US20180153242A1 - Elastic shear protection in protective gear - Google Patents
Elastic shear protection in protective gear Download PDFInfo
- Publication number
- US20180153242A1 US20180153242A1 US15/369,755 US201615369755A US2018153242A1 US 20180153242 A1 US20180153242 A1 US 20180153242A1 US 201615369755 A US201615369755 A US 201615369755A US 2018153242 A1 US2018153242 A1 US 2018153242A1
- Authority
- US
- United States
- Prior art keywords
- helmet
- shell layer
- energy
- impact
- shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000001681 protective effect Effects 0.000 title abstract description 35
- 230000007246 mechanism Effects 0.000 claims description 26
- 239000012530 fluid Substances 0.000 claims description 22
- 239000000499 gel Substances 0.000 claims description 10
- 239000006260 foam Substances 0.000 claims description 9
- 230000006870 function Effects 0.000 claims description 3
- 239000011805 ball Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 230000006378 damage Effects 0.000 description 29
- 239000000463 material Substances 0.000 description 27
- 210000004556 brain Anatomy 0.000 description 22
- 208000027418 Wounds and injury Diseases 0.000 description 21
- 208000014674 injury Diseases 0.000 description 21
- 208000030886 Traumatic Brain injury Diseases 0.000 description 14
- 210000003625 skull Anatomy 0.000 description 14
- 230000009529 traumatic brain injury Effects 0.000 description 14
- 239000000835 fiber Substances 0.000 description 10
- 230000000926 neurological effect Effects 0.000 description 10
- 239000004033 plastic Substances 0.000 description 10
- 229920003023 plastic Polymers 0.000 description 10
- 208000034656 Contusions Diseases 0.000 description 9
- 230000009519 contusion Effects 0.000 description 9
- 210000003050 axon Anatomy 0.000 description 8
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 230000007774 longterm Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 206010019196 Head injury Diseases 0.000 description 5
- 230000003376 axonal effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 229920000271 Kevlar® Polymers 0.000 description 4
- 208000003443 Unconsciousness Diseases 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000004761 kevlar Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 208000000202 Diffuse Axonal Injury Diseases 0.000 description 3
- 206010015769 Extradural haematoma Diseases 0.000 description 3
- 208000002667 Subdural Hematoma Diseases 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 230000001149 cognitive effect Effects 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 231100000517 death Toxicity 0.000 description 3
- 208000017004 dementia pugilistica Diseases 0.000 description 3
- 230000009521 diffuse axonal injury Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 230000003252 repetitive effect Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 208000004051 Chronic Traumatic Encephalopathy Diseases 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 206010010254 Concussion Diseases 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- 229920000079 Memory foam Polymers 0.000 description 2
- 102000006386 Myelin Proteins Human genes 0.000 description 2
- 108010083674 Myelin Proteins Proteins 0.000 description 2
- 208000028979 Skull fracture Diseases 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000004958 brain cell Anatomy 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000009514 concussion Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000002996 emotional effect Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 239000008210 memory foam Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000005012 myelin Anatomy 0.000 description 2
- 230000007971 neurological deficit Effects 0.000 description 2
- 230000002981 neuropathic effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000009518 penetrating injury Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 208000000044 Amnesia Diseases 0.000 description 1
- 208000037259 Amyloid Plaque Diseases 0.000 description 1
- 208000016192 Demyelinating disease Diseases 0.000 description 1
- 206010012305 Demyelination Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 208000028361 Penetrating Head injury Diseases 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 241000237983 Trochidae Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 231100000871 behavioral problem Toxicity 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- 230000005978 brain dysfunction Effects 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 238000010073 coating (rubber) Methods 0.000 description 1
- 230000007278 cognition impairment Effects 0.000 description 1
- 231100000870 cognitive problem Toxicity 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000006984 memory degeneration Effects 0.000 description 1
- 208000023060 memory loss Diseases 0.000 description 1
- 210000003007 myelin sheath Anatomy 0.000 description 1
- 230000003188 neurobehavioral effect Effects 0.000 description 1
- 231100000878 neurological injury Toxicity 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 102000013498 tau Proteins Human genes 0.000 description 1
- 108010026424 tau Proteins Proteins 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/06—Impact-absorbing shells, e.g. of crash helmets
- A42B3/062—Impact-absorbing shells, e.g. of crash helmets with reinforcing means
- A42B3/063—Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures
- A42B3/064—Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures with relative movement between layers
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/08—Chin straps or similar retention devices
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/10—Linings
- A42B3/12—Cushioning devices
- A42B3/121—Cushioning devices with at least one layer or pad containing a fluid
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/10—Linings
- A42B3/12—Cushioning devices
- A42B3/125—Cushioning devices with a padded structure, e.g. foam
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/18—Face protection devices
- A42B3/20—Face guards, e.g. for ice hockey
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/18—Face protection devices
- A42B3/22—Visors
Definitions
- the present disclosure relates to elastic mechanisms mounted to shells in protective gear, such as helmets, having multiple shells.
- Protective gear such as sports and safety helmets are designed to reduce direct impact forces that can mechanically damage an area of contact.
- Protective gear will typically include padding and a protective shell to reduce the risk of physical head injury. Liners are provided beneath a hardened exterior shell to reduce violent deceleration of the head in a smooth uniform manner and in an extremely short distance, as liner thickness is typically limited based on helmet size considerations.
- FIG. 1 illustrates types of forces on axonal fibers.
- FIG. 2 illustrates one example of a piece of protective gear.
- FIG. 3 illustrates one example of a container device system.
- FIG. 4 illustrates another example of a container device system.
- FIG. 5 illustrates one example of a multiple shell system.
- FIG. 6 illustrates one example of a multiple shell helmet.
- FIGS. 7A-D illustrate examples of elastic shear protection devices used in a helmet or other protective gear.
- FIG. 8 is a diagram showing a cross-sectional view of a shear protection device between two shell layers.
- a helmet or other protective gear has three shell layers: an outer shell, a middle shell, and an inner shell.
- a shear protection device connects two shell layers.
- the device has a vertex, a first endpoint, and a second endpoint and has a general V-shaped configuration. In one embodiment, it connects the outer shell and the middle shell layer.
- the shear protection device allows the outer shell layer to move relative to the middle shell layer when mechanical forces are imparted onto the outer shell layer.
- the device has an elastic band between the vertex and the first endpoint and another elastic band between the vertex and the second endpoint.
- the vertex is secured to an inner surface of the outer shell and the first endpoint and the second endpoint are secured to an outer surface of the middle shell.
- a protective device may use a single strap in a variety of contexts.
- a system can use multiple straps while remaining within the scope of the present invention unless otherwise noted.
- the techniques and mechanisms of the present invention will sometimes describe a connection between two entities. It should be noted that a connection between two entities does not necessarily mean a direct, unimpeded connection, as a variety of other entities may reside between the two entities. For example, different layers may be connected using a variety of materials. Consequently, a connection does not necessarily mean a direct, unimpeded connection unless otherwise noted.
- Protective gear such as a helmet includes multiple shell layers connected using one or more concertinaed structures.
- the concertinaed structures allow the shell layers greater flexibility to move relative to each other when mechanical forces are imparted onto the outer shell layer.
- the concertinaed structures may also allow improvement function of the energy and impact transformer layers.
- Protective gear such as knee pads, shoulder pads, and helmets are typically designed to prevent direct impact injuries or trauma.
- many pieces of protective gear reduce full impact forces that can structurally damage an area of contact such as the skull or knee.
- Major emphasis is placed on reducing the likelihood of cracking or breaking of bone.
- the larger issue is preventing the tissue and neurological damage caused by rotational forces, shear forces, oscillations, and tension/compression forces.
- the major issue is neurological damage caused by oscillations of the brain in the cranial vault resulting in coup-contracoup injuries manifested as direct contusions to the central nervous system (CNS), shear injuries exacerbated by rotational, tension, compression, and/or shear forces resulting in demyelination and tearing of axonal fibers; and subdural or epidural hematomas.
- CNS central nervous system
- many pieces of protective gear do not sufficiently dampen, transform, dissipate, and/or distribute the rotational, tension, compression, and/or shear forces, but rather focus on absorbing the direct impact forces over a small area, potentially exacerbating the secondary forces on the CNS.
- Initial mechanical damage results in a secondary cascade of tissue and cellular damage due to increased glutamate release or other trauma induced molecular cascades.
- Traumatic brain injury has immense personal, societal and economic impact.
- the CDC numbers do not include head injuries from military actions. Traumatic brain injury is widely cited as the “signature injury” of Operation Enduring Freedom and Operation Iraqi Freedom. The nature of warfare conducted in Iraq and Afghanistan is different from that of previous wars and advances in protective gear including helmets as well as improved medical response times allow soldiers to survive events such as head wounds and blast exposures that previously would have proven fatal.
- the introduction of the Kevlar helmet has drastically reduced field deaths from bullet and shrapnel wounds to the head.
- this increase in survival is paralleled by a dramatic increase in residual brain injury from compression and rotational forces to the brain in TBI survivors. Similar to that observed in the civilian population the residual effects of military deployment related TBI are neurobehavioral symptoms such as cognitive deficits and emotional and somatic complaints.
- the statistics provided by the military cite an incidence of 6.2% of head injuries in combat zone veterans. One might expect these numbers to hold in other countries.
- CTE Chronic Traumatic Encephalopathy
- the human brain is a relatively delicate organ weighing about 3 pounds and having a consistency a little denser than gelatin and close to that of the liver. From an evolutionary perspective, the brain and the protective skull were not designed to withstand significant external forces. Because of this poor impact resistance design, external forces transmitted through the skull to the brain that is composed of over 100 billion cells and up to a trillion connecting fibers results in major neurological problems. These injuries include contusions that directly destroy brain cells and tear the critical connecting fibers necessary to transmit information between brain cells.
- Contusion injuries are simply bleeding into the substance of the brain due to direct contact between the brain and the bony ridges of the inside of the skull.
- the brain cannot tolerate blood products and the presence of blood kicks off a biological cascade that further damages the brain.
- Contusions are due to the brain oscillating inside the skull when an external force is applied. These oscillations can include up to three cycles back and forth in the cranial vault and are referred to as coup-contra coup injuries.
- the coup part of the process is the point of contact of the brain with the skull and the contra-coup is the next point of contact when the brain oscillates and strikes the opposite part of the inside of the skull.
- the inside of the skull has a series of sharp bony ridges in the front of the skull and when the brain is banged against these ridges it is mechanically torn resulting in a contusion. These contusion injuries are typically in the front of the brain damaging key regions involved in cognitive and emotional control.
- Shear injuries involve tearing of axonal fibers.
- the brain and its axonal fibers are extremely sensitive to rotational forces. Boxers can withstand hundreds of punches directly in the face but a single round-house punch or upper cut where the force comes in from the side or bottom of the jaw will cause acute rotation of the skull and brain and typically a knock-out. If the rotational forces are severe enough, the result is tearing of axons.
- FIG. 1 shows how different forces affect axons.
- Compression 101 and tension 103 can remove the protective coating on an axon referred to as a myelin sheath.
- the myelin can be viewed as the rubber coating on a wire. If the internal wire of the axon is not cut the myelin can re-grow and re-coat the “wire” which can resume axonal function and brain communication. If rotational forces are significant, shear forces 105 tear the axon. This elevates the problem since the ends of cut axons do not re-attach. This results in a permanent neurological deficit and is referred to as diffuse axonal injury (DAI), a major cause of long-term neurological disability after TBI.
- DAI diffuse axonal injury
- U.S. Pat. No. 7,076,811 issued to Puchalski describes a helmet with an impact absorbing crumple or shear zone.
- the shell consists of three (or more) discrete panels that are physically and firmly coupled together providing rigid protection under most circumstances, but upon impact the panels move relative to one another, but not relative to the user's head, thereby permitting impact forces to be dissipated and/or redirected away from the cranium and brain within.
- Upon impact to the helmet there are sequential stages of movement of the panels relative to each other, these movements initially being recoverable, but with sufficient vector forces the helmet undergoes structural changes in a pre-determined fashion, so that the recoverable and permanent movements cumulatively provide a protective ‘crumple zone’ or ‘shear zone’.”
- U.S. Pat. No. 5,815,846 issued to Calonge describes “An impact resistant helmet assembly having a first material layer coupled to a second material layer so as to define a gas chamber therebetween which contains a quantity that provides impact dampening upon an impact force being applied to the helmet assembly.
- the helmet assembly further includes a containment layer disposed over the second material layer and structured to define a fluid chamber in which a quantity of fluid is disposed.
- the fluid includes a generally viscous gel structured to provide some resistance against disbursement from an impacted region of the fluid chamber to non-impacted regions of the fluid chamber, thereby further enhance the impact distribution and dampening of the impact force provided by the helmet assembly.”
- U.S. Pat. No. 5,956,777 issued to Popovich describes “A helmet for protecting a head by laterally displacing impact forces, said helmet comprising: a rigid inner shell formed as a single unit; a resilient spacing layer disposed outside of and in contact with said inner shell; and an articulated shell having a plurality of discrete rigid segments disposed outside of and in contact with said resilient spacing layer and a plurality of resilient members which couple adjacent ones of said rigid segments to one another.”
- Springs are typically associated with rebound, and energy stored by the spring is returned to the head. This may help in some instances, but can still cause significant neurological injury. Avoiding energy return to the head is a reason that non-rebounding materials are typically used.
- Some of the protective gear mechanisms are not sufficiently biomechanically aware and are not sufficiently customized for particular areas of protection. These protective gear mechanisms also are not sufficiently active at the right time scales to avoid damage. For example, in many instances, materials like gels may only start to convert significant energy into heat after significant energy has been transferred to the brain. Similarly, structural deformation mechanisms may only break and absorb energy after a significant amount of energy has been transferred to the brain.
- the design of this element could be a part of the smart energy conscious biomechanics aware design for protection.
- the energy and impact transformer includes a mechanism for the dissipation, transformation, absorption, redirection or force/energy at the right time scales (in some cases as small as a few milliseconds or hundreds of microseconds).
- the container mechanism provides structure to allow use of an energy and impact transformer.
- the container mechanism may be two or three shells holding one or more layers of energy and impact transformer materials. That is, a multiple shell structure may have energy and impact transformer materials between adjacent shell layers.
- the shells may be designed to prevent direct penetration from any intruding or impeding object.
- the outer shell may be associated with mechanisms for impact distribution, energy transformation, force dampening, and shear deflection and transformation.
- the container mechanism can be constructed of materials such as polycarbonate, fiberglass, Kevlar, metal, alloys, combinations of materials, etc.
- the energy and impact transformer provides a mechanism for the dissipation, transformation, absorption, and redirection of force and energy at the appropriate time scales.
- the energy and impact transformer may include a variety of elements.
- a mechanical transformer element connects multiple shells associated with a container mechanism with mechanical structures or fluids that help transform the impact or shear forces on an outer shell into more benign forces or energy instead of transferring the impact or shear forces onto an inner shell.
- a mechanical transformer layer is provided between each pair of adjacent shells.
- the mechanical transform may use a shear truss-like structure connecting an outer shell and an inner shell that dampens any force or impact.
- shear truss structure layers connect an outer shell to a middle shell and the middle shell to an inner shell.
- the middle shell or center shell may slide relative to the inner shell and reduce the movement and/or impact imparted on an outer shell.
- the outer shell may slide up to several centimeters relative to the middle shell.
- the material used for connecting the middle shell to the outer shell or the inner shell could be a material that absorbs/dissipates mechanical energy as thermal energy or transformational energy.
- the space between the outer shell, the middle shell, and the inner shell can be filled with absorptive/dissipative material such as fluids and gels.
- the energy and impact transformer may also include an electro-rheological element.
- Different shells may be separated by an electro-rheological element with electric field dependent viscosity.
- the element may essentially stay solid most of the time.
- the electric field is activated so that the viscosity changes depending on the level of stress/strain. Shear forces on an inner shell are reduced to minimize impact transmission.
- the energy and impact transformer also includes a magneto-rheological element.
- Various shells may be separated by magneto rheological elements with magnetic field dependent viscosity.
- the element may essentially stay solid most of the time.
- the magnetic field is activated so that the viscosity changes depending on the level of stress/strain. Shear forces on an inner shell are reduced to minimize impact transmission.
- Electro-rheological and magneto-rheological elements may include smart fluids with properties that change in the presence of electric field or a magnetic field. Some smart fluids undergo changes in viscosity when a magnetic field is applied. For example, a smart fluid may change from a liquid to a gel when magnets line up to create a magnetic field. Smart fluids may react within milliseconds to reduce impact and shear forces between shells.
- foam and memory foam type elements may be included to absorb and distribute forces.
- foam and memory foam type elements may reside beneath the inner shell.
- a magnetic suspension element may be used to actively or passively reduce external forces.
- An inner core and an outer core may be separated by magnets that resist each other, e.g. N-poles opposing each other. The inner and outer cores naturally would want to move apart, but are pulled together by elastic materials. When an outer shell is impact and the magnets are pushed closer, forces between the magnets increase through the air gap.
- a concentric geodesic dome element includes a series of inner shells, each of which is a truss based geodesic dome, but connected to the outer geodesic through structural or fluidic mechanisms. This allows each geodesic structure to fully distribute its own shock load and transmit it in a uniform manner to the dome underneath.
- the sequence of geodesic structures and the separation by fluid provides uniform force distribution and/or dissipation that protects the inner most shell from these impacts.
- a fluid/accordion element would separate an inner shell and an outer shell using an accordion with fluid/gel in between. This would allow shock from the outer core to be transmitted and distributed through the enclosed fluid uniformly while the accordion compresses to accommodate strain.
- a compressed fluid/piston/spring element could include piston/cylinder like elements with a compressed fluid in between that absorbs the impact energy while increasing the resistance to the applied force.
- the design could include additional mechanical elements like a spring to absorb/dissipate the energy.
- a fiber element involves using a rippled outer shell with texture like that of a coconut.
- the outer shell may contain dense coconut fiber like elements that separate the inner core from the outer core. The shock can be absorbed by the outer core and the fibrous filling. Other elements may also be included in an inner core structure.
- a thick stretchable gel filled bag wrapped around the inner shell could expand and contract in different areas to instantaneously transfer and distribute forces. The combination of the elasticity of a bag and the viscosity of the gel could provide for cushioning to absorb/dissipate external forces.
- a container device includes multiple shells such as an outer shell, a middle shell, and an inner shell.
- the shells may be separated by energy and impact transformer mechanisms.
- the shells and the energy and impact transformer mechanisms can be integrated or a shell can also operate as an energy and impact transformer.
- FIG. 2 illustrates one example of a particular piece of protective gear.
- Helmet 201 includes a shell layer 211 and a lining layer 213 .
- the shell layer 211 includes attachment points 215 for a visor, chin bar, face guard, face cage, or face protection mechanism generally.
- the shell layer 211 includes ridges 217 and/or air holes for breathability.
- the shell layer 211 may be constructed using plastics, resins, metal, composites, etc.
- the shell layer 211 may be reinforced using fibers such as aramids.
- the shell layer 211 helps to distribute mechanical energy and prevent penetration.
- the shell layer 211 is typically made using lighter weight materials to prevent the helmet itself from causing injury.
- a chin strap 221 is connected to the helmet to secure helmet positioning.
- the shell layer 211 is also sometimes referred to as a container or a casing.
- the shell layer 211 covers a lining layer 213 .
- the lining layer 213 may include lining materials, foam, and/or padding to absorb mechanical energy and enhance fit.
- a lining layer 213 may be connected to the shell layer 211 using a variety of attachment mechanisms such as glue or Velcro.
- the lining layer 213 is pre-molded to allow for enhanced fit and protection.
- the lining layer may vary, e.g. from 4 mm to 40 mm in thickness, depending on the type of activity a helmet is designed for. In some examples, custom foam may be injected into a fitted helmet to allow for personalized fit. In other examples, differently sized shell layers and lining layers may be provided for various activities and head sizes.
- the shell layer 211 and lining layer 213 protect the skull nicely and have resulted in a dramatic reduction in skull fractures and bleeding between the skull and the brain (subdural and epidural hematomas).
- Military helmets use Kevlar to decrease penetrating injuries from bullets, shrapnel etc. Unfortunately, these approaches are not well designed to decrease direct forces and resultant coup-contra coup injuries that result in both contusions and compression-tension axon injuries. Furthermore, many helmets do not protect against rotational forces that are a core cause of a shear injury and resultant long-term neurological disability in civilian and military personnel. Although the introduction of Kevlar in military helmets has decreased mortality from penetrating head injuries, the survivors are often left with debilitating neurological deficits due to contusions and diffuse axonal injury.
- FIG. 3 illustrates one example of a container device system.
- protective gear includes multiple container devices 301 and 303 .
- the multiple container devices are loosely interconnected shells holding an energy and impact transformer 305 .
- the multiple container devices may be multiple plastic and/or resin shells.
- the containers devices 301 and 303 may be connected only through the energy and impact transformer 305 .
- the container devices 301 and 303 may be loosely connected in a manner supplementing the connection by the energy and impact transformer 305 .
- the energy and impact transformer 305 may use a shear truss-like structure connecting the container 301 and container 303 to dampen any force or impact.
- the energy and impact transformer 305 allows the container 301 to move or slide with respect to container 303 . In some examples, up to several centimeters of relative movement is allowed by the energy and impact transformer 305 .
- the energy and impact transformer 305 could be a material that absorbs/dissipates mechanical energy as thermal energy or transformational energy and may include electro-rheological, magneto-rheological, foam, fluid, and/or gel materials.
- FIG. 4 illustrates another example of a container device system.
- Container 401 encloses energy and impact transformer 403 .
- the container may be constructed using plastic and/or resin. And may expand or contract with the application of force.
- the energy and impact transformer 403 may similarly expand or contract with the application of force.
- the energy and impact transformer 403 may receive and convert energy from physical impacts on a container 401 .
- FIG. 5 illustrates one example of a multiple shell system.
- An outer shell 501 , a middle shell 503 , and an inner shell 505 may hold energy and impact transformative layers 511 and 513 between them.
- Energy and impact transformer layer 511 residing between shells 501 and 503 may allow shell 501 to move and/or slide with respect to middle shell 503 . By allowing sliding movements that convert potential head rotational forces into heat or transformation energy, shear forces can be significantly reduced.
- middle shell 503 can move and slide with respect to inner shell 505 .
- the amount of movement and/or sliding depends on the viscosity of fluid in the energy and impact transformer layers 511 and 513 .
- the viscosity may change depending on electric field or voltage applied.
- the amount of movement and/or sliding depends on the materials and structures of materials in the energy and impact transformer layers 511 and 513 .
- the energy and impact transformer layers 511 and 513 may include thin elastomeric trusses between the shells in a comb structure.
- the energy and impact transformer layers 511 and 513 may also include energy dampening/absorbing fluids or devices.
- energy and impact transformer layer 511 includes a layer of upward or downward facing three dimensional conical structures separating outer shell 501 and middle shell 503 .
- Energy and impact transformer layer 513 includes a layer of upward or downward facing conical structures separating middle shell 503 and inner shell 505 .
- the conical structures in energy and impact transformer layer 511 and the conical structures in energy and impact transformer layer 513 may or may not be aligned. In some examples, the conical structures in layer 511 are misaligned with the conical structures in layer 513 to allow for improved shear force reduction.
- conical structures are designed to have a particular elastic range where the conical structures will return to the same structure after force applied is removed.
- the conical structures may also be designed to have a particular plastic range where the conical structure will permanently deform if sufficient rotational or shear force is applied. The deformation itself may dissipate energy but would necessitate replacement or repair of the protective gear.
- Conical structures are effective in reducing shear, rotational, and impact forces applied to an outer shell 501 .
- Conical structures reduce shear and rotational forces applied from a variety of different directions.
- conical structures in energy and impact transformer layers 511 are directed outwards with bases situated on middle shell 503 and inner shell 505 respectively.
- structures in the energy and impact transformer layer may be variations of conical structures, including three dimensional pyramid structures and three dimensional parabolic structures. In still other examples, the structures may be cylinders.
- FIG. 6 illustrates one example of a multiple shell helmet.
- helmet 601 includes an outer shell layer 603 , an outer energy and impact transformer 605 , a middle shell layer 607 , an inner energy and impact transformer 609 , and an inner shell layer 611 .
- the helmet 601 may also include a lining layer within the inner shell layer 611 .
- the inner shell layer 611 includes attachment points 615 for a chin strap for securing helmet 601 .
- the outer shell layer 603 includes attachment points for a visor, chin bar, face guard, face cage, and/or face protection mechanism 615 generally.
- the inner shell layer 611 , middle shell layer 607 , and outer shell layer 603 include ridges 617 and/or air holes for breathability.
- the outer shell layer 603 , middle shell layer 607 , and inner shell layer 611 may be constructed using plastics, resins, metal, composites, etc.
- the outer shell layer 603 , middle shell layer 607 , and inner shell layer 611 may be reinforced using fibers such as aramids.
- the energy and impact transformer layers 605 and 609 can help distribute mechanical energy and shear forces so that less energy is imparted on the head.
- a chin strap 621 is connected to the inner shell layer 611 to secure helmet positioning.
- the various shell layers are also sometimes referred to as containers or casings.
- the inner shell layer 611 covers a lining layer (not shown).
- the lining layer may include lining materials, foam, and/or padding to absorb mechanical energy and enhance fit.
- a lining layer may be connected to the inner shell layer 611 using a variety of attachment mechanisms such as glue or Velcro.
- the lining layer is pre-molded to allow for enhanced fit and protection.
- the lining layer may vary, e.g. from 4 mm to 40 mm in thickness, depending on the type of activity a helmet is designed for. In some examples, custom foam may be injected into a fitted helmet to allow for personalized fit. In other examples, differently sized shell layers and lining layers may be provided for various activities and head sizes.
- the middle shell layer 607 may only be indirectly connected to the inner shell layer 611 through energy and impact transformer 609 .
- the middle shell layer 607 floats above inner shell layer 611 .
- the middle shell layer 607 may be loosely connected to the inner shell layer 611 .
- outer shell layer 603 floats above middle shell layer 607 and may only be connected to the middle shell layer through energy and impact transformer 605 .
- the outer shell layer 603 may be loosely and flexibly connected to middle shell layer 607 and inner shell layer 611 .
- the shell layers 603 , 607 , and 611 provide protection against penetrating forces while energy and impact transformer layers 605 and 609 provide protection against compression forces, shear forces, rotational forces, etc.
- energy and impact transformer layer 605 allows the outer shell 603 to move relative to the middle shell 607 and the energy and impact transformer layer 609 allows the outer shell 603 and the middle shell 607 to move relative to the inner shell 611 . Compression, shear, rotation, impact, and/or other forces are absorbed, deflected, dissipated, etc., by the various layers.
- the skull and brain are not only provided with protection against skull fractures, penetrating injuries, subdural and epidural hematomas, but also provided with some measure of protection against direct forces and resultant coup-contra coup injuries that result in both contusions and compression-tension axon injuries.
- the skull is also protected against rotational forces that are a core cause of a shear injury and resultant long-term neurological disability in civilian and military personnel.
- the energy and impact transformer layers 605 and 609 may include passive, semi-active, and active dampers.
- the outer shell 603 , middle shell 607 , and the inner shell 611 may vary in weight and strength. In some examples, the outer shell 603 has significantly more weight, strength, and structural integrity than the middle shell 607 and the inner shell 611 . The outer shell 603 may be used to prevent penetrating forces, and consequently may be constructed using higher strength materials that may be more expensive or heavier.
- FIGS. 7A-C illustrate examples of shear protection devices that can be used in helmets or other protective gear.
- the devices are used to connect shell layers of a helmet or protective gear.
- these devices are generally V-shaped configurations having bands that are made of flexible material such as rubber or other elastic substance.
- the bands are flexible to a certain degree and as such can flex thereby allowing shell layers to move relative to each other when mechanical forces or any type of impacts are imparted onto an outer shell layer.
- the V-shaped devices can have configurations where the elastic bands are different lengths and the angle between them as they extend from a vertex, described below, can also vary. Whatever the configuration of the device, the elasticity or flexibility allows it to contract, flex downward, or expand under various forces. In addition to protecting against shear forces, the devices can also damper various types of impact forces and rotational forces.
- the shear protection devices of the present invention are made of a flexible material having a range of properties.
- the flexible material can operate in elastic and/or plastic ranges.
- flexible materials comprising the device may operate in the elastic range, such that the V-shaped device return to its original position after the helmet or protective gear returns to rest, i.e., immediately after the impact.
- the flexible materials can be chosen so that they are able to strain into the plastic range when an impact, such as a shear force, exceeds a certain energy level. In such cases, the devices can absorb some of the energy imparted from the impact. Because the device would undergo plastic deformation in these cases, the V-shaped devices would need to be replaced before the helmet or protective gear could be used again effectively.
- FIG. 7A is an illustration showing one configuration of a shear protection device used in a helmet in accordance with one embodiment.
- a shear protection device 700 is mounted or secured between two shells in a multiple shell helmet, such as the helmets described in the figures above.
- FIG. 7A shows the outer surface of one of the shells 702 , in this case, a middle shell.
- Shear protection device 700 can be described as a single-piece, V-shaped elastic or plastic component with two end points each having an opening and a vertex, slightly larger than the end points and also having an opening.
- An example is shown in FIG. 7B .
- the elastic or plastic portion of the device is a single piece. This allows it to have more flexibility and as such able to absorb energy from impacts without breaking or snapping since it is a continuous or single piece it has no connection or joints where it is more likely to snap under high pressure.
- Device 700 has two end points, 704 and 706 , that are securely mounted onto surface 702 . They may be mounted or fastened using conventional means such as rivets through the opening. Whatever fastening means is used, the end points are securely fastened to the surface.
- the third end point in the device is referred to as a vertex. It is larger than the two end points.
- the vertex and an end point are connected by an elongated band. The length, thickness, and other dimensions of the band may vary.
- the vertex is connected to two end points. As described below, the end points and the vertex are not on the same plane, that is, the device is not flat. The two end points are on the same plane (or very close to it) and the vertex is on a different plane. This is shown in FIG. 8 below which shows that the band connecting an endpoint and a vertex is at an angle. This angle may change for an instant when there is impact on the outer shell of the helmet.
- the vertex of the device is mounted to the inner surface of an outer shell (not shown). It also is securely mounted to the surface using conventional means such as a rivet.
- the aperture in the center of the vertex is larger than the aperture in the end points because there are two bands extending from it to the end points and, as such, it will likely have to absorb more energy from an impact.
- it is mounted to the outer shell which takes direct mechanical impact from an external force.
- a helmet or other protective gear may have multiple shear protection devices mounted between its shells.
- a second shear protection device is shown in FIG. 7A . More such devices may be used depending on the surface area available on the shells (i.e., the size of the helmet) and on the intended use of the helmet. The positioning and orientation of the protection devices may vary. The size of the devices itself may also vary.
- FIG. 7C shows an alternative configuration of a device where the lengths of the bands are not the same. The angle between the two bands at the vertex may also vary.
- FIG. 7D shows an embodiment where there is one band between two end points. In short, the configuration and overall shape of the devices can vary widely without detracting from the objective of the device which is absorbing energy from various types of impacts to the helmet.
- the end points are mounted to one surface and the vertex to an adjacent surface, with the connector bands at an angle between the end points and the vertex, the flexibility needed by the device to absorb energy from an impact can be achieved.
- the end points and vertex may not be circular.
- FIG. 8 is a cross-sectional view showing a shear protection device between two shells in accordance with one embodiment.
- Shell 802 is an outer shell and shell 804 is a middle shell.
- Mechanical forces impact outer shell 802 .
- the arrows pointing downward on outer shell 802 represent any type of mechanical force that impact the helmet, including rotational forces and shear forces.
- a vertex 806 is shown secured to the inner surface of outer shell 802 .
- a band segment 808 extends from vertex 806 to an end point 810 (a second endpoint of the device is not shown).
- Band segment 808 traverses and operates in an energy and impact transformer layer 812 which may contain one or more other energy absorbing means. These include fluids, gels, foam, ball bearings configurations, conical structures, concertinaed structures, among others.
- a mechanical impact on outer surface 802 forces vertex 806 downward which makes band 808 flex downward allowing the shell layers to move closer to each other thereby absorbing energy imparted from the impact.
- the two shells 802 and 804 can be considered connected to each other by the shear protection device.
- the angle and length of band 808 is highlighted or exaggerated to better illustrate the functioning of the shear protection device.
- the angle (or slope) of the band may not be as great as the example shown.
Landscapes
- Helmets And Other Head Coverings (AREA)
Abstract
Protective gear such as a helmet includes multiple shell layers connected using one or more shear protection devices. The shear protection devices have a general V-shaped configuration with one vertex point and two endpoints. Elastic bands connect the vertex with each endpoint. The vertex is secured to the inner surface of the outer shell layer and the two endpoints are attached to the outer surface of a middle shell layer. The devices flex downward or contracts when there is an impact on the helmet, such as a direct, rotational, or shear force. The device is able to absorb energy from the impact by flexing and allowing movement of the outer shell layer relative to the middle shell layer.
Description
- The present disclosure relates to elastic mechanisms mounted to shells in protective gear, such as helmets, having multiple shells.
- Protective gear such as sports and safety helmets are designed to reduce direct impact forces that can mechanically damage an area of contact. Protective gear will typically include padding and a protective shell to reduce the risk of physical head injury. Liners are provided beneath a hardened exterior shell to reduce violent deceleration of the head in a smooth uniform manner and in an extremely short distance, as liner thickness is typically limited based on helmet size considerations.
- Protective gear is reasonably effective in preventing injury. Nonetheless, the effectiveness of protective gear remains limited. Consequently, various mechanisms are provided to improve movement of shell layers in helmets and other protective gear during the application of impact forces.
- The disclosure may best be understood by reference to the following description taken in conjunction with the accompanying drawings, which illustrate particular embodiments.
-
FIG. 1 illustrates types of forces on axonal fibers. -
FIG. 2 illustrates one example of a piece of protective gear. -
FIG. 3 illustrates one example of a container device system. -
FIG. 4 illustrates another example of a container device system. -
FIG. 5 illustrates one example of a multiple shell system. -
FIG. 6 illustrates one example of a multiple shell helmet. -
FIGS. 7A-D illustrate examples of elastic shear protection devices used in a helmet or other protective gear. -
FIG. 8 is a diagram showing a cross-sectional view of a shear protection device between two shell layers. - In one aspect of the invention, a helmet or other protective gear has three shell layers: an outer shell, a middle shell, and an inner shell. A shear protection device connects two shell layers. The device has a vertex, a first endpoint, and a second endpoint and has a general V-shaped configuration. In one embodiment, it connects the outer shell and the middle shell layer. The shear protection device allows the outer shell layer to move relative to the middle shell layer when mechanical forces are imparted onto the outer shell layer. The device has an elastic band between the vertex and the first endpoint and another elastic band between the vertex and the second endpoint. In one embodiment, the vertex is secured to an inner surface of the outer shell and the first endpoint and the second endpoint are secured to an outer surface of the middle shell.
- Reference will now be made in detail to some specific examples of the invention including the best modes contemplated by the inventors for carrying out the invention. Examples of these specific embodiments are illustrated in the accompanying drawings. While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to the described embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
- For example, the techniques of the present invention will be described in the context of helmets. However, it should be noted that the techniques of the present invention apply to a wide variety of different pieces of protective gear. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. Particular example embodiments of the present invention may be implemented without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
- Various techniques and mechanisms of the present invention will sometimes be described in singular form for clarity. However, it should be noted that some embodiments include multiple iterations of a technique or multiple instantiations of a mechanism unless noted otherwise. For example, a protective device may use a single strap in a variety of contexts. However, it will be appreciated that a system can use multiple straps while remaining within the scope of the present invention unless otherwise noted. Furthermore, the techniques and mechanisms of the present invention will sometimes describe a connection between two entities. It should be noted that a connection between two entities does not necessarily mean a direct, unimpeded connection, as a variety of other entities may reside between the two entities. For example, different layers may be connected using a variety of materials. Consequently, a connection does not necessarily mean a direct, unimpeded connection unless otherwise noted.
- Overview
- Protective gear such as a helmet includes multiple shell layers connected using one or more concertinaed structures. The concertinaed structures allow the shell layers greater flexibility to move relative to each other when mechanical forces are imparted onto the outer shell layer. When energy and impact transformer layers are disposed between the shell layers, the concertinaed structures may also allow improvement function of the energy and impact transformer layers.
- Protective gear such as knee pads, shoulder pads, and helmets are typically designed to prevent direct impact injuries or trauma. For example, many pieces of protective gear reduce full impact forces that can structurally damage an area of contact such as the skull or knee. Major emphasis is placed on reducing the likelihood of cracking or breaking of bone. However, the larger issue is preventing the tissue and neurological damage caused by rotational forces, shear forces, oscillations, and tension/compression forces.
- For head injuries, the major issue is neurological damage caused by oscillations of the brain in the cranial vault resulting in coup-contracoup injuries manifested as direct contusions to the central nervous system (CNS), shear injuries exacerbated by rotational, tension, compression, and/or shear forces resulting in demyelination and tearing of axonal fibers; and subdural or epidural hematomas. Because of the emphasis in reducing the likelihood of cracking or breaking bone, many pieces of protective gear do not sufficiently dampen, transform, dissipate, and/or distribute the rotational, tension, compression, and/or shear forces, but rather focus on absorbing the direct impact forces over a small area, potentially exacerbating the secondary forces on the CNS. Initial mechanical damage results in a secondary cascade of tissue and cellular damage due to increased glutamate release or other trauma induced molecular cascades.
- Traumatic brain injury (TBI) has immense personal, societal and economic impact. The Center for Disease Control and Prevention documented 1.4 million cases of TBI in the USA in 2007. This number was based on patients with a loss of consciousness from a TBI resulting in an Emergency Room visit. With increasing public awareness of TBI this number increased to 1.7 million cases in 2010. Of these cases there were 52,000 deaths and 275,000 hospitalizations, with the remaining 1.35 million cases released from the ER. Of these 1.35 million discharged cases at least 150,000 people will have significant residual cognitive and behavioral problems at 1-year post discharge from the ER. Notably, the CDC believes these numbers under represent the problem since many patients do not seek medical evaluation for brief loss of consciousness due to a TBI. These USA numbers are similar to those observed in other developed countries and are likely higher in third-world countries with poorer vehicle and head impact protection. To put the problem in a clearer perspective, the World Health Organization (WHO) anticipates that TBI will become a leading cause of death and disability in the world by the year 2020.
- The CDC numbers do not include head injuries from military actions. Traumatic brain injury is widely cited as the “signature injury” of Operation Enduring Freedom and Operation Iraqi Freedom. The nature of warfare conducted in Iraq and Afghanistan is different from that of previous wars and advances in protective gear including helmets as well as improved medical response times allow soldiers to survive events such as head wounds and blast exposures that previously would have proven fatal. The introduction of the Kevlar helmet has drastically reduced field deaths from bullet and shrapnel wounds to the head. However, this increase in survival is paralleled by a dramatic increase in residual brain injury from compression and rotational forces to the brain in TBI survivors. Similar to that observed in the civilian population the residual effects of military deployment related TBI are neurobehavioral symptoms such as cognitive deficits and emotional and somatic complaints. The statistics provided by the military cite an incidence of 6.2% of head injuries in combat zone veterans. One might expect these numbers to hold in other countries.
- In addition to the incidence of TBI in civilians from falls and vehicular accidents or military personnel in combat there is increasing awareness that sports-related repetitive forces applied to the head with or without true loss of consciousness can have dire long-term consequences. It has been known since the 1920's that boxing is associated with devastating long-term issues including “dementia pugilistica” and Parkinson-like symptoms (i.e. Mohammed Ali). We now know that this repetitive force on the brain dysfunction extends to many other sports. Football leads the way in concussions with loss of consciousness and post-traumatic memory loss (63% of all concussions in all sports), wrestling comes in second at 10% and soccer has risen to 6% of all sports related TBIs. In the USA 63,000 high school students suffer a TBI per year and many of these students have persistent long-term cognitive and behavioral issues. This disturbing pattern extends to professional sports where impact forces to the body and head are even higher due to the progressive increase in weight and speed of professional athletes. Football has dominated the national discourse in the area but serious and progressive long-term neurological issues are also seen in hockey and soccer players and in any sport with the likelihood of a TBI. Repetitive head injuries result in progressive neurological deterioration with neuropathological findings mimicking Alzheimer's disease. This syndrome with characteristic post-mortem neuropathological findings on increases in Tau proteins and amyloid plaques is referred to as Chronic Traumatic Encephalopathy (CTE).
- The human brain is a relatively delicate organ weighing about 3 pounds and having a consistency a little denser than gelatin and close to that of the liver. From an evolutionary perspective, the brain and the protective skull were not designed to withstand significant external forces. Because of this poor impact resistance design, external forces transmitted through the skull to the brain that is composed of over 100 billion cells and up to a trillion connecting fibers results in major neurological problems. These injuries include contusions that directly destroy brain cells and tear the critical connecting fibers necessary to transmit information between brain cells.
- Contusion injuries are simply bleeding into the substance of the brain due to direct contact between the brain and the bony ridges of the inside of the skull. Unfortunately, the brain cannot tolerate blood products and the presence of blood kicks off a biological cascade that further damages the brain. Contusions are due to the brain oscillating inside the skull when an external force is applied. These oscillations can include up to three cycles back and forth in the cranial vault and are referred to as coup-contra coup injuries. The coup part of the process is the point of contact of the brain with the skull and the contra-coup is the next point of contact when the brain oscillates and strikes the opposite part of the inside of the skull.
- The inside of the skull has a series of sharp bony ridges in the front of the skull and when the brain is banged against these ridges it is mechanically torn resulting in a contusion. These contusion injuries are typically in the front of the brain damaging key regions involved in cognitive and emotional control.
- Shear injuries involve tearing of axonal fibers. The brain and its axonal fibers are extremely sensitive to rotational forces. Boxers can withstand hundreds of punches directly in the face but a single round-house punch or upper cut where the force comes in from the side or bottom of the jaw will cause acute rotation of the skull and brain and typically a knock-out. If the rotational forces are severe enough, the result is tearing of axons.
-
FIG. 1 below shows how different forces affect axons.Compression 101 andtension 103 can remove the protective coating on an axon referred to as a myelin sheath. The myelin can be viewed as the rubber coating on a wire. If the internal wire of the axon is not cut the myelin can re-grow and re-coat the “wire” which can resume axonal function and brain communication. If rotational forces are significant,shear forces 105 tear the axon. This elevates the problem since the ends of cut axons do not re-attach. This results in a permanent neurological deficit and is referred to as diffuse axonal injury (DAI), a major cause of long-term neurological disability after TBI. - Some more modern pieces of protective gear have been introduced with the awareness that significant injuries besides musculoskeletal or flesh injuries in a variety of activities require new protective gear designs.
- U.S. Pat. No. 7,076,811 issued to Puchalski describes a helmet with an impact absorbing crumple or shear zone. “The shell consists of three (or more) discrete panels that are physically and firmly coupled together providing rigid protection under most circumstances, but upon impact the panels move relative to one another, but not relative to the user's head, thereby permitting impact forces to be dissipated and/or redirected away from the cranium and brain within. Upon impact to the helmet, there are sequential stages of movement of the panels relative to each other, these movements initially being recoverable, but with sufficient vector forces the helmet undergoes structural changes in a pre-determined fashion, so that the recoverable and permanent movements cumulatively provide a protective ‘crumple zone’ or ‘shear zone’.”
- U.S. Pat. No. 5,815,846 issued to Calonge describes “An impact resistant helmet assembly having a first material layer coupled to a second material layer so as to define a gas chamber therebetween which contains a quantity that provides impact dampening upon an impact force being applied to the helmet assembly. The helmet assembly further includes a containment layer disposed over the second material layer and structured to define a fluid chamber in which a quantity of fluid is disposed. The fluid includes a generally viscous gel structured to provide some resistance against disbursement from an impacted region of the fluid chamber to non-impacted regions of the fluid chamber, thereby further enhance the impact distribution and dampening of the impact force provided by the helmet assembly.”
- U.S. Pat. No. 5,956,777 issued to Popovich describes “A helmet for protecting a head by laterally displacing impact forces, said helmet comprising: a rigid inner shell formed as a single unit; a resilient spacing layer disposed outside of and in contact with said inner shell; and an articulated shell having a plurality of discrete rigid segments disposed outside of and in contact with said resilient spacing layer and a plurality of resilient members which couple adjacent ones of said rigid segments to one another.”
- U.S. Pat. No. 6,434,755 issued to Halstead describes a football helmet with liner sections of different thicknesses and densities. The thicker, softer sections would handle less intense impacts, crushing down until the thinner, harder sections take over to prevent bottoming out.
- Still other ideas relate to using springs instead of crushable materials to manage the energy of an impact. Springs are typically associated with rebound, and energy stored by the spring is returned to the head. This may help in some instances, but can still cause significant neurological injury. Avoiding energy return to the head is a reason that non-rebounding materials are typically used.
- Some of the protective gear mechanisms are not sufficiently biomechanically aware and are not sufficiently customized for particular areas of protection. These protective gear mechanisms also are not sufficiently active at the right time scales to avoid damage. For example, in many instances, materials like gels may only start to convert significant energy into heat after significant energy has been transferred to the brain. Similarly, structural deformation mechanisms may only break and absorb energy after a significant amount of energy has been transferred to the brain.
- Current mechanisms are useful for particular circumstances but are limited in their ability to protect against numerous types of neurological damage. Consequently, an improved smart biomechanics aware and energy conscious protective gear mechanism is provided to protect against mechanical damage as well as neurological damage.
- According to various embodiments, protective gear such as a helmet includes a container device to provide a structural mechanism for holding an energy and impact transformer. The design of this element could be a part of the smart energy conscious biomechanics aware design for protection. The energy and impact transformer includes a mechanism for the dissipation, transformation, absorption, redirection or force/energy at the right time scales (in some cases as small as a few milliseconds or hundreds of microseconds).
- In particular embodiments, the container mechanism provides structure to allow use of an energy and impact transformer. The container mechanism may be two or three shells holding one or more layers of energy and impact transformer materials. That is, a multiple shell structure may have energy and impact transformer materials between adjacent shell layers. The shells may be designed to prevent direct penetration from any intruding or impeding object. In some examples, the outer shell may be associated with mechanisms for impact distribution, energy transformation, force dampening, and shear deflection and transformation. In some examples, the container mechanism can be constructed of materials such as polycarbonate, fiberglass, Kevlar, metal, alloys, combinations of materials, etc.
- According to various embodiments, the energy and impact transformer provides a mechanism for the dissipation, transformation, absorption, and redirection of force and energy at the appropriate time scales. The energy and impact transformer may include a variety of elements. In some examples, a mechanical transformer element connects multiple shells associated with a container mechanism with mechanical structures or fluids that help transform the impact or shear forces on an outer shell into more benign forces or energy instead of transferring the impact or shear forces onto an inner shell.
- In some examples, a mechanical transformer layer is provided between each pair of adjacent shells. The mechanical transform may use a shear truss-like structure connecting an outer shell and an inner shell that dampens any force or impact. In some examples, shear truss structure layers connect an outer shell to a middle shell and the middle shell to an inner shell. According to various embodiments, the middle shell or center shell may slide relative to the inner shell and reduce the movement and/or impact imparted on an outer shell. In particular embodiments, the outer shell may slide up to several centimeters relative to the middle shell. In particular embodiments, the material used for connecting the middle shell to the outer shell or the inner shell could be a material that absorbs/dissipates mechanical energy as thermal energy or transformational energy. The space between the outer shell, the middle shell, and the inner shell can be filled with absorptive/dissipative material such as fluids and gels.
- According to various embodiments, the energy and impact transformer may also include an electro-rheological element. Different shells may be separated by an electro-rheological element with electric field dependent viscosity. The element may essentially stay solid most of the time. When there is stress/strain on an outer shell, the electric field is activated so that the viscosity changes depending on the level of stress/strain. Shear forces on an inner shell are reduced to minimize impact transmission.
- In particular embodiments, the energy and impact transformer also includes a magneto-rheological element. Various shells may be separated by magneto rheological elements with magnetic field dependent viscosity. The element may essentially stay solid most of the time. When there is stress/strain on an outer shell, the magnetic field is activated so that the viscosity changes depending on the level of stress/strain. Shear forces on an inner shell are reduced to minimize impact transmission.
- Electro-rheological and magneto-rheological elements may include smart fluids with properties that change in the presence of electric field or a magnetic field. Some smart fluids undergo changes in viscosity when a magnetic field is applied. For example, a smart fluid may change from a liquid to a gel when magnets line up to create a magnetic field. Smart fluids may react within milliseconds to reduce impact and shear forces between shells.
- In other examples, foam and memory foam type elements may be included to absorb and distribute forces. In some examples, foam and memory foam type elements may reside beneath the inner shell. A magnetic suspension element may be used to actively or passively reduce external forces. An inner core and an outer core may be separated by magnets that resist each other, e.g. N-poles opposing each other. The inner and outer cores naturally would want to move apart, but are pulled together by elastic materials. When an outer shell is impact and the magnets are pushed closer, forces between the magnets increase through the air gap.
- According to various embodiments, a concentric geodesic dome element includes a series of inner shells, each of which is a truss based geodesic dome, but connected to the outer geodesic through structural or fluidic mechanisms. This allows each geodesic structure to fully distribute its own shock load and transmit it in a uniform manner to the dome underneath. The sequence of geodesic structures and the separation by fluid provides uniform force distribution and/or dissipation that protects the inner most shell from these impacts.
- In particular embodiments, a fluid/accordion element would separate an inner shell and an outer shell using an accordion with fluid/gel in between. This would allow shock from the outer core to be transmitted and distributed through the enclosed fluid uniformly while the accordion compresses to accommodate strain. A compressed fluid/piston/spring element could include piston/cylinder like elements with a compressed fluid in between that absorbs the impact energy while increasing the resistance to the applied force. The design could include additional mechanical elements like a spring to absorb/dissipate the energy.
- In still other examples, a fiber element involves using a rippled outer shell with texture like that of a coconut. The outer shell may contain dense coconut fiber like elements that separate the inner core from the outer core. The shock can be absorbed by the outer core and the fibrous filling. Other elements may also be included in an inner core structure. In some examples, a thick stretchable gel filled bag wrapped around the inner shell could expand and contract in different areas to instantaneously transfer and distribute forces. The combination of the elasticity of a bag and the viscosity of the gel could provide for cushioning to absorb/dissipate external forces.
- According to various embodiments, a container device includes multiple shells such as an outer shell, a middle shell, and an inner shell. The shells may be separated by energy and impact transformer mechanisms. In some examples, the shells and the energy and impact transformer mechanisms can be integrated or a shell can also operate as an energy and impact transformer.
-
FIG. 2 illustrates one example of a particular piece of protective gear.Helmet 201 includes ashell layer 211 and alining layer 213. Theshell layer 211 includes attachment points 215 for a visor, chin bar, face guard, face cage, or face protection mechanism generally. In some examples, theshell layer 211 includesridges 217 and/or air holes for breathability. Theshell layer 211 may be constructed using plastics, resins, metal, composites, etc. In some instances, theshell layer 211 may be reinforced using fibers such as aramids. Theshell layer 211 helps to distribute mechanical energy and prevent penetration. Theshell layer 211 is typically made using lighter weight materials to prevent the helmet itself from causing injury. - According to various embodiments, a
chin strap 221 is connected to the helmet to secure helmet positioning. Theshell layer 211 is also sometimes referred to as a container or a casing. In many examples, theshell layer 211 covers alining layer 213. Thelining layer 213 may include lining materials, foam, and/or padding to absorb mechanical energy and enhance fit. Alining layer 213 may be connected to theshell layer 211 using a variety of attachment mechanisms such as glue or Velcro. According to various embodiments, thelining layer 213 is pre-molded to allow for enhanced fit and protection. According to various embodiments, the lining layer may vary, e.g. from 4 mm to 40 mm in thickness, depending on the type of activity a helmet is designed for. In some examples, custom foam may be injected into a fitted helmet to allow for personalized fit. In other examples, differently sized shell layers and lining layers may be provided for various activities and head sizes. - The
shell layer 211 andlining layer 213 protect the skull nicely and have resulted in a dramatic reduction in skull fractures and bleeding between the skull and the brain (subdural and epidural hematomas). Military helmets use Kevlar to decrease penetrating injuries from bullets, shrapnel etc. Unfortunately, these approaches are not well designed to decrease direct forces and resultant coup-contra coup injuries that result in both contusions and compression-tension axon injuries. Furthermore, many helmets do not protect against rotational forces that are a core cause of a shear injury and resultant long-term neurological disability in civilian and military personnel. Although the introduction of Kevlar in military helmets has decreased mortality from penetrating head injuries, the survivors are often left with debilitating neurological deficits due to contusions and diffuse axonal injury. -
FIG. 3 illustrates one example of a container device system. According to various embodiments, protective gear includes 301 and 303. In particular embodiments, the multiple container devices are loosely interconnected shells holding an energy andmultiple container devices impact transformer 305. The multiple container devices may be multiple plastic and/or resin shells. In some examples, the 301 and 303 may be connected only through the energy andcontainers devices impact transformer 305. In other examples, the 301 and 303 may be loosely connected in a manner supplementing the connection by the energy andcontainer devices impact transformer 305. - According to various embodiments, the energy and
impact transformer 305 may use a shear truss-like structure connecting thecontainer 301 andcontainer 303 to dampen any force or impact. In some examples, the energy andimpact transformer 305 allows thecontainer 301 to move or slide with respect tocontainer 303. In some examples, up to several centimeters of relative movement is allowed by the energy andimpact transformer 305. - In particular embodiments, the energy and
impact transformer 305 could be a material that absorbs/dissipates mechanical energy as thermal energy or transformational energy and may include electro-rheological, magneto-rheological, foam, fluid, and/or gel materials. -
FIG. 4 illustrates another example of a container device system.Container 401 encloses energy andimpact transformer 403. In some examples, multiple containers or multiple shells may not be necessary. The container may be constructed using plastic and/or resin. And may expand or contract with the application of force. The energy andimpact transformer 403 may similarly expand or contract with the application of force. The energy andimpact transformer 403 may receive and convert energy from physical impacts on acontainer 401. -
FIG. 5 illustrates one example of a multiple shell system. Anouter shell 501, amiddle shell 503, and aninner shell 505 may hold energy and impact 511 and 513 between them. Energy andtransformative layers impact transformer layer 511 residing between 501 and 503 may allowshells shell 501 to move and/or slide with respect tomiddle shell 503. By allowing sliding movements that convert potential head rotational forces into heat or transformation energy, shear forces can be significantly reduced. - Similarly,
middle shell 503 can move and slide with respect toinner shell 505. In some examples, the amount of movement and/or sliding depends on the viscosity of fluid in the energy and impact transformer layers 511 and 513. The viscosity may change depending on electric field or voltage applied. In some other examples, the amount of movement and/or sliding depends on the materials and structures of materials in the energy and impact transformer layers 511 and 513. - According to various embodiments, when a force is applied to an
outer shell 501, energy is transferred to aninner shell 505 through a suspendedmiddle shell 503. Themiddle shell 503 shears relative to thetop shell 501 andinner shell 505. In particular embodiments, the energy and impact transformer layers 511 and 513 may include thin elastomeric trusses between the shells in a comb structure. The energy and impact transformer layers 511 and 513 may also include energy dampening/absorbing fluids or devices. - According to various embodiments, a number of different physical structures can be used to form energy and impact transformer layers 511 and 513. In some examples, energy and
impact transformer layer 511 includes a layer of upward or downward facing three dimensional conical structures separatingouter shell 501 andmiddle shell 503. Energy andimpact transformer layer 513 includes a layer of upward or downward facing conical structures separatingmiddle shell 503 andinner shell 505. The conical structures in energy andimpact transformer layer 511 and the conical structures in energy andimpact transformer layer 513 may or may not be aligned. In some examples, the conical structures inlayer 511 are misaligned with the conical structures inlayer 513 to allow for improved shear force reduction. - In some examples, conical structures are designed to have a particular elastic range where the conical structures will return to the same structure after force applied is removed. The conical structures may also be designed to have a particular plastic range where the conical structure will permanently deform if sufficient rotational or shear force is applied. The deformation itself may dissipate energy but would necessitate replacement or repair of the protective gear.
- Conical structures are effective in reducing shear, rotational, and impact forces applied to an
outer shell 501. Conical structures reduce shear and rotational forces applied from a variety of different directions. According to various embodiments, conical structures in energy and impact transformer layers 511 are directed outwards with bases situated onmiddle shell 503 andinner shell 505 respectively. In some examples, structures in the energy and impact transformer layer may be variations of conical structures, including three dimensional pyramid structures and three dimensional parabolic structures. In still other examples, the structures may be cylinders. -
FIG. 6 illustrates one example of a multiple shell helmet. According to various embodiments,helmet 601 includes anouter shell layer 603, an outer energy andimpact transformer 605, amiddle shell layer 607, an inner energy andimpact transformer 609, and aninner shell layer 611. Thehelmet 601 may also include a lining layer within theinner shell layer 611. In particular embodiments, theinner shell layer 611 includes attachment points 615 for a chin strap for securinghelmet 601. In particular embodiments, theouter shell layer 603 includes attachment points for a visor, chin bar, face guard, face cage, and/orface protection mechanism 615 generally. In some examples, theinner shell layer 611,middle shell layer 607, andouter shell layer 603 include ridges 617 and/or air holes for breathability. Theouter shell layer 603,middle shell layer 607, andinner shell layer 611 may be constructed using plastics, resins, metal, composites, etc. In some instances, theouter shell layer 603,middle shell layer 607, andinner shell layer 611 may be reinforced using fibers such as aramids. The energy and impact transformer layers 605 and 609 can help distribute mechanical energy and shear forces so that less energy is imparted on the head. - According to various embodiments, a
chin strap 621 is connected to theinner shell layer 611 to secure helmet positioning. The various shell layers are also sometimes referred to as containers or casings. In many examples, theinner shell layer 611 covers a lining layer (not shown). The lining layer may include lining materials, foam, and/or padding to absorb mechanical energy and enhance fit. A lining layer may be connected to theinner shell layer 611 using a variety of attachment mechanisms such as glue or Velcro. According to various embodiments, the lining layer is pre-molded to allow for enhanced fit and protection. According to various embodiments, the lining layer may vary, e.g. from 4 mm to 40 mm in thickness, depending on the type of activity a helmet is designed for. In some examples, custom foam may be injected into a fitted helmet to allow for personalized fit. In other examples, differently sized shell layers and lining layers may be provided for various activities and head sizes. - The
middle shell layer 607 may only be indirectly connected to theinner shell layer 611 through energy andimpact transformer 609. In particular embodiments, themiddle shell layer 607 floats aboveinner shell layer 611. In other examples, themiddle shell layer 607 may be loosely connected to theinner shell layer 611. In the same manner,outer shell layer 603 floats abovemiddle shell layer 607 and may only be connected to the middle shell layer through energy andimpact transformer 605. In other examples, theouter shell layer 603 may be loosely and flexibly connected tomiddle shell layer 607 andinner shell layer 611. The shell layers 603, 607, and 611 provide protection against penetrating forces while energy and impact transformer layers 605 and 609 provide protection against compression forces, shear forces, rotational forces, etc. According to various embodiments, energy andimpact transformer layer 605 allows theouter shell 603 to move relative to themiddle shell 607 and the energy andimpact transformer layer 609 allows theouter shell 603 and themiddle shell 607 to move relative to theinner shell 611. Compression, shear, rotation, impact, and/or other forces are absorbed, deflected, dissipated, etc., by the various layers. - According to various embodiments, the skull and brain are not only provided with protection against skull fractures, penetrating injuries, subdural and epidural hematomas, but also provided with some measure of protection against direct forces and resultant coup-contra coup injuries that result in both contusions and compression-tension axon injuries. The skull is also protected against rotational forces that are a core cause of a shear injury and resultant long-term neurological disability in civilian and military personnel.
- In some examples, the energy and impact transformer layers 605 and 609 may include passive, semi-active, and active dampers. According to various embodiments, the
outer shell 603,middle shell 607, and theinner shell 611 may vary in weight and strength. In some examples, theouter shell 603 has significantly more weight, strength, and structural integrity than themiddle shell 607 and theinner shell 611. Theouter shell 603 may be used to prevent penetrating forces, and consequently may be constructed using higher strength materials that may be more expensive or heavier. -
FIGS. 7A-C illustrate examples of shear protection devices that can be used in helmets or other protective gear. Specifically, the devices are used to connect shell layers of a helmet or protective gear. According to various embodiments, these devices are generally V-shaped configurations having bands that are made of flexible material such as rubber or other elastic substance. The bands are flexible to a certain degree and as such can flex thereby allowing shell layers to move relative to each other when mechanical forces or any type of impacts are imparted onto an outer shell layer. In some examples, the V-shaped devices can have configurations where the elastic bands are different lengths and the angle between them as they extend from a vertex, described below, can also vary. Whatever the configuration of the device, the elasticity or flexibility allows it to contract, flex downward, or expand under various forces. In addition to protecting against shear forces, the devices can also damper various types of impact forces and rotational forces. - In some embodiments, the shear protection devices of the present invention are made of a flexible material having a range of properties. Depending on the application or in what context the helmet will be used, the flexible material can operate in elastic and/or plastic ranges. For instance, for minor impacts to the outer shell layer, flexible materials comprising the device may operate in the elastic range, such that the V-shaped device return to its original position after the helmet or protective gear returns to rest, i.e., immediately after the impact. In other examples, the flexible materials can be chosen so that they are able to strain into the plastic range when an impact, such as a shear force, exceeds a certain energy level. In such cases, the devices can absorb some of the energy imparted from the impact. Because the device would undergo plastic deformation in these cases, the V-shaped devices would need to be replaced before the helmet or protective gear could be used again effectively.
-
FIG. 7A is an illustration showing one configuration of a shear protection device used in a helmet in accordance with one embodiment. Ashear protection device 700 is mounted or secured between two shells in a multiple shell helmet, such as the helmets described in the figures above.FIG. 7A shows the outer surface of one of the shells 702, in this case, a middle shell.Shear protection device 700 can be described as a single-piece, V-shaped elastic or plastic component with two end points each having an opening and a vertex, slightly larger than the end points and also having an opening. An example is shown inFIG. 7B . The elastic or plastic portion of the device is a single piece. This allows it to have more flexibility and as such able to absorb energy from impacts without breaking or snapping since it is a continuous or single piece it has no connection or joints where it is more likely to snap under high pressure. -
Device 700 has two end points, 704 and 706, that are securely mounted onto surface 702. They may be mounted or fastened using conventional means such as rivets through the opening. Whatever fastening means is used, the end points are securely fastened to the surface. The third end point in the device is referred to as a vertex. It is larger than the two end points. The vertex and an end point are connected by an elongated band. The length, thickness, and other dimensions of the band may vary. The vertex is connected to two end points. As described below, the end points and the vertex are not on the same plane, that is, the device is not flat. The two end points are on the same plane (or very close to it) and the vertex is on a different plane. This is shown inFIG. 8 below which shows that the band connecting an endpoint and a vertex is at an angle. This angle may change for an instant when there is impact on the outer shell of the helmet. - In the embodiment shown in
FIG. 7A , the vertex of the device is mounted to the inner surface of an outer shell (not shown). It also is securely mounted to the surface using conventional means such as a rivet. The aperture in the center of the vertex is larger than the aperture in the end points because there are two bands extending from it to the end points and, as such, it will likely have to absorb more energy from an impact. In addition it is mounted to the outer shell which takes direct mechanical impact from an external force. - A helmet or other protective gear may have multiple shear protection devices mounted between its shells. A second shear protection device is shown in
FIG. 7A . More such devices may be used depending on the surface area available on the shells (i.e., the size of the helmet) and on the intended use of the helmet. The positioning and orientation of the protection devices may vary. The size of the devices itself may also vary.FIG. 7C shows an alternative configuration of a device where the lengths of the bands are not the same. The angle between the two bands at the vertex may also vary.FIG. 7D shows an embodiment where there is one band between two end points. In short, the configuration and overall shape of the devices can vary widely without detracting from the objective of the device which is absorbing energy from various types of impacts to the helmet. As long as the end points are mounted to one surface and the vertex to an adjacent surface, with the connector bands at an angle between the end points and the vertex, the flexibility needed by the device to absorb energy from an impact can be achieved. In other embodiments, the end points and vertex may not be circular. -
FIG. 8 is a cross-sectional view showing a shear protection device between two shells in accordance with one embodiment.Shell 802 is an outer shell andshell 804 is a middle shell. Mechanical forces impactouter shell 802. The arrows pointing downward onouter shell 802 represent any type of mechanical force that impact the helmet, including rotational forces and shear forces. Avertex 806 is shown secured to the inner surface ofouter shell 802. Aband segment 808 extends fromvertex 806 to an end point 810 (a second endpoint of the device is not shown).Band segment 808 traverses and operates in an energy andimpact transformer layer 812 which may contain one or more other energy absorbing means. These include fluids, gels, foam, ball bearings configurations, conical structures, concertinaed structures, among others. - A mechanical impact on
outer surface 802forces vertex 806 downward which makesband 808 flex downward allowing the shell layers to move closer to each other thereby absorbing energy imparted from the impact. This allows the shell layers to move slightly in various ways, such as sliding, rotating, torqueing, and the like. The two 802 and 804 can be considered connected to each other by the shear protection device. In the example shown inshells FIG. 8 , the angle and length ofband 808 is highlighted or exaggerated to better illustrate the functioning of the shear protection device. In other embodiments, the angle (or slope) of the band may not be as great as the example shown. In addition, there may be another energy and impact layer between the middle shell and an inner shell that may contain one or more shear protection devices of the present invention. - Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Therefore, the present embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
Claims (13)
1. A helmet, comprising:
an outer shell layer;
a middle shell layer;
an inner shell layer; and
a first shear protection device having a vertex, a first endpoint, and a second endpoint connecting the outer shell and the middle shell layer, wherein the first shear device allows the outer shell layer to move relative to the middle shell layer when mechanical forces are imparted onto the outer shell layer.
2. A helmet as recited in claim 1 , wherein the device has a first elastic band between the vertex and the first end point and a second elastic band between the vertex and the second end point.
3. A helmet as recited in claim 1 , wherein the vertex is secured to an inner surface of the outer shell and the first end point and the second end point are secured to an outer surface of the middle shell.
4. A helmet as recited in claim 1 wherein the first shear protection device is in an energy and impact layer between the outer shell and the middle shell.
5. A helmet as recited in claim 4 wherein the protection device functions in conjunction with one or more of a fluid, gel, foam, liquid, ball bearing mechanism, conical structure, or concertinaed structure.
6. A helmet as recited in claim 2 , wherein the first shear protection device forms a V-shaped structure wherein the first elastic band has a first length and the second elastic band has a second length.
7. A helmet as recited in claim 1 , wherein the helmet contains multiple shear protection devices and depends on the surface are of the outer shell.
8. A helmet as recited in claim 1 , wherein the mechanical forces include shear forces and rotational forces.
9. The helmet of claim 1 , further comprising a second shear protection device connecting the middle shell layer to the inner shell layer, wherein the second device allows the middle shell layer to move relative to the inner shell layer.
10. A helmet as recited in claim 6 wherein the first length is the same as the second length or the first length is different from the second length.
11. A helmet as recited in claim 1 wherein the first elastic band and the second elastic band have a fixed tension.
12. A helmet as recited in claim 1 wherein the first end point and the second end point are secured to an inner surface of the outer shell layer and the vertex is secured to an outer surface of the middle shell.
13. A helmet as recited in claim 1 wherein the vertex has a first aperture and the first end point and second end point have a second aperture.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/369,755 US20180153242A1 (en) | 2016-12-05 | 2016-12-05 | Elastic shear protection in protective gear |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/369,755 US20180153242A1 (en) | 2016-12-05 | 2016-12-05 | Elastic shear protection in protective gear |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180153242A1 true US20180153242A1 (en) | 2018-06-07 |
Family
ID=62239963
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/369,755 Abandoned US20180153242A1 (en) | 2016-12-05 | 2016-12-05 | Elastic shear protection in protective gear |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20180153242A1 (en) |
-
2016
- 2016-12-05 US US15/369,755 patent/US20180153242A1/en not_active Abandoned
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9750296B2 (en) | Biomechanics aware headgear | |
| US9289021B2 (en) | Shear reduction mechanism | |
| US20140109304A1 (en) | Intelligent protective gear bracing mechanism | |
| US10342279B2 (en) | Concertinaed structures in protective gear | |
| US20190159540A1 (en) | Outer padding assembly for biomechanics aware headgear | |
| US10448690B2 (en) | Systems for flexible facemask structures | |
| US20180092422A1 (en) | Biomechanics aware headgear | |
| US10716352B2 (en) | Visual and audio indicator of shear impact force on protective gear | |
| US10212983B2 (en) | Systems and methods for customized helmet layers | |
| US20180153243A1 (en) | Adjustable elastic shear protection in protective gear | |
| US20180153242A1 (en) | Elastic shear protection in protective gear | |
| EP3787431B1 (en) | Omnidirectional energy management systems and methods | |
| US20180153247A1 (en) | Software for designing, configuring and providing manufacturing specifications for biomechanically aware protective gear |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BRAINGUARD TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PRADEEP, ANANTHA;REEL/FRAME:044250/0087 Effective date: 20171004 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING RESPONSE FOR INFORMALITY, FEE DEFICIENCY OR CRF ACTION |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |