US20180208545A1 - Novel low molecular weight cationic lipids for oligonucleotide delivery - Google Patents
Novel low molecular weight cationic lipids for oligonucleotide delivery Download PDFInfo
- Publication number
- US20180208545A1 US20180208545A1 US15/926,936 US201815926936A US2018208545A1 US 20180208545 A1 US20180208545 A1 US 20180208545A1 US 201815926936 A US201815926936 A US 201815926936A US 2018208545 A1 US2018208545 A1 US 2018208545A1
- Authority
- US
- United States
- Prior art keywords
- lipid
- alkyl
- sirna
- alkenyl
- cationic lipids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108091034117 Oligonucleotide Proteins 0.000 title claims abstract description 15
- 125000002091 cationic group Chemical group 0.000 title abstract description 43
- 150000002632 lipids Chemical class 0.000 claims abstract description 52
- 108020004459 Small interfering RNA Proteins 0.000 claims abstract description 47
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims abstract description 40
- 239000002105 nanoparticle Substances 0.000 claims abstract description 25
- 235000012000 cholesterol Nutrition 0.000 claims abstract description 20
- -1 cationic lipid Chemical class 0.000 claims description 45
- 150000003839 salts Chemical class 0.000 claims description 31
- 125000003342 alkenyl group Chemical group 0.000 claims description 20
- 125000001424 substituent group Chemical group 0.000 claims description 17
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 claims description 10
- 229910052736 halogen Inorganic materials 0.000 claims description 10
- 125000000623 heterocyclic group Chemical group 0.000 claims description 9
- 108091070501 miRNA Proteins 0.000 claims description 8
- 239000002679 microRNA Substances 0.000 claims description 8
- 125000002911 monocyclic heterocycle group Chemical group 0.000 claims description 8
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 7
- 125000005843 halogen group Chemical group 0.000 claims description 7
- 229920000768 polyamine Polymers 0.000 claims description 7
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 7
- 125000005842 heteroatom Chemical group 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 210000004185 liver Anatomy 0.000 abstract description 14
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 abstract description 11
- 238000001727 in vivo Methods 0.000 abstract description 11
- 231100000304 hepatotoxicity Toxicity 0.000 abstract description 4
- 230000007056 liver toxicity Effects 0.000 abstract description 4
- 239000012071 phase Substances 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 241000700159 Rattus Species 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 13
- 108020004999 messenger RNA Proteins 0.000 description 12
- 230000008569 process Effects 0.000 description 10
- 108060001084 Luciferase Proteins 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 229940125782 compound 2 Drugs 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000005089 Luciferase Substances 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 102000018616 Apolipoproteins B Human genes 0.000 description 6
- 108010027006 Apolipoproteins B Proteins 0.000 description 6
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 6
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 6
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- 229940125904 compound 1 Drugs 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 5
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 150000002576 ketones Chemical class 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 229940126214 compound 3 Drugs 0.000 description 4
- 238000009295 crossflow filtration Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 4
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 3
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 3
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 3
- 101000611202 Homo sapiens Peptidyl-prolyl cis-trans isomerase B Proteins 0.000 description 3
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 3
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 3
- 102100040283 Peptidyl-prolyl cis-trans isomerase B Human genes 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- NRLNQCOGCKAESA-KWXKLSQISA-N [(6z,9z,28z,31z)-heptatriaconta-6,9,28,31-tetraen-19-yl] 4-(dimethylamino)butanoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCC(OC(=O)CCCN(C)C)CCCCCCCC\C=C/C\C=C/CCCCC NRLNQCOGCKAESA-KWXKLSQISA-N 0.000 description 3
- GKXYYHJKMCMWBN-MSUUIHNZSA-N [(z)-heptacos-18-en-10-yl] 4-(dimethylamino)butanoate Chemical compound CCCCCCCCCC(OC(=O)CCCN(C)C)CCCCCCC\C=C/CCCCCCCC GKXYYHJKMCMWBN-MSUUIHNZSA-N 0.000 description 3
- 0 [1*]N([2*])CCC([3*])(C)C Chemical compound [1*]N([2*])CCC([3*])(C)C 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000005349 anion exchange Methods 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000007979 citrate buffer Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 150000007529 inorganic bases Chemical class 0.000 description 3
- 229960002725 isoflurane Drugs 0.000 description 3
- 230000000155 isotopic effect Effects 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- 208000035657 Abasia Diseases 0.000 description 2
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 2
- 108010082126 Alanine transaminase Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 2
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 2
- 241000720974 Protium Species 0.000 description 2
- 239000005700 Putrescine Substances 0.000 description 2
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- RWXDTUNEIQYGCL-AUGURXLVSA-N [(20z,23z)-nonacosa-20,23-dien-10-yl] 4-(dimethylamino)butanoate Chemical compound CCCCCCCCCC(OC(=O)CCCN(C)C)CCCCCCCCC\C=C/C\C=C/CCCCC RWXDTUNEIQYGCL-AUGURXLVSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000008366 buffered solution Substances 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- NAVGEXCVGUBSOQ-UHFFFAOYSA-N icosa-11,14-dienamide Chemical compound CCCCCC=CCC=CCCCCCCCCCC(N)=O NAVGEXCVGUBSOQ-UHFFFAOYSA-N 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 210000005228 liver tissue Anatomy 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- HZMGUXRKKRKZIX-UHFFFAOYSA-N nonacosa-20,23-dien-10-ol Chemical compound CCCCCCCCCC(O)CCCCCCCCCC=CCC=CCCCCC HZMGUXRKKRKZIX-UHFFFAOYSA-N 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 125000002098 pyridazinyl group Chemical group 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 238000004007 reversed phase HPLC Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 2
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 2
- 229940063673 spermidine Drugs 0.000 description 2
- 229940063675 spermine Drugs 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000004885 tandem mass spectrometry Methods 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- XSXIVVZCUAHUJO-AVQMFFATSA-N (11e,14e)-icosa-11,14-dienoic acid Chemical compound CCCCC\C=C\C\C=C\CCCCCCCCCC(O)=O XSXIVVZCUAHUJO-AVQMFFATSA-N 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- 125000005940 1,4-dioxanyl group Chemical group 0.000 description 1
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- PGYFLJKHWJVRMC-ZXRZDOCRSA-N 2-[4-[[(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]butoxy]-n,n-dimethyl-3-[(9z,12z)-octadeca-9,12-dienoxy]propan-1-amine Chemical compound C([C@@H]12)C[C@]3(C)[C@@H]([C@H](C)CCCC(C)C)CC[C@H]3[C@@H]1CC=C1[C@]2(C)CC[C@H](OCCCCOC(CN(C)C)COCCCCCCCC\C=C/C\C=C/CCCCC)C1 PGYFLJKHWJVRMC-ZXRZDOCRSA-N 0.000 description 1
- 125000005273 2-acetoxybenzoic acid group Chemical group 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 229940013085 2-diethylaminoethanol Drugs 0.000 description 1
- WEQPBCSPRXFQQS-UHFFFAOYSA-N 4,5-dihydro-1,2-oxazole Chemical compound C1CC=NO1 WEQPBCSPRXFQQS-UHFFFAOYSA-N 0.000 description 1
- RDTALXUBMCLWBB-UHFFFAOYSA-N 4-(dimethylamino)butanoic acid;hydron;chloride Chemical compound Cl.CN(C)CCCC(O)=O RDTALXUBMCLWBB-UHFFFAOYSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 101150102415 Apob gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- DFLIZDWBKPTJRC-IUDCRSOLSA-N CCC1CC1C1CC1C/C=C\CCC(C)(C)C.CCC1CC1C1CC1CCCCCC(C)(C)C.CCCCCC1CC1C/C=C\CCC(C)(C)C.CCCCCC1CC1CCCCCC(C)(C)C Chemical compound CCC1CC1C1CC1C/C=C\CCC(C)(C)C.CCC1CC1C1CC1CCCCCC(C)(C)C.CCCCCC1CC1C/C=C\CCC(C)(C)C.CCCCCC1CC1CCCCCC(C)(C)C DFLIZDWBKPTJRC-IUDCRSOLSA-N 0.000 description 1
- LRFJOIPOPUJUMI-KWXKLSQISA-N CCCCC/C=C\C/C=C\CCCCCCCCC1(CCCCCCCC/C=C\C/C=C\CCCCC)OCC(CCN(C)C)O1 Chemical compound CCCCC/C=C\C/C=C\CCCCCCCCC1(CCCCCCCC/C=C\C/C=C\CCCCC)OCC(CCN(C)C)O1 LRFJOIPOPUJUMI-KWXKLSQISA-N 0.000 description 1
- GBNYPVLGNYPHGD-KZWUGJAASA-N CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)CCCCCCCCC.CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)N(C)OC Chemical compound CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)CCCCCCCCC.CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)N(C)OC GBNYPVLGNYPHGD-KZWUGJAASA-N 0.000 description 1
- PXNAXXSPUQWISK-JUZBEBCQSA-N CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)CCCCCCCCC.CCCCC/C=C\C/C=C\CCCCCCCCCC(O)CCCCCCCCC Chemical compound CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)CCCCCCCCC.CCCCC/C=C\C/C=C\CCCCCCCCCC(O)CCCCCCCCC PXNAXXSPUQWISK-JUZBEBCQSA-N 0.000 description 1
- BGQXJHMISLWLPD-FLYWJQFLSA-N CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)N(C)OC.CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)O.CNOC Chemical compound CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)N(C)OC.CCCCC/C=C\C/C=C\CCCCCCCCCC(=O)O.CNOC BGQXJHMISLWLPD-FLYWJQFLSA-N 0.000 description 1
- SDYKQNJGWOAIGD-UTJQPWESSA-N CCCCC/C=C\C/C=C\CCCCCCCCCC(C)(C)C Chemical compound CCCCC/C=C\C/C=C\CCCCCCCCCC(C)(C)C SDYKQNJGWOAIGD-UTJQPWESSA-N 0.000 description 1
- VTPVTYGYONLEMO-GVKSMQHKSA-N CCCCC/C=C\C/C=C\CCCCCCCCCC(CCCCCCCCC)OC(=O)CCCN(C)C.CCCCC/C=C\C/C=C\CCCCCCCCCC(O)CCCCCCCCC.CN(C)CCCC(=O)O Chemical compound CCCCC/C=C\C/C=C\CCCCCCCCCC(CCCCCCCCC)OC(=O)CCCN(C)C.CCCCC/C=C\C/C=C\CCCCCCCCCC(O)CCCCCCCCC.CN(C)CCCC(=O)O VTPVTYGYONLEMO-GVKSMQHKSA-N 0.000 description 1
- VODGFPUEBZJKKW-SEYXRHQNSA-N CCCCCCCC/C=C\CCCCCCCC(C)(C)C Chemical compound CCCCCCCC/C=C\CCCCCCCC(C)(C)C VODGFPUEBZJKKW-SEYXRHQNSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 206010015719 Exsanguination Diseases 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- XSXIVVZCUAHUJO-UHFFFAOYSA-N Homo-gamma-linoleic acid Natural products CCCCCC=CCC=CCCCCCCCCCC(O)=O XSXIVVZCUAHUJO-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 241000254064 Photinus pyralis Species 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 101100491392 Rattus norvegicus Apob gene Proteins 0.000 description 1
- 241000021375 Xenogenes Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- IFQPKTPQJLAZHQ-UHFFFAOYSA-M [Br-].CCCCCCCCC[Mg+] Chemical compound [Br-].CCCCCCCCC[Mg+] IFQPKTPQJLAZHQ-UHFFFAOYSA-M 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 125000002393 azetidinyl group Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004601 benzofurazanyl group Chemical group N1=C2C(=NO1)C(=CC=C2)* 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 125000004623 carbolinyl group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 125000000723 dihydrobenzofuranyl group Chemical group O1C(CC2=C1C=CC=C2)* 0.000 description 1
- 125000005436 dihydrobenzothiophenyl group Chemical group S1C(CC2=C1C=CC=C2)* 0.000 description 1
- 125000005435 dihydrobenzoxazolyl group Chemical group O1C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000004852 dihydrofuranyl group Chemical group O1C(CC=C1)* 0.000 description 1
- 125000005047 dihydroimidazolyl group Chemical group N1(CNC=C1)* 0.000 description 1
- 125000001070 dihydroindolyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000005049 dihydrooxadiazolyl group Chemical group O1N(NC=C1)* 0.000 description 1
- 125000005050 dihydrooxazolyl group Chemical group O1C(NC=C1)* 0.000 description 1
- 125000005051 dihydropyrazinyl group Chemical group N1(CC=NC=C1)* 0.000 description 1
- 125000005052 dihydropyrazolyl group Chemical group N1(NCC=C1)* 0.000 description 1
- 125000004655 dihydropyridinyl group Chemical group N1(CC=CC=C1)* 0.000 description 1
- 125000005053 dihydropyrimidinyl group Chemical group N1(CN=CC=C1)* 0.000 description 1
- 125000005054 dihydropyrrolyl group Chemical group [H]C1=C([H])C([H])([H])C([H])([H])N1* 0.000 description 1
- 125000005044 dihydroquinolinyl group Chemical group N1(CC=CC2=CC=CC=C12)* 0.000 description 1
- 125000005056 dihydrothiazolyl group Chemical group S1C(NC=C1)* 0.000 description 1
- 125000005057 dihydrothienyl group Chemical group S1C(CC=C1)* 0.000 description 1
- 125000005058 dihydrotriazolyl group Chemical group N1(NNC=C1)* 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 210000005161 hepatic lobe Anatomy 0.000 description 1
- 125000004634 hexahydroazepinyl group Chemical group N1(CCCCCC1)* 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical compound C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- USZLCYNVCCDPLQ-UHFFFAOYSA-N hydron;n-methoxymethanamine;chloride Chemical compound Cl.CNOC USZLCYNVCCDPLQ-UHFFFAOYSA-N 0.000 description 1
- UWYVPFMHMJIBHE-OWOJBTEDSA-N hydroxymaleic acid group Chemical group O/C(/C(=O)O)=C/C(=O)O UWYVPFMHMJIBHE-OWOJBTEDSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- NFQBIAXADRDUGK-KWXKLSQISA-N n,n-dimethyl-2,3-bis[(9z,12z)-octadeca-9,12-dienoxy]propan-1-amine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/C\C=C/CCCCC NFQBIAXADRDUGK-KWXKLSQISA-N 0.000 description 1
- BGTBRDJUHRMBQB-UHFFFAOYSA-N n,n-dimethylmethanamine;n,n-dipropylpropan-1-amine Chemical compound CN(C)C.CCCN(CCC)CCC BGTBRDJUHRMBQB-UHFFFAOYSA-N 0.000 description 1
- KRKPYFLIYNGWTE-UHFFFAOYSA-N n,o-dimethylhydroxylamine Chemical compound CNOC KRKPYFLIYNGWTE-UHFFFAOYSA-N 0.000 description 1
- CJWXCNXHAIFFMH-AVZHFPDBSA-N n-[(2s,3r,4s,5s,6r)-2-[(2r,3r,4s,5r)-2-acetamido-4,5,6-trihydroxy-1-oxohexan-3-yl]oxy-3,5-dihydroxy-6-methyloxan-4-yl]acetamide Chemical compound C[C@H]1O[C@@H](O[C@@H]([C@@H](O)[C@H](O)CO)[C@@H](NC(C)=O)C=O)[C@H](O)[C@@H](NC(C)=O)[C@@H]1O CJWXCNXHAIFFMH-AVZHFPDBSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000021590 normal diet Nutrition 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003372 organotropic effect Effects 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- QEVHRUUCFGRFIF-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C(C5=CC=C(OC)C=C5N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 QEVHRUUCFGRFIF-MDEJGZGSSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000012465 retentate Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000012421 spiking Methods 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 150000005672 tetraenes Chemical class 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000005958 tetrahydrothienyl group Chemical group 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 150000005671 trienes Chemical class 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000000733 zeta-potential measurement Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/06—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
- C07C229/10—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
- C07C229/12—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of acyclic carbon skeletons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/221—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having an amino group, e.g. acetylcholine, acetylcarnitine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/44—Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5123—Organic compounds, e.g. fats, sugars
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/88—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
Definitions
- the present invention relates to novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides, to facilitate the cellular uptake and endosomal escape, and to knockdown target mRNA both in vitro and in vivo.
- Cationic lipids and the use of cationic lipids in lipid nanoparticles for the delivery of oligonucleotides, in particular siRNA and miRNA, have been previously disclosed.
- Lipid nanoparticles and use of lipid nanoparticles for the delivery of oligonucleotides, in particular siRNA and miRNA has been previously disclosed.
- Oligonucleotides (including siRNA and miRNA) and the synthesis of oligonucleotides has been previously disclosed.
- cationic lipid DLin-M-C3-DMA i.e., (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19yl 4-(dimethylamino)butanoate
- WO2010/105209 i.e., (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19yl 4-(dimethylamino)butanoate
- cationic lipids such as CLinDMA and DLinDMA have been employed for siRNA delivery to liver but suffer from non-optimal delivery efficiency along with liver toxicity at higher doses. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver.
- the present invention employs low molecular weight cationic lipids comprising at least one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
- the instant invention provides for novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver.
- the present invention employs low molecular weight cationic lipids with one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
- FIG. 1 LNP (Compound 1) efficacy in mice.
- FIG. 2 LNP (Compound 2) efficacy in rats.
- FIG. 3 Lipid (Compound 2) levels in rat liver.
- the various aspects and embodiments of the invention are directed to the utility of novel cationic lipids useful in lipid nanoparticles to deliver oligonucleotides, in particular, siRNA and miRNA, to any target gene.
- novel cationic lipids useful in lipid nanoparticles to deliver oligonucleotides, in particular, siRNA and miRNA, to any target gene.
- the cationic lipids of the instant invention are useful components in a lipid nanoparticle for the delivery of oligonucleotides, specifically siRNA and miRNA.
- the cationic lipids are illustrated by the Formula A:
- R 1 and R 2 are independently selected from H, (C 1 -C 6 )alkyl, heterocyclyl, and polyamine, wherein said alkyl, heterocyclyl and polyamine are optionally substituted with one to three substituents selected from R′, or R 1 and R 2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R′;
- R 3 is selected from H and (C 1 -C 6 )alkyl, said alkyl optionally substituted with one to three substituents selected from R′;
- R′ is independently selected from halogen, R′′, OR′′, SR′′, CN, CO 2 R′′ and CON(R′′) 2 ;
- R′′ is independently selected from H and (C 1 -C 6 )alkyl, wherein said alkyl is optionally substituted with halogen and OH;
- n 0, 1, 2, 3, 4 or 5;
- X is selected from O, NR′′, (C ⁇ O)O, NR′′(C ⁇ O), O(C ⁇ O)O, NR′′(C ⁇ O)NR′′, O(C ⁇ O)NR′′, and NR′′(C ⁇ O)O;
- L 1 is selected from C 4 -C 24 alkyl and C 4 -C 24 alkenyl, said alkyl and alkenyl are optionally substituted with one or more substituents selected from R′;
- L 2 is selected from C 3 -C 9 alkyl and C 3 -C 9 alkenyl, said alkyl and alkenyl are optionally substituted with one or more substituents selected from R′;
- the invention features a compound having Formula A, wherein:
- R 1 and R 2 are each methyl
- R 3 is H
- n 3;
- X is (C ⁇ O)O
- L 1 is selected from C 4 -C 24 alkyl and C 4 -C 24 alkenyl
- L 2 is selected from C 3 -C 9 alkyl and C 3 -C 9 alkenyl
- Specific cationic lipids are:
- the cationic lipids disclosed are useful in the preparation of lipid nanoparticles.
- the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of oligonucleotides.
- the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of siRNA and miRNA.
- the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of siRNA.
- the cationic lipids of the present invention may have asymmetric centers, chiral axes, and chiral planes (as described in: E. L. Eliel and S. H. Wilen, Stereochemistry of Carbon Compounds, John Wiley & Sons, New York, 1994, pages 1119-1190), and occur as racemates, racemic mixtures, and as individual diastereomers, with all possible isomers and mixtures thereof, including optical isomers, being included in the present invention.
- the cationic lipids disclosed herein may exist as tautomers and both tautomeric forms are intended to be encompassed by the scope of the invention, even though only one tautomeric structure is depicted.
- substituents and substitution patterns on the cationic lipids of the instant invention can be selected by one of ordinary skill in the art to provide cationic lipids that are chemically stable and that can be readily synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials. If a substituent is itself substituted with more than one group, it is understood that these multiple groups may be on the same carbon or on different carbons, so long as a stable structure results.
- Si atoms can be incorporated into the cationic lipids of the instant invention by one of ordinary skill in the art to provide cationic lipids that are chemically stable and that can be readily synthesized by techniques known in the art from readily available starting materials.
- the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature.
- the present invention is meant to include all suitable isotopic variations of the compounds of Formula A.
- different isotopic forms of hydrogen (H) include protium ( 1 H) and deuterium ( 2 H).
- Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
- Isotopically-enriched compounds within Formula A can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Scheme and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
- alkyl means a straight chain, cyclic or branched saturated aliphatic hydrocarbon having the specified number of carbon atoms.
- alkenyl means a straight chain, cyclic or branched unsaturated aliphatic hydrocarbon having the specified number of carbon atoms including but not limited to diene, triene and tetraene unsaturated aliphatic hydrocarbons.
- heterocyclyl or “heterocycle” means a 4- to 10-membered aromatic or nonaromatic heterocycle containing from 1 to 4 heteroatoms selected from the group consisting of O, N and S, and includes bicyclic groups.
- Heterocyclyl therefore includes, the following: benzoimidazolyl, benzofuranyl, benzofurazanyl, benzopyrazolyl, benzotriazolyl, benzothiophenyl, benzoxazolyl, carbazolyl, carbolinyl, cinnolinyl, furanyl, imidazolyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthpyridinyl, oxadiazolyl, oxazolyl, oxazoline, isoxazoline, oxetanyl, pyranyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridopyridinyl, pyridazinyl, pyridyl, pyri
- polyamine means compounds having two or more amino groups. Examples include putrescine, cadaverine, spermidine, and spermine.
- halogen means Br, Cl, F and I.
- R 1 and R 2 are independently selected from H and (C 1 -C 6 )alkyl, wherein said alkyl is optionally substituted with one to three substituents selected from R′, or R 1 and R 2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R′.
- R 1 and R 2 are independently selected from H, methyl, ethyl and propyl, wherein said methyl, ethyl and propyl are optionally substituted with one to three substituents selected from R′, or R 1 and R 2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R′.
- R 1 and R 2 are independently selected from H, methyl, ethyl and propyl.
- R 1 and R 2 are each methyl.
- R 3 is independently selected from: H and methyl.
- R 3 is H.
- R′ is R′′.
- R′′ is independently selected from H, methyl, ethyl and propyl, wherein said methyl, ethyl and propyl are optionally substituted with one or more halogen and OH.
- R′′ is independently selected from H, methyl, ethyl and propyl.
- n 0, 1, 2, 3 or 4.
- n 2, 3 or 4.
- n 3.
- X is O, NR′′, (C ⁇ O)O, NR′′(C ⁇ O), O(C ⁇ O)O, NR′′(C ⁇ O)NR′′, O(C ⁇ O)NR′′, or NR′′(C ⁇ O)O.
- X is (C ⁇ O)O.
- L 1 is selected from C 4 -C 24 alkyl and C 4 -C 24 alkenyl, which are optionally substituted with halogen and OH.
- L 1 is selected from C 4 -C 24 alkyl and C 4 -C 24 alkenyl.
- L 1 is selected from C 4 -C 24 alkenyl.
- L 1 is selected from C 12 -C 24 alkenyl.
- L 1 is C 19 alkenyl.
- L 1 is:
- L 1 is:
- L 2 is selected from C 3 -C 9 alkyl and C 3 -C 9 alkenyl, which are optionally substituted with halogen and OH.
- L 2 is selected from C 5 -C 9 alkyl and C 5 -C 9 alkenyl, which are optionally substituted with halogen and OH.
- L 2 is selected from C 7 -C 9 alkyl and C 7 -C 9 alkenyl, which are optionally substituted with halogen and OH.
- L 2 is selected from C 3 -C 9 alkyl and C 3 -C 9 alkenyl.
- L 2 is selected from C 5 -C 9 alkyl and C 5 -C 9 alkenyl.
- L 2 is selected from C 7 -C 9 alkyl and C 7 -C 9 alkenyl.
- L 2 is C 3 -C 9 alkyl.
- L 2 is C 5 -C 9 alkyl.
- L 2 is C 7 -C 9 alkyl.
- L 2 is C 9 alkyl.
- heterocyclyl is pyrolidine, piperidine, morpholine, imidazole or piperazine.
- “monocyclic heterocyclyl” is pyrolidine, piperidine, morpholine, imidazole or piperazine.
- polyamine is putrescine, cadaverine, spermidine or spermine.
- alkyl is a straight chain saturated aliphatic hydrocarbon having the specified number of carbon atoms.
- alkenyl is a straight chain unsaturated aliphatic hydrocarbon having the specified number of carbon atoms.
- cationic lipids of Formula A include the free form of cationic lipids of Formula A, as well as the pharmaceutically acceptable salts and stereoisomers thereof.
- Some of the isolated specific cationic lipids exemplified herein are the protonated salts of amine cationic lipids.
- the term “free form” refers to the amine cationic lipids in non-salt form.
- the encompassed pharmaceutically acceptable salts not only include the isolated salts exemplified for the specific cationic lipids described herein, but also all the typical pharmaceutically acceptable salts of the free form of cationic lipids of Formula A.
- the free form of the specific salt cationic lipids described may be isolated using techniques known in the art.
- the free form may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate.
- a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate.
- the free forms may differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid and base salts are otherwise pharmaceutically equivalent to their respective free forms for purposes of the invention.
- the pharmaceutically acceptable salts of the instant cationic lipids can be synthesized from the cationic lipids of this invention which contain a basic or acidic moiety by conventional chemical methods.
- the salts of the basic cationic lipids are prepared either by ion exchange chromatography or by reacting the free base with stoichiometric amounts or with an excess of the desired salt-forming inorganic or organic acid in a suitable solvent or various combinations of solvents.
- the salts of the acidic compounds are formed by reactions with the appropriate inorganic or organic base.
- pharmaceutically acceptable salts of the cationic lipids of this invention include the conventional non-toxic salts of the cationic lipids of this invention as formed by reacting a basic instant cationic lipids with an inorganic or organic acid.
- conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like, as well as salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxy-benzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, trifluoroacetic (
- suitable “pharmaceutically acceptable salts” refers to salts prepared form pharmaceutically acceptable non-toxic bases including inorganic bases and organic bases.
- Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium and sodium salts.
- Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as arginine, betaine caffeine, choline, N,N 1 -dibenzylethylenediamine, diethylamin, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine tripropylamine, tromethamine and the like.
- basic ion exchange resins such as arginine,
- the cationic lipids of the present invention are potentially internal salts or zwitterions, since under physiological conditions a deprotonated acidic moiety in the compound, such as a carboxyl group, may be anionic, and this electronic charge might then be balanced off internally against the cationic charge of a protonated or alkylated basic moiety, such as a quaternary nitrogen atom.
- 11,14-Eicosadienoic acid (11Z,14Z)- (50 g, 162 mmol), N, O-Dimethylhydroxylamine hydrochloride (31.6 g, 324 mmol), HOAt (44.1 g, 324 mmol), Et 3 N (45.2 mL, 324 mmol), and EDC (62.1 g, 324 mmol) were mixed in DCM (810 mL) and stirred overnight at ambient temperature.
- 11,14-eicosadienamide, N-methoxy-N-methyl-, (11Z,14Z)- 1 (4 g, 11.38 mmol) was dissolved in dry THF (50.0 ml) in a 250 mL flask then 1 M nonylmagnesium bromide (22.76 ml, 22.76 mmol) was added under nitrogen at ambient temperature. After 10 min, the reaction was slowly quenched with excess sat. aq NH 4 Cl. The reaction was washed into a separatory funnel with hexane and water, shaken, the lower aqueous layer discarded, the upper layer dried with sodium sulfate, filtered, and evaporated to give crude ketone as a golden oil. The ketone was carried directly into the next reaction crude.
- Ketone (6.32 g, 15.1 mmol, 1 equiv) was dissolved in EtOH (75 mL) and NaBH 4 (2.86 g, 75 mmol, 5 equiv) added. After 15 min of stirring at rt, the reaction was evaporated to a residue, taken up in hexane (200 mL) and water (200 mL), organic layer separated and dried with sodium sulfate, filtered, and evaporated to 20,23-nonacosadien-10-ol, (20Z,23Z)- (iv) obtained as a white solid which was used without further purification.
- Compound 3 is MC3 as described in WO 2010/054401, and WO 2010/144740 A1.
- Compound 4 is DLinKC2DMA as described in Nature Biotechnology, 2010, 28, 172-176, WO 2010/042877 A1, WO 2010/048536 A2, WO 2010/088537 A2, and WO 2009/127060 A1.
- lipid nanoparticle compositions of the instant invention are useful for the delivery of oligonucleotides, specifically siRNA and miRNA:
- the Lipid Nano-Particles are prepared by an impinging jet process.
- the particles are formed by mixing lipids dissolved in alcohol with siRNA dissolved in a citrate buffer.
- the mixing ratio of lipids to siRNA are targeted at 45-55% lipid and 65-45% siRNA.
- the lipid solution contains a novel cationic lipid of the instant invention, a helper lipid (cholesterol), PEG (e.g. PEG-C-DMA, PEG-DMG) lipid, and DSPC at a concentration of 5-15 mg/mL with a target of 9-12 mg/mL in an alcohol (for example ethanol).
- the ratio of the lipids has a mole percent range of 25-98 for the cationic lipid with a target of 35-65
- the helper lipid has a mole percent range from 0-75 with a target of 30-50
- the PEG lipid has a mole percent range from 1-15 with a target of 1-6
- the DSPC has a mole percent range of 0-15 with a target of 0-12.
- the siRNA solution contains one or more siRNA sequences at a concentration range from 0.3 to 1.0 mg/mL with a target of 0.3-0.9 mg/mL in a sodium citrate buffered salt solution with pH in the range of 3.5-5.
- the two liquids are heated to a temperature in the range of 15-40° C., targeting 30-40° C., and then mixed in an impinging jet mixer instantly forming the LNP.
- the teeID has a range from 0.25 to 1.0 ram and a total flow rate from 10-600 mL/min.
- the combination of flow rate and tubing ID has effect of controlling the particle size of the LNPs between 30 and 200 nm.
- the solution is then mixed with a buffered solution at a higher pH with a mixing ratio in the range of 1:1 to 1:3 vol:vol but targeting 1:2 vol:vol. This buffered solution is at a temperature in the range of 15-40° C., targeting 30-40° C.
- the mixed LNPs are held from 30 minutes to 2 hrs prior to an anion exchange filtration step.
- the temperature during incubating is in the range of 15-40° C., targeting 30-40° C.
- the solution is filtered through a 0.8 um filter containing an anion exchange separation step.
- This process uses tubing IDs ranging from 1 mm ID to 5 mm ID and a flow rate from 10 to 2000 mL/min.
- the LNPs are concentrated and diafiltered via an ultrafiltration process where the alcohol is removed and the citrate buffer is exchanged for the final buffer solution such as phosphate buffered saline.
- the ultrafiltration process uses a tangential flow filtration format (TFF). This process uses a membrane nominal molecular weight cutoff range from 30-500 KD.
- the membrane format can be hollow fiber or flat sheet cassette.
- the TFF processes with the proper molecular weight cutoff retains the LNP in the retentate and the filtrate or permeate contains the alcohol; citrate buffer; final buffer wastes.
- the TFF process is a multiple step process with an initial concentration to a siRNA concentration of 1-3 mg/mL. Following concentration, the LNPs solution is diafiltered against the final buffer for 10-20 volumes to remove the alcohol and perform buffer exchange. The material is then concentrated an additional 1-3 fold. The final steps of the LNP process are to sterile filter the concentrated LNP solution and vial the product.
- siRNA duplex concentrations are determined by Strong Anion-Exchange High-Performance Liquid Chromatography (SAX-HPLC) using Waters 2695 Alliance system (Water Corporation, Milford Mass.) with a 2996 PDA detector.
- SAX-HPLC Strong Anion-Exchange High-Performance Liquid Chromatography
- the LNPs otherwise referred to as RNAi Delivery Vehicles (RDVs)
- RDVs RNAi Delivery Vehicles
- Mobile phase is composed of A: 25 mM NaClO 4 , 10 mM Tris, 20% EtOH, pH 7.0 and B: 250 mM NaClO 4 , 10 mM Tris, 20% EtOH, pH 7.0 with liner gradient from 0-15 min and flow rate of 1 ml/min.
- the siRNA amount is determined by comparing to the siRNA standard curve.
- Fluorescence reagent SYBR Gold is employed for RNA quantitation to monitor the encapsulation rate of RDVs.
- RDVs with or without Triton X-100 are used to determine the free siRNA and total siRNA amount.
- the assay is performed using a SpectraMax M5e microplate spectrophotometer from Molecular Devices (Sunnyvale, Calif.). Samples are excited at 485 nm and fluorescence emission was measured at 530 nm. The siRNA amount is determined by comparing to the siRNA standard curve.
- Encapsulation rate (1 ⁇ free siRNA/total siRNA) ⁇ 100%
- RDVs containing 1 ⁇ g siRNA are diluted to a final volume of 3 ml with 1 ⁇ PBS.
- the particle size and polydispersity of the samples is measured by a dynamic light scattering method using ZetaPALS instrument (Brookhaven Instruments Corporation, Holtsville, N.Y.).
- the scattered intensity is measured with He—Ne laser at 25° C. with a scattering angle of 90°.
- RDVs containing 1 ⁇ g siRNA are diluted to a final volume of 2 ml with 1 mM Tris buffer (pH 7.4). Electrophoretic mobility of samples is determined using ZetaPALS instrument (Brookhaven Instruments Corporation, Holtsville, N.Y.) with electrode and He—Ne laser as a light source. The Smoluchowski limit is assumed in the calculation of zeta potentials,
- lipid concentrations are determined by Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) using Waters 2695 Alliance system (Water Corporation, Milford Mass.) with a Corona charged aerosol detector (CAD) (ESA Biosciences, Inc, Chelmsford, Mass.). Individual lipids in RDVs are analyzed using an Agilent Zorbax SB-C18 (50 ⁇ 4.6 mm, 1.8 ⁇ m particle size) column with CAD at 60° C. The mobile phase is composed of A: 0.1% TFA in H 2 O and B: 0.1% TFA in IPA.
- the gradient changes from 60% mobile phase A and 40% mobile phase B from time 0 to 40% mobile phase A and 60% mobile phase B at 1.00 min; 40% mobile phase A and 60% mobile phase B from 1.00 to 5.00 min; 40% mobile phase A and 60% mobile phase B from 5.00 min to 25% mobile phase A and 75% mobile phase B at 10.00 min; 25% mobile phase A and 75% ⁇ mobile phase B from 10.00 min to 5% mobile phase A and 95% mobile phase B at 15.00 min; and 5% mobile phase A and 95% mobile phase B from 15.00 to 60% mobile phase A and 40% mobile phase B at 20.00 min with flow rate of 1 ml/min.
- the individual lipid concentration is determined by comparing to the standard curve with all the lipid components in the RDVs with a quadratic curve fit. The molar percentage of each lipid is calculated based on its molecular weight.
- Oligonucleotide synthesis is well known in the art. (See US patent applications: US 2006/0083780, US 2006/0240554, US 2008/0020058, US 2009/0263407 and US 2009/0285881 and PCT patent applications: WO 2009/086558, WO2009/127060, WO2009/132131, WO2010/042877, WO2010/054384, WO2010/054401, WO2010/054405 and WO2010/054406).
- the Luc and ApoB siRNA incorporated in the LNPs disclosed and utilized in the Examples were synthesized via standard solid phase procedures.
- the siRNA targets the mRNA transcript for the firefly ( Photinus pyralis ) luciferase gene (Accession 4 M15077).
- the primary sequence and chemical modification pattern of the luciferase siRNA is displayed above.
- the in vivo luciferase model employs a transgenic mouse in which the firefly luciferase coding sequence is present in all cells.
- ROSA26- LoxP-Stop-LoxP-Luc (LSL-Luc) transgenic mice licensed from the Dana Farber Cancer Institute are induced to express the Luciferase gene by first removing the LSL sequence with a recombinant Ad-Cre virus (Vector Biolabs). Due to the organo-tropic nature of the virus, expression is limited to the liver when delivered via tail vein injection. Luciferase expression levels in liver are quantitated by measuring light output, using an IVIS imager (Xenogen) following administration of the luciferin substrate (Caliper Life Sciences). Pre-dose luminescence levels are measured prior to administration of the RDVs.
- Luciferin in PBS 15 mg/mL is intraperitoneally (IP) injected in a volume of 150 ⁇ L. After a four minute incubation period mice are anesthetized with isoflurane and placed in the IVIS imager. The RDVs (containing siRNA) in PBS vehicle were tail vein injected n a volume of 0.2 mL. Final dose levels ranged from 0.1 to 0.5 mg/kg siRNA. PBS vehicle alone was dosed as a control. Mice were imaged 48 hours post dose using the method described above. Changes in luciferin light output directly correlate with luciferase mRNA levels and represent an indirect measure of luciferase siRNA activity.
- LNPs utilizing compounds in the nominal compositions described above were evaluated for in vivo efficacy and increases in alanine amino transferase and aspartate amino transferase in Sprague-Dawley (Crl:CD(SD) female rats (Charles River Labs).
- the siRNA targets the mRNA transcript for the ApoB gene (Accession # NM 019287).
- the primary sequence and chemical modification pattern of the ApoB siRNA is displayed above.
- the RDVs (containing siRNA) in PBS vehicle were tail vein injected in a volume of 1 to 1.5 mL. Infusion rate is approximately 3 ml/min. Five rats were used in each dosing group. After LNP administration, rats are placed in cages with normal diet and water present.
- liver tissue was homogenized and total RNA isolated using a Qiagen bead mill and the Qiagen miRNA-Easy RNA isolation kit following the manufacturer's instructions.
- Liver ApoB mRNA levels were determined by quantitative RT-PCR. Message was amplified from purified RNA utilizing a rat ApoB commercial probe set (Applied Biosystems Cat # RN01499054_m1). The PCR reaction was performed on an ABI 7500 instrument with a 96-well Fast Block. The ApoB mRNA level is normalized to the housekeeping PPIB (NM 011149) mRNA. PPIB mRNA levels were determined by RT-PCR using a commercial probe set (Applied Biosytems Cat. No.
- Results are expressed as a ratio of ApoB mRNA/PPIB mRNA. All mRNA data is expressed relative to the PBS control dose. Serum ALT and AST analysis were performed on the Siemens Advia 1800 Clinical Chemistry Analyzer utilizing the Siemens alanine aminotransferase (Cat#03039631) and aspartate aminotransferase (Cat#03039631) reagents. Similar efficacy was observed in rats dosed with Compound 2 containing RDV than with the RDV containing the cationic lipid DLinKC2DMA (Compound 4) or MC3 (Compound 3, FIG. 2 ).
- Liver tissue was weighed into 20-ml vials and homogenized in 9 v/w of water using a GenoGrinder 2000 (OPS Diagnostics, 1600 strokes/min, 5 min). A 50 ⁇ L aliquot of each tissue homogenate was mixed with 300 ⁇ L of extraction/protein precipitating solvent (50/50 acetonitrile/methanol containing 500 nM internal standard) and the plate was centrifuged to sediment precipitated protein. A volume of 200 ⁇ L of each supernatant was then transferred to separate wells of a 96-well plate and 10 ⁇ l samples were directly analyzed by LC/MS-MS.
- OPS Diagnostics 1600 strokes/min, 5 min.
- a 50 ⁇ L aliquot of each tissue homogenate was mixed with 300 ⁇ L of extraction/protein precipitating solvent (50/50 acetonitrile/methanol containing 500 nM internal standard) and the plate was centrifuged to sediment precipitated protein. A volume of 200 ⁇ L of each supernatant was
- Absolute quantification versus standards prepared and extracted from liver homogenate was performed using an Aria LX-2 HPLC system (Thermo Scientific) coupled to an API 4000 triple quadrupole mass spectrometer (Applied Biosystems). For each run, a total of 10 ⁇ L sample was injected onto a BDS Hypersil C8 HPLC column (Thermo, 50 ⁇ 2 mm, 3 ⁇ m) at ambient temperature.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Biochemistry (AREA)
- Emergency Medicine (AREA)
- Optics & Photonics (AREA)
- Nanotechnology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The instant invention provides for novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids comprising at least one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
Description
- The present invention relates to novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides, to facilitate the cellular uptake and endosomal escape, and to knockdown target mRNA both in vitro and in vivo.
- Cationic lipids and the use of cationic lipids in lipid nanoparticles for the delivery of oligonucleotides, in particular siRNA and miRNA, have been previously disclosed. Lipid nanoparticles and use of lipid nanoparticles for the delivery of oligonucleotides, in particular siRNA and miRNA, has been previously disclosed. Oligonucleotides (including siRNA and miRNA) and the synthesis of oligonucleotides has been previously disclosed. (See US patent applications: US 2006/0083780, US 2006/0240554, US 2008/0020058, US 2009/0263407 and US 2009/0285881 and PCT patent applications: WO 2009/086558, WO2009/127060, WO2009/132131, WO2010/042877, WO2010/054384, WO2010/054401, WO2010/054405, WO2010/054406 and WO2010/105209). See also Semple S. C. et al., Rational design of cationic lipids for siRNA delivery, Nature Biotechnology, published online 17 Jan. 2010; doi:10.1038/nbt.1602.
- Other cationic lipids are disclosed in US patent applications: US 2009/0263407, US 2009/0285881, US 2010/0055168, US 2010/0055169, US 2010/0063135, US 2010/0076055, US 2010/0099738 and US 2010/0104629.
- Further, the cationic lipid DLin-M-C3-DMA (i.e., (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19yl 4-(dimethylamino)butanoate) is disclosed in WO2010/105209.
- Traditional cationic lipids such as CLinDMA and DLinDMA have been employed for siRNA delivery to liver but suffer from non-optimal delivery efficiency along with liver toxicity at higher doses. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids comprising at least one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
- The instant invention provides for novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids with one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
-
FIG. 1 : LNP (Compound 1) efficacy in mice. -
FIG. 2 : LNP (Compound 2) efficacy in rats. -
FIG. 3 : Lipid (Compound 2) levels in rat liver. - The various aspects and embodiments of the invention are directed to the utility of novel cationic lipids useful in lipid nanoparticles to deliver oligonucleotides, in particular, siRNA and miRNA, to any target gene. (See US patent applications: US 2006/0083780, US 2006/0240554, US 2008/0020058, US 2009/0263407 and US 2009/0285881 and PCT patent applications: WO 2009/086558, WO2009/127060, WO2009/132131, WO2010/042877, WO2010/054384, WO2010/054401, WO2010/054405, WO2010/054406 and WO2010/105209). See also Semple S. C. et al., Rational design of cationic lipids for siRNA delivery, Nature Biotechnology, published online 17 Jan. 2010; doi:10.1038/nbt.1602.
- The cationic lipids of the instant invention are useful components in a lipid nanoparticle for the delivery of oligonucleotides, specifically siRNA and miRNA.
- In a first embodiment of this invention, the cationic lipids are illustrated by the Formula A:
- wherein:
- R1 and R2 are independently selected from H, (C1-C6)alkyl, heterocyclyl, and polyamine, wherein said alkyl, heterocyclyl and polyamine are optionally substituted with one to three substituents selected from R′, or R1 and R2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R′;
- R3 is selected from H and (C1-C6)alkyl, said alkyl optionally substituted with one to three substituents selected from R′;
- R′ is independently selected from halogen, R″, OR″, SR″, CN, CO2R″ and CON(R″)2;
- R″ is independently selected from H and (C1-C6)alkyl, wherein said alkyl is optionally substituted with halogen and OH;
- n is 0, 1, 2, 3, 4 or 5;
- X is selected from O, NR″, (C═O)O, NR″(C═O), O(C═O)O, NR″(C═O)NR″, O(C═O)NR″, and NR″(C═O)O;
- L1 is selected from C4-C24 alkyl and C4-C24 alkenyl, said alkyl and alkenyl are optionally substituted with one or more substituents selected from R′; and
- L2 is selected from C3-C9 alkyl and C3-C9 alkenyl, said alkyl and alkenyl are optionally substituted with one or more substituents selected from R′;
- or any pharmaceutically acceptable salt or stereoisomer thereof.
- In a second embodiment, the invention features a compound having Formula A, wherein:
- R1 and R2 are each methyl;
- R3 is H;
- n is 3;
- X is (C═O)O;
- L1 is selected from C4-C24 alkyl and C4-C24 alkenyl; and
- L2 is selected from C3-C9 alkyl and C3-C9 alkenyl;
- or any pharmaceutically acceptable salt or stereoisomer thereof.
- Specific cationic lipids are:
- (20Z,23Z)-nonacosa-20,23-dien-10-yl 4-(dimethylamino)butanoate (Compound 1); and
(18Z)-heptacos-18-en-10-yl 4-(dimethylamino)butanoate (Compound 2);
or any pharmaceutically acceptable salt or stereoisomer thereof. - In another embodiment, the cationic lipids disclosed are useful in the preparation of lipid nanoparticles.
- In another embodiment, the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of oligonucleotides.
- In another embodiment, the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of siRNA and miRNA.
- In another embodiment, the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of siRNA.
- The cationic lipids of the present invention may have asymmetric centers, chiral axes, and chiral planes (as described in: E. L. Eliel and S. H. Wilen, Stereochemistry of Carbon Compounds, John Wiley & Sons, New York, 1994, pages 1119-1190), and occur as racemates, racemic mixtures, and as individual diastereomers, with all possible isomers and mixtures thereof, including optical isomers, being included in the present invention. In addition, the cationic lipids disclosed herein may exist as tautomers and both tautomeric forms are intended to be encompassed by the scope of the invention, even though only one tautomeric structure is depicted.
- It is understood that substituents and substitution patterns on the cationic lipids of the instant invention can be selected by one of ordinary skill in the art to provide cationic lipids that are chemically stable and that can be readily synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials. If a substituent is itself substituted with more than one group, it is understood that these multiple groups may be on the same carbon or on different carbons, so long as a stable structure results.
- It is understood that one or more Si atoms can be incorporated into the cationic lipids of the instant invention by one of ordinary skill in the art to provide cationic lipids that are chemically stable and that can be readily synthesized by techniques known in the art from readily available starting materials.
- In the compounds of Formula A, the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature. The present invention is meant to include all suitable isotopic variations of the compounds of Formula A. For example, different isotopic forms of hydrogen (H) include protium (1H) and deuterium (2H). Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples. Isotopically-enriched compounds within Formula A can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Scheme and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
- As used herein, “alkyl” means a straight chain, cyclic or branched saturated aliphatic hydrocarbon having the specified number of carbon atoms.
- As used herein, “alkenyl” means a straight chain, cyclic or branched unsaturated aliphatic hydrocarbon having the specified number of carbon atoms including but not limited to diene, triene and tetraene unsaturated aliphatic hydrocarbons.
- Examples of a cyclic “alkyl” or “alkenyl are:
- As used herein, “heterocyclyl” or “heterocycle” means a 4- to 10-membered aromatic or nonaromatic heterocycle containing from 1 to 4 heteroatoms selected from the group consisting of O, N and S, and includes bicyclic groups. “Heterocyclyl” therefore includes, the following: benzoimidazolyl, benzofuranyl, benzofurazanyl, benzopyrazolyl, benzotriazolyl, benzothiophenyl, benzoxazolyl, carbazolyl, carbolinyl, cinnolinyl, furanyl, imidazolyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthpyridinyl, oxadiazolyl, oxazolyl, oxazoline, isoxazoline, oxetanyl, pyranyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridopyridinyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolyl, quinazolinyl, quinolyl, quinoxalinyl, tetrahydropyranyl, tetrazolyl, tetrazolopyridyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, azetidinyl, 1,4-dioxanyl, hexahydroazepinyl, piperazinyl, piperidinyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, dihydrobenzoimidazolyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, dihydrobenzoxazolyl, dihydrofuranyl, dihydroimidazolyl, dihydroindolyl, dihydroisooxazolyl, dihydroisothiazolyl, dihydrooxadiazolyl, dihydrooxazolyl, dihydropyrazinyl, dihydropyrazolyl, dihydropyridinyl, dihydropyrimidinyl, dihydropyrrolyl, dihydroquinolinyl, dihydrotetrazolyl, dihydrothiadiazolyl, dihydrothiazolyl, dihydrothienyl, dihydrotriazolyl, dihydroazetidinyl, methylenedioxybenzoyl, tetrahydrofuranyl, and tetrahydrothienyl, and N-oxides thereof all of which are optionally substituted with one to three substituents selected from R″.
- As used herein, “polyamine” means compounds having two or more amino groups. Examples include putrescine, cadaverine, spermidine, and spermine.
- As used herein, “halogen” means Br, Cl, F and I.
- In an embodiment of Formula A, R1 and R2 are independently selected from H and (C1-C6)alkyl, wherein said alkyl is optionally substituted with one to three substituents selected from R′, or R1 and R2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R′.
- In an embodiment of Formula A, R1 and R2 are independently selected from H, methyl, ethyl and propyl, wherein said methyl, ethyl and propyl are optionally substituted with one to three substituents selected from R′, or R1 and R2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R′.
- In an embodiment of Formula A, R1 and R2 are independently selected from H, methyl, ethyl and propyl.
- In an embodiment of Formula A, R1 and R2 are each methyl.
- In an embodiment of Formula A, R3 is independently selected from: H and methyl.
- In an embodiment of Formula A, R3 is H.
- In an embodiment of Formula A, R′ is R″.
- In an embodiment of Formula A, R″ is independently selected from H, methyl, ethyl and propyl, wherein said methyl, ethyl and propyl are optionally substituted with one or more halogen and OH.
- In an embodiment of Formula A, R″ is independently selected from H, methyl, ethyl and propyl.
- In an embodiment of Formula A, n is 0, 1, 2, 3 or 4.
- In an embodiment of Formula A, n is 2, 3 or 4.
- In an embodiment of Formula A, n is 3.
- In an embodiment of Formula A, X is O, NR″, (C═O)O, NR″(C═O), O(C═O)O, NR″(C═O)NR″, O(C═O)NR″, or NR″(C═O)O.
- In an embodiment of Formula A, X is (C═O)O.
- In an embodiment of Formula A, L1 is selected from C4-C24 alkyl and C4-C24 alkenyl, which are optionally substituted with halogen and OH.
- In an embodiment of Formula A, L1 is selected from C4-C24 alkyl and C4-C24 alkenyl.
- In an embodiment of Formula A, L1 is selected from C4-C24 alkenyl.
- In an embodiment of Formula A, L1 is selected from C12-C24 alkenyl.
- In an embodiment of Formula A, L1 is C19 alkenyl.
- In an embodiment of Formula A, L1 is:
- In an embodiment of Formula A, L1 is:
- In an embodiment of Formula A, L2 is selected from C3-C9 alkyl and C3-C9 alkenyl, which are optionally substituted with halogen and OH.
- In an embodiment of Formula A, L2 is selected from C5-C9 alkyl and C5-C9 alkenyl, which are optionally substituted with halogen and OH.
- In an embodiment of Formula A, L2 is selected from C7-C9 alkyl and C7-C9 alkenyl, which are optionally substituted with halogen and OH.
- In an embodiment of Formula A, L2 is selected from C3-C9 alkyl and C3-C9 alkenyl.
- In an embodiment of Formula A, L2 is selected from C5-C9 alkyl and C5-C9 alkenyl.
- In an embodiment of Formula A, L2 is selected from C7-C9 alkyl and C7-C9 alkenyl.
- In an embodiment of Formula A, L2 is C3-C9 alkyl.
- In an embodiment of Formula A, L2 is C5-C9 alkyl.
- In an embodiment of Formula A, L2 is C7-C9 alkyl.
- In an embodiment of Formula A, L2 is C9 alkyl.
- In an embodiment of Formula A, “heterocyclyl” is pyrolidine, piperidine, morpholine, imidazole or piperazine.
- In an embodiment of Formula A, “monocyclic heterocyclyl” is pyrolidine, piperidine, morpholine, imidazole or piperazine.
- In an embodiment of Formula A, “polyamine” is putrescine, cadaverine, spermidine or spermine.
- In an embodiment, “alkyl” is a straight chain saturated aliphatic hydrocarbon having the specified number of carbon atoms.
- In an embodiment, “alkenyl” is a straight chain unsaturated aliphatic hydrocarbon having the specified number of carbon atoms.
- Included in the instant invention is the free form of cationic lipids of Formula A, as well as the pharmaceutically acceptable salts and stereoisomers thereof. Some of the isolated specific cationic lipids exemplified herein are the protonated salts of amine cationic lipids. The term “free form” refers to the amine cationic lipids in non-salt form. The encompassed pharmaceutically acceptable salts not only include the isolated salts exemplified for the specific cationic lipids described herein, but also all the typical pharmaceutically acceptable salts of the free form of cationic lipids of Formula A. The free form of the specific salt cationic lipids described may be isolated using techniques known in the art. For example, the free form may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate. The free forms may differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid and base salts are otherwise pharmaceutically equivalent to their respective free forms for purposes of the invention.
- The pharmaceutically acceptable salts of the instant cationic lipids can be synthesized from the cationic lipids of this invention which contain a basic or acidic moiety by conventional chemical methods. Generally, the salts of the basic cationic lipids are prepared either by ion exchange chromatography or by reacting the free base with stoichiometric amounts or with an excess of the desired salt-forming inorganic or organic acid in a suitable solvent or various combinations of solvents. Similarly, the salts of the acidic compounds are formed by reactions with the appropriate inorganic or organic base.
- Thus, pharmaceutically acceptable salts of the cationic lipids of this invention include the conventional non-toxic salts of the cationic lipids of this invention as formed by reacting a basic instant cationic lipids with an inorganic or organic acid. For example, conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like, as well as salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxy-benzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, trifluoroacetic (TFA) and the like.
- When the cationic lipids of the present invention are acidic, suitable “pharmaceutically acceptable salts” refers to salts prepared form pharmaceutically acceptable non-toxic bases including inorganic bases and organic bases. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as arginine, betaine caffeine, choline, N,N1-dibenzylethylenediamine, diethylamin, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine tripropylamine, tromethamine and the like.
- The preparation of the pharmaceutically acceptable salts described above and other typical pharmaceutically acceptable salts is more fully described by Berg et al., “Pharmaceutical Salts,” J. Pharm. Sci., 1977:66:1-19.
- It will also be noted that the cationic lipids of the present invention are potentially internal salts or zwitterions, since under physiological conditions a deprotonated acidic moiety in the compound, such as a carboxyl group, may be anionic, and this electronic charge might then be balanced off internally against the cationic charge of a protonated or alkylated basic moiety, such as a quaternary nitrogen atom.
- Examples provided are intended to assist in a further understanding of the invention. Particular materials employed, species and conditions are intended to be further illustrative of the invention and not limitative of the reasonable scope thereof. The reagents utilized in synthesizing the cationic lipids are either commercially available or are readily prepared by one of ordinary skill in the art.
- Synthesis of the novel cationic lipids is a linear process starting from lipid acid (i). Coupling to N,O-dimethyl hydroxylamine gives the Weinreb amide ii. Grignard addition generates ketone iii. Reduction of the ketone generates alcohol iv. Esterification via EDC coupling gives esters of type v.
-
- 11,14-Eicosadienoic acid, (11Z,14Z)- (50 g, 162 mmol), N, O-Dimethylhydroxylamine hydrochloride (31.6 g, 324 mmol), HOAt (44.1 g, 324 mmol), Et3N (45.2 mL, 324 mmol), and EDC (62.1 g, 324 mmol) were mixed in DCM (810 mL) and stirred overnight at ambient temperature. Reaction was then washed 5×700 mL water, then washed 1×600 mL 1 M NaOH, dried with sodium sulfate, filtered through celite and evaporated to obtain 53.06 g (93%) 11,14-eicosadienamide, N-methoxy-N-methyl-, (11Z,14Z) as a clear golden oil. 1H NMR (400 MHz, CDCl3) δ 5.35 (m, 4H), 3.68 (s, 3H), 3.18 (s, 3H), 2.77 (m, 2H), 2.41 (t, J=7 Hz, 2H), 2.05 (m, 4H), 1.63 (m, 2H), 1.40-1.26 (m, 18H), 0.89 (t, J=7 Hz, 3H).
- 11,14-eicosadienamide, N-methoxy-N-methyl-, (11Z,14Z)- 1 (4 g, 11.38 mmol) was dissolved in dry THF (50.0 ml) in a 250 mL flask then 1 M nonylmagnesium bromide (22.76 ml, 22.76 mmol) was added under nitrogen at ambient temperature. After 10 min, the reaction was slowly quenched with excess sat. aq NH4Cl. The reaction was washed into a separatory funnel with hexane and water, shaken, the lower aqueous layer discarded, the upper layer dried with sodium sulfate, filtered, and evaporated to give crude ketone as a golden oil. The ketone was carried directly into the next reaction crude.
- Ketone (6.32 g, 15.1 mmol, 1 equiv) was dissolved in EtOH (75 mL) and NaBH4 (2.86 g, 75 mmol, 5 equiv) added. After 15 min of stirring at rt, the reaction was evaporated to a residue, taken up in hexane (200 mL) and water (200 mL), organic layer separated and dried with sodium sulfate, filtered, and evaporated to 20,23-nonacosadien-10-ol, (20Z,23Z)- (iv) obtained as a white solid which was used without further purification. 1H NMR (500 MHz, CDCl3) δ 5.35 (m, 4H), 3.58 (m, 1H), 2.77 (m, 2H), 2.05 (m, 4H), 1.48-1.22 (m, 39H), 0.89 (m, 6H).
- 4-(dimethylamino)butyric acid hydrochloride (3.03 g, 18.05 mmol, 1.2 equiv), 20,23-nonacosadien-10-ol, (20Z,23Z)- (iv) (6.33 g, 15.04 mmol, 1 equiv), EDC (3.46 g, 18.05 mmol, 1.2 equiv), DMAP (0.368 g, 3.01 mmol, 0.2 equiv), and DIEA (7.88 mL, 45.1 mmol, 3 equiv) were combined in DCM (100 mL) and stirred at ambient temperature for 16 hours. The reaction was then washed 1×250 mL sat. NaHCO3, and then the lower organic layer directly injected onto a 330 g silica column and purified eluting 0-15% MeOH/DCM over 30 min. Collected butanoic acid, 4-(dimethylamino)-, (11Z,14z)-1-nonyl-11,14-eicosadien-1-yl ester (1) as a yellow oil. 1H NMR (500 MHz, CDCl3) δ 5.35 (m, 4H), 4.87 (m, 1H), 2.77 (m, 2H), 2.34-2.26 (m, 4H), 2.22 (s, 6H), 2.05 (m, 4H), 1.79 (m, 2H), 1.51 (m, 4H), 1.38-1.22 (m, 34H), 0.88 (m, 6H).
-
-
Compound 2 was prepared in a manner analogous to that described forCompound 1 above. HRMS (M+H) calc'd 508.5088, found 508.5091. -
Compound 3 is MC3 as described in WO 2010/054401, and WO 2010/144740 A1. -
Compound 4 is DLinKC2DMA as described in Nature Biotechnology, 2010, 28, 172-176, WO 2010/042877 A1, WO 2010/048536 A2, WO 2010/088537 A2, and WO 2009/127060 A1. - The following lipid nanoparticle compositions (LNPs) of the instant invention are useful for the delivery of oligonucleotides, specifically siRNA and miRNA:
- The Lipid Nano-Particles (LNP) are prepared by an impinging jet process. The particles are formed by mixing lipids dissolved in alcohol with siRNA dissolved in a citrate buffer. The mixing ratio of lipids to siRNA are targeted at 45-55% lipid and 65-45% siRNA. The lipid solution contains a novel cationic lipid of the instant invention, a helper lipid (cholesterol), PEG (e.g. PEG-C-DMA, PEG-DMG) lipid, and DSPC at a concentration of 5-15 mg/mL with a target of 9-12 mg/mL in an alcohol (for example ethanol). The ratio of the lipids has a mole percent range of 25-98 for the cationic lipid with a target of 35-65, the helper lipid has a mole percent range from 0-75 with a target of 30-50, the PEG lipid has a mole percent range from 1-15 with a target of 1-6, and the DSPC has a mole percent range of 0-15 with a target of 0-12. The siRNA solution contains one or more siRNA sequences at a concentration range from 0.3 to 1.0 mg/mL with a target of 0.3-0.9 mg/mL in a sodium citrate buffered salt solution with pH in the range of 3.5-5. The two liquids are heated to a temperature in the range of 15-40° C., targeting 30-40° C., and then mixed in an impinging jet mixer instantly forming the LNP. The teeID has a range from 0.25 to 1.0 ram and a total flow rate from 10-600 mL/min. The combination of flow rate and tubing ID has effect of controlling the particle size of the LNPs between 30 and 200 nm. The solution is then mixed with a buffered solution at a higher pH with a mixing ratio in the range of 1:1 to 1:3 vol:vol but targeting 1:2 vol:vol. This buffered solution is at a temperature in the range of 15-40° C., targeting 30-40° C. The mixed LNPs are held from 30 minutes to 2 hrs prior to an anion exchange filtration step. The temperature during incubating is in the range of 15-40° C., targeting 30-40° C. After incubating the solution is filtered through a 0.8 um filter containing an anion exchange separation step. This process uses tubing IDs ranging from 1 mm ID to 5 mm ID and a flow rate from 10 to 2000 mL/min. The LNPs are concentrated and diafiltered via an ultrafiltration process where the alcohol is removed and the citrate buffer is exchanged for the final buffer solution such as phosphate buffered saline. The ultrafiltration process uses a tangential flow filtration format (TFF). This process uses a membrane nominal molecular weight cutoff range from 30-500 KD. The membrane format can be hollow fiber or flat sheet cassette. The TFF processes with the proper molecular weight cutoff retains the LNP in the retentate and the filtrate or permeate contains the alcohol; citrate buffer; final buffer wastes. The TFF process is a multiple step process with an initial concentration to a siRNA concentration of 1-3 mg/mL. Following concentration, the LNPs solution is diafiltered against the final buffer for 10-20 volumes to remove the alcohol and perform buffer exchange. The material is then concentrated an additional 1-3 fold. The final steps of the LNP process are to sterile filter the concentrated LNP solution and vial the product.
- 1) siRNA Concentration
- The siRNA duplex concentrations are determined by Strong Anion-Exchange High-Performance Liquid Chromatography (SAX-HPLC) using Waters 2695 Alliance system (Water Corporation, Milford Mass.) with a 2996 PDA detector. The LNPs, otherwise referred to as RNAi Delivery Vehicles (RDVs), are treated with 0.5% Triton X-100 to free total siRNA and analyzed by SAX separation using a Dionex BioLC DNAPac PA 200 (4×250 mm) column with UV detection at 254 nm. Mobile phase is composed of A: 25 mM NaClO4, 10 mM Tris, 20% EtOH, pH 7.0 and B: 250 mM NaClO4, 10 mM Tris, 20% EtOH, pH 7.0 with liner gradient from 0-15 min and flow rate of 1 ml/min. The siRNA amount is determined by comparing to the siRNA standard curve.
- Fluorescence reagent SYBR Gold is employed for RNA quantitation to monitor the encapsulation rate of RDVs. RDVs with or without Triton X-100 are used to determine the free siRNA and total siRNA amount. The assay is performed using a SpectraMax M5e microplate spectrophotometer from Molecular Devices (Sunnyvale, Calif.). Samples are excited at 485 nm and fluorescence emission was measured at 530 nm. The siRNA amount is determined by comparing to the siRNA standard curve.
-
Encapsulation rate=(1−free siRNA/total siRNA)×100% - RDVs containing 1 μg siRNA are diluted to a final volume of 3 ml with 1×PBS. The particle size and polydispersity of the samples is measured by a dynamic light scattering method using ZetaPALS instrument (Brookhaven Instruments Corporation, Holtsville, N.Y.). The scattered intensity is measured with He—Ne laser at 25° C. with a scattering angle of 90°.
- RDVs containing 1 μg siRNA are diluted to a final volume of 2 ml with 1 mM Tris buffer (pH 7.4). Electrophoretic mobility of samples is determined using ZetaPALS instrument (Brookhaven Instruments Corporation, Holtsville, N.Y.) with electrode and He—Ne laser as a light source. The Smoluchowski limit is assumed in the calculation of zeta potentials,
- Individual lipid concentrations are determined by Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) using Waters 2695 Alliance system (Water Corporation, Milford Mass.) with a Corona charged aerosol detector (CAD) (ESA Biosciences, Inc, Chelmsford, Mass.). Individual lipids in RDVs are analyzed using an Agilent Zorbax SB-C18 (50×4.6 mm, 1.8 μm particle size) column with CAD at 60° C. The mobile phase is composed of A: 0.1% TFA in H2O and B: 0.1% TFA in IPA. The gradient changes from 60% mobile phase A and 40% mobile phase B from
time 0 to 40% mobile phase A and 60% mobile phase B at 1.00 min; 40% mobile phase A and 60% mobile phase B from 1.00 to 5.00 min; 40% mobile phase A and 60% mobile phase B from 5.00 min to 25% mobile phase A and 75% mobile phase B at 10.00 min; 25% mobile phase A and 75%© mobile phase B from 10.00 min to 5% mobile phase A and 95% mobile phase B at 15.00 min; and 5% mobile phase A and 95% mobile phase B from 15.00 to 60% mobile phase A and 40% mobile phase B at 20.00 min with flow rate of 1 ml/min. The individual lipid concentration is determined by comparing to the standard curve with all the lipid components in the RDVs with a quadratic curve fit. The molar percentage of each lipid is calculated based on its molecular weight. - Utilizing the above described LNP process, specific LNPs with the following ratios were identified:
- Oligonucleotide synthesis is well known in the art. (See US patent applications: US 2006/0083780, US 2006/0240554, US 2008/0020058, US 2009/0263407 and US 2009/0285881 and PCT patent applications: WO 2009/086558, WO2009/127060, WO2009/132131, WO2010/042877, WO2010/054384, WO2010/054401, WO2010/054405 and WO2010/054406). The Luc and ApoB siRNA incorporated in the LNPs disclosed and utilized in the Examples were synthesized via standard solid phase procedures.
- Luc siRNA
-
(SEQ.ID.NO.: 1) 5′-iB-A U AAGG CU A U GAAGAGA U ATT- iB 3′(SEQ.ID.NO.: 2) 3′-UUUAUUCCGAUACUUCUC UAU-5′ AUGC- Ribose iB- Inverted deoxy abasic UC- 2′ Fluoro AGT- 2′ Deoxy AGU- 2′ OCH3 - ApoB siRNA
-
(SEQ ID NO.: 3) 5′-iB-CUUUAACAAUUCCUGAAAUTsT-iB-3′ (SEQ ID NO.: 4) 3′-UsUGAAAUUGUUAAGGACUsUsUsA-5′ AUGC- Ribose iB- Inverted deoxy abasic UC- 2′ Fluoro AGT- 2′ Deoxy AGU- 2′ OCH3 UsA- phophorothioate linkage -
LNPs utilizing Compound 1, in the nominal compositions described immediately above, were evaluated for in vivo efficacy. The siRNA targets the mRNA transcript for the firefly (Photinus pyralis) luciferase gene (Accession 4 M15077). The primary sequence and chemical modification pattern of the luciferase siRNA is displayed above. The in vivo luciferase model employs a transgenic mouse in which the firefly luciferase coding sequence is present in all cells. ROSA26- LoxP-Stop-LoxP-Luc (LSL-Luc) transgenic mice licensed from the Dana Farber Cancer Institute are induced to express the Luciferase gene by first removing the LSL sequence with a recombinant Ad-Cre virus (Vector Biolabs). Due to the organo-tropic nature of the virus, expression is limited to the liver when delivered via tail vein injection. Luciferase expression levels in liver are quantitated by measuring light output, using an IVIS imager (Xenogen) following administration of the luciferin substrate (Caliper Life Sciences). Pre-dose luminescence levels are measured prior to administration of the RDVs. Luciferin in PBS (15 mg/mL) is intraperitoneally (IP) injected in a volume of 150 μL. After a four minute incubation period mice are anesthetized with isoflurane and placed in the IVIS imager. The RDVs (containing siRNA) in PBS vehicle were tail vein injected n a volume of 0.2 mL. Final dose levels ranged from 0.1 to 0.5 mg/kg siRNA. PBS vehicle alone was dosed as a control. Mice were imaged 48 hours post dose using the method described above. Changes in luciferin light output directly correlate with luciferase mRNA levels and represent an indirect measure of luciferase siRNA activity. In vivo efficacy results are expressed as % inhibition of luminescence relative to pre-dose luminescence levels. Systemic administration of the luciferase siRNA RDVs decreased luciferase expression in a dose dependant manner. Greater efficacy was observed in mice dosed withCompound 1 containing RDVs than with the RDV containing the octyl-CLiuDMA (OCD) cationic lipid (FIG. 1 ). OCD is known and described in WO2010/021865. - LNPs utilizing compounds in the nominal compositions described above, were evaluated for in vivo efficacy and increases in alanine amino transferase and aspartate amino transferase in Sprague-Dawley (Crl:CD(SD) female rats (Charles River Labs). The siRNA targets the mRNA transcript for the ApoB gene (Accession # NM 019287). The primary sequence and chemical modification pattern of the ApoB siRNA is displayed above. The RDVs (containing siRNA) in PBS vehicle were tail vein injected in a volume of 1 to 1.5 mL. Infusion rate is approximately 3 ml/min. Five rats were used in each dosing group. After LNP administration, rats are placed in cages with normal diet and water present. Six hours post dose, food is removed from the cages. Animal necropsy is performed 24 hours after LNP dosing. Rats are anesthetized under isoflurane for 5 minutes, then maintained under anesthesia by placing them in nose cones continuing the delivery of isoflurane until exsanguination is completed. Blood is collected from the vena cava using a 23 gauge butterfly venipuncture set and aliquoted to serum separator vacutainers for serum chemistry analysis. Punches of the excised caudate liver lobe are taken and placed in RNALater (Ambion) for mRNA analysis. Preserved liver tissue was homogenized and total RNA isolated using a Qiagen bead mill and the Qiagen miRNA-Easy RNA isolation kit following the manufacturer's instructions. Liver ApoB mRNA levels were determined by quantitative RT-PCR. Message was amplified from purified RNA utilizing a rat ApoB commercial probe set (Applied Biosystems Cat # RN01499054_m1). The PCR reaction was performed on an ABI 7500 instrument with a 96-well Fast Block. The ApoB mRNA level is normalized to the housekeeping PPIB (NM 011149) mRNA. PPIB mRNA levels were determined by RT-PCR using a commercial probe set (Applied Biosytems Cat. No. Mm00478295_m1). Results are expressed as a ratio of ApoB mRNA/PPIB mRNA. All mRNA data is expressed relative to the PBS control dose. Serum ALT and AST analysis were performed on the Siemens Advia 1800 Clinical Chemistry Analyzer utilizing the Siemens alanine aminotransferase (Cat#03039631) and aspartate aminotransferase (Cat#03039631) reagents. Similar efficacy was observed in rats dosed with
Compound 2 containing RDV than with the RDV containing the cationic lipid DLinKC2DMA (Compound 4) or MC3 (Compound 3,FIG. 2 ). Additionally, 3 out of 4 rats treated with 3 mg/kg DLinKC2DMA (Compound 4) failed to survive 48 hours and 2 out of 4 rats treated with 3 mg/kg MC3 (Compound 3) failed to survive 48 hours. 3 out of 4 rats treated with 6 mg/kg Compound 2 survived at 48 hours post dose. - Liver tissue was weighed into 20-ml vials and homogenized in 9 v/w of water using a GenoGrinder 2000 (OPS Diagnostics, 1600 strokes/min, 5 min). A 50 μL aliquot of each tissue homogenate was mixed with 300 μL of extraction/protein precipitating solvent (50/50 acetonitrile/methanol containing 500 nM internal standard) and the plate was centrifuged to sediment precipitated protein. A volume of 200 μL of each supernatant was then transferred to separate wells of a 96-well plate and 10 μl samples were directly analyzed by LC/MS-MS.
- Standards were prepared by spiking known amounts of a methanol stock solution of compound into untreated rat liver homogenate (9 vol water/weight liver). Aliquots (50 up each standard/liver homogenate was mixed with 300 μL of extraction/protein precipitating solvent (50/50 acetonitrile/methanol containing 500 nM internal standard) and the plate was centrifuged to sediment precipitated protein. A volume of 200 μL of each supernatant was transferred to separate wells of a 96-well plate and 10 μl of each standard was directly analyzed by LC/MS-MS.
- Absolute quantification versus standards prepared and extracted from liver homogenate was performed using an Aria LX-2 HPLC system (Thermo Scientific) coupled to an API 4000 triple quadrupole mass spectrometer (Applied Biosystems). For each run, a total of 10 μL sample was injected onto a BDS Hypersil C8 HPLC column (Thermo, 50×2 mm, 3 μm) at ambient temperature.
- Mobile Phase A:
- 95% H2O/5% methanol/10 mM ammonium formate/0.1% formic acid Mobile Phase B: 40% methanol/60% n-propanol/10 mM ammonium formate/0.1% formic acid The flow rate was 0.5 mL/min and gradient elution profile was as follows: hold at 80% A for 0.25 min, linear ramp to 100% B over 1.6 min, hold at 100% B for 2.5 min, then return and hold at 80% A for 1.75 min. Total run time was 5.8 min. API 4000 source parameters were CAD: 4, CUR: 15, GS1: 65, GS2: 35, IS: 4000, TEM: 550, CXP: 15, DP: 60, EP: 10. In rats dosed with
Compound 2 containing RDV liver levels were lower than with the RDV containing the cationic lipid DLinKC2DMA (Compound 4) or MC3 (Compound 3,FIG. 3 ).
Claims (18)
1. A cationic lipid of Formula A:
wherein:
R1 and R2 are independently selected from H, (C1-C6)alkyl, heterocyclyl, and polyamine, wherein said alkyl, heterocyclyl and polyamine are optionally substituted with one to three substituents selected from R′, or R1 and R2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R′;
R3 is selected from H and (C1-C6) alkyl, said alkyl optionally substituted with one to three substituents selected from R′;
R′ is independently selected from halogen, R″, OR″, SR″, CN, CO2R″ or CON(R″)2;
R″ is independently selected from H and (C1-C6) alkyl, wherein said alkyl is optionally substituted with halogen and OH;
n is 0, 1, 2, 3, 4 or 5;
X is selected from O, NR″, (C═O)O, NR″(C═O), O(C═O)O, NR″(C═O)NR″, O(C═O)NR″, and NR″(C═O)O;
L1 is selected from C4-C24 alkyl and C4-C24 alkenyl, said alkyl and alkenyl are optionally substituted with one or more substituents selected from R′; and
L2 is selected from C3-C9 alkyl and C3-C9 alkenyl, said alkyl and alkenyl are optionally substituted with one or more substituents selected from R′; or any pharmaceutically acceptable salt or stereoisomer thereof.
2. The cationic lipid of claim 1 , wherein:
R1 and R2 are each methyl;
R3 is H;
n is 3;
X is (C═O)O;
L1 is selected from C4-C24 alkyl and C4-C24 alkenyl; and
L2 is selected form C3-C9 alkyl and C3-C9 alkenyl;
or any pharmaceutically acceptable salt or stereoisomer thereof.
3. The cationic lipid of claim 1 , wherein R1 and R2 are independently selected from the group consisting of H, methyl, ethyl and propyl.
4. The cationic lipid of claim 3 , wherein R1 and R2 each are methyl.
5. The cationic lipid of claim 4 , wherein R3 is H or methyl.
6. The cationic lipid of claim 5 , wherein R3 is H.
7. The cationic lipid of claim 1 , wherein n is 2, 3 or 4.
8. The cationic lipid of claim 7 , wherein n is 3.
9. The cationic lipid of claim 1 , wherein X is (C═O)O.
10. The cationic lipid of claim 1 , wherein L2 is C5-C9 alkyl or C5-C9 alkenyl.
11. The cationic lipid of claim 10 , wherein L2 is C7-C9 alkyl or C7-C9 alkenyl.
12. A lipid nanoparticle comprising a cationic lipid of claim 1 .
13. The lipid nanoparticle of claim 12 , wherein the lipid nanoparticle further comprises an oligonucleotide.
14. The lipid nanoparticle of claim 13 , wherein the oligonucleotide is an siRNA or miRNA.
15. The lipid nanoparticle of claim 14 , wherein the oligonucleotide is an siRNA.
16. The lipid nanoparticle of claim 15 , wherein the lipid nanoparticle further comprises cholesterol and PEG-DMG.
17. The lipid nanoparticle of claim 12 , wherein the lipid nanoparticle further comprises cholesterol, PEG-DMG and DSPC.
18. The lipid nanoparticle of claim 12 , wherein the lipid nanoparticle further comprises cholesterol, PEG-C-DMA and DSPC.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/926,936 US20180208545A1 (en) | 2010-10-21 | 2018-03-20 | Novel low molecular weight cationic lipids for oligonucleotide delivery |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US40541310P | 2010-10-21 | 2010-10-21 | |
| PCT/US2011/056502 WO2012054365A2 (en) | 2010-10-21 | 2011-10-17 | Novel low molecular weight cationic lipids for oligonucleotide delivery |
| US201313880254A | 2013-04-18 | 2013-04-18 | |
| US14/682,494 US9458090B2 (en) | 2010-10-21 | 2015-04-09 | Low molecular weight cationic lipids for oligonucleotide delivery |
| US15/282,294 US9981907B2 (en) | 2010-10-21 | 2016-09-30 | Low molecular weight cationic lipids for oligonucleotide delivery |
| US15/926,936 US20180208545A1 (en) | 2010-10-21 | 2018-03-20 | Novel low molecular weight cationic lipids for oligonucleotide delivery |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/282,294 Continuation US9981907B2 (en) | 2010-10-21 | 2016-09-30 | Low molecular weight cationic lipids for oligonucleotide delivery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180208545A1 true US20180208545A1 (en) | 2018-07-26 |
Family
ID=45975815
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/880,254 Active US9029590B2 (en) | 2010-10-21 | 2011-10-17 | Low molecular weight cationic lipids for oligonucleotide delivery |
| US14/682,494 Active US9458090B2 (en) | 2010-10-21 | 2015-04-09 | Low molecular weight cationic lipids for oligonucleotide delivery |
| US15/282,294 Active US9981907B2 (en) | 2010-10-21 | 2016-09-30 | Low molecular weight cationic lipids for oligonucleotide delivery |
| US15/926,936 Abandoned US20180208545A1 (en) | 2010-10-21 | 2018-03-20 | Novel low molecular weight cationic lipids for oligonucleotide delivery |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/880,254 Active US9029590B2 (en) | 2010-10-21 | 2011-10-17 | Low molecular weight cationic lipids for oligonucleotide delivery |
| US14/682,494 Active US9458090B2 (en) | 2010-10-21 | 2015-04-09 | Low molecular weight cationic lipids for oligonucleotide delivery |
| US15/282,294 Active US9981907B2 (en) | 2010-10-21 | 2016-09-30 | Low molecular weight cationic lipids for oligonucleotide delivery |
Country Status (8)
| Country | Link |
|---|---|
| US (4) | US9029590B2 (en) |
| EP (2) | EP2629802B1 (en) |
| JP (1) | JP2013545727A (en) |
| KR (1) | KR20130124308A (en) |
| CN (1) | CN103153347A (en) |
| AU (1) | AU2011318289A1 (en) |
| CA (1) | CA2813024A1 (en) |
| WO (1) | WO2012054365A2 (en) |
Families Citing this family (229)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3578205A1 (en) | 2010-08-06 | 2019-12-11 | ModernaTX, Inc. | A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof |
| BR112013007862A2 (en) | 2010-10-01 | 2019-09-24 | Moderna Therapeutics Inc | manipulated nucleic acids and methods of use thereof. |
| EP2629802B1 (en) * | 2010-10-21 | 2019-12-04 | Sirna Therapeutics, Inc. | Low molecular weight cationic lipids for oligonucleotide delivery |
| US8710200B2 (en) | 2011-03-31 | 2014-04-29 | Moderna Therapeutics, Inc. | Engineered nucleic acids encoding a modified erythropoietin and their expression |
| US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| HRP20220250T1 (en) | 2011-10-03 | 2022-04-29 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| AU2012347637B2 (en) | 2011-12-07 | 2017-09-14 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
| PT2791160T (en) | 2011-12-16 | 2022-07-04 | Modernatx Inc | Modified nucleoside, nucleotide, and nucleic acid compositions |
| KR20220045089A (en) | 2012-02-24 | 2022-04-12 | 아뷰터스 바이오파마 코포레이션 | Trialkyl cationic lipids and methods of use thereof |
| US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
| US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| JP6189415B2 (en) | 2012-04-02 | 2017-08-30 | モデルナティエックス インコーポレイテッドModernaTX,Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
| JP2015518705A (en) | 2012-04-02 | 2015-07-06 | モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. | Modified polynucleotides for the production of biologics and proteins associated with human diseases |
| US9402816B2 (en) | 2012-04-19 | 2016-08-02 | Sima Therapeutics, Inc. | Diester and triester based low molecular weight, biodegradeable cationic lipids for oligonucleotide delivery |
| EP2922554B1 (en) | 2012-11-26 | 2022-02-23 | ModernaTX, Inc. | Terminally modified rna |
| US10258698B2 (en) | 2013-03-14 | 2019-04-16 | Modernatx, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
| TW201534578A (en) | 2013-07-08 | 2015-09-16 | Daiichi Sankyo Co Ltd | Novel lipid |
| AU2014287009B2 (en) | 2013-07-11 | 2020-10-29 | Modernatx, Inc. | Compositions comprising synthetic polynucleotides encoding CRISPR related proteins and synthetic sgRNAs and methods of use |
| EP3041938A1 (en) | 2013-09-03 | 2016-07-13 | Moderna Therapeutics, Inc. | Circular polynucleotides |
| US20160194625A1 (en) | 2013-09-03 | 2016-07-07 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
| WO2015048744A2 (en) | 2013-09-30 | 2015-04-02 | Moderna Therapeutics, Inc. | Polynucleotides encoding immune modulating polypeptides |
| SG11201602503TA (en) | 2013-10-03 | 2016-04-28 | Moderna Therapeutics Inc | Polynucleotides encoding low density lipoprotein receptor |
| ES2986054T3 (en) | 2013-11-18 | 2024-11-08 | Arcturus Therapeutics Inc | Ionizable cationic lipid for RNA delivery |
| US9365610B2 (en) | 2013-11-18 | 2016-06-14 | Arcturus Therapeutics, Inc. | Asymmetric ionizable cationic lipid for RNA delivery |
| KR102252561B1 (en) | 2013-11-22 | 2021-05-20 | 미나 테라퓨틱스 리미티드 | C/ebp alpha short activating rna compositions and methods of use |
| ES2821758T3 (en) | 2014-01-21 | 2021-04-27 | Anjarium Biosciences Ag | Process for the production of hybridomes |
| WO2015164674A1 (en) | 2014-04-23 | 2015-10-29 | Moderna Therapeutics, Inc. | Nucleic acid vaccines |
| US10182987B2 (en) | 2014-05-20 | 2019-01-22 | National University Corporation Hokkaido University | Lipid membrane structure for intracellular delivery of siRNA |
| CA3179824A1 (en) | 2014-06-25 | 2015-12-30 | Acuitas Therapeutics Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
| US20170204152A1 (en) | 2014-07-16 | 2017-07-20 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
| WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
| US10252974B2 (en) | 2014-08-07 | 2019-04-09 | Takeda Pharmaceutical Company Limited | Cationic lipid |
| US10889812B2 (en) | 2014-10-24 | 2021-01-12 | University Of Maryland, Baltimore | Short non-coding protein regulatory RNAs (sprRNAs) and methods of use |
| FI3313829T3 (en) | 2015-06-29 | 2024-07-01 | Acuitas Therapeutics Inc | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
| JP6948313B6 (en) | 2015-09-17 | 2022-01-14 | モデルナティエックス インコーポレイテッド | Compounds and compositions for intracellular delivery of therapeutic agents |
| EP3364981A4 (en) | 2015-10-22 | 2019-08-07 | ModernaTX, Inc. | VACCINE AGAINST THE CYTOMEGALOVIRUS HUMAN |
| RS63986B1 (en) | 2015-10-28 | 2023-03-31 | Acuitas Therapeutics Inc | Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids |
| MD3386484T2 (en) | 2015-12-10 | 2022-11-30 | Modernatx Inc | Compositions and methods for delivery of therapeutic agents |
| CA3007297A1 (en) | 2015-12-22 | 2017-06-29 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
| EP4039699A1 (en) | 2015-12-23 | 2022-08-10 | ModernaTX, Inc. | Methods of using ox40 ligand encoding polynucleotides |
| WO2017120612A1 (en) | 2016-01-10 | 2017-07-13 | Modernatx, Inc. | Therapeutic mrnas encoding anti ctla-4 antibodies |
| CA3024129A1 (en) * | 2016-05-16 | 2017-11-23 | The Board Of Regents Of The University Of Texas System | Cationic sulfonamide amino lipids and amphiphilic zwitterionic amino lipids |
| WO2018089540A1 (en) | 2016-11-08 | 2018-05-17 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| US10383952B2 (en) | 2016-12-21 | 2019-08-20 | Arcturus Therapeutics, Inc. | Ionizable cationic lipid for RNA delivery |
| US10526284B2 (en) | 2016-12-21 | 2020-01-07 | Arcturus Therapeutics, Inc. | Ionizable cationic lipid for RNA delivery |
| HUE060693T2 (en) | 2017-03-15 | 2023-04-28 | Modernatx Inc | Compound and compositions for intracellular delivery of therapeutic agents |
| CA3055653A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Lipid nanoparticle formulation |
| WO2018170322A1 (en) * | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Crystal forms of amino lipids |
| CN116693411A (en) | 2017-04-28 | 2023-09-05 | 爱康泰生治疗公司 | Novel carbonyl lipid and lipid nanoparticle formulations for delivery of nucleic acids |
| CA3063723A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
| US20200268666A1 (en) | 2017-06-14 | 2020-08-27 | Modernatx, Inc. | Polynucleotides encoding coagulation factor viii |
| US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
| EP3638215A4 (en) | 2017-06-15 | 2021-03-24 | Modernatx, Inc. | Rna formulations |
| CN111315359A (en) | 2017-08-31 | 2020-06-19 | 摩登纳特斯有限公司 | Methods of preparing lipid nanoparticles |
| CA3075205A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Stabilized hnf4a sarna compositions and methods of use |
| EP4219715A3 (en) | 2017-09-08 | 2023-09-06 | MiNA Therapeutics Limited | Stabilized cebpa sarna compositions and methods of use |
| WO2019094648A1 (en) | 2017-11-08 | 2019-05-16 | L.E.A.F. Holdings Group Llc | Platinum complexes and uses thereof |
| CN111954531A (en) | 2018-02-07 | 2020-11-17 | L.E.A.F.控股集团公司 | Alpha polyglutamate pemetrexed and uses thereof |
| JP7490239B2 (en) | 2018-02-07 | 2024-05-27 | エル.イー.エー.エフ. ホールディングス グループ エルエルシー | Gamma polyglutamylated pemetrexed and uses thereof |
| WO2019197845A1 (en) | 2018-04-12 | 2019-10-17 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
| JP7355394B2 (en) | 2018-05-03 | 2023-10-03 | エル.イー.エー.エフ. ホールディングス グループ エルエルシー | Carotenoid compositions and their uses |
| AU2019266347B2 (en) | 2018-05-11 | 2024-05-02 | Lupagen, Inc. | Systems and methods for closed loop, real-time modifications of patient cells |
| EP3833762A4 (en) | 2018-08-09 | 2022-09-28 | Verseau Therapeutics, Inc. | OLIGONUCLEOTIDE COMPOSITIONS FOR TARGETING CCR2 AND CSF1R AND THEIR USES |
| MA53650A (en) | 2018-09-19 | 2021-07-28 | Modernatx Inc | PEG LIPIDS AND THEIR USES |
| WO2020061295A1 (en) | 2018-09-19 | 2020-03-26 | Modernatx, Inc. | High-purity peg lipids and uses thereof |
| CA3113436A1 (en) | 2018-09-19 | 2020-03-26 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| CN113271926A (en) | 2018-09-20 | 2021-08-17 | 摩登纳特斯有限公司 | Preparation of lipid nanoparticles and methods of administration thereof |
| US12329857B2 (en) | 2018-09-21 | 2025-06-17 | Acuitas Therapeutics, Inc. | Systems and methods for manufacturing lipid nanoparticles and liposomes |
| EA202191313A1 (en) * | 2018-11-09 | 2022-01-26 | Арбутус Биофарма Корпорэйшн | COMPOSITIONS BASED ON LIPID NANOPARTICLES |
| CA3118559A1 (en) * | 2018-11-09 | 2020-05-14 | Arbutus Biopharma Corporation | Lipid nanoparticle formulations |
| EP3897702A2 (en) | 2018-12-21 | 2021-10-27 | CureVac AG | Rna for malaria vaccines |
| ES2987392T3 (en) | 2019-01-11 | 2024-11-14 | Acuitas Therapeutics Inc | Lipids for the release of active ingredients from lipid nanoparticles |
| WO2020161342A1 (en) | 2019-02-08 | 2020-08-13 | Curevac Ag | Coding rna administered into the suprachoroidal space in the treatment of ophtalmic diseases |
| US20220211740A1 (en) | 2019-04-12 | 2022-07-07 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
| EP3986452A1 (en) | 2019-06-18 | 2022-04-27 | CureVac AG | Rotavirus mrna vaccine |
| CN114423869A (en) | 2019-07-19 | 2022-04-29 | 旗舰先锋创新Vi有限责任公司 | Recombinase compositions and methods of use |
| US20230000997A1 (en) | 2019-08-06 | 2023-01-05 | L.E.A.F. Holdings Group Llc | Processes of preparing polyglutamated antifolates and uses of their compositions |
| JP2022544412A (en) | 2019-08-14 | 2022-10-18 | キュアバック アーゲー | RNA combinations and compositions with reduced immunostimulatory properties |
| CA3154618A1 (en) | 2019-09-19 | 2021-03-25 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
| AU2020352552A1 (en) | 2019-09-23 | 2022-03-17 | Omega Therapeutics, Inc. | Compositions and methods for modulating hepatocyte nuclear factor 4-alpha (HNF4α) gene expression |
| JP2022548320A (en) | 2019-09-23 | 2022-11-17 | オメガ セラピューティクス, インコーポレイテッド | Compositions and methods for modulating apolipoprotein B (APOB) gene expression |
| AU2021216658A1 (en) | 2020-02-04 | 2022-06-23 | CureVac SE | Coronavirus vaccine |
| AU2021234302A1 (en) | 2020-03-11 | 2022-11-10 | Omega Therapeutics, Inc. | Compositions and methods for modulating forkhead box p3 (foxp3) gene expression |
| MX2022011805A (en) | 2020-03-24 | 2023-01-11 | Generation Bio Co | Non-viral dna vectors and uses thereof for expressing factor ix therapeutics. |
| EP4127186A1 (en) | 2020-03-24 | 2023-02-08 | Generation Bio Co. | Non-viral dna vectors and uses thereof for expressing gaucher therapeutics |
| EP4153223A1 (en) | 2020-05-20 | 2023-03-29 | Flagship Pioneering Innovations VI, LLC | Immunogenic compositions and uses thereof |
| EP4153224A1 (en) | 2020-05-20 | 2023-03-29 | Flagship Pioneering Innovations VI, LLC | Coronavirus antigen compositions and their uses |
| JP2023527413A (en) | 2020-05-29 | 2023-06-28 | フラッグシップ パイオニアリング イノベーションズ シックス,エルエルシー | TREM compositions and related methods |
| KR20230053008A (en) | 2020-05-29 | 2023-04-20 | 큐어백 에스이 | Nucleic Acid-Based Combination Vaccines |
| EP4158032A2 (en) | 2020-05-29 | 2023-04-05 | Flagship Pioneering Innovations VI, LLC | Trem compositions and methods relating thereto |
| CA3189338A1 (en) | 2020-07-16 | 2022-01-20 | Acuitas Therapeutics, Inc. | Cationic lipids for use in lipid nanoparticles |
| US20230272432A1 (en) | 2020-07-27 | 2023-08-31 | Anjarium Biosciences Ag | Compositions of dna molecules, methods of making therefor, and methods of use thereof |
| EP4172194A1 (en) | 2020-07-31 | 2023-05-03 | CureVac SE | Nucleic acid encoded antibody mixtures |
| AU2021320426A1 (en) | 2020-08-06 | 2023-03-23 | Modernatx, Inc. | Compositions for the delivery of payload molecules to airway epithelium |
| CA3170743A1 (en) | 2020-08-31 | 2022-03-03 | Susanne RAUCH | Multivalent nucleic acid based coronavirus vaccines |
| TW202218669A (en) | 2020-09-03 | 2022-05-16 | 美商旗艦先鋒創新有限責任公司 | Immunogenic compositions and uses thereof |
| GB2603454A (en) | 2020-12-09 | 2022-08-10 | Ucl Business Ltd | Novel therapeutics for the treatment of neurodegenerative disorders |
| CA3171051A1 (en) | 2020-12-22 | 2022-06-30 | Curevac Ag | Pharmaceutical composition comprising lipid-based carriers encapsulating rna for multidose administration |
| WO2022137133A1 (en) | 2020-12-22 | 2022-06-30 | Curevac Ag | Rna vaccine against sars-cov-2 variants |
| IL303886A (en) | 2020-12-23 | 2023-08-01 | Flagship Pioneering Inc | Modified TREMS vehicles and their uses |
| WO2022162027A2 (en) | 2021-01-27 | 2022-08-04 | Curevac Ag | Method of reducing the immunostimulatory properties of in vitro transcribed rna |
| US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
| JP2024511092A (en) | 2021-03-26 | 2024-03-12 | ミナ セラピューティクス リミテッド | TMEM173saRNA composition and method of use |
| WO2022200574A1 (en) | 2021-03-26 | 2022-09-29 | Glaxosmithkline Biologicals Sa | Immunogenic compositions |
| US20250345524A1 (en) | 2021-03-31 | 2025-11-13 | CureVac SE | Syringes containing pharmaceutical compositions comprising rna |
| JP2024512669A (en) | 2021-03-31 | 2024-03-19 | フラグシップ パイオニアリング イノベーションズ ブイ,インコーポレーテッド | Tanotransmission polypeptides and their use in the treatment of cancer |
| KR20240012370A (en) | 2021-04-20 | 2024-01-29 | 안자리움 바이오사이언시스 아게 | Compositions of DNA molecules encoding amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase, methods of making them, and methods of using them |
| CN117881786A (en) | 2021-04-27 | 2024-04-12 | 世代生物公司 | Non-viral DNA vector for expressing therapeutic antibodies and its use |
| WO2022232286A1 (en) | 2021-04-27 | 2022-11-03 | Generation Bio Co. | Non-viral dna vectors expressing anti-coronavirus antibodies and uses thereof |
| US20240229075A1 (en) | 2021-05-03 | 2024-07-11 | CureVac SE | Improved nucleic acid sequence for cell type specific expression |
| AU2022290278A1 (en) | 2021-06-11 | 2024-01-04 | LifeEDIT Therapeutics, Inc. | Rna polymerase iii promoters and methods of use |
| WO2023283359A2 (en) | 2021-07-07 | 2023-01-12 | Omega Therapeutics, Inc. | Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression |
| US20240336945A1 (en) | 2021-07-26 | 2024-10-10 | Flagship Pioneering Innovations Vi, Llc | Trem compositions and uses thereof |
| US20240350621A1 (en) | 2021-08-06 | 2024-10-24 | University Of Iowa Research Foundation | Double stranded mrna vaccines |
| CN117940158A (en) | 2021-09-03 | 2024-04-26 | 库瑞瓦格欧洲公司 | Novel lipid nanoparticles comprising phosphatidylserine for nucleic acid delivery |
| AU2022337090A1 (en) | 2021-09-03 | 2024-02-15 | Glaxosmithkline Biologicals Sa | Substitution of nucleotide bases in self-amplifying messenger ribonucleic acids |
| EP4395748A1 (en) | 2021-09-03 | 2024-07-10 | CureVac SE | Novel lipid nanoparticles for delivery of nucleic acids |
| CN115772089B (en) * | 2021-09-07 | 2025-06-10 | 广州谷森制药有限公司 | Cationic lipid compounds |
| CN118234867A (en) | 2021-09-17 | 2024-06-21 | 旗舰创业创新六公司 | Compositions and methods for producing cyclic polyribonucleotides |
| US20240417714A1 (en) | 2021-10-18 | 2024-12-19 | Flagship Pioneering Innovations Vi, Llc | Compositions and methods for purifying polyribonucleotides |
| WO2023073228A1 (en) | 2021-10-29 | 2023-05-04 | CureVac SE | Improved circular rna for expressing therapeutic proteins |
| AU2022383068A1 (en) | 2021-11-08 | 2024-05-02 | Orna Therapeutics, Inc. | Lipid nanoparticle compositions for delivering circular polynucleotides |
| WO2023086465A1 (en) | 2021-11-12 | 2023-05-19 | Modernatx, Inc. | Compositions for the delivery of payload molecules to airway epithelium |
| US20250352638A1 (en) | 2021-11-24 | 2025-11-20 | Flagship Pioneering Innovations Vi, Llc | Coronavirus immunogen compositions and their uses |
| AU2022397300A1 (en) | 2021-11-24 | 2024-06-27 | Flagship Pioneering Innovations Vi, Llc | Immunogenic compositions and their uses |
| WO2023096963A1 (en) | 2021-11-24 | 2023-06-01 | Flagship Pioneering Innovations Vi, Llc | Varicella-zoster virus immunogen compositions and their uses |
| WO2023099884A1 (en) | 2021-12-01 | 2023-06-08 | Mina Therapeutics Limited | Pax6 sarna compositions and methods of use |
| GB202117758D0 (en) | 2021-12-09 | 2022-01-26 | Ucl Business Ltd | Therapeutics for the treatment of neurodegenerative disorders |
| EP4448485A2 (en) | 2021-12-16 | 2024-10-23 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
| KR20240118174A (en) | 2021-12-17 | 2024-08-02 | 플래그쉽 파이어니어링 이노베이션스 브이아이, 엘엘씨 | Method for enrichment of circular RNA under denaturing conditions |
| AU2022417517A1 (en) | 2021-12-22 | 2024-06-27 | Flagship Pioneering Innovations Vi, Llc | Compositions and methods for purifying polyribonucleotides |
| IL313714A (en) | 2021-12-23 | 2024-08-01 | Flagship Pioneering Innovations Vi Llc | Circular polyribonucleotides encoding antifusogenic polypeptides |
| WO2023135273A2 (en) | 2022-01-14 | 2023-07-20 | Anjarium Biosciences Ag | Compositions of dna molecules encoding factor viii, methods of making thereof, and methods of use thereof |
| WO2023144330A1 (en) | 2022-01-28 | 2023-08-03 | CureVac SE | Nucleic acid encoded transcription factor inhibitors |
| TW202345863A (en) | 2022-02-09 | 2023-12-01 | 美商現代公司 | Mucosal administration methods and formulations |
| CN114230521B (en) * | 2022-02-22 | 2022-05-31 | 中国科学院基础医学与肿瘤研究所(筹) | Ionizable cationic compound and application of compound thereof |
| JP2025508467A (en) | 2022-02-24 | 2025-03-26 | アイオー バイオテック エーピーエス | Nucleotide Delivery for Cancer Therapy |
| WO2023170435A1 (en) | 2022-03-07 | 2023-09-14 | Mina Therapeutics Limited | Il10 sarna compositions and methods of use |
| AU2023235112A1 (en) | 2022-03-14 | 2024-10-17 | Generation Bio Co. | Heterologous prime boost vaccine compositions and methods of use |
| WO2023183616A1 (en) | 2022-03-25 | 2023-09-28 | Senda Biosciences, Inc. | Novel ionizable lipids and lipid nanoparticles and methods of using the same |
| WO2023196634A2 (en) | 2022-04-08 | 2023-10-12 | Flagship Pioneering Innovations Vii, Llc | Vaccines and related methods |
| EP4522743A1 (en) | 2022-05-09 | 2025-03-19 | Flagship Pioneering Innovations VI, LLC | Trem compositions and methods of use for treating proliferative disorders |
| CN119487196A (en) | 2022-05-13 | 2025-02-18 | 旗舰创业创新七公司 | Double-stranded DNA compositions and related methods |
| US20250345407A1 (en) | 2022-05-25 | 2025-11-13 | CureVac SE | Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide |
| AU2023283348A1 (en) | 2022-06-07 | 2025-01-09 | Generation Bio Co. | Lipid nanoparticle compositions and uses thereof |
| WO2023242817A2 (en) | 2022-06-18 | 2023-12-21 | Glaxosmithkline Biologicals Sa | Recombinant rna molecules comprising untranslated regions or segments encoding spike protein from the omicron strain of severe acute respiratory coronavirus-2 |
| US20250179492A1 (en) | 2022-06-22 | 2025-06-05 | Flagship Pioneering Innovations Vi, Llc | Compositions of modified trems and uses thereof |
| EP4547230A1 (en) | 2022-06-29 | 2025-05-07 | Juno Therapeutics, Inc. | Lipid nanoparticles for delivery of nucleic acids |
| AU2023320333A1 (en) | 2022-08-01 | 2025-01-16 | Flagship Pioneering Innovations Vii, Llc | Immunomodulatory proteins and related methods |
| KR20250058785A (en) | 2022-08-12 | 2025-04-30 | 라이프 에디트 테라퓨틱스, 인크. | RNA-guided nucleases and active fragments and variants thereof and methods of use |
| EP4569112A1 (en) | 2022-08-12 | 2025-06-18 | Remix Therapeutics Inc. | Methods and compositions for modulating splicing at alternative splice sites |
| WO2024040222A1 (en) | 2022-08-19 | 2024-02-22 | Generation Bio Co. | Cleavable closed-ended dna (cedna) and methods of use thereof |
| CN120239693A (en) | 2022-08-31 | 2025-07-01 | 赛欧生物医药股份有限公司 | Novel ionizable lipids and lipid nanoparticles and methods of using the same |
| EP4342460A1 (en) | 2022-09-21 | 2024-03-27 | NovoArc GmbH | Lipid nanoparticle with nucleic acid cargo |
| WO2024068545A1 (en) | 2022-09-26 | 2024-04-04 | Glaxosmithkline Biologicals Sa | Influenza virus vaccines |
| WO2024077191A1 (en) | 2022-10-05 | 2024-04-11 | Flagship Pioneering Innovations V, Inc. | Nucleic acid molecules encoding trif and additionalpolypeptides and their use in treating cancer |
| DE202023106198U1 (en) | 2022-10-28 | 2024-03-21 | CureVac SE | Nucleic acid-based vaccine |
| AU2023372397A1 (en) | 2022-10-31 | 2025-05-08 | Flagship Pioneering Innovations Vi, Llc | Compositions and methods for purifying polyribonucleotides |
| WO2024102762A1 (en) | 2022-11-08 | 2024-05-16 | Orna Therapeutics, Inc. | Lipids and lipid nanoparticle compositions for delivering polynucleotides |
| TW202425959A (en) | 2022-11-08 | 2024-07-01 | 美商歐納醫療公司 | Lipids and nanoparticle compositions for delivering polynucleotides |
| TW202434728A (en) | 2022-11-08 | 2024-09-01 | 美商旗艦先鋒創新有限責任公司 | Compositions and methods for producing circular polyribonucleotides |
| JP2025537178A (en) | 2022-11-08 | 2025-11-14 | オーナ セラピューティクス, インコーポレイテッド | Circular RNA Compositions |
| KR20250129819A (en) | 2022-12-01 | 2025-08-29 | 제너레이션 바이오 컴퍼니 | Lipid nanoparticles comprising nucleic acids, ionizable lipids, sterols, lipid-anchored polymers, and helper lipids, and uses thereof |
| EP4626402A1 (en) | 2022-12-01 | 2025-10-08 | Generation Bio Co. | Lipid nanoparticles comprising nucleic acids and lipid-anchored polymers |
| CN120615013A (en) | 2022-12-01 | 2025-09-09 | 世代生物公司 | Stealth lipid nanoparticle compositions for cell targeting |
| WO2024119051A1 (en) | 2022-12-01 | 2024-06-06 | Generation Bio Co. | Novel polyglycerol-conjugated lipids and lipid nanoparticle compositions comprising the same |
| KR20250115452A (en) | 2022-12-08 | 2025-07-30 | 리코드 테라퓨틱스, 인크. | Lipid nanoparticle composition and use thereof |
| WO2024125597A1 (en) | 2022-12-14 | 2024-06-20 | Providence Therapeutics Holdings Inc. | Compositions and methods for infectious diseases |
| TW202430215A (en) | 2022-12-14 | 2024-08-01 | 美商旗艦先鋒創新有限責任(Vii)公司 | Compositions and methods for delivery of therapeutic agents to bone |
| WO2024133160A1 (en) | 2022-12-19 | 2024-06-27 | Glaxosmithkline Biologicals Sa | Hepatitis b compositions |
| WO2024134199A1 (en) | 2022-12-22 | 2024-06-27 | Mina Therapeutics Limited | Chemically modified sarna compositions and methods of use |
| WO2024151687A1 (en) | 2023-01-09 | 2024-07-18 | Flagship Pioneering Innovations V, Inc. | Genetic switches and their use in treating cancer |
| WO2024151673A2 (en) | 2023-01-09 | 2024-07-18 | President And Fellows Of Harvard College | Recombinant nucleic acid molecules and their use in wound healing |
| EP4648794A2 (en) | 2023-01-09 | 2025-11-19 | Flagship Pioneering Innovations VII, LLC | Vaccines and related methods |
| US20240252520A1 (en) | 2023-01-09 | 2024-08-01 | Beth Israel Deaconess Medical Center, Inc. | Therapeutic agents and their use for treating chronic wounds |
| WO2024160936A1 (en) | 2023-02-03 | 2024-08-08 | Glaxosmithkline Biologicals Sa | Rna formulation |
| US20240269263A1 (en) | 2023-02-06 | 2024-08-15 | Flagship Pioneering Innovations Vii, Llc | Immunomodulatory compositions and related methods |
| AU2024222387A1 (en) | 2023-02-13 | 2025-08-14 | Flagship Pioneering Innovations Vii, Llc | Cleavable linker-containing ionizable lipids and lipid carriers for therapeutic compositions |
| GB202302092D0 (en) | 2023-02-14 | 2023-03-29 | Glaxosmithkline Biologicals Sa | Analytical method |
| TW202446956A (en) | 2023-02-17 | 2024-12-01 | 美商旗艦先鋒創新有限責任(Vii)公司 | Dna compositions comprising modified cytosine |
| AU2024222598A1 (en) | 2023-02-17 | 2025-07-31 | Flagship Pioneering Innovations Vii, Llc | Dna compositions comprising modified uracil |
| KR20250153298A (en) | 2023-03-08 | 2025-10-24 | 큐어백 에스이 | Novel lipid nanoparticle formulations for nucleic acid delivery |
| WO2024192422A1 (en) | 2023-03-15 | 2024-09-19 | Flagship Pioneering Innovations Vi, Llc | Immunogenic compositions and uses thereof |
| AU2024235803A1 (en) | 2023-03-15 | 2025-09-25 | Flagship Pioneering Innovations Vi, Llc | Compositions comprising polyribonucleotides and uses thereof |
| WO2024205657A2 (en) | 2023-03-29 | 2024-10-03 | Orna Therapeutics, Inc. | Lipids and lipid nanoparticle compositions for delivering polynucleotides |
| WO2024216128A1 (en) | 2023-04-12 | 2024-10-17 | Flagship Pioneering Innovations Vi, Llc | Trems for use in correction of missense mutations |
| AU2024255972A1 (en) | 2023-04-12 | 2025-10-23 | Flagship Pioneering Innovations Vi, Llc | Modified trems, compositions, and related methods thereof |
| WO2024220746A2 (en) | 2023-04-21 | 2024-10-24 | Flagship Pioneering Innovations Vii, Llc | Rnai agents targeting fatty acid synthase and related methods |
| CN121001738A (en) | 2023-04-27 | 2025-11-21 | 葛兰素史克生物有限公司 | Influenza vaccine |
| WO2024223724A1 (en) | 2023-04-27 | 2024-10-31 | Glaxosmithkline Biologicals Sa | Influenza virus vaccines |
| AU2024269222A1 (en) | 2023-05-05 | 2025-10-09 | Orna Therapeutics, Inc. | Circular rna compositions and methods |
| WO2024230934A1 (en) | 2023-05-11 | 2024-11-14 | CureVac SE | Therapeutic nucleic acid for the treatment of ophthalmic diseases |
| WO2024243438A2 (en) | 2023-05-23 | 2024-11-28 | Omega Therapeutics, Inc. | Compositions and methods for reducing cxcl9, cxcl10, and cxcl11 gene expression |
| WO2024249954A1 (en) | 2023-05-31 | 2024-12-05 | Capstan Therapeutics, Inc. | Lipid nanoparticle formulations and compositions |
| WO2024258829A1 (en) | 2023-06-12 | 2024-12-19 | Flagship Pioneering Innovations Vii, Llc | Sars-cov-2 vaccine compositions and related methods |
| WO2025006684A1 (en) | 2023-06-28 | 2025-01-02 | Flagship Pioneering Innovations Vi, Llc | Circular polyribonucleotides encoding antifusogenic polypeptides |
| WO2025011529A2 (en) | 2023-07-07 | 2025-01-16 | Shanghai Circode Biomed Co., Ltd. | Circular rna vaccines for seasonal flu and methods of uses |
| US20250092426A1 (en) | 2023-07-25 | 2025-03-20 | Flagship Pioneering Innovations Vii, Llc | Cas endonucleases and related methods |
| WO2025022367A2 (en) | 2023-07-27 | 2025-01-30 | Life Edit Therapeutics, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
| WO2025042786A1 (en) | 2023-08-18 | 2025-02-27 | Flagship Pioneering Innovations Vi, Llc | Compositions comprising circular polyribonucleotides and uses thereof |
| WO2025049690A1 (en) | 2023-08-29 | 2025-03-06 | Orna Therapeutics, Inc. | Circular polyethylene glycol lipids |
| WO2025045142A1 (en) | 2023-08-29 | 2025-03-06 | Shanghai Circode Biomed Co., Ltd. | Circular rna encoding vegf polypeptides, formulations, and methods of uses |
| WO2025046121A1 (en) | 2023-09-01 | 2025-03-06 | Novoarc Gmbh | Lipid nanoparticle with nucleic acid cargo and ionizable lipid |
| WO2025054236A2 (en) | 2023-09-06 | 2025-03-13 | Flagship Pioneering Innovations Vii, Llc | Sars-cov-2 vaccine compositions and related methods |
| EP4520345A1 (en) | 2023-09-06 | 2025-03-12 | Myneo Nv | Product |
| WO2025052180A2 (en) | 2023-09-07 | 2025-03-13 | Axelyf ehf. | Lipids and lipid nanoparticles |
| WO2025064475A2 (en) | 2023-09-18 | 2025-03-27 | Flagship Pioneering Innovations Vii, Llc | Ionizable lipidoid compositions and therapeutic uses thereof |
| WO2025072331A1 (en) | 2023-09-26 | 2025-04-03 | Flagship Pioneering Innovations Vii, Llc | Cas nucleases and related methods |
| WO2025083619A1 (en) | 2023-10-18 | 2025-04-24 | Life Edit Therapeutics, Inc. | Rna-guided nucleases and acive fragments and variants thereof and methods of use |
| WO2025096807A2 (en) | 2023-10-31 | 2025-05-08 | Flagship Pioneering Innovations Vii, Llc | Novel therapeutic dna forms |
| WO2025101501A1 (en) | 2023-11-07 | 2025-05-15 | Orna Therapeutics, Inc. | Circular rna compositions |
| US20250162981A1 (en) | 2023-11-14 | 2025-05-22 | Flagship Pioneering Innovations Vii, Llc | Ionizable lipidoid compositions and therapeutic uses thereof |
| TW202523695A (en) | 2023-11-22 | 2025-06-16 | 美商旗艦先鋒創新有限責任(Vii)公司 | Methods and compositions for treating non-alcoholic fatty liver disease |
| WO2025117877A2 (en) | 2023-12-01 | 2025-06-05 | Flagship Pioneering Innovations Vii, Llc | Cas nucleases and related methods |
| US12364773B2 (en) | 2023-12-01 | 2025-07-22 | Recode Therapeutics, Inc. | Lipid nanoparticle compositions and uses thereof |
| WO2025132839A1 (en) | 2023-12-21 | 2025-06-26 | Glaxosmithkline Biologicals Sa | Influenza virus vaccines |
| WO2025137646A1 (en) | 2023-12-22 | 2025-06-26 | Recode Therapeutics, Inc. | Gene editing methods and compositions for treating cystic fibrosis |
| WO2025147545A1 (en) | 2024-01-03 | 2025-07-10 | Juno Therapeutics, Inc. | Lipid nanoparticles for delivery of nucleic acids and related methods and uses |
| WO2025160334A1 (en) | 2024-01-26 | 2025-07-31 | Flagship Pioneering Innovations Vii, Llc | Immunoreceptor inhibitory proteins and related methods |
| WO2025169954A1 (en) * | 2024-02-09 | 2025-08-14 | 旭化成株式会社 | Method for concentrating lipid nanoparticle-containing liquid, solvent exchange method for lipid nanoparticle-containing liquid, and method for producing lipid nanoparticle concentrated liquid |
| WO2025174908A1 (en) | 2024-02-12 | 2025-08-21 | Life Edit Therapeutics, Inc. | Novel rna-guided nucleases and proteins for polymerase editing |
| WO2025194138A1 (en) | 2024-03-14 | 2025-09-18 | Tessera Therapeutics, Inc. | St1cas9 compositions and methods for modulating a genome |
| WO2025194019A1 (en) | 2024-03-14 | 2025-09-18 | Flagship Pioneering Innovations Vii, Llc | Methods for treating liver fibrosis and non-alcoholic fatty liver disease |
| GB202404607D0 (en) | 2024-03-29 | 2024-05-15 | Glaxosmithkline Biologicals Sa | RNA formulation |
| WO2025217275A2 (en) | 2024-04-10 | 2025-10-16 | Flagship Pioneering Innovations Vii, Llc | Immune cell targeted compositions and related methods |
| WO2025229572A1 (en) | 2024-05-01 | 2025-11-06 | Glaxosmithkline Biologicals Sa | Epstein-barr virus antigen-encoding messenger ribonucleic acid and antigen protein vaccines |
| WO2025240680A1 (en) | 2024-05-16 | 2025-11-20 | Flagship Pioneering Innovations Vii, Llc | Immunoreceptor inhibitory proteins and related methods |
Family Cites Families (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2536079A (en) * | 1946-07-23 | 1951-01-02 | Schering Corp | Alkyl-substituted carbamates |
| US3155658A (en) * | 1960-12-21 | 1964-11-03 | Gen Mills Inc | Aminohydroxy fatty amides |
| US3454627A (en) * | 1964-11-25 | 1969-07-08 | Monsanto Res Corp | Cyclic oxyalkyl compounds |
| GB1277947A (en) * | 1968-08-22 | 1972-06-14 | Armour Ind Chem Co | Compositions and method for controlling insect pests |
| US7083572B2 (en) | 1993-11-30 | 2006-08-01 | Bristol-Myers Squibb Medical Imaging, Inc. | Therapeutic delivery systems |
| JP2001011038A (en) * | 1999-06-25 | 2001-01-16 | Fuji Photo Film Co Ltd | New isocyanate and semicarbazide each having secondary alkyl chain and their synthesis |
| US6576794B2 (en) | 2000-12-28 | 2003-06-10 | Kao Corporation | Process for production of ether amine |
| JP4764426B2 (en) | 2004-06-07 | 2011-09-07 | プロチバ バイオセラピューティクス インコーポレイティッド | Cationic lipids and methods of use |
| US7404969B2 (en) | 2005-02-14 | 2008-07-29 | Sirna Therapeutics, Inc. | Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules |
| WO2007086883A2 (en) | 2005-02-14 | 2007-08-02 | Sirna Therapeutics, Inc. | Cationic lipids and formulated molecular compositions containing them |
| JP5749494B2 (en) | 2008-01-02 | 2015-07-15 | テクミラ ファーマシューティカルズ コーポレイション | Improved compositions and methods for delivery of nucleic acids |
| PL2279254T3 (en) | 2008-04-15 | 2017-11-30 | Protiva Biotherapeutics Inc. | Novel lipid formulations for nucleic acid delivery |
| US20090263407A1 (en) | 2008-04-16 | 2009-10-22 | Abbott Laboratories | Cationic Lipids and Uses Thereof |
| US20100055168A1 (en) | 2008-04-16 | 2010-03-04 | Abbott Laboratories | Cationic lipids and uses thereof |
| US20090285881A1 (en) | 2008-04-16 | 2009-11-19 | Abbott Laboratories | Cationic lipids and uses thereof |
| US20100055169A1 (en) | 2008-04-16 | 2010-03-04 | Abbott Laboratories | Cationic lipids and uses thereof |
| US20100104629A1 (en) | 2008-04-16 | 2010-04-29 | Abbott Laboratories | Cationic lipids and uses thereof |
| US20100076055A1 (en) | 2008-04-16 | 2010-03-25 | Abbott Laboratories | Cationic Lipids and Uses Thereof |
| WO2009132131A1 (en) | 2008-04-22 | 2009-10-29 | Alnylam Pharmaceuticals, Inc. | Amino lipid based improved lipid formulation |
| WO2010021865A1 (en) | 2008-08-18 | 2010-02-25 | Merck Sharp & Dohme Corp. | Novel lipid nanoparticles and novel components for delivery of nucleic acids |
| US20100063135A1 (en) | 2008-09-10 | 2010-03-11 | Abbott Laboratories | Polyethylene glycol lipid conjugates and uses thereof |
| US20100099738A1 (en) | 2008-09-10 | 2010-04-22 | Abbott Laboratories | Polyethylene glycol lipid conjugates and uses thereof |
| US20100069814A1 (en) | 2008-09-16 | 2010-03-18 | Borgia Anthony V | System and method for utilizing microbubbles and liposomes as viral sequestering agents |
| EP3225621A1 (en) | 2008-10-09 | 2017-10-04 | Arbutus Biopharma Corporation | Improved amino lipids and methods for the delivery of nucleic acids |
| CA2739895C (en) * | 2008-10-20 | 2018-09-25 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of transthyretin |
| WO2010048536A2 (en) | 2008-10-23 | 2010-04-29 | Alnylam Pharmaceuticals, Inc. | Processes for preparing lipids |
| PL2355851T3 (en) | 2008-11-10 | 2018-08-31 | Arbutus Biopharma Corporation | Novel lipids and compositions for the delivery of therapeutics |
| WO2010054384A1 (en) | 2008-11-10 | 2010-05-14 | Alnylam Pharmaceuticals, Inc. | Lipids and compositions for the delivery of therapeutics |
| EP3243504A1 (en) | 2009-01-29 | 2017-11-15 | Arbutus Biopharma Corporation | Improved lipid formulation |
| NZ594995A (en) | 2009-03-12 | 2013-06-28 | Alnylam Pharmaceuticals Inc | LIPID FORMULATED COMPOSITIONS AND METHODS FOR INHIBITING EXPRESSION OF HUMAN KINESIN FAMILY MEMBER 11 (Eg5) AND VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF) GENES |
| DK2440183T3 (en) | 2009-06-10 | 2018-10-01 | Arbutus Biopharma Corp | Improved lipid formulation |
| MX341332B (en) * | 2010-06-03 | 2016-08-16 | Alnylam Pharmaceuticals Inc | Biodegradable lipids for the delivery of active agents. |
| EP2629802B1 (en) * | 2010-10-21 | 2019-12-04 | Sirna Therapeutics, Inc. | Low molecular weight cationic lipids for oligonucleotide delivery |
-
2011
- 2011-10-17 EP EP11834914.1A patent/EP2629802B1/en active Active
- 2011-10-17 US US13/880,254 patent/US9029590B2/en active Active
- 2011-10-17 EP EP18204838.9A patent/EP3485913A1/en not_active Withdrawn
- 2011-10-17 KR KR1020137009957A patent/KR20130124308A/en not_active Withdrawn
- 2011-10-17 CA CA2813024A patent/CA2813024A1/en not_active Abandoned
- 2011-10-17 WO PCT/US2011/056502 patent/WO2012054365A2/en not_active Ceased
- 2011-10-17 JP JP2013534981A patent/JP2013545727A/en active Pending
- 2011-10-17 AU AU2011318289A patent/AU2011318289A1/en not_active Abandoned
- 2011-10-17 CN CN2011800500153A patent/CN103153347A/en active Pending
-
2015
- 2015-04-09 US US14/682,494 patent/US9458090B2/en active Active
-
2016
- 2016-09-30 US US15/282,294 patent/US9981907B2/en active Active
-
2018
- 2018-03-20 US US15/926,936 patent/US20180208545A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| US9029590B2 (en) | 2015-05-12 |
| AU2011318289A1 (en) | 2013-03-07 |
| US9458090B2 (en) | 2016-10-04 |
| CN103153347A (en) | 2013-06-12 |
| US20170022146A1 (en) | 2017-01-26 |
| US9981907B2 (en) | 2018-05-29 |
| US20150284317A1 (en) | 2015-10-08 |
| CA2813024A1 (en) | 2012-04-26 |
| JP2013545727A (en) | 2013-12-26 |
| WO2012054365A2 (en) | 2012-04-26 |
| KR20130124308A (en) | 2013-11-13 |
| EP2629802A2 (en) | 2013-08-28 |
| EP3485913A1 (en) | 2019-05-22 |
| US20130274504A1 (en) | 2013-10-17 |
| WO2012054365A3 (en) | 2012-08-02 |
| EP2629802B1 (en) | 2019-12-04 |
| EP2629802A4 (en) | 2014-06-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9981907B2 (en) | Low molecular weight cationic lipids for oligonucleotide delivery | |
| US10337014B2 (en) | Low molecular weight cyclic amine containing cationic lipids for oligonucleotide delivery | |
| US9725720B2 (en) | Low molecular weight cationic lipids for oligonucleotide delivery | |
| US9044512B2 (en) | Amino alcohol cationic lipids for oligonucleotide delivery | |
| US8748667B2 (en) | Low molecular weight cationic lipids for oligonucleotide delivery | |
| WO2013016058A1 (en) | Novel bis-nitrogen containing cationic lipids for oligonucleotide delivery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |