US20180099945A1 - Processes for the preparation of pesticidal compounds - Google Patents
Processes for the preparation of pesticidal compounds Download PDFInfo
- Publication number
- US20180099945A1 US20180099945A1 US15/835,795 US201715835795A US2018099945A1 US 20180099945 A1 US20180099945 A1 US 20180099945A1 US 201715835795 A US201715835795 A US 201715835795A US 2018099945 A1 US2018099945 A1 US 2018099945A1
- Authority
- US
- United States
- Prior art keywords
- chloro
- pyridin
- mmol
- reaction
- pyrazole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000008569 process Effects 0.000 title claims abstract description 14
- 230000000361 pesticidal effect Effects 0.000 title abstract description 13
- 238000002360 preparation method Methods 0.000 title description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 19
- MXERTNXQEMIYGL-UHFFFAOYSA-N 3-chloro-1-pyridin-3-ylpyrazol-4-amine Chemical compound N1=C(Cl)C(N)=CN1C1=CC=CN=C1 MXERTNXQEMIYGL-UHFFFAOYSA-N 0.000 claims description 18
- HBWHYODJXYJXDC-UHFFFAOYSA-N methyl 5-chloro-2-pyridin-3-ylpyrazole-3-carboxylate Chemical compound COC(=O)c1cc(Cl)nn1-c1cccnc1 HBWHYODJXYJXDC-UHFFFAOYSA-N 0.000 claims description 15
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 claims description 14
- JRNVHPAWUHSFAL-UHFFFAOYSA-N 3-(3-chloropyrazol-1-yl)pyridine Chemical compound N1=C(Cl)C=CN1C1=CC=CN=C1 JRNVHPAWUHSFAL-UHFFFAOYSA-N 0.000 claims description 13
- MKYDFIATDBRNHK-UHFFFAOYSA-N N-(3-chloro-1-pyridin-3-ylpyrazol-4-yl)acetamide Chemical compound CC(=O)Nc1cn(nc1Cl)-c1cccnc1 MKYDFIATDBRNHK-UHFFFAOYSA-N 0.000 claims description 13
- -1 compound methyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate Chemical class 0.000 claims description 13
- HTMNAAPFKKFGHH-UHFFFAOYSA-N methyl 5-chloro-2-pyridin-3-yl-3,4-dihydropyrazole-3-carboxylate Chemical compound COC(=O)C1CC(Cl)=NN1c1cccnc1 HTMNAAPFKKFGHH-UHFFFAOYSA-N 0.000 claims description 13
- SXUMSCJUXIVSFX-UHFFFAOYSA-N 3-chloro-n-ethyl-1-pyridin-3-ylpyrazol-4-amine Chemical compound N1=C(Cl)C(NCC)=CN1C1=CC=CN=C1 SXUMSCJUXIVSFX-UHFFFAOYSA-N 0.000 claims description 11
- OXIRKNVNDYSDCD-UHFFFAOYSA-N 5-chloro-2-pyridin-3-ylpyrazole-3-carboxylic acid Chemical compound OC(=O)C1=CC(Cl)=NN1C1=CC=CN=C1 OXIRKNVNDYSDCD-UHFFFAOYSA-N 0.000 claims description 11
- LQWHCKGJTOYJDZ-UHFFFAOYSA-N 5-chloro-2-pyridin-3-yl-3,4-dihydropyrazole-3-carbonitrile Chemical compound ClC1=NN(C(C1)C#N)c1cccnc1 LQWHCKGJTOYJDZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000000460 chlorine Substances 0.000 claims description 8
- 150000007529 inorganic bases Chemical class 0.000 claims description 7
- FGZZEUJHZDWFNY-WEVVVXLNSA-N (2E)-2-(pyridin-3-ylhydrazinylidene)acetic acid Chemical compound OC(=O)\C=N\Nc1cccnc1 FGZZEUJHZDWFNY-WEVVVXLNSA-N 0.000 claims description 6
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 6
- QJFANABRDIUIEI-UHFFFAOYSA-N pyridin-3-ylhydrazine;dihydrochloride Chemical compound Cl.Cl.NNC1=CC=CN=C1 QJFANABRDIUIEI-UHFFFAOYSA-N 0.000 claims description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 claims description 5
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 claims description 3
- 230000000911 decarboxylating effect Effects 0.000 claims 1
- 230000003301 hydrolyzing effect Effects 0.000 claims 1
- 239000000575 pesticide Substances 0.000 abstract description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 176
- 238000006243 chemical reaction Methods 0.000 description 111
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 69
- 235000019439 ethyl acetate Nutrition 0.000 description 59
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 46
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 39
- 239000007787 solid Substances 0.000 description 39
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 38
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 38
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 36
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 35
- 239000000203 mixture Substances 0.000 description 35
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 30
- 239000000047 product Substances 0.000 description 28
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 27
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- 238000005160 1H NMR spectroscopy Methods 0.000 description 25
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 24
- 239000000243 solution Substances 0.000 description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 23
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 23
- 239000011541 reaction mixture Substances 0.000 description 23
- 239000000725 suspension Substances 0.000 description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- 241000196324 Embryophyta Species 0.000 description 19
- 239000003480 eluent Substances 0.000 description 19
- FDMFUZHCIRHGRG-UHFFFAOYSA-N 3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C=C FDMFUZHCIRHGRG-UHFFFAOYSA-N 0.000 description 18
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 17
- 239000012044 organic layer Substances 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 238000003818 flash chromatography Methods 0.000 description 15
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 15
- 239000003960 organic solvent Substances 0.000 description 14
- 239000003921 oil Substances 0.000 description 13
- 235000019198 oils Nutrition 0.000 description 13
- AFEVZFBTBLAWGB-UHFFFAOYSA-N 5-chloro-2-pyridin-3-ylpyrazole-3-carboxylic acid hydrochloride Chemical compound Cl.OC(=O)c1cc(Cl)nn1-c1cccnc1 AFEVZFBTBLAWGB-UHFFFAOYSA-N 0.000 description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 12
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- WEIBBYLPUCCXKG-UHFFFAOYSA-N 3-(3-chloro-4-nitropyrazol-1-yl)pyridine Chemical compound N1=C(Cl)C([N+](=O)[O-])=CN1C1=CC=CN=C1 WEIBBYLPUCCXKG-UHFFFAOYSA-N 0.000 description 11
- KRWUJDPGMUODRM-UHFFFAOYSA-N 5-chloro-N-ethyl-2-pyridin-3-yl-1H-pyrazol-5-amine Chemical compound ClC1(NN(C=C1)C=1C=NC=CC1)NCC KRWUJDPGMUODRM-UHFFFAOYSA-N 0.000 description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 11
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 11
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 10
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 10
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 description 10
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 10
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- KGAUNOUXSXJJRZ-UHFFFAOYSA-N 3-(3,3,3-trifluoropropylsulfanyl)propanoic acid Chemical compound OC(=O)CCSCCC(F)(F)F KGAUNOUXSXJJRZ-UHFFFAOYSA-N 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 238000004128 high performance liquid chromatography Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 9
- 239000002798 polar solvent Substances 0.000 description 9
- 239000007858 starting material Substances 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 8
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 8
- 238000004809 thin layer chromatography Methods 0.000 description 8
- 150000003568 thioethers Chemical class 0.000 description 8
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 7
- 239000007874 V-70 Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 description 7
- 239000012065 filter cake Substances 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 7
- 239000003999 initiator Substances 0.000 description 7
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- DBHVHTPMRCXCIY-UHFFFAOYSA-N tyclopyrazoflor Chemical compound N1=C(Cl)C(N(C(=O)CCSCCC(F)(F)F)CC)=CN1C1=CC=CN=C1 DBHVHTPMRCXCIY-UHFFFAOYSA-N 0.000 description 7
- NACDYWPXJLNIEJ-SZKNIZGXSA-N (2E)-2-(pyridin-3-ylhydrazinylidene)acetic acid hydrochloride Chemical compound Cl.OC(=O)\C=N\Nc1cccnc1 NACDYWPXJLNIEJ-SZKNIZGXSA-N 0.000 description 6
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 235000011089 carbon dioxide Nutrition 0.000 description 6
- 238000006114 decarboxylation reaction Methods 0.000 description 6
- FZXISDCEHQFFHQ-UHFFFAOYSA-N n-(3-chloro-1-pyridin-3-ylpyrazol-4-yl)-n-ethylacetamide Chemical compound N1=C(Cl)C(N(C(C)=O)CC)=CN1C1=CC=CN=C1 FZXISDCEHQFFHQ-UHFFFAOYSA-N 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- 235000017557 sodium bicarbonate Nutrition 0.000 description 6
- 238000012289 standard assay Methods 0.000 description 6
- KOPFEFZSAMLEHK-UHFFFAOYSA-N 1h-pyrazole-5-carboxylic acid Chemical class OC(=O)C=1C=CNN=1 KOPFEFZSAMLEHK-UHFFFAOYSA-N 0.000 description 5
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 5
- 241000254127 Bemisia tabaci Species 0.000 description 5
- BINHELXZIZSNNQ-UHFFFAOYSA-N CC1=CC(Cl)=NN1C1=CC=CN=C1 Chemical compound CC1=CC(Cl)=NN1C1=CC=CN=C1 BINHELXZIZSNNQ-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- 239000012320 chlorinating reagent Substances 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 235000013601 eggs Nutrition 0.000 description 5
- 238000002451 electron ionisation mass spectrometry Methods 0.000 description 5
- 229910000000 metal hydroxide Inorganic materials 0.000 description 5
- 150000004692 metal hydroxides Chemical class 0.000 description 5
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 5
- 239000011736 potassium bicarbonate Substances 0.000 description 5
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 229910000033 sodium borohydride Inorganic materials 0.000 description 5
- 239000012279 sodium borohydride Substances 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 229910052938 sodium sulfate Inorganic materials 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 4
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 4
- 241001124076 Aphididae Species 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 241000258937 Hemiptera Species 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- IOHOLHMGVQABTO-UHFFFAOYSA-N ethyl 5-chloro-2-pyridin-3-ylpyrazole-3-carboxylate Chemical compound CCOC(=O)c1cc(Cl)nn1-c1cccnc1 IOHOLHMGVQABTO-UHFFFAOYSA-N 0.000 description 4
- BWSUFRYEIIZITF-UHFFFAOYSA-N ethyl 5-oxo-2-pyridin-3-ylpyrazolidine-3-carboxylate Chemical compound CCOC(=O)C1CC(=O)NN1c1cccnc1 BWSUFRYEIIZITF-UHFFFAOYSA-N 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- PBDBXAQKXCXZCJ-UHFFFAOYSA-L palladium(2+);2,2,2-trifluoroacetate Chemical compound [Pd+2].[O-]C(=O)C(F)(F)F.[O-]C(=O)C(F)(F)F PBDBXAQKXCXZCJ-UHFFFAOYSA-L 0.000 description 4
- 239000003880 polar aprotic solvent Substances 0.000 description 4
- 235000015497 potassium bicarbonate Nutrition 0.000 description 4
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 4
- 239000012286 potassium permanganate Substances 0.000 description 4
- 238000002390 rotary evaporation Methods 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 4
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 4
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- 238000004293 19F NMR spectroscopy Methods 0.000 description 3
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 3
- PODZMTTVIRPETA-UHFFFAOYSA-N 3-(3,3,3-trifluoropropylsulfanyl)propanoyl chloride Chemical compound FC(F)(F)CCSCCC(Cl)=O PODZMTTVIRPETA-UHFFFAOYSA-N 0.000 description 3
- CFNLMHGOXWWOQX-UHFFFAOYSA-N 3-[(2,2-difluorocyclopropyl)methylsulfanyl]propanoic acid Chemical compound OC(=O)CCSCC1CC1(F)F CFNLMHGOXWWOQX-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 240000007124 Brassica oleracea Species 0.000 description 3
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 3
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 3
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 3
- NZTHWWZRTDWKJB-UHFFFAOYSA-N CC1CC(Cl)=NN1C1=CC=CN=C1 Chemical compound CC1CC(Cl)=NN1C1=CC=CN=C1 NZTHWWZRTDWKJB-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 244000017020 Ipomoea batatas Species 0.000 description 3
- 235000002678 Ipomoea batatas Nutrition 0.000 description 3
- RFFFKMOABOFIDF-UHFFFAOYSA-N Pentanenitrile Chemical compound CCCCC#N RFFFKMOABOFIDF-UHFFFAOYSA-N 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 238000004166 bioassay Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 3
- 235000019341 magnesium sulphate Nutrition 0.000 description 3
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 3
- RNXRHFAQQRTRJL-UHFFFAOYSA-N methyl 3-(3,3,3-trifluoropropylsulfanyl)propanoate Chemical compound COC(=O)CCSCCC(F)(F)F RNXRHFAQQRTRJL-UHFFFAOYSA-N 0.000 description 3
- LDTLDBDUBGAEDT-UHFFFAOYSA-N methyl 3-sulfanylpropanoate Chemical compound COC(=O)CCS LDTLDBDUBGAEDT-UHFFFAOYSA-N 0.000 description 3
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- FNNIAKKPBXJGNJ-UHFFFAOYSA-N pyrazolidine-1-carboxylic acid Chemical compound OC(=O)N1CCCN1 FNNIAKKPBXJGNJ-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 3
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 150000003462 sulfoxides Chemical class 0.000 description 3
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- UDEVCZRUNOLVLU-UHFFFAOYSA-N 1-phenyloctan-1-one Chemical compound CCCCCCCC(=O)C1=CC=CC=C1 UDEVCZRUNOLVLU-UHFFFAOYSA-N 0.000 description 2
- RZCJSVRGPHXBSM-UHFFFAOYSA-N 8-chloro-[1,3]dioxolo[4,5-g]quinazoline Chemical compound C1=C2C(Cl)=NC=NC2=CC2=C1OCO2 RZCJSVRGPHXBSM-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 2
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 2
- FDECLDKJGLQCIY-UHFFFAOYSA-N CCCC1=CN(C2=CC=CN=C2)N=C1Cl Chemical compound CCCC1=CN(C2=CC=CN=C2)N=C1Cl FDECLDKJGLQCIY-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 235000015001 Cucumis melo var inodorus Nutrition 0.000 description 2
- 240000002495 Cucumis melo var. inodorus Species 0.000 description 2
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 description 2
- 241000219146 Gossypium Species 0.000 description 2
- 235000004341 Gossypium herbaceum Nutrition 0.000 description 2
- 240000002024 Gossypium herbaceum Species 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 206010061217 Infestation Diseases 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical class O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000012230 colorless oil Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- KTPZOXXVMXIMJI-UHFFFAOYSA-N ethyl 5-chloro-2-pyridin-3-yl-3,4-dihydropyrazole-3-carboxylate Chemical compound CCOC(=O)C1CC(Cl)=NN1c1cccnc1 KTPZOXXVMXIMJI-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- BIZCJSDBWZTASZ-UHFFFAOYSA-N iodine pentoxide Inorganic materials O=I(=O)OI(=O)=O BIZCJSDBWZTASZ-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 150000004681 metal hydrides Chemical class 0.000 description 2
- 229910001463 metal phosphate Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 238000010943 off-gassing Methods 0.000 description 2
- 238000003359 percent control normalization Methods 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 2
- 239000003586 protic polar solvent Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910000104 sodium hydride Inorganic materials 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000005428 wave function Effects 0.000 description 2
- YFQBFBATCINSHI-BGERDNNASA-N (2s)-2,6-diamino-1-(2-diphenoxyphosphorylpyrrolidin-1-yl)hexan-1-one Chemical compound NCCCC[C@H](N)C(=O)N1CCCC1P(=O)(OC=1C=CC=CC=1)OC1=CC=CC=C1 YFQBFBATCINSHI-BGERDNNASA-N 0.000 description 1
- 125000004765 (C1-C4) haloalkyl group Chemical group 0.000 description 1
- SGUVLZREKBPKCE-UHFFFAOYSA-N 1,5-diazabicyclo[4.3.0]-non-5-ene Chemical compound C1CCN=C2CCCN21 SGUVLZREKBPKCE-UHFFFAOYSA-N 0.000 description 1
- JDIIGWSSTNUWGK-UHFFFAOYSA-N 1h-imidazol-3-ium;chloride Chemical compound [Cl-].[NH2+]1C=CN=C1 JDIIGWSSTNUWGK-UHFFFAOYSA-N 0.000 description 1
- TUDJNSKRXIUOAJ-UHFFFAOYSA-N 2-(bromomethyl)-1,1-difluorocyclopropane Chemical compound FC1(F)CC1CBr TUDJNSKRXIUOAJ-UHFFFAOYSA-N 0.000 description 1
- UIIJZQVROQHLAP-UHFFFAOYSA-N 2-methyl-2-(2-methylbutan-2-yloxy)butane;sodium Chemical compound [Na].CCC(C)(C)OC(C)(C)CC UIIJZQVROQHLAP-UHFFFAOYSA-N 0.000 description 1
- XCDTWHHINWNFHY-UHFFFAOYSA-N 3,3,3-trifluoropropane-1-thiol Chemical compound FC(F)(F)CCS XCDTWHHINWNFHY-UHFFFAOYSA-N 0.000 description 1
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- DHXNZYCXMFBMHE-UHFFFAOYSA-N 3-bromopropanoic acid Chemical compound OC(=O)CCBr DHXNZYCXMFBMHE-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 240000005528 Arctium lappa Species 0.000 description 1
- 235000003130 Arctium lappa Nutrition 0.000 description 1
- 235000008078 Arctium minus Nutrition 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 241000219198 Brassica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 235000000981 Brassica parachinensis Nutrition 0.000 description 1
- 244000240551 Brassica parachinensis Species 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- VFWLGBDMTIJGDW-UHFFFAOYSA-N C#CC1CC(Cl)=NN1C1=CC=CN=C1 Chemical compound C#CC1CC(Cl)=NN1C1=CC=CN=C1 VFWLGBDMTIJGDW-UHFFFAOYSA-N 0.000 description 1
- BXDBFOPTNVLFTR-UHFFFAOYSA-N C.CC(=O)CC1=CN(C2=CC=CN=C2)N=C1Cl.CC(C)(C)O[Na].CCCC1=CN(C2=CC=CN=C2)N=C1Cl.CCN(C(C)=O)C1=CN(C2=CC=CN=C2)N=C1Cl Chemical compound C.CC(=O)CC1=CN(C2=CC=CN=C2)N=C1Cl.CC(C)(C)O[Na].CCCC1=CN(C2=CC=CN=C2)N=C1Cl.CCN(C(C)=O)C1=CN(C2=CC=CN=C2)N=C1Cl BXDBFOPTNVLFTR-UHFFFAOYSA-N 0.000 description 1
- BOIPGEAPTWEWNT-UHFFFAOYSA-N C.CC1=CC(Cl)=NN1C1=CC=CN=C1.CC1=CC=CN=C1.CC1CC(=O)NN1C1=CC=CN=C1.CC1CC(Cl)=NN1C1=CC=CN=C1.Cl.ClC1=NN(C2=CC=CN=C2)C=C1.O=C(O)C1=CC(Cl)=NN1C1=CC=CN=C1 Chemical compound C.CC1=CC(Cl)=NN1C1=CC=CN=C1.CC1=CC=CN=C1.CC1CC(=O)NN1C1=CC=CN=C1.CC1CC(Cl)=NN1C1=CC=CN=C1.Cl.ClC1=NN(C2=CC=CN=C2)C=C1.O=C(O)C1=CC(Cl)=NN1C1=CC=CN=C1 BOIPGEAPTWEWNT-UHFFFAOYSA-N 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 0 C=CC#N.CC(=O)NC1=CN(C2=CC=CN=C2)N=C1Cl.CCNC1=CN(C2=CC=CN=C2)N=C1Cl.CO.Cl.ClC1=NN(C2=CC=CN=C2)C=C1.N#CC1CC(Cl)=NN1C1=CC=CN=C1.NC1=CN(C2=CC=CN=C2)N=C1Cl.NCl.NNC1=CN=CC=C1.O=C(O)/C=N/CC1=CN=CC=C1.O=CC(=O)O.O=[N+]([O-])C1=CN(C2=CC=CN=C2)N=C1Cl.[1*]S(=O)CC(=O)N(CC)C1=CN(C2=CC=CN=C2)N=C1Cl.[1*]SCC(=O)N(CC)C1=CN(C2=CC=CN=C2)N=C1Cl.[1*]SCC(C)=O Chemical compound C=CC#N.CC(=O)NC1=CN(C2=CC=CN=C2)N=C1Cl.CCNC1=CN(C2=CC=CN=C2)N=C1Cl.CO.Cl.ClC1=NN(C2=CC=CN=C2)C=C1.N#CC1CC(Cl)=NN1C1=CC=CN=C1.NC1=CN(C2=CC=CN=C2)N=C1Cl.NCl.NNC1=CN=CC=C1.O=C(O)/C=N/CC1=CN=CC=C1.O=CC(=O)O.O=[N+]([O-])C1=CN(C2=CC=CN=C2)N=C1Cl.[1*]S(=O)CC(=O)N(CC)C1=CN(C2=CC=CN=C2)N=C1Cl.[1*]SCC(=O)N(CC)C1=CN(C2=CC=CN=C2)N=C1Cl.[1*]SCC(C)=O 0.000 description 1
- IRQGDVMRXIUSTR-VZUCSPMQSA-N CC(=O)/C=N/CC1=CN=CC=C1 Chemical compound CC(=O)/C=N/CC1=CN=CC=C1 IRQGDVMRXIUSTR-VZUCSPMQSA-N 0.000 description 1
- UKYDWCIGRARGFN-UHFFFAOYSA-N CC(=O)CC1=CN(C2=CC=CN=C2)N=C1Cl Chemical compound CC(=O)CC1=CN(C2=CC=CN=C2)N=C1Cl UKYDWCIGRARGFN-UHFFFAOYSA-N 0.000 description 1
- QFRAGQHLFLLOKI-UHFFFAOYSA-N CC(=O)CCSCCC(F)(F)F Chemical compound CC(=O)CCSCCC(F)(F)F QFRAGQHLFLLOKI-UHFFFAOYSA-N 0.000 description 1
- HGFVBJHWMMMCRU-UHFFFAOYSA-N CC1=CN(C2=CC=CN=C2)N=C1Cl Chemical compound CC1=CN(C2=CC=CN=C2)N=C1Cl HGFVBJHWMMMCRU-UHFFFAOYSA-N 0.000 description 1
- LFUDJSAZXPUIEB-UHFFFAOYSA-N CC1=NN(C2=CC=CN=C2)C=C1 Chemical compound CC1=NN(C2=CC=CN=C2)C=C1 LFUDJSAZXPUIEB-UHFFFAOYSA-N 0.000 description 1
- OSVHBWQVZQWHLG-UHFFFAOYSA-N CC1CC(=O)NN1C1=CC=CN=C1 Chemical compound CC1CC(=O)NN1C1=CC=CN=C1 OSVHBWQVZQWHLG-UHFFFAOYSA-N 0.000 description 1
- BUTXJHNFXHLCIM-UHFFFAOYSA-N CCN(C(=O)CCS(=O)CCC(F)(F)F)C1=CN(C2=CC=CN=C2)N=C1Cl Chemical compound CCN(C(=O)CCS(=O)CCC(F)(F)F)C1=CN(C2=CC=CN=C2)N=C1Cl BUTXJHNFXHLCIM-UHFFFAOYSA-N 0.000 description 1
- ZLKHNWGMKLGWRA-BVZALRFCSA-N COC(=O)C1=CC(Cl)=NN1C1=CC=CN=C1.COC(=O)C1CC(Cl)=NN1C1=CC=CN=C1.Cl.Cl.ClC1=NN(C2=CC=CN=C2)C=C1.O=C(O)/C=N/CC1=CN=CC=C1.O=C(O)C1=CC(Cl)=NN1C1=CC=CN=C1 Chemical compound COC(=O)C1=CC(Cl)=NN1C1=CC=CN=C1.COC(=O)C1CC(Cl)=NN1C1=CC=CN=C1.Cl.Cl.ClC1=NN(C2=CC=CN=C2)C=C1.O=C(O)/C=N/CC1=CN=CC=C1.O=C(O)C1=CC(Cl)=NN1C1=CC=CN=C1 ZLKHNWGMKLGWRA-BVZALRFCSA-N 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 235000009467 Carica papaya Nutrition 0.000 description 1
- 240000006432 Carica papaya Species 0.000 description 1
- 235000007516 Chrysanthemum Nutrition 0.000 description 1
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 1
- CHOWQGWTGPOEMV-UXBLZVDNSA-N Cl.O=C(O)/C=N/CC1=CN=CC=C1 Chemical compound Cl.O=C(O)/C=N/CC1=CN=CC=C1 CHOWQGWTGPOEMV-UXBLZVDNSA-N 0.000 description 1
- HSFHAQKZCBELFX-UHFFFAOYSA-N ClC1=NN(C2=CC=CN=C2)C=C1.O=C(O)C1=CC(Cl)=NN1C1=CC=CN=C1 Chemical compound ClC1=NN(C2=CC=CN=C2)C=C1.O=C(O)C1=CC(Cl)=NN1C1=CC=CN=C1 HSFHAQKZCBELFX-UHFFFAOYSA-N 0.000 description 1
- 235000009854 Cucurbita moschata Nutrition 0.000 description 1
- 240000001980 Cucurbita pepo Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 241000219130 Cucurbita pepo subsp. pepo Species 0.000 description 1
- 235000003954 Cucurbita pepo var melopepo Nutrition 0.000 description 1
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 1
- 240000006497 Dianthus caryophyllus Species 0.000 description 1
- 240000002395 Euphorbia pulcherrima Species 0.000 description 1
- 239000007821 HATU Substances 0.000 description 1
- 229910002567 K2S2O8 Inorganic materials 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 241000006351 Leucophyllum frutescens Species 0.000 description 1
- 241000208467 Macadamia Species 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 241000721623 Myzus Species 0.000 description 1
- 241000721621 Myzus persicae Species 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 235000017879 Nasturtium officinale Nutrition 0.000 description 1
- 240000005407 Nasturtium officinale Species 0.000 description 1
- 241000819999 Nymphes Species 0.000 description 1
- ZBIXZFVTCIJHPH-UHFFFAOYSA-N O=C(Cl)CCSCC1CC1(F)F Chemical compound O=C(Cl)CCSCC1CC1(F)F ZBIXZFVTCIJHPH-UHFFFAOYSA-N 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 241000758706 Piperaceae Species 0.000 description 1
- 241000709769 Potato leafroll virus Species 0.000 description 1
- 241000723762 Potato virus Y Species 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 235000005733 Raphanus sativus var niger Nutrition 0.000 description 1
- 244000155437 Raphanus sativus var. niger Species 0.000 description 1
- 241000109329 Rosa xanthina Species 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 235000008406 SarachaNachtschatten Nutrition 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 241000208292 Solanaceae Species 0.000 description 1
- 235000004790 Solanum aculeatissimum Nutrition 0.000 description 1
- 235000008424 Solanum demissum Nutrition 0.000 description 1
- 235000018253 Solanum ferox Nutrition 0.000 description 1
- 235000000208 Solanum incanum Nutrition 0.000 description 1
- 235000013131 Solanum macrocarpon Nutrition 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- 235000009869 Solanum phureja Nutrition 0.000 description 1
- 240000002307 Solanum ptychanthum Species 0.000 description 1
- 235000000341 Solanum ptychanthum Nutrition 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000017622 Solanum xanthocarpum Nutrition 0.000 description 1
- YTAHJIFKAKIKAV-XNMGPUDCSA-N [(1R)-3-morpholin-4-yl-1-phenylpropyl] N-[(3S)-2-oxo-5-phenyl-1,3-dihydro-1,4-benzodiazepin-3-yl]carbamate Chemical compound O=C1[C@H](N=C(C2=C(N1)C=CC=C2)C1=CC=CC=C1)NC(O[C@H](CCN1CCOCC1)C1=CC=CC=C1)=O YTAHJIFKAKIKAV-XNMGPUDCSA-N 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 239000012345 acetylating agent Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 244000013123 dwarf bean Species 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000003810 ethyl acetate extraction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 235000021331 green beans Nutrition 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- DUWWHGPELOTTOE-UHFFFAOYSA-N n-(5-chloro-2,4-dimethoxyphenyl)-3-oxobutanamide Chemical compound COC1=CC(OC)=C(NC(=O)CC(C)=O)C=C1Cl DUWWHGPELOTTOE-UHFFFAOYSA-N 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000017448 oviposition Effects 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- RZWZRACFZGVKFM-UHFFFAOYSA-N propanoyl chloride Chemical compound CCC(Cl)=O RZWZRACFZGVKFM-UHFFFAOYSA-N 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 235000020354 squash Nutrition 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000005500 uronium group Chemical group 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 244000000006 viral plant pathogen Species 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/72—Nitrogen atoms
- C07D213/76—Nitrogen atoms to which a second hetero atom is attached
- C07D213/77—Hydrazine radicals
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/40—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/48—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
- A01N43/56—1,2-Diazoles; Hydrogenated 1,2-diazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N47/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
- A01N47/40—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
Definitions
- This application relates to efficient and economical synthetic chemical processes for the preparation of pesticidal thioether and pesticidal sulfoxides. Further, the present application relates to certain novel compounds necessary for their synthesis. It would be advantageous to produce pesticidal thioether and pesticidal sulfoxides efficiently and in high yield from commercially available starting materials.
- alkyl denotes branched or unbranched hydrocarbon chains.
- cycloalkyl as employed herein alone is a saturated cyclic hydrocarbon group, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl.
- thio as used herein as part of another group refers to a sulfur atom serving as a linker between two groups.
- halogen or “halo” as used herein alone or as part of another group refers to chlorine, bromine, fluorine, and iodine.
- step a of Scheme 1 3-hydrazinopyridine dihydrochloride is reacted with glyoxylic acid to yield (E)-2-(2-(pyridin-3-yl)hydrazono)acetic acid (6a).
- the reaction can be done with or without an acid, it is preferred, however, that an acid is used.
- an acid is used.
- hydrochloric acid (HCl) is used.
- This reaction may be conducted in a protic solvent, for example, water. This reaction may be conducted at temperatures from about 0° C. to about 30° C.
- step b of Scheme 1 compound (6a) is reacted with acrylonitrile and a source of chlorine to yield 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carbonitrile (6b).
- the chlorine source may be, for example, N-chlorosuccinimide (NCS).
- NCS N-chlorosuccinimide
- the reaction is also conducted in the presence of an inorganic base, preferably metal carbonates, metal hydroxides, metal phosphates, or metal hydrides, more preferably, potassium bicarbonate (KHCO 3 ).
- KHCO 3 potassium bicarbonate
- the reaction is also conducted in a polar aprotic solvent, preferably, ethyl acetate (EtOAc). This reaction may be conducted at temperatures from about ⁇ 10° C. to about 30° C.
- step c of Scheme 1 compound (6b) undergoes dehydrocyanation to yield 3-(3-chloro-1H-pyrazol-1-yl) pyridine (5b).
- This reaction is conducted in the presence of an organic or inorganic base that promotes the dehydrocyanation, such as, 1, 8-diazabicyclo-[5.4.0] undec-7-ene (DBU), 1, 5-diazabicyclo [4.3.0] non-5-ene (DBN), or potassium hydroxide.
- the reaction may be conducted in a polar solvent, such as N,N-dimethyl-formamide (DMF), ethanol (EtOH), or tetrahydrofuran (THF). This reaction may be conducted at temperatures from about ⁇ 10° C. to about 30° C.
- step d of Scheme 1 compound (5b) is nitrated with nitric acid (HNO 3 ), preferably in the presence of sulfuric acid (H 2 SO 4 ) to yield 3-(3-chloro-4-nitro-1H-pyrazol-1-yl)pyridine (5c).
- the nitration may be conducted at temperatures from about -10° C. to about 30° C.
- step e of Scheme 1 compound (5c) is reduced to yield 3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-amine (5d).
- compound (5c) may be reduced with iron in acetic acid (AcOH).
- Compound (5c) may also be reduced with iron and ammonium chloride (NH 4 Cl).
- this reduction may be carried out using other techniques in the art, for example, compound (5c) may be reduced using palladium on carbon in the presence of hydrogen (H 2 ). This reaction may be conducted at temperatures from about ⁇ 10° C. to about 30° C.
- step g of Scheme 1 3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-amine (5d) is acylated with acetylating agents such as acetyl chloride or acetic anhydride, preferably acetic anhydride (Ac 2 O) to yield N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)acetamide (1c).
- the acylation is conducted in the presence of a base, preferably an inorganic base, such as, sodium bicarbonate (NaHCO 3 ), and preferably, a polar solvent, such as ethyl acetate and/or tetrahydrofuran. This reaction may be conducted at temperatures from about ⁇ 10° C. to about 30° C.
- step h of Scheme 1 N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)acetamide (1c) is reduced to yield 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (1d).
- a hydride source preferably sodium borohydride (NaBH 4 )
- an acid source such as a Br ⁇ nsted acid or a Lewis acid, preferably a Lewis acid, preferably borontrifluoride etherate (BF 3 Et 2 O).
- step f of Scheme 1 3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-amine (5d) is condensed with acetaldehyde followed by reduction of the imine intermediate to yield 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-4-amine (1d).
- the reaction may be conducted with a hydride source such as sodium borohydride in a polar protic solvent, such as methanol (MeOH) at temperatures from about ⁇ 10° C. to about 40° C.
- a hydride source such as sodium borohydride
- a polar protic solvent such as methanol (MeOH)
- step i of Scheme 1 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (1d) is reacted with an activated carbonyl thioether, indicated as X 1 C( ⁇ O)C 1 -C 4 -alkyl-S—R′, to yield pesticidal thioether (1e).
- R 1 is selected from the group consisting of C 1 -C 4 -haloalkyl and C 1 -C 4 -alkyl-C 3 -C 6 -halocycloalkyl, preferably, R 1 is selected from CH 2 CH 2 CF 3 or CH 2 (2,2-difluorocyclopropyl).
- X 1 is selected from Cl, OC( ⁇ O)C 1 -C 4 alkyl, or a group that forms an activated carboxylic acid.
- X 1 is Cl or OC( ⁇ O)C 1 -C 4 alkyl the reaction may be conducted in the presence of a base preferably, sodium bicarbonate to yield pesticidal thioether (1e).
- X 1 is Cl or OC( ⁇ O)C 1 -C 4 alkyl the reaction may also be conducted in the absence of a base to yield pesticidal thioether (1e).
- reaction may be accomplished when X 1 C( ⁇ O)C 1 -C 4 -alkyl-S—R 1 is an activated carboxylic acid activated by such reagents as 2,4,6-tripropyl-trioxatriphosphinane-2,4,-trioxide (T 3 P), carbonyldiimidazole (CDI), dicyclohexylcarbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), preferably 2,4,6-tripropyl-trioxatriphosphinane-2,4,-trioxide and carbonyldiimidazole at temperatures from about 0° C.
- reagents as 2,4,6-tripropyl-trioxatriphosphinane-2,4,-trioxide (T 3 P), carbonyldiimidazole (CDI), dicyclohexylcarbodiimide (DCC) or 1-ethyl-3
- uronium or phosphonium activating groups such as O-(7-azabenzotriazol-1-yl)-N,N,N′, N′-tetramethyluronium hexafluorophosphate (HATU) or benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP), in the presence of an amine base such as diisopropylethylamine (DIPEA) or triethylamine (TEA) in an polar aprotic solvent such as N,N-dimethylformamide, tetrahydrofuran or dichloromethane (CH 2 Cl 2 ), at temperatures from about ⁇ 10° C.
- DIPEA diisopropylethylamine
- TEA triethylamine
- CH 2 Cl 2 dichloromethane
- Activated carbonyl thioethers may be prepared from X′C( ⁇ O)C 1 -C 4 -alkyl-S—R′, wherein X 1 is OH may be prepared by reacting the corresponding ester thioether, indicated as X 1 C( ⁇ O)C 1 -C 4 -alkyl-S—R 1 wherein X 1 is OC 1 -C 4 -alkyl, with a metal hydroxide such as lithium hydroxide (LiOH) in a polar solvent such as methanol or tetrahydrofuran.
- a metal hydroxide such as lithium hydroxide (LiOH)
- X 1 C( ⁇ O)C 1 -C 4 -alkyl-S—R 1 wherein X 1 is OH or OC 1 -C 4 -alkyl may be prepared by the photochemical free-radical coupling of 3-mercaptopropionic acid and esters thereof with 3,3,3-trifluoropropene in the presence of 2,2-dimethoxy-2-phenylacetophenone initiator and long wavelength UV light in an inert organic solvent. While stoichiometric amounts of 3-mercaptopropionic acid or esters thereof and 3,3,3-trifluoropropene are required, because of its low boiling point, excess 3,3,3-trifluoropropene is usually employed to compensate for routine losses.
- UV light is sometimes called “black light” and ranges from about 400 to about 365 nanometers.
- the photochemical coupling is conducted in an inert organic solvent. Typical inert organic solvents must remain liquid to about ⁇ 50° C., must remain relatively inert to the free radical conditions and must dissolve the reactants at reaction temperatures. Preferred inert organic solvents are aromatic and aliphatic hydrocarbons like toluene. The temperature at which the reaction is conducted is not critical but usually is from about ⁇ 50° C. to about 35° C. Lower temperatures, however, are better for increased selectivity.
- the temperature is below the boiling point of 3,3,3-trifluoropropene, i.e., about ⁇ 18 to about ⁇ 16° C.
- the inert organic solvent is cooled to less than about -50° C. and the 3,3,3-trifluoropropene is bubbled into the solvent.
- the 3-mercaptopropionic acid or esters thereof and 2,2-dimethoxy-2-phenylacetophenone are added and a long wave function (366 nm) UVP lamp (4 watt) is turned on. After sufficient conversion of 3-mercapto-propionic acid or esters thereof, the light is turned off and the solvent removed.
- 3-((3,3,3-Trifluoropropyl)thio)propanoic acid may also be prepared by the low temperature free-radical initiated coupling of 3-mercaptopropionic acid with 3,3,3-trifluoropropene in the presence of 2,2′-azobis(4-methoxy-2,4-dimethyl) valeronitrile (V-70) initiator at temperatures of about ⁇ 50° C. to about 40° C. in an inert organic solvent. While stoichiometric amounts of 3-mercaptopropionic acid and 3,3,3-trifluoropropene are required, because of its low boiling point, excess 3,3,3-trifluoropropene is usually employed to compensate for routine losses.
- V-70 2,2′-azobis(4-methoxy-2,4-dimethyl) valeronitrile
- V-70 From about 1 to about 10 mole percent initiator, V-70, is typically used, with about 5 mole percent being preferred.
- the low temperature free-radical initiated coupling is conducted in an inert organic solvent.
- Typical inert organic solvents must remain liquid to about ⁇ 50° C., must remain relatively inert to the free radical conditions and must dissolve the reactants at reaction temperatures.
- Preferred inert organic solvents are toluene, ethyl acetate, and methanol.
- the temperature at which the reaction is conducted from about ⁇ 50° C. to about 40° C. Initially, it is important to keep the temperature below the boiling point of 3,3,3-trifluoropropene, i.e., about ⁇ 18 to about ⁇ 16° C.
- the solution is cooled to less than about ⁇ 50° C. and the 3,3,3-trifluoropropene is transferred into the reaction mixture. After stiffing at room temperature for 24 hours, the reaction mixture is heated to about 50° C. for about 1 hour to decompose any remaining V-70 initiator followed by cooling and solvent removal.
- step j of Scheme 1 thioether (1e) is oxidized with hydrogen peroxide (H 2 O 2 ) in methanol to yield pesticidal sulfoxides (1f).
- step a of Scheme 2 (E)-2-(2-(pyridin-3-yl)hydrazono)acetic acid (6a) is reacted with methyl acrylate in the presence of a chlorine source such N-chlorosuccinimide, an inorganic base, preferably metal carbonates, metal hydroxides, metal phosphates, or metal hydrides, more preferably potassium bicarbonate and a polar aprotic solvent, preferably, ethyl acetate, and addition of a sub-stoichiometric amount of water to yield methyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (6c).
- a chlorine source such N-chlorosuccinimide
- an inorganic base preferably metal carbonates, metal hydroxides, metal phosphates, or metal hydrides, more preferably potassium bicarbonate and a polar aprotic solvent, preferably, ethyl a
- step b of Scheme 2 methyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (6c) is oxidized with diammonium cerium (IV) nitrate (CAN) in water and polar solvents such as tetrahydrofuran at temperatures from about 0° C. to about 30° C. to yield methyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (6d). It was surprisingly discovered that the oxidation in step b can also proceed with potassium permanganate (KMnO 4 ) as the oxidant in polar solvents such as acetone at temperatures from about 0° C.
- polar solvents such as tetrahydrofuran
- K 2 S 2 O 8 potassium persulfate
- I 2 O 5 iodine pentoxide
- CuO copper oxide
- hydrogen peroxide hydrogen peroxide
- methyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (6d) is saponified in the presence of an inorganic base, preferably metal hydroxides or their hydrates such as lithium hydroxide hydrate (LiOH.H 2 O) in water and a polar solvent such as dioxane at temperatures from about 0° C. to about 30° C. to yield 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid (6e).
- an inorganic base preferably metal hydroxides or their hydrates such as lithium hydroxide hydrate (LiOH.H 2 O) in water and a polar solvent such as dioxane at temperatures from about 0° C. to about 30° C. to yield 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid (6e).
- this process can also be accomplished by hydrolysis by exposing methyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (6d) to a concentrated acid such as hydrochloric acid in water at temperatures from about 30° C. to about 100° C.
- step d of Scheme 2 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid (6e) is decarboxylated in the presence of copper (II) oxide in polar solvents such as N,N-dimethylformamide at temperatures from about 80° C. to about 140° C. to yield 3-(3-chloro-1H-pyrazol-1-yl) pyridine (5b). It was surprisingly discovered that this decarboxylation only occurs in the presence of copper (II) oxide.
- polar solvents such as N,N-dimethylformamide
- N-(3-chlorol-(pyridin-3-yl)-1H-pyrazol-4-yl)acetamide (1c) may be alkylated with ethyl bromide (EtBr) in the presence of a base, such as sodium hydride (NaH), sodium tert-butoxide (NaOt-Bu), potassium tert-butoxide (KOt-Bu), or sodium tert-amyloxide, in a polar aprotic solvent, such as tetrahydrofuran, at temperatures from about 20° C.
- a base such as sodium hydride (NaH), sodium tert-butoxide (NaOt-Bu), potassium tert-butoxide (KOt-Bu), or sodium tert-amyloxide
- a polar aprotic solvent such as tetrahydrofuran
- an iodide additive such as potassium iodide (KI) or tetrabutylammonium iodide (TBAI) can decrease the time necessary for the reaction to occur to about 24 hours.
- heating the reaction at about 50° C. to about 70° C. in a sealed reactor to prevent loss of ethyl bromide also decreases the reaction time to about 24 hours.
- N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (1c′) may be treated with hydrochloric acid in water at temperatures from about 50° C. to about 90° C., to yield 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (1d).
- the reaction pathway sequence disclosed in Scheme 3 may also be performed without the isolation of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (1c′).
- step a of Scheme 4 3-hydrazinopyridine-dihydrochloride is treated with a di-C 1 -C 4 alkyl maleate such as diethyl maleate in a C 1 -C 4 aliphatic alcohol at a temperature of about 25° C. to about 100° C. in the presence of an alkali metal C 1 -C 4 alkoxide to provide pyrazolidine carboxylate (10a). While stoichiometric amounts of 3-hydrazinopyridine.-dihydrochloride and di-C 1 -C 4 alkyl maleate are required, it is often convenient to use about a 1.5 fold to about a 2 fold excess of di-C 1 -C 4 alkyl maleate.
- a di-C 1 -C 4 alkyl maleate such as diethyl maleate in a C 1 -C 4 aliphatic alcohol
- the cyclization is run in the presence of an alkali metal C 1 -C 4 alkoxide base such as sodium ethoxide. It is often convenient to use about a 2 fold to about a 5 fold excess of base.
- the cyclization is performed in a C 1 -C 4 aliphatic alcohol such as ethanol. It is most convenient that the alkoxide base and the alcohol solvent be the same, for example, sodium ethoxide in ethanol.
- the pyrazolidine carboxylate (10a) may be treated with a chlorinating reagent in an inert organic solvent at a temperature of about 25° C. to about 100° C. to provide chlorinated dihydropyrazole carboxylate (10b).
- Suitable chlorinating reagents include phosphoryl trichloride and phosphorus pentachloride. Phosphoryl trichloride is preferred. It is often convenient to use about a 1.1 fold to about a 10 fold excess of the chlorinating reagent.
- the chlorination is performed in an organic solvent that is inert to the chlorinating reagent. Suitable solvents include nitriles such as acetonitrile. With phosphoryl trichloride as the chlorinating reagent, acetonitrile is a preferred solvent.
- chlorinated dihydropyrazole carboxylate (10b) may treated with an oxidant in an organic solvent at a temperature of about 25° C. to about 100° C. to provide chlorinated pyrazole carboxylate (10c).
- Suitable oxidants include manganese (IV) oxide and sodium persulfate/sulfuric acid. It is often convenient to use about a 1.5 fold to about a 15 fold excess of oxidant.
- the oxidation is performed in an organic solvent that is inert to the oxidant.
- Suitable solvents include nitriles such as acetonitrile. With manganese (IV) oxide (MnO 2 ) or sodium persulfate/sulfuric acid as the oxidant, acetonitrile is a preferred solvent.
- chlorinated pyrazole carboxylate (10c) may then be converted to the desired 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (6e) by treatment in aqueous hydrochloric acid at a temperature of about 25° C. to about 100° C. While stoichiometric amounts of reagents are required, it is often convenient to use an excess of reagents with respect to the chlorinated pyrazole carboxylate. Thus, aqueous hydrochloric acid is used in large excess as the reaction medium.
- chlorinated pyrazole carboxylates may be saponified in the presence of an inorganic base, preferably metal hydroxides or their hydrates such as lithium hydroxide hydrate (LiOH.H 2 O) in water and a polar solvent such as dioxane at temperatures from about 0° C. to about 30° C. to yield 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid (6e).
- an inorganic base preferably metal hydroxides or their hydrates such as lithium hydroxide hydrate (LiOH.H 2 O) in water and a polar solvent such as dioxane at temperatures from about 0° C. to about 30° C. to yield 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid (6e).
- step e of Scheme 4 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (6e) is decarboxylated in the presence of copper (11) oxide in polar solvents such as N,N-dimethylformamide at temperatures from about 80° C. to about 140° C. to yield 3-(3-chloro-1H-pyrazol-1-yl) pyridine (5b). It was surprisingly discovered that this decarboxylation only occurs in the presence of copper (II) oxide.
- reaction mixture was carefully added to ice cold water (100 mL) at ⁇ 20° C. and basified with 50% sodium hydroxide at ⁇ 20° C. The resulting light yellow suspension was stirred for 2 hours and filtered.
- the black colored suspension was then filtered via a Celite® pad and the pad rinsed with ethyl acetate (80 mL)
- the reaction mixture was washed with saturated sodium bicarbonate (30 mL) and the organic layer was assayed.
- the assay gave (4.19 g, 99%) of product.
- the organic solvent was removed in vacuo to give a brown colored crude solid that was used without further purification.
- the reaction mixture was quenched with water (10 mL) and concentrated under reduced pressure to remove methanol. Ethyl acetate (10 mL) was added and the organic layer was concentrated to dryness. The residue was purified by flash column chromatography using 20-40% ethyl acetate/hexanes as eluent. The fractions containing pure product were combined and concentrated to afford a white solid (328 mg, 58%). The spectral characterization was in agreement with the product prepared previously.
- N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl) acetamide (2.57 g, 9.44 mmol)
- tetrahydrofuran 55 mL
- sodium tert-butoxide 1.81 g, 18.9 mmol
- the suspension was stirred for 5 minutes then ethyl bromide (1.41 mL, 18.9 mmol), and tetrabutylammonium iodide (67 mg, 0.2 mmol) were added.
- the resulting gray colored suspension was then heated to 38° C.
- the reaction was analyzed after 3 hours and found to have gone to 81% completion, after 24 hours the reaction was found to have gone to completion.
- the reaction mixture was allowed to cool to ambient temperature and quenched with ammonium hydroxide/formic acid (HCO 2 H) buffer (10 mL)
- the mixture was then diluted with tetrahydrofuran (40 mL), ethyl acetate (120 mL), and saturated sodium bicarbonate (30 mL)
- the layers were separated and the aqueous layer was extracted with ethyl acetate (2 ⁇ 30 mL)
- the organic layers were combined and silica gel (37 g) was added.
- N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl) acetamide 5 g, 21.13 mmol
- tetrahydrofuran 50 mL
- Sodium tert-butoxide (4.06 g, 42.3 mmol) was added (causing a temperature rise from 22° C. to 27.6° C.), followed by ethyl bromide (6.26 mL, 85 mmol).
- the reaction was stirred at 35° C. for 144 h at which point only 3.2% (AUC) starting material remained.
- the reaction mixture was concentrated to give a brown residue, which was dissolved in IN hydrochloric acid (106 mL, 106 mmol) and heated at 80° C. for 24 hours, at which point HPLC analysis indicated that the starting material had been consumed.
- the reaction was cooled to 20° C. and basified with 50% sodium hydroxide to pH>9.
- the resulting suspension was stirred at 20° C. for 1 hour and filtered, the filter cake was rinsed with water (25 mL) to afford a brown solid (5.18 g).
- the resulting crude product was dissolved in ethyl acetate and passed through a silica gel plug (50 g) using ethyl acetate (500 mL) as eluent.
- the filtrate was concentrated to dryness to afford a white solid (3.8 g, 80%).
- reaction was allowed to warm to 25-30° C. and stirred for 2 h. Upon reaction completion, the reaction mixture was cooled to 0-5° C. and quenched with water (12 mL) The layers were separated and the aqueous layer was extracted with ethyl acetate (30 mL). The combined organic layers were concentrated to afford the desired product as an oil (3.40 g, 94%).
- a 100 mL stainless steel Parr reactor was charged with azobisisobutyronitrile (AIBN, 0.231 g, 1.41 mmol), toluene (45 mL), 3-mercaptopropionic acid (3.40 g, 32.0 mmol), and octanophenone (526.2 mg) as an internal standard and was purged and pressure checked with nitrogen.
- the reactor was cooled with dry ice and the 3,3,3-trifluoropropene (3.1 g, 32 3 mmol) was condensed into the reactor. The ice bath was removed and the reactor heated to 60° C. and stirred for 27 hours.
- the internal yield of the reaction was determined to be 80% by use of the octanophenone internal standard.
- the reaction was stirred with the black light on for 4 hours. After 4 hours the black light was turned off and the reaction concentrated by rotary evaporation (41° C., 6 mm Hg) giving a pale yellow oil (18.09 g, 51:1 linear:branched isomer, 90 wt % linear isomer by GC internal standard assay, 16.26 g active, 93%).
- the crude material was dissolved in 10% sodium hydroxide w/w (37.35 g) and was washed with toluene (30 mL) to remove non-polar impurities.
- the aqueous layer was acidified to pH ⁇ 2-3 with hydrochloric acid (2 N, 47.81 g) and was extracted with toluene (50 mL) The organic layer was washed with water (40 mL) and dried over magnesium sulfate, filtered, and concentrated by rotary evaporation giving a pale yellow oil (14.15 g, 34:1 linear:branched isomer, 94 wt % linear isomer by GC internal standard assay, 13.26 g active, 76%).
- a 100 mL stainless steel Parr reactor was charged with 3-mercaptopropionic acid (3.67 g, 34.6 mmol), toluene (30.26 g), and 2,2′-azobis(4-methoxy-2,4-dimethyl) valeronitrile (V-70, 0.543 g, 1.76 mmol) and the reactor was cooled with a dry ice/acetone bath, purged with nitrogen, and pressure checked.
- 3,3,3-Trifluoropropene (3.20 g, 33.3 mmol) was added via transfer cylinder and the reaction was allowed to warm to 20° C. After 24 hours, the reaction was heated to 50° C. for 1 hour to decompose any remaining V-70 initiator.
- a 100 mL stainless steel Parr reactor was charged with azobisisobutyronitrile (0.465 g, 2.83 mmol), toluene (60 mL) and methyl-3-mercaptopropionate (7.40 g, 61.6 mmol) and was purged and pressure checked with nitrogen.
- the reactor was cooled with dry ice and the 3,3,3-trifluopropopene (5.7 g, 59.3 mmol) was condensed into the reactor.
- the ice bath was removed and the reactor heated to 60° C. and stirred to 24 hours. The heat was turned off and the reaction left at room temperature overnight. The mixture was removed from the reactor and concentrated to a yellow liquid.
- fraction 1 (1.3 g, 6.01 mmol, 10%, 70.9 area % by GC), fraction 2 (3.7 g, 17.1 mmol, 29%, 87 area% by GC), and fraction 3 (4.9 g, 22.7 mmol, 38%, 90.6 area% by GC):
- the reaction reached 35° C. due to heat from the lamp. After 4 hours, all of the trifluoropropene was either consumed or boiled out of the reaction. The light was turned off and the reaction stirred at room temperature overnight. After 22 hours, more trifluoropropene (3.1 g) was bubbled through the mixture at room temperature and the light was turned on for an additional 2 hours. The reaction had converted 93% so no more trifluoropropene was added.
- N-(3-Chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio) propanamide (57.4 g, 141 mmol) was stirred in methanol (180 mL)
- hydrogen peroxide (43.2 mL, 423 mmol) dropwise using a syringe.
- the solution was stirred at room temperature for 6 hours, at which point LCMS analysis indicated that the starting material was consumed.
- the mixture was poured into dichloromethane (360 mL) and washed with aqueous sodium carbonate (Na 2 CO 3 ).
- Methyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (3.83 g, 16.1 mmol) was stirred in dioxane (53.7 mL) The orange suspension was heated until a solution was achieved. Lithium hydroxide hydrate (1.01 g, 24.2 mmol) in water (26.9 mL) was added to afford a darker red solution. The reaction was stirred at room temperature for 1 hours, at which point LCMS showed the corresponding acid to be the major product. The orange mixture was concentrated to dryness and the residue was mixed with 4 N hydrochloric acid in dioxane (100 mL) The suspension was heated to reflux for 1 hour and allowed to cool to room temperature.
- the reaction was determined to be complete by 1 H NMR (An aliquot of the reaction mixture was taken, and concentrated down via rotary evaporator). The reaction was allowed to cool to room temperature and the mixture was transferred to a dry 3 L round-bottom and concentrated via the rotary evaporator. This resulted in 95 g of a honey-colored oil. The contents were gravity filtered through paper and the paper rinsed with diethyl ether (10 mL) The rinse was added to the flask. This gave a clear yellow liquid. The liquid was placed on a rotary evaporator to remove the ether. This gave 92.4 g of a yellow oil.
- GPA is the most significant aphid pest of peach trees, causing decreased growth, shriveling of leaves, and the death of various tissues. It is also hazardous because it acts as a vector for the transport of plant viruses, such as potato virus Y and potato leafroll virus to members of the nightshade/potato family Solanaceae, and various mosaic viruses to many other food crops. GPA attacks such plants as broccoli, burdock, cabbage, carrot, cauliflower, daikon, eggplant, green beans, lettuce, macadamia, papaya, peppers, sweet potatoes, tomatoes, watercress and zucchini among other plants. GPA also attacks many ornamental crops such as carnations, chrysanthemum, flowering white cabbage, poinsettia and roses. GPA has developed resistance to many pesticides.
- the seedlings were infested with 20-5-GPA (wingless adult and nymph stages) one day prior to chemical application.
- Four posts with individual seedlings were used for each treatment.
- Test compounds (2 mg) were dissolved in 2 mL of acetone/methanol (1:1) solvent, forming stock solutions of 1000 ppm test compound.
- the stock solutions were diluted 5 ⁇ with 0.025% Tween 20 in water to obtain the solution at 200 ppm test compound.
- a hand-held aspirator-type sprayer was used for spraying a solution to both sides of the cabbage leaves until runoff.
- Reference plants (solvent check) were sprayed with the diluent only containing 20% by volume acetone/methanol (1:1) solvent. Treated plants were held in a holding room for three days at approximately 25° C. and ambient relative humidity (RH) prior to grading. Evaluation was conducted by counting the number of live aphids per plant under a microscope. Percent Control was measured by using Abbott's correction formula (W. S. Abbott, “A Method of Computing the Effectiveness of an Insecticide” J. Econ. Entomol 18 (1925), pp.265-267) as follows.
- Table 1 GPA (MYZUPE) and sweetpotato whitefly-crawler (BEMITA) Rating Table”.
- Bemisia tabaci The sweetpotato whitefly, Bemisia tabaci (Gennadius), has been recorded in the United States since the late 1800s. In 1986 in Florida, Bemisia tabaci became an extreme economic pest. Whiteflies usually feed on the lower surface of their host plant leaves. From the egg hatches a minute crawler stage that moves about the leaf until it inserts its microscopic, threadlike mouthparts to feed by sucking sap from the phloem.
- Adults and nymphs excrete honeydew (largely plant sugars from feeding on phloem), a sticky, viscous liquid in which dark sooty molds grow.
- honeydew can stick cotton lint together, making it more difficult to gin and therefore reducing its value.
- Sooty mold grows on honeydew-covered substrates, obscuring the leaf and reducing photosynthesis, and reducing fruit quality grade. It transmitted plant-pathogenic viruses that had never affected cultivated crops and induced plant physiological disorders, such as tomato irregular ripening and squash silverleaf disorder. Whiteflies are resistant to many formerly effective pesticides.
- the stock solutions were diluted 10X with 0.025% Tween 20 in water to obtain a test solution at 200 ppm.
- a hand-held Devilbliss sprayer was used for spraying a solution to both sides of cotton leaf until runoff.
- Reference plants (solvent check) were sprayed with the diluent only.
- Treated plants were held in a holding room for 8-9 days at approximately 82° F. and 50% RH prior to grading. Evaluation was conducted by counting the number of live nymphs per plant under a microscope. Pesticidal activity was measured by using Abbott's correction formula (see above) and presented in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Agronomy & Crop Science (AREA)
- General Health & Medical Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Plural Heterocyclic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Pyridine Compounds (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
The present application provides processes for making pesticidal compounds and compounds useful both as pesticides and in the making of pesticidal compounds.
Description
- This Application claims the benefit of the following U.S. Provisional Patent Applications: Ser. No. 62/042,559, filed Aug. 27, 2014; Ser. No. 62/001,928, filed May 22, 2014; and Ser. No. 61/892,132, filed Oct. 17, 2013, the entire disclosures of these applications are hereby expressly incorporated by reference into this Application.
- This application relates to efficient and economical synthetic chemical processes for the preparation of pesticidal thioether and pesticidal sulfoxides. Further, the present application relates to certain novel compounds necessary for their synthesis. It would be advantageous to produce pesticidal thioether and pesticidal sulfoxides efficiently and in high yield from commercially available starting materials.
- The following definitions apply to the terms as used throughout this specification, unless otherwise limited in specific instances.
- As used herein, the term “alkyl” denotes branched or unbranched hydrocarbon chains.
- Unless otherwise indicated, the term “cycloalkyl” as employed herein alone is a saturated cyclic hydrocarbon group, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl.
- The term “thio” as used herein as part of another group refers to a sulfur atom serving as a linker between two groups.
- The term “halogen” or “halo” as used herein alone or as part of another group refers to chlorine, bromine, fluorine, and iodine.
- The compounds and process of the present application are described in detail below.
- In step a of Scheme 1, 3-hydrazinopyridine dihydrochloride is reacted with glyoxylic acid to yield (E)-2-(2-(pyridin-3-yl)hydrazono)acetic acid (6a). The reaction can be done with or without an acid, it is preferred, however, that an acid is used. For example, it is preferred that hydrochloric acid (HCl) is used. This reaction may be conducted in a protic solvent, for example, water. This reaction may be conducted at temperatures from about 0° C. to about 30° C.
- In step b of Scheme 1, compound (6a) is reacted with acrylonitrile and a source of chlorine to yield 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carbonitrile (6b). The chlorine source may be, for example, N-chlorosuccinimide (NCS). The reaction is also conducted in the presence of an inorganic base, preferably metal carbonates, metal hydroxides, metal phosphates, or metal hydrides, more preferably, potassium bicarbonate (KHCO3). The reaction is also conducted in a polar aprotic solvent, preferably, ethyl acetate (EtOAc). This reaction may be conducted at temperatures from about −10° C. to about 30° C.
- In step c of Scheme 1, compound (6b) undergoes dehydrocyanation to yield 3-(3-chloro-1H-pyrazol-1-yl) pyridine (5b). This reaction is conducted in the presence of an organic or inorganic base that promotes the dehydrocyanation, such as, 1, 8-diazabicyclo-[5.4.0] undec-7-ene (DBU), 1, 5-diazabicyclo [4.3.0] non-5-ene (DBN), or potassium hydroxide. The reaction may be conducted in a polar solvent, such as N,N-dimethyl-formamide (DMF), ethanol (EtOH), or tetrahydrofuran (THF). This reaction may be conducted at temperatures from about −10° C. to about 30° C.
- In step d of Scheme 1, compound (5b) is nitrated with nitric acid (HNO3), preferably in the presence of sulfuric acid (H2SO4) to yield 3-(3-chloro-4-nitro-1H-pyrazol-1-yl)pyridine (5c). The nitration may be conducted at temperatures from about -10° C. to about 30° C. In step e of Scheme 1, compound (5c) is reduced to yield 3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-amine (5d). For example, compound (5c) may be reduced with iron in acetic acid (AcOH). Compound (5c) may also be reduced with iron and ammonium chloride (NH4Cl). Alternatively, this reduction may be carried out using other techniques in the art, for example, compound (5c) may be reduced using palladium on carbon in the presence of hydrogen (H2). This reaction may be conducted at temperatures from about −10° C. to about 30° C.
- In step g of Scheme 1, 3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-amine (5d) is acylated with acetylating agents such as acetyl chloride or acetic anhydride, preferably acetic anhydride (Ac2O) to yield N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)acetamide (1c). The acylation is conducted in the presence of a base, preferably an inorganic base, such as, sodium bicarbonate (NaHCO3), and preferably, a polar solvent, such as ethyl acetate and/or tetrahydrofuran. This reaction may be conducted at temperatures from about −10° C. to about 30° C.
- In step h of Scheme 1, N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)acetamide (1c) is reduced to yield 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (1d). The reaction is conducted in the presence of a hydride source, preferably sodium borohydride (NaBH4), and an acid source, such as a Br∅nsted acid or a Lewis acid, preferably a Lewis acid, preferably borontrifluoride etherate (BF3Et2O). It has been surprisingly discovered that the yield of the reaction is affected by the quality of the borontrifluoride etherate (purchased from different suppliers, currently, Sigma Aldrich product number 175501 being preferred). This reaction may be conducted at temperatures from about −10° C. to about 70° C.
- Alternatively, instead of steps g and h, in step f of Scheme 1, 3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-amine (5d) is condensed with acetaldehyde followed by reduction of the imine intermediate to yield 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-4-amine (1d). The reaction may be conducted with a hydride source such as sodium borohydride in a polar protic solvent, such as methanol (MeOH) at temperatures from about −10° C. to about 40° C.
- In step i of Scheme 1, 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (1d) is reacted with an activated carbonyl thioether, indicated as X1C(═O)C1-C4-alkyl-S—R′, to yield pesticidal thioether (1e). R1 is selected from the group consisting of C1-C4-haloalkyl and C1-C4-alkyl-C3-C6-halocycloalkyl, preferably, R1 is selected from CH2CH2CF3 or CH2(2,2-difluorocyclopropyl). X1 is selected from Cl, OC(═O)C1-C4 alkyl, or a group that forms an activated carboxylic acid. When X1 is Cl or OC(═O)C1-C4 alkyl the reaction may be conducted in the presence of a base preferably, sodium bicarbonate to yield pesticidal thioether (1e). When X1 is Cl or OC(═O)C1-C4 alkyl the reaction may also be conducted in the absence of a base to yield pesticidal thioether (1e). Alternatively, the reaction may be accomplished when X1C(═O)C1-C4-alkyl-S—R1 is an activated carboxylic acid activated by such reagents as 2,4,6-tripropyl-trioxatriphosphinane-2,4,-trioxide (T3P), carbonyldiimidazole (CDI), dicyclohexylcarbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), preferably 2,4,6-tripropyl-trioxatriphosphinane-2,4,-trioxide and carbonyldiimidazole at temperatures from about 0° C. to about 80° C.; this reaction may also be facilitated with uronium or phosphonium activating groups such as O-(7-azabenzotriazol-1-yl)-N,N,N′, N′-tetramethyluronium hexafluorophosphate (HATU) or benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP), in the presence of an amine base such as diisopropylethylamine (DIPEA) or triethylamine (TEA) in an polar aprotic solvent such as N,N-dimethylformamide, tetrahydrofuran or dichloromethane (CH2Cl2), at temperatures from about −10° C. to about 30° C. to form pesticidal thioethers (1e). Activated carbonyl thioethers, may be prepared from X′C(═O)C1-C4-alkyl-S—R′, wherein X1 is OH may be prepared by reacting the corresponding ester thioether, indicated as X1C(═O)C1-C4-alkyl-S—R1wherein X1 is OC1-C4-alkyl, with a metal hydroxide such as lithium hydroxide (LiOH) in a polar solvent such as methanol or tetrahydrofuran.
- Alternatively, X1C(═O)C1-C4-alkyl-S—R1, wherein X1 is OH or OC1-C4-alkyl may be prepared by the photochemical free-radical coupling of 3-mercaptopropionic acid and esters thereof with 3,3,3-trifluoropropene in the presence of 2,2-dimethoxy-2-phenylacetophenone initiator and long wavelength UV light in an inert organic solvent. While stoichiometric amounts of 3-mercaptopropionic acid or esters thereof and 3,3,3-trifluoropropene are required, because of its low boiling point, excess 3,3,3-trifluoropropene is usually employed to compensate for routine losses. From about 1 to about 10 mole percent initiator, 2,2-dimethoxy-2-phenyl-acetophenone, is typically used, with about 5 mole percent being preferred. Long wavelength UV light is sometimes called “black light” and ranges from about 400 to about 365 nanometers. The photochemical coupling is conducted in an inert organic solvent. Typical inert organic solvents must remain liquid to about −50° C., must remain relatively inert to the free radical conditions and must dissolve the reactants at reaction temperatures. Preferred inert organic solvents are aromatic and aliphatic hydrocarbons like toluene. The temperature at which the reaction is conducted is not critical but usually is from about −50° C. to about 35° C. Lower temperatures, however, are better for increased selectivity. Initially, it is important to keep the temperature below the boiling point of 3,3,3-trifluoropropene, i.e., about −18 to about −16° C. In a typical reaction, the inert organic solvent is cooled to less than about -50° C. and the 3,3,3-trifluoropropene is bubbled into the solvent. The 3-mercaptopropionic acid or esters thereof and 2,2-dimethoxy-2-phenylacetophenone are added and a long wave function (366 nm) UVP lamp (4 watt) is turned on. After sufficient conversion of 3-mercapto-propionic acid or esters thereof, the light is turned off and the solvent removed.
- 3-((3,3,3-Trifluoropropyl)thio)propanoic acid may also be prepared by the low temperature free-radical initiated coupling of 3-mercaptopropionic acid with 3,3,3-trifluoropropene in the presence of 2,2′-azobis(4-methoxy-2,4-dimethyl) valeronitrile (V-70) initiator at temperatures of about −50° C. to about 40° C. in an inert organic solvent. While stoichiometric amounts of 3-mercaptopropionic acid and 3,3,3-trifluoropropene are required, because of its low boiling point, excess 3,3,3-trifluoropropene is usually employed to compensate for routine losses. From about 1 to about 10 mole percent initiator, V-70, is typically used, with about 5 mole percent being preferred. The low temperature free-radical initiated coupling is conducted in an inert organic solvent. Typical inert organic solvents must remain liquid to about −50° C., must remain relatively inert to the free radical conditions and must dissolve the reactants at reaction temperatures. Preferred inert organic solvents are toluene, ethyl acetate, and methanol. The temperature at which the reaction is conducted from about −50° C. to about 40° C. Initially, it is important to keep the temperature below the boiling point of 3,3,3-trifluoropropene, i.e., about −18 to about −16° C. The solution is cooled to less than about −50° C. and the 3,3,3-trifluoropropene is transferred into the reaction mixture. After stiffing at room temperature for 24 hours, the reaction mixture is heated to about 50° C. for about 1 hour to decompose any remaining V-70 initiator followed by cooling and solvent removal.
- In step j of Scheme 1, thioether (1e) is oxidized with hydrogen peroxide (H2O2) in methanol to yield pesticidal sulfoxides (1f).
- 3-(3-Chloro-1H-pyrazol-1-yl)pyridine (5b) may alternatively be prepared through the reaction pathway disclosed in Scheme 2.
- In step a of Scheme 2, (E)-2-(2-(pyridin-3-yl)hydrazono)acetic acid (6a) is reacted with methyl acrylate in the presence of a chlorine source such N-chlorosuccinimide, an inorganic base, preferably metal carbonates, metal hydroxides, metal phosphates, or metal hydrides, more preferably potassium bicarbonate and a polar aprotic solvent, preferably, ethyl acetate, and addition of a sub-stoichiometric amount of water to yield methyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (6c). This reaction may be conducted at temperatures from about −10° C. to about 30° C.
- In step b of Scheme 2, methyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (6c) is oxidized with diammonium cerium (IV) nitrate (CAN) in water and polar solvents such as tetrahydrofuran at temperatures from about 0° C. to about 30° C. to yield methyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (6d). It was surprisingly discovered that the oxidation in step b can also proceed with potassium permanganate (KMnO4) as the oxidant in polar solvents such as acetone at temperatures from about 0° C. to about 30° C. However, many standard oxidation procedures such as, for example potassium persulfate (K2S2O8), iodine pentoxide (I2O5), copper oxide (CuO), and hydrogen peroxide were found to be inoperative.
- In step c of Scheme 2, methyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (6d) is saponified in the presence of an inorganic base, preferably metal hydroxides or their hydrates such as lithium hydroxide hydrate (LiOH.H2O) in water and a polar solvent such as dioxane at temperatures from about 0° C. to about 30° C. to yield 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid (6e). Alternatively, this process can also be accomplished by hydrolysis by exposing methyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (6d) to a concentrated acid such as hydrochloric acid in water at temperatures from about 30° C. to about 100° C.
- In step d of Scheme 2, 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid (6e) is decarboxylated in the presence of copper (II) oxide in polar solvents such as N,N-dimethylformamide at temperatures from about 80° C. to about 140° C. to yield 3-(3-chloro-1H-pyrazol-1-yl) pyridine (5b). It was surprisingly discovered that this decarboxylation only occurs in the presence of copper (II) oxide. Several known decarboxylation agents from the literature such as, for example, hydrochloric acid (See alternate synthetic route, Example 14), sulfuric acid, and palladium (II) trifluoroacetate/trifluoroacetic acid (Pd(TFA)2/TFA) (See “CE-5”) did not yield the desired product.
- 3-Chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (1d) may be prepared through the reaction pathway sequence disclosed in Scheme 3. In step d1, N-(3-chlorol-(pyridin-3-yl)-1H-pyrazol-4-yl)acetamide (1c) may be alkylated with ethyl bromide (EtBr) in the presence of a base, such as sodium hydride (NaH), sodium tert-butoxide (NaOt-Bu), potassium tert-butoxide (KOt-Bu), or sodium tert-amyloxide, in a polar aprotic solvent, such as tetrahydrofuran, at temperatures from about 20° C. to about 40° C., over a period of time of about 60 hours to about 168 hours, to yield N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (1c′). It has been discovered that use of an iodide additive, such as potassium iodide (KI) or tetrabutylammonium iodide (TBAI) can decrease the time necessary for the reaction to occur to about 24 hours. It has also been discovered that heating the reaction at about 50° C. to about 70° C. in a sealed reactor (to prevent loss of ethyl bromide) also decreases the reaction time to about 24 hours. In step d2, N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (1c′) may be treated with hydrochloric acid in water at temperatures from about 50° C. to about 90° C., to yield 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (1d). The reaction pathway sequence disclosed in Scheme 3 may also be performed without the isolation of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (1c′).
- In step a of Scheme 4, 3-hydrazinopyridine-dihydrochloride is treated with a di-C1-C4 alkyl maleate such as diethyl maleate in a C1-C4 aliphatic alcohol at a temperature of about 25° C. to about 100° C. in the presence of an alkali metal C1-C4 alkoxide to provide pyrazolidine carboxylate (10a). While stoichiometric amounts of 3-hydrazinopyridine.-dihydrochloride and di-C1-C4 alkyl maleate are required, it is often convenient to use about a 1.5 fold to about a 2 fold excess of di-C1-C4 alkyl maleate. The cyclization is run in the presence of an alkali metal C1-C4 alkoxide base such as sodium ethoxide. It is often convenient to use about a 2 fold to about a 5 fold excess of base. The cyclization is performed in a C1-C4 aliphatic alcohol such as ethanol. It is most convenient that the alkoxide base and the alcohol solvent be the same, for example, sodium ethoxide in ethanol.
- In step b of Scheme 4, the pyrazolidine carboxylate (10a) may be treated with a chlorinating reagent in an inert organic solvent at a temperature of about 25° C. to about 100° C. to provide chlorinated dihydropyrazole carboxylate (10b). Suitable chlorinating reagents include phosphoryl trichloride and phosphorus pentachloride. Phosphoryl trichloride is preferred. It is often convenient to use about a 1.1 fold to about a 10 fold excess of the chlorinating reagent. The chlorination is performed in an organic solvent that is inert to the chlorinating reagent. Suitable solvents include nitriles such as acetonitrile. With phosphoryl trichloride as the chlorinating reagent, acetonitrile is a preferred solvent.
- In step c of Scheme 4, chlorinated dihydropyrazole carboxylate (10b) may treated with an oxidant in an organic solvent at a temperature of about 25° C. to about 100° C. to provide chlorinated pyrazole carboxylate (10c). Suitable oxidants include manganese (IV) oxide and sodium persulfate/sulfuric acid. It is often convenient to use about a 1.5 fold to about a 15 fold excess of oxidant. The oxidation is performed in an organic solvent that is inert to the oxidant. Suitable solvents include nitriles such as acetonitrile. With manganese (IV) oxide (MnO2) or sodium persulfate/sulfuric acid as the oxidant, acetonitrile is a preferred solvent.
- In step d of Scheme 4, chlorinated pyrazole carboxylate (10c) may then be converted to the desired 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (6e) by treatment in aqueous hydrochloric acid at a temperature of about 25° C. to about 100° C. While stoichiometric amounts of reagents are required, it is often convenient to use an excess of reagents with respect to the chlorinated pyrazole carboxylate. Thus, aqueous hydrochloric acid is used in large excess as the reaction medium. Alternatively, chlorinated pyrazole carboxylates may be saponified in the presence of an inorganic base, preferably metal hydroxides or their hydrates such as lithium hydroxide hydrate (LiOH.H2O) in water and a polar solvent such as dioxane at temperatures from about 0° C. to about 30° C. to yield 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid (6e).
- In step e of Scheme 4, 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (6e) is decarboxylated in the presence of copper (11) oxide in polar solvents such as N,N-dimethylformamide at temperatures from about 80° C. to about 140° C. to yield 3-(3-chloro-1H-pyrazol-1-yl) pyridine (5b). It was surprisingly discovered that this decarboxylation only occurs in the presence of copper (II) oxide. Several known decarboxylation agents from the literature such as, for example, hydrochloric acid (See alternate synthetic route, Example 14), sulfuric acid, and palladium (II) trifluoroacetate/trifluoroacetic acid (See “CE-5”) did not yield the desired product.
- The following examples are presented to better illustrate the processes of the present application.
-
- Glyoxylic acid (50% in water) (54.5 mL, 494 mmol) and 1 N hydrochloric acid (-100 mL) were added to 3-hydrazinopyridine dihydrochloride (60.0 g, 330 mmol) and the reaction mixture was stirred at room temperature (about 22° C.) for 2 hours, at which point solid had started to precipitate. The reaction was stirred for 24 hours, at which point LC/MS indicated that it was complete. The mixture was transferred to a flask using acetonitrile (1 L). The mixture was azeotroped three times from acetonitrile (1 L). The resulting suspension was filtered to afford a green solid which was washed with acetonitrile and vacuum dried at 40° C. to afford the desired product (68.3 g, 98%): mp 173-174° C.; 1H NMR (400 MHz, DMSO-d6) δ 12.55 (d, J=1.2 Hz, 1H), 8.61 (d, J=2.5 Hz, 1H), 8.40 (dt, J=5.4, 0.9 Hz, 1H), 8.14 (ddd. J=8.7, 2.6, 1.2 Hz, 1H), 7.91 (dd, J=8.7, 5.4 Hz, 1H), 7.43 (d, J=1.0 Hz, 1H); 13C NMR (101 MHz, DMSO) δ 164.29, 143.15, 133.15, 131.85, 127.97, 127.61, 126.30; ESIMS m/z 166 ([M+H]+).
-
- (E)-2-((2-Pyridin-3-yl)hydrazono)acetic acid hydrochloride (2.00 g, 9.42 mmol) was stirred in ethyl acetate (47.1 mL) N-Chlorosuccinimide (2.36 g, 19.3 mmol), acrylonitrile (1.85 mL, 28.3 mmol) and potassium bicarbonate (2.86 g, 28.3 mmol) were added. Water (0.05 mL) was added and the mixture was stirred at room temperature for 18 hours. Saturated aqueous sodium chloride (brine, 50 mL) was added and the mixture was filtered through Celite®. The filter cake was washed with ethyl acetate (40 mL) and the layers were separated. The organic layers were combined, dried and concentrated to afford a residue. The resulting residue was purified by flash column chromatography using 80-100% ethyl acetate/hexanes as eluent to afford the desired product as an orange solid (1.40 g, 57.5%): 1H NMR (400 MHz, CDCl3) δ 8.51 (dd, J=2.9, 0.7 Hz, 1H), 8.33 (dd, J=4.7, 1.4 Hz, 1H), 7.51 (ddd, J=8.4, 2.9, 1.4 Hz, 1H), 7.30 (ddd, J=8.5, 4.7, 0.8 Hz, 1H), 5.06 (dd, J=11.3, 5.9 Hz, 1H), 3.64 (dd, J=17.4, 11.3 Hz, 1H), 3.51 (dd, J=17.4, 5.9 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 143.34, 142.79, 140.11, 136.16, 123.92, 121.93, 115.80, 51.39, 43.04; ESIMS m/z 207 ([M+H]+).
-
- 3-Chloro-1-(pyridine-3-yl)-4,5-dihydro-1H-pyrazole-5-carbonitrile (0.500 g, 2.42 mmol) was stirred in N,N-dimethylformamide (6.05 mL) 1,8-Diazabicyclo[5.4.0]undec-7-ene (0.543 mL, 3.63 mmol) was added and the dark mixture was stirred at room temperature overnight. LC/MS analysis indicated that the reaction was complete. The mixture was concentrated and the dark oil was dissolved in ethyl acetate and washed with 15% aqueous lithium chloride (LiCl) and brine. The organic portion was dried over sodium sulfate (Na2SO4) and concentrated. The residue was purified by flash column chromatography using ethyl acetate. The pure fractions were concentrated and the residue was vacuum dried at 45° C. to yield the desired product as a white solid (450 mg, 93%): mp: 66-68° C.; 1H NMR (400 MHz, CDCl3) δ 8.93 (d, J=27 Hz, 1H), 8.57 (dd, J=4.8, 1.4 Hz, 1H), 8.02 (ddd, J=8.3, 2.7, 1.5 Hz, 1H), 7.91 (d, J=2.6 Hz, 1H), 7.47-7.34 (m, 1H), 6.45 (d, J=2.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 148.01, 142.72, 140.12, 135.99, 128.64, 126.41, 124.01, 108.0.
- Alternate Synthetic Route to: 3-(3-chloro-1H-pyrazol-1-yl)pyridine (Scheme 2) 3-Chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (1.00 g, 3.65 mmol) was stirred in N,N-dimethylformamide (10 mL) Copper(II) oxide (58.0 mg, 0.730 mmol) was added and the reaction was heated at 120° C. for 16 hours, at which point the reaction was ˜20% complete. Additional copper(II) oxide (112 mg, 1.46 mmol) was added and the reaction was stirred for 5 hours, at which point the reaction was complete by thin layer chromatography (TLC) [Eluent: ethyl acetate]. The mixture was diluted with ammonium hydroxide (NH4OH) and water and extracted with ethyl acetate. The organic layer was washed with 15% lithium chloride and concentrated to provide an orange solid. The residue was purified by flash column chromatography using ethyl acetate as eluent and the pure fractions were concentrated to afford the desired product as a white solid (481 mg, 69.7%). The spectral characterization was in agreement with the product prepared previously.
-
- To a 100 mL round bottom flask was charged 3-(3-chloro-1H-pyrazol-1-yl)pyridine (2.0 g, 11 mmol) and concentrated sulfuric acid (4 mL) This suspension was cooled to −5° C. and 2:1 (v/v) concentrated nitric acid/sulfuric acid (3 mL, prepared by adding the concentrated sulfuric acid to a stirring and cooling solution of the nitric acid) was added dropwise at a rate such that the internal temperature was maintained <15° C. The reaction was allowed to warm to 20° C. and stirred for 18 hours. A sample of the reaction mixture was carefully diluted into water, basified with 50% sodium hydroxide (NaOH) and extracted with ethyl acetate. Analysis of the organic layer indicated that the reaction was complete. The reaction mixture was carefully added to ice cold water (100 mL) at <20° C. and basified with 50% sodium hydroxide at <20° C. The resulting light yellow suspension was stirred for 2 hours and filtered. The filter cake was rinsed with water (3×20 mL) and dried to afford an off-white solid (2.5 g, quantitative): mp 141-143° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.86 (s, 1H), 9.23-9.06 (m, 1H), 8.75-8.60 (m, 1H), 8.33 (ddd, J=8.4, 2.8, 1.4 Hz, 1H), 7.64 (ddd, J=8.5, 4.7, 0.7 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 149.49, 140.75, 136.02, 134.43, 132.14, 131.76, 127.22, 124.31; EIMS m/z 224 ([M]+).
-
- To a 100 mL, 3-neck round bottom flask was charged 3-(3-chloro-4-nitro-1H-pyrazol-1-yl) pyridine (2.40 g, 10.7 mmol), acetic acid (4 mL), ethanol (4.8 mL) and water (4.8 mL). The mixture was cooled to 5° C. and iron powder (2.98 g, 53.4 mmol) was added portionwise over ˜15 minutes. The reaction was allowed to stir at 20° C. for 18 hours and diluted to 50 mL with water. The mixture was filtered through Celite® and the filtrate was carefully basified with 50% sodium hydroxide solution. The resulting suspension was filtered through Celite® and the filtrate was extracted with ethyl acetate (3×20 mL) The organics were dried over sodium sulfate and concentrated to dryness to afford a tan colored solid, which was further dried under vacuum for 18 hours (2.2 g, quantitative): mp 145-147° C.; 1H NMR (400 MHz, DMSO-d6) δ 8.95 (dd, J=2.6, 0.8 Hz, 1H), 8.45 (dd, J=4.7, 1.4 Hz, 1H), 8.08 (ddd, J=8.4, 2.7, 1.4 Hz, 1H), 7.91 (s, 1H), 7.49 (ddd, J=8.3, 4.7, 0.8 Hz, 1H), 4.43 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 146.35, 138,53, 135.72, 132.09, 130.09, 124.29, 124.11, 114.09; EIMS m/z 194 ([M]+).
- Alternate Synthetic Route to: 3-Chloro-1(pyridin-3-yl)-1H-pyrazol-4-amine
- A suspension of 3-(3-chloro-4-nitro-1H-pyrazol-1-yl)pyridine (1.00 g, 4.45 mmol) and palladium on carbon (10 wt %, 0.05 g, 0.467 mmol) in methanol (20 mL) was purged with nitrogen (N2) three times, followed by hydrogen three times. The reaction was stirred at 20° C. under 40 psi of hydrogen for 4 hours. After which time the reaction was purged with nitrogen three times and analyzed by thin layer chromatography [Eluent: 10% methanol/dichloromethane], which indicated that the reaction was complete. The reaction mixture was filtered through a Celite® pad and the pad was rinsed with methanol (2×10 mL). The filtrates were concentrated to dryness to afford a slightly pink solid (0.82 g, 95%). The spectral characterization was in agreement with the product prepared previously.
- Alternate Synthetic Route to: 3-(3-chloro-4-amino-1H-pyrazol-1-yl)pyridine (5d)
- In a 250 mL 3-neck round bottom flask was added 3-(3-chloro-4-nitro-1H-pyrazol-1-yl)pyridine (5.00 g, 21.8 mmol), ethanol (80 mL), water (40 mL), and ammonium chloride (5.84 g, 109 mmol). The suspension was stirred under nitrogen stream for 5 minutes then iron powder (4.87 g, 87.2 mmol) added. The reaction mixture was heated to reflux (˜80° C.) and held there for 4 hours. After 4 hours a reaction aliquot taken showed by HPLC analysis the reaction had gone to full conversion. Ethyl acetate (120 mL) and Celite® (10 g) were added to the reaction mixture and let stir for 10 minutes. The black colored suspension was then filtered via a Celite® pad and the pad rinsed with ethyl acetate (80 mL) The reaction mixture was washed with saturated sodium bicarbonate (30 mL) and the organic layer was assayed. The assay gave (4.19 g, 99%) of product. The organic solvent was removed in vacuo to give a brown colored crude solid that was used without further purification.
-
- A 100 mL three-neck round bottom flask was charged with 3-chloro-1(pyridin-3-yl)-1H-pyrazol-4-amine (1.00 g, 5.14 mmol) and ethyl acetate (10 mL) sodium bicarbonate (1.08 g, 12.9 mmol) was added, followed by dropwise addition of acetic anhydride (0.629 g, 6.17 mmol) at <20° C. The reaction was stirred at 20° C. for 2 hours to afford a suspension, at which point thin layer chromatography analysis [Eluent: ethyl acetate] indicated that the reaction was complete. The reaction was diluted with water (50 mL) and the resulting suspension was filtered. The solid was rinsed with water (10 mL) followed by methanol (5 mL) The solid was further dried under vacuum at 20° C. to afford the desired product as a white solid (0.804 g, 66%): mp 169-172° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.84 (s, 1H), 9.05 (dd, J=2.8, 0.8 Hz, 1H), 8.82 (s, 1H), 8.54 (dd, J=4.7, 1.4 Hz, 1H), 8.20 (ddd, J=8.4, 2.8, 1.4 Hz, 1H), 7.54, (ddd, J=8.3, 4.7, 0.8 Hz, 1H), 2.11 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 168,12, 147,46, 139,42, 135.46, 133.60, 125.47, 124.21, 122.21, 120,16, 22.62; EIMS m/z 236 ([M]+).
-
- A 100 mL 3-neck round bottom flask was charged with N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl) acetamide (475 mg, 2.01 mmol) and tetrahydrofuran (10 mL) borontrifluoride etherate (0.63 mL, 5.02 mmol) was added and the mixture was stirred for 15 minutes to give a suspension. Sodium borohydride (228 mg, 6.02 mmol) was added and the reaction was heated at 60° C. for 4 hours, at which point thin layer chromatography analysis [Eluent: ethyl acetate, sample was prepared by treatment of reaction mixture with hydrochloric acid, followed by sodium bicarbonate basification and ethyl acetate extraction] indicated that the reaction was complete. Water (10 mL) and concentrated hydrochloric acid (1 mL) were added and the reaction was heated at 60° C. for 1 hour. The reaction mixture was cooled to room temperature and distilled to remove tetrahydrofuran. The mixture was neutralized with saturated aqueous sodium bicarbonate to pH −8 to afford a suspension, which was stirred for 1 hour and filtered. The filter cake was rinsed with water (10 mL) and dried under vacuum to afford a white solid (352 mg, 79%): mp 93-96° C.; 1H NMR (400 MHz, DMSO-d6) δ 8.99 (d, J=2.7 Hz, 1H), 8.44 (dd, J=4.6, 1.4 Hz, 1H), 8.10 (ddd, J=8.4, 2.7, 1.4 Hz, 1H), 8.06 (s, 1H), 7.50 (dd, J=8.4, 4.7 Hz, 1H), 4.63 (t, J=6.0 Hz, 1H), 3.06-2.92 (m, 2H), 1.18 (t, J=7.1 Hz, 3H); 13C NMR (101
- MHz, DMSO-d6) δ 146.17, 138.31, 135.81, 132.82, 130.84, 124.10, 123.96, 112.23, 40.51, 14.28; EIMS m/z 222 ([M]+).
- Alternate Synthetic Route to: 3-Chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-4-amine (1d)
- A 3-neck, 100 mL round bottom flask was charged with 3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-amine (5d) (500 mg, 2.57 mmol) and methanol (5 mL) The mixture was stirred for 5 minutes to give a clear solution. Acetaldehyde (136 mg, 3.09 mmol) was added and the reaction was stirred at 20° C. for 6 hours. Sodium borohydride (194 mg, 5.14 mmol) was added and the reaction was stirred at 20° C. for 1 hour, at which point thin layer chromatography analysis [Eluent: ethyl acetate] indicated that some starting material remained and a major product formed. The reaction mixture was quenched with water (10 mL) and concentrated under reduced pressure to remove methanol. Ethyl acetate (10 mL) was added and the organic layer was concentrated to dryness. The residue was purified by flash column chromatography using 20-40% ethyl acetate/hexanes as eluent. The fractions containing pure product were combined and concentrated to afford a white solid (328 mg, 58%). The spectral characterization was in agreement with the product prepared previously.
- Alternate Synthetic Route to: 3-Chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine
- Step 1. N-(3-Chloro-1-(pyridin-3-yl)-1H-pyrazol-4-ye-N-ethylacetamide (1c′)
- To a 3-neck, 100-mL round bottom flask was charged N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl) acetamide (5.00 g, 21.1 mmol) and tetrahydrofuran (50 mL) Sodium tert-butoxide (3.05 g, 31.7 mmol) was added (causing a temperature rise from 22° C. to 27.9° C.), followed by bromoethane (4.70 mL, 63.4 mmol). The reaction was stirred at 35° C. for 168 hours, at which point HPLC analysis indicated that only 2.9% (area under the curve, AUC) starting material remained. The reaction mixture was concentrated to give a brown residue, which was diluted with ethyl acetate (50 mL) and water (50 mL) The aqueous layer was extracted with ethyl acetate (4×50 mL) and the combined organics were concentrated to give a brown residue. The residue was dissolved in dichloromethane (2×10 mL) and purified by flash column chromatography using 60-100% ethyl acetate/hexanes as eluent. The fractions containing pure product were combined and concentrated to afford the title product as a yellow solid (4.20 g, 74%): 1H NMR (400 MHz, CDCl3) δ 8.98 (d, J=2.7, 0.8 Hz, 1H), 8.62 (dd, J=4.8, 1.4 Hz, 1H), 8.06 (ddd, J=8.3, 2.7, 1.4 Hz, 1H), 8.00 (s, 1H), 7.47 (dd, J=8.3, 4.7 Hz, 1H), 3.71 (q, J=7.1 Hz, 2H), 1.97 (s, 3H), 1.16 (t, J=7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 170.69, 148.56, 140.89, 139.95, 135.64, 126.22, 126.08, 124.86, 124.09, 43.77, 22.27, 13.15; mp: 87-91° C.; ESIMS m/z 265 ([M+H]+).
- Step 1. N-(3-Chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (1c′)
- To a 3-neck, 100-mL round bottom flask was charged N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl) acetamide (1.66 g, 7.0 mmol) and tetrahydrofuran (16 mL). Sodium tert-butoxide (0.843 g, 8.77 mmol, 1.25 eq) and ethyl bromide (0.78 mL, 10.52 mmol, 1.5 eq) were added and the reactor was capped with a septa. The reaction was stirred at 58° C. for 24 hours, at which point HPLC analysis indicated that only 1.97% starting material remained. The mixture was concentrated to give a brown residue, which was dissolved in water (20 mL) and ethyl acetate (20 mL) The aqueous layer was extracted with ethyl acetate (2×20 mL) and the combined organics were concentrated to dryness. The residue was passed through a silica gel plug (40 g silica) and eluted with ethyl acetate (200 mL) The filtrates were concentrated to dryness and further dried under vacuum at 20° C. to afford a yellow solid (1.68 g, 89%). Characterization matched sample prepared by previous method.
- Step 1. N-(3-Chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (1c′)
- In a 125 mL 3-neck round-bottomed flask was added N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl) acetamide (2.57 g, 9.44 mmol), tetrahydrofuran (55 mL), and sodium tert-butoxide (1.81 g, 18.9 mmol). The suspension was stirred for 5 minutes then ethyl bromide (1.41 mL, 18.9 mmol), and tetrabutylammonium iodide (67 mg, 0.2 mmol) were added. The resulting gray colored suspension was then heated to 38° C. The reaction was analyzed after 3 hours and found to have gone to 81% completion, after 24 hours the reaction was found to have gone to completion. The reaction mixture was allowed to cool to ambient temperature and quenched with ammonium hydroxide/formic acid (HCO2H) buffer (10 mL) The mixture was then diluted with tetrahydrofuran (40 mL), ethyl acetate (120 mL), and saturated sodium bicarbonate (30 mL) The layers were separated and the aqueous layer was extracted with ethyl acetate (2×30 mL) The organic layers were combined and silica gel (37 g) was added. The solvent was removed in vacuo to give a solid that was purified using semi-automated silica gel chromatography (RediSep Silica 220 g column; hexanes (0.2% triethylamine)/ethyl acetate, 40/60 to 0/100 gradient elution system, flow rate 150 mL/minutes) to give, after concentration, an orange solid weighing (2.19 g, 88%)
- Step 2. 3-Chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (1d)
- A solution of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (1.8 g, 6.80 mmol) in 1 N hydrochloric acid (34 mL) was heated at 80° C. for 18 hours, at which point HPLC analysis indicated that only 1.1% starting material remained. The reaction mixture was cooled to 20° C. and basified with 50 wt % sodium hydroxide to pH>9. The resulting suspension was stirred at 20° C. for 2 hours and filtered. The filter cake was rinsed with water (2×5 mL), conditioned for 30 minutes, and air-dried to afford an off-white solid (1.48 g, 95%): 1H NMR (400 MHz, DMSO-d6) δ 9.00 (dd, J=2.8, 0.8 Hz, 1H), 8.45 (dd, J=4.7, 1.4 Hz, 1H), 8.11 (ddd, J=8.4, 2.8, 1.4 Hz, 1H), 8.06 (d, J=0.6 Hz, 1H), 7.49 (ddd, J=8.4, 4.7, 0.8 Hz, 1H), 4.63 (t, J=6.0 Hz, 1H), 3.00 (qd, J=7.1, 5.8 Hz, 2H), 1.19 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, DMSO) δ 146.18, 138.31, 135.78, 132.82, 130.84, 124.08, 123.97, 112.23, 40.51, 14.28; ESIMS 223 ([M+H]+).
- Alternate Synthetic Route to: 3-Chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine
- To a 3-neck, 100-mL round bottom flask was charged N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl) acetamide (5 g, 21.13 mmol) and tetrahydrofuran (50 mL). Sodium tert-butoxide (4.06 g, 42.3 mmol) was added (causing a temperature rise from 22° C. to 27.6° C.), followed by ethyl bromide (6.26 mL, 85 mmol). The reaction was stirred at 35° C. for 144 h at which point only 3.2% (AUC) starting material remained. The reaction mixture was concentrated to give a brown residue, which was dissolved in IN hydrochloric acid (106 mL, 106 mmol) and heated at 80° C. for 24 hours, at which point HPLC analysis indicated that the starting material had been consumed. The reaction was cooled to 20° C. and basified with 50% sodium hydroxide to pH>9. The resulting suspension was stirred at 20° C. for 1 hour and filtered, the filter cake was rinsed with water (25 mL) to afford a brown solid (5.18 g). The resulting crude product was dissolved in ethyl acetate and passed through a silica gel plug (50 g) using ethyl acetate (500 mL) as eluent. The filtrate was concentrated to dryness to afford a white solid (3.8 g, 80%).
-
- A 100 mL three-neck round bottom flask was charged with 3-chloro-N-ethyl-1-(pyridine-3-yl)-1H-pyrazol-4-amine (5.00 g, 22.5 mmol) and ethyl acetate (50 mL) Sodium bicarbonate (4.72 g, 56.1 mmol) was added, followed by dropwise addition of 3-((3,3,3-trifluoropropyl) thio)propanoyl chloride (5.95 g, 26 9 mmol) at <20° C. for 2 hours, at which point HPLC analysis indicated that the reaction was complete. The reaction was diluted with water (50 mL) (off-gassing) and the layers separated. The aqueous layer was extracted with ethyl acetate (20 mL) and the combined organic layers were concentrated to dryness to afford a light brown solid (10.1 g, quantitative). A small sample of crude product was purified by flash column chromatography using ethyl acetate as eluent to obtain an analytical sample: mp 79-81° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.11 (d, J=2.7 Hz, 1H), 8.97 (s, 1H), 8.60 (dd, J=4.8, 1.4 Hz, 1H), 8.24 (ddd, J=8.4, 2.8, 1.4 Hz, 1H), 7.60 (ddd, J=8.4, 4.7, 0.8 Hz, 1H), 3.62 (q, J=7.2 Hz, 2H), 2.75 (t, J=7.0 Hz, 2H), 2.66-2.57 (m 2H), 2.57-2.44 (m, 2H), 2.41 (t, J=7.0 Hz, 2H), 1.08 (t, J=7.1 Hz, 3H). EIMS m/z 406 ([M]+).
- Alternate Synthetic Route to: N-(3-Chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl) thio)propanamide
- A 20 mL vial was charged with 3-((3,3,3-trifluropropyl)thio)propanoic acid (0.999 g, 4.94 mmol) and acetonitrile (5 mL) Carbonyldiimidazole (0.947 g, 5.84 mmol) (off-gassing) and 1H-imidazole hydrochloride (0.563 g, 5.39 mmol) were added and the reaction was stirred at 20 ° C. for 4 hours. 3-Chloro-N-ethyl-1-(pyridine-3-yl)-1H-pyrazol-amine (1.00 g, 4.49 mmol) was added and the reaction was stirred at 75° C. for 42 hours, at which point HPLC analysis indicated that the conversion was 96%. The reaction was cooled to 20° C. and concentrated to dryness. The residue was purified by flash column chromatography using 80% ethyl acetate/hexanes as eluent. Pure fractions were combined and concentrated to afford a light yellow solid (1.58 g, 86%).
- Alternate Synthetic Route to: N-(3-Chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl) thio)propanamide
- A solution of 3-((3,3,3-trifluoropropyl)thio)propanoic acid (2.18 g, 10. 8 mmol) and 3-chloro-N-ethyl-1-(pyridine-3-yl)-1H-pyrazol-amine (2.00 g, 8.98 mmol) in ethyl acetate (16 mL) was cooled to 5° C. Diisopropylethylamine (5.15 mL, 29 6 mmol) was added dropwise at 0-5° C. over 30 minutes, followed by the addition of 2,4,6-tripropyl-trioxatriphosphinane-2,4,-trioxide (4.00 g, 12.6 mmol) over 30 minutes at 0-5° C. The reaction was allowed to warm to 25-30° C. and stirred for 2 h. Upon reaction completion, the reaction mixture was cooled to 0-5° C. and quenched with water (12 mL) The layers were separated and the aqueous layer was extracted with ethyl acetate (30 mL). The combined organic layers were concentrated to afford the desired product as an oil (3.40 g, 94%).
- Alternate Synthetic Route to: N-(3-Chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl) thio)propanamide
- A 500 mL three-neck round bottom flask equipped with a stir bar , thermocouple, and nitrogen inlet was charged with 3-chloro-N-ethyl-1-(pyridine-3-yl)-1H-pyrazol-amine (40.10 g, 91.7 wt %, 165.1 mmol) and dichloromethane (199.1 g) making brown solution that was endothermic on mixing. 3-(3,3,3-Trifluoropropyl)thio)propanoic acid (52.51 g, 70.0 wt %, 166.6 mmol) was added via syringe pump over 20 minutes keeping the temperature below 30° C. The reaction went from clear brown, to a mustard yellow slurry, to clear brown again over the addition. After 1 hour, water (123.3 g) was added followed by 20 wt % sodium hydroxide (40.3g). The pH was tested and was −13. After mixing for 15 minutes the layers were allowed to separate over 50 minutes. The aqueous layer (172.1 g) was treated with methanol (119.62 g) and 2 N hydrochloric acid (28.20 g) giving a clear solution with pH −1 (320.0 g, 0.1 wt % active, 0.3730 g active, 0.5% yield loss). The organic layer (278.1 g) was collected into a 500 mL flask for distillation. A distillation head was attached to the 500 mL three neck round bottomed flask containing the organic layer. Approximately 2/3 of the dichloromethane was distilled then methanol was added with continued distillation to remove residual dichloromethane and toluene. The distillation was continued until the toluene was less than 2.5 wt %. An in pot yield was determined once the dichloromethane and toluene had been exchanged with methanol (98.49 g methanol solution, 65.2 wt % by HPLC internal assay, 64.2 g active, 95.8% in process yield). Into the flask containing the solution of crude N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-(3,3,3-trifluoropropyl) thio)-propanamide was added methanol (61.82 g) to get a 40 wt % solution and the flask was equipped with a nitrogen inlet and overhead stirrer (banana blade) at 227 RPM. Water (35.23 g) was added all at once and the solution was seeded with N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl) thio)propanamide (96 mg) at 26.8° C. After stiffing overnight at room temperature the dark brown slurry was cooled to 1° C. with and ice bath for 5 hours. The solids were isolated by filtration through a coarse glass frit. The chocolate brown sandy solids were washed with cold 1:1 v:v methanol/water (80 mL, 74.2 g). The wet cake (70.58 g) was allowed to air dry overnight to constant mass giving the titled compound as brown solids (52.3 g, 94.1 wt % by HPLC internal standard assay, 49.23 g active, 73.5% yield).
-
- A 100 mL, 3-neck round bottom flask was charged with 3-bromopropanoic acid (500 mg, 3.27 mmol) and methanol (10 mL), potassium hydroxide (KOH, 403 mg, 7.19 mmol) was added, followed by 3,3,3-trifluoropropane-l-thiol (468 mg, 3.60 mmol). The mixture was heated at 50° C. for 4 hours, after which it was acidified with 2 N hydrochloric acid and extracted with methyl tert-butylether (MTBE, 2×10 mL) The organic layer was concentrated to dryness to afford a light yellow oil (580 mg, 88%): 1H NMR (400 MHz, CDCl3) δ 2.83 (td, J=7.1, 0.9 Hz, 2H), 2.78-2.64 (m, 4H), 2.48-2.32 (m, 2H).
- Alternate Synthetic Route to: 3-((3,3,3-Trifluoropropyl)thio)propanoic acid
- A 100 mL stainless steel Parr reactor was charged with azobisisobutyronitrile (AIBN, 0.231 g, 1.41 mmol), toluene (45 mL), 3-mercaptopropionic acid (3.40 g, 32.0 mmol), and octanophenone (526.2 mg) as an internal standard and was purged and pressure checked with nitrogen. The reactor was cooled with dry ice and the 3,3,3-trifluoropropene (3.1 g, 32 3 mmol) was condensed into the reactor. The ice bath was removed and the reactor heated to 60° C. and stirred for 27 hours. The internal yield of the reaction was determined to be 80% by use of the octanophenone internal standard. The pressure was released and the crude mixture removed from the reactor. The mixture was concentrated by rotary evaporation and 50 mL of 10% sodium hydroxide was added. The solution was washed with methyl tert-butylether (50 mL) then acidified to pH ˜1 with 6 N hydrochloric acid. The product was extracted with 100 mL methyl tert-butylether, dried over magnesium sulfate (MgSO4), filtered, and concentrated to give the crude titled compound as an oil (5.34 g, 26.4 mmol, 83%, 87.5 area% on GC): 1H NMR (400 MHz, CDCl3) δ 2.83 (td, J=7.1, 0.9 Hz, 2H), 2.76-2.64 (m, 4H), 2.47-2.30 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 177.68, 125.91 (q, J=277.1 Hz), 34.58 (q, J=28.8 Hz), 34.39, 26.63, 24.09 (q, J=3.3 Hz).; 19F NMR (376 MHz, CDCl3) δ −66.49.
- Alternate Synthetic Route to: 3-((3,3,3-Trifluoropropyl)thio)propanoic acid
- A 250 mL three-neck round bottomed flask was charged with toluene (81 mL) and cooled to <−50° C. with a dry ice/acetone bath. 3,3,3-Trifluoropropene (10.28 g, 107.0 mmol) was bubbled into the solvent and the ice bath was removed. 3-Mercaptopropionic acid (9.200 g, 86.70 mmol) and 2,2-dimethoxy-2-phenylacetophenone (1.070 g, 4.170 mmol) was added and the long wave light (366 nm, 4 watt UVP lamp) was turned on (Starting temperature: −24° C.). The reaction reached a high temperature of 27.5° C. due to heat from the lamp. The reaction was stirred with the black light on for 4 hours. After 4 hours the black light was turned off and the reaction concentrated by rotary evaporation (41° C., 6 mm Hg) giving a pale yellow oil (18.09 g, 51:1 linear:branched isomer, 90 wt % linear isomer by GC internal standard assay, 16.26 g active, 93%). The crude material was dissolved in 10% sodium hydroxide w/w (37.35 g) and was washed with toluene (30 mL) to remove non-polar impurities. The aqueous layer was acidified to pH −2-3 with hydrochloric acid (2 N, 47.81 g) and was extracted with toluene (50 mL) The organic layer was washed with water (40 mL) and dried over magnesium sulfate, filtered, and concentrated by rotary evaporation giving a pale yellow oil (14.15 g, 34:1 linear:branched isomer, 94 wt % linear isomer by GC internal standard assay, 13.26 g active, 76%).
- Alternative synthesis of: 3-((3,3,3-Trifluoropropyl)thio)propanoic acid
- A 100 mL stainless steel Parr reactor was charged with 3-mercaptopropionic acid (3.67 g, 34.6 mmol), toluene (30.26 g), and 2,2′-azobis(4-methoxy-2,4-dimethyl) valeronitrile (V-70, 0.543 g, 1.76 mmol) and the reactor was cooled with a dry ice/acetone bath, purged with nitrogen, and pressure checked. 3,3,3-Trifluoropropene (3.20 g, 33.3 mmol) was added via transfer cylinder and the reaction was allowed to warm to 20° C. After 24 hours, the reaction was heated to 50° C. for 1 hour to decompose any remaining V-70 initiator. The reaction was allowed to cool to room temperature. The solution was concentrated by rotary evaporation to provide the title compound (6.80 g, 77.5 wt % linear isomer by GC internal standard assay, 5.27 g active, 76%, 200:1 linear:branched by GC, 40:1 linear:branched by fluorine NMR)
-
- A 100 mL stainless steel Parr reactor was charged with azobisisobutyronitrile (0.465 g, 2.83 mmol), toluene (60 mL) and methyl-3-mercaptopropionate (7.40 g, 61.6 mmol) and was purged and pressure checked with nitrogen. The reactor was cooled with dry ice and the 3,3,3-trifluopropopene (5.7 g, 59.3 mmol) was condensed into the reactor. The ice bath was removed and the reactor heated to 60° C. and stirred to 24 hours. The heat was turned off and the reaction left at room temperature overnight. The mixture was removed from the reactor and concentrated to a yellow liquid. The liquid was distilled by vacuum distillation (2 Torr, 85° C.) and three fractions were collected: fraction 1 (1.3 g, 6.01 mmol, 10%, 70.9 area % by GC), fraction 2 (3.7 g, 17.1 mmol, 29%, 87 area% by GC), and fraction 3 (4.9 g, 22.7 mmol, 38%, 90.6 area% by GC): 1H NMR (400 MHz, CDCl3) δ 3.71 (s, 3H), 2.82, (td, J=7.3, 0.7 Hz, 2H), 2.75-2.68 (m, 2H), 2.63 (td, J=7.2, 0.6 Hz, 2H), 2.47-2.31 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 172.04, 125.93 (q, J=277.2 Hz), 51.86 , 34.68 (q, J=28.6 Hz), 34.39, 27.06, 24.11 (q, J=3.3 Hz); 19F NMR (376 MHz, CDCl3) δ −66.53.
- Alternate Synthetic Route to: Methyl-3-((3,3,3-trifluoropropyl)thio)propionate
- A 500 mL three-neck round bottomed flask was charged with toluene (200 mL) and cooled to <−50° C. with a dry ice/acetone bath. 3,3,3-Trifluoropropene (21.8 g, 227 mmol) was condensed into the reaction by bubbling the gas through the cooled solvent and the ice bath was removed. Methyl 3-mercaptopropionate (26.8 g, 223 mmol) and 2,2-dimethoxy-2-phenylacetophenone (2.72 g, 10.61 mmol) were added and a UVP lamp (4 watt) that was placed within 2 centimeters of the glass wall was turned on to the long wave function (366 nanometers). The reaction reached 35° C. due to heat from the lamp. After 4 hours, all of the trifluoropropene was either consumed or boiled out of the reaction. The light was turned off and the reaction stirred at room temperature overnight. After 22 hours, more trifluoropropene (3.1 g) was bubbled through the mixture at room temperature and the light was turned on for an additional 2 hours. The reaction had converted 93% so no more trifluoropropene was added. The light was turned off and the mixture concentrated on the rotovap (40° C., 20 torr) giving a yellow liquid (45.7 g, 21.3:1 linear : branched isomer, 75 wt % pure linear isomer determined by a GC internal standard assay, 34.3 g active, 71% in pot yield).
- Alternate Synthetic Route to: Methyl-3-((3,3,3-trifluoropropyl)thio)propionate
- A 100 mL stainless steel Parr reactor was charged with methyl 3-mercaptopropionate (4.15 g, 34.5 mmol), toluene (30.3 g), and 2,2′-azobis(4-methoxy-2,4-dimethyl) valeronitrile (V-70 0.531 g, 1.72 mmol) and the reactor was cooled with a dry ice/acetone bath, purged with nitrogen, and pressure checked. 3,3,3-Trifluoropropene (3.40 g, 35.4 mmol) was added via transfer cylinder and the reaction was allowed to warm to 20° C. After 23 hours the reaction was heated to 50° C. for 1 hour to decompose any remaining V-70 initiator. The reaction was allowed to cool to room temperature. The solution was concentrated to provide the title compound (7.01 g, 66%, 70.3 wt % linear isomer by GC internal standard assay, 4.93 g active, 66%, 24:1 linear:branched by GC, 18:1 linear:branched by fluorine NMR)
- Example 11: N-(3-Chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-(3,3,3-trifluoropropyl) sulfoxo)propanamide (Compound 11.6)
- N-(3-Chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)thio) propanamide (57.4 g, 141 mmol) was stirred in methanol (180 mL) To the resulting solution was added hydrogen peroxide (43.2 mL, 423 mmol) dropwise using a syringe. The solution was stirred at room temperature for 6 hours, at which point LCMS analysis indicated that the starting material was consumed. The mixture was poured into dichloromethane (360 mL) and washed with aqueous sodium carbonate (Na2CO3). The organic layer was dried over sodium sulfate and concentrated under reduced pressure to provide a thick yellow oil. The crude product was purified by flash column chromatography using 0-10% methanol/ethyl acetate as eluent. The pure fractions were combined and concentrated to afford the desired product as an oil (42.6 g, 68%): 1H NMR (400 MHz, DMSO-d6) δ 9.09 (dd, J=2.8, 0.7 Hz, 1H), 8.98 (s, 1H), 8.60 (dd, J=4.7, 1.4 Hz, 1H), 8.24 (ddd, J=8.4, 2.7, 1.4 Hz, 1H), 7.60 (ddd, J=8.4, 4.7, 0.8 Hz, 1H), 3.61 (q, J=7.4, 7.0 Hz, 2H), 3.20-2.97 (m, 2H), 2.95-2.78 (m, 2H), 2.76-2.57 (m, 2H), 2.58-2.45 (m, 2H), 1.09 (t, J=7.1 Hz, 3H); ESIMS m/z 423 ([M+H]+).
-
- (E)-2-(2-(Pyridin-3-yl)hydrazono)acetic acid hydrochloride (13.6 g, 64.1 mmol) was stirred in ethyl acetate (250 mL) N-chlorosuccinimide (17.9 g, 131 mmol) was added and the reaction stirred for 10 minutes. Methyl acrylate (35 2 mL, 385 mmol) was added followed by addition of potassium bicarbonate (19.4 g, 192 mmol). Water (0.05 mL) was added and the mixture stirred at 18° C. The reaction temperature rose from 18 to 21° C. over 1 hour and the reaction was stirred for 20 hours. Water (300 mL) and saturated aqueous sodium carbonate (˜100 mL) were added. The mixture was filtered through Celite® and the filtrate was extracted with ethyl acetate (2×500 mL) The organic layers were dried and concentrated. The residue was purified by flash column chromatography using 50-100% ethyl acetate/hexanes as eluent to afford the desired product as an orange oil (10.1 g, 62.5%): 1H NMR (400 MHz, CDCl3) δ 8.30 (dd, J=2.9, 0.7 Hz, 1H), 8.18 (dd, J=4.7, 1.4 Hz, 1H), 7.38 (ddd, J=8.4, 2.9, 1.4 Hz, 1H), 7.19 (ddd, J=8.5, 4.7, 0.7 Hz, 1H), 4.81 (dd, J=12.4, 6.9 Hz, 1H), 3.79 (s, 3H), 3.56 (dd, J=17.8, 12.4 Hz, 1H), 3.34 (dd, J 17.8, 6.9 Hz, 1H); ESIMS m/z 240 ([M+H]+).
- Example 13: Methyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (6d)
- Methyl 3-chloro-1-(pyridine-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (2.63 g, 11.0 mmol) was stirred in tetrahydrofuran (50 mL) and water (50 mL) at 0° C. diammonium cerium (IV) nitrate (15.0 g, 27 4 mmol) was added in portions and the reaction was stirred at room temperature for 18 hours. thin layer chromatography analysis indicated that the starting material was consumed. The mixture was extracted with ethyl acetate (2×300 mL) and the organic layers were dried and concentrated. The residue was purified by flash column chromatography using 50-100% ethyl acetate/hexanes as eluent. The pure fractions were concentrated to provide the desired product as a yellow solid (1.50 g, 52%): mp 99-102° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.00 (dd, J=2.5, 0.7 Hz, 1H), 8.83 (dd, J=5.2, 1.5 Hz, 1H), 8.35 (ddd, J=8.3, 2.5, 1.4 Hz, 1H), 7.83 (ddd, J 8.3, 5.2, 0.7 Hz, 1H), 7.35 (s, 1H), 3.78 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 158.34, 149.90, 146.89, 141.39, 136.09, 134.77, 133.30, 123.14, 112.01, 52.53; ESIMS m/z 238 ([M+H]+).
- Alternate Synthetic Route to: Methyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate
- Methyl 3-chloro-1-(pyridine-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (0.500 g, 2.09 mmol) was stirred in acetone (10 mL) potassium permanganate (0.330 g, 2.09 mmol) was added in one portion and the reaction was stirred at room temperature overnight, at which point thin layer chromatography analysis (70% ethyl acetate/hexanes) indicated that the reaction was <50% complete. Additional potassium permanganate (520 mg, 3.29 mmol,) was added and the reaction was stirred for an additional 4 hours. The mixture was filtered and concentrated and the residue was partitioned between ethyl acetate and water. The organic portion was dried over sodium sulfate, filtered, and concentrated. The residue was purified flash column chromatography using 80-100% ethyl acetate/hexanes as eluent to provide the desired product as a white solid (180 mg 36%).
-
- Methyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (3.83 g, 16.1 mmol) was stirred in dioxane (53.7 mL) The orange suspension was heated until a solution was achieved. Lithium hydroxide hydrate (1.01 g, 24.2 mmol) in water (26.9 mL) was added to afford a darker red solution. The reaction was stirred at room temperature for 1 hours, at which point LCMS showed the corresponding acid to be the major product. The orange mixture was concentrated to dryness and the residue was mixed with 4 N hydrochloric acid in dioxane (100 mL) The suspension was heated to reflux for 1 hour and allowed to cool to room temperature. The resulting suspension was filtered and the filter cake was rinsed with dioxane. The solid was vacuum dried at 50° C. to afford the desire product as a white solid (4.00 g, 91%): mp 244-246° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.00 (dd, J=2.5, 0.7 Hz, 1H), 8.82 (dd, J=5.2, 1.4 Hz, 1H), 8.35 (ddd, J=8.3, 2.4, 1.4 Hz, 1H), 7.85 (ddd, J=8.3, 5.2, 0.7 Hz, 1H), 7.25 (s, 1H); 13C NMR (101 MHz, DMSO-d6) δ 158.71, 146.00, 143.44, 140.36, 137.00, 136.83, 125.19, 111.71; ESIMS m/z 224 ([M+H]+).
- Alternate Synthetic Route to: 3-Chloro-1-(pyridine-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride
- Methyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (1.5 g, 6.0 mmol) was stirred in concentrated hydrochloric acid (25 mL) The reaction mixture was heated at reflux to afford a yellow solution. After heating overnight a solid had precipitated, and LCMS analysis of the mixture indicated that the reaction was complete. The mixture was allowed to cool to room temperature and dioxane (50 mL) was added. The mixture was concentrated to dryness. acetonitrile (50 mL) was added and the resulting mixture was concentrated. The residue was vacuum dried at 40° C. to afford the desired product as a yellow solid (1.6 g, 97%).
- Alternate Synthetic Route to: 3-Chloro-1-(pyridine-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride
- A 3-neck round bottomed flask (100 mL) was charged with ethyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (0.200 g, 0.795 mmol) and hydrochloric acid (37%, 4 mL) The reaction was heated at 90° C. for 18 hours and allowed to cool to 20° C. Dioxane (5 mL) was added to the resulting suspension and was concentrated to dryness. Dioxane (5 mL) was added and the suspension was concentrated again to afford a white solid. Dioxane (5 mL) was added and the resulting suspension was stirred for 1 hour at 20° C. The solid was filtered and the solid was rinsed with dioxane (2 mL) The filter cake was dried under vacuum at 20° C. to afford the title compound as a white solid (0.218 g, 100%): 1H NMR (400 MHz, DMSO-d6) δ 9.05 (dd, J=2.5, 0.7 Hz, 1H), 8.84 (dd, J=5.3, 1.4 Hz, 1H), 8.41 (ddd, J=8.3, 2.5, 1.4 Hz, 1H), 7.88 (ddd, J=8.3, 5.2, 0.7 Hz, 1H), 7.26 (s, 1H); 13C NMR (101 MHz, DMSO-d6) δ 158.71, 146.00, 143.44, 140.36, 137.76, 137.00, 136.83, 125.19, 111.71.
-
- A dry 5 L round bottom flask equipped with magnetic stirrer, nitrogen inlet, reflux condenser, and thermometer, was charged with 3-((3,3,3-trifluoropropyl)thio)propanoic acid (188 g, 883 mmol) in dichloromethane (3 L). Thionyl chloride (525 g, 321 mL, 4.42 mol) was then added dropwise over 50 minutes. The reaction mixture was heated to reflux (about 36° C.) for 2 hours, then cooled to room temperature. Concentration under vacuum on a rotary evaporator, followed by distillation (40 Torr, product collected from 123-127° C.) gave the title compound as a clear colorless liquid (177.3 g, 86%): 1H NMR (400 MHz, CDCl3) δ 3.20 (t, J=7.1 Hz, 2H), 2.86 (t, J=7.1 Hz, 2H), 2.78-2.67 (m, 2H), 2.48-2.31 (m, 2H); 19F NMR (376 MHz, CDCl3) δ −66.42, −66.43, −66.44, −66.44.
-
- Powdered potassium hydroxide (423 mg, 7.54 mmol) and 2-(bromomethyl)-1,1-difluorocyclopropane (657 mg, 3.84 mmol) were sequentially added to a stirred solution of 3-mercaptopropanoic acid (400 mg, 3.77 mmol) in methanol (2 mL) at room temperature. The resulting white suspension was stirred at 65° C. for 3 hours and quenched with 1N aqueous hydrochloric acid and diluted with ethyl acetate. The organic phase was separated and the aqueous phase extracted with ethyl acetate (2×50 mL) The combined organic extracts were dried over magnesium sulfate, filtered and concentrated in vacuo to give the title molecule as a colorless oil (652 mg, 84%): IR (KBr thin film) 3025, 2927, 2665, 2569, 1696 cm−1; 1H NMR (400 MHz, CDCl3) δ 2.85 (t, J=7.0 Hz, 2H), 2.82-2.56 (m, 4H), 1.88-1.72 (m, 1H), 1.53 (dddd, J=12.3, 11.2, 7.8, 4.5 Hz, 1H), 1.09 (dtd, J=13.1, 7.6, 3.7 Hz, 1H); ESIMS m/z 195.1 ([M−H]−).
-
- In a 3 L 3-neck round bottomed-flask equipped with an overhead stirrer, a temperature probe, and addition funnel and an nitrogen inlet was charged with 3-(((2,2-difluorocyclopropyl) methyl)thio)propanoic acid (90.0 g, 459 mmol) that was immediately taken up in dichloromethane (140 mL) with stirring. At room temperature, thionyl chloride (170 mL, 2293 mmol) in dichloromethane (100 mL) was added drop-wise with stirring. The reaction mixture was heated to 40° C. and heated for 2 hours. The reaction was determined to be complete by 1H NMR (An aliquot of the reaction mixture was taken, and concentrated down via rotary evaporator). The reaction was allowed to cool to room temperature and the mixture was transferred to a dry 3 L round-bottom and concentrated via the rotary evaporator. This resulted in 95 g of a honey-colored oil. The contents were gravity filtered through paper and the paper rinsed with diethyl ether (10 mL) The rinse was added to the flask. This gave a clear yellow liquid. The liquid was placed on a rotary evaporator to remove the ether. This gave 92.4 g of a yellow oil. The oil was Kugelrohr distilled (bp 100-110° C./0.8-0.9 mm Hg) to provide the title compound as a colorless oil (81.4 g, 81%): 1H NMR (400 MHz, CDCl3) δ 3.27-3.12 (m, 2H), 2.89 (t, J=7.1 Hz, 2H), 2.67 (ddd, J=6.8, 2.6, 1.0 Hz, 2H), 1.78 (ddq, J=13.0, 11.3, 7.4 Hz, 1H), 1.64-1.46 (m, 1H), 1.09 (dtd, J=13.2, 7.7, 3.7 Hz, 1H).
-
- A 4-neck round bottomed flask (250 mL) was charged with sodium ethoxide (21 wt % in ethanol, 56 mL, 192 mmol). 3-Hydrazinopyridine-dihydrochloride (10.0 g, 55.0 mmol) was added, causing an exotherm from 20° C. to 32° C. The reaction was allowed to cool to 20° C. and diethyl maleate (13.4 mL, 82.0 mmol) was added, and the reaction was heated at 60° C. for 3 hours. The reaction was cooled to 20° C. and quenched with acetic acid. The reaction mixture was diluted with water (100 mL) and extracted with ethyl acetate (3×100 mL) The combined organics were concentrated to dryness and the residue was purified by flash column chromatography using ethyl acetate as eluent to the title compound as a blue oil (6.60 g, 51%): 1H NMR (400 MHz, DMSO-d6) δ 10.40 (s, 1H), 8.40-8.26 (m, 1H), 8.19 (dd, J=4.4, 1.6 Hz, 1H), 7.47-7.21 (m, 2H), 4.77 (dd, J=9.8, 2.1 Hz, 1H), 4.22 (qd, J=7.1, 1.7 Hz, 2H), 3.05 (dd, J=17.0, 9.8 Hz, 1H), 1.99 (s, 1H), 1.25 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 170.37, 146.60, 142.60, 137.28, 123.54, 121.94, 65.49, 61.32, 32.15, 20.72, 13.94; ESIMS m/z 236 ([M+H]+).
-
- A 3-neck round bottomed flask (100 mL) was charged with ethyl 5-oxo-2-(pyridin-3-yl) pyrazolidine-3-carboxylate (8.50 g, 36.1 mmol) and acetonitrile (40 mL) Phosphoryl trichloride (4.05 mL, 43.4 mmol) was charged and the reaction was heated at 60° C. for 2 hours. The reaction was cooled to 20° C. and water (100 mL) was added. Sodium carbonate was added to adjust pH to 8 and the mixture was extracted with ethyl acetate (3×100 mL) The organic layers were concentrated to dryness and the residue was purified by flash column chromatography using 30-80% ethyl acetate/hexanes as eluent to provide the title compound as a yellow oil (7.30 g, 79%): 1H NMR (400 MHz, CDCl3) δ 8.30 (dd, J=2.9, 0.8 Hz, 1H), 8.17 (dd, J=4.7, 1.4 Hz, 1H), 7.38 (ddd, J=8.4, 2.8, 1.4 Hz, 1H), 7.18 (ddd, J=8.4, 4.7, 0.7 Hz, 1H), 4.79 (dd, J=12.4, 6.9 Hz, 1H), 4.24 (qd, J=7.1, 1.1 Hz, 2H), 3.55 (dd, J=17.7, 12.4 Hz, 1H), 3.33 (dd, J=17.8, 6.9 Hz, 1H), 1.25 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 169.65, 141.90, 141.33, 141.09, 135.13, 123.53, 120.37, 62.89, 62.35, 42.45, 14.03; ESIMS m/z 254 ([M+H]+).
-
- A 3-neck round bottomed flask (100 mL) was charged with ethyl 3-chloro-1-(pyridin-3-yl)-1H-dihydropyrazole-5-carboxylate (2.00 g, 7.88 mmol) and acetonitrile (20 mL) Manganese (IV) oxide (3.43 g, 39.4 mmol) was added, causing an exotherm from 20° C. to 21° C. The reaction was stirred at 60° C. for 18 hours. Additional manganese (IV) oxide (3.43 g, 39.4 mmol) was added and the reaction was stirred at 80° C. for 6 hours. The mixture was filtered through a Celite® pad and the pad was rinsed with ethyl acetate (20 mL) The combined filtrates were concentrated to dryness and the residue was purified by flash column chromatography using 10-60% ethyl acetate/hexanes. The pure fractions were concentrated to dryness to afford a white solid after drying (1.84 g, 93%): 1H NMR (400 MHz, CDCl3) δ 8.75-8.64 (m, 2H), 7.79 (ddd, J=8.2, 2.6, 1.5 Hz, 1H), 7.42 (ddd, J=8.2, 4.8, 0.8 Hz, 1H), 6.98 (s, 1H), 4.27 (q, J=7.1 Hz, 2H), 1.27 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 157.90, 149.88, 147.01, 141.41, 136.24, 135.27, 133.34, 123.11, 111.97, 61.87, 13.98; ESIMS m/z 252 ([M+H]+).
- Alternate Synthetic Route to: Ethyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate
- A vial (20 mL) was charged with ethyl 3-chloro-1-(pyridin-3-yl)-1H-dihydropyrazole-5-carboxylate (0.500 g, 1.97 mmol) and acetonitrile (5 mL) Sodium persulfate (0.799 g, 2.96 mmol) was added, followed by sulfuric acid (0.733 g, 7.88 mmol) (Exotherm!). The reaction was heated at 60° C. for 18 hours. The reaction was cooled to 20° C. and poured into water (20 mL). The mixture was basified with sodium carbonate to pH 9 and extracted with ethyl acetate (2×20 mL) The organic layers were concentrated to a residue, which was purified by flash column chromatography using 50% ethyl acetate/hexanes as eluent to provide the title compound as a white solid (0.280 g, 56%).
- GPA is the most significant aphid pest of peach trees, causing decreased growth, shriveling of leaves, and the death of various tissues. It is also hazardous because it acts as a vector for the transport of plant viruses, such as potato virus Y and potato leafroll virus to members of the nightshade/potato family Solanaceae, and various mosaic viruses to many other food crops. GPA attacks such plants as broccoli, burdock, cabbage, carrot, cauliflower, daikon, eggplant, green beans, lettuce, macadamia, papaya, peppers, sweet potatoes, tomatoes, watercress and zucchini among other plants. GPA also attacks many ornamental crops such as carnations, chrysanthemum, flowering white cabbage, poinsettia and roses. GPA has developed resistance to many pesticides.
- Several molecules disclosed herein were tested against GPA using procedures described below.
- Cabbage seedling grown in 3-in pots, with 2-3 small (3-5 cm) true leaves, were used as test substrate. The seedlings were infested with 20-5-GPA (wingless adult and nymph stages) one day prior to chemical application. Four posts with individual seedlings were used for each treatment. Test compounds (2 mg) were dissolved in 2 mL of acetone/methanol (1:1) solvent, forming stock solutions of 1000 ppm test compound. The stock solutions were diluted 5× with 0.025% Tween 20 in water to obtain the solution at 200 ppm test compound. A hand-held aspirator-type sprayer was used for spraying a solution to both sides of the cabbage leaves until runoff. Reference plants (solvent check) were sprayed with the diluent only containing 20% by volume acetone/methanol (1:1) solvent. Treated plants were held in a holding room for three days at approximately 25° C. and ambient relative humidity (RH) prior to grading. Evaluation was conducted by counting the number of live aphids per plant under a microscope. Percent Control was measured by using Abbott's correction formula (W. S. Abbott, “A Method of Computing the Effectiveness of an Insecticide” J. Econ. Entomol 18 (1925), pp.265-267) as follows.
-
Corrected % Control=100*(X−Y)/X -
- where
- X=No. of live aphids on solvent check plants and
- Y=No. of live aphids on treated plants
- The results are indicated in the table entitled “Table 1: GPA (MYZUPE) and sweetpotato whitefly-crawler (BEMITA) Rating Table”.
- The sweetpotato whitefly, Bemisia tabaci (Gennadius), has been recorded in the United States since the late 1800s. In 1986 in Florida, Bemisia tabaci became an extreme economic pest. Whiteflies usually feed on the lower surface of their host plant leaves. From the egg hatches a minute crawler stage that moves about the leaf until it inserts its microscopic, threadlike mouthparts to feed by sucking sap from the phloem. Adults and nymphs excrete honeydew (largely plant sugars from feeding on phloem), a sticky, viscous liquid in which dark sooty molds grow. Heavy infestations of adults and their progeny can cause seedling death, or reduction in vigor and yield of older plants, due simply to sap removal. The honeydew can stick cotton lint together, making it more difficult to gin and therefore reducing its value. Sooty mold grows on honeydew-covered substrates, obscuring the leaf and reducing photosynthesis, and reducing fruit quality grade. It transmitted plant-pathogenic viruses that had never affected cultivated crops and induced plant physiological disorders, such as tomato irregular ripening and squash silverleaf disorder. Whiteflies are resistant to many formerly effective pesticides.
- Cotton plants grown in 3-inch pots, with 1 small (3-5 cm) true leaf, were used at test substrate. The plants were placed in a room with whitefly adults. Adults were allowed to deposit eggs for 2-3 days. After a 2-3 day egg-laying period, plants were taken from the adult whitefly room. Adults were blown off leaves using a hand-held Devilbliss sprayer (23 psi). Plants with egg infestation (100-300 eggs per plant) were placed in a holding room for 5-6 days at 82° F. and 50% RH for egg hatch and crawler stage to develop. Four cotton plants were used for each treatment. Compounds (2 mg) were dissolved in 1 mL of acetone solvent, forming stock solutions of 2000 ppm. The stock solutions were diluted 10X with 0.025% Tween 20 in water to obtain a test solution at 200 ppm. A hand-held Devilbliss sprayer was used for spraying a solution to both sides of cotton leaf until runoff. Reference plants (solvent check) were sprayed with the diluent only. Treated plants were held in a holding room for 8-9 days at approximately 82° F. and 50% RH prior to grading. Evaluation was conducted by counting the number of live nymphs per plant under a microscope. Pesticidal activity was measured by using Abbott's correction formula (see above) and presented in Table 1.
-
TABLE 1 GPA (MYZUPE) and sweetpotato whitefly-crawler (BEMITA) Rating Table Example Compound BEMITA MYZUPE 6a B B 6b D B 6c A B 6d D B 6e D B Compound 8.6 A A Compound 11.6 A A Compound 18.6 B B Compound 19.6 B B % Control of Mortality Rating 80-100 A More than 0-Less than 80 B Not Tested C No activity noticed in this bioassay D -
- Attempted Decarboxylation with Sulfuric Acid:
- 3-Chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (1.00 g, 2.50 mmol) was dissolved in warm sulfolane (12.5 mL) sulfuric acid (1.35 mL, 25.0 mmol) was added and the reaction mixture was heated to 100° C. After stirring for 1 hour, LCMS indicated that the reaction did not occur. The reaction was further heated at 130° C. for 2 hour, at which point LCMS indicated no change. Additional sulfuric acid (4 mL) was added and the reaction was heated at 150° C. for 2 hour, at which point LCMS showed a new major peak that did not correspond to desired product.
- Attempted Decarboxylation with Palladium (II) Trifluoroacetate/Trifluoroacetic Acid:
- 3-Chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (1.00 g, 2.50 mmol) was dissolved in a mixture of dimethylsulfoxide (0.625 mL) and N,N-dimethylformamide (11.9 ml). Trifluoroacetic acid (1.93 ml, 25.0 mmol) was added followed by the addition of palladium(II) trifluoroacetate (0.332 g, 1.00 mmol). The reaction was heated at 100° C. overnight, at which time LCMS indicated that a reaction had occurred but no desired product had been formed.
- It should be understood that while this invention has been described herein in terms of specific embodiments set forth in detail, such embodiments are presented by way of illustration of the general principles of the invention, and the invention is not necessarily limited thereto. Certain modifications and variations in any given material, process step or chemical formula will be readily apparent to those skilled in the art without departing from the true spirit and scope of the present invention, and all such modifications and variations should be considered within the scope of the claims that follow.
Claims (18)
2. (canceled)
3. (canceled)
11.-15. (canceled)
20.-23. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/835,795 US20180099945A1 (en) | 2013-10-17 | 2017-12-08 | Processes for the preparation of pesticidal compounds |
Applications Claiming Priority (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361892132P | 2013-10-17 | 2013-10-17 | |
| US201462001928P | 2014-05-22 | 2014-05-22 | |
| US201462042559P | 2014-08-27 | 2014-08-27 | |
| US14/517,587 US9102654B2 (en) | 2013-10-17 | 2014-10-17 | Processes for the preparation of pesticidal compounds |
| US14/718,627 US9255083B2 (en) | 2013-10-17 | 2015-05-21 | Processes for the preparation of pesticidal compounds |
| US14/988,786 US9434712B2 (en) | 2013-10-17 | 2016-01-06 | Processes for the preparation of pesticidal compounds |
| US15/223,142 US9670178B2 (en) | 2013-10-17 | 2016-07-29 | Processes for the preparation of pesticidal compounds |
| US15/498,691 US9862702B2 (en) | 2013-10-17 | 2017-04-27 | Processes for the preparation of pesticidal compounds |
| US15/835,795 US20180099945A1 (en) | 2013-10-17 | 2017-12-08 | Processes for the preparation of pesticidal compounds |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/498,691 Division US9862702B2 (en) | 2013-10-17 | 2017-04-27 | Processes for the preparation of pesticidal compounds |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180099945A1 true US20180099945A1 (en) | 2018-04-12 |
Family
ID=52826740
Family Applications (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/517,587 Expired - Fee Related US9102654B2 (en) | 2013-10-17 | 2014-10-17 | Processes for the preparation of pesticidal compounds |
| US14/718,627 Expired - Fee Related US9255083B2 (en) | 2013-10-17 | 2015-05-21 | Processes for the preparation of pesticidal compounds |
| US14/988,786 Expired - Fee Related US9434712B2 (en) | 2013-10-17 | 2016-01-06 | Processes for the preparation of pesticidal compounds |
| US15/223,142 Expired - Fee Related US9670178B2 (en) | 2013-10-17 | 2016-07-29 | Processes for the preparation of pesticidal compounds |
| US15/498,691 Expired - Fee Related US9862702B2 (en) | 2013-10-17 | 2017-04-27 | Processes for the preparation of pesticidal compounds |
| US15/835,795 Abandoned US20180099945A1 (en) | 2013-10-17 | 2017-12-08 | Processes for the preparation of pesticidal compounds |
Family Applications Before (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/517,587 Expired - Fee Related US9102654B2 (en) | 2013-10-17 | 2014-10-17 | Processes for the preparation of pesticidal compounds |
| US14/718,627 Expired - Fee Related US9255083B2 (en) | 2013-10-17 | 2015-05-21 | Processes for the preparation of pesticidal compounds |
| US14/988,786 Expired - Fee Related US9434712B2 (en) | 2013-10-17 | 2016-01-06 | Processes for the preparation of pesticidal compounds |
| US15/223,142 Expired - Fee Related US9670178B2 (en) | 2013-10-17 | 2016-07-29 | Processes for the preparation of pesticidal compounds |
| US15/498,691 Expired - Fee Related US9862702B2 (en) | 2013-10-17 | 2017-04-27 | Processes for the preparation of pesticidal compounds |
Country Status (9)
| Country | Link |
|---|---|
| US (6) | US9102654B2 (en) |
| EP (1) | EP3057430A4 (en) |
| JP (1) | JP2016539092A (en) |
| KR (1) | KR20160072154A (en) |
| CN (1) | CN105636441B (en) |
| CA (1) | CA2925595A1 (en) |
| IL (1) | IL244885A0 (en) |
| MX (1) | MX2016004942A (en) |
| WO (1) | WO2015058028A1 (en) |
Families Citing this family (223)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9085564B2 (en) | 2013-10-17 | 2015-07-21 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| EP3057425A4 (en) | 2013-10-17 | 2017-08-02 | Dow AgroSciences LLC | Processes for the preparation of pesticidal compounds |
| EP3057427B1 (en) | 2013-10-17 | 2018-07-18 | Dow AgroSciences LLC | Processes for the preparation of pesticidal compounds |
| US9108946B2 (en) | 2013-10-17 | 2015-08-18 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| EP3057426A4 (en) * | 2013-10-17 | 2017-03-29 | Dow AgroSciences LLC | Processes for the preparation of pesticidal compounds |
| WO2015058028A1 (en) | 2013-10-17 | 2015-04-23 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| JP2016535010A (en) | 2013-10-17 | 2016-11-10 | ダウ アグロサイエンシィズ エルエルシー | Method for producing pest control compound |
| CN106470976A (en) | 2014-07-31 | 2017-03-01 | 美国陶氏益农公司 | The method of preparation 3 (3 chlorine 1H pyrazoles 1 base) pyridine |
| WO2016018443A1 (en) | 2014-07-31 | 2016-02-04 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine |
| JP2017523163A (en) | 2014-07-31 | 2017-08-17 | ダウ アグロサイエンシィズ エルエルシー | Method for producing 3- (3-chloro-1H-pyrazol-1-yl) pyridine |
| CA2958058A1 (en) * | 2014-08-19 | 2016-02-25 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine |
| CA2960985A1 (en) | 2014-09-12 | 2016-03-17 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine |
| WO2017072039A1 (en) | 2015-10-26 | 2017-05-04 | Bayer Cropscience Aktiengesellschaft | Condensed bicyclic heterocycle derivatives as pest control agents |
| WO2017093180A1 (en) | 2015-12-01 | 2017-06-08 | Bayer Cropscience Aktiengesellschaft | Condensed bicyclic heterocycle derivatives as pest control agents |
| CA3007037A1 (en) | 2015-12-03 | 2017-06-08 | Bayer Cropscience Aktiengesellschaft | Mesoionic halogenated 3-(acetyl)-1-[(1,3-thiazol-5-yl)methyl]-1h-imidazo[1,2-a]pyridin-4-ium-2-olate derivatives and related compounds as insecticides |
| MA43998A (en) | 2016-02-11 | 2018-12-19 | Bayer Cropscience Ag | 2- (HET) ARYL-IMIDAZOLYL-CARBOXAMIDES SUBSTITUTED USED AS PESTICIDES |
| KR20180107142A (en) | 2016-02-11 | 2018-10-01 | 바이엘 크롭사이언스 악티엔게젤샤프트 | Substituted 2-oxyimidazolyl-carboxamides as pesticides |
| WO2017144341A1 (en) | 2016-02-23 | 2017-08-31 | Bayer Cropscience Aktiengesellschaft | Condensed bicyclic heterocycle derivatives as pest control agents |
| CA3017547A1 (en) | 2016-03-15 | 2017-09-21 | Bayer Cropscience Aktiengesellschaft | Substituted sulfonyl amides for controlling animal pests |
| BR112018068681A2 (en) | 2016-03-16 | 2019-01-15 | Bayer Cropscience Ag | n- (cyanobenzyl) -6- (cyclopropylcarbonylamino) -4- (phenyl) pyridine-2-carboxamide derivatives and related compounds as pesticides and plant protection agents |
| WO2017174414A1 (en) | 2016-04-05 | 2017-10-12 | Bayer Cropscience Aktiengesellschaft | Naphthaline-derivatives as pest control agents |
| WO2017178416A1 (en) | 2016-04-15 | 2017-10-19 | Bayer Animal Health Gmbh | Pyrazolopyrimidine derivatives |
| BR112018071951A2 (en) | 2016-04-25 | 2019-02-05 | Bayer Cropscience Ag | Substituted 2-alkylimidazolylcarboxamides as pesticides |
| EP3241830A1 (en) | 2016-05-04 | 2017-11-08 | Bayer CropScience Aktiengesellschaft | Condensed bicyclic heterocyclic derivatives as pesticides |
| WO2017198449A1 (en) | 2016-05-15 | 2017-11-23 | Bayer Cropscience Nv | Method for increasing yield in brassicaceae |
| WO2017198450A1 (en) | 2016-05-15 | 2017-11-23 | Bayer Cropscience Nv | Method for increasing yield in maize |
| EP3245865A1 (en) | 2016-05-17 | 2017-11-22 | Bayer CropScience Aktiengesellschaft | Method for increasing yield in brassicaceae |
| WO2017198452A1 (en) | 2016-05-16 | 2017-11-23 | Bayer Cropscience Nv | Method for increasing yield in soybean |
| WO2017198453A1 (en) | 2016-05-16 | 2017-11-23 | Bayer Cropscience Nv | Method for increasing yield in potato, tomato or alfalfa |
| WO2017198451A1 (en) | 2016-05-17 | 2017-11-23 | Bayer Cropscience Nv | Method for increasing yield in small grain cereals such as wheat and rice |
| WO2017198454A1 (en) | 2016-05-17 | 2017-11-23 | Bayer Cropscience Nv | Method for increasing yield in cotton |
| WO2017198455A2 (en) | 2016-05-17 | 2017-11-23 | Bayer Cropscience Nv | Method for increasing yield in beta spp. plants |
| WO2018010163A1 (en) | 2016-07-15 | 2018-01-18 | 泸州东方农化有限公司 | Synthetic method for 1,2,4-triazole-3-thione compound and intermediate thereof |
| PE20190206A1 (en) | 2016-07-19 | 2019-02-07 | Bayer Cropscience Ag | DERIVATIVES OF BICYCLE HETEROCYCLES CONDENSED AS PESTICIDE |
| CA3032042A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Formulation comprising a beneficial p. bilaii strain and talc for use in seed treatment |
| CN109843878A (en) | 2016-08-10 | 2019-06-04 | 拜耳作物科学股份公司 | Substituted 2-heterocyclyl imidazolylcarboxamides as pest control agents |
| PE20190800A1 (en) | 2016-08-15 | 2019-06-10 | Bayer Cropscience Ag | DERIVATIVES OF THE CONDENSED BICYCLE HETEROCYCLE AS PEST CONTROL AGENTS |
| JP7165126B2 (en) | 2016-09-19 | 2022-11-02 | バイエル・クロップサイエンス・アクチェンゲゼルシャフト | Pyrazolo[1,5-a]pyridine derivatives and their use as pesticides |
| PH12019500740B1 (en) | 2016-10-06 | 2023-10-18 | Bayer Cropscience Ag | 2-(het)aryl-substituted condensed bicyclic heterocycle derivatives as pest control agents |
| WO2018065288A1 (en) | 2016-10-07 | 2018-04-12 | Bayer Cropscience Aktiengesellschaft | 2-[2-phenyl-1-(sulfonyl-methyl)-vinyl]-imidazo-[4,5-b] pyridine derivatives and related compounds as pesticides in plant protection |
| TW201822637A (en) | 2016-11-07 | 2018-07-01 | 德商拜耳廠股份有限公司 | Substituted sulfonamides for controlling animal pests |
| SG11201903059SA (en) | 2016-11-11 | 2019-05-30 | Bayer Animal Health Gmbh | New anthelmintic quinoline-3-carboxamide derivatives |
| KR20190084310A (en) | 2016-11-23 | 2019-07-16 | 바이엘 크롭사이언스 악티엔게젤샤프트 | 2-yl] -3H-imidazo [4,5-b] pyridine derivatives as an insecticide and similar compounds |
| US20190382358A1 (en) | 2016-12-16 | 2019-12-19 | Bayer Cropscience Aktiengesellschaft | Heterocyclic compounds as pesticides |
| KR20190093648A (en) | 2016-12-16 | 2019-08-09 | 바이엘 악티엔게젤샤프트 | Mesoionic imidazopyridine for use as insecticide |
| WO2018125815A1 (en) | 2016-12-29 | 2018-07-05 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| CN110325036B (en) | 2016-12-29 | 2021-10-26 | 美国陶氏益农公司 | Process for preparing pesticidal compounds |
| US20180186765A1 (en) * | 2016-12-29 | 2018-07-05 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| AR113206A1 (en) | 2017-01-10 | 2020-02-19 | Bayer Cropscience Ag | HETEROCYCLIC DERIVATIVES AS PESTICIDES |
| AU2018207776B2 (en) | 2017-01-10 | 2021-06-17 | Bayer Aktiengesellschaft | Heterocyclene derivatives as pest control agents |
| WO2018138050A1 (en) | 2017-01-26 | 2018-08-02 | Bayer Aktiengesellschaft | Condensed bicyclic heterocyclene derivatives as pest control agents |
| TW201833107A (en) | 2017-02-06 | 2018-09-16 | 德商拜耳廠股份有限公司 | 2-(het)aryl-substituted fused heterocycle derivatives as pesticides |
| EP3369320A1 (en) | 2017-03-02 | 2018-09-05 | Bayer CropScience Aktiengesellschaft | Agent for controlling bugs |
| JP2020516630A (en) | 2017-04-12 | 2020-06-11 | バイエル・アクチエンゲゼルシヤフト | Mesoionic imidazopyridines for use as insecticides |
| US10993439B2 (en) | 2017-04-21 | 2021-05-04 | Bayer Aktiengesellschaft | Mesoionic imidazopyridines as insecticides |
| ES2923376T3 (en) | 2017-04-24 | 2022-09-27 | Bayer Ag | Fused bicyclic heterocycle derivatives as pesticides |
| TWI782983B (en) | 2017-04-27 | 2022-11-11 | 德商拜耳廠股份有限公司 | Heteroarylphenylaminoquinolines and analogues |
| ES2998110T3 (en) | 2017-04-27 | 2025-02-19 | Elanco Animal Health Gmbh | New bicyclic pyrazole derivatives |
| WO2018202501A1 (en) | 2017-05-02 | 2018-11-08 | Bayer Aktiengesellschaft | 2-(het)aryl-substituted condensed bicyclic heterocyclic derivatives as pest control agents |
| CN110573513B (en) | 2017-05-02 | 2022-08-09 | 拜耳公司 | 2- (hetero) aryl-substituted fused bicyclic heterocyclic derivatives as pest control agents |
| JP2020519575A (en) | 2017-05-03 | 2020-07-02 | バイエル・アクチエンゲゼルシヤフト | Trisubstituted silylmethylphenoxyquinolines and analogs |
| EP3618632A1 (en) | 2017-05-03 | 2020-03-11 | Bayer Aktiengesellschaft | Trisubstitutedsilylheteroaryloxyquinolines and analogues |
| JP2020518589A (en) | 2017-05-03 | 2020-06-25 | バイエル・アクチエンゲゼルシヤフト | Tri-substituted silylbenzylbenzimidazoles and analogs |
| WO2018202525A1 (en) | 2017-05-04 | 2018-11-08 | Bayer Cropscience Aktiengesellschaft | Phenoxyethanamine derivatives for controlling pests |
| MX2019013121A (en) | 2017-05-04 | 2020-02-05 | Bayer Cropscience Ag | 2-{[2-(phenyloxymethyl)pyridin-5-yl]oxy}-ethanamin-derivatives and related compounds as pest-control agents e.g. for the protection of plants. |
| US20200071290A1 (en) * | 2017-05-26 | 2020-03-05 | Dow Agrosciences Llc | Pyrazole Amine Reactive Crystallization |
| US11485733B2 (en) | 2017-06-30 | 2022-11-01 | Bayer Animal Health Gmbh | Azaquinoline derivatives |
| EP3284739A1 (en) | 2017-07-19 | 2018-02-21 | Bayer CropScience Aktiengesellschaft | Substituted (het) aryl compounds as pesticides |
| CA3071759A1 (en) | 2017-08-04 | 2019-02-07 | Bayer Animal Health Gmbh | Quinoline derivatives for treating infections with helminths |
| US11849724B2 (en) | 2017-08-17 | 2023-12-26 | Bayer Cropscience Lp | Liquid fertilizer-dispersible compositions and methods thereof |
| US10743535B2 (en) | 2017-08-18 | 2020-08-18 | H&K Solutions Llc | Insecticide for flight-capable pests |
| ES2932627T3 (en) | 2017-08-22 | 2023-01-23 | Bayer Ag | Heterocyclic derivatives as pesticides |
| US11696913B2 (en) | 2017-09-20 | 2023-07-11 | Mitsui Chemicals Agro, Inc. | Prolonged ectoparasite-controlling agent for animal |
| KR102622644B1 (en) | 2017-10-04 | 2024-01-10 | 바이엘 악티엔게젤샤프트 | Derivatives of heterocyclic compounds as pest control agents |
| EP3473100A1 (en) | 2017-10-18 | 2019-04-24 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| WO2019076751A1 (en) | 2017-10-18 | 2019-04-25 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| WO2019076749A1 (en) | 2017-10-18 | 2019-04-25 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| KR102625757B1 (en) | 2017-10-18 | 2024-01-17 | 바이엘 악티엔게젤샤프트 | Combinations of active compounds with insecticidal/miticidal properties |
| TWI784067B (en) | 2017-10-18 | 2022-11-21 | 德商拜耳廠股份有限公司 | Active compound combinations having insecticidal/acaricidal properties |
| AU2018350616B2 (en) | 2017-10-18 | 2024-02-01 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| EP3710432A1 (en) | 2017-11-13 | 2020-09-23 | Bayer Aktiengesellschaft | Tetrazolylpropyl derivatives and their use as fungicides |
| WO2019105875A1 (en) | 2017-11-28 | 2019-06-06 | Bayer Aktiengesellschaft | Heterocyclic compounds as pesticides |
| AU2018376146A1 (en) | 2017-11-29 | 2020-05-28 | Bayer Aktiengesellschaft | Nitrogenous heterocycles as a pesticide |
| TW201927768A (en) | 2017-12-21 | 2019-07-16 | 德商拜耳廠股份有限公司 | Trisubstitutedsilylmethylheteroaryloxyquinolines and analogues |
| EP3305786A3 (en) | 2018-01-22 | 2018-07-25 | Bayer CropScience Aktiengesellschaft | Condensed bicyclic heterocycle derivatives as pesticides |
| US20210009541A1 (en) | 2018-02-12 | 2021-01-14 | Bayer Aktiengesellschaft | Fungicidal oxadiazoles |
| WO2019162228A1 (en) | 2018-02-21 | 2019-08-29 | Bayer Aktiengesellschaft | 1-(5-substituted imidazol-1-yl)but-3-en derivatives and their use as fungicides |
| US11019821B2 (en) | 2018-02-21 | 2021-06-01 | Bayer Aktiengesellschaft | Fused bicyclic heterocycle derivatives as pesticides |
| BR112020016946A2 (en) | 2018-03-08 | 2020-12-15 | Bayer Aktiengesellschaft | USE OF HETEROARYL-TRIAZOLE COMPOUNDS AND HETEROARYL-TETRAZOLE AS PESTICIDES IN PLANT PROTECTION |
| JP2021515783A (en) | 2018-03-12 | 2021-06-24 | バイエル・アクチエンゲゼルシヤフト | Condensed bicyclic heterocyclic derivative as a pest control agent |
| WO2019197371A1 (en) | 2018-04-10 | 2019-10-17 | Bayer Aktiengesellschaft | Oxadiazoline derivatives |
| ES2965174T3 (en) | 2018-04-12 | 2024-04-11 | Bayer Ag | Derivatives of N-(cyclopropylmethyl)-5-(methylsulfonyl)-n-{1-[1-(pyrimidin-2-yl)-1H-1,2,4-triazol-5-yl]ethyl}heterocyclylamide and similar compounds like pesticides |
| CN111970929B (en) | 2018-04-13 | 2022-12-06 | 拜耳公司 | Active ingredient combinations having insecticidal, nematicidal and acaricidal properties |
| WO2019197615A1 (en) | 2018-04-13 | 2019-10-17 | Bayer Aktiengesellschaft | Active ingredient combinations with fungicides, insecticides and acaricidal properties |
| UY38184A (en) | 2018-04-17 | 2019-10-31 | Bayer Ag | HETEROARYL-TRIAZOLE AND HETEROARYL-TETRAZOLE COMPOUNDS NOVELTY AS PESTICIDES |
| EP3820868A1 (en) | 2018-04-20 | 2021-05-19 | Bayer Aktiengesellschaft | Heterocyclene derivatives as pest control agents |
| CA3097442A1 (en) | 2018-04-20 | 2019-10-24 | Bayer Aktiengesellschaft | Heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides |
| IL277978B2 (en) | 2018-04-25 | 2024-07-01 | Bayer Ag | Heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides |
| CN108658942B (en) * | 2018-04-28 | 2020-06-30 | 中南民族大学 | Oxoazetidine pyrazole carboxylate compound and microwave hydrothermal method synthesis method and application thereof |
| CA3099610A1 (en) | 2018-05-09 | 2019-11-14 | Bayer Animal Health Gmbh | New quinoline derivatives |
| WO2019224143A1 (en) | 2018-05-24 | 2019-11-28 | Bayer Aktiengesellschaft | Active ingredient combinations with insecticidal, nematicidal and acaricidal properties |
| CA3104880A1 (en) | 2018-06-25 | 2020-01-02 | Bayer Cropscience Lp | Seed treatment method |
| EP3586630A1 (en) | 2018-06-28 | 2020-01-01 | Bayer AG | Active compound combinations having insecticidal/acaricidal properties |
| MA53089B1 (en) | 2018-07-05 | 2022-11-30 | Bayer Ag | Substituted thiophenecarboxamides and analogs as antibacterial agents |
| WO2020020813A1 (en) | 2018-07-25 | 2020-01-30 | Bayer Aktiengesellschaft | Fungicidal active compound combinations |
| WO2020020816A1 (en) | 2018-07-26 | 2020-01-30 | Bayer Aktiengesellschaft | Novel triazole derivatives |
| WO2020043650A1 (en) | 2018-08-29 | 2020-03-05 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| KR20210057110A (en) | 2018-09-13 | 2021-05-20 | 바이엘 악티엔게젤샤프트 | Heterocyclene derivatives as pest control agents |
| WO2020057939A1 (en) | 2018-09-17 | 2020-03-26 | Bayer Aktiengesellschaft | Use of the fungicide isoflucypram for controlling claviceps purpurea and reducing sclerotia in cereals |
| WO2020070050A1 (en) | 2018-10-01 | 2020-04-09 | Bayer Aktiengesellschaft | Fungicidal 5-substituted imidazol-1-yl carbinol derivatives |
| EP3636644A1 (en) | 2018-10-11 | 2020-04-15 | Bayer Aktiengesellschaft | Mesoionic imidazopyridines as insecticides |
| WO2020078839A1 (en) | 2018-10-16 | 2020-04-23 | Bayer Aktiengesellschaft | Active substance combinations |
| WO2020079167A1 (en) | 2018-10-18 | 2020-04-23 | Bayer Aktiengesellschaft | Heteroarylaminoquinolines and analogues |
| CN112996782A (en) | 2018-10-18 | 2021-06-18 | 拜耳公司 | Pyridylphenylaminoquinolines and analogs |
| TW202028193A (en) | 2018-10-20 | 2020-08-01 | 德商拜耳廠股份有限公司 | Oxetanylphenoxyquinolines and analogues |
| EP3643711A1 (en) | 2018-10-24 | 2020-04-29 | Bayer Animal Health GmbH | New anthelmintic compounds |
| AR117169A1 (en) | 2018-11-28 | 2021-07-14 | Bayer Ag | (TIO) PYRIDAZINE AMIDES AS FUNGICIDE COMPOUNDS |
| PL3890489T3 (en) | 2018-12-07 | 2023-05-08 | Bayer Aktiengesellschaft | Herbicidal combinations |
| CA3122156A1 (en) | 2018-12-07 | 2020-06-11 | Bayer Aktiengesellschaft | Herbicidal compositions |
| EP3620052A1 (en) | 2018-12-12 | 2020-03-11 | Bayer Aktiengesellschaft | Use of phenoxypyridinyl-substituted (1h-1,2,4-triazol-1-yl)alcohols for controlling fungicidal diseases in maize |
| CN109369617B (en) * | 2018-12-13 | 2020-07-31 | 中国科学院福建物质结构研究所 | Synthesis method of 1- (2-pyridyl) -pyrazole-3-formic acid and derivatives thereof |
| WO2020126980A1 (en) | 2018-12-18 | 2020-06-25 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| EA202191668A1 (en) | 2018-12-20 | 2021-11-10 | Байер Акциенгезельшафт | HETEROCYCLYL PYRIDAZINE AS FUNGICIDE COMPOUNDS |
| EP3669652A1 (en) | 2018-12-21 | 2020-06-24 | Bayer AG | Active compound combination |
| WO2020127974A1 (en) | 2018-12-21 | 2020-06-25 | Bayer Aktiengesellschaft | 1,3,4-oxadiazoles and their derivatives as new antifungal agents |
| EP3679793A1 (en) | 2019-01-08 | 2020-07-15 | Bayer AG | Active compound combinations |
| EP3679789A1 (en) | 2019-01-08 | 2020-07-15 | Bayer AG | Active compound combinations |
| EP3679791A1 (en) | 2019-01-08 | 2020-07-15 | Bayer AG | Active compound combinations |
| EP3679792A1 (en) | 2019-01-08 | 2020-07-15 | Bayer AG | Active compound combinations |
| EP3679790A1 (en) | 2019-01-08 | 2020-07-15 | Bayer AG | Active compound combinations |
| EP3545764A1 (en) | 2019-02-12 | 2019-10-02 | Bayer AG | Crystal form of 2-({2-fluoro-4-methyl-5-[(r)-(2,2,2-trifluoroethyl)sulfinyl]phenyl}imino)-3-(2,2,2- trifluoroethyl)-1,3-thiazolidin-4-one |
| PH12021552047A1 (en) | 2019-02-26 | 2022-11-07 | Bayer Ag | Fused bicyclic heterocycle derivatives as pesticides |
| US12297196B2 (en) | 2019-02-26 | 2025-05-13 | Bayer Aktiengesellschaft | Condensed bicyclic heterocyclic derivatives as pest control agents |
| WO2020178067A1 (en) | 2019-03-01 | 2020-09-10 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| AR118247A1 (en) | 2019-03-05 | 2021-09-22 | Bayer Ag | COMBINATION OF ACTIVE COMPOUNDS |
| WO2020182929A1 (en) | 2019-03-13 | 2020-09-17 | Bayer Aktiengesellschaft | Substituted ureas and derivatives as new antifungal agents |
| EP3937639A1 (en) | 2019-03-15 | 2022-01-19 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| EP3564225A1 (en) | 2019-03-21 | 2019-11-06 | Bayer Aktiengesellschaft | Crystalline form of spiromesifen |
| EP3725788A1 (en) | 2019-04-15 | 2020-10-21 | Bayer AG | Novel heteroaryl-substituted aminoalkyl azole compounds as pesticides |
| JP2022532529A (en) | 2019-05-08 | 2022-07-15 | バイエル・アクチエンゲゼルシヤフト | Active compound combination |
| JP7649253B2 (en) | 2019-05-08 | 2025-03-19 | バイエル・アクチエンゲゼルシヤフト | Highly spreadable ULV formulation for herbicides |
| EP3965575A1 (en) | 2019-05-10 | 2022-03-16 | Bayer CropScience LP | Active compound combinations |
| WO2020229398A1 (en) | 2019-05-14 | 2020-11-19 | Bayer Aktiengesellschaft | (1-alkenyl)-substituted pyrazoles and triazoles as pest control agents |
| EP3750888A1 (en) | 2019-06-12 | 2020-12-16 | Bayer Aktiengesellschaft | Crystalline form a of 1,4-dimethyl-2-[2-(pyridin-3-yl)-2h-indazol-5-yl]-1,2,4-triazolidine-3,5-dione |
| BR112021025242A2 (en) | 2019-06-21 | 2022-01-25 | Bayer Ag | Hydroxy-isoxazolines and derivatives thereof |
| EP3986892A1 (en) | 2019-06-21 | 2022-04-27 | Bayer Aktiengesellschaft | Hydroxyisoxazolines and use thereof as fungicides |
| EP3986875A1 (en) | 2019-06-21 | 2022-04-27 | Bayer Aktiengesellschaft | Phenoxyphenyl hydroxyisoxazolines and analogues as new antifungal agents |
| EP3986874A1 (en) | 2019-06-21 | 2022-04-27 | Bayer Aktiengesellschaft | Benzylphenyl hydroxyisoxazolines and analogues as new antifungal agents |
| EP3986877A1 (en) | 2019-06-21 | 2022-04-27 | Bayer Aktiengesellschaft | Hydroxyisoxazolines and derivatives thereof |
| WO2020254492A1 (en) | 2019-06-21 | 2020-12-24 | Bayer Aktiengesellschaft | Hydroxyisoxazolines and derivatives thereof |
| BR112021025300A2 (en) | 2019-06-21 | 2022-02-01 | Bayer Ag | fungicidal oxadiazoles |
| EP3986888A1 (en) | 2019-06-21 | 2022-04-27 | Bayer Aktiengesellschaft | Thienylhydroxyisoxazolines and derivatives thereof |
| AR119228A1 (en) | 2019-06-24 | 2021-12-01 | Bayer Cropscience Lp | A STRAIN OF BACILLUS AND METHODS FOR ITS USE IN PROMOTING PLANT GROWTH |
| EP3608311A1 (en) | 2019-06-28 | 2020-02-12 | Bayer AG | Crystalline form a of n-[4-chloro-3-[(1-cyanocyclopropyl)carbamoyl]phenyl]-2-methyl-4-methylsulfonyl-5-(1,1,2,2,2-pentafluoroethyl)pyrazole-3-carboxamide |
| PT3994130T (en) | 2019-07-03 | 2024-10-07 | Bayer Ag | Substituted thiophene carboxamides and derivatives thereof as microbicides |
| AU2020299262A1 (en) | 2019-07-04 | 2022-02-03 | Bayer Aktiengesellschaft | Herbicidal compositions |
| EP3771714A1 (en) | 2019-07-30 | 2021-02-03 | Bayer AG | Nitrogen-containing heterocycles as pesticides |
| TWI865563B (en) | 2019-07-30 | 2024-12-11 | 德商拜耳動物保健有限公司 | New isoquinoline derivatives |
| EP3701796A1 (en) | 2019-08-08 | 2020-09-02 | Bayer AG | Active compound combinations |
| US20220403410A1 (en) | 2019-09-26 | 2022-12-22 | Bayer Aktiengesellschaft | Rnai-mediated pest control |
| TW202128650A (en) | 2019-10-11 | 2021-08-01 | 德商拜耳動物保健有限公司 | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
| EP4055010A1 (en) | 2019-11-07 | 2022-09-14 | Bayer Aktiengesellschaft | Substituted sulfonyl amides for controlling animal pests |
| WO2021097162A1 (en) | 2019-11-13 | 2021-05-20 | Bayer Cropscience Lp | Beneficial combinations with paenibacillus |
| AU2020406139A1 (en) | 2019-12-20 | 2022-06-30 | Bayer Aktiengesellschaft | Substituted thiophene carboxamides, thiophene carboxylic acids and derivatives thereof |
| MA58019B1 (en) | 2019-12-20 | 2024-10-31 | Bayer Aktiengesellschaft | THIENYLOXAZOLONES AND ANALOGS |
| EP3845304A1 (en) | 2019-12-30 | 2021-07-07 | Bayer AG | Capsule suspension concentrates based on polyisocyanates and biodegradable amine based cross-linker |
| KR20220143072A (en) | 2020-02-18 | 2022-10-24 | 바이엘 악티엔게젤샤프트 | Heteroaryl-triazole compounds as pesticides |
| EP3868207A1 (en) | 2020-02-24 | 2021-08-25 | Bayer Aktiengesellschaft | Encapsulated pyrethroids with improved activity in soil and leaf applications |
| EP3708565A1 (en) | 2020-03-04 | 2020-09-16 | Bayer AG | Pyrimidinyloxyphenylamidines and the use thereof as fungicides |
| JP2023521342A (en) | 2020-04-09 | 2023-05-24 | バイエル・アニマル・ヘルス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Substituted condensed azines as anthelmintic compounds |
| HUE069153T2 (en) | 2020-04-16 | 2025-02-28 | Bayer Ag | Active compound combinations and fungicide compositions comprising those |
| AU2021257572A1 (en) | 2020-04-16 | 2022-11-10 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
| AU2021255795A1 (en) | 2020-04-16 | 2022-11-10 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
| WO2021209490A1 (en) | 2020-04-16 | 2021-10-21 | Bayer Aktiengesellschaft | Cyclaminephenylaminoquinolines as fungicides |
| CA3180168A1 (en) | 2020-04-16 | 2021-10-21 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
| WO2021209368A1 (en) | 2020-04-16 | 2021-10-21 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
| JP2023538713A (en) | 2020-05-06 | 2023-09-11 | バイエル、アクチエンゲゼルシャフト | Pyridine(thio)amide as a fungicidal compound |
| EP4149929A1 (en) | 2020-05-12 | 2023-03-22 | Bayer Aktiengesellschaft | Triazine and pyrimidine (thio)amides as fungicidal compounds |
| WO2021233861A1 (en) | 2020-05-19 | 2021-11-25 | Bayer Aktiengesellschaft | Azabicyclic(thio)amides as fungicidal compounds |
| JP2023528891A (en) | 2020-06-04 | 2023-07-06 | バイエル、アクチエンゲゼルシャフト | Heterocyclylpyrimidines and triazines as novel fungicides |
| KR20230024343A (en) | 2020-06-10 | 2023-02-20 | 바이엘 악티엔게젤샤프트 | Azabicyclyl-substituted heterocycles as fungicides |
| CN116157017A (en) | 2020-06-18 | 2023-05-23 | 拜耳公司 | 3- (pyridazin-4-yl) -5, 6-dihydro-4H-1, 2, 4-oxadiazine derivatives as fungicides for crop protection |
| UY39275A (en) | 2020-06-19 | 2022-01-31 | Bayer Ag | 1,3,4-OXADIAZOLE PYRIMIDINES AS FUNGICIDES, PROCESSES AND INTERMEDIARIES FOR THEIR PREPARATION, METHODS OF USE AND USES OF THE SAME |
| WO2021255089A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides |
| UY39276A (en) | 2020-06-19 | 2022-01-31 | Bayer Ag | USE OF 1,3,4-OXADIAZOL-2-ILPYRIMIDINE COMPOUNDS TO CONTROL PHYTOPATHOGENIC MICROORGANISMS, METHODS OF USE AND COMPOSITIONS. |
| BR112022025692A2 (en) | 2020-06-19 | 2023-02-28 | Bayer Ag | 1,3,4-OXADIAZOLES AND THEIR DERIVATIVES AS FUNGICIDES |
| US20230247986A1 (en) | 2020-06-26 | 2023-08-10 | Bayer Aktiengesellschaft | Aqueous capsule suspension concentrates comprising biodegradable ester groups |
| WO2022058327A1 (en) | 2020-09-15 | 2022-03-24 | Bayer Aktiengesellschaft | Substituted ureas and derivatives as new antifungal agents |
| EP3915371A1 (en) | 2020-11-04 | 2021-12-01 | Bayer AG | Active compound combinations and fungicide compositions comprising those |
| EP3994988A1 (en) | 2020-11-08 | 2022-05-11 | Bayer AG | Agrochemical composition with improved drift, spreading and rainfastness properties |
| EP3994986A1 (en) | 2020-11-08 | 2022-05-11 | Bayer Aktiengesellschaft | Agrochemical composition with improved drift and spreading properties |
| EP3994990A1 (en) | 2020-11-08 | 2022-05-11 | Bayer AG | Agrochemical composition with improved drift, spreading and uptake properties |
| EP3994995A1 (en) | 2020-11-08 | 2022-05-11 | Bayer Aktiengesellschaft | Low drift, rainfastness, high spreading, high uptake and ulv tank mix adjuvant formulation |
| EP3994985A1 (en) | 2020-11-08 | 2022-05-11 | Bayer Aktiengesellschaft | Agrochemical composition with improved drift properties |
| EP3994993A1 (en) | 2020-11-08 | 2022-05-11 | Bayer Aktiengesellschaft | Low drift, rainfastness, high spreading and ulv tank mix adjuvant formulation |
| EP3994991A1 (en) | 2020-11-08 | 2022-05-11 | Bayer Aktiengesellschaft | Agrochemical composition with improved drift, spreading, uptake and rainfastness properties |
| EP3994989A1 (en) | 2020-11-08 | 2022-05-11 | Bayer AG | Agrochemical composition with improved drift, rainfastness and uptake properties |
| EP3994992A1 (en) | 2020-11-08 | 2022-05-11 | Bayer AG | Low drift, rainfastness, high uptake and ulv tank mix adjuvant formulation |
| EP3994987A1 (en) | 2020-11-08 | 2022-05-11 | Bayer AG | Agrochemical composition with improved drift and uptake properties |
| EP3994994A1 (en) | 2020-11-08 | 2022-05-11 | Bayer Aktiengesellschaft | Low drift, rainfastness, high spreading, high uptake and ulv tank mix adjuvant formulation |
| EP3915971A1 (en) | 2020-12-16 | 2021-12-01 | Bayer Aktiengesellschaft | Phenyl-s(o)n-phenylamidines and the use thereof as fungicides |
| WO2022129188A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | 1,2,4-oxadiazol-3-yl pyrimidines as fungicides |
| WO2022129190A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides |
| WO2022129196A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Heterobicycle substituted 1,2,4-oxadiazoles as fungicides |
| WO2022152728A1 (en) | 2021-01-15 | 2022-07-21 | Bayer Aktiengesellschaft | Herbicidal compositions |
| BR112023022046A2 (en) | 2021-05-10 | 2023-12-26 | Bayer Ag | HERBICIDE/PROTECTOR COMBINATION BASED ON SUBSTITUTED [(1,5-DIPHENYL-1H-1,2,4-TRIAZOL-3-YL)OXY]ACETIC ACID CLASS PROTECTORS AND THEIR SALTS |
| EP4148052A1 (en) | 2021-09-09 | 2023-03-15 | Bayer Animal Health GmbH | New quinoline derivatives |
| AR129081A1 (en) | 2022-04-18 | 2024-07-10 | Basf Corp | HIGH LOAD AGRICULTURAL FORMULATIONS AND METHODS FOR PREPARING THEM |
| EP4265110A1 (en) | 2022-04-20 | 2023-10-25 | Bayer AG | Water dispersible granules with low melting active ingredients prepared by extrusion |
| JP2025516343A (en) | 2022-05-07 | 2025-05-27 | バイエル・アクチエンゲゼルシヤフト | Low drift aqueous liquid formulations for low, medium and high volume applications |
| WO2024013016A1 (en) | 2022-07-11 | 2024-01-18 | Bayer Aktiengesellschaft | Herbicidal compositions |
| WO2024013015A1 (en) | 2022-07-11 | 2024-01-18 | Bayer Aktiengesellschaft | Herbicidal compositions |
| WO2024068473A1 (en) | 2022-09-27 | 2024-04-04 | Bayer Aktiengesellschaft | Herbicide/safener combination based on safeners from the class of substituted [(1,5-diphenyl-1h-1,2,4-triazol-3-yl)oxy]acetic acids and their salts |
| EP4353082A1 (en) | 2022-10-14 | 2024-04-17 | Bayer Aktiengesellschaft | Herbicidal compositions |
| WO2024170472A1 (en) | 2023-02-16 | 2024-08-22 | Bayer Aktiengesellschaft | Herbicidal mixtures |
| WO2024213752A1 (en) | 2023-04-14 | 2024-10-17 | Elanco Animal Health Gmbh | Long-term prevention and/or treatment of a disease by slo-1 inhibitors |
| WO2025031668A1 (en) | 2023-08-09 | 2025-02-13 | Bayer Aktiengesellschaft | Azaheterobiaryl-substituted 4,5-dihydro-1h-2,4,5-oxadiazines as novel fungicides |
| WO2025040520A1 (en) | 2023-08-21 | 2025-02-27 | Bayer Aktiengesellschaft | Herbicide/safener combinations based on safeners from the class of substituted [(1,5-diphenyl-1h-1,2,4-triazol-3-yl)oxy] acetic acids and herbicides from the class of substituted cyclic diones and the salts thereof |
| WO2025040301A1 (en) | 2023-08-21 | 2025-02-27 | Bayer Aktiengesellschaft | Herbicide/safener combinations based on safeners from the class of substituted [(1,5-diphenyl-1h-1,2,4-triazol-3-yl)oxy] acetic acids and herbicides from the class of substituted cyclic diones and the salts thereof |
| WO2025078128A1 (en) | 2023-10-11 | 2025-04-17 | Bayer Aktiengesellschaft | Pyridazin-3-one-4-yloxadiazines as novel fungicides |
| WO2025108865A1 (en) | 2023-11-23 | 2025-05-30 | Bayer Aktiengesellschaft | Herbicidal compositions |
| WO2025132148A1 (en) | 2023-12-21 | 2025-06-26 | Bayer Aktiengesellschaft | Adjuvant compositions for agrochemical applications |
| WO2025168620A1 (en) | 2024-02-07 | 2025-08-14 | Bayer Aktiengesellschaft | Heteroaryl-substituted 4,5-dihydro-1h-2,4,5-oxadiazines as novel fungicides |
Family Cites Families (174)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3597341A (en) | 1968-09-11 | 1971-08-03 | Exxon Research Engineering Co | Selective addition of thiols to allylic isocyanates and isothiocyanates |
| CA962269A (en) | 1971-05-05 | 1975-02-04 | Robert E. Grahame (Jr.) | Thiazoles, and their use as insecticides |
| US4556671A (en) | 1979-07-13 | 1985-12-03 | Burroughs Wellcome Co. | Pharmaceutical formulations |
| US4407803A (en) | 1981-08-17 | 1983-10-04 | Abbott Laboratories | Antiinflammatory 1-(quinolinyl)-2-pyrazoline derivatives |
| FR2517176A1 (en) | 1981-12-01 | 1983-06-03 | Rhone Poulenc Agrochimie | INSECTICIDE AND ACARICIDE ASSOCIATION OF PYRETHROID |
| US4528291A (en) | 1982-06-22 | 1985-07-09 | Schering Corporation | 2-(4'-Pyridinyl)-thiazole compounds and their use in increasing cardiac contractility |
| US4824953A (en) | 1983-11-15 | 1989-04-25 | Riker Laboratories, Inc. | Multi-step process for producing 5-hydroxy-N-(6-oxo-piperidyl-methyl)-2-(2,2,2-trifluoro-ethoxy)-benzamide and derivatives |
| EP0178035B1 (en) | 1984-05-12 | 1990-01-03 | FISONS plc | Anti-inflammatory 1,n-diarylpyrazol-3-amines, compositions containing them and processes for their preparation |
| IT1183181B (en) * | 1985-02-07 | 1987-10-05 | Corvi Camillo Spa | DERIVATIVES OF 3-METHYL-IMIDAZO (4,5-C) PIRAZOLE WITH THERAPEUTIC ACTIVITY AND PROCEDURE FOR THEIR PREPARATION |
| DE3520328A1 (en) | 1985-06-07 | 1986-12-11 | Bayer Ag, 5090 Leverkusen | 5-AMINO-4-HETEROCYCLYL-1-PYRIDYL-PYRAZOLE |
| GB8625897D0 (en) | 1986-10-29 | 1986-12-03 | Ici Plc | Insecticidal thioethers derivatives |
| JPS62153273A (en) | 1985-12-26 | 1987-07-08 | Tokuyama Soda Co Ltd | Pyrazole compound |
| DE3600950A1 (en) | 1986-01-15 | 1987-07-16 | Bayer Ag | 5-ACYLAMIDO-1-ARYL-PYRAZOLE |
| JPS62153273U (en) | 1986-03-19 | 1987-09-29 | ||
| DE3618717A1 (en) | 1986-06-04 | 1987-12-10 | Bayer Ag | 5- ACYLAMINO-PYRAZOLE DERIVATIVES |
| JPH07106964B2 (en) | 1987-01-14 | 1995-11-15 | 株式会社トクヤマ | Fruit picking agent |
| US5599944A (en) | 1987-03-24 | 1997-02-04 | Bayer Aktiengesellschaft | Intermediates for herbicidal sulphonylaminocarbonyltriazolinones having substituents which are bonded via sulphur |
| DE3936622A1 (en) | 1989-11-03 | 1991-05-08 | Bayer Ag | HALOGENED SULFONYLAMINOCARBONYLTRIAZOLINONE |
| JPS63174905U (en) | 1987-04-23 | 1988-11-14 | ||
| JPH089541B2 (en) | 1988-03-07 | 1996-01-31 | 三井東圧化学株式会社 | Brain edema inhibitor containing pyrazoles as the main component |
| US5541337A (en) | 1989-04-13 | 1996-07-30 | Bayer Aktiengesellschaft | Substituted 5-alkoxy-1,2,4-triazol-3-(thi)ones |
| US5241074A (en) | 1988-05-09 | 1993-08-31 | Bayer Aktiengesellschaft | Sulphonylaminocarbonyltriazolinones |
| US5300480A (en) | 1989-04-13 | 1994-04-05 | Bayer Aktiengesellschaft | Herbicidal sulphonylaminocarbonyltriazolinones having two substituents bonded via oxygen |
| US5220028A (en) | 1988-10-27 | 1993-06-15 | Nissan Chemical Industries, Ltd. | Halogeno-4-methylpyrazoles |
| US5534486A (en) | 1991-04-04 | 1996-07-09 | Bayer Aktiengesellschaft | Herbicidal sulphonylaminocarbonyl triazolinones having substituents bonded via oxygen |
| US5366987A (en) | 1991-08-22 | 1994-11-22 | Warner-Lambert Company | Isoxazolyl-substituted alkyl amide ACAT inhibitors |
| TW336932B (en) | 1992-12-17 | 1998-07-21 | Pfizer | Amino-substituted pyrazoles |
| EP0858457A1 (en) | 1995-10-20 | 1998-08-19 | Dr. Karl Thomae GmbH | 5-membered heterocycles, pharmaceutical agents containing said compounds and the use thereof and methods of producing them |
| AU714851B2 (en) | 1996-04-03 | 2000-01-13 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| US5854265A (en) | 1996-04-03 | 1998-12-29 | Merck & Co., Inc. | Biheteroaryl inhibitors of farnesyl-protein transferase |
| TW430660B (en) * | 1996-05-30 | 2001-04-21 | Mochida Pharm Co Ltd | Novel benzindole derivatives for neuron cell protection, processes for production, and the pharmaceutical compounds containing them |
| US5854264A (en) | 1996-07-24 | 1998-12-29 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| EA002057B1 (en) | 1997-04-25 | 2001-12-24 | Пфайзер Инк. | PYRAZOLLOPYRIMIDINONES WHICH INHIBIT TYPE 5 CYCLIC GUANOSINE 3',5'-MONOPHOSPHATE PHOSPHODIESTERASE (cGMP PDES) FOR THE TREATMENT OF SEXUAL DYSFUNCTION |
| DE19725450A1 (en) | 1997-06-16 | 1998-12-17 | Hoechst Schering Agrevo Gmbh | 4-Haloalkyl-3-heterocyclylpyridines and 4-haloalkyl-5-heterocyclylpyrimidines, processes for their preparation, compositions containing them and their use as pesticides |
| US6271237B1 (en) | 1997-12-22 | 2001-08-07 | Dupont Pharmaceuticals Company | Nitrogen containing heteromatics with ortho-substituted P1s as factor Xa inhabitors |
| WO1999062885A1 (en) * | 1998-06-05 | 1999-12-09 | Boehringer Ingelheim Pharmaceuticals, Inc. | Substituted 1-(4-aminophenyl)pyrazoles and their use as anti-inflammatory agents |
| GB9827882D0 (en) | 1998-12-17 | 1999-02-10 | Smithkline Beecham Plc | Novel compounds |
| FR2789076B1 (en) | 1999-02-02 | 2001-03-02 | Synthelabo | ALPHA-AZACYCLOMETHYL QUINOLEINE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION |
| FR2789387B1 (en) | 1999-02-04 | 2001-09-14 | Aventis Cropscience Sa | NEW PROCESS FOR THE PREPARATION OF PESTICIDE INTERMEDIATES |
| HK1046866A1 (en) | 1999-08-12 | 2003-01-30 | 法玛西雅意大利公司 | 3(5)-amino-pyrazole derivatives, process for their preparation and their use as antitumor agents |
| HUP0203160A3 (en) | 1999-11-05 | 2006-02-28 | Warner Lambert Co | Prevention of plaque rupture by acat inhibitors |
| CN1307161A (en) * | 2000-01-26 | 2001-08-08 | 惠阳市沥林国翔瓷砖工艺加工厂 | Net-molded ballast facing and its making method |
| CA2400261C (en) | 2000-02-16 | 2009-07-21 | Ishihara Sangyo Kaisha, Ltd. | Phenacylamine derivatives, process for their production and pesticides containing them |
| GB0011095D0 (en) | 2000-05-08 | 2000-06-28 | Black James Foundation | astrin and cholecystokinin receptor ligands (III) |
| US6645990B2 (en) | 2000-08-15 | 2003-11-11 | Amgen Inc. | Thiazolyl urea compounds and methods of uses |
| EP1329160A4 (en) | 2000-08-25 | 2004-04-14 | Sankyo Co | 4-ACYLAMINOPYRAZOL DERIVATIVES |
| WO2002024656A1 (en) | 2000-09-22 | 2002-03-28 | Nihon Nohyaku Co., Ltd. | N-(4-pyrazolyl)amide derivatives, chemicals for agricultural and horticultural use, and usage of the same |
| US20020134012A1 (en) | 2001-03-21 | 2002-09-26 | Monsanto Technology, L.L.C. | Method of controlling the release of agricultural active ingredients from treated plant seeds |
| AU2002246397B2 (en) | 2001-04-16 | 2005-03-24 | Tanabe Seiyaku Co., Ltd. | Imidazole, thiazole and oxazole derivatives and their use for the manufacture of a medicament for the treatment and/or prevention of pollakiuria or urinary incontinence |
| EP1256578B1 (en) | 2001-05-11 | 2006-01-11 | Pfizer Products Inc. | Thiazole derivatives and their use as cdk inhibitors |
| DE60204823T2 (en) | 2001-07-05 | 2005-12-29 | Pfizer Products Inc., Groton | Heterocyclo-alkylsulfonyl-pyrazoles as anti-inflammatory / analgesic agents |
| FR2827603B1 (en) | 2001-07-18 | 2003-10-17 | Oreal | COMPOUNDS DERIVED FROM DIAMINOPYRAZOLE SUBSTITUTED BY A HETEROAROMATIC RADICAL AND THEIR USE IN OXIDATION DYES OF KERATINIC FIBERS |
| TWI356822B (en) * | 2001-08-13 | 2012-01-21 | Du Pont | Novel substituted dihydro 3-halo-1h-pyrazole-5-car |
| GB0123589D0 (en) | 2001-10-01 | 2001-11-21 | Syngenta Participations Ag | Organic compounds |
| ATE371648T1 (en) | 2001-12-20 | 2007-09-15 | Sds Biotech Corp | NEW SUBSTITUTED PYRAZOLE DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND HERBICIDE COMPOSITION CONTAINING SAME |
| US6936629B2 (en) | 2001-12-21 | 2005-08-30 | Virochem Pharma Inc. | Compounds and methods for the treatment or prevention of flavivirus infections |
| US6878196B2 (en) | 2002-01-15 | 2005-04-12 | Fuji Photo Film Co., Ltd. | Ink, ink jet recording method and azo compound |
| JP2003212864A (en) | 2002-01-24 | 2003-07-30 | Sankyo Co Ltd | 5-(m-cyanobenzylamino)thiazole derivative |
| WO2003072102A1 (en) | 2002-02-25 | 2003-09-04 | Eli Lilly And Company | Peroxisome proliferator activated receptor modulators |
| JP2004051628A (en) | 2002-05-28 | 2004-02-19 | Ishihara Sangyo Kaisha Ltd | Pyridine-based compound or its salt, method for producing the same, and herbicide containing the same |
| JP2006501200A (en) | 2002-07-23 | 2006-01-12 | スミスクライン ビーチャム コーポレーション | Pyrazolopyrimidines as kinase inhibitors |
| US6737382B1 (en) | 2002-10-23 | 2004-05-18 | Nippon Soda Co. Ltd. | Insecticidal aminothiazole derivatives |
| AU2003288956A1 (en) | 2002-10-30 | 2004-06-07 | Vertex Pharmaceuticals Incorporated | Compositions useful as inhibitors of rock and other protein kinases |
| ES2436746T3 (en) | 2002-12-03 | 2014-01-07 | Merial Limited | Pesticide derivatives of 5- (acylamino) pyrazole |
| US7429581B2 (en) | 2002-12-23 | 2008-09-30 | Sanofi-Aventis Deutschland Gmbh | Pyrazole-derivatives as factor Xa inhibitors |
| JP4397615B2 (en) | 2003-03-27 | 2010-01-13 | 富士フイルム株式会社 | Inkjet ink and ink set |
| GB0312654D0 (en) | 2003-06-03 | 2003-07-09 | Glaxo Group Ltd | Therapeutically useful compounds |
| WO2005028410A1 (en) * | 2003-09-19 | 2005-03-31 | Ube Industries, Ltd. | Method for producing nitrile compound, carboxylic acid compound or carboxylate compound |
| CN100432038C (en) * | 2003-09-19 | 2008-11-12 | 宇部兴产株式会社 | Method for producing nitrile compound, carboxylic acid compound or carboxylic ester compound |
| US7514464B2 (en) | 2003-12-18 | 2009-04-07 | Pfizer Limited | Substituted arylpyrazoles |
| US7319108B2 (en) | 2004-01-25 | 2008-01-15 | Sanofi-Aventis Deutschland Gmbh | Aryl-substituted heterocycles, process for their preparation and their use as medicaments |
| DE102004003812A1 (en) | 2004-01-25 | 2005-08-11 | Aventis Pharma Deutschland Gmbh | Aryl-substituted heterocycles, methods of their preparation and their use as pharmaceuticals |
| US7297168B2 (en) | 2004-02-02 | 2007-11-20 | The Procter & Gamble Company | Keratin dyeing compounds, keratin dyeing compositions containing them, and use thereof |
| US7687533B2 (en) | 2004-03-18 | 2010-03-30 | Pfizer Inc. | N-(1-arylpyrazol-4l) sulfonamides and their use as parasiticides |
| US20070167426A1 (en) | 2004-06-02 | 2007-07-19 | Schering Corporation | Compounds for the treatment of inflammatory disorders and microbial diseases |
| JO2540B1 (en) | 2004-07-01 | 2010-09-05 | اي.اي.ديو بونت دي نيمورز اند كومباني | Synergistic Mixtures of Anthranilamide Invertebrate Pest Control Agents |
| WO2006023462A1 (en) | 2004-08-23 | 2006-03-02 | Eli Lilly And Company | Histamine h3 receptor agents, preparation and therapeutic uses |
| US20080076771A1 (en) | 2004-09-23 | 2008-03-27 | Reiter Lawrence A | Thrombopoietin Receptor Agonists |
| CA2585623C (en) | 2004-10-27 | 2012-06-05 | Daiichi Sankyo Company Limited | Ortho-substituted benzene derivatives |
| EP2942349A1 (en) | 2004-12-23 | 2015-11-11 | Deciphera Pharmaceuticals, LLC | Enzyme modulators and treatments |
| CN101137653B (en) | 2005-01-14 | 2012-05-09 | 弗·哈夫曼-拉罗切有限公司 | Thiazole-4-carboxamide derivatives as MGLUR5 antagonists |
| AU2006228690A1 (en) | 2005-03-31 | 2006-10-05 | Ucb Pharma S.A. | Compounds comprising an oxazole or thiazole moiety, processes for making them, and their uses |
| CA2612287C (en) | 2005-06-15 | 2011-01-25 | Pfizer Limited | Substituted arylpyrazoles for use against parasites |
| US7608592B2 (en) | 2005-06-30 | 2009-10-27 | Virobay, Inc. | HCV inhibitors |
| KR100654328B1 (en) * | 2005-08-26 | 2006-12-08 | 한국과학기술연구원 | Piperazinylalkylpyrazole-Based T-type Calcium Channel Inhibiting Compounds and Method for Preparing the Same |
| EP1991528A2 (en) | 2006-01-18 | 2008-11-19 | Siena Biotech S.p.A. | Modulators of alpha7 nicotinic acetylcholine receptors and therapeutic uses thereof |
| EP1983980A4 (en) | 2006-01-25 | 2010-05-05 | Synta Pharmaceuticals Corp | Thiazole and thiadiazole compounds for inflammation and immune-related uses |
| CN101541783B (en) | 2006-06-30 | 2014-10-01 | 苏尼西斯制药有限公司 | Pyridinone-based PDK1 inhibitors |
| US20090325956A1 (en) | 2006-10-13 | 2009-12-31 | Takahiko Taniguchi | Aromatic amine derivative and use thereof |
| JO2754B1 (en) * | 2006-12-21 | 2014-03-15 | استرازينكا ايه بي | Indazolyl amide derivatives for the treatment of glucocorticoid receptor mediated disorders |
| US7795249B2 (en) | 2006-12-22 | 2010-09-14 | Millennium Pharmaceuticals, Inc. | Certain pyrazoline derivatives with kinase inhibitory activity |
| GB0701426D0 (en) | 2007-01-25 | 2007-03-07 | Univ Sheffield | Compounds and their use |
| US20090069288A1 (en) | 2007-07-16 | 2009-03-12 | Breinlinger Eric C | Novel therapeutic compounds |
| EP2173728A2 (en) | 2007-07-17 | 2010-04-14 | Amgen Inc. | Heterocyclic modulators of pkb |
| EP2178845B1 (en) | 2007-07-17 | 2013-06-19 | F. Hoffmann-La Roche AG | Inhibitors of 11b-hydroxysteroid dehydrogenase |
| WO2009015193A1 (en) | 2007-07-23 | 2009-01-29 | Replidyne, Inc. | Antibacterial sulfone and sulfoxide substituted heterocyclic urea compounds |
| CN101918389A (en) | 2007-11-02 | 2010-12-15 | 梅特希尔基因公司 | Histone deacetylase inhibitor |
| WO2009076454A2 (en) | 2007-12-12 | 2009-06-18 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
| US8178658B2 (en) * | 2008-02-12 | 2012-05-15 | Dow Agrosciences, Llc | Pesticidal compositions |
| WO2009102035A1 (en) | 2008-02-15 | 2009-08-20 | Asahi Kasei E-Materials Corporation | Resin composition |
| EP2278969B1 (en) | 2008-04-21 | 2013-02-13 | Merck Sharp & Dohme Corp. | Inhibitors of Janus kinases |
| ES2524045T3 (en) | 2008-06-13 | 2014-12-03 | Bayer Cropscience Ag | New amides and heteroaromatic thioamides as pesticides |
| TW201004941A (en) | 2008-07-16 | 2010-02-01 | Wyeth Corp | Alpha7 nicotinic acetylcholine receptor inhibitors |
| BRPI0916218B1 (en) | 2008-07-17 | 2018-11-27 | Bayer Cropscience Ag | heterocyclic compounds as pesticides compositions |
| JP2010030970A (en) | 2008-07-31 | 2010-02-12 | Bayer Cropscience Ag | Insecticidal benzenedicarboxamide derivative |
| WO2010032874A1 (en) | 2008-09-19 | 2010-03-25 | 住友化学株式会社 | Composition for agricultural use |
| US20110190285A1 (en) | 2008-09-19 | 2011-08-04 | Absolute Science, Inc. | Methods of treating a botulinum toxin related condition in a subject |
| GB0817617D0 (en) | 2008-09-25 | 2008-11-05 | Ricardo Uk Ltd | Bearing for wind turbine |
| AR073949A1 (en) | 2008-10-21 | 2010-12-15 | Metabolex Inc | ARON-GPR120 RECEIVER AGONISTS AND USES OF THE SAME |
| CN101747276B (en) | 2008-11-28 | 2011-09-07 | 中国中化股份有限公司 | Ether compound with nitrogenous quinary alloy and application thereof |
| EP2367824B1 (en) | 2008-12-23 | 2016-03-23 | AbbVie Inc. | Anti-viral derivatives of pyrimidine |
| MX2011008470A (en) | 2009-02-11 | 2011-09-15 | Dow Agrosciences Llc | Pesticidal compositions. |
| WO2010093849A2 (en) | 2009-02-13 | 2010-08-19 | Amgen Inc. | Phenylalanine amide derivatives useful for treating insulin-related diseases and conditions |
| GB0904100D0 (en) | 2009-03-10 | 2009-04-22 | Bradford Pharma Ltd | Use of rosuvastatin lactols as medicaments |
| UA107791C2 (en) | 2009-05-05 | 2015-02-25 | Dow Agrosciences Llc | Pesticidal compositions |
| JP2012527414A (en) | 2009-05-19 | 2012-11-08 | バイエル・クロップサイエンス・アーゲー | Insecticidal arylpyrroline |
| FI20095678A0 (en) | 2009-06-16 | 2009-06-16 | Biotie Therapies Oy | Urea substituted sulfonamide derivatives |
| UA110324C2 (en) | 2009-07-02 | 2015-12-25 | Genentech Inc | Jak inhibitory compounds based on pyrazolo pyrimidine |
| US20120101294A1 (en) | 2009-08-10 | 2012-04-26 | Masaji Hirota | Process for producing (fluoroalkylthio) acetic acid ester |
| JP2012254939A (en) | 2009-10-07 | 2012-12-27 | Astellas Pharma Inc | Oxazole compound |
| AR078576A1 (en) | 2009-10-12 | 2011-11-16 | Bayer Cropscience Ag | AMIDAS AND THIOAMIDES OF DIAZOL USEFUL TO COMBAT ANIMAL PARASITES, IN PARTICULAR INSECTS AND PROCEDURE TO PREPARE THEM. |
| IN2012DN02679A (en) | 2009-10-12 | 2015-09-04 | Bayer Cropscience Ag | |
| CA2787365A1 (en) | 2010-01-25 | 2011-07-28 | Chdi Foundation, Inc. | Certain kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
| US9714228B2 (en) | 2010-02-22 | 2017-07-25 | Syngenta Participations Ag | Dihydrofuran derivatives as insecticidal compounds |
| RU2639876C2 (en) | 2010-03-30 | 2017-12-25 | Версеон Корпорейшн | Multi-substituted aromatic compounds as thrombin inhibitors |
| EP2558458B1 (en) | 2010-04-16 | 2017-09-06 | Bayer Intellectual Property GmbH | Novel heterocyclic compounds as pest control agents |
| EP2382865A1 (en) | 2010-04-28 | 2011-11-02 | Bayer CropScience AG | Synergistic active agent compounds |
| EP2566865B1 (en) | 2010-05-05 | 2014-06-25 | Bayer Intellectual Property GmbH | Thiazole derivatives as pest controller |
| SG10201505022WA (en) | 2010-06-24 | 2015-07-30 | Gilead Sciences Inc | Pyrazolo [1, 5 -a] pyrimidines as antiviral agents |
| KR20130088138A (en) | 2010-06-28 | 2013-08-07 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | Heteroaryl-substituted pyridine compounds for use as pesticides |
| JP2013530199A (en) | 2010-07-06 | 2013-07-25 | ノバルティス アーゲー | Cyclic ether compounds useful as kinase inhibitors |
| ES2603032T3 (en) | 2010-07-15 | 2017-02-23 | Bayer Intellectual Property Gmbh | 3-Pyridyl-heteroarylcarboxamide compounds as pesticides |
| AP3445A (en) | 2010-08-31 | 2015-10-31 | Dow Agrosciences Llc | Pesticidal compositions |
| JP2012082186A (en) | 2010-09-15 | 2012-04-26 | Bayer Cropscience Ag | Insecticidal arylpyrrolidines |
| EP2630133A1 (en) | 2010-10-22 | 2013-08-28 | Bayer Intellectual Property GmbH | Novel heterocyclic compounds as pesticides |
| EP2635123A4 (en) | 2010-11-03 | 2014-04-16 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| AU2011323617B2 (en) * | 2010-11-03 | 2015-02-05 | Corteva Agriscience Llc | Pesticidal compositions and processes related thereto |
| WO2012070114A1 (en) | 2010-11-24 | 2012-05-31 | 塩野義製薬株式会社 | Sulfamide derivative having npy y5 receptor antagonism |
| WO2012102387A1 (en) | 2011-01-27 | 2012-08-02 | 日産化学工業株式会社 | Pyrazole derivative and pest control agent |
| BR112013020282A2 (en) | 2011-02-09 | 2017-07-18 | Nissan Chemical Ind Ltd | pyrazole derivative and control agent |
| JP2012188418A (en) | 2011-02-22 | 2012-10-04 | Nissan Chem Ind Ltd | Triazole derivative, and pest control agent |
| TW201238487A (en) | 2011-02-25 | 2012-10-01 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| JP2013107867A (en) | 2011-04-21 | 2013-06-06 | Nissan Chem Ind Ltd | Pyrazole derivative and pest controlling agent |
| WO2012147107A2 (en) | 2011-04-29 | 2012-11-01 | Msn Laboratories Limited | Novel & improved processes for the preparation of indoline derivatives and its pharmaceutical composition |
| EP2532661A1 (en) | 2011-06-10 | 2012-12-12 | Syngenta Participations AG | Novel insecticides |
| EP2540718A1 (en) | 2011-06-29 | 2013-01-02 | Syngenta Participations AG. | Novel insecticides |
| TWI561511B (en) | 2011-07-12 | 2016-12-11 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| AU2012285974A1 (en) | 2011-07-15 | 2014-01-30 | Basf Se | Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests II |
| JP2013075871A (en) | 2011-09-30 | 2013-04-25 | Nissan Chem Ind Ltd | Thiazole derivative and pest controller |
| JP2013082699A (en) | 2011-09-30 | 2013-05-09 | Nissan Chem Ind Ltd | Pyrazole derivative and pest control agent |
| JP2013082704A (en) | 2011-09-30 | 2013-05-09 | Nissan Chem Ind Ltd | Thiazole derivative and pest control agent |
| CA2852688C (en) * | 2011-10-26 | 2021-06-29 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| AU2012329044A1 (en) | 2011-10-26 | 2014-04-17 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| DE102011085492A1 (en) | 2011-10-31 | 2013-05-02 | Evonik Goldschmidt Gmbh | New amino group-containing siloxanes, process for their preparation and use |
| JP2013129651A (en) | 2011-11-22 | 2013-07-04 | Nissan Chem Ind Ltd | Thiazole derivative and pest control agent |
| JP2013129653A (en) | 2011-11-22 | 2013-07-04 | Nissan Chem Ind Ltd | Triazole derivative and pest control agent |
| WO2013156433A1 (en) | 2012-04-17 | 2013-10-24 | Syngenta Participations Ag | Insecticidally active thiazole derivatives |
| WO2013156431A1 (en) | 2012-04-17 | 2013-10-24 | Syngenta Participations Ag | Pesticidally active pyridyl- and pyrimidyl- substituted thiazole and thiadiazole derivatives |
| CA2870090A1 (en) | 2012-04-27 | 2013-10-31 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
| EP2855466B1 (en) | 2012-06-04 | 2016-11-09 | Dow AgroSciences LLC | Processes to produce certain 2-(pyridine-3-yl)thiazoles |
| CA2874110C (en) | 2012-06-04 | 2020-07-14 | Dow Agrosciences Llc | Processes to produce certain 2-(pyridine-3-yl)thiazoles |
| US9108932B2 (en) | 2013-03-13 | 2015-08-18 | Dow Agrosciences Llc | Preparation of haloalkoxyarylhydrazines and intermediates therefrom |
| US9085564B2 (en) | 2013-10-17 | 2015-07-21 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| EP3057426A4 (en) | 2013-10-17 | 2017-03-29 | Dow AgroSciences LLC | Processes for the preparation of pesticidal compounds |
| EP3057425A4 (en) | 2013-10-17 | 2017-08-02 | Dow AgroSciences LLC | Processes for the preparation of pesticidal compounds |
| US9108946B2 (en) | 2013-10-17 | 2015-08-18 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| JP2016535010A (en) | 2013-10-17 | 2016-11-10 | ダウ アグロサイエンシィズ エルエルシー | Method for producing pest control compound |
| EP3057427B1 (en) | 2013-10-17 | 2018-07-18 | Dow AgroSciences LLC | Processes for the preparation of pesticidal compounds |
| WO2015058028A1 (en) | 2013-10-17 | 2015-04-23 | Dow Agrosciences Llc | Processes for the preparation of pesticidal compounds |
| CN106470976A (en) | 2014-07-31 | 2017-03-01 | 美国陶氏益农公司 | The method of preparation 3 (3 chlorine 1H pyrazoles 1 base) pyridine |
| JP2017523163A (en) | 2014-07-31 | 2017-08-17 | ダウ アグロサイエンシィズ エルエルシー | Method for producing 3- (3-chloro-1H-pyrazol-1-yl) pyridine |
| WO2016018443A1 (en) | 2014-07-31 | 2016-02-04 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine |
| CA2958058A1 (en) | 2014-08-19 | 2016-02-25 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine |
| CA2960985A1 (en) | 2014-09-12 | 2016-03-17 | Dow Agrosciences Llc | Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine |
-
2014
- 2014-10-17 WO PCT/US2014/061027 patent/WO2015058028A1/en not_active Ceased
- 2014-10-17 US US14/517,587 patent/US9102654B2/en not_active Expired - Fee Related
- 2014-10-17 JP JP2016523965A patent/JP2016539092A/en active Pending
- 2014-10-17 EP EP14854656.7A patent/EP3057430A4/en not_active Withdrawn
- 2014-10-17 CN CN201480056340.4A patent/CN105636441B/en not_active Expired - Fee Related
- 2014-10-17 KR KR1020167012456A patent/KR20160072154A/en not_active Withdrawn
- 2014-10-17 MX MX2016004942A patent/MX2016004942A/en unknown
- 2014-10-17 CA CA2925595A patent/CA2925595A1/en not_active Abandoned
-
2015
- 2015-05-21 US US14/718,627 patent/US9255083B2/en not_active Expired - Fee Related
-
2016
- 2016-01-06 US US14/988,786 patent/US9434712B2/en not_active Expired - Fee Related
- 2016-04-04 IL IL244885A patent/IL244885A0/en unknown
- 2016-07-29 US US15/223,142 patent/US9670178B2/en not_active Expired - Fee Related
-
2017
- 2017-04-27 US US15/498,691 patent/US9862702B2/en not_active Expired - Fee Related
- 2017-12-08 US US15/835,795 patent/US20180099945A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| WO2015058028A1 (en) | 2015-04-23 |
| CA2925595A1 (en) | 2015-04-23 |
| CN105636441A (en) | 2016-06-01 |
| IL244885A0 (en) | 2016-05-31 |
| US20170226078A1 (en) | 2017-08-10 |
| US20150112077A1 (en) | 2015-04-23 |
| US9862702B2 (en) | 2018-01-09 |
| JP2016539092A (en) | 2016-12-15 |
| US20160137625A1 (en) | 2016-05-19 |
| EP3057430A1 (en) | 2016-08-24 |
| CN105636441B (en) | 2018-06-15 |
| US9670178B2 (en) | 2017-06-06 |
| KR20160072154A (en) | 2016-06-22 |
| US9102654B2 (en) | 2015-08-11 |
| US9255083B2 (en) | 2016-02-09 |
| US20160332987A1 (en) | 2016-11-17 |
| US9434712B2 (en) | 2016-09-06 |
| EP3057430A4 (en) | 2017-09-13 |
| US20150252018A1 (en) | 2015-09-10 |
| WO2015058028A8 (en) | 2015-12-30 |
| MX2016004942A (en) | 2016-06-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9862702B2 (en) | Processes for the preparation of pesticidal compounds | |
| US9580405B2 (en) | Processes for the preparation of pesticidal compounds | |
| US9908864B2 (en) | Processes for the preparation of pesticidal compounds | |
| US10315999B2 (en) | Processes for the preparation of pesticidal compounds | |
| US9029554B1 (en) | Processes for the preparation of pesticidal compounds |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |