US20180226873A1 - Torque amplifying magnetic drive - Google Patents
Torque amplifying magnetic drive Download PDFInfo
- Publication number
- US20180226873A1 US20180226873A1 US15/428,514 US201715428514A US2018226873A1 US 20180226873 A1 US20180226873 A1 US 20180226873A1 US 201715428514 A US201715428514 A US 201715428514A US 2018226873 A1 US2018226873 A1 US 2018226873A1
- Authority
- US
- United States
- Prior art keywords
- magnetic
- flywheel
- leg
- magnet
- magnets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000033001 locomotion Effects 0.000 claims description 74
- 230000007246 mechanism Effects 0.000 claims description 67
- 230000003993 interaction Effects 0.000 claims description 8
- 230000000712 assembly Effects 0.000 description 17
- 238000000429 assembly Methods 0.000 description 17
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K49/00—Dynamo-electric clutches; Dynamo-electric brakes
- H02K49/10—Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
- H02K49/102—Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K51/00—Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
Definitions
- the present inventions relate to torque amplifying drive mechanisms, such as magnetic, torque amplifying drives.
- gear drives and belt drives can be designed to provide gear reductions which amplify input torque to a higher output torque, at a lower rotational speed.
- flywheel and collar are closely spaced and rotate together at the same rotational speed with no torque amplification.
- a torque amplifying drive can be constructed with a flywheel driven by a reciprocating magnet mount, which reciprocates in a path adjacent to the flywheel, without any direct contact. Additionally, such a drive can be designed to provide an effective gear reduction between the reciprocation of the magnet mount and the rotation of the flywheel.
- a torque amplifying magnetic drive can compromise a frame and a least first and second magnetic leg members supported by the frame with the reciprocating connector mechanism configured to guide the first and second magnetic leg members through a reciprocating movement, the first and second magnetic leg members comprising a first end.
- First and second leg magnets can be disposed at the first end of the first and second magnetic leg members, respectively.
- a magnetic flywheel can be supported by a rotational shaft.
- the magnetic flywheel can comprise an outer surface and at least first and second flywheel magnets disposed of the outer surface.
- the first and second flywheel magnets can be outlined and just opposed with the first and second leg magnets, respectively, during rotation of the magnetic flywheel.
- the first flywheel magnet can have an opposite polarity to a polarity of the first leg magnet
- the second flywheel magnet can have an opposite polarity to a polarity of the second leg magnet.
- a drive mechanism can be configured to drive the first and second magnetic legs through a reciprocating movement.
- the first and second flywheel magnets can be spaced sufficiently close to the first and second leg magnets, respectively, so as to rotate the magnetic flywheel during reciprocation of the first and second magnetic leg members, thereby transferring torque from the first and second magnetic leg members to the magnetic flywheel.
- a torque amplifying magnetic drive comprises a frame, at least first and second magnetic leg members, supported by the frame with a reciprocating connector mechanism configured to guide the first and second magnetic leg members through a reciprocating movement, the first and second magnetic leg members comprising a first end, wherein the reciprocating connector mechanism guides the first and second magnetic leg members through a reciprocating movement comprising an elliptical path, first and second leg magnets disposed at the first end of the first and second magnetic leg members, respectively.
- the first magnetic leg member comprises a pivot, pivotally mounted to a pivot shaft and a telescoping portion configured to move between retracted and extended states, the first leg magnet being disposed closer to the pivot portion when the telescoping portion is in the retracted state and the first leg magnet being disposed further from the pivot when the telescoping portion is in the extended state.
- a magnetic flywheel supported by a rotational shaft comprising an outer surface and at least a first plurality and a second plurality of flywheel magnets disposed at the outer surface, the first and second pluralities of flywheel magnets being aligned and sequentially juxtaposed with the first and second leg magnets, respectively, during rotation of the magnetic flywheel, the first plurality of flywheel magnets having an opposite polarity to a polarity of the first leg magnet, the second plurality of flywheel magnets having an opposite polarity to a polarity of the second leg magnet, wherein the first and second pluralities of flywheel magnets are disposed adjacent to one another, along an axial direction of the flywheel.
- a drive mechanism configured to drive the first and second magnetic legs through the reciprocating movement, wherein the reciprocating connector mechanism guides the first magnetic leg member through a first portion of the reciprocating movement and a second portion of the reciprocating movement, the first portion of the reciprocating movement comprises a first position of the first magnetic leg member in which the first leg magnet is spaced from an outer surface of the magnetic flywheel at a first spacing, a movement from the first position to a second position at which the first leg magnet is at a minimum spacing from the outer surface of the magnetic flywheel and a third position in which the first leg magnet is spaced from the first flywheel magnet at a third spacing from the outer surface of the magnetic flywheel, the first and third spacings being larger than the minimum spacing.
- the first and second pluralities of flywheel magnets are sequentially spaced sufficiently close to the first and second leg magnets, respectively, such that the magnetic flywheel is rotated during reciprocation of the first and second magnetic leg members, which thereby transfer torque from the first and second magnetic leg members to the magnetic flywheel by magnetic attraction and repulsion therebetween.
- the telescoping portion comprises a first telescoping portion fixed to the pivot and a second telescoping portion engaged with the drive mechanism so as to move the second telescoping portion through the reciprocating movement.
- the drive mechanism comprises a crankshaft supported by the frame, the crankshaft including a throw, the second telescoping portion engaged with the throw of the crankshaft.
- the elliptical path comprises a major axis extending parallel to a tangent of the outer surface of the magnetic flywheel.
- the elliptical path of the first leg magnet defines a pinch point gap between an outer surface of the first leg magnet and the outer surface of the magnetic flywheel, the elliptical path comprising a major axis extending generally parallel to a tangent of the outer surface of the magnetic flywheel at the pinch point gap.
- the first leg magnet comprises a North Pole and a South Pole
- a secondary leg magnet is disposed at the first end of the first magnetic leg
- the secondary leg magnet comprises a North Pole and a South Pole
- the South Pole of the first leg magnet is disposed at the outer surface of the first end and the North Pole of the first leg magnet is disposed inwardly from the outer surface of the first end
- the North Pole of the secondary magnet is disposed at the outer surface of the first end.
- the first leg magnet is larger than the secondary leg magnet.
- the first leg magnet is disposed in a leading position of the reciprocating movement and the secondary magnet is disposed in a trailing position relative to the reciprocating motion
- the first and second magnetic leg members move in a walking movement and thereby transfer torque to the flywheel through interaction of the first and second leg magnets and first and second flywheel magnets, respectively.
- a torque amplifying magnetic drive comprises a frame, at least first and second magnetic leg members, supported by the frame with a reciprocating connector mechanism configured to guide the first and second magnetic leg members through a reciprocating movement, the first and second magnetic leg members comprising a first end, first and second leg magnets disposed at the first end of the first and second magnetic leg members, respectively, a magnetic flywheel supported by a rotational shaft, the magnetic flywheel comprising an outer surface and at least first and second flywheel magnets disposed at the outer surface, the first and second flywheel magnets being aligned and juxtaposed with the first and second leg magnets, respectively, during rotation of the magnetic flywheel, the first flywheel magnet having an opposite polarity to a polarity of the first leg magnet, the second flywheel magnet having an opposite polarity to a polarity of the second leg magnet.
- a drive mechanism can be configured to drive the first and second magnetic legs through the reciprocating movement, wherein the first and second flywheel magnets are spaced sufficiently close to the first and second leg magnets, respectively, so as to rotate the magnetic flywheel during reciprocation of the first and second magnetic leg members, thereby transferring torque from the first and second magnetic leg members to the magnetic flywheel.
- the reciprocating connector mechanism guides the first and second magnetic leg members through an elliptical path.
- the magnetic flywheel comprises a first plurality of flywheel magnets aligned circumferentially with the first flywheel magnet and a second plurality of flywheel magnets aligned circumferentially with the second flywheel magnet.
- the first magnetic leg member comprises a pivot, pivotally mounted to a pivot shaft and a telescoping portion configured to move between retracted and extended states, in which the first leg magnet is disposed closer to the pivot portion when the telescoping portion is in the retracted state and the first leg magnet is disposed further from the pivot when the telescoping portion is in the extended state.
- the telescoping portion comprises a first telescoping portion fixed to the pivot and a second telescoping portion engaged with the drive mechanism so as to move the second telescoping portion through the reciprocating movement.
- the first leg magnet comprises a North Pole and a South Pole
- a secondary leg magnet is disposed at the first end of the first magnetic leg
- the secondary leg magnet comprises a North Pole and a South Pole
- the South Pole of the first leg magnet is disposed at the outer surface of the first end and the North Pole of the first leg magnet is disposed inwardly from the outer surface of the first end, wherein the North Pole of the secondary magnet is disposed at the outer surface of the first end.
- the first leg magnet is larger than the secondary leg magnet.
- the reciprocating connector mechanism guides the first magnetic leg member through a first portion of the reciprocating movement and a second portion of the reciprocating movement
- the first portion of the reciprocating movement comprises a first position of the first magnetic leg member in which the first leg magnet is spaced from the first flywheel magnetic at a first spacing, a movement from the first position to a second position at which the first leg magnet is at a minimum spacing from the first flywheel magnet and a third position in which the first leg magnet is spaced from the first flywheel magnet at a third spacing, the first and third spacing being larger than the minimum spacing.
- the first and second magnetic leg members move in a walking movement and thereby transfer torque to the magnetic flywheel through interaction of the first and second leg magnets and the first and second flywheel magnets, respectively.
- the first and second portions of the reciprocal movement form an elliptical path.
- a torque amplifying magnetic drive comprises a frame, at least a first magnetic leg member supported by the frame with a pivot mechanism and an linear extension guide, the pivot mechanism configured to allow the first magnetic leg member to pivot about a pivot point fixed relative to the frame, the linear extension guide configured to allow the first magnetic leg member to move between retracted and extended positions along a longitudinal direction of the magnetic leg member, a first leg magnet disposed at an end of the first magnetic leg member; wherein the first leg magnet is disposed closer to the pivot point when the first magnetic leg member is in the retracted state and wherein the first leg magnet is disposed further from the pivot point when the first magnetic leg member is in the extended state, and a magnetic flywheel supported by a rotational shaft, the magnetic flywheel comprising an outer surface and at least a first plurality of flywheel magnets disposed at the outer surface.
- a drive mechanism is configured to drive the first magnetic leg member through the a reciprocating movement comprising pivoting about the pivot point, extension, and retraction along the longitudinal direction of the magnetic leg member, wherein the first plurality of flywheel magnets are sequentially spaced sufficiently close to the first leg magnet during rotation of the magnetic flywheel such that torque is transferred from the first magnetic leg member to the magnetic flywheel and thereby the magnetic flywheel is rotated during reciprocation of the first magnetic leg member.
- the first leg magnet has a first polarity at the lower end of the first magnetic leg member and the first plurality of flywheel magnets have a second polarity at the outer surface of the magnetic flywheel, the first polarity being opposite to the second polarity.
- Some variations of the embodiments disclosed herein additionally comprise a second magnetic leg member having a second leg magnet and mounted to the frame with a second pivot aligned with the first pivot point.
- Some variations of the embodiments disclosed herein additionally comprise a second plurality of flywheel magnets disposed at the outer surface.
- the second plurality of flywheel magnets have a third polarity at the outer surface of the flywheel, the third polarity being opposite to the second polarity.
- a torque amplifying magnetic drive comprises a frame, at least a first magnetic leg member supported by the frame, a first leg magnet disposed at an end of the first magnetic leg member, a magnetic flywheel supported by a rotational shaft, the magnetic flywheel comprising an outer surface and at least a first plurality of flywheel magnets disposed at the outer surface, and a drive mechanism configured to drive the first magnetic leg member through the a reciprocating movement adjacent to the outer surface of the magnetic flywheel.
- the first plurality of flywheel magnets are sequentially spaced sufficiently close to the first leg magnet during rotation of the magnetic flywheel such that torque is transferred from the first magnetic leg member to the magnetic flywheel and thereby the magnetic flywheel is rotated during reciprocation of the first magnetic leg member.
- FIG. 1 is a schematic diagram illustrating relative movements of components of an embodiment of a magnetic drive.
- FIG. 2 is a schematic diagram showing an optional embodiment of components of the magnetic drive and illustrating relative movements of components thereof.
- FIG. 3 is a perspective view of an embodiment of crankshaft that can be used in conjunction with the magnetic drive.
- FIG. 4 is a schematic diagram illustrating movements of and the interaction of certain components of the magnetic drive, for producing an elliptical reciprocating movement.
- FIG. 5 is a side elevational view of an embodiment of the magnetic drive of FIGS. 1-4 including the magnetic flywheel assembly having two adjacent flywheels and a pair of reciprocating magnetic leg members.
- FIG. 6 is a further side elevational end partially exploded view of the embodiment FIG. 5 .
- FIG. 7 is a front elevational view of a flywheel assembly of the embodiment of FIG. 5 .
- FIG. 8 is a side elevational view of the flywheel assembly of FIG. 2 .
- FIG. 9 is a front elevational view of a magnetic leg member.
- FIG. 10 is an enlarged view of the magnetic leg assembly, including two of the magnetic leg members of FIG. 9 .
- FIG. 11 includes side elevational and front elevational views of a part of a crankshaft of the magnetic leg member assembly.
- FIG. 12A is a partial front elevational view of a magnetic leg member interacting with a magnetic flywheel, in a first position
- FIG. 12B is a further view of the magnetic leg member and magnetic flywheel, in a position in which the magnetic leg member is closest to the flywheel defining a pinch point gap.
- FIG. 12C is a further partial front elevational view illustrating a further movement of the magnetic leg member and flywheel.
- FIG. 12D is a further front elevational view of the magnetic leg member in a position in which the magnetic leg is furthest from the flywheel, prior to returning to the position of FIG. 12A .
- FIG. 13A is a partial front elevational view of a modified magnetic leg member and magnetic flywheel first position.
- FIG. 13B is a further front elevational view of the magnetic leg member of FIG. 13A in a second position in which the magnetic leg member is closest to the flywheel defining a pinch point gap.
- FIG. 13C is a further front elevational view of the magnetic leg member of FIG. 13A in a third position.
- FIG. 13D is a further front elevational view of the magnetic leg member of FIG. 13A in a fourth position in which the magnetic leg member is furthest from the flywheel.
- FIG. 14 is a partial front elevational view of a further embodiment of the magnetic drive, including three sets of magnetic leg members, each set including four leg members.
- FIG. 15 is a side elevational view of the embodiment of FIG. 14 .
- FIG. 16 is a partial front elevational view of a set of magnetic leg members including five pairs of magnetic leg members.
- FIG. 17 is a schematic diagram of eight sets of the magnetic leg members of FIG. 16 , each being offset from one another by 45 degrees.
- FIG. 18 is a schematic side elevational view of an embodiment of the magnetic drive having the eight sets of magnetic leg members of FIG. 17 arranged axially and paired with eight magnetic flywheel assemblies.
- FIG. 19 is a front elevational and partial sectional view of the embodiment of FIGS. 16 through 18 having eight sets of five pairs of magnetic leg members totaling 80 leg members.
- the present disclosure includes descriptions of numerous inventions associated with magnetic drives. Which can be used for many different applications, including but without limitations, pumps, automobile or watercraft propulsion systems, conveyer systems, solar power generation, power storage systems, and other uses.
- the magnetic drives disclosed herein can be configured to amplify the torque of the incoming power.
- a magnetic drive can be configured to provide, in a contactless manner, transfer of torque from a source to an output shaft.
- the magnetic drive includes magnets disposed on a flywheel and magnets disposed on a reciprocating mount configured to transfer torque by way of magnetic interaction between the magnets.
- the magnetic drive can provide a gear reduction which can provide a torque amplification.
- a magnetic drive can provide a greater torque amplification than that provided by resulting gear reduction.
- a magnetic drive 100 can include a flywheel 110 is mounted to a flywheel shaft 112 for rotation about a flywheel axis 114 .
- the flywheel 110 can include an outer surface 120 and at least one flywheel magnet 130 .
- a reciprocating magnet assembly 140 can include at least one magnet 150 mounted for reciprocal movement around a reciprocation path 160 .
- the reciprocation path 160 can be circular, oval, elliptical or other shapes. Additionally, the magnet 150 can rotate around the path 160 or can be laterally and vertically translated (as viewed in FIG. 1 ) around the reciprocal path 160 .
- the polarity of the exposed surface of the magnet 150 is opposite to the polarity of the exposed surface of the magnet 130 .
- the magnet 130 also rotates in the direction of flywheel rotation 160 .
- the direction 116 is clockwise.
- the magnet 150 moves around the reciprocation path 160 in a counterclockwise direction.
- This movement forms the basis of the principal of operation of the magnetic drive 100 .
- the multiple magnets on the flywheel 110 and continued reciprocal movement of the reciprocation mechanism 140 causes a continuous motion of the flywheel 110 .
- some embodiments below include a plurality of reciprocation mechanisms 140 .
- mechanism 140 engages the flywheel 110 in a manner similar to that of engagement of a set of meshed gears, although with a contactless transfer of torque from the mechanism 140 to the flywheel 110 .
- FIG. 2 is a further schematic illustration of the reciprocating drive mechanism 140 .
- the mechanism 140 comprises of leg assembly 142 .
- the leg assembly 142 includes a first end 144 connected to a pivot 146 and a lower end 148 .
- the magnet 150 is secured to the lower end 148 .
- the leg assembly 142 also includes an extension mechanism 152 that guides the leg assembly 142 between retracted and extended states.
- the extension mechanism 152 is at its most extended state.
- the lower surface of the magnet 150 is at its closest position to the outer surface of the flywheel 120 , and during operation, the outer surface of the magnet 130 is in the position 130 B.
- the magnets 130 , 150 define a pinch point gap, i.e., the closest spacing achieved during operation.
- the extension mechanism 152 When the leg assembly 142 is in the position corresponding to magnet position 150 C, the extension mechanism 152 is in essentially the same orientation as when the magnet is at position 150 A. With continued movement around the reciprocal path 160 , the leg assembly reaches a position wherein the magnet is at position 150 D. This is the position at which the magnet 150 is spaced furthest from the outer surface of the flywheel 120 . With continued movement around the reciprocation path 160 , the magnet returns to the position 150 A.
- the reciprocation mechanism 140 can also include a pivot mechanism 170 .
- the pivot mechanism 170 can be configured to pivot the leg assembly 152 back and forth between the angles associated with magnet positions 150 A, 150 B, and 150 C. Additionally, the pivot mechanism 170 can be configured to also cause extension and retraction of the extension mechanism 152 .
- the pivot mechanism 170 can include a crankshaft 180 ( FIG. 3 ) and a follower mechanism 172 ( FIG. 4 ).
- the crankshaft 180 can include mounting portions 182 at axial ends thereof; and crankshaft throws 184 , 186 .
- the crankshaft 180 can be configured for rotation about a crankshaft axis 188 .
- the follower 172 can include at least one aperture 174 configured to engage with a throw of the crankshaft 180 , such as throw 184 .
- rotation of the crankshaft 180 causes the follower aperture 174 to rotate in the direction of the rotation of the crankshaft 180 .
- movement of the follower aperture 174 causes the extension mechanism 152 ( FIG. 2 ) to move upward and downward, i.e., between its extended and retracted states.
- the combined motion of pivoting left and right as viewed in FIGS. 2 and 4 and the extension and retraction results in the elliptical shape of the reciprocation path 160 .
- the magnet 150 moves along a portion of the path 160 that is substantially parallel to a tangent of the outer surface 120 of the flywheel 110 and thereby magnetically engage with the magnet 130 , particularly in the positions 150 B, 130 B as well as around the positions.
- FIGS. 5-12D illustrate a modification of the magnetic drive 100 , including various further optional features and hardware.
- the magnetic drive 100 A includes a frame 200 configured to support the reciprocation mechanism 140 .
- the frame 200 can also be configured to support the flywheel assembly 110 .
- the frame assembly 200 includes a lower frame assembly 201 including legs 202 , 204 and upright support plates 206 , 208 .
- the legs 202 , 204 are configured to form support assemblies for supporting the magnetic drive 100 A on a flat surface. Other configurations for the legs 200 , 204 can also be used.
- the support plates 206 , 208 extend upwardly from the lower portion 201 to an upper portion 210 .
- the upper portion 210 of the frame assembly 200 includes upright support portions 212 , 214 configured to support the reciprocation mechanism 140 in a fixed position relative to the flywheel shaft 112 .
- the frame assembly 200 can be configured, optionally, to support the flywheel 110 .
- the flywheel 110 includes a first flywheel member 110 A and a second flywheel member 110 B, described in greater detail with reference to FIGS. 7 and 8 .
- the upright support plates 206 , 208 include bearings 113 supporting the flywheel shaft 112 .
- the flywheel shaft 112 includes one or more keyways 115 at various locations along the length of the flywheel shaft 112 for providing a positive engagement between the flywheel members 110 A, 110 B and further downstream components to support the transfer of torque, as is well known in the art.
- the upward portion of the frame 210 includes shaft mounts 220 , 222 for supporting the crankshaft 180 .
- the crankshaft 180 drives the magnetic leg assemblies 142 A, 142 B through reciprocating motions.
- the source S is in the form of an electric motor.
- the source S is mounted to the upright plate 206 with a motor mount assembly 230 and a reciprocating mechanism drive 240 .
- the motor mount 230 in the illustrated embodiment, includes a motor mounting plate 232 secured to a front face of the electric motor and mounted to the upright plate 206 with a plurality of mounting bolts, in an arrangement well known in the art.
- the reciprocating drive 240 can include a belt drive and optionally, a gear reduction achieved using a larger drive pulley mounted to the crankshaft 180 in a smaller drive pulley mounted to the source S.
- any gear ratio can be used.
- the flywheel assembly 110 can include two or more flywheels, and in the illustrated embodiment, includes first and second flywheels 110 A, 110 B.
- the flywheel 110 is shown in front elevational view.
- the flywheel 110 A includes a hub 190 , a web 192 , a rim 194 , and a plurality of magnet mount assemblies 196 disposed around the periphery of the rim 194 .
- the magnet mount assemblies 196 define the outer surface 120 of the flywheel 110 A.
- Each of the magnetic mount assemblies 196 comprises a mounting plate 197 and a magnet bushing 198 .
- a magnet 150 is mounted in each of the bushings 198 .
- two bolts 191 are used to hold in each of the magnets 130 .
- the flywheel 110 A includes a plurality of magnets 130 , each of which have a north polarity facing outwardly around the outer surface 120 .
- the flywheel 110 A includes 16 magnets 130 , evenly spaced around the circumference of the outer surface 120 .
- the flywheel 110 B which his mounted adjacent to the flywheel 110 A includes a plurality of magnets 131 mounted in essentially the same way with the same hardware as the flywheel 110 A, except that the magnets 131 have a south polarity facing outward at the outer surface 120 .
- the magnets 130 , 131 are offset from each other in a rotational direction.
- each of the magnets 130 are spaced from one another at 22.5 degrees and each of the magnets 131 are spaced from each other by approximately 22.5 degrees.
- the magnets 130 , 131 are also offset from one another by approximately 11.25 degrees, or in other words, halfway between the magnets 130 .
- the arrangement illustrated in FIG. 18 can provide a further advantage.
- the magnets 130 and magnets 131 are arranged with their poles in opposite orientations, i.e., the magnets 130 have their north polarity at the outer surface 120 and the magnets 131 have their south polarity at the outer surface 120 , the magnets 130 , 131 can generate a net attractive force between the two flywheels 110 A, 110 B.
- the flywheels 110 A, 110 B can abut one another directly, and/or with a spacer, and thereby avoid imparting a compressive or tensile load on the flywheel shaft 112 .
- Other configurations an also be used.
- the magnetic leg assembly 142 A can be configured to pivot about the pivot assembly 144 and to follow the motion of the crankshaft throw 180 , and thereby move through a reciprocating, elliptical motion.
- the magnetic leg member assembly 142 A can include a magnetic mount portion 148 which holds the magnet 150 A.
- the magnet 150 A includes a south polarity at its lower surface, the surface which faces and is just opposed to the outer surface 120 of the flywheel 110 during operation.
- the north pole of the magnet 150 A is disposed inwardly from the south pole, i.e., closer to the crankshaft throw 184 .
- the magnetic mount 148 can include a bearing 175 disposed within the aperture 174 (described above with reference to FIG. 4 ).
- the upper portion of the magnetic leg assembly 142 A includes the pivot assembly 146 which can be in the form of a bore hole configured to receive a pivot pin ( 149 in FIG. 10 ).
- the magnetic leg assembly 142 A can include a pivot bore 146 on opposite sides thereof.
- the two bores 146 can be provided in a collar member 151 , with one bore hole 146 on each side of the assembly 142 A.
- the magnetic leg assembly 142 A can also include a plurality of pivot pins 149 ( FIG. 10 ) so that the magnetic leg assembly 142 A can pivot clockwise and counterclockwise as viewed in FIG. 9 , about the pivot axis defined by the pivot bores 146 .
- the upper portion of the assembly 142 A can also include the extension mechanism 152 .
- the extension mechanism 152 can include a central member, for example, in the form of a rod 260 fixed to the magnetic mount portion 148 .
- the upper end of the rod 260 can be received within a bore 262 .
- the bore 262 and the rod 260 can be sized such that the rod 260 can slide upwardly and downwardly (as viewed in FIG. 9 ) with the bore 262 .
- the magnetic leg assembly 142 A can include a biasing member assembly 263 disposed within the bore 262 .
- the assembly 142 A can include a first magnet 264 mounted to the rod 260 and a second magnet 266 mounted to the pivot assembly 144 .
- the magnets 264 , 266 can be arranged with opposite facing polarity so as to generate a repulsive force therebetween.
- the biasing member 263 can be in the form of a spring.
- the assembly 142 A does not include any biasing member. Rather, the rod 260 is free to slide within the bore 262 in such embodiments.
- the assembly 142 A can include a secondary magnet 159 disposed adjacent to the magnet 150 A.
- the secondary magnet 159 can be arranged with opposite polarity, i.e., with a north polarity at the outer surface of the assembly 142 A and adjacent to the south polarity of the magnet 150 A.
- the secondary magnet 159 can be smaller than the magnet 150 A. The interaction of these magnets and the magnets on the flywheel 110 are described in greater detail below with reference to FIGS. 13A-13B .
- the crankshaft can be built up of several components.
- the crankshaft throws 184 , 186 can be formed with sleeve portions 270 , 272 .
- the sleeves can include an offset bore 274 , offset from a central axis of the sleeves 270 , 272 , so as to create the eccentric orientation for forming the throws 184 , 186 .
- the crankshaft 180 can include throw collars 276 disposed at both ends of each of the sleeves 270 , 272 so as to fix the axial location of the sleeves 270 , 272 , relative to a central shaft 278 extending through the bores 274 and each of the collars 276 .
- Each of the collars can also include a set screw bore 279 for accommodating set screws for fixing the location of the collars 276 along the shaft 278 .
- the shaft 278 can include one or more keyways for rotationally fixing the sleeves 270 , 272 relative to the shaft 278 . Assembled as such, the shaft 278 rotates about the crankshaft axis 188 and the offset eccentric configuration of the sleeves 270 , 272 effectively form the throws 184 , 186 and the up and down motion causing the retraction of the assembly 142 A and the Retraction direction and the extension of the assembly 142 A and the Extension direction.
- the magnetic leg assembly 142 B can be essentially the same as the magnetic leg assembly 142 A except that the magnet 150 B mounted to the lower end of the assembly 142 B has the opposite polarity. Additionally, because the throw 186 is offset from the throw 184 by 180 degrees, the movement of the magnetic leg member assembly 142 B is 180 degrees at a phase with the movement of the assembly 142 A.
- the magnetic leg assembly 142 A interacts with the flywheel in order to transfer torque from the assembly 142 A to the flywheel 110 .
- the leg assembly 142 A is disposed in its leftward most position, with the magnet 150 in the position 150 A described above with reference to FIG. 2 . In this position, the leg magnet 150 and the flywheel magnet 130 are approaching each other during rotation of the flywheel 110 in the clockwise direction 116 .
- the magnets 150 , 130 attract each other because their juxtaposed surfaces have opposite magnetic polarity.
- the magnet 150 attracts and thereby causes the magnet 130 to follow it, thereby driving the flywheel 110 in the direction 116 .
- the assembly 142 A pivots sufficiently to move the magnet 150 to the position 150 B.
- the lower surface of the magnet 150 is the closest to the outer surface 120 of the flywheel 110 , thereby defining the pinch point gap between the assembly 142 A and the outer surface 120 of the flywheel 110 .
- the assembly 142 A reaches the rightward most position (as viewed in FIG. 2 ) it changes direction and begins to pivot toward the left of the figure and move through the upper portion of its elliptical movement, as described above with reference to FIG. 2 .
- the magnet 150 is in the position 150 C at this point, and is moved away from the magnet 130 , thereby reducing the effect of the attraction between the magnets 150 , 130 .
- the assembly 142 A As the assembly 142 A is pivoted further in the leftward direction, it moves to its upper most position, as viewed in FIG. 2 , with the magnet in the position 150 D. In this position, the magnet 150 D is spaced the further distance from the outer surface 120 of the flywheel 110 . At this position, as the assembly 142 A begins its further pivoting towards the position 150 A ( FIG. 12A ), the magnet 150 becomes attracted to the next magnet 130 on the flywheel with the magnetic attraction thereby assisting the movement of the assembly 142 A toward the magnet 130 , as well as rotation of the flywheel 116 .
- the magnetic leg assembly 142 B moves such that the magnet 151 is at position corresponding to 150 C when the magnet 150 is at position 150 A. This out of phase movement helps provide a more continuous transfer of torque to the flywheel during operation.
- the magnetic leg assembly 142 A can include an optional secondary magnet 159 .
- the position of the magnet 159 in the various positions illustrated in FIGS. 13A-13D are identified as 159 A, 159 B, 159 C, 159 D similar to the positions 150 A, 150 B, 150 C, 150 D of magnet 150 described above with reference to FIGS. 12A-12D .
- the additional influences of the secondary magnet 159 are described below.
- the magnet 150 can be larger than the secondary magnet 159 .
- the attraction between the magnet 150 and the magnet 130 is larger than the repulsive force created by the interaction of the secondary magnet 159 with the magnet 130 .
- the attractive force between the magnets 150 , 130 draw these magnets toward each other and rotate the flywheel 110 in a direction 116 so as to follow the movement of the assembly 142 A.
- the larger magnet 150 creates an attractive force with the flywheel magnet 130 overcoming the repulsive force created by the secondary magnet 159 .
- the position of FIG. 13A the attraction between the magnet 150 and the magnet 130 is larger than the repulsive force created by the interaction of the secondary magnet 159 with the magnet 130 .
- the repulsive force generated by the secondary magnet 159 can help push the leg assembly 142 A up and away from the flywheel 110 , in the direction of the movement of the assembly 142 A.
- the secondary magnet 159 can help assist the movement of the magnet 150 away from the magnet 130 and thus continue its movement toward the position illustrated in FIG. 13B .
- the drive 100 B can include three sets of reciprocating mechanisms 140 , each separated from each other by approximately 120 degrees around the flywheel axis 114 .
- the drive 100 B can include three sets of reciprocating mechanisms 140 , each separated from each other by approximately 120 degrees around the flywheel axis 114 .
- other numbers of reciprocating mechanisms 140 can also be used.
- each of the reciprocating mechanisms 140 can include four leg member assemblies.
- the assemblies can be two sets of he assemblies 142 A, 142 B described above with reference to FIGS. 9-11 .
- each one of the reciprocating mechanisms 140 can include a single crankshaft 180 including four throws, and thereby driving all of the magnetic leg member assemblies 142 A, 142 B with a single crankshaft.
- another modification of the magnetic drive 100 can include a greater number of reciprocating assemblies 140 and is generally identified by the reference numeral 100 C.
- a portion of the drive 100 C can include five reciprocating mechanisms 140 .
- Each one of the mechanisms 140 can include two or four magnetic leg member assemblies 142 A, 142 B, as described above with reference to FIG. 15 .
- each of the reciprocating assemblies 140 includes five magnetic leg member assemblies 142 , and five magnetic leg embers 142 B arranged side by side.
- the magnetic drive 100 C includes eight sets of the reciprocating members illustrated in FIG. 16 for a total of 80 magnetic leg member assemblies and eight flywheel assemblies, each flywheel assembly including two flywheels 110 A, 110 B, such as that described in FIG. 8 .
- each of the sets of five reciprocating mechanisms 140 are offset by the other sets by 45 degrees.
- the reciprocating mechanisms 140 are offset from one another by nine degrees around the flywheel axis 114 .
- Such an arrangement of reciprocating mechanisms 140 around the eight flywheel assemblies can provide a further ability to transmit torque from the reciprocating mechanisms 140 to the flywheel and the flywheel shaft 112 .
- Other configurations can also be used.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
A magnetic drive can be configured to transfer torque from a reciprocating magnet to a flywheel having magnets in a contactless manner. The drive can include a reciprocating magnetic leg assembly which guides a magnet through a reciprocating path. The reciprocating path can be elliptical. The leg assembly can be mounted near the outer surface of a flywheel so as to, way of magnetic attraction forces, transfer torque from the leg assembly to a flywheel.
Description
- The present inventions relate to torque amplifying drive mechanisms, such as magnetic, torque amplifying drives.
- Some types of conventional torque amplifying drive mechanisms transfer torque from a power source to other devices for performing work through mechanical engagement. For example, gear drives and belt drives can be designed to provide gear reductions which amplify input torque to a higher output torque, at a lower rotational speed.
- Other types of magnetic drives include an inner flywheel with permanent magnets and an outer collar with permanent magnets. The flywheel and collar are closely spaced and rotate together at the same rotational speed with no torque amplification.
- An aspect of at least one of the inventions disclosed herein includes the realization that a torque amplifying drive can be constructed with a flywheel driven by a reciprocating magnet mount, which reciprocates in a path adjacent to the flywheel, without any direct contact. Additionally, such a drive can be designed to provide an effective gear reduction between the reciprocation of the magnet mount and the rotation of the flywheel.
- Thus, according to some embodiments, a torque amplifying magnetic drive can compromise a frame and a least first and second magnetic leg members supported by the frame with the reciprocating connector mechanism configured to guide the first and second magnetic leg members through a reciprocating movement, the first and second magnetic leg members comprising a first end. First and second leg magnets can be disposed at the first end of the first and second magnetic leg members, respectively. A magnetic flywheel can be supported by a rotational shaft. The magnetic flywheel can comprise an outer surface and at least first and second flywheel magnets disposed of the outer surface. The first and second flywheel magnets can be outlined and just opposed with the first and second leg magnets, respectively, during rotation of the magnetic flywheel. The first flywheel magnet can have an opposite polarity to a polarity of the first leg magnet, and the second flywheel magnet can have an opposite polarity to a polarity of the second leg magnet. A drive mechanism can be configured to drive the first and second magnetic legs through a reciprocating movement. The first and second flywheel magnets can be spaced sufficiently close to the first and second leg magnets, respectively, so as to rotate the magnetic flywheel during reciprocation of the first and second magnetic leg members, thereby transferring torque from the first and second magnetic leg members to the magnetic flywheel.
- In some embodiments, a torque amplifying magnetic drive comprises a frame, at least first and second magnetic leg members, supported by the frame with a reciprocating connector mechanism configured to guide the first and second magnetic leg members through a reciprocating movement, the first and second magnetic leg members comprising a first end, wherein the reciprocating connector mechanism guides the first and second magnetic leg members through a reciprocating movement comprising an elliptical path, first and second leg magnets disposed at the first end of the first and second magnetic leg members, respectively. The first magnetic leg member comprises a pivot, pivotally mounted to a pivot shaft and a telescoping portion configured to move between retracted and extended states, the first leg magnet being disposed closer to the pivot portion when the telescoping portion is in the retracted state and the first leg magnet being disposed further from the pivot when the telescoping portion is in the extended state. A magnetic flywheel supported by a rotational shaft, the magnetic flywheel comprising an outer surface and at least a first plurality and a second plurality of flywheel magnets disposed at the outer surface, the first and second pluralities of flywheel magnets being aligned and sequentially juxtaposed with the first and second leg magnets, respectively, during rotation of the magnetic flywheel, the first plurality of flywheel magnets having an opposite polarity to a polarity of the first leg magnet, the second plurality of flywheel magnets having an opposite polarity to a polarity of the second leg magnet, wherein the first and second pluralities of flywheel magnets are disposed adjacent to one another, along an axial direction of the flywheel. A drive mechanism configured to drive the first and second magnetic legs through the reciprocating movement, wherein the reciprocating connector mechanism guides the first magnetic leg member through a first portion of the reciprocating movement and a second portion of the reciprocating movement, the first portion of the reciprocating movement comprises a first position of the first magnetic leg member in which the first leg magnet is spaced from an outer surface of the magnetic flywheel at a first spacing, a movement from the first position to a second position at which the first leg magnet is at a minimum spacing from the outer surface of the magnetic flywheel and a third position in which the first leg magnet is spaced from the first flywheel magnet at a third spacing from the outer surface of the magnetic flywheel, the first and third spacings being larger than the minimum spacing. The first and second pluralities of flywheel magnets are sequentially spaced sufficiently close to the first and second leg magnets, respectively, such that the magnetic flywheel is rotated during reciprocation of the first and second magnetic leg members, which thereby transfer torque from the first and second magnetic leg members to the magnetic flywheel by magnetic attraction and repulsion therebetween.
- In some variations of the embodiments disclosed herein, the telescoping portion comprises a first telescoping portion fixed to the pivot and a second telescoping portion engaged with the drive mechanism so as to move the second telescoping portion through the reciprocating movement.
- In some variations of the embodiments disclosed herein, the drive mechanism comprises a crankshaft supported by the frame, the crankshaft including a throw, the second telescoping portion engaged with the throw of the crankshaft.
- In some variations of the embodiments disclosed herein, the elliptical path comprises a major axis extending parallel to a tangent of the outer surface of the magnetic flywheel.
- In some variations of the embodiments disclosed herein, the elliptical path of the first leg magnet defines a pinch point gap between an outer surface of the first leg magnet and the outer surface of the magnetic flywheel, the elliptical path comprising a major axis extending generally parallel to a tangent of the outer surface of the magnetic flywheel at the pinch point gap.
- In some variations of the embodiments disclosed herein, the first leg magnet comprises a North Pole and a South Pole, wherein a secondary leg magnet is disposed at the first end of the first magnetic leg, the secondary leg magnet comprises a North Pole and a South Pole, wherein the South Pole of the first leg magnet is disposed at the outer surface of the first end and the North Pole of the first leg magnet is disposed inwardly from the outer surface of the first end, and wherein the North Pole of the secondary magnet is disposed at the outer surface of the first end.
- In some variations of the embodiments disclosed herein, the first leg magnet is larger than the secondary leg magnet.
- In some variations of the embodiments disclosed herein, the first leg magnet is disposed in a leading position of the reciprocating movement and the secondary magnet is disposed in a trailing position relative to the reciprocating motion
- In some variations of the embodiments disclosed herein, the first and second magnetic leg members move in a walking movement and thereby transfer torque to the flywheel through interaction of the first and second leg magnets and first and second flywheel magnets, respectively.
- In some embodiments, a torque amplifying magnetic drive comprises a frame, at least first and second magnetic leg members, supported by the frame with a reciprocating connector mechanism configured to guide the first and second magnetic leg members through a reciprocating movement, the first and second magnetic leg members comprising a first end, first and second leg magnets disposed at the first end of the first and second magnetic leg members, respectively, a magnetic flywheel supported by a rotational shaft, the magnetic flywheel comprising an outer surface and at least first and second flywheel magnets disposed at the outer surface, the first and second flywheel magnets being aligned and juxtaposed with the first and second leg magnets, respectively, during rotation of the magnetic flywheel, the first flywheel magnet having an opposite polarity to a polarity of the first leg magnet, the second flywheel magnet having an opposite polarity to a polarity of the second leg magnet. A drive mechanism can be configured to drive the first and second magnetic legs through the reciprocating movement, wherein the first and second flywheel magnets are spaced sufficiently close to the first and second leg magnets, respectively, so as to rotate the magnetic flywheel during reciprocation of the first and second magnetic leg members, thereby transferring torque from the first and second magnetic leg members to the magnetic flywheel.
- In some variations of the embodiments disclosed herein, the reciprocating connector mechanism guides the first and second magnetic leg members through an elliptical path.
- In some variations of the embodiments disclosed herein, the magnetic flywheel comprises a first plurality of flywheel magnets aligned circumferentially with the first flywheel magnet and a second plurality of flywheel magnets aligned circumferentially with the second flywheel magnet.
- In some variations of the embodiments disclosed herein, the first magnetic leg member comprises a pivot, pivotally mounted to a pivot shaft and a telescoping portion configured to move between retracted and extended states, in which the first leg magnet is disposed closer to the pivot portion when the telescoping portion is in the retracted state and the first leg magnet is disposed further from the pivot when the telescoping portion is in the extended state.
- In some variations of the embodiments disclosed herein, the telescoping portion comprises a first telescoping portion fixed to the pivot and a second telescoping portion engaged with the drive mechanism so as to move the second telescoping portion through the reciprocating movement.
- In some variations of the embodiments disclosed herein, the first leg magnet comprises a North Pole and a South Pole, wherein a secondary leg magnet is disposed at the first end of the first magnetic leg, the secondary leg magnet comprises a North Pole and a South Pole, wherein the South Pole of the first leg magnet is disposed at the outer surface of the first end and the North Pole of the first leg magnet is disposed inwardly from the outer surface of the first end, wherein the North Pole of the secondary magnet is disposed at the outer surface of the first end.
- In some variations of the embodiments disclosed herein, the first leg magnet is larger than the secondary leg magnet.
- In some variations of the embodiments disclosed herein, the reciprocating connector mechanism guides the first magnetic leg member through a first portion of the reciprocating movement and a second portion of the reciprocating movement, the first portion of the reciprocating movement comprises a first position of the first magnetic leg member in which the first leg magnet is spaced from the first flywheel magnetic at a first spacing, a movement from the first position to a second position at which the first leg magnet is at a minimum spacing from the first flywheel magnet and a third position in which the first leg magnet is spaced from the first flywheel magnet at a third spacing, the first and third spacing being larger than the minimum spacing.
- In some variations of the embodiments disclosed herein, the first and second magnetic leg members move in a walking movement and thereby transfer torque to the magnetic flywheel through interaction of the first and second leg magnets and the first and second flywheel magnets, respectively.
- In some variations of the embodiments disclosed herein, the first and second portions of the reciprocal movement form an elliptical path.
- In some embodiments, a torque amplifying magnetic drive comprises a frame, at least a first magnetic leg member supported by the frame with a pivot mechanism and an linear extension guide, the pivot mechanism configured to allow the first magnetic leg member to pivot about a pivot point fixed relative to the frame, the linear extension guide configured to allow the first magnetic leg member to move between retracted and extended positions along a longitudinal direction of the magnetic leg member, a first leg magnet disposed at an end of the first magnetic leg member; wherein the first leg magnet is disposed closer to the pivot point when the first magnetic leg member is in the retracted state and wherein the first leg magnet is disposed further from the pivot point when the first magnetic leg member is in the extended state, and a magnetic flywheel supported by a rotational shaft, the magnetic flywheel comprising an outer surface and at least a first plurality of flywheel magnets disposed at the outer surface. A drive mechanism is configured to drive the first magnetic leg member through the a reciprocating movement comprising pivoting about the pivot point, extension, and retraction along the longitudinal direction of the magnetic leg member, wherein the first plurality of flywheel magnets are sequentially spaced sufficiently close to the first leg magnet during rotation of the magnetic flywheel such that torque is transferred from the first magnetic leg member to the magnetic flywheel and thereby the magnetic flywheel is rotated during reciprocation of the first magnetic leg member.
- In some variations of the embodiments disclosed herein, the first leg magnet has a first polarity at the lower end of the first magnetic leg member and the first plurality of flywheel magnets have a second polarity at the outer surface of the magnetic flywheel, the first polarity being opposite to the second polarity.
- Some variations of the embodiments disclosed herein additionally comprise a second magnetic leg member having a second leg magnet and mounted to the frame with a second pivot aligned with the first pivot point.
- Some variations of the embodiments disclosed herein additionally comprise a second plurality of flywheel magnets disposed at the outer surface.
- In some variations of the embodiments disclosed herein, the second plurality of flywheel magnets have a third polarity at the outer surface of the flywheel, the third polarity being opposite to the second polarity.
- In some embodiments, a torque amplifying magnetic drive comprises a frame, at least a first magnetic leg member supported by the frame, a first leg magnet disposed at an end of the first magnetic leg member, a magnetic flywheel supported by a rotational shaft, the magnetic flywheel comprising an outer surface and at least a first plurality of flywheel magnets disposed at the outer surface, and a drive mechanism configured to drive the first magnetic leg member through the a reciprocating movement adjacent to the outer surface of the magnetic flywheel. The first plurality of flywheel magnets are sequentially spaced sufficiently close to the first leg magnet during rotation of the magnetic flywheel such that torque is transferred from the first magnetic leg member to the magnetic flywheel and thereby the magnetic flywheel is rotated during reciprocation of the first magnetic leg member.
-
FIG. 1 is a schematic diagram illustrating relative movements of components of an embodiment of a magnetic drive. -
FIG. 2 is a schematic diagram showing an optional embodiment of components of the magnetic drive and illustrating relative movements of components thereof. -
FIG. 3 is a perspective view of an embodiment of crankshaft that can be used in conjunction with the magnetic drive. -
FIG. 4 is a schematic diagram illustrating movements of and the interaction of certain components of the magnetic drive, for producing an elliptical reciprocating movement. -
FIG. 5 is a side elevational view of an embodiment of the magnetic drive ofFIGS. 1-4 including the magnetic flywheel assembly having two adjacent flywheels and a pair of reciprocating magnetic leg members. -
FIG. 6 is a further side elevational end partially exploded view of the embodimentFIG. 5 . -
FIG. 7 is a front elevational view of a flywheel assembly of the embodiment ofFIG. 5 . -
FIG. 8 is a side elevational view of the flywheel assembly ofFIG. 2 . -
FIG. 9 is a front elevational view of a magnetic leg member. -
FIG. 10 is an enlarged view of the magnetic leg assembly, including two of the magnetic leg members ofFIG. 9 . -
FIG. 11 includes side elevational and front elevational views of a part of a crankshaft of the magnetic leg member assembly. -
FIG. 12A is a partial front elevational view of a magnetic leg member interacting with a magnetic flywheel, in a first position -
FIG. 12B is a further view of the magnetic leg member and magnetic flywheel, in a position in which the magnetic leg member is closest to the flywheel defining a pinch point gap. -
FIG. 12C is a further partial front elevational view illustrating a further movement of the magnetic leg member and flywheel. -
FIG. 12D is a further front elevational view of the magnetic leg member in a position in which the magnetic leg is furthest from the flywheel, prior to returning to the position ofFIG. 12A . -
FIG. 13A is a partial front elevational view of a modified magnetic leg member and magnetic flywheel first position. -
FIG. 13B is a further front elevational view of the magnetic leg member ofFIG. 13A in a second position in which the magnetic leg member is closest to the flywheel defining a pinch point gap. -
FIG. 13C is a further front elevational view of the magnetic leg member ofFIG. 13A in a third position. -
FIG. 13D is a further front elevational view of the magnetic leg member ofFIG. 13A in a fourth position in which the magnetic leg member is furthest from the flywheel. -
FIG. 14 is a partial front elevational view of a further embodiment of the magnetic drive, including three sets of magnetic leg members, each set including four leg members. -
FIG. 15 is a side elevational view of the embodiment ofFIG. 14 . -
FIG. 16 is a partial front elevational view of a set of magnetic leg members including five pairs of magnetic leg members. -
FIG. 17 is a schematic diagram of eight sets of the magnetic leg members ofFIG. 16 , each being offset from one another by 45 degrees. -
FIG. 18 is a schematic side elevational view of an embodiment of the magnetic drive having the eight sets of magnetic leg members ofFIG. 17 arranged axially and paired with eight magnetic flywheel assemblies. -
FIG. 19 is a front elevational and partial sectional view of the embodiment ofFIGS. 16 through 18 having eight sets of five pairs of magnetic leg members totaling 80 leg members. - The present disclosure includes descriptions of numerous inventions associated with magnetic drives. Which can be used for many different applications, including but without limitations, pumps, automobile or watercraft propulsion systems, conveyer systems, solar power generation, power storage systems, and other uses.
- The magnetic drives disclosed herein can be configured to amplify the torque of the incoming power. For example, in some embodiments, a magnetic drive can be configured to provide, in a contactless manner, transfer of torque from a source to an output shaft. In some embodiments, the magnetic drive includes magnets disposed on a flywheel and magnets disposed on a reciprocating mount configured to transfer torque by way of magnetic interaction between the magnets. In some embodiments, the magnetic drive can provide a gear reduction which can provide a torque amplification. Further, in some embodiments, a magnetic drive can provide a greater torque amplification than that provided by resulting gear reduction.
- With reference to
FIG. 1 , a magnetic drive 100 can include aflywheel 110 is mounted to aflywheel shaft 112 for rotation about aflywheel axis 114. Theflywheel 110 can include anouter surface 120 and at least oneflywheel magnet 130. - A
reciprocating magnet assembly 140 can include at least onemagnet 150 mounted for reciprocal movement around areciprocation path 160. Thereciprocation path 160 can be circular, oval, elliptical or other shapes. Additionally, themagnet 150 can rotate around thepath 160 or can be laterally and vertically translated (as viewed inFIG. 1 ) around thereciprocal path 160. The polarity of the exposed surface of themagnet 150 is opposite to the polarity of the exposed surface of themagnet 130. - Thus, during operation, as the
flywheel 110 rotates in the direction offlywheel rotation 116, themagnet 130 also rotates in the direction offlywheel rotation 160. As viewed inFIG. 1 , thedirection 116 is clockwise. Additionally, during operation, themagnet 150 moves around thereciprocation path 160 in a counterclockwise direction. - In the orientation illustrated in
FIG. 1 during operation, because the exposed surfaces of the 130, 150 are of opposite polarity, themagnets 130, 150 attract each other. Thus, movement of themagnets magnet 150 around thereciprocation path 160, for example, in the counterclockwise direction illustrated inFIG. 1 , causes an attractive force on themagnet 130, thereby causing themagnet 130 and theflywheel 110 to rotate theclockwise direction 160. - This movement forms the basis of the principal of operation of the magnetic drive 100. In the embodiments described above, the multiple magnets on the
flywheel 110 and continued reciprocal movement of thereciprocation mechanism 140 causes a continuous motion of theflywheel 110. Additionally, some embodiments below include a plurality ofreciprocation mechanisms 140. - As such,
mechanism 140 engages theflywheel 110 in a manner similar to that of engagement of a set of meshed gears, although with a contactless transfer of torque from themechanism 140 to theflywheel 110. -
FIG. 2 is a further schematic illustration of thereciprocating drive mechanism 140. Themechanism 140 comprises ofleg assembly 142. Theleg assembly 142 includes afirst end 144 connected to apivot 146 and alower end 148. Themagnet 150 is secured to thelower end 148. Theleg assembly 142 also includes anextension mechanism 152 that guides theleg assembly 142 between retracted and extended states. - For example, when the
magnet 150 is at the position identified as 150B, theextension mechanism 152 is at its most extended state. In this state, the lower surface of themagnet 150 is at its closest position to the outer surface of theflywheel 120, and during operation, the outer surface of themagnet 130 is in theposition 130B. In this position, the 130, 150 define a pinch point gap, i.e., the closest spacing achieved during operation.magnets - When the
leg assembly 142 is in the position corresponding tomagnet position 150C, theextension mechanism 152 is in essentially the same orientation as when the magnet is atposition 150A. With continued movement around thereciprocal path 160, the leg assembly reaches a position wherein the magnet is atposition 150D. This is the position at which themagnet 150 is spaced furthest from the outer surface of theflywheel 120. With continued movement around thereciprocation path 160, the magnet returns to theposition 150A. - The
reciprocation mechanism 140 can also include apivot mechanism 170. Thepivot mechanism 170 can be configured to pivot theleg assembly 152 back and forth between the angles associated with 150A, 150B, and 150C. Additionally, themagnet positions pivot mechanism 170 can be configured to also cause extension and retraction of theextension mechanism 152. For example with reference toFIGS. 3 and 4 , thepivot mechanism 170 can include a crankshaft 180 (FIG. 3 ) and a follower mechanism 172 (FIG. 4 ). - The
crankshaft 180 can include mountingportions 182 at axial ends thereof; and crankshaft throws 184, 186. Thecrankshaft 180 can be configured for rotation about acrankshaft axis 188. - With reference to
FIG. 4 , thefollower 172 can include at least oneaperture 174 configured to engage with a throw of thecrankshaft 180, such asthrow 184. Thus, rotation of thecrankshaft 180 causes thefollower aperture 174 to rotate in the direction of the rotation of thecrankshaft 180. Additionally, movement of thefollower aperture 174 causes the extension mechanism 152 (FIG. 2 ) to move upward and downward, i.e., between its extended and retracted states. The combined motion of pivoting left and right as viewed inFIGS. 2 and 4 and the extension and retraction results in the elliptical shape of thereciprocation path 160. - Thus, during operation, with reference to
FIG. 2 , themagnet 150 moves along a portion of thepath 160 that is substantially parallel to a tangent of theouter surface 120 of theflywheel 110 and thereby magnetically engage with themagnet 130, particularly in the 150B, 130B as well as around the positions.positions -
FIGS. 5-12D illustrate a modification of the magnetic drive 100, including various further optional features and hardware. - With reference to
FIG. 5 , themagnetic drive 100A includes aframe 200 configured to support thereciprocation mechanism 140. Optionally, theframe 200 can also be configured to support theflywheel assembly 110. - In the illustrated embodiment, with continued reference to
FIG. 5 , theframe assembly 200 includes alower frame assembly 201 including 202, 204 andlegs 206, 208. Theupright support plates 202, 204 are configured to form support assemblies for supporting thelegs magnetic drive 100A on a flat surface. Other configurations for the 200, 204 can also be used. Thelegs 206, 208 extend upwardly from thesupport plates lower portion 201 to anupper portion 210. - The
upper portion 210 of theframe assembly 200 includes 212, 214 configured to support theupright support portions reciprocation mechanism 140 in a fixed position relative to theflywheel shaft 112. - As noted above, the
frame assembly 200 can be configured, optionally, to support theflywheel 110. In illustrated embodiment, theflywheel 110 includes afirst flywheel member 110A and asecond flywheel member 110B, described in greater detail with reference toFIGS. 7 and 8 . In the illustrated embodiment, the 206, 208 includeupright support plates bearings 113 supporting theflywheel shaft 112. Theflywheel shaft 112 includes one ormore keyways 115 at various locations along the length of theflywheel shaft 112 for providing a positive engagement between the 110A, 110B and further downstream components to support the transfer of torque, as is well known in the art.flywheel members - The upward portion of the
frame 210, with reference toFIG. 6 , includes shaft mounts 220, 222 for supporting thecrankshaft 180. As described in greater detail below with reference toFIGS. 9-11 , thecrankshaft 180 drives the 142A, 142B through reciprocating motions.magnetic leg assemblies - With reference to
FIG. 5 , the source S is in the form of an electric motor. In the illustrated embodiment, the source S is mounted to theupright plate 206 with amotor mount assembly 230 and areciprocating mechanism drive 240. Themotor mount 230, in the illustrated embodiment, includes amotor mounting plate 232 secured to a front face of the electric motor and mounted to theupright plate 206 with a plurality of mounting bolts, in an arrangement well known in the art. - The
reciprocating drive 240 can include a belt drive and optionally, a gear reduction achieved using a larger drive pulley mounted to thecrankshaft 180 in a smaller drive pulley mounted to the source S. However, any gear ratio can be used. - With reference to
FIGS. 7 and 8 , theflywheel assembly 110 can include two or more flywheels, and in the illustrated embodiment, includes first and 110A, 110B. With reference tosecond flywheels FIG. 7 , theflywheel 110 is shown in front elevational view. Theflywheel 110A includes ahub 190, aweb 192, arim 194, and a plurality ofmagnet mount assemblies 196 disposed around the periphery of therim 194. Themagnet mount assemblies 196 define theouter surface 120 of theflywheel 110A. - Each of the
magnetic mount assemblies 196 comprises a mountingplate 197 and amagnet bushing 198. In each of the bushings 198 amagnet 150 is mounted. In the illustrated embodiment, as shown inFIG. 8 , twobolts 191 are used to hold in each of themagnets 130. - The
flywheel 110A includes a plurality ofmagnets 130, each of which have a north polarity facing outwardly around theouter surface 120. In the illustrated embodiment, theflywheel 110A includes 16magnets 130, evenly spaced around the circumference of theouter surface 120. - The
flywheel 110B, which his mounted adjacent to theflywheel 110A includes a plurality ofmagnets 131 mounted in essentially the same way with the same hardware as theflywheel 110A, except that themagnets 131 have a south polarity facing outward at theouter surface 120. - Additionally, as shown in
FIG. 8 , the 130, 131 are offset from each other in a rotational direction. In the illustrated embodiment in which themagnets 110A, 110B, each includes 16 magnets evenly spaced around the circumference surface therefore, each of theflywheels magnets 130 are spaced from one another at 22.5 degrees and each of themagnets 131 are spaced from each other by approximately 22.5 degrees. With reference toFIG. 8 , the 130, 131 are also offset from one another by approximately 11.25 degrees, or in other words, halfway between themagnets magnets 130. - The arrangement illustrated in
FIG. 18 can provide a further advantage. For example, because themagnets 130 andmagnets 131 are arranged with their poles in opposite orientations, i.e., themagnets 130 have their north polarity at theouter surface 120 and themagnets 131 have their south polarity at theouter surface 120, the 130, 131 can generate a net attractive force between the twomagnets 110A, 110B. As such, theflywheels 110A, 110B can abut one another directly, and/or with a spacer, and thereby avoid imparting a compressive or tensile load on theflywheels flywheel shaft 112. Other configurations an also be used. - With reference to
FIGS. 9-10 themagnetic leg assembly 142A can be configured to pivot about thepivot assembly 144 and to follow the motion of thecrankshaft throw 180, and thereby move through a reciprocating, elliptical motion. - With continued reference to
FIG. 9 , the magneticleg member assembly 142A can include amagnetic mount portion 148 which holds themagnet 150A. In the illustrated embodiment, themagnet 150A includes a south polarity at its lower surface, the surface which faces and is just opposed to theouter surface 120 of theflywheel 110 during operation. The north pole of themagnet 150A is disposed inwardly from the south pole, i.e., closer to thecrankshaft throw 184. Optionally, themagnetic mount 148 can include abearing 175 disposed within the aperture 174 (described above with reference toFIG. 4 ). - The upper portion of the
magnetic leg assembly 142A includes thepivot assembly 146 which can be in the form of a bore hole configured to receive a pivot pin (149 inFIG. 10 ). Themagnetic leg assembly 142A can include apivot bore 146 on opposite sides thereof. Optionally, the twobores 146 can be provided in acollar member 151, with onebore hole 146 on each side of theassembly 142A. - The
magnetic leg assembly 142A can also include a plurality of pivot pins 149 (FIG. 10 ) so that themagnetic leg assembly 142A can pivot clockwise and counterclockwise as viewed inFIG. 9 , about the pivot axis defined by the pivot bores 146. The upper portion of theassembly 142A can also include theextension mechanism 152. Theextension mechanism 152 can include a central member, for example, in the form of arod 260 fixed to themagnetic mount portion 148. The upper end of therod 260 can be received within abore 262. Thebore 262 and therod 260 can be sized such that therod 260 can slide upwardly and downwardly (as viewed inFIG. 9 ) with thebore 262. - Optionally, the
magnetic leg assembly 142A can include a biasing member assembly 263 disposed within thebore 262. For example, in some embodiments, theassembly 142A can include afirst magnet 264 mounted to therod 260 and asecond magnet 266 mounted to thepivot assembly 144. The 264, 266 can be arranged with opposite facing polarity so as to generate a repulsive force therebetween. In other embodiments, the biasing member 263 can be in the form of a spring. Optionally, in some embodiments, themagnets assembly 142A does not include any biasing member. Rather, therod 260 is free to slide within thebore 262 in such embodiments. - Further, in some embodiments, the
assembly 142A can include asecondary magnet 159 disposed adjacent to themagnet 150A. In some embodiments, thesecondary magnet 159 can be arranged with opposite polarity, i.e., with a north polarity at the outer surface of theassembly 142A and adjacent to the south polarity of themagnet 150A. In some embodiments, thesecondary magnet 159 can be smaller than themagnet 150A. The interaction of these magnets and the magnets on theflywheel 110 are described in greater detail below with reference toFIGS. 13A-13B . - During operation, as the
crankshaft 180 rotates thereby causing the crankshaft throw 184 to revolve around thepivot axis 188, thefollower aperture 174 moves through a circular path, along with thecrankshaft throw 184. However, the because theassembly 142A is also mounted to pivot about the pivot bore 146, themagnet 150A moves in an extension direction E, a retraction direction R and a clockwise Pivot Pcw, and a counterclockwise pivoting direction P. The resulting motion is elliptical as described above with reference toFIG. 2 . - With reference to
FIG. 11 , the crankshaft can be built up of several components. For example, the crankshaft throws 184, 186 can be formed with 270, 272. The sleeves can include an offsetsleeve portions bore 274, offset from a central axis of the 270, 272, so as to create the eccentric orientation for forming thesleeves 184, 186. Additionally, thethrows crankshaft 180 can include throwcollars 276 disposed at both ends of each of the 270, 272 so as to fix the axial location of thesleeves 270, 272, relative to asleeves central shaft 278 extending through thebores 274 and each of thecollars 276. Each of the collars can also include a set screw bore 279 for accommodating set screws for fixing the location of thecollars 276 along theshaft 278. - Additionally, the
shaft 278 can include one or more keyways for rotationally fixing the 270, 272 relative to thesleeves shaft 278. Assembled as such, theshaft 278 rotates about thecrankshaft axis 188 and the offset eccentric configuration of the 270, 272 effectively form thesleeves 184, 186 and the up and down motion causing the retraction of thethrows assembly 142A and the Retraction direction and the extension of theassembly 142A and the Extension direction. - The
magnetic leg assembly 142B can be essentially the same as themagnetic leg assembly 142A except that themagnet 150B mounted to the lower end of theassembly 142B has the opposite polarity. Additionally, because thethrow 186 is offset from thethrow 184 by 180 degrees, the movement of the magneticleg member assembly 142B is 180 degrees at a phase with the movement of theassembly 142A. - With reference to
FIGS. 12A-12D , themagnetic leg assembly 142A interacts with the flywheel in order to transfer torque from theassembly 142A to theflywheel 110. For example with reference toFIG. 12A , theleg assembly 142A is disposed in its leftward most position, with themagnet 150 in theposition 150A described above with reference toFIG. 2 . In this position, theleg magnet 150 and theflywheel magnet 130 are approaching each other during rotation of theflywheel 110 in theclockwise direction 116. The 150, 130 attract each other because their juxtaposed surfaces have opposite magnetic polarity. Thus, as themagnets magnetic leg assembly 142A is pivoted in the counterclockwise direction about thepivot 144, themagnet 150 attracts and thereby causes themagnet 130 to follow it, thereby driving theflywheel 110 in thedirection 116. Eventually, theassembly 142A pivots sufficiently to move themagnet 150 to theposition 150B. - In the
position 150B, the lower surface of themagnet 150 is the closest to theouter surface 120 of theflywheel 110, thereby defining the pinch point gap between theassembly 142A and theouter surface 120 of theflywheel 110. As theassembly 142A reaches the rightward most position (as viewed inFIG. 2 ) it changes direction and begins to pivot toward the left of the figure and move through the upper portion of its elliptical movement, as described above with reference toFIG. 2 . As themagnet 150 is in theposition 150C at this point, and is moved away from themagnet 130, thereby reducing the effect of the attraction between the 150, 130.magnets - With reference to
FIG. 12 , as theassembly 142A is pivoted further in the leftward direction, it moves to its upper most position, as viewed inFIG. 2 , with the magnet in theposition 150D. In this position, themagnet 150D is spaced the further distance from theouter surface 120 of theflywheel 110. At this position, as theassembly 142A begins its further pivoting towards theposition 150A (FIG. 12A ), themagnet 150 becomes attracted to thenext magnet 130 on the flywheel with the magnetic attraction thereby assisting the movement of theassembly 142A toward themagnet 130, as well as rotation of theflywheel 116. - With the crankshaft configured as described above, more specifically with the crankshaft throw 186 mounted 180 degrees out of phase with the
crankshaft throw 184, themagnetic leg assembly 142B moves such that themagnet 151 is at position corresponding to 150C when themagnet 150 is atposition 150A. This out of phase movement helps provide a more continuous transfer of torque to the flywheel during operation. - With reference to
FIGS. 13A-13D as noted above, themagnetic leg assembly 142A can include an optionalsecondary magnet 159. The position of themagnet 159 in the various positions illustrated inFIGS. 13A-13D are identified as 159A, 159B, 159C, 159D similar to the 150A, 150B, 150C, 150D ofpositions magnet 150 described above with reference toFIGS. 12A-12D . The additional influences of thesecondary magnet 159 are described below. - As noted above, the
magnet 150 can be larger than thesecondary magnet 159. Thus, with reference toFIG. 13A , as theassembly 142A pivots in a counterclockwise direction, the attraction between themagnet 150 and themagnet 130 is larger than the repulsive force created by the interaction of thesecondary magnet 159 with themagnet 130. Thus, the attractive force between the 150, 130 draw these magnets toward each other and rotate themagnets flywheel 110 in adirection 116 so as to follow the movement of theassembly 142A. Additionally, in the position ofFIG. 13B , thelarger magnet 150 creates an attractive force with theflywheel magnet 130 overcoming the repulsive force created by thesecondary magnet 159. However, in the position ofFIG. 13C , the repulsive force generated by thesecondary magnet 159 can help push theleg assembly 142A up and away from theflywheel 110, in the direction of the movement of theassembly 142A. Thus, thesecondary magnet 159 can help assist the movement of themagnet 150 away from themagnet 130 and thus continue its movement toward the position illustrated inFIG. 13B . - With reference to
FIGS. 14-15 , a further modification of the magnetic drive 100 is illustrated therein and identified generally by thereference numeral 100B. In this modification, thedrive 100B can include three sets ofreciprocating mechanisms 140, each separated from each other by approximately 120 degrees around theflywheel axis 114. However, other numbers ofreciprocating mechanisms 140 can also be used. - With reference to
FIG. 15 , each of thereciprocating mechanisms 140 can include four leg member assemblies. For example, the assemblies can be two sets of he 142A, 142B described above with reference toassemblies FIGS. 9-11 . Additionally, each one of thereciprocating mechanisms 140 can include asingle crankshaft 180 including four throws, and thereby driving all of the magnetic 142A, 142B with a single crankshaft.leg member assemblies - With reference to
FIGS. 16-19 , another modification of the magnetic drive 100 can include a greater number ofreciprocating assemblies 140 and is generally identified by thereference numeral 100C. - For example, as shown in
FIG. 16 , instead of the arrangement of three sets ofreciprocating mechanisms 140, a portion of thedrive 100C can include fivereciprocating mechanisms 140. Each one of themechanisms 140 can include two or four magnetic 142A, 142B, as described above with reference toleg member assemblies FIG. 15 . In the illustrated embodiment, as shown inFIG. 18 , each of thereciprocating assemblies 140 includes five magneticleg member assemblies 142, and fivemagnetic leg embers 142B arranged side by side. Further, themagnetic drive 100C includes eight sets of the reciprocating members illustrated inFIG. 16 for a total of 80 magnetic leg member assemblies and eight flywheel assemblies, each flywheel assembly including two 110A, 110B, such as that described inflywheels FIG. 8 . - As shown in
FIG. 17 , each of the sets of fivereciprocating mechanisms 140 are offset by the other sets by 45 degrees. As shown inFIG. 19 , when looking axially down theflywheel axis 114, thereciprocating mechanisms 140 are offset from one another by nine degrees around theflywheel axis 114. Such an arrangement ofreciprocating mechanisms 140 around the eight flywheel assemblies can provide a further ability to transmit torque from thereciprocating mechanisms 140 to the flywheel and theflywheel shaft 112. Other configurations can also be used. - Although specific embodiments have been described above, these embodiments are not intended to limit the scope of the present disclosure, even where only a single embodiment is described with respect to a particular feature. Examples of features provided in the disclosure are intended to be illustrative rather than restrictive unless stated otherwise. The above description is intended to cover such alternatives, modifications, and equivalents as would be apparent to a person skilled in the art having the benefit of this disclosure.
- The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. Accordingly, new claims may be formulated during prosecution of this application (or an application claiming priority thereto) to any such combination of features. In particular, with reference to the appended claims, features from dependent claims may be combined with those of the independent claims and features from respective independent claims may be combined in any appropriate manner and not merely in the specific combinations enumerated in the appended claims.
Claims (25)
1. A torque amplifying magnetic drive comprising:
a frame;
at least first and second magnetic leg members, supported by the frame with a reciprocating connector mechanism configured to guide the first and second magnetic leg members through a reciprocating movement, the first and second magnetic leg members comprising a first end, wherein the reciprocating connector mechanism guides the first and second magnetic leg members through a reciprocating movement comprising an elliptical path;
first and second leg magnets disposed at the first end of the first and second magnetic leg members, respectively;
wherein the first magnetic leg member comprises a pivot, pivotally mounted to a pivot shaft and a telescoping portion configured to move between retracted and extended states, the first leg magnet being disposed closer to the pivot portion when the telescoping portion is in the retracted state and the first leg magnet being disposed further from the pivot when the telescoping portion is in the extended state
a magnetic flywheel supported by a rotational shaft, the magnetic flywheel comprising an outer surface and at least a first plurality and a second plurality of flywheel magnets disposed at the outer surface, the first and second pluralities of flywheel magnets being aligned and sequentially juxtaposed with the first and second leg magnets, respectively, during rotation of the magnetic flywheel, the first plurality of flywheel magnets having an opposite polarity to a polarity of the first leg magnet, the second plurality of flywheel magnets having an opposite polarity to a polarity of the second leg magnet, wherein the first and second pluralities of flywheel magnets are disposed adjacent to one another, along an axial direction of the flywheel;
a drive mechanism configured to drive the first and second magnetic legs through the reciprocating movement;
wherein the reciprocating connector mechanism guides the first magnetic leg member through a first portion of the reciprocating movement and a second portion of the reciprocating movement, the first portion of the reciprocating movement comprises a first position of the first magnetic leg member in which the first leg magnet is spaced from an outer surface of the magnetic flywheel at a first spacing, a movement from the first position to a second position at which the first leg magnet is at a minimum spacing from the outer surface of the magnetic flywheel and a third position in which the first leg magnet is spaced from the first flywheel magnet at a third spacing from the outer surface of the magnetic flywheel, the first and third spacings being larger than the minimum spacing;
wherein the first and second pluralities of flywheel magnets are sequentially spaced sufficiently close to the first and second leg magnets, respectively, such that the magnetic flywheel is rotated during reciprocation of the first and second magnetic leg members, which thereby transfer torque from the first and second magnetic leg members to the magnetic flywheel by magnetic attraction and repulsion therebetween
2. The magnetic drive according to claim 1 , wherein the telescoping portion comprises a first telescoping portion fixed to the pivot and a second telescoping portion engaged with the drive mechanism so as to move the second telescoping portion through the reciprocating movement.
3. The magnetic drive according to claim 2 , wherein the drive mechanism comprises a crankshaft supported by the frame, the crankshaft including a throw, the second telescoping portion engaged with the throw of the crankshaft.
4. The magnetic drive according to claim 1 , wherein the elliptical path comprises a major axis extending parallel to a tangent of the outer surface of the magnetic flywheel.
5. The magnetic drive according to claim 1 , wherein the elliptical path of the first leg magnet defines a pinch point gap between an outer surface of the first leg magnet and the outer surface of the magnetic flywheel, the elliptical path comprising a major axis extending generally parallel to a tangent of the outer surface of the magnetic flywheel at the pinch point gap.
6. The magnetic drive according to claim 1 , wherein the first leg magnet comprises a North Pole and a South Pole, wherein a secondary leg magnet is disposed at the first end of the first magnetic leg, the secondary leg magnet comprises a North Pole and a South Pole, wherein the South Pole of the first leg magnet is disposed at the outer surface of the first end and the North Pole of the first leg magnet is disposed inwardly from the outer surface of the first end, and wherein the North Pole of the secondary magnet is disposed at the outer surface of the first end.
7. The magnetic drive according to claim 6 , wherein the first leg magnet is larger than the secondary leg magnet.
8. The magnetic drive according to claim 7 , wherein the first leg magnet is disposed in a leading position of the reciprocating movement and the secondary magnet is disposed in a trailing position relative to the reciprocating motion.
9. The magnetic drive according to claim 1 , wherein the first and second magnetic leg members move in a walking movement and thereby transfer torque to the flywheel through interaction of the first and second leg magnets and first and second flywheel magnets, respectively.
10. A torque amplifying magnetic drive comprising:
a frame;
at least first and second magnetic leg members, supported by the frame with a reciprocating connector mechanism configured to guide the first and second magnetic leg members through a reciprocating movement, the first and second magnetic leg members comprising a first end;
first and second leg magnets disposed at the first end of the first and second magnetic leg members, respectively;
a magnetic flywheel supported by a rotational shaft, the magnetic flywheel comprising an outer surface and at least first and second flywheel magnets disposed at the outer surface, the first and second flywheel magnets being aligned and juxtaposed with the first and second leg magnets, respectively, during rotation of the magnetic flywheel, the first flywheel magnet having an opposite polarity to a polarity of the first leg magnet, the second flywheel magnet having an opposite polarity to a polarity of the second leg magnet;
a drive mechanism configured to drive the first and second magnetic legs through the reciprocating movement;
wherein the first and second flywheel magnets are spaced sufficiently close to the first and second leg magnets, respectively, so as to rotate the magnetic flywheel during reciprocation of the first and second magnetic leg members, thereby transferring torque from the first and second magnetic leg members to the magnetic flywheel.
11. The magnetic drive of claim 10 , wherein the reciprocating connector mechanism guides the first and second magnetic leg members through an elliptical path.
12. The magnetic drive according to claim 10 , wherein the magnetic flywheel comprises a first plurality of flywheel magnets aligned circumferentially with the first flywheel magnet and a second plurality of flywheel magnets aligned circumferentially with the second flywheel magnet.
13. The magnetic drive according to claim 10 , wherein the first magnetic leg member comprises a pivot, pivotally mounted to a pivot shaft and a telescoping portion configured to move between retracted and extended states, in which the first leg magnet is disposed closer to the pivot portion when the telescoping portion is in the retracted state and the first leg magnet is disposed further from the pivot when the telescoping portion is in the extended state.
14. The magnetic drive according to claim 13 , wherein the telescoping portion comprises a first telescoping portion fixed to the pivot and a second telescoping portion engaged with the drive mechanism so as to move the second telescoping portion through the reciprocating movement.
15. The magnetic drive according to claim 10 , wherein the first leg magnet comprises a North Pole and a South Pole, wherein a secondary leg magnet is disposed at the first end of the first magnetic leg, the secondary leg magnet comprises a North Pole and a South Pole, wherein the South Pole of the first leg magnet is disposed at the outer surface of the first end and the North Pole of the first leg magnet is disposed inwardly from the outer surface of the first end, wherein the North Pole of the secondary magnet is disposed at the outer surface of the first end.
16. The magnetic drive according to claim 15 , wherein the first leg magnet is larger than the secondary leg magnet.
17. The magnetic drive according to claim 10 , wherein the reciprocating connector mechanism guides the first magnetic leg member through a first portion of the reciprocating movement and a second portion of the reciprocating movement, the first portion of the reciprocating movement comprises a first position of the first magnetic leg member in which the first leg magnet is spaced from the first flywheel magnetic at a first spacing a movement from the first position to a second position at which the first leg magnet is at a minimum spacing from the first flywheel magnet and a third position in which the first leg magnet is spaced from the first flywheel magnet at a third spacing, the first and third spacing being larger than the minimum spacing.
18. The magnetic drive according to claim 10 , wherein the first and second magnetic leg members move in a walking movement and thereby transfer torque to the magnetic flywheel through interaction of the first and second leg magnets and the first and second flywheel magnets, respectively.
19. The magnetic drive according to claim 17 , wherein the first and second portions of the reciprocal movement form an elliptical path.
20. A torque amplifying magnetic drive comprising:
a frame;
at least a first magnetic leg member supported by the frame with a pivot mechanism and an linear extension guide, the pivot mechanism configured to allow the first magnetic leg member to pivot about a pivot point fixed relative to the frame, the linear extension guide configured to allow the first magnetic leg member to move between retracted and extended positions along a longitudinal direction of the magnetic leg member;
a first leg magnet disposed at an end of the first magnetic leg member; wherein the first leg magnet is disposed closer to the pivot point when the first magnetic leg member is in the retracted state and wherein the first leg magnet is disposed further from the pivot point when the first magnetic leg member is in the extended state;
a magnetic flywheel supported by a rotational shaft, the magnetic flywheel comprising an outer surface and at least a first plurality of flywheel magnets disposed at the outer surface;
a drive mechanism configured to drive the first magnetic leg member through the a reciprocating movement comprising pivoting about the pivot point, extension, and retraction along the longitudinal direction of the magnetic leg member;
wherein the first plurality of flywheel magnets are sequentially spaced sufficiently close to the first leg magnet during rotation of the magnetic flywheel such that torque is transferred from the first magnetic leg member to the magnetic flywheel and thereby the magnetic flywheel is rotated during reciprocation of the first magnetic leg member.
21. The magnetic drive according to claim 20 , wherein the first leg magnet has a first polarity at the lower end of the first magnetic leg member and the first plurality of flywheel magnets have a second polarity at the outer surface of the magnetic flywheel, the first polarity being opposite to the second polarity.
22. The magnetic drive according to claim 20 additionally comprising a second magnetic leg member having a second leg magnet and mounted to the frame with a second pivot aligned with the first pivot point.
23. The magnetic drive according to claim 22 additionally comprising a second plurality of flywheel magnets disposed at the outer surface.
24. The magnetic drive according to claim 23 , wherein the second plurality of flywheel magnets have a third polarity at the outer surface of the flywheel, the third polarity being opposite to the second polarity.
25. A torque amplifying magnetic drive comprising:
a frame;
at least a first magnetic leg member supported by the frame;
a first leg magnet disposed at an end of the first magnetic leg member;
a magnetic flywheel supported by a rotational shaft, the magnetic flywheel comprising an outer surface and at least a first plurality of flywheel magnets disposed at the outer surface;
a drive mechanism configured to drive the first magnetic leg member through the a reciprocating movement adjacent to the outer surface of the magnetic flywheel;
wherein the first plurality of flywheel magnets are sequentially spaced sufficiently close to the first leg magnet during rotation of the magnetic flywheel such that torque is transferred from the first magnetic leg member to the magnetic flywheel and thereby the magnetic flywheel is rotated during reciprocation of the first magnetic leg member.
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/428,514 US20180226873A1 (en) | 2017-02-09 | 2017-02-09 | Torque amplifying magnetic drive |
| US15/870,513 US10186941B2 (en) | 2017-02-09 | 2018-01-12 | Torque amplifying magnetic drive |
| AU2018219854A AU2018219854A1 (en) | 2017-02-09 | 2018-02-08 | Torque amplifying magnetic drive |
| JP2019542203A JP2020521084A (en) | 2017-02-09 | 2018-02-08 | Torque amplification magnetic drive |
| MYPI2019003676A MY197092A (en) | 2017-02-09 | 2018-02-08 | Torque amplifying magnetic drive |
| PCT/US2018/017372 WO2018148373A1 (en) | 2017-02-09 | 2018-02-08 | Torque amplifying magnetic drive |
| PH12019501818A PH12019501818A1 (en) | 2017-02-09 | 2019-08-06 | Torque amplifying magnetic drive |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/428,514 US20180226873A1 (en) | 2017-02-09 | 2017-02-09 | Torque amplifying magnetic drive |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/870,513 Continuation US10186941B2 (en) | 2017-02-09 | 2018-01-12 | Torque amplifying magnetic drive |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180226873A1 true US20180226873A1 (en) | 2018-08-09 |
Family
ID=63038041
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/428,514 Abandoned US20180226873A1 (en) | 2017-02-09 | 2017-02-09 | Torque amplifying magnetic drive |
| US15/870,513 Expired - Fee Related US10186941B2 (en) | 2017-02-09 | 2018-01-12 | Torque amplifying magnetic drive |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/870,513 Expired - Fee Related US10186941B2 (en) | 2017-02-09 | 2018-01-12 | Torque amplifying magnetic drive |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20180226873A1 (en) |
| JP (1) | JP2020521084A (en) |
| AU (1) | AU2018219854A1 (en) |
| MY (1) | MY197092A (en) |
| PH (1) | PH12019501818A1 (en) |
| WO (1) | WO2018148373A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021207248A1 (en) * | 2020-04-06 | 2021-10-14 | Duplicent, Llc | Centripetal magnet accelerator |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4128020A (en) | 1976-04-12 | 1978-12-05 | Gray Archie B | Energy storage and transmission apparatus |
| US4260901A (en) * | 1979-02-26 | 1981-04-07 | Woodbridge David D | Wave operated electrical generation system |
| JPH05504041A (en) | 1989-03-01 | 1993-06-24 | リード,トロイ・ジー | magnet motor |
| DE19850314A1 (en) * | 1998-10-31 | 2000-05-11 | Johann Weinzierl | Electromagnetic operated motor |
| WO2000027015A1 (en) | 1998-10-31 | 2000-05-11 | Johann Weinzierl | Electromagnetically operated motor |
| DE60200787T2 (en) | 2001-01-24 | 2005-09-08 | Hasan Basri Özdamar | INTERNAL COMBUSTION ENGINE WITH ROTATABLE PLEUELBOLZ |
| JP2004353693A (en) | 2003-05-27 | 2004-12-16 | Akinori Wakabayashi | Drive transmitting device |
| US20120222505A1 (en) | 2011-02-07 | 2012-09-06 | Almansor Falih Hasan Ahmed | Gear engine |
-
2017
- 2017-02-09 US US15/428,514 patent/US20180226873A1/en not_active Abandoned
-
2018
- 2018-01-12 US US15/870,513 patent/US10186941B2/en not_active Expired - Fee Related
- 2018-02-08 MY MYPI2019003676A patent/MY197092A/en unknown
- 2018-02-08 AU AU2018219854A patent/AU2018219854A1/en not_active Abandoned
- 2018-02-08 JP JP2019542203A patent/JP2020521084A/en active Pending
- 2018-02-08 WO PCT/US2018/017372 patent/WO2018148373A1/en not_active Ceased
-
2019
- 2019-08-06 PH PH12019501818A patent/PH12019501818A1/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| PH12019501818A1 (en) | 2020-10-05 |
| MY197092A (en) | 2023-05-24 |
| JP2020521084A (en) | 2020-07-16 |
| AU2018219854A1 (en) | 2019-08-22 |
| US10186941B2 (en) | 2019-01-22 |
| WO2018148373A1 (en) | 2018-08-16 |
| US20180226874A1 (en) | 2018-08-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2908450C (en) | Electromagnetic actuator for a bi-directional clutch | |
| US8400037B2 (en) | Device for providing rotational torque and method of use | |
| US4011477A (en) | Apparatus using variations in magnetic force to reciprocate a linear actuator | |
| US8487484B1 (en) | Permanent magnet drive apparatus and operational method | |
| US20100308601A1 (en) | Permanent Magnet Motion Amplified Motor and Control System | |
| US9564793B2 (en) | Electromagnetic oscillator with electrical and mechanical output | |
| US10186941B2 (en) | Torque amplifying magnetic drive | |
| CN106224480B (en) | A kind of big stroke flexible rotating hinge based on four-bar mechanism | |
| US11183891B2 (en) | Magnet driven motor and methods relating to same | |
| JP2008202726A (en) | Balancer mechanism for reciprocating engine | |
| CN115280653A (en) | Magnetic drive motor assembly and related method of use | |
| JP2016111860A (en) | Reciprocation generator | |
| CN216490163U (en) | Magnetic suspension motor | |
| CN107588165B (en) | Gear rack transmission mechanism | |
| WO2016039145A1 (en) | Magnet driving mechanism | |
| JP6202557B2 (en) | Rotation drive support device | |
| CN219152818U (en) | Turnover device applicable to development of automobile parts with different sizes | |
| US20090134722A1 (en) | Magnet engine | |
| EP4125195B1 (en) | Magnetic driving apparatus | |
| TWM265365U (en) | Transmission device using magnetic force | |
| US20120318080A1 (en) | Torque multiplier | |
| NL2008387C2 (en) | ROTOR DEVICE. | |
| KR101247318B1 (en) | Linear reciprocating traverse unit and wind power generation device using of the same unit | |
| KR20090090729A (en) | Rotational force increasing device using magnet | |
| KR101251095B1 (en) | Guide apparatus of linear actuator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |