US20180192548A1 - Cooling control for data centers with cold aisle containment systems - Google Patents
Cooling control for data centers with cold aisle containment systems Download PDFInfo
- Publication number
- US20180192548A1 US20180192548A1 US15/905,195 US201815905195A US2018192548A1 US 20180192548 A1 US20180192548 A1 US 20180192548A1 US 201815905195 A US201815905195 A US 201815905195A US 2018192548 A1 US2018192548 A1 US 2018192548A1
- Authority
- US
- United States
- Prior art keywords
- cold
- data center
- cooling
- set point
- cold aisle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 76
- 238000009530 blood pressure measurement Methods 0.000 claims 3
- 239000003570 air Substances 0.000 description 52
- 238000005259 measurement Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1485—Servers; Data center rooms, e.g. 19-inch computer racks
- H05K7/1488—Cabinets therefor, e.g. chassis or racks or mechanical interfaces between blades and support structures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20718—Forced ventilation of a gaseous coolant
- H05K7/20745—Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20836—Thermal management, e.g. server temperature control
Definitions
- Air containment in simple terms provides physical separation between the supplied cool air and the cabinet exhaust hot air. This separation of cold and hot air results in cooling energy savings; however, in order to observe the maximum energy savings a proper control system for cooling units is required.
- the cooling units get controlled based on a coupled control scheme, wherein both the fan speed and the chilled water valve/compressor speed get controlled based on a single parameter, i.e., return or supply air temperature.
- a coupled control scheme wherein both the fan speed and the chilled water valve/compressor speed get controlled based on a single parameter, i.e., return or supply air temperature.
- the cooling units and the information technology (IT) equipment are tightly connected with each other via supply air plenum and aisle containment system, Therefore, it becomes important to not only have cold air available at a proper temperature but also have the cooling airflow in the correct amount at the IT equipment inlet.
- Use of coupled control schemes i.e. supply air temperature or return air temperature
- Oversupply of cooling airflow means waste in cooling energy and cooling capacity of the data center.
- Undersupply of cooling airflow results in IT equipment starving for c airflow, which could result in unreliable operation of IT equipment.
- One common aspect in these decoupled control methods is the use of supply air temperature sensor to control the temperature of the air supplied by the cooling unit. Controlling the amount of air supplied to the data center however varies significantly between the different methods. Some of the ways used to control the amount of air supplied to the data center included using underfloor pressure, server or cabinet inlet temperatures, temperature difference across a containment, and containment pressure. If a data center includes only one containment system, some of these methods may succeed in reaching optimum control. Also, if a data center includes multiple containment systems that all have exactly the same heat load and airflow demand at all times, some of these methods may again succeed in reaching optimum control.
- the present invention is a data center.
- the data center comprises a first datacenter POD including a first plurality of rows of cabinets where each of the first plurality of rows of cabinets are adjacent to and share a first cold aisle, the first cold aisle including a first temperature and a first pressure set point; a second datacenter POD including a second plurality of rows of cabinets where each of the second plurality of rows of cabinets are adjacent to and share a second cold aisle, the second cold aisle including a second temperature set point and a second pressure set point; a cold air supply connected to both the first cold aisle and the second cold aisle, the cold air supply providing a cold air flow having both a temperature and a volumetric flow rate associated therewith; a first active damper connected to and between the first cold aisle and the cold air supply; a second active damper connected to and between the second cold aisle and the cold air supply; and a controller connected to the cold air supply, the first active damper, and the second active damper, the controller controlling the temperature of the cold air flow, the controller further controlling the
- FIG. 1 is a perspective view of a data center with cold aisle containment systems according to an embodiment of the present invention
- FIG. 2 is a schematic side view of the data center of FIG. 1 ;
- FIG. 3 is a block diagram of a cooling control system according to an embodiment of the present invention.
- FIG. 4 is a flow chart of the cooling control system of FIG. 3 ;
- FIG. 5 is a flow chart of the cooling unit fan speed control of FIG. 4 ;
- FIG. 6 is a flow chart of the supply air temperature set point control of FIG. 4 ;
- FIG. 7 is a block diagram of a cooling control system according to an alternative embodiment of the present invention.
- One embodiment of the present invention is a cooling control solution for data centers with multiple cold aisle containment (CAC) PODs.
- a POD is defined as two rows of cabinets sharing a common cold aisle.
- the present invention includes a process that controls the amount of cooling airflow supplied by the cooling units and controls the amount of cooling airflow going into each CAC POD.
- the cooling control scheme closely matches the amount of air supplied by the cooling units to the amount of air required by the IT equipment while maintaining safe cabinet inlet temperatures (within threshold limits), to ensure safe and reliable operation of the IT equipment.
- the cooling control scheme also monitors and balances the amount of cooling airflow going into each POD.
- Achieving optimum cooling control (lowest energy consumption while maintaining cabinet inlet air temperature within user defined threshold limits) in a data center with containment system can require independent control of cooling fan speed and cooling air temperature.
- the control scheme of the present in invention decouples the control of the cooling unit; using at least one variable to control the amount of air provided by the cooling unit fan to the data center, and at least one other variable to control the temperature of the air supplied by the cooling unit.
- the data center manager/operator can reduce the amount of supplied cooling airflow and hence the cooling fan power consumption, while maintaining proper thermal environment for the IT equipment.
- the amount of cooling airflow saved can be used to cool additional IT equipment heat load (reclaim lost cooling capacity) that gets commissioned in the future and hence helps in extending the life of the data center.
- the reduction in supplied cooling airflow also optimizes the cooling capacity usage by increasing the return air temperature to the cooling units.
- FIG. 1 is an isometric view of a data center with two CAC PODs for an embodiment of the present invention, which includes cabinet enclosures 1 a - 1 d that house IT equipment 2 a - 2 d with cold aisle containment enclosures 3 a - 3 b deployed for two separate PODs.
- the data center is cooled using two perimeter cooling units 4 a - 4 b.
- Cabinet inlet temperature sensors 5 a - 5 b are installed at the intake of each cabinet enclosure 1 a - 1 d .
- Containment pressure sensors 6 a - 6 b are installed in each cold aisle containment enclosure 3 a - 3 b.
- the raised-floor plenum in the data center has underfloor pressure sensors 7 and supply air temperature sensors 8 a - 8 b installed.
- FIG. 2 provides additional details of the data center described in FIG. 1 .
- each of the two PODs described previously have a combination of active damper tiles 9 a - 9 b and perforated tiles 10 a - 10 b .
- the IT equipment 2 a - 2 d are cooled by the cold supply air 11 a - 11 b that is flooded into the underfloor plenum, which then enters each POD through its associated active damper tiles 9 a - 9 b and perforated tiles 10 a - 10 b.
- Cold inlet air flow 12 a - 12 d enters the IT equipment 2 a - 2 d to cool the IT equipment components and returns to the data center room air as hot exhaust air 13 a - 13 d .
- the hot return air 14 a - 14 b is drawn by the cooling unit fans 15 a - 15 b through the cooling unit 4 a - 4 b to be cooled once again and the cycle continues.
- FIG. 3 is a block diagram of an embodiment of the present invention and its different components.
- the present invention includes an active CAC controller 17 which receives information from all the sensors deployed in the data center; cabinet inlet temperature sensors 5 a - 5 d, containment pressure sensors 6 a - 6 b, underfloor pressure sensors 7 , and supply air temperature sensors 8 a - 8 b as well as a system for receiving information from the active damper tiles 9 a - 9 b on their position.
- Active CAC controller 17 interacts with the cooling units' fans 15 a - 15 b and cooling units' chilled water valves 16 a - 16 b through the cooling units 4 a - 4 b and it interacts with a user interface 18 which allows the user to view all the data received by the active CAC controller 17 and input the desired set points for the different variables.
- the figure also details which specific sensor measurement inputs are used to control the active damper tiles 9 a - 9 b, cooling unit fans 15 a - 15 b and cooling units' chilled water valves 16 a - 16 b.
- Input 1 ( i ) from both supply air temperature sensors 8 a - 8 b and cabinet inlet temperature sensors 5 a - 5 d is used to control the cooling units' chilled water valves 16 a - 16 b opening through the output signal 1 ( o ).
- Input 2 ( i ) from the underfloor pressure sensors 7 are used to control the cooling unit fans 15 a - 15 b speeds through the output signal 2 ( o ).
- Input 3 ( i ) from the containment pressure sensors 6 a - 6 b is used to control the active damper tiles 9 a - 9 b openings through the output signal 3 ( o ).
- FIG. 4 details the flow of an embodiment of the invented process.
- the deployed sensors are constantly measuring different variables within the data center.
- step S 4 providing the information collected in step S 2 to the active CAC controller 17 and the user interface 18 .
- the active CAC controller 17 modulates local active damper tiles 9 a - 9 b based on local POD containment pressure sensor reading 6 a - 6 b and POD differential pressure set point defined in user interface 18 .
- Step S 8 the active CAC controller 17 modulates cooling units' fans 15 a - 15 b speed based on underfloor pressure sensor reading 7 and underfloor pressure set point defined in user interface 18 .
- step S 10 the active CAC controller 17 modulates chilled water valve 16 a - 16 b opening based on supply air temperature sensor reading 8 a - 8 b and supply air temperature set point defined in user interface 18 .
- airflow is matched in each CAC POD based on the IT equipment 2 a - 2 d airflow demand in the respective POD to the air supplied by the cooling unit fans 15 a - 15 b which ensures that minimum to none of the air supplied is wasted.
- This helps achieve the optimum control of the cooling unit fans 15 a - 15 b which in turn reduces their energy consumption.
- saving the amount of air flow supplied by the cooling unit fans 15 a - 15 b also optimizes the cooling capacity usage of the cooling units 4 a - 4 b, allowing to extend the life of the data center and enabling the use of the full designed capacity of the cooling units 4 a - 4 b.
- FIG. 5 details the flow chart for cooling unit fans 15 a - 15 b speed control.
- step S 12 containment pressure sensor 6 a - 6 b measurements, and underfloor pressure sensor 7 measurements are reported to the active CAC controller 17 .
- the active CAC controller 17 checks if any of the pressure sensors are not working. If a pressure sensor isn't working, an alarm is sent to the user interface 18 to report which sensor is not working in step S 16 .
- step S 18 the active CAC controller 17 checks if the underfloor pressure sensor 7 measurements match the underfloor pressure set point defined in user interface 18 . If not, in step S 20 a proportional integral control loop is used to control the cooling units' fans 15 a - 15 b to maintain the underfloor pressure set point.
- the active CAC controller 17 checks if all containment pressure sensor 6 a - 6 b measurements match the containment pressure set point defined in user interface 18 in step S 24 . If the containment pressure sensor 6 a - 6 b measurements do not match the set point in step S 24 , the active CAC controller 17 checks if the active damper tiles 9 a - 9 b associated with the cold aisle containment enclosure 3 a - 3 b that has a mismatch in pressure is at a 100% or 0% opening in step S 26 ; if so, in step S 28 , active CAC controller 17 overrides the initial underfloor pressure set-point condition and controls the cooling units' fans' 15 a - 15 b speed based on the containment pressure sensor 6 a - 6 b to maintain its set point.
- FIG. 6 details the flow chart for the supply air temperature set point control.
- step S 42 all supply temperature sensors' 8 a - 8 b measurements, and cabinet inlet temperature sensor 5 a - 5 d measurements are reported to the active CAC controller 17 .
- step S 44 the active CAC controller 17 checks if any of the temperature sensors are not working. If a temperature sensor isn't working, an alarm is sent to the user interface 18 in step S 45 to report which sensor is not working.
- the active CAC controller 17 checks if a POD door is open. If so, an alarm is sent to the user interface 18 in step S 47 to report which POD door is open and active controller 17 does not make any changes.
- the active CAC controller 17 checks if the supply air temperature sensor 7 measurement is within range of the supply air temperature set point in step S 48 . if not within range, the active CAC controller 17 does not make any changes, to wait for the cooling units chilled water valve 16 a - 16 b to regulate based on the supply air temperature set point. If within range, in step S 50 the active CAC controller 17 checks if all cabinet inlet temperature sensor 5 a - 5 d measurements are within range of the cabinet inlet temperature set point. If yes, the active CAC controller 17 does not make any changes. If no, in step S 51 active CAC controller 17 changes the supply air temperature set point defined in the user interface 18 by a delta value defined in the user interface 18 .
- the cooling units 4 a - 4 b illustrated in FIG. 1 and FIG. 2 can be direct expansion (DX) cooling units that utilize a compressor for cooling instead of the chilled water supply.
- DX direct expansion
- the cooling capacity is regulated by a compressor speed instead of a chilled water valve opening.
- the cooling units 4 a - 4 b illustrated in FIG. 1 and FIG. 2 can be equipped with air-side economization and/or evaporative cooling capability.
- the cooling capacity is regulated using supply air set point temperature and outside ambient air condition.
- FIG. 7 is a block diagram of the present invention in the separate described embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air Conditioning Control Device (AREA)
- Control Of Temperature (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Embodiments of the present invention generally relate to the field of data center cooling and energy management. In some embodiments disclosed herein, a pressure within a cold aisle containment enclosure within a data center is controlled by a controller through the use of active floor damper panels.
Description
- This application claims the benefits of priority to U.S. patent application Ser. No. 14/847,711, filed on Sep. 8, 2015, and U.S. Provisional Patent Application No. 62/048,423, filed on Sep. 10, 2014, which are incorporated herein by reference in their entireties.
- Data center cooling energy efficiency is critical to successful operation of modern large data centers. The cooling infrastructure can account for an average of 40% of the total data center energy consumption. Adopting methods to raise the efficiency of cooling in data centers can significantly affect the cost of running them, as well as extending their life. The current trend of deploying high heat load density cabinets in data centers necessitates the use of air containment systems. Many of the modern data centers use some kind of air containment systems to achieve high cooling energy efficiency. Air containment in simple terms provides physical separation between the supplied cool air and the cabinet exhaust hot air. This separation of cold and hot air results in cooling energy savings; however, in order to observe the maximum energy savings a proper control system for cooling units is required. Typically, the cooling units get controlled based on a coupled control scheme, wherein both the fan speed and the chilled water valve/compressor speed get controlled based on a single parameter, i.e., return or supply air temperature. These type of control schemes work well for data centers without containment systems but they may not be the best way to control cooling in data centers with containment systems.
- In containment systems, the cooling units and the information technology (IT) equipment are tightly connected with each other via supply air plenum and aisle containment system, Therefore, it becomes important to not only have cold air available at a proper temperature but also have the cooling airflow in the correct amount at the IT equipment inlet. Use of coupled control schemes (i.e. supply air temperature or return air temperature) in containment system does not necessarily guarantee the above conditions and almost always results in either oversupply and/or undersupply of cooling airflow. Oversupply of cooling airflow means waste in cooling energy and cooling capacity of the data center. Undersupply of cooling airflow results in IT equipment starving for c airflow, which could result in unreliable operation of IT equipment.
- One common aspect in these decoupled control methods is the use of supply air temperature sensor to control the temperature of the air supplied by the cooling unit. Controlling the amount of air supplied to the data center however varies significantly between the different methods. Some of the ways used to control the amount of air supplied to the data center included using underfloor pressure, server or cabinet inlet temperatures, temperature difference across a containment, and containment pressure. If a data center includes only one containment system, some of these methods may succeed in reaching optimum control. Also, if a data center includes multiple containment systems that all have exactly the same heat load and airflow demand at all times, some of these methods may again succeed in reaching optimum control. However, a typical data center almost always has more than one containment system and it is rare to have the heat load and airflow demand the same for all containment systems at all times. In these situations, the existing control schemes fall short of optimum control for cooling units and result in unwanted cooling airflow bypass, which result in waste of cooling fan energy.\
- In an embodiment, the present invention is a data center. The data center comprises a first datacenter POD including a first plurality of rows of cabinets where each of the first plurality of rows of cabinets are adjacent to and share a first cold aisle, the first cold aisle including a first temperature and a first pressure set point; a second datacenter POD including a second plurality of rows of cabinets where each of the second plurality of rows of cabinets are adjacent to and share a second cold aisle, the second cold aisle including a second temperature set point and a second pressure set point; a cold air supply connected to both the first cold aisle and the second cold aisle, the cold air supply providing a cold air flow having both a temperature and a volumetric flow rate associated therewith; a first active damper connected to and between the first cold aisle and the cold air supply; a second active damper connected to and between the second cold aisle and the cold air supply; and a controller connected to the cold air supply, the first active damper, and the second active damper, the controller controlling the temperature of the cold air flow, the controller further controlling the first active damper to partition the volumetric flow rate to approximately achieve the first pressure set point in the first cold aisle, the controller further controlling the second active damper to partition the volumetric flow rate to approximately achieve the second pressure set point in the second cold aisle.
-
FIG. 1 is a perspective view of a data center with cold aisle containment systems according to an embodiment of the present invention; -
FIG. 2 is a schematic side view of the data center ofFIG. 1 ; -
FIG. 3 is a block diagram of a cooling control system according to an embodiment of the present invention; -
FIG. 4 is a flow chart of the cooling control system ofFIG. 3 ; -
FIG. 5 is a flow chart of the cooling unit fan speed control ofFIG. 4 ; -
FIG. 6 is a flow chart of the supply air temperature set point control ofFIG. 4 ; and -
FIG. 7 is a block diagram of a cooling control system according to an alternative embodiment of the present invention. - One embodiment of the present invention is a cooling control solution for data centers with multiple cold aisle containment (CAC) PODs. A POD is defined as two rows of cabinets sharing a common cold aisle. The present invention includes a process that controls the amount of cooling airflow supplied by the cooling units and controls the amount of cooling airflow going into each CAC POD. The cooling control scheme closely matches the amount of air supplied by the cooling units to the amount of air required by the IT equipment while maintaining safe cabinet inlet temperatures (within threshold limits), to ensure safe and reliable operation of the IT equipment. The cooling control scheme also monitors and balances the amount of cooling airflow going into each POD.
- Achieving optimum cooling control (lowest energy consumption while maintaining cabinet inlet air temperature within user defined threshold limits) in a data center with containment system can require independent control of cooling fan speed and cooling air temperature. The control scheme of the present in invention decouples the control of the cooling unit; using at least one variable to control the amount of air provided by the cooling unit fan to the data center, and at least one other variable to control the temperature of the air supplied by the cooling unit.
- With the use of the present invention, the data center manager/operator can reduce the amount of supplied cooling airflow and hence the cooling fan power consumption, while maintaining proper thermal environment for the IT equipment. The amount of cooling airflow saved can be used to cool additional IT equipment heat load (reclaim lost cooling capacity) that gets commissioned in the future and hence helps in extending the life of the data center. The reduction in supplied cooling airflow also optimizes the cooling capacity usage by increasing the return air temperature to the cooling units.
-
FIG. 1 is an isometric view of a data center with two CAC PODs for an embodiment of the present invention, which includescabinet enclosures 1 a-1 d thathouse IT equipment 2 a-2 d with coldaisle containment enclosures 3 a-3 b deployed for two separate PODs. The data center is cooled using two perimeter cooling units 4 a-4 b. Cabinet inlet temperature sensors 5 a-5 b are installed at the intake of eachcabinet enclosure 1 a-1 d. Containment pressure sensors 6 a-6 b are installed in each coldaisle containment enclosure 3 a-3 b. The raised-floor plenum in the data center hasunderfloor pressure sensors 7 and supply air temperature sensors 8 a-8 b installed.FIG. 2 provides additional details of the data center described inFIG. 1 . InFIG. 2 , each of the two PODs described previously have a combination of active damper tiles 9 a-9 b and perforated tiles 10 a-10 b. TheIT equipment 2 a-2 d are cooled by thecold supply air 11 a-11 b that is flooded into the underfloor plenum, which then enters each POD through its associated active damper tiles 9 a-9 b and perforated tiles 10 a-10 b. Cold inlet air flow 12 a-12 d enters theIT equipment 2 a-2 d to cool the IT equipment components and returns to the data center room air as hot exhaust air 13 a-13 d. Thehot return air 14 a-14 b is drawn by the cooling unit fans 15 a-15 b through the cooling unit 4 a-4 b to be cooled once again and the cycle continues. -
FIG. 3 is a block diagram of an embodiment of the present invention and its different components. The present invention includes anactive CAC controller 17 which receives information from all the sensors deployed in the data center; cabinet inlet temperature sensors 5 a-5 d, containment pressure sensors 6 a-6 b,underfloor pressure sensors 7, and supply air temperature sensors 8 a-8 b as well as a system for receiving information from the active damper tiles 9 a-9 b on their position.Active CAC controller 17 interacts with the cooling units' fans 15 a-15 b and cooling units' chilled water valves 16 a-16 b through the cooling units 4 a-4 b and it interacts with auser interface 18 which allows the user to view all the data received by theactive CAC controller 17 and input the desired set points for the different variables. The figure also details which specific sensor measurement inputs are used to control the active damper tiles 9 a-9 b, cooling unit fans 15 a-15 b and cooling units' chilled water valves 16 a-16 b. Input 1(i) from both supply air temperature sensors 8 a-8 b and cabinet inlet temperature sensors 5 a-5 d is used to control the cooling units' chilled water valves 16 a-16 b opening through the output signal 1(o). Input 2(i) from theunderfloor pressure sensors 7 are used to control the cooling unit fans 15 a-15 b speeds through the output signal 2(o). Input 3(i) from the containment pressure sensors 6 a-6 b is used to control the active damper tiles 9 a-9 b openings through the output signal 3(o). -
FIG. 4 details the flow of an embodiment of the invented process. In step S2, the deployed sensors are constantly measuring different variables within the data center. In step S4, providing the information collected in step S2 to theactive CAC controller 17 and theuser interface 18. In Step S6, theactive CAC controller 17 modulates local active damper tiles 9 a-9 b based on local POD containment pressure sensor reading 6 a-6 b and POD differential pressure set point defined inuser interface 18. In Step S8, theactive CAC controller 17 modulates cooling units' fans 15 a-15 b speed based on underfloor pressure sensor reading 7 and underfloor pressure set point defined inuser interface 18. With airflow balanced between all PODS in the data center and the underfloor pressure set point satisfied, in step S 10 theactive CAC controller 17 modulates chilled water valve 16 a-16 b opening based on supply air temperature sensor reading 8 a-8 b and supply air temperature set point defined inuser interface 18. - Using the above described process, airflow is matched in each CAC POD based on the
IT equipment 2 a-2 d airflow demand in the respective POD to the air supplied by the cooling unit fans 15 a-15 b which ensures that minimum to none of the air supplied is wasted. This helps achieve the optimum control of the cooling unit fans 15 a-15 b which in turn reduces their energy consumption. In addition to energy savings, saving the amount of air flow supplied by the cooling unit fans 15 a-15 b also optimizes the cooling capacity usage of the cooling units 4 a-4 b, allowing to extend the life of the data center and enabling the use of the full designed capacity of the cooling units 4 a-4 b. -
FIG. 5 details the flow chart for cooling unit fans 15 a-15 b speed control. In step S12, containment pressure sensor 6 a-6 b measurements, andunderfloor pressure sensor 7 measurements are reported to theactive CAC controller 17. InStep 14, theactive CAC controller 17 checks if any of the pressure sensors are not working. If a pressure sensor isn't working, an alarm is sent to theuser interface 18 to report which sensor is not working in step S16. In step S18, theactive CAC controller 17 checks if theunderfloor pressure sensor 7 measurements match the underfloor pressure set point defined inuser interface 18. If not, in step S20 a proportional integral control loop is used to control the cooling units' fans 15 a-15 b to maintain the underfloor pressure set point. If the underfloor pressure set point is satisfied in step S22, theactive CAC controller 17 checks if all containment pressure sensor 6 a-6 b measurements match the containment pressure set point defined inuser interface 18 in step S24. If the containment pressure sensor 6 a-6 b measurements do not match the set point in step S24, theactive CAC controller 17 checks if the active damper tiles 9 a-9 b associated with the coldaisle containment enclosure 3 a-3 b that has a mismatch in pressure is at a 100% or 0% opening in step S26; if so, in step S28,active CAC controller 17 overrides the initial underfloor pressure set-point condition and controls the cooling units' fans' 15 a-15 b speed based on the containment pressure sensor 6 a-6 b to maintain its set point. -
FIG. 6 details the flow chart for the supply air temperature set point control. In step S42, all supply temperature sensors' 8 a-8 b measurements, and cabinet inlet temperature sensor 5 a-5 d measurements are reported to theactive CAC controller 17. In step S44, theactive CAC controller 17 checks if any of the temperature sensors are not working. If a temperature sensor isn't working, an alarm is sent to theuser interface 18 in step S45 to report which sensor is not working. In S46 theactive CAC controller 17 checks if a POD door is open. If so, an alarm is sent to theuser interface 18 in step S47 to report which POD door is open andactive controller 17 does not make any changes. If no POD door is open, theactive CAC controller 17 checks if the supplyair temperature sensor 7 measurement is within range of the supply air temperature set point in step S48. if not within range, theactive CAC controller 17 does not make any changes, to wait for the cooling units chilled water valve 16 a-16 b to regulate based on the supply air temperature set point. If within range, in step S50 theactive CAC controller 17 checks if all cabinet inlet temperature sensor 5 a-5 d measurements are within range of the cabinet inlet temperature set point. If yes, theactive CAC controller 17 does not make any changes. If no, in step S51active CAC controller 17 changes the supply air temperature set point defined in theuser interface 18 by a delta value defined in theuser interface 18. - In another embodiment, according to the present invention, the cooling units 4 a-4 b illustrated in
FIG. 1 andFIG. 2 can be replaced with large air handling units that are physically located outside of the data center. However, cold air supply to the data center and warm air exhaust from the data center are in a similar fashion as depicted inFIG. 1 andFIG. 2 . - In another embodiment, according to the present invention, the cooling units 4 a-4 b illustrated in
FIG. 1 andFIG. 2 can be direct expansion (DX) cooling units that utilize a compressor for cooling instead of the chilled water supply. In this case, the cooling capacity is regulated by a compressor speed instead of a chilled water valve opening. - In another embodiment, according to the present invention, the cooling units 4 a-4 b illustrated in
FIG. 1 andFIG. 2 can be equipped with air-side economization and/or evaporative cooling capability. In this case, the cooling capacity is regulated using supply air set point temperature and outside ambient air condition. - In another embodiment, according to the present invention, the active damper tiles 9 a-9 b are controlled through a
damper tile controller 19 instead of theactive CAC controller 17, based on a user specified set point through theuser interface 18. All other aspects of the present invention remain the same.FIG. 7 is a block diagram of the present invention in the separate described embodiment. - Note that while this invention has been described in terms of several embodiments, these embodiments are non-limiting (regardless of whether they have been labeled as exemplary or not), and there are alterations, permutations, and equivalents, which fall within the scope of this invention. Additionally, the described embodiments should not be interpreted as mutually exclusive, and should instead be understood as potentially combinable if such combinations are permissive. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that claims that may follow be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Claims (4)
1. A portion of a data center utilizing cold aisle containment, comprising:
a cold aisle containment enclosure;
first and second rows of enclosures housing IT equipment, the first and second rows of enclosures being on opposite sides of, and sharing, the cold aisle containment enclosure;
an under-floor cold air supply plenum to provide cold supply air to the cold aisle containment enclosure;
an active damper floor tile between the under-floor cold air supply plenum and the cold aisle containment enclosure;
a differential pressure sensor located in the cold aisle containment enclosure to measure a pressure within the cold aisle containment enclosure; and
a cold aisle containment (CAC) controller to:
compare the pressure measurement from the differential pressure sensor to a differential pressure set point; and
modulate the active damper floor tile based on the comparison between the pressure measurement from the differential pressure sensor and the differential pressure set point to control a flow of the cold supply air from the under-floor cold air supply plenum to the cold aisle containment enclosure.
2. The portion of the data center of claim 1 , comprising:
a plenum pressure sensor located in the under-floor cold air supply plenum to measure a pressure within the under-floor cold air supply plenum.
3. The portion of the data center of claim 1 , wherein the CAC controller is to:
compare the measured pressure in the under-floor cold air supply plenum from the penum pressure sensor to a plenum pressure set point; and
modulate a fan speed of a cooling unit in the data center based on the comparison between the measured pressure in the under-floor cold air supply plenum and the plenum pressure set point.
4. The portion of the data center of claim 1 , wherein the CAC controller is to:
compare the pressure measurement from the differential pressure sensor to the differential pressure set point in response to determining that the measured pressure in the under-floor cold air supply plenum matches the plenum pressure set point.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/905,195 US20180192548A1 (en) | 2014-09-10 | 2018-02-26 | Cooling control for data centers with cold aisle containment systems |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462048423P | 2014-09-10 | 2014-09-10 | |
| US14/847,711 US9943011B2 (en) | 2014-09-10 | 2015-09-08 | Cooling control for data centers with cold aisle containment systems |
| US15/905,195 US20180192548A1 (en) | 2014-09-10 | 2018-02-26 | Cooling control for data centers with cold aisle containment systems |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/847,711 Continuation US9943011B2 (en) | 2014-09-10 | 2015-09-08 | Cooling control for data centers with cold aisle containment systems |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180192548A1 true US20180192548A1 (en) | 2018-07-05 |
Family
ID=55438897
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/847,711 Active 2036-04-29 US9943011B2 (en) | 2014-09-10 | 2015-09-08 | Cooling control for data centers with cold aisle containment systems |
| US15/905,195 Abandoned US20180192548A1 (en) | 2014-09-10 | 2018-02-26 | Cooling control for data centers with cold aisle containment systems |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/847,711 Active 2036-04-29 US9943011B2 (en) | 2014-09-10 | 2015-09-08 | Cooling control for data centers with cold aisle containment systems |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US9943011B2 (en) |
| EP (1) | EP3192339B1 (en) |
| CA (1) | CA2960614C (en) |
| MX (1) | MX365728B (en) |
| WO (1) | WO2016040407A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10289184B2 (en) | 2008-03-07 | 2019-05-14 | Sunbird Software, Inc. | Methods of achieving cognizant power management |
| US20220053672A1 (en) * | 2010-11-08 | 2022-02-17 | Chatsworth Products, Inc. | Header panel assembly for preventing air circulation above electronic equipment enclosure |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10182516B2 (en) * | 2006-06-15 | 2019-01-15 | Valan R. Martini | Energy saving system and method for cooling computer data center and telecom equipment |
| US11310944B2 (en) | 2006-06-15 | 2022-04-19 | Valan R. Martini | Energy saving system and method for cooling computer data center and telecom equipment |
| CN107302832B (en) * | 2016-04-15 | 2020-07-03 | 腾讯科技(深圳)有限公司 | Data center |
| CN105792622B (en) * | 2016-05-10 | 2018-05-04 | 紫光华山科技服务有限公司 | A kind of Cooling System and method for data center |
| KR101840770B1 (en) * | 2016-07-27 | 2018-03-21 | 네이버비즈니스플랫폼 주식회사 | Apparatus for cooling sever room, cooling apparatus using apparatus for cooling sever room, and method for managing data center using therewith |
| CN107663954A (en) * | 2016-07-28 | 2018-02-06 | 苏州安瑞可机柜系统有限公司 | A kind of modular server computer room |
| US10856449B2 (en) * | 2016-12-02 | 2020-12-01 | Dell Products L.P. | Dynamic cooling system |
| US11076509B2 (en) | 2017-01-24 | 2021-07-27 | The Research Foundation for the State University | Control systems and prediction methods for it cooling performance in containment |
| US10306809B1 (en) * | 2017-12-13 | 2019-05-28 | Oath Inc. | Server rack integrated with cold air delivery |
| CN108551742B (en) * | 2018-04-20 | 2020-05-26 | 联想(北京)有限公司 | Assembling system and assembling method of rack server |
| US11096316B1 (en) * | 2018-09-05 | 2021-08-17 | Amazon Technologies, Inc. | Discrete set-point-based datacenter cooling based on evaporative cooling status |
| US11419247B2 (en) | 2020-03-25 | 2022-08-16 | Kyndryl, Inc. | Controlling a working condition of electronic devices |
| US11940198B2 (en) * | 2021-12-01 | 2024-03-26 | Lineage Logistics, LLC | Automated blast cell loading and unloading |
| MX2024008054A (en) * | 2022-01-26 | 2024-07-10 | Integra Mission Critical Llc | Vestibule structure for cooling redundancy in data center. |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6694759B1 (en) * | 2003-01-27 | 2004-02-24 | Hewlett-Packard Development Company, L.P. | Pressure control of cooling fluid within a plenum using automatically adjustable vents |
| US20100304657A1 (en) * | 2007-11-09 | 2010-12-02 | Knurr Ag | Rack system and method of determining a climate condition thereof |
| US9204578B2 (en) * | 2010-02-09 | 2015-12-01 | It Aire Inc. | Systems and methods for cooling data centers and other electronic equipment |
Family Cites Families (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU618534B2 (en) | 1987-06-17 | 1992-01-02 | Mitsubishi Denki Kabushiki Kaisha | Air conditioner |
| US4817865A (en) | 1988-03-17 | 1989-04-04 | Racal Data Communications Inc. | Ventilation system for modular electronic housing |
| US5040377A (en) | 1989-11-21 | 1991-08-20 | Johnson Service Company | Cooling system with improved fan control and method |
| US5474120A (en) | 1991-10-15 | 1995-12-12 | Sundstrand Corporation | Two-channel cooling for providing back-up cooling capability |
| SE9304264L (en) | 1993-12-22 | 1995-06-23 | Ericsson Telefon Ab L M | Method and apparatus for cooling in closed rooms |
| US5467607A (en) | 1994-02-22 | 1995-11-21 | At&T Corp. | Air conditioning control system |
| US5826432A (en) | 1995-08-18 | 1998-10-27 | El Cold, Inc. | Blast chiller |
| US5709100A (en) | 1996-08-29 | 1998-01-20 | Liebert Corporation | Air conditioning for communications stations |
| US5863246A (en) | 1997-12-15 | 1999-01-26 | Carrier Corporation | Variable air volume control system |
| DE19930166A1 (en) | 1999-06-30 | 2001-01-18 | Fujitsu Siemens Computers Gmbh | Cooling device and temperature control unit for such a cooling device for an electrical device |
| AU2001237034A1 (en) | 2000-02-18 | 2001-08-27 | Rtkl Associates Inc. | Computer rack heat extraction device |
| US6557624B1 (en) | 2000-08-09 | 2003-05-06 | Liebert Corporation | Configurable system and method for cooling a room |
| US6574104B2 (en) | 2001-10-05 | 2003-06-03 | Hewlett-Packard Development Company L.P. | Smart cooling of data centers |
| US6862179B2 (en) | 2002-11-26 | 2005-03-01 | Hewlett-Packard Development Company, L.P. | Partition for varying the supply of cooling fluid |
| US6868682B2 (en) | 2003-01-16 | 2005-03-22 | Hewlett-Packard Development Company, L.P. | Agent based control method and system for energy management |
| US7313924B2 (en) | 2004-10-08 | 2008-01-01 | Hewlett-Packard Development Company, L.P. | Correlation of vent tiles and racks |
| US7251547B2 (en) | 2004-10-08 | 2007-07-31 | Hewlett-Packard Development Company, L.P. | Correlation of vent tile settings and rack temperatures |
| US7995339B2 (en) | 2004-11-01 | 2011-08-09 | Hewlett-Packard Development Company, L.P. | Control of vent tiles correlated with a rack |
| CN101502192B (en) | 2006-06-01 | 2012-06-20 | 埃克弗洛普公司 | Controlled Hot Air Capture |
| EP2032918A4 (en) * | 2006-06-15 | 2011-09-21 | Valan R Martini | Energy saving system and method for cooling computer data center and telecom equipment |
| US20090277622A1 (en) | 2008-05-09 | 2009-11-12 | Degree Controls, Inc. | Air flow controller for electrical equipment holder |
| US8783336B2 (en) | 2008-12-04 | 2014-07-22 | Io Data Centers, Llc | Apparatus and method of environmental condition management for electronic equipment |
| US7861596B2 (en) | 2009-01-28 | 2011-01-04 | American Power Conversion Corporation | Method and system for detecting air pressure neutrality in air containment zones |
| US8145363B2 (en) | 2009-05-28 | 2012-03-27 | American Power Conversion Corporation | Systems and methods for controlling load dynamics in a pumped refrigerant cooling system |
| US8639651B2 (en) * | 2009-10-30 | 2014-01-28 | Hewlett-Packard Development Company, L. P. | Manipulating environmental conditions in an infrastructure |
| US9723759B2 (en) | 2009-11-30 | 2017-08-01 | Facebook, Inc. | Cooling servers in a data center using fans external to servers |
| GB0922095D0 (en) | 2009-12-17 | 2010-02-03 | Bripco Bvba | Data centre building and rack therefor |
| JP2011257116A (en) | 2010-06-11 | 2011-12-22 | Fujitsu Ltd | Computer room air conditioning system, control unit thereof, and program |
| US8256305B2 (en) | 2010-09-21 | 2012-09-04 | American Power Conversion Corporation | System and method for air containment zone pressure differential detection |
| US9332678B2 (en) * | 2010-09-30 | 2016-05-03 | International Business Machines Corporation | Cold air containment system in a data centre |
| US20130000736A1 (en) | 2011-06-29 | 2013-01-03 | International Business Machines Corporation | Adjustable and directional flow perforated tiles |
| DE112011105708T5 (en) | 2011-11-11 | 2014-07-17 | Hewlett Packard Development Company, L.P. | Management of the provision of an air flow |
| US20130264396A1 (en) * | 2012-04-06 | 2013-10-10 | Bryan Roe | Multidimensional effects apparatus and methods |
-
2015
- 2015-09-08 US US14/847,711 patent/US9943011B2/en active Active
- 2015-09-09 WO PCT/US2015/049062 patent/WO2016040407A1/en active Application Filing
- 2015-09-09 CA CA2960614A patent/CA2960614C/en active Active
- 2015-09-09 MX MX2017002443A patent/MX365728B/en active IP Right Grant
- 2015-09-09 EP EP15766710.6A patent/EP3192339B1/en active Active
-
2018
- 2018-02-26 US US15/905,195 patent/US20180192548A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6694759B1 (en) * | 2003-01-27 | 2004-02-24 | Hewlett-Packard Development Company, L.P. | Pressure control of cooling fluid within a plenum using automatically adjustable vents |
| US20100304657A1 (en) * | 2007-11-09 | 2010-12-02 | Knurr Ag | Rack system and method of determining a climate condition thereof |
| US9204578B2 (en) * | 2010-02-09 | 2015-12-01 | It Aire Inc. | Systems and methods for cooling data centers and other electronic equipment |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10289184B2 (en) | 2008-03-07 | 2019-05-14 | Sunbird Software, Inc. | Methods of achieving cognizant power management |
| US20220053672A1 (en) * | 2010-11-08 | 2022-02-17 | Chatsworth Products, Inc. | Header panel assembly for preventing air circulation above electronic equipment enclosure |
| US12349320B2 (en) * | 2010-11-08 | 2025-07-01 | Chatsworth Products, Inc. | Header panel assembly for preventing air circulation above electronic equipment enclosure |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2016040407A1 (en) | 2016-03-17 |
| EP3192339B1 (en) | 2021-11-03 |
| MX365728B (en) | 2019-06-12 |
| MX2017002443A (en) | 2017-05-23 |
| US9943011B2 (en) | 2018-04-10 |
| EP3192339A1 (en) | 2017-07-19 |
| CA2960614C (en) | 2020-09-22 |
| CA2960614A1 (en) | 2016-03-17 |
| US20160073555A1 (en) | 2016-03-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20180192548A1 (en) | Cooling control for data centers with cold aisle containment systems | |
| US7826216B2 (en) | Information handling center cooling system | |
| CN110691491B (en) | Controlling and optimizing indirect evaporative cooling units for data center cooling | |
| USRE42195E1 (en) | Energy efficient crac unit operation using heat transfer levels | |
| US8019477B2 (en) | Energy efficient CRAC unit operation | |
| US7584021B2 (en) | Energy efficient CRAC unit operation using heat transfer levels | |
| JP6106177B2 (en) | Heating, ventilation and air conditioning management systems and methods | |
| US6886353B2 (en) | Cooling system | |
| RU2444777C2 (en) | System of racks and method to determine climate conditions for such system | |
| US7031154B2 (en) | Louvered rack | |
| US9420725B2 (en) | Air conditioning apparatus and air conditioning control method | |
| US9060450B2 (en) | Cooling arrangement and method of operation for a fan control | |
| US8721409B1 (en) | Airflow control system with external air control | |
| EP2169328A2 (en) | Air-conditioning control system and air-conditioning control method | |
| US8914155B1 (en) | Controlling fluid flow in a data center | |
| JP4883491B2 (en) | Electronic equipment cooling system | |
| US7057506B2 (en) | Cooling fluid provisioning with location aware sensors | |
| US12004327B2 (en) | Containerized HVAC control | |
| US7730731B1 (en) | Refrigeration system with serial evaporators | |
| JP5492716B2 (en) | Air conditioning system for data center | |
| US20160227676A1 (en) | Controlling usage of resources based on operating status and communications | |
| US11612080B2 (en) | Data center airflow management | |
| US20250056768A1 (en) | Cooling servers with velocity augmentation using partial by-pass air recirculation in rack plenum | |
| JP6466108B2 (en) | Control system and air conditioning system for controlling an air conditioning system | |
| JP2014190624A (en) | Air conditioning system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |