pressure measurement and the like
JPH05222178A (ja) 1992-02-14 1993-08-31 Fuji Photo Film Co Ltd 反応制御方法
ZA933072B (en) 1992-05-01 1994-10-30 Hoechst Celanese Corp A tufted fabric.
DE4220473A1 (de) 1992-06-23 1994-01-05 Zimmer Ag Verfahren zur Herstellung von Polybutylenterephthalat aus PET-Abfall
US5549957A (en) 1992-07-08 1996-08-27 Negola; Edward J. Bulked continuous filament carpet yarn
ATE166950T1 (de) 1992-10-28 1998-06-15 Maag Pump Systems Ag Verfahren und stufe zur behandlung einer thermoplastschmelze mit einer zahnradpumpe
DE4312249C1 (de) 1993-04-15 1994-03-17 Inventa Ag Planetengetriebe für einen Mehrschneckenextruder
AT401738B (de) 1993-05-07 1996-11-25 Blach Josef Alois Vorrichtung zum kontinuierlichen bearbeiten von viskosen flüssigkeiten und massen
US5424013A (en) 1993-08-09 1995-06-13 Lieberman; Mark Thermoplastic closed loop recycling process
DE4328013C1 (de) 1993-08-20 1994-09-15 Krupp Ag Hoesch Krupp Verfahren zum Trennen eines aus mehreren Komponenten bestehenden Stoffgemisches in einem Extruder
CH687047A5 (de) 1993-11-30 1996-08-30 Hler Ag B Verfahren zur Regelung einer Arbeitsmaschine
US5427881A (en) 1994-02-02 1995-06-27 Xerox Corporation Crosslinked polyesterimide toner compositions
US5503788A (en) 1994-07-12 1996-04-02 Lazareck; Jack Automobile shredder residue-synthetic plastic material composite, and method for preparing the same
US6060677A (en) 1994-08-19 2000-05-09 Tiedemanns-Jon H. Andresen Ans Determination of characteristics of material
US5613285A (en) 1994-11-01 1997-03-25 Basf Corporation Process for making multicolor multifilament non commingled yarn
US5497562A (en) 1995-03-03 1996-03-12 Hosokawa Bepex Corporation Radiant heater system for solid phase crystallization and polymerization of polymers
US6113825A (en) 1995-05-08 2000-09-05 Shell Oil Company Process for preparing poly(trimethylene terephthalate) carpet yarn
US5554657A (en) 1995-05-08 1996-09-10 Shell Oil Company Process for recycling mixed polymer containing polyethylene terephthalate
GB9523780D0 (en) 1995-11-21 1996-01-24 Amtico Co Floor coverings
TW329401B (en) 1995-12-13 1998-04-11 Ain Kotei Gigyutsu Kk Method of recycling and granulating a waste container made of resin materials
US5623012A (en) 1995-12-19 1997-04-22 Shell Oil Company Pelletizing aid for polymers
EP0788867B1 (fr) 1996-02-06 1999-07-07 Josef A. Blach Dispositif de traitement continue des matières liquides
US5749649A (en) 1996-03-05 1998-05-12 Dynamic Mixers Inc. Satellite extruder arrangement for polymer melt mixing with a dynamic mixer
US5715584A (en) 1996-03-25 1998-02-10 Basf Corporation Continuous filament yarn with pixel color effect
DE19632375A1 (de) 1996-08-10 1998-02-19 Pfeiffer Vacuum Gmbh Gasreibungspumpe
US5958548A (en) 1996-08-14 1999-09-28 Nyltec Inc. Carpet tufted with bulked continuous filament carpet face yarns utilizing new sheathed core filaments and related selection techniques to produce cost savings
US5945215A (en) 1996-09-16 1999-08-31 Bp Amoco Corporation Propylene polymer fibers and yarns
DK0855954T3 (da) 1996-10-21 2000-05-22 Gefinex Jackon Gmbh Plasttekstruder
US5804115A (en) 1996-12-13 1998-09-08 Basf Corporation One step, ready-to-tuft, mock space-dyed multifilament yarn
US5886058A (en) 1997-02-03 1999-03-23 Illinois Tool Works Inc. Inline solid state polymerization of pet flakes for manufacturing plastic strap
DE19722278A1 (de) 1997-05-28 1998-12-03 Zimmer Ag Entgasung hydrolyseempfindlicher Polymere
JPH11172082A (ja) 1997-11-10 1999-06-29 Teijin Ltd 改質ポリエステルの連続製造方法
US5932691A (en) 1997-12-05 1999-08-03 Union Carbide Chemicals & Plastics Technology Corporation Process for devolatilization
MY119540A (en) 1998-04-24 2005-06-30 Ciba Spacialty Chemicals Holding Inc Increasing the molecular weight of polyesters
EP1117521B1 (fr) 1998-10-02 2003-12-17 E.I. Du Pont De Nemours And Company Procede pour la commande de procedes d'extrusion
DE19854689A1 (de) 1998-11-26 2000-06-08 Buehler Ag Verfahren und Vorrichtung zur Aufbereitung eines thermoplastischen Polykondensats
EP1156914B1 (fr) 1999-02-04 2007-03-14 Bühler Ag Procede de valorisation de matiere plastique
JP3795255B2 (ja) 1999-05-21 2006-07-12 旭貿易株式会社 紡糸原料着色装置
WO2000073370A1 (fr) 1999-05-28 2000-12-07 Hi-Tech Environmental Products, Llc. Compositions synthetiques thermoplastiques et articles obtenus a partir de celles-ci
US6394644B1 (en) 1999-06-21 2002-05-28 Koch-Glitsch, Inc. Stacked static mixing elements
DE19936827A1 (de) 1999-08-05 2001-03-08 Hosokawa Bepex Gmbh Vorrichtung zum Extrudieren plastischer Massen
AUPQ294699A0 (en) 1999-09-17 1999-10-14 Visy Plastics Pty Ltd Process for preparing food contact grade polyethylene terephthalate resin from waste pet containers
AT411161B (de) 1999-09-22 2003-10-27 Bacher Helmut Verfahren und vorrichtung zum recyclen von pet-gut
US6620354B1 (en) 1999-11-29 2003-09-16 The Conair Group, Inc. Apparatus and method for producing and cutting extruded material using temperature feedback
US6866171B2 (en) 2000-01-10 2005-03-15 Sulzer Chemtech Ag Method for introducing additives
US6492485B1 (en) 2000-04-11 2002-12-10 General Electric Company Redistributed polycarbonate resin
AU2001273255A1 (en) 2000-07-13 2002-01-30 Prisma Fibers, Inc. Apparent twist yarn system and apparatus and method for producing same
AU2001267817A1 (en) 2000-11-01 2002-05-21 Yash Vasant Joshi Method for direct recycling of plastic wastes
US6780941B2 (en) 2000-12-22 2004-08-24 Prisma Fibers, Inc. Process for preparing polymeric fibers based on blends of at least two polymers
GB0102658D0 (en) 2001-02-02 2001-03-21 Ineos Acrylics Uk Ltd Polymeric Fibres
DE10122462C1 (de) 2001-05-09 2002-10-10 3 & Extruder Gmbh Vorrichtung mit Schnecken zum Homogenisieren und/oder Dispergieren eines viskosen Stoffes und eines Feststoffes und/oder eines anderen Stoffes unterschiedlicher Viskosität
DE10143570A1 (de) 2001-09-05 2003-03-20 Buehler Ag Entgasung von fließfähigen Massen in einem Mehrwellenextruder
DE10150627A1 (de) 2001-10-12 2003-05-15 Gneuss Kunststofftechnik Gmbh Extruder zur Gewinnung von Kunststoff-Schmelzen
AT410942B (de) 2001-10-29 2003-08-25 Fellinger Markus Verfahren und vorrichtung zur erhöhung der grenzviskosität von polyester
US6773718B2 (en) 2001-11-15 2004-08-10 3M Innovative Properties Company Oil absorbent wipe with rapid visual indication
US20050019515A1 (en) 2001-11-23 2005-01-27 Shahram Mihan Plastics pipes of polyolefins
DE10204954A1 (de) 2001-12-11 2003-06-18 Buehler Ag Verfahren und Vorrichtung zum Herstellen kugelförmiger Partikel aus einer Schmelze aus Kunststoff
ES2286405T3 (es) 2002-02-01 2007-12-01 Basf Corporation Extendedores de cadena oligomeros para el procesamiento, procesamiento y reciclado de polimeros de condensacion, sintesis, composiciones y aplicaciones.
US20040053047A1 (en) 2002-09-17 2004-03-18 Jackson Craig A. Colorable filaments from polymer blend
EP1400332B1 (fr) 2002-09-18 2010-11-17 Amcor Limited Procédé et dispositif de dosage d'un additif à l'entrée d'une presse à injecter, et presse à injecter équipée d'un dispositif de dosage
GB2394225A (en) 2002-10-16 2004-04-21 Colormatrix Europe Ltd Polymer colourant additive composition
US20040155374A1 (en) 2002-12-18 2004-08-12 Peter Hutchinson Method and apparatus for recycling R-PET and product produced thereby
US20040140248A1 (en) 2003-01-17 2004-07-22 Dauzvardis Matthew J. Plastic flake processing
JP2006514715A (ja) 2003-01-29 2006-05-11 ザウラー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 色付繊維を紡糸する装置および方法
US7320589B2 (en) 2003-02-26 2008-01-22 Mold-Masters (2007) Limited Hot runner manifold plug for rheological balance in hot runner injection molding
GB0305738D0 (en) 2003-03-13 2003-04-16 Next Tec Ltd Recycling of plastics material
DE10315200B4 (de) 2003-04-03 2005-03-17 3+Extruder Gmbh Getriebe zum Antrieb eines Mehrwellenextruders
US7198400B2 (en) 2003-05-03 2007-04-03 Husky Injection Molding Systems Ltd. Static mixer and a method of manufacture thereof
US7354988B2 (en) 2003-08-12 2008-04-08 General Electric Company Electrically conductive compositions and method of manufacture thereof
US7399518B2 (en) 2003-08-19 2008-07-15 Toyo Boseki Kabushiki Kaisha Polyester film
DE10341399A1 (de) 2003-09-05 2005-04-07 Nordson Corporation, Westlake Verfahren zur Beschichtung einer Teppichrohware mittels einer Breitschlitzdüse
US7204945B2 (en) 2003-09-16 2007-04-17 Eastman Chemical Company Direct coupling of melt polymerization and solid state processing for PET
US20070052131A1 (en) 2003-09-22 2007-03-08 Nakamoto Packs Co., Ltd. Method of producing a weld-cut sealing/heat-shrinkable packaging film formed of a polyethylene terephthalate-based block copolymer polyester
EP1671999B1 (fr) 2003-10-10 2016-12-07 Asahi Kasei Kabushiki Kaisha Procede de production de terephtalate de polyalkylene, procede de production d'un moulage en terephthalate de polyalkylene, et moulage correspondant
CA2482056A1 (fr) 2003-10-10 2005-04-10 Eastman Chemical Company Cristallisation thermique d'un polyester fondu dans un fluide
DE10348425B4 (de) 2003-10-14 2008-07-24 Bühler AG Verfahren zur Herstellung eines Profils aus einem Polykondensat
US7647886B2 (en) * 2003-10-15 2010-01-19 Micron Technology, Inc. Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers
DE102004020839A1 (de) 2004-04-28 2005-11-24 Henkel Kgaa Verfahren zur Herstellung von Wasch- oder Reinigungsmittel
ITFI20040127A1 (it) 2004-06-09 2004-09-09 Franco Fini Impianto e procedimento per la produzione di sostanze combustibili mediante depolimerizzazione di prodotti in gomma
CA2570810A1 (fr) 2004-06-15 2005-12-29 Close The Loop Technologies Pty Ltd Methode de recyclage de flux melanges de dechets electroniques
DE102004031794A1 (de) 2004-07-01 2006-01-26 Mitsubishi Polyester Film Gmbh Verfahren zur Herstellung von biaxial orientierten Folien auf Basis von kristallisierbaren Thermoplasten unter Verwendung von aufkondensiertem Regenerat
CN101115605B (zh) 2004-10-11 2010-12-15 兰科瑟斯有限公司 生产接枝聚合物的连续挤出方法
AT501154B8 (de) 2005-01-28 2007-02-15 Erema Vorrichtung zur befüllung eines extruders mit vorbehandeltem thermoplastischen kunststoffmaterial
DE102005007102B4 (de) 2005-02-16 2010-02-11 Gala Industries, Inc. Anfahrventil
US20070000947A1 (en) 2005-07-01 2007-01-04 Lewis Russell H Apparatus and methods for dispensing fluidic or viscous materials
DE102005034980A1 (de) 2005-07-22 2007-01-25 Basf Ag Fasern und Flüssigkeitsbehälter aus PET
JP2007186830A (ja) 2006-01-16 2007-07-26 Eiheiji Sizing Kk ポリエステル繊維
US7935737B2 (en) 2006-01-27 2011-05-03 Sabic Innovative Plastics Ip B.V. Articles derived from compositions containing modified polybutylene terephthalate (PBT) random copolymers derived from polyethylene terephthalate (PET)
JP5079239B2 (ja) 2006-02-02 2012-11-21 株式会社リコー 再生pet材料を用いたトナーボトルの成形方法
DE102006033089A1 (de) 2006-03-24 2007-10-04 Entex Rust & Mitschke Gmbh Verfahren zur Verarbeitung von zu entgasenden Produkten
RU2008142748A (ru) 2006-03-29 2010-05-10 Нестле Уотерс Менеджмент Энд Текнолоджи (Fr) Способ прямого изготовления изделий из полиэфира для целей упаковки и изделия, полученные им
FR2899591B1 (fr) 2006-04-10 2008-05-23 Rhodia Recherches & Tech Procede de preparation de particules a base de polymere thermoplastique et poudre ainsi obtenue
US7980834B2 (en) 2006-06-16 2011-07-19 Maguire Stephen B Liquid color injection pressure booster pump and pumping methods
GB0615765D0 (en) 2006-08-09 2006-09-20 Waste And Resources Action Pro Recycling process for polyethylene terephthalate (PET)
WO2008027753A1 (fr) 2006-08-28 2008-03-06 Invista Technologies S.Ar.L. Récipients opaques contenant un polyester recyclé coloré
ITMI20061694A1 (it) 2006-09-06 2008-03-07 Techint Spa Estrusore a due viti convergenti per l'estrusione di plastomeri,elastomeri e liquidi viscosi in genere
DE102006055974A1 (de) 2006-11-24 2008-05-29 Henkel Kgaa Reaktionsklebstoff
DE102007027543A1 (de) 2006-11-27 2008-05-29 Bühler AG Stranggranulationsverfahren und -vorrichtung sowie daraus hergestellte Granulate
US20080139700A1 (en) 2006-12-11 2008-06-12 Roden Don R Methods for devolatilizing resin solutions and resins produced thereby
US9809907B2 (en) 2007-01-02 2017-11-07 Mohawk Carpet, Llc Carpet fiber polymeric blend
WO2008083820A1 (fr) 2007-01-10 2008-07-17 Balta Industries Nv Production de fils souples
US20080292831A1 (en) 2007-03-06 2008-11-27 Futuris Automotive Interiors (Us), Inc. Tufted pet fiber for automotive carpet applications
EP1970188B1 (fr) 2007-03-12 2011-12-28 Airsec S.A.S. Procédé et appareil pour mélanger et mouler par injection des polymères remplis de desséchant
EP2025494A1 (fr) 2007-08-10 2009-02-18 Motech GmbH Technology & Systems Procédé et dispositif de fabrication d'une bande d'emballage
AT505595B1 (de) 2007-08-14 2009-04-15 Erema Verfahren und vorrichtung zur behandlung von kunststoffmaterial
US8017662B2 (en) 2007-09-20 2011-09-13 Universal Fibers, Inc. Method of separation and cleaning of post consumer carpet face yarn from carpet backing and yarn product produced therefrom
DE102008018686A1 (de) 2008-04-13 2009-10-15 Entex Rust & Mitschke Gmbh Extruder mit Materialeintrag und Entgasung
ES2718245T3 (es) 2008-04-18 2019-06-28 Pepsico Inc Composiciones de poliéster y procedimiento para preparar artículos por moldeo por extrusión y soplado
US7928150B2 (en) 2008-05-06 2011-04-19 Sabic Innovative Plastics Ip B.V. Process for the manufacture of lonomeric polybutylene terephthalate from polyethylene terephthalate, and compositions and articles thereof
WO2010021210A1 (fr) 2008-08-18 2010-02-25 シャープ株式会社 Substrat à matrice active, panneau à cristaux liquides, dispositif d'affichage à cristaux liquides, unité d'affichage à cristaux liquides, téléviseur
CA2681288C (fr) 2008-09-30 2015-03-17 Shaw Industries Group, Inc. Compositions de poly(ethylene terephtalate) recycle, fibres et articles produits par ces dernieres et methodes de production connexes
US9168718B2 (en) 2009-04-21 2015-10-27 Exxonmobil Chemical Patents Inc. Method for producing temperature resistant nonwovens
MX2009010614A (es) 2008-09-30 2010-04-30 Shaw Ind Group Inc Composiciones de tereftalato de polietileno reciclado, fibras y articulos producidos a partir de las mismas y metodos para producirlas.
US20100102475A1 (en) 2008-10-28 2010-04-29 Yongsoon Moon Expanded polystyrene recycling and heat extruding system
EP2432925B1 (fr) 2009-05-18 2014-03-12 Autoneum Management AG Tapis toufté pour application automobile
US8398752B2 (en) 2009-08-04 2013-03-19 Jerry M. Brownstein High efficiency low pressure drop synthetic fiber based air filter made completely from post consumer waste materials
WO2011088437A2 (fr) 2010-01-18 2011-07-21 Invista Technologies S.Ar.L. Procédés pour nettoyer et recycler une fibre de moquette et thermoplastiques fabriqués à l'aide desdits procédés
US20110177283A1 (en) 2010-01-18 2011-07-21 Futuris Automotive Interiors (Us), Inc. PET Carpet With Additive
DE102010007163A1 (de) 2010-02-08 2011-08-11 Automatik Plastics Machinery GmbH, 63762 Verfahren zur Herstellung von Granulatkörnern von Polyethylenterephthalat
JP5832733B2 (ja) 2010-09-17 2015-12-16 富士フイルム株式会社 ポリエステルフィルムの製造方法
CN201872322U (zh) 2010-11-26 2011-06-22 马宏 供橡塑混炼挤出的抽真空装置
AT511574B1 (de) 2011-03-10 2017-06-15 Next Generation Recyclingmaschinen Gmbh Verfahren und vorrichtung zum entfernen von verunreinigungen aus einer kunststoffschmelze
CN202072825U (zh) 2011-03-24 2011-12-14 浙江义乌金汇化纤有限公司 涤纶bcf连续纺丝机
US20120279023A1 (en) 2011-05-06 2012-11-08 Avery Dennison Corporation Plastic Fastening Device Comprising a Recycled Thermoplastic Resin
US20130133697A1 (en) * 2011-06-29 2013-05-30 Paul A. STOCKMAN Prevention of post-pecvd vacuum and abatement system fouling using a fluorine containing cleaning gas chamber
CN102990903A (zh) * 2011-09-09 2013-03-27 江苏南方涂装环保股份有限公司 用于双螺杆挤出机的真空装置
DE102011082769A1 (de) * 2011-09-15 2013-03-21 Lindauer Dornier Gesellschaft Mit Beschränkter Haftung Verfahren und Vorrichtung zum Entgasen einer PET - Kunststoffschmelze in einer Extrusionsanlage
US9149955B2 (en) 2011-12-29 2015-10-06 Toray Plastics (America), Inc. Process for recycling immiscibles in PET film
US9630354B2 (en) 2012-05-31 2017-04-25 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
US10532495B2 (en) 2012-05-31 2020-01-14 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from recycled PET
US10695953B2 (en) 2012-05-31 2020-06-30 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous carpet filament
US8597553B1 (en) 2012-05-31 2013-12-03 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
US9636860B2 (en) 2012-05-31 2017-05-02 Mohawk Industries, Inc. Method of manufacturing bulked continuous filament
AU2014215998B2 (en) 2012-05-31 2016-06-30 Aladdin Manufacturing Corporation System and methods for manufacturing bulked continuous filament
US10487422B2 (en) 2012-05-31 2019-11-26 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from colored recycled pet
US9636845B2 (en) 2012-05-31 2017-05-02 Mohawk Industries, Inc. Method of manufacturing pet nurdles
US8795811B2 (en) 2012-06-29 2014-08-05 Toray Plastics (America), Inc. Recycled crosslinked vinyl-alcohol polymer coated films and methods to manufacture the same
AT513443B1 (de) 2012-09-12 2016-08-15 Next Generation Recyclingmaschinen Gmbh Verfahren und Vorrichtung zum Erhöhen der Grenzviskosität einer Polykondensatschmelze
CN202986059U (zh) * 2012-12-14 2013-06-12 上海洛兴包装材料有限公司 一种用于聚苯乙烯片材的挤出机低聚物废气处理装置
DE102013003380B3 (de) 2013-03-01 2014-04-24 Gneuss Gmbh Extruder
CN204265905U (zh) 2014-11-11 2015-04-15 江苏江南高纤股份有限公司 防伪功能聚酯pet超短纤维制备系统
EP3221107B8 (fr) 2014-11-18 2020-12-09 Aladdin Manufactuing Corporation Procédé de fabrication de filaments continus gonflants
AU2015350080B2 (en) * 2014-11-18 2017-11-02 Aladdin Manufacturing Corporation Systems and methods for manufacturing bulked continuous filament
WO2016081508A1 (fr) 2014-11-18 2016-05-26 Mohawk Industries, Inc. Systèmes et procédés de fabrication de filament continu en vrac
MX371055B (es) 2014-11-18 2020-01-14 Aladdin Mfg Corp Sistemas y métodos para fabricar filamento continuo a granel.
US10471697B2 (en) 2015-11-13 2019-11-12 R3 Printing, Inc. System and method for on-demand colorization for extrusion-based additive construction
DE102015226043B4 (de) 2015-12-18 2019-12-24 Gneuss Gmbh Verfahren zur Einstellung vorgebbarer Viskositätswerte beim Recyceln von Polyesterabfällen
US10767281B2 (en) 2016-03-25 2020-09-08 Aladdin Manufacturing Corporation Polyester fiber blends and methods of manufacturing same
US20180127893A1 (en) 2016-11-10 2018-05-10 Mohawk Industries, Inc. Polyethylene terephthalate coloring systems and related methods
US10751915B2 (en) 2016-11-10 2020-08-25 Aladdin Manufacturing Corporation Polyethylene terephthalate coloring systems and methods
EP4219114B1 (fr) 2017-01-30 2024-10-30 Aladdin Manufacturing Corporation Systèmes et procédés de fabrication d'articles à partir de pet recyclé coloré
AU2018227587A1 (en) 2017-03-03 2019-08-22 Aladdin Manufacturing Corporation Method of manufacturing bulked continuous carpet filament
DE102017111275B4 (de) 2017-05-23 2020-02-13 Gneuss Gmbh Extruderschnecke für einen Mehrschneckenextruder für die Kunststoffextrusion und Mehrschneckenextruder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150069655A1 (en) * 2012-05-31 2015-03-12 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
US20150343672A1 (en) * 2013-01-10 2015-12-03 Brückner Maschinenbau Gmbh & Co.Kg Device for degassing polymer melts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230278261A1 (en) * 2020-11-13 2023-09-07 Gneuss Gmbh Multi-shaft preparation unit for plastic melts
US20220250301A1 (en) * 2021-02-10 2022-08-11 Nxp Usa, Inc. Conduit inserts for encapsulant compound formulation kneading and encapsulation back-end assembly processes
US11787097B2 (en) * 2021-02-10 2023-10-17 Nxp Usa, Inc. Conduit inserts for encapsulant compound formulation kneading and encapsulation back-end assembly processes
US12415305B2 (en) 2021-02-10 2025-09-16 Nxp Usa, Inc. Conduit inserts for encapsulant compound formulation kneading and encapsulation back-end assembly processes

Also Published As

Publication number Publication date
US20200240042A1 (en) 2020-07-30
WO2018161021A1 (fr) 2018-09-07
EA201992067A1 (ru) 2020-03-27
AU2018227587A1 (en) 2019-08-22
EP3589473A1 (fr) 2020-01-08
US11279071B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
US12070886B2 (en) Systems and methods for manufacturing bulked continuous filament
US11279071B2 (en) Method of manufacturing bulked continuous carpet filament
AU2014215998B2 (en) System and methods for manufacturing bulked continuous filament
AU2016234917B2 (en) System and methods for manufacturing bulked continuous filament

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOHAWK INDUSTRIES, INC., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CLARK, THOMAS R.;REEL/FRAME:045094/0673

Effective date: 20180227

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: ALADDIN MANUFACTURING CORPORATION, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOHAWK INDUSTRIES, INC.;REEL/FRAME:048779/0144

Effective date: 20190329

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION