US20180142330A1 - Process for the production of a pgm-enriched alloy - Google Patents
Process for the production of a pgm-enriched alloy Download PDFInfo
- Publication number
- US20180142330A1 US20180142330A1 US15/355,971 US201615355971A US2018142330A1 US 20180142330 A1 US20180142330 A1 US 20180142330A1 US 201615355971 A US201615355971 A US 201615355971A US 2018142330 A1 US2018142330 A1 US 2018142330A1
- Authority
- US
- United States
- Prior art keywords
- pgm
- molten
- slag
- density
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 93
- 239000000956 alloy Substances 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 68
- 239000000203 mixture Substances 0.000 claims abstract description 65
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 39
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 39
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052742 iron Inorganic materials 0.000 claims abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 30
- 239000007789 gas Substances 0.000 claims abstract description 25
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 19
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 19
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 18
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims abstract description 18
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 18
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000000292 calcium oxide Substances 0.000 claims abstract description 17
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 17
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 17
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 17
- 239000010948 rhodium Substances 0.000 claims abstract description 17
- 239000002893 slag Substances 0.000 claims abstract description 17
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 16
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 16
- 239000011593 sulfur Substances 0.000 claims abstract description 16
- 230000001590 oxidative effect Effects 0.000 claims abstract description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 239000011261 inert gas Substances 0.000 claims abstract description 8
- 238000002844 melting Methods 0.000 claims abstract description 7
- 230000008018 melting Effects 0.000 claims abstract description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 40
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 20
- 229910052802 copper Inorganic materials 0.000 claims description 20
- 239000010949 copper Substances 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 19
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 239000010703 silicon Substances 0.000 claims description 15
- 229910052810 boron oxide Inorganic materials 0.000 claims description 9
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 8
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 8
- 229910001948 sodium oxide Inorganic materials 0.000 claims description 8
- 230000005587 bubbling Effects 0.000 claims description 3
- OYPRJOBELJOOCE-IGMARMGPSA-N Calcium-40 Chemical compound [40Ca] OYPRJOBELJOOCE-IGMARMGPSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 10
- 239000011449 brick Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000004876 x-ray fluorescence Methods 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- -1 for example Substances 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910021386 carbon form Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/02—Obtaining noble metals by dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/02—Obtaining noble metals by dry processes
- C22B11/021—Recovery of noble metals from waste materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/02—Obtaining noble metals by dry processes
- C22B11/021—Recovery of noble metals from waste materials
- C22B11/025—Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper, or baths
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/02—Obtaining noble metals by dry processes
- C22B11/021—Recovery of noble metals from waste materials
- C22B11/026—Recovery of noble metals from waste materials from spent catalysts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/05—Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/10—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/023—Alloys based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C3/00—Removing material from alloys to produce alloys of different constitution separation of the constituents of alloys
- C22C3/005—Separation of the constituents of alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details specially adapted for crucible or pot furnaces
- F27B14/14—Arrangements of heating devices
- F27B14/143—Heating of the crucible by convection of combustion gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
- F27D2003/168—Introducing a fluid jet or current into the charge through a lance
- F27D2003/169—Construction of the lance, e.g. lances for injecting particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention relates to a pyrometallurgical converting process for the production of a PGM-enriched alloy and to the PGM-enriched alloy itself.
- PGM platinum group metal
- the invention is a pyrometallurgical converting process improved in terms of yielding a PGM-enriched alloy having a considerable high PGM level and exhibiting a remarkably low PGM loss into slag formed as by-product of the pyrometallurgical converting process.
- the process of the invention is a process for the production of a PGM-enriched alloy comprising 0 to 60 wt.-% (weight-%) of iron and 20 to 99 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium.
- the process comprises the steps:
- the process of the invention is a process for the production of a PGM-enriched alloy comprising 0 to 60 wt.-% of iron and 20 to 99 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium. It is preferred that the PGM-enriched alloy produced by the process of the invention comprises 0 to 45 wt.-% of iron and 30 to 99 wt.-% of one or more of said PGMs, in particular 0 to 20 wt.-% of iron and 40 to 90 wt.-% of one or more of said PGMs.
- the PGM-enriched alloy made by the process of the invention may also comprise 0 to 60 wt.-% of nickel and 0 to 5 wt.-% of copper.
- examples of other elements which may be comprised by the PGM-enriched alloy made by the process of the invention include, in particular, silver, gold, aluminum, calcium and silicon.
- the PGM-enriched alloy made by the process of the invention may comprise one or more of said other elements in a total proportion of up to 10 wt.-%.
- the PGM-enriched alloy made by the process of the invention may comprise or consist of:
- the PGM-enriched alloy made by the process of the invention comprises or consists of 0 to 20 wt.-% of iron, 40 to 90 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium, 0 to 60 wt.-% of nickel, 0 to 5 wt.-% of copper and 0 to 3 wt.-% of one or more other elements, in particular, one or more other elements selected from the group consisting of silver, gold, aluminum, calcium and silicon.
- step (1) of the process of the invention a PGM collector alloy is provided.
- PGM collector alloys are well-known to the person skilled in the art; they may typically be formed during pyrometallurgic recycling of appropriate PGM containing waste material like, for example, PGM containing waste catalysts, for example, used automotive exhaust catalysts. In the course of such pyrometallurgic recycling the PGMs are separated by smelting the PGM containing waste material, for example, ceramic supports having a PGM containing washcoat (like used automotive exhaust catalysts) together with a collector metal like, for example, iron in an oven, a so-called smelter. The PGMs form a PGM collector alloy with the collector metal, which is separated from slag formed as by-product during smelting.
- the PGM collector alloy provided in step (1) comprises 30 to 95 wt.-% of iron; less than 1 wt.-% or, in particular, even 0 wt.-% of sulfur; and 2 to 15 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium.
- the PGM collector alloy may comprise 40 to 70 wt.-% of iron; 0 to 20 wt.-% of nickel; less than 1 wt.-% or, in particular, even 0 wt.-% of sulfur; and 5 to 15 wt.-% of one or more of said PGMs. It is preferred that the PGM collector alloy comprises no more than 4 wt.-%, in particular ⁇ 1 wt.-% of copper.
- Examples of other elements which may be comprised by the PGM collector alloy include silver, gold, aluminum, calcium, silicon, phosphorus, titanium, chromium, manganese, molybdenum and vanadium.
- the PGM collector alloy may comprise one or more of said other elements in a total proportion of up to 30 wt.-%.
- the PGM collector alloy may comprise or consist of:
- the PGM collector alloy comprises silicon
- the silicon content of the PGM collector alloy may be in the range of 0 to 4 wt.-%
- a second variant it may be in the range of >4 to 15 wt.-%.
- the PGM collector alloy comprises or consists of 40 to 70 wt.-% of iron, 0 to 15 wt.-% of nickel, 5 to 15 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium, 0 to ⁇ 1 wt.-% of sulfur, 0 to 1 wt.-% of copper, 0 to 20 wt.-% of one or more other elements, in particular, one or more other elements selected from the group consisting of silver, gold, aluminum, calcium, silicon, phosphorus, titanium, chromium, manganese, molybdenum and vanadium.
- step (2) of the process of the invention a copper- and sulfur-free material capable of forming a slag-like composition when molten (hereinafter also called “material capable of forming a slag-like composition when molten” for short) is provided.
- copper- and sulfur-free used herein in the context of step (2) of the process of the invention means that the material capable of forming a slag-like composition when molten may comprise copper and sulfur, each of both however in a proportion of no more than at a technically inevitable impurity level of, for example, less than 1000 wt.-ppm.
- the term “material capable of forming a slag-like composition when molten” used herein shall illustrate that the molten material looks and behaves like a slag. It shall at the same time express that it is not to be confused with the slag formed as by-product of the process of the invention, i.e. the slag obtained after conclusion of step (4). Moreover, the material capable of forming a slag-like composition when molten is not necessarily identical in composition with the one or more upper low-density molten masses formed in step (3), although it forms at least a predominant part of the latter.
- the material capable of forming a slag-like composition when molten has a composition such that the molten slag-like composition comprises or consists of:
- the silicon content of the PGM collector alloy provided in step (1) is in the range of 0 to 4 wt.-%, it is expedient that the material capable of forming a slag-like composition when molten has a composition such that the molten slag-like composition comprises or consists of:
- the silicon content of the PGM collector alloy provided in step (1) is in the range of >4 to 15 wt.-%, it is expedient that the material capable of forming a slag-like composition when molten has a composition such that the molten slag-like composition comprises or consists of:
- the material capable of forming a slag-like composition when molten has a composition such that the molten slag-like composition comprises no iron oxide, 0 to 10 wt.-% of sodium oxide, 0 to 10 wt.-% of boron oxide and no aluminum oxide.
- the material capable of forming a slag-like composition when molten and, as a consequence thereof, also the molten slag-like composition itself does not comprise PGMs with the exception of technically inevitable impurities. However, if the latter is present its proportion should be low; preferably such proportion does not exceed, for example, 10 wt.-ppm in the material capable of forming a slag-like composition when molten.
- the material capable of forming a slag-like composition when molten is a combination of substances and may comprise the afore mentioned oxides or only said oxides, however, this is not necessarily the case. It may instead or additionally comprise compounds capable of forming such oxides or oxide compositions when heated during formation of the one or more upper low-density molten masses.
- carbonates are examples of compounds which may split off carbon dioxide and form the corresponding oxides when heated and melted during formation of the one or more upper low-density molten masses
- silicates are examples of compounds which may form the corresponding oxides and silicon dioxide when heated and melted during formation of the one or more upper low-density molten masses
- borates are examples of compounds which may form the corresponding oxides and boron oxide when heated and melted during formation of the one or more upper low-density molten masses.
- step (3) of the process of the invention the PGM collector alloy and the material capable of forming a slag-like composition when molten are melted in a weight ratio of 1:0.2 to 1, preferably 1:0.2 to 0.8, even more preferably 1:0.2 to 0.6 within a converter until a multi-phase system of a lower high-density molten mass comprising the molten PGM collector alloy and two or more upper low-density molten masses jointly comprising the molten slag-like composition has formed or, in an embodiment, until a two-phase system of a lower high-density molten mass comprising the molten PGM collector alloy and an upper low-density molten mass comprising the molten slag-like composition has formed.
- the converter is a conventional pyrometallurgical converter vessel or crucible furnace which allows for melting the PGM collector alloy and the material capable of forming a slag-like composition when molten.
- the converter has one or more openings at its top and it may have a cylinder- or pear-like shape, for example. Its construction may be such that it allows for a rotating and/or rocking movement to allow support of mixing of its contents. Preferably it is tiltable to allow for pouring out molten content thus enabling performing step (5) of the process of the invention.
- Its inner which has contact with the multi- or two-phase system of the lower high-density molten mass and the one or more upper low-density molten masses is of a heat-resistant material as is conventional for pyrometallurgical converter vessels, i.e. a material which withstands the high temperatures prevailing in process steps (3) and (4) and which is essentially inert towards the components of said multi- or two-phase system.
- a heat-resistant material include silica bricks, fireclay bricks, chrome-corundum bricks, zircon mullite bricks, zircon silicate bricks, magnesia bricks and calcium aluminate bricks.
- step (3) first of all, the PGM collector alloy and the material capable of forming a slag-like composition when molten are introduced into the converter, either as premix or as separate components.
- the process of the invention is a batch process and it is preferred not to introduce the entire batch all at once and then to heat and melt the contents of the converter, but to introduce the materials to be melted portionwise and adapted to the melting speed. Once the entire batch has melted, said multi- or two-phase system of a lower high-density molten mass and the one or more upper low-density molten masses is obtained.
- Heating of the converter contents in order to melt the latter and thus form the multi- or two-phase system means raising the temperature of the converter contents to, for example, 1200 to 1800° C., preferably 1500 to 1700° C.
- Such heating may be performed by various means either alone or in combination, i.e. for example plasma heating, indirect electrical heating, arc heating, inductive heating, indirect heating with burners, direct heating with one or more gas burners from the above and any combination of said heating methods.
- Direct heating with gas burners capable of producing said high temperatures is a preferred method.
- useful gas burners include gas burners run with hydrogen or a hydrocarbon-based fuel gas and oxygen or nitrous oxide as oxidant.
- step (4) of the process of the invention is performed.
- an oxidizing gas comprising or consisting of 0 to 80 vol.-% of inert gas and 20 to 100 vol.-% of oxygen, preferably 0 to 50 vol.-% of inert gas and 50 to 100 vol.-% of oxygen, in particular 0 vol.-% inert gas and 100 vol.-% of oxygen (i.e. oxygen gas) is contacted with the lower high-density molten mass obtained in step (3) until the latter has been converted into a lower high-density molten mass of the PGM-enriched alloy, i.e. the PGM-enriched alloy, has formed.
- any gas inert towards the lower high-density molten mass can be taken as the inert gas, in particular argon and/or nitrogen.
- contact between the oxygen or oxygen containing oxidizing gas and the lower high-density molten mass can be made by passing or bubbling the gas through the lower high-density molten mass from the bottom of the converter and/or by means of a gas lance the exhaust of which being immersed into the lower high-density molten mass.
- the duration of the contact with the oxidizing gas or, in other words, the amount of oxidizing gas employed depends on when the PGM-enriched alloy of the desired composition has formed.
- the contact with the oxidizing gas is maintained for such period of time, until a PGM-enriched alloy with a desired composition according to any of the afore disclosed embodiments has formed; this will typically take 1 to 5 hours or 2 to 4 hours, for example.
- the development of the composition of the lower high-density molten mass during performance of step (4) until the PGM-enriched alloy of the desired composition has formed can be tracked by standard analytical techniques, for example, XRF (X-ray fluorescence) analysis. As by-product an upper low-density molten slag is formed in the course of step (4).
- step (4) results in depletion of elements or metals other than the PGMs, in particular in depletion of iron and, if present, other nonprecious elements or metals within the lower high-density molten mass or, if taking the reverse view, in PGM enrichment within the lower high-density molten mass.
- step (5) of the process of the invention is performed.
- the upper low-density molten slag formed in step (4) is separated from the lower high-density molten mass of the PGM-enriched alloy making use of the difference in density.
- the content of the converter is carefully poured out making use of the well-known decantation principle. Once the upper low-density molten slag is decanted the lower high-density molten mass of the PGM-enriched alloy is poured into suitable containers.
- Steps (3) to (5) of the process of the invention constitute a sequence of steps, in particular in direct succession. This needs to be understood in such sense that no further steps or at least no further fundamental steps are required or performed between or during said steps (3) to (5).
- optional non-fundamental steps are (i) the removal of part of upper low-density molten mass in the course of step (4) or (ii) addition of PGM collector alloy and/or material capable of forming a slag-like composition when molten in the course of step (4).
- step (6) After conclusion of step (5) subsequent step (6) is performed, in which the separated molten masses are allowed to cool down and solidify.
- the solidified PGM-enriched alloy is collected in step (7). It may then be subject to further conventional refinement, for example, electrometallurgical and/or hydrometallurgical refinement in order to finally obtain the individual PGMs either as metal or as PGM compound or as a solution of the latter.
- the PGM-enriched alloy collected in step (7) is distinguished by a relatively high PGM content.
- This relatively high PGM content means less effort and less consumption of chemicals with a view to said further refinement processes.
- the slag formed as by-product during step (4) comprises a very low PGM content of less than 50 wt.-ppm.
- a process for the production of a PGM-enriched alloy comprising 0 to 60 wt.-% of iron and 20 to 99 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium, the process comprising the steps:
- the PGM-enriched alloy comprises or consists of 0 to 45 wt.-% of iron and 30 to 99 wt.-% of the one or more PGMs, 0 to 60 wt.-% of nickel, 0 to 5 wt.-% of copper, and 0 to 10 wt.-% of one or more other elements.
- the PGM-enriched alloy comprises or consists of 0 to 20 wt.-% of iron, 40 to 90 wt.-% of the one or more PGMs, 0 to 60 wt.-% of nickel, 0 to 5 wt.-% of copper and 0 to 3 wt.-% of the one or more other elements.
- the PGM collector alloy provided in step (1) comprises 40 to 70 wt.-% of iron, 0 to 20 wt.-% of nickel, less than 1 wt.-% of sulfur and 5 to 15 wt.-% of the one or more PGMs.
- molten slag-like composition comprises or consists of:
- the PGM collector alloy comprises 0 to 4 wt.-% of silicon and wherein the molten slag-like composition comprises 40 to 60 wt.-% of magnesium oxide and/or calcium oxide and 40 to 60 wt.-% of silicon dioxide.
- a premix of 500 kg of a PGM collector alloy comprising 47 wt.-% of iron, 14.1 wt.-% of nickel, 8.1 wt.-% of silicon, 4.6 wt.-% of palladium, 3.2 wt.-% of chromium, 2.5 wt.-% of titanium, 2.2 wt.-% of platinum, 1.8 wt.-% of manganese, 0.6 wt.-% of rhodium and 0.9 wt.-% of copper, 123 kg of calcium oxide, 75 kg of silicon dioxide, 15 kg of sodium carbonate and 15 kg of borax was portionwise introduced into an already 1500° C. hot cylindrical natural gas-heated furnace and further heated to 1700° C.
- Example 1 was repeated with the difference that the oxygen introduction took 2.75 hours (Example 2) or 3 hours (Example 3).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
- The invention relates to a pyrometallurgical converting process for the production of a PGM-enriched alloy and to the PGM-enriched alloy itself.
- The abbreviation “PGM” used herein means platinum group metal.
- In general, the enrichment of PGMs by means of pyrometallurgical converting is well-known, see, for example, S.D. MCCULLOUGH, Pyrometallurgical iron removal from a PGM-containing alloy, Third International Platinum Conference ‘Platinum in Transformation’, The Southern African Institute of Mining and Metallurgy, 2008, pages 1-8.
- The invention is a pyrometallurgical converting process improved in terms of yielding a PGM-enriched alloy having a considerable high PGM level and exhibiting a remarkably low PGM loss into slag formed as by-product of the pyrometallurgical converting process.
- The process of the invention is a process for the production of a PGM-enriched alloy comprising 0 to 60 wt.-% (weight-%) of iron and 20 to 99 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium. The process comprises the steps:
- (1) providing a PGM collector alloy comprising 30 to 95 wt.-% of iron, less than 1 wt.-% of sulfur and 2 to 15 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium,
- (2) providing a copper- and sulfur-free material capable of forming a slag-like composition when molten, wherein the molten slag-like composition comprises 40 to 90 wt.-% of magnesium oxide and/or calcium oxide and 10 to 60 wt.-% of silicon dioxide,
- (3) melting the PGM collector alloy and the material capable of forming a slag-like composition when molten in a weight ratio of 1:0.2 to 1 within a converter until a multi- or two-phase system of a lower high-density molten mass comprising the molten PGM collector alloy and one or more upper low-density molten masses comprising the molten slag-like composition has formed,
- (4) contacting an oxidizing gas comprising 0 to 80 vol.-% (volume-%) of inert gas and 20 to 100 vol.-% of oxygen with the lower high-density molten mass obtained in step (3) until it has been converted into a lower high-density molten mass of the PGM-enriched alloy (i.e. a lower high-density molten mass of the composition of the PGM-enriched alloy),
- (5) separating an upper low-density molten slag formed in the course of step (4) from the lower high-density molten mass of the PGM-enriched alloy making use of the difference in density,
- (6) letting the molten masses separated from one another cool down and solidify, and
- (7) collecting the solidified PGM-enriched alloy.
- “0 wt.-%” or “0 vol.-%” appears several times in the description and the claims; it means that the respective component is not present or, if present, it is at best present in a proportion of no more than at a technically inevitable impurity level.
- The process of the invention is a process for the production of a PGM-enriched alloy comprising 0 to 60 wt.-% of iron and 20 to 99 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium. It is preferred that the PGM-enriched alloy produced by the process of the invention comprises 0 to 45 wt.-% of iron and 30 to 99 wt.-% of one or more of said PGMs, in particular 0 to 20 wt.-% of iron and 40 to 90 wt.-% of one or more of said PGMs. The PGM-enriched alloy made by the process of the invention may also comprise 0 to 60 wt.-% of nickel and 0 to 5 wt.-% of copper. Examples of other elements (elements other than iron, nickel, copper, platinum, palladium and rhodium) which may be comprised by the PGM-enriched alloy made by the process of the invention include, in particular, silver, gold, aluminum, calcium and silicon. The PGM-enriched alloy made by the process of the invention may comprise one or more of said other elements in a total proportion of up to 10 wt.-%. Hence, the PGM-enriched alloy made by the process of the invention may comprise or consist of:
- 0 to 60 wt.-%, preferably 0 to 45 wt.-%, in particular 0 to 20 wt.-% of iron,
- 20 to 99 wt.-%, preferably 30 to 99 wt.-%, in particular 40 to 90 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium,
- 0 to 60 wt.-% of nickel,
- 0 to 5 wt.-% of copper, and
- 0 to 10 wt.-%, preferably 0 to 6 wt.-%, in particular 0 to 3 wt.-% of one or more other elements, in particular, one or more other elements selected from the group consisting of silver, gold, aluminum, calcium and silicon.
- In an embodiment, the PGM-enriched alloy made by the process of the invention comprises or consists of 0 to 20 wt.-% of iron, 40 to 90 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium, 0 to 60 wt.-% of nickel, 0 to 5 wt.-% of copper and 0 to 3 wt.-% of one or more other elements, in particular, one or more other elements selected from the group consisting of silver, gold, aluminum, calcium and silicon.
- In step (1) of the process of the invention a PGM collector alloy is provided.
- PGM collector alloys are well-known to the person skilled in the art; they may typically be formed during pyrometallurgic recycling of appropriate PGM containing waste material like, for example, PGM containing waste catalysts, for example, used automotive exhaust catalysts. In the course of such pyrometallurgic recycling the PGMs are separated by smelting the PGM containing waste material, for example, ceramic supports having a PGM containing washcoat (like used automotive exhaust catalysts) together with a collector metal like, for example, iron in an oven, a so-called smelter. The PGMs form a PGM collector alloy with the collector metal, which is separated from slag formed as by-product during smelting.
- The PGM collector alloy provided in step (1) comprises 30 to 95 wt.-% of iron; less than 1 wt.-% or, in particular, even 0 wt.-% of sulfur; and 2 to 15 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium.
- In an embodiment, the PGM collector alloy may comprise 40 to 70 wt.-% of iron; 0 to 20 wt.-% of nickel; less than 1 wt.-% or, in particular, even 0 wt.-% of sulfur; and 5 to 15 wt.-% of one or more of said PGMs. It is preferred that the PGM collector alloy comprises no more than 4 wt.-%, in particular ≤1 wt.-% of copper. Examples of other elements (elements other than iron, nickel, sulfur, copper, platinum, palladium and rhodium) which may be comprised by the PGM collector alloy include silver, gold, aluminum, calcium, silicon, phosphorus, titanium, chromium, manganese, molybdenum and vanadium. The PGM collector alloy may comprise one or more of said other elements in a total proportion of up to 30 wt.-%. Hence, the PGM collector alloy may comprise or consist of:
- 30 to 95 wt.-%, in particular 40 to 70 wt.-% of iron,
- 0 to 20 wt.-%, in particular 0 to 15 wt.-% of nickel,
- 2 to 15 wt.-%, in particular 5 to 15 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium,
- less than 1 wt.-%, in particular 0 wt.-% of sulfur,
- 0 to 4 wt.-%, in particular 0 to 1 wt.-% of copper, and
- 0 to 30 wt.-%, in particular 0 to 20 wt.-% of one or more other elements, in particular, one or more other elements selected from the group consisting of silver, gold, aluminum, calcium, silicon, phosphorus, titanium, chromium, manganese, molybdenum and vanadium.
- If the PGM collector alloy comprises silicon, there may be two variants. In a first variant the silicon content of the PGM collector alloy may be in the range of 0 to 4 wt.-%, in a second variant it may be in the range of >4 to 15 wt.-%.
- In an embodiment, the PGM collector alloy comprises or consists of 40 to 70 wt.-% of iron, 0 to 15 wt.-% of nickel, 5 to 15 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium, 0 to <1 wt.-% of sulfur, 0 to 1 wt.-% of copper, 0 to 20 wt.-% of one or more other elements, in particular, one or more other elements selected from the group consisting of silver, gold, aluminum, calcium, silicon, phosphorus, titanium, chromium, manganese, molybdenum and vanadium.
- In step (2) of the process of the invention a copper- and sulfur-free material capable of forming a slag-like composition when molten (hereinafter also called “material capable of forming a slag-like composition when molten” for short) is provided.
- The term “copper- and sulfur-free” used herein in the context of step (2) of the process of the invention means that the material capable of forming a slag-like composition when molten may comprise copper and sulfur, each of both however in a proportion of no more than at a technically inevitable impurity level of, for example, less than 1000 wt.-ppm.
- The term “material capable of forming a slag-like composition when molten” used herein shall illustrate that the molten material looks and behaves like a slag. It shall at the same time express that it is not to be confused with the slag formed as by-product of the process of the invention, i.e. the slag obtained after conclusion of step (4). Moreover, the material capable of forming a slag-like composition when molten is not necessarily identical in composition with the one or more upper low-density molten masses formed in step (3), although it forms at least a predominant part of the latter.
- The material capable of forming a slag-like composition when molten has a composition such that the molten slag-like composition comprises or consists of:
- 40 to 90 wt.-% of magnesium oxide and/or calcium oxide,
- 10 to 60 wt.-% of silicon dioxide,
- 0 to 20 wt.-%, in particular 0 wt.-% of iron oxide (in particular FeO),
- 0 to 20 wt.-%, in particular 0 to 10 wt.-% of sodium oxide,
- 0 to 20 wt.-%, in particular 0 to 10 wt.-% of boron oxide, and
- 0 to 2 wt.-%, in particular 0 wt.-% of aluminum oxide.
- If the silicon content of the PGM collector alloy provided in step (1) is in the range of 0 to 4 wt.-%, it is expedient that the material capable of forming a slag-like composition when molten has a composition such that the molten slag-like composition comprises or consists of:
- 40 to 60 wt.-% of magnesium oxide and/or calcium oxide,
- 40 to 60 wt.-% of silicon dioxide,
- 0 to 20 wt.-%, in particular 0 wt.-% of iron oxide (in particular FeO),
- 0 to 20 wt.-%, in particular 0 to 10 wt.-% of sodium oxide,
- 0 to 20 wt.-%, in particular 0 to 10 wt.-% of boron oxide, and
- 0 to 2 wt.-%, in particular 0 wt.-% of aluminum oxide.
- If the silicon content of the PGM collector alloy provided in step (1) is in the range of >4 to 15 wt.-%, it is expedient that the material capable of forming a slag-like composition when molten has a composition such that the molten slag-like composition comprises or consists of:
- 60 to 90 wt.-% of magnesium oxide and/or calcium oxide,
- 10 to 40 wt.-% of silicon dioxide,
- 0 to 20 wt.-%, in particular 0 wt.-% of iron oxide (in particular FeO),
- 0 to 20 wt.-%, in particular 0 to 10 wt.-% of sodium oxide,
- 0 to 20 wt.-%, in particular 0 to 10 wt.-% of boron oxide, and
- 0 to 2 wt.-%, in particular 0 wt.-% of aluminum oxide.
- In an embodiment, and apart from said wt.-% proportions of silicon dioxide and magnesium oxide and/or calcium oxide, the material capable of forming a slag-like composition when molten has a composition such that the molten slag-like composition comprises no iron oxide, 0 to 10 wt.-% of sodium oxide, 0 to 10 wt.-% of boron oxide and no aluminum oxide.
- The material capable of forming a slag-like composition when molten and, as a consequence thereof, also the molten slag-like composition itself does not comprise PGMs with the exception of technically inevitable impurities. However, if the latter is present its proportion should be low; preferably such proportion does not exceed, for example, 10 wt.-ppm in the material capable of forming a slag-like composition when molten.
- The material capable of forming a slag-like composition when molten is a combination of substances and may comprise the afore mentioned oxides or only said oxides, however, this is not necessarily the case. It may instead or additionally comprise compounds capable of forming such oxides or oxide compositions when heated during formation of the one or more upper low-density molten masses. To name just a few examples of such type of compounds: carbonates are examples of compounds which may split off carbon dioxide and form the corresponding oxides when heated and melted during formation of the one or more upper low-density molten masses; silicates are examples of compounds which may form the corresponding oxides and silicon dioxide when heated and melted during formation of the one or more upper low-density molten masses; borates are examples of compounds which may form the corresponding oxides and boron oxide when heated and melted during formation of the one or more upper low-density molten masses.
- In step (3) of the process of the invention the PGM collector alloy and the material capable of forming a slag-like composition when molten are melted in a weight ratio of 1:0.2 to 1, preferably 1:0.2 to 0.8, even more preferably 1:0.2 to 0.6 within a converter until a multi-phase system of a lower high-density molten mass comprising the molten PGM collector alloy and two or more upper low-density molten masses jointly comprising the molten slag-like composition has formed or, in an embodiment, until a two-phase system of a lower high-density molten mass comprising the molten PGM collector alloy and an upper low-density molten mass comprising the molten slag-like composition has formed.
- The converter is a conventional pyrometallurgical converter vessel or crucible furnace which allows for melting the PGM collector alloy and the material capable of forming a slag-like composition when molten. The converter has one or more openings at its top and it may have a cylinder- or pear-like shape, for example. Its construction may be such that it allows for a rotating and/or rocking movement to allow support of mixing of its contents. Preferably it is tiltable to allow for pouring out molten content thus enabling performing step (5) of the process of the invention. Its inner which has contact with the multi- or two-phase system of the lower high-density molten mass and the one or more upper low-density molten masses is of a heat-resistant material as is conventional for pyrometallurgical converter vessels, i.e. a material which withstands the high temperatures prevailing in process steps (3) and (4) and which is essentially inert towards the components of said multi- or two-phase system. Examples of useful heat-resistant materials include silica bricks, fireclay bricks, chrome-corundum bricks, zircon mullite bricks, zircon silicate bricks, magnesia bricks and calcium aluminate bricks.
- In the course of step (3), first of all, the PGM collector alloy and the material capable of forming a slag-like composition when molten are introduced into the converter, either as premix or as separate components. The process of the invention is a batch process and it is preferred not to introduce the entire batch all at once and then to heat and melt the contents of the converter, but to introduce the materials to be melted portionwise and adapted to the melting speed. Once the entire batch has melted, said multi- or two-phase system of a lower high-density molten mass and the one or more upper low-density molten masses is obtained.
- Heating of the converter contents in order to melt the latter and thus form the multi- or two-phase system means raising the temperature of the converter contents to, for example, 1200 to 1800° C., preferably 1500 to 1700° C. Such heating may be performed by various means either alone or in combination, i.e. for example plasma heating, indirect electrical heating, arc heating, inductive heating, indirect heating with burners, direct heating with one or more gas burners from the above and any combination of said heating methods. Direct heating with gas burners capable of producing said high temperatures is a preferred method. Examples of useful gas burners include gas burners run with hydrogen or a hydrocarbon-based fuel gas and oxygen or nitrous oxide as oxidant.
- After conclusion of step (3), i.e. once the multi- or two-phase system has formed, step (4) of the process of the invention is performed. In step (4) an oxidizing gas comprising or consisting of 0 to 80 vol.-% of inert gas and 20 to 100 vol.-% of oxygen, preferably 0 to 50 vol.-% of inert gas and 50 to 100 vol.-% of oxygen, in particular 0 vol.-% inert gas and 100 vol.-% of oxygen (i.e. oxygen gas) is contacted with the lower high-density molten mass obtained in step (3) until the latter has been converted into a lower high-density molten mass of the PGM-enriched alloy, i.e. the PGM-enriched alloy, has formed. Any gas inert towards the lower high-density molten mass can be taken as the inert gas, in particular argon and/or nitrogen. In preferred embodiments, contact between the oxygen or oxygen containing oxidizing gas and the lower high-density molten mass can be made by passing or bubbling the gas through the lower high-density molten mass from the bottom of the converter and/or by means of a gas lance the exhaust of which being immersed into the lower high-density molten mass. The duration of the contact with the oxidizing gas or, in other words, the amount of oxidizing gas employed depends on when the PGM-enriched alloy of the desired composition has formed. In still other words, the contact with the oxidizing gas is maintained for such period of time, until a PGM-enriched alloy with a desired composition according to any of the afore disclosed embodiments has formed; this will typically take 1 to 5 hours or 2 to 4 hours, for example. The development of the composition of the lower high-density molten mass during performance of step (4) until the PGM-enriched alloy of the desired composition has formed, can be tracked by standard analytical techniques, for example, XRF (X-ray fluorescence) analysis. As by-product an upper low-density molten slag is formed in the course of step (4).
- The contact with the oxidizing gas leads to an exothermic oxidation reaction in the course of which nonprecious elements or metals are converted into oxides and absorbed by the one or more upper low-density molten masses. The oxidation process of step (4) results in depletion of elements or metals other than the PGMs, in particular in depletion of iron and, if present, other nonprecious elements or metals within the lower high-density molten mass or, if taking the reverse view, in PGM enrichment within the lower high-density molten mass.
- After conclusion of step (4), i.e. once the PGM-enriched alloy of the desired composition has formed, step (5) of the process of the invention is performed. In said step (5) the upper low-density molten slag formed in step (4) is separated from the lower high-density molten mass of the PGM-enriched alloy making use of the difference in density. To this end, the content of the converter is carefully poured out making use of the well-known decantation principle. Once the upper low-density molten slag is decanted the lower high-density molten mass of the PGM-enriched alloy is poured into suitable containers.
- Steps (3) to (5) of the process of the invention constitute a sequence of steps, in particular in direct succession. This needs to be understood in such sense that no further steps or at least no further fundamental steps are required or performed between or during said steps (3) to (5). Examples of optional non-fundamental steps are (i) the removal of part of upper low-density molten mass in the course of step (4) or (ii) addition of PGM collector alloy and/or material capable of forming a slag-like composition when molten in the course of step (4).
- After conclusion of step (5) subsequent step (6) is performed, in which the separated molten masses are allowed to cool down and solidify.
- After solidification the solidified PGM-enriched alloy is collected in step (7). It may then be subject to further conventional refinement, for example, electrometallurgical and/or hydrometallurgical refinement in order to finally obtain the individual PGMs either as metal or as PGM compound or as a solution of the latter.
- It is the advantage of the process of the invention that the PGM-enriched alloy collected in step (7) is distinguished by a relatively high PGM content. This relatively high PGM content means less effort and less consumption of chemicals with a view to said further refinement processes. It is a further remarkable advantage of the process of the invention that the slag formed as by-product during step (4) comprises a very low PGM content of less than 50 wt.-ppm. It is not finally understood why, but it is believed that the 1:0.2 to 1 or 1:0.2 to 0.8 or 1:0.2 to 0.6 weight ratio combination of the specifically composed PGM collector alloy provided in step (1) and the specifically composed material capable of forming a slag-like composition when molten provided in step (2) is key in particular with regard to the remarkably low loss of PGMs into the slag formed as by-product during step (4) of the process of the invention.
- The invention comprises the following embodiments:
- 1. A process for the production of a PGM-enriched alloy comprising 0 to 60 wt.-% of iron and 20 to 99 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium, the process comprising the steps:
- (1) providing a PGM collector alloy comprising 30 to 95 wt.-% of iron, less than 1 wt.-% of sulfur and 2 to 15 wt.-% of one or more PGMs selected from the group consisting of platinum, palladium and rhodium,
- (2) providing a copper- and sulfur-free material capable of forming a slag-like composition when molten, wherein the molten slag-like composition comprises 40 to 90 wt.-% of magnesium oxide and/or calcium oxide and 10 to 60 wt.-% of silicon dioxide,
- (3) melting the PGM collector alloy and the material capable of forming a slag-like composition when molten in a weight ratio of 1:0.2 to 1 within a converter until a multi- or two-phase system of a lower high-density molten mass comprising the molten PGM collector alloy and one or more upper low-density molten masses comprising the molten slag-like composition has formed,
- (4) contacting an oxidizing gas comprising 0 to 80 vol.-% of inert gas and 20 to 100 vol.-% of oxygen with the lower high-density molten mass obtained in step (3) until it has been converted into a lower high-density molten mass of the PGM-enriched alloy,
- (5) separating an upper low-density molten slag formed in the course of step (4) from the lower high-density molten mass of the PGM-enriched alloy making use of the difference in density,
- (6) letting the molten masses separated from one another cool down and solidify, and
- (7) collecting the solidified PGM-enriched alloy.
- 2. The process of embodiment 1, wherein the PGM-enriched alloy comprises or consists of 0 to 45 wt.-% of iron and 30 to 99 wt.-% of the one or more PGMs, 0 to 60 wt.-% of nickel, 0 to 5 wt.-% of copper, and 0 to 10 wt.-% of one or more other elements.
- 3. The process of embodiment 1, wherein the PGM-enriched alloy comprises or consists of 0 to 20 wt.-% of iron, 40 to 90 wt.-% of the one or more PGMs, 0 to 60 wt.-% of nickel, 0 to 5 wt.-% of copper and 0 to 3 wt.-% of the one or more other elements.
- 4. The process of any one of the preceding embodiments, wherein the PGM collector alloy provided in step (1) comprises 40 to 70 wt.-% of iron, 0 to 20 wt.-% of nickel, less than 1 wt.-% of sulfur and 5 to 15 wt.-% of the one or more PGMs.
- 5. The process of any one of the preceding embodiments, wherein the PGM collector alloy comprises no more than 4 wt.-% of copper.
- 6. The process of any one of embodiments 1 to 3, wherein the PGM collector alloy comprises or consists of:
- 30 to 95 wt.-% of iron,
- 0 to 20 wt.-% of nickel,
- 0 to <1 wt.-% of sulfur,
- 2 to 15 wt.-% of the one or more PGMs,
- 0 to 4 wt.-% of copper, and
- 0 to 30 wt.-% of one or more other elements.
- 7. The process of any one of embodiments 1 to 3, wherein the PGM collector alloy comprises or consists of:
- 40 to 70 wt.-% of iron,
- 0 to 15 wt.-% of nickel,
- 0 to <1 wt.-% of sulfur,
- 5 to 15 wt.-% of the one or more PGMs,
- 0 to 1 wt.-% of copper, and
- 0 to 20 wt.-% of one or more other elements.
- 8. The process of any one of the preceding embodiments, wherein the molten slag-like composition comprises or consists of:
- 40 to 90 wt.-% of magnesium oxide and/or calcium oxide,
- 10 to 60 wt.-% of silicon dioxide,
- 0 to 20 wt.-% of iron oxide,
- 0 to 20 wt.-% of sodium oxide,
- 0 to 20 wt.-% of boron oxide, and
- 0 to 2 wt.-% of aluminum oxide.
- 9. The process of any one of embodiments 1 to 7, wherein the molten slag-like composition comprises or consists of:
- 40 to 90 wt.-% of magnesium oxide and/or calcium oxide,
- 10 to 60 wt.-% of silicon dioxide,
- 0 wt.-% of iron oxide,
- 0 to 10 wt.-% of sodium oxide,
- 0 to 10 wt.-% of boron oxide, and
- 0 wt.-% of aluminum oxide.
- 10. The process of any one of the preceding embodiments, wherein the PGM collector alloy comprises 0 to 4 wt.-% of silicon and wherein the molten slag-like composition comprises 40 to 60 wt.-% of magnesium oxide and/or calcium oxide and 40 to 60 wt.-% of silicon dioxide.
- 11. The process of any one of embodiments 1 to 9, wherein the PGM collector alloy comprises >4 to 15 wt.-% of silicon and wherein the molten slag-like composition comprises 60 to 90 wt.-% of magnesium oxide and/or calcium oxide and 10 to 40 wt.-% of silicon dioxide.
- 12. The process of any one of the preceding embodiments, wherein the PGM collector alloy and the material capable of forming a slag-like composition when molten are melted in a weight ratio of 1:0.2 to 0.8 or 1:0.2 to 0.6.
- 13. The process of any one of the preceding embodiments, wherein the temperature of the converter contents is raised to 1200 to 1800° C.
- 14. The process of any one of the preceding embodiments, wherein the contact between the oxidizing gas and the lower high-density molten mass is made by passing or bubbling the gas through the lower high-density molten mass from the bottom of the converter and/or by means of a gas lance the exhaust of which being immersed into the lower high-density molten mass.
- 15. The process of any one of the preceding embodiments, wherein the contact with the oxidizing gas takes 1 to 5 hours.
- A premix of 500 kg of a PGM collector alloy comprising 47 wt.-% of iron, 14.1 wt.-% of nickel, 8.1 wt.-% of silicon, 4.6 wt.-% of palladium, 3.2 wt.-% of chromium, 2.5 wt.-% of titanium, 2.2 wt.-% of platinum, 1.8 wt.-% of manganese, 0.6 wt.-% of rhodium and 0.9 wt.-% of copper, 123 kg of calcium oxide, 75 kg of silicon dioxide, 15 kg of sodium carbonate and 15 kg of borax was portionwise introduced into an already 1500° C. hot cylindrical natural gas-heated furnace and further heated to 1700° C.
- After a melting time of 10 hours a two-phase system of a lower high-density molten mass comprising the PGM collector alloy and an upper low-density molten mass comprising a slag-like composition was formed. Oxygen was introduced into the lower high-density molten mass via a ceramic pipe with an oxygen flow of 900 l/min. After 2.5 hours the oxygen introduction was stopped. The upper low-density molten mass was poured into cast iron slag pots in order to cool down and solidify. The lower high-density molten mass was then poured into graphite molds in order to cool down and solidify. After solidification and cooling down to ambient temperature both materials were analyzed by XRF.
- Example 1 was repeated with the difference that the oxygen introduction took 2.75 hours (Example 2) or 3 hours (Example 3).
- The results of the XRF analysis are compiled in Tables 1 and 2. All values are in wt.-%, except the values for the PGM content in the slag which are in wt.-ppm:
-
TABLE 1 Composition of the solidified upper low-density mass (slag) Element Example 1 Example 2 Example 3 Fe 29 35 40 Ni 1 1 1 Total PGM 49 47 44 -
TABLE 2 Composition of the solidified lower high-density mass (PGM enriched alloy) Element Example 1 Example 2 Example 3 PGM 27 28 34 Fe 20 18 13 Ni 50 51 51
Claims (15)
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/355,971 US10323302B2 (en) | 2016-11-18 | 2016-11-18 | Process for the production of a PGM-enriched alloy |
| CA3036075A CA3036075C (en) | 2016-11-18 | 2017-09-29 | Process for the production of a pgm-enriched alloy |
| PCT/US2017/054370 WO2018093470A1 (en) | 2016-11-18 | 2017-09-29 | Process for the production of a pgm-enriched alloy |
| RU2019111473A RU2722840C1 (en) | 2016-11-18 | 2017-09-29 | Method of producing pgm-enriched alloy |
| JP2019543164A JP6698229B2 (en) | 2016-11-18 | 2017-09-29 | Method for producing PGM-rich alloy |
| EP17781355.7A EP3541967B1 (en) | 2016-11-18 | 2017-09-29 | Process for the production of a pgm-enriched alloy |
| KR1020197011669A KR102251271B1 (en) | 2016-11-18 | 2017-09-29 | Process for the production of PGM-rich alloys |
| CN201780063770.2A CN109844145B (en) | 2016-11-18 | 2017-09-29 | Method for producing PGM-rich alloys |
| PL17781355.7T PL3541967T3 (en) | 2016-11-18 | 2017-09-29 | Process for the production of a pgm-enriched alloy |
| TW106135267A TWI742180B (en) | 2016-11-18 | 2017-10-16 | Process for the production of a pgm-enriched alloy |
| ZA2019/03745A ZA201903745B (en) | 2016-11-18 | 2019-06-11 | Process for the production of a pgm-enriched alloy |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/355,971 US10323302B2 (en) | 2016-11-18 | 2016-11-18 | Process for the production of a PGM-enriched alloy |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20180142330A1 true US20180142330A1 (en) | 2018-05-24 |
| US10323302B2 US10323302B2 (en) | 2019-06-18 |
Family
ID=60043404
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/355,971 Active 2037-05-20 US10323302B2 (en) | 2016-11-18 | 2016-11-18 | Process for the production of a PGM-enriched alloy |
Country Status (11)
| Country | Link |
|---|---|
| US (1) | US10323302B2 (en) |
| EP (1) | EP3541967B1 (en) |
| JP (1) | JP6698229B2 (en) |
| KR (1) | KR102251271B1 (en) |
| CN (1) | CN109844145B (en) |
| CA (1) | CA3036075C (en) |
| PL (1) | PL3541967T3 (en) |
| RU (1) | RU2722840C1 (en) |
| TW (1) | TWI742180B (en) |
| WO (1) | WO2018093470A1 (en) |
| ZA (1) | ZA201903745B (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10202669B2 (en) * | 2015-06-30 | 2019-02-12 | Heraeus Deutschland GmbH & Co. KG | Process for the production of a PGM-enriched alloy |
| US10435767B2 (en) | 2019-04-29 | 2019-10-08 | Techemet, LP | Low-flux converting process for PGM collector alloy |
| US10472700B1 (en) | 2019-04-29 | 2019-11-12 | Techemet, LP | Converting process with partial pre-oxidation of PGM collector alloy |
| CN118563157A (en) * | 2024-05-21 | 2024-08-30 | 中山铁王流体控制设备有限公司 | A casting and melting process for M35-1 material |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| PL3715483T3 (en) * | 2019-03-26 | 2021-11-22 | Heraeus Deutschland GmbH & Co. KG | Method for producing a pgm collector alloy |
| ES2975993T3 (en) * | 2020-03-17 | 2024-07-19 | Ecoring | Recovery procedure in ferroalloys of metals contained in spent catalysts |
| CN112011696B (en) * | 2020-08-19 | 2021-05-18 | 北京科技大学 | A method for pyro-enriching platinum group metals in aluminum-based waste catalysts |
| CN113528828B (en) * | 2021-07-01 | 2022-06-10 | 昆明贵研新材料科技有限公司 | Enrichment method of waste alumina carrier platinum group metal catalyst |
| CN113718109B (en) * | 2021-09-01 | 2022-10-18 | 兰州有色冶金设计研究院有限公司 | Method for determining slag form of electronic waste smelted in molten pool and slag form |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ZA807646B (en) | 1979-12-31 | 1982-02-24 | Johnson Matthey Co Ltd | Refining of refractory materials |
| GB2086941A (en) | 1980-11-05 | 1982-05-19 | Engelhard Corp | Recovery of materials from low concentrations |
| JPH028314A (en) * | 1988-09-30 | 1990-01-11 | Hitachi Metals Ltd | Method for refining molten metal |
| JP3222894B2 (en) | 1991-04-10 | 2001-10-29 | 田中貴金属工業株式会社 | Platinum group metal recovery method |
| RU2010114611A (en) * | 2007-09-14 | 2011-10-20 | Баррик Гольд Корпорейшн (CA) | METHOD OF RESTORING PLATINUM METALS USING REDUCERS |
| GB2465603B (en) * | 2008-11-24 | 2010-10-13 | Tetronics Ltd | Method for recovery of metals |
| JP5713697B2 (en) | 2011-01-18 | 2015-05-07 | Dowaメタルマイン株式会社 | How to recover PGM |
| US20140026713A1 (en) * | 2011-02-03 | 2014-01-30 | Western Platinum Ltd | Refining of platinum group metals concentrates |
| FI125099B (en) * | 2013-03-25 | 2015-05-29 | Outotec Oyj | Process and apparatus for the recovery of platinum metals and ferrochrome from chromite ore containing platinum metals |
| RU2561562C1 (en) * | 2014-05-13 | 2015-08-27 | Закрытое Акционерное Общество "Ювелирный Дом "Алмаз-Холдинг" | Platinum alloy for jewellery and alloy manufacture method |
-
2016
- 2016-11-18 US US15/355,971 patent/US10323302B2/en active Active
-
2017
- 2017-09-29 PL PL17781355.7T patent/PL3541967T3/en unknown
- 2017-09-29 JP JP2019543164A patent/JP6698229B2/en active Active
- 2017-09-29 EP EP17781355.7A patent/EP3541967B1/en active Active
- 2017-09-29 CA CA3036075A patent/CA3036075C/en active Active
- 2017-09-29 KR KR1020197011669A patent/KR102251271B1/en active Active
- 2017-09-29 RU RU2019111473A patent/RU2722840C1/en active
- 2017-09-29 WO PCT/US2017/054370 patent/WO2018093470A1/en not_active Ceased
- 2017-09-29 CN CN201780063770.2A patent/CN109844145B/en active Active
- 2017-10-16 TW TW106135267A patent/TWI742180B/en active
-
2019
- 2019-06-11 ZA ZA2019/03745A patent/ZA201903745B/en unknown
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10202669B2 (en) * | 2015-06-30 | 2019-02-12 | Heraeus Deutschland GmbH & Co. KG | Process for the production of a PGM-enriched alloy |
| US10435767B2 (en) | 2019-04-29 | 2019-10-08 | Techemet, LP | Low-flux converting process for PGM collector alloy |
| US10472700B1 (en) | 2019-04-29 | 2019-11-12 | Techemet, LP | Converting process with partial pre-oxidation of PGM collector alloy |
| US10501823B2 (en) | 2019-04-29 | 2019-12-10 | Techemet, LP | Converting process with slag separation and recycle |
| US10513750B2 (en) | 2019-04-29 | 2019-12-24 | Techemet, LP | PGM converting process with staged slagging |
| US10513751B2 (en) | 2019-04-29 | 2019-12-24 | Techemet, LP | Integrated PGM converting process |
| US10648059B2 (en) | 2019-04-29 | 2020-05-12 | Techemet, LP | Jacketed rotary converter and PGM converting process |
| WO2020222859A1 (en) | 2019-04-29 | 2020-11-05 | Techemet, LP | Pgm converting process and jacketed rotary converter |
| CN118563157A (en) * | 2024-05-21 | 2024-08-30 | 中山铁王流体控制设备有限公司 | A casting and melting process for M35-1 material |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2019537673A (en) | 2019-12-26 |
| EP3541967B1 (en) | 2022-05-11 |
| ZA201903745B (en) | 2021-04-28 |
| PL3541967T3 (en) | 2022-08-16 |
| CN109844145B (en) | 2020-06-19 |
| EP3541967A1 (en) | 2019-09-25 |
| CA3036075A1 (en) | 2018-05-24 |
| KR20190065317A (en) | 2019-06-11 |
| KR102251271B1 (en) | 2021-05-12 |
| TWI742180B (en) | 2021-10-11 |
| CN109844145A (en) | 2019-06-04 |
| WO2018093470A1 (en) | 2018-05-24 |
| JP6698229B2 (en) | 2020-05-27 |
| US10323302B2 (en) | 2019-06-18 |
| CA3036075C (en) | 2022-05-24 |
| RU2722840C1 (en) | 2020-06-04 |
| TW201823478A (en) | 2018-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10323302B2 (en) | Process for the production of a PGM-enriched alloy | |
| EP3180454B1 (en) | Process for the production of a pgm-enriched alloy | |
| US20180142329A1 (en) | Process for the production of a pgm-enriched alloy | |
| Burja et al. | Effect of electroslag remelting on non-metallic inclusions in H11 tool steel | |
| RU2190680C1 (en) | Method for producing castable refractory nickel-base alloys | |
| US20180142327A1 (en) | Process for the production of a pgm-enriched alloy | |
| US20180142328A1 (en) | Process for the production of a pgm-enriched alloy | |
| CN102839292A (en) | Aluminum iron alloy with ultra-low carbon, ultra-low titanium and high silicon contents for deoxidizing aluminum silicon killed steel and manufacturing method of aluminum iron alloy | |
| EP2417274A1 (en) | Method of refining copper bullion comprising antimony and/or arsenic | |
| JP4470888B2 (en) | Slag fuming method | |
| JP2004270008A (en) | How to recover precious metals | |
| RU2374349C1 (en) | Method of smelting of vanadium-bearing alloys | |
| BR112022013647B1 (en) | METHOD FOR RECOVERING PLATINUM GROUP METALS FROM CATALYSTS COMPRISING SILICON CARBIDE | |
| US4375371A (en) | Method for induction melting | |
| JP2007224340A (en) | Manufacturing method of high purity silver ingot | |
| RU2227168C2 (en) | Method of processing of zinc sediments containing noble metals | |
| SU885310A1 (en) | Method of processing silumine slags | |
| US1858386A (en) | Process for preparing and purifying alloys | |
| JP2006028586A (en) | Reuse method of copper alloy and mat obtained by slag fuming method | |
| CN117070850A (en) | High-purity nickel-based steel and production method thereof | |
| JP2010013722A (en) | Casting method, and casting device and casting tool | |
| Antrekowitsch et al. | Experimental Investigations on V-containing Steelwork Slags with a Low V2O5 Content | |
| KR19980027312A (en) | Process for producing nickel-containing molten iron |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HERAEUS DEUTSCHLAND GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STOFFNER, FELIX;HOBBS, CHRIS;REEL/FRAME:041145/0833 Effective date: 20170112 Owner name: HERAEUS PRECIOUS METALS NORTH AMERICA LLC, CALIFOR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STOFFNER, FELIX;HOBBS, CHRIS;REEL/FRAME:041145/0833 Effective date: 20170112 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |