US20180048430A1 - Device and Method of Handling Hybrid Automatic Repeat Request Timing - Google Patents
Device and Method of Handling Hybrid Automatic Repeat Request Timing Download PDFInfo
- Publication number
- US20180048430A1 US20180048430A1 US15/674,507 US201715674507A US2018048430A1 US 20180048430 A1 US20180048430 A1 US 20180048430A1 US 201715674507 A US201715674507 A US 201715674507A US 2018048430 A1 US2018048430 A1 US 2018048430A1
- Authority
- US
- United States
- Prior art keywords
- harq
- communication device
- network
- minimum timing
- tti
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 67
- 238000004891 communication Methods 0.000 claims abstract description 99
- 230000004044 response Effects 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims description 59
- 230000005540 biological transmission Effects 0.000 claims description 21
- 230000002776 aggregation Effects 0.000 claims description 2
- 238000004220 aggregation Methods 0.000 claims description 2
- 239000000969 carrier Substances 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 4
- 208000037918 transfusion-transmitted disease Diseases 0.000 description 4
- 230000004075 alteration Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1822—Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1854—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1887—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
Definitions
- the present invention relates to a communication device and a method used in a wireless communication system, and more particularly, to a communication device and a method of handling a Hybrid Automatic Repeat Request (HARQ) timing in a wireless communication system.
- HARQ Hybrid Automatic Repeat Request
- a radio access network known as an evolved universal terrestrial radio access network (E-UTRAN) includes at least one evolved Node-B (eNB) for communicating with at least one user equipment (UE), and for communicating with a core network including a mobility management entity (MME), a serving gateway (S-GW), etc., for Non-Access Stratum (NAS) control.
- E-UTRAN evolved universal terrestrial radio access network
- MME mobility management entity
- S-GW serving gateway
- NAS Non-Access Stratum
- the present invention therefore provides a communication device and method for handling a Hybrid Automatic Repeat Request (HARQ) timing in a wireless communication system to solve the abovementioned problem.
- HARQ Hybrid Automatic Repeat Request
- a communication device for handling a HARQ timing comprises a storage device for storing instructions and a processing circuit coupled to the storage device.
- the processing circuit is configured to execute the instructions stored in the storage device.
- the instructions comprise communicating with a network according to a first HARQ minimum timing; transmitting a first message comprising an indication of support of a second HARQ minimum timing to the network according to the first HARQ minimum timing, wherein the first HARQ minimum timing is greater than the second HARQ minimum timing; receiving a second message configuring the second HARQ minimum timing from the network according to the first HARQ minimum timing; and communicating with the network according to the second HARQ minimum timing in response to the second message.
- a communication device for handling a HARQ timing comprises a storage device for storing instructions and a processing circuit coupled to the storage device.
- the processing circuit is configured to execute the instructions stored in the storage device.
- the instructions comprise communicating with a network according to a first HARQ minimum timing and a first downlink (DL) control information (DCI) received from the network; and communicating with the network according to a second HARQ minimum timing and a second DCI received from the network.
- DCI downlink
- Abase station (BS) comprised in a network for handling a HARQ timing for a communication device comprises a storage device for storing instructions and a processing circuit coupled to the storage device.
- the processing circuit is configured to execute the instructions stored in the storage device.
- the instructions comprise communicating with the communication device according to a first HARQ minimum timing; receiving a first message comprising an indication of support of a second HARQ minimum timing from the communication device according to the first HARQ minimum timing, wherein the first HARQ minimum timing is greater than the second HARQ minimum timing; transmitting a second message configuring the second HARQ minimum timing to the communication device according to the first HARQ minimum timing in response to the first message; and communicating with the communication device according to the second HARQ minimum timing, when configuring the second HARQ minimum timing to the communication device.
- a BS comprised in a network for handling a HARQ timing for a communication device comprises a storage device for storing instructions and a processing circuit coupled to the storage device.
- the processing circuit is configured to execute the instructions stored in the storage device.
- the instructions comprise transmitting a first DCI for communicating with the communication device according to a first HARQ minimum timing; and transmitting a second DCI for communicating with the communication device according to a second HARQ minimum timing.
- FIG. 1 is a schematic diagram of a wireless communication system according to an example of the present invention.
- FIG. 2 is a schematic diagram of a communication device according to an example of the present invention.
- FIG. 3 is a flowchart of a process according to an example of the present invention.
- FIG. 4 is a flowchart of a process according to an example of the present invention.
- FIG. 5 is a flowchart of a process according to an example of the present invention.
- FIG. 6 is a flowchart of a process according to an example of the present invention.
- FIG. 1 is a schematic diagram of a wireless communication system 10 according to an example of the present invention.
- the wireless communication system 10 is briefly composed of a network and a plurality of communication devices.
- the network and the communication devices are simply utilized for illustrating the structure of the wireless communication system 10 .
- the network may be a universal terrestrial radio access network (UTRAN) including at least one Node-B (NB) and/or a Radio Network Controller (RNC) in a universal mobile telecommunications system (UMTS).
- UTRAN universal terrestrial radio access network
- NB Node-B
- RNC Radio Network Controller
- UMTS universal mobile telecommunications system
- the network may include an evolved universal terrestrial radio access network (E-UTRAN) comprising at least one evolved NB (eNB).
- E-UTRAN evolved universal terrestrial radio access network
- eNB evolved NB
- the network may include a fifth generation (5G) network including at least one 5G base station (BS) (e.g. gNB) which employs orthogonal frequency-division multiplexing (OFDM) and/or non-OFDM, wide bandwidth (e.g., 100 MHz) and transmission time interval smaller than 1 millisecond (ms) (e.g., 100 or 200 microseconds), to communication with the communication devices.
- BS 5G base station
- gNB 5G base station
- OFDM orthogonal frequency-division multiplexing
- ms millisecond
- a BS may also be used to refer to the eNB or the 5G BS.
- a communication device may be a user equipment (UE), a machine type communication (MTC) device, a mobile phone, a laptop, a tablet computer, an electronic book, a portable computer system, a vehicle, or an aircraft.
- the network and the communication device can be seen as a transmitter or a receiver according to direction (i.e., transmission direction), e.g., for an uplink (UL), the communication device is the transmitter and the network is the receiver, and for a downlink (DL), the network is the transmitter and the communication device is the receiver.
- direction i.e., transmission direction
- FIG. 2 is a schematic diagram of a communication device 20 according to an example of the present invention.
- the communication device 20 may be a communication device or the network shown in FIG. 1 , but is not limited herein.
- the communication device 20 may include a processing circuit 200 such as a microprocessor or Application Specific Integrated Circuit (ASIC), a storage device 210 and a communication interfacing device 220 .
- the storage device 210 may be any data storage device that may store a program code 214 , accessed and executed by the processing circuit 200 .
- Examples of the storage device 210 include but are not limited to a subscriber identity module (SIM), read-only memory (ROM), flash memory, random-access memory (RAM), hard disk, optical data storage device, non-volatile storage device, non-transitory computer-readable medium (e.g., tangible media), etc.
- SIM subscriber identity module
- ROM read-only memory
- RAM random-access memory
- the communication interfacing device 220 includes a transceiver transmitting and receiving signals (e.g., data, signals, messages and/or packets) according to processing results of the processing circuit 200 .
- a UE is used to represent a communication device in FIG. 1 , to simplify the illustration of the embodiments.
- FIG. 3 is a flowchart of a process 30 according to an example of the present invention.
- the process 30 is utilized in a UE, to handling a Hybrid Automatic Repeat Request (HARQ) timing and includes the following steps:
- Step 300 Start.
- Step 302 Communicate with a network according to a first HARQ minimum timing.
- Step 304 Transmit a first message comprising an indication of support of a second HARQ minimum timing to the network according to the first HARQ minimum timing, wherein the first HARQ minimum timing is greater than the second HARQ minimum timing.
- Step 306 Receive a second message configuring the second HARQ minimum timing from the network according to the first HARQ minimum timing.
- Step 308 Communicate with the network according to the second HARQ minimum timing in response to the second message.
- Step 310 End.
- the UE and the network synchronize with each other according to the reduced HARQ minimum timing (e.g., the second HARQ minimum timing).
- the reduced HARQ minimum timing e.g., the second HARQ minimum timing
- Realization of the process 30 is not limited to the above description. The following examples may be applied to the process 30 .
- the UE establishes a radio resource control (RRC) connection with the network, when communicating with the network according to the first HARQ minimum timing. Then, the UE transmits the first message via the RRC connection to the network.
- RRC radio resource control
- the indication of the support of the second HARQ minimum timing is applied for a plurality of component carriers (CCs) in a carrier aggregation (CA) or a dual connectivity (DC).
- CCs component carriers
- CA carrier aggregation
- DC dual connectivity
- the indication of the support of the second HARQ minimum timing is applied for UL CCs or DL CCs in the CA or the DC.
- the indication of the support of the second HARQ minimum timing is specific to a CC.
- the indication of the support of the second HARQ minimum timing is specific to a UL, a DL or both the UL and the DL.
- the first HARQ minimum timing may be a first interval between a first transmission time interval (TTI) (e.g., n-th TTI) in which the UE receives a first UL grant from the network and a second TTI (e.g., (n+k)-th TTI) in which the UE transmits first UL data according to the first UL grant to the network.
- TTI transmission time interval
- n+k second TTI
- the second HARQ minimum timing may be a second interval between a third TTI (e.g., m-th TTI) in which the UE receives a second UL grant from the network and a fourth TTI (e.g., (m+k′)-th TTI) in which the UE transmits second UL data according to the second UL grant to the network.
- a third TTI e.g., m-th TTI
- a fourth TTI e.g., (m+k′)-th TTI
- the UE may receive the first UL grant in a first DL control information (DCI) with a first cyclic redundancy check (CRC) scrambled with a Cell Radio Network Temporary Identifier (C-RNTI) of the UE on a first physical DL control channel (PDCCH) or a first enhanced PDCCH (EPDCCH) (hereafter, a PDCCH refers a PDCCH or an EPDCCH).
- DCI first DL control information
- CRC cyclic redundancy check
- C-RNTI Cell Radio Network Temporary Identifier
- PDCCH Physical DL control channel
- EPDCCH enhanced PDCCH
- the UE may receive the second UL grant in a second DCI with a second CRC scrambled with the C-RNTI of the UE on a second PDCCH.
- formats of the first DCI and the second DCI are the same or different.
- the first HARQ minimum timing may be a first interval between a first TTI (e.g., a-th TTI) in which the UE transmits first UL data according to a first HARQ process and a first UL grant to the network and a second TTI (e.g., (a+j)-th TTI) in which the UE receives a first HARQ feedback indicating whether the first UL data is received or not or in which the UE receives a second UL grant from the network.
- a first TTI e.g., a-th TTI
- a second TTI e.g., (a+j)-th TTI
- the second HARQ minimum timing may be a second interval between a third TTI (e.g., b-th TTI) in which the UE transmits second UL data according to a second HARQ process and a third UL grant to the network and a fourth TTI (e.g., (b+j′)-th TTI) in which the UE receives a second HARQ feedback indicating whether the second UL data is received or not or in which the UE receives a fourth UL grant from the network.
- the UE may receive the first UL grant in a first DCI with a first CRC scrambled with a first C-RNTI of the UE on a first PDCCH.
- the UE may receive the second UL grant in a second DCI with a second CRC scrambled with the first C-RNTI of the UE on a second PDCCH, wherein formats of the first DCI and the second DCI are the same.
- the UE may receive the first HARQ feedback on a physical hybrid-ARQ indicator channel (PHICH).
- PHICH physical hybrid-ARQ indicator channel
- the UE may receive the third UL grant in a third DCI with a third CRC scrambled with a second C-RNTI of the UE on a third PDCCH.
- the UE may receive the fourth UL grant in a fourth DCI with a fourth CRC scrambled with the second C-RNTI of the UE on a fourth PDCCH.
- the first C-RNTI and the second C-RNTI are the same, and formats of the third DCI and the fourth DCI are the same but different form the formats of the first DCI and the second DCI.
- the first C-RNTI and the second C-RNTI are different, and formats of the third DCI and the fourth DCI are the same as the formats of the first DCI and the second DCI.
- the first HARQ minimum timing may be a first interval between a first TTI (e.g., c-th TTI) in which the UE intends to receive first DL data according to a first DL assignment from the network and a second TTI (e.g., (c+i)-th TTI) in which the UE transmits a first HARQ feedback indicating whether the first DL data is received or not to the network.
- a first TTI e.g., c-th TTI
- a second TTI e.g., (c+i)-th TTI
- the second HARQ minimum timing may be a second interval between a third TTI (e.g., d-th TTI) in which the UE intends to receive second DL data according to a second DL assignment from the network and a fourth TTI (e.g., (d+i′)-th TTI) in which the UE transmits a second HARQ feedback indicating whether the second DL data is received or not to the network.
- a third TTI e.g., d-th TTI
- a fourth TTI e.g., (d+i′)-th TTI
- the UE may receive the first DL assignment in a first DCI with a first CRC scrambled with a first C-RNTI of the UE on a first PDCCH.
- the UE may receive the second DL assignment in a second DCI with a second CRC scrambled with a second C-RNTI of the UE on a second PDCCH.
- the first C-RNTI and the second C-RNTI are the same or different. Formats of the first DCI and the second DCI are the same or different.
- the first C-RNTI and the second C-RNTI are the same, and the formats of the first DCI and the second DCI are different.
- the first C-RNTI and the second C-RNTI are different, and the formats of the first DCI and the second DCI are the same.
- the first HARQ minimum timing may be a first interval between a first TTI (e.g., e-th TTI) in which the UE transmits a first HARQ feedback indicating whether first DL data is received or not to the network and a second TTI (e.g., (e+q)-th TTI) in which the UE receives a first DL assignment from the network.
- a first TTI e.g., e-th TTI
- a second TTI e.g., (e+q)-th TTI
- the second HARQ minimum timing may be a second interval between a third TTI (e.g., f-th TTI) in which the UE transmits a second HARQ feedback indicating whether second DL data is received or not to the network and a fourth TTI (e.g., (f+q′)-th TTI) in which the UE receives a second DL assignment from the network.
- the UE may receive the first DL assignment in a first DCI with a first CRC scrambled with a first C-RNTI of the UE on a first PDCCH.
- the UE may receive the second DL assignment in a second DCI with a second CRC scrambled with a second C-RNTI of the UE on a second PDCCH.
- the first C-RNTI and the second C-RNTI are the same or different. Formats of the first DCI and the second DCI are the same or different. In one example, the first C-RNTI and the second C-RNTI are the same, and the formats of the first DCI and the second DCI are different. In another example, the first C-RNTI and the second C-RNTI are different, and the formats of the first DCI and the second DCI are the same.
- k, j, i and q may be a same value or different values.
- the UE may not communicate with the network according to the first HARQ minimum timing, i.e., the UE may not use the first HARQ minimum timing anymore, when the UE is configured to communicate with the network according to the second HARQ minimum timing.
- the UE may communicate with the network according to at least one of the first HARQ minimum timing and the second HARQ minimum timing, when the UE is configured to communicate with the network according to the second HARQ minimum timing.
- the UE uses the first HARQ minimum timing or the second HARQ minimum timing according to a DCI or a C-RNTI.
- the DCI and the C-RNTI can be referred to the previous description, and are not narrated herein.
- the UE may monitor a PDCCH with the DCI indicating the second HARQ minimum timing or may monitor a PDCCH with the C-RNTI indicating the second HARQ minimum timing, when the UE is configured to communicate with the network according to the second HARQ minimum timing.
- the UE may communicate with the network according to the first HARQ minimum timing on a first CC.
- the UE may communicate with the network according to the second HARQ minimum timing on a second CC.
- the UE may perform a random access (RA) procedure triggered by one of a UL transmission (e.g., transmission of buffer status report or scheduling request), a PDCCH order which is received from the network and a handover command, when the UE is configured to communicate with the network according to the second HARQ minimum timing.
- a UL transmission e.g., transmission of buffer status report or scheduling request
- a PDCCH order which is received from the network
- a handover command when the UE is configured to communicate with the network according to the second HARQ minimum timing.
- the UE transmits a RA preamble of the RA procedure to the network, and receives a RA response from the network in a RA response window. For example, the UE transmits the RA preamble to the network.
- the UE receives a first RA response in x-th TTI from the network in response to the RA preamble, wherein the first RA response includes a first UL grant (e.g., the random access response grant).
- the UE transmits first UL data in (x+y)-th TTI, wherein y is greater than or equals to 6, if a UL delay field in the first UL grant is set to 0, where the (x+y)-th TTI is a first available UL TTI for a physical UL shared channel (PUSCH) transmission.
- PUSCH physical UL shared channel
- the first available UL TTI for transmitting the first UL data is determined based on a UL/DL configuration (e.g., the parameter subframeAssignment).
- the UE postpones the transmission of the first UL data to the next available UL TTI after the (x+y)-th TTI, if the UL delay field is set to 1.
- the UE After the UE transmits the first UL data in the (x+y)-th TTI or the next available UL TTI after the (x+y)-th TTI, the UE receives a first HARQ feedback or a DCI (indicating a retransmission of the first UL data) on a PDCCH according to the first HARQ minimum timing (e.g., in (x+y+4)-th TTI).
- a first HARQ feedback or a DCI indicating a retransmission of the first UL data
- the network (e.g., always) transmits the DCI in the first HARQ minimum timing, wherein the DCI indicates a retransmission of UL data which was transmitted by a UE according to a UL grant in a RA response, no matter the UE supports or is configured the second HARQ minimum timing.
- the first message may be a Medium Access Control (MAC) control element or a RRC message (e.g., UECapabilityInformation).
- the second message may be a MAC control element or a RRC message (e.g., RRCConnectionReconfiguration).
- the support of the second HARQ minimum timing is included in a UE-EUTRA-Capability information element.
- FIG. 4 is a flowchart of a process 40 according to an example of the present invention.
- the process 40 is utilized in a UE, to handle a HARQ timing and includes the following steps:
- Step 400 Start.
- Step 402 Communicate with a network according to a first HARQ minimum timing and a first DCI received from the network.
- Step 404 Communicate with the network according to a second HARQ minimum timing and a second DCI received from the network.
- Step 406 End.
- the first DCI is configured with a first CRC scrambled by a C-RNTI of the UE
- the second DCI is configured with a second CRC scrambled by the C-RNTI of the UE.
- the formats of the first DCI and the second DCI are same or different.
- Realization of the process 40 is not limited to the above description. The following examples may be applied to the process 40 .
- the UE may communicate (e.g., transmit or receive) with the network on a first CC according to the first HARQ minimum timing, a first HARQ process and the first DCI (e.g., the first DCI includes a first UL grant or a first DL assignment).
- the UE may communicate (e.g., transmit or receive) with the network on the first CC or a second CC according to the second HARQ minimum timing, a second HARQ process and the second DCI (e.g., the second DCI includes a second UL grant or a second DL assignment).
- the first DCI and the second DCI can be referred to the previous description related to the process 30 , and are not narrated herein.
- the network transmits the second DCI on the first CC or the second CC to the UE, after the network receives a message comprising an indication of support of the second HARQ minimum timing. In one example, the network transmits the first DCI on the first CC to the UE, after the network receives a message comprising an indication of support of the second HARQ minimum timing, which can be referred to the previous description and is not narrated herein.
- FIG. 5 is a flowchart of a process 50 according to an example of the present invention.
- the process 50 is utilized in a BS included in a network, to handle a HARQ timing for a UE and includes the following steps:
- Step 500 Start.
- Step 502 Communicate with the UE according to a first HARQ minimum timing.
- Step 504 Receive a first message comprising an indication of support of a second HARQ minimum timing from the UE according to the first HARQ minimum timing, wherein the first HARQ minimum timing is greater than the second HARQ minimum timing.
- Step 506 Transmit a second message configuring the second HARQ minimum timing to the UE according to the first HARQ transmission timing in response to the first message.
- Step 508 Communicate with the UE according to the second HARQ transmission timing, when configuring the second HARQ transmission timing to the UE.
- Step 510 End.
- the UE and the network synchronize with each other according to the reduced HARQ minimum timing (e.g., the second HARQ minimum timing).
- the reduced HARQ minimum timing e.g., the second HARQ minimum timing
- Realization of the process 50 is not limited to the above description.
- the examples for the process 50 can be referred to the previous description related to the process 30 , and are not narrated herein.
- FIG. 6 is a flowchart of a process 60 according to an example of the present invention.
- the process 60 is utilized in a BS included in a network, to handle a HARQ timing for a UE and includes the following steps:
- Step 600 Start.
- Step 602 Transmit a first DCI for communicating with the UE according to a first HARQ minimum timing.
- Step 604 Transmit a second DCI for communicating with the UE according to a second HARQ minimum timing.
- Step 606 End.
- the first HARQ minimum timing is longer than the second HARQ minim timing.
- the network may transmit the first DCI and the second DCI, after receiving a message comprising an indication of support of the second HARQ minimum timing.
- the network may transmit a first HARQ feedback corresponding to a first PUSCH transmission received from the UE according to the first HARQ minimum timing and a second HARQ feedback corresponding to a second PUSCH transmission received from the UE according to the second HARQ minimum timing, when the network knows that the UE supports the second HARQ minimum timing or before or after the network configures the second HARQ minimum timing.
- the UE may transmit a PUSCH transmission according to a UL grant included in a RA response or in the first DCI according to the first HARQ minimum timing.
- the UE starts a first HARQ round-trip time (RTT) timer for a first HARQ process, wherein the first HARQ process is used for communicating with the network according to the first HARQ minimum timing.
- the UE starts a second HARQ RTT timer for a second HARQ process, wherein the second HARQ process is used for communicating with the network according to the second HARQ minimum timing, wherein a first length (e.g., 8 TTIs) of the first HARQ RTT timer is longer than a second length (e.g., 6 or 4 TTIs) of the second HARQ RTT timer.
- a first length e.g. 8 TTIs
- a second length e.g., 6 or 4 TTIs
- the first HARQ process and the second HARQ process are DL HARQ processes, and the first HARQ RTT timer and the second HARQ RTT timer are DL HARQ RTT timers.
- the first HARQ process and the second HARQ process are UL HARQ processes, and the first HARQ RTT timer and the second HARQ RTT timer are UL HARQ RTT timers.
- the network starts a first HARQ RTT timer for a first HARQ process, wherein the first HARQ process is used for communicating with the UE according to the first HARQ minimum timing.
- the network starts a second HARQ RTT timer for a second HARQ process, wherein the second HARQ process is used for communicating with the UE according to the second HARQ minimum timing, wherein a first length (e.g., 8 TTIs) of the first HARQ RTT timer is longer than a second length (e.g., 6 or 4 TTIs) of the second HARQ RTT timer.
- the first HARQ process and the second HARQ process are DL HARQ processes, and the first HARQ RTT timer and the second HARQ RTT timer are DL HARQ RTT timers.
- the first HARQ process and the second HARQ process are UL HARQ processes, and the first HARQ RTT timer and the second HARQ RTT timer are UL HARQ RTT timers.
- Each UL data may be transmitted by the UE in a HARQ transmission or a PUSCH transmission in a TTI
- each DL data may be transmitted by the BS in a HARQ transmission or a physical DL shared channel (PDSCH) transmission in a TTI
- the HARQ feedback may be a HARQ acknowledgement (ACK) or a negative acknowledgement (NACK).
- the TTI may be 1 ms or 0.5 ms.
- a field in the DCI above may indicate that the first HARQ minimum timing or the second HARQ minimum timing is used.
- the present invention provides a communication device and a method for handling a HARQ timing for a network including at least one BS.
- the UE transmits a message to notify the network which reduced HARQ minimum timing is supported.
- the problem how the UE and the network synchronize with each other according to the reduced HARQ minimum timing is solved.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/674,507 US20180048430A1 (en) | 2016-08-11 | 2017-08-10 | Device and Method of Handling Hybrid Automatic Repeat Request Timing |
| CN201710687594.1A CN107733588B (zh) | 2016-08-11 | 2017-08-11 | 处理混合式自动重送请求时序的装置及方法 |
| TW106127374A TWI650970B (zh) | 2016-08-11 | 2017-08-11 | 處理混合式自動重送請求時序的通訊裝置及基地台 |
| US16/378,493 US10708003B2 (en) | 2016-08-11 | 2019-04-08 | Device and method of handling hybrid automatic repeat request timing |
| US16/378,473 US10530534B2 (en) | 2016-08-11 | 2019-04-08 | Device and method of handling hybrid automatic repeat request timing |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662373947P | 2016-08-11 | 2016-08-11 | |
| US15/674,507 US20180048430A1 (en) | 2016-08-11 | 2017-08-10 | Device and Method of Handling Hybrid Automatic Repeat Request Timing |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/378,473 Division US10530534B2 (en) | 2016-08-11 | 2019-04-08 | Device and method of handling hybrid automatic repeat request timing |
| US16/378,493 Division US10708003B2 (en) | 2016-08-11 | 2019-04-08 | Device and method of handling hybrid automatic repeat request timing |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180048430A1 true US20180048430A1 (en) | 2018-02-15 |
Family
ID=59581793
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/674,507 Abandoned US20180048430A1 (en) | 2016-08-11 | 2017-08-10 | Device and Method of Handling Hybrid Automatic Repeat Request Timing |
| US16/378,473 Active US10530534B2 (en) | 2016-08-11 | 2019-04-08 | Device and method of handling hybrid automatic repeat request timing |
| US16/378,493 Active US10708003B2 (en) | 2016-08-11 | 2019-04-08 | Device and method of handling hybrid automatic repeat request timing |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/378,473 Active US10530534B2 (en) | 2016-08-11 | 2019-04-08 | Device and method of handling hybrid automatic repeat request timing |
| US16/378,493 Active US10708003B2 (en) | 2016-08-11 | 2019-04-08 | Device and method of handling hybrid automatic repeat request timing |
Country Status (4)
| Country | Link |
|---|---|
| US (3) | US20180048430A1 (fr) |
| EP (1) | EP3282621B1 (fr) |
| CN (1) | CN107733588B (fr) |
| TW (1) | TWI650970B (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180146444A1 (en) * | 2016-11-18 | 2018-05-24 | Qualcomm Incorporated | Asynchronous ca handling |
| CN111356173A (zh) * | 2018-12-24 | 2020-06-30 | 财团法人工业技术研究院 | 通信系统的无线存取及接收方法、及应用其的基站 |
| US12081328B2 (en) | 2017-08-10 | 2024-09-03 | Beijing Xiaomi Mobile Software Co., Ltd. | Offset parameters for uplink control information |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11831216B2 (en) * | 2019-08-27 | 2023-11-28 | Mitsubishi Electric Corporation | Linear motor system |
| EP3958450A1 (fr) * | 2020-08-21 | 2022-02-23 | Schneider Electric Industries SAS | Système de moteur linéaire et procédé de fonctionnement pour un tel système de moteur linéaire |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160119840A1 (en) * | 2013-06-21 | 2016-04-28 | Panasonic Intellectual Property Corporation Of America | Uplink switching of communication links for mobile stations in dual connectivity |
| US20160205540A1 (en) * | 2015-01-09 | 2016-07-14 | Htc Corporation | Methods of handling wireless communications for communication system |
| US20170117992A1 (en) * | 2014-04-04 | 2017-04-27 | Nokia Solutions And Networks Oy | Hybrid automatic repeat request timing in communications |
| US20170223670A1 (en) * | 2016-02-03 | 2017-08-03 | Qualcomm Incorporated | Control channel signaling techniques in wireless systems with multiple possible transmission time intervals |
| US20170290008A1 (en) * | 2014-09-08 | 2017-10-05 | Interdigital Patent Holdings, Inc. | Systems and Methods of Operating with Different Transmission Time Interval (TTI) Durations |
| US20170288819A1 (en) * | 2016-03-30 | 2017-10-05 | Qualcomm Incorporated | Hybrid automatic repeat request timing for reduced transmission time intervals |
| US20180020335A1 (en) * | 2016-07-18 | 2018-01-18 | Sharp Laboratories Of America, Inc. | Systems and methods for processing time reduction signaling |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8942208B2 (en) * | 2009-06-22 | 2015-01-27 | Qualcomm Incorporated | Wireless communication having reduced feedback delay |
| EP2542009A1 (fr) * | 2010-08-19 | 2013-01-02 | HTC Corporation | Procédé de traitement de rapport d'informations de contrôle en liaison montante et dispositif de communication associé |
| US9374808B2 (en) * | 2011-09-23 | 2016-06-21 | Lg Electronics Inc. | Method for transmitting control information and apparatus for same |
| US9807746B2 (en) * | 2012-04-10 | 2017-10-31 | Industrial Technology Research Institute | Method of handling hybrid automatic repeat request feedback and related communication device |
| CN103546254B (zh) * | 2012-07-09 | 2017-09-15 | 财团法人工业技术研究院 | 执行混合式自动重送请求的方法及其基站与移动装置 |
| US10397942B2 (en) | 2012-08-10 | 2019-08-27 | Industrial Technology Research Institute | Method of handling communication operation in TDD system and related apparatus |
| EP2824862B8 (fr) * | 2013-07-10 | 2020-05-13 | Acer Incorporated | Procédé de gestion de retours HARQ |
| JP6362118B2 (ja) * | 2014-05-15 | 2018-07-25 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | データ送信装置及び方法 |
| EP3261379B1 (fr) * | 2015-02-20 | 2021-08-11 | NTT DoCoMo, Inc. | Équipement utilisateur et procédé de transmission d'informations de confirmation de remise |
| WO2017014074A1 (fr) * | 2015-07-17 | 2017-01-26 | 株式会社Nttドコモ | Terminal d'utilisateur, station de base sans fil, et procédé de communication sans fil |
-
2017
- 2017-08-10 EP EP17185758.4A patent/EP3282621B1/fr active Active
- 2017-08-10 US US15/674,507 patent/US20180048430A1/en not_active Abandoned
- 2017-08-11 CN CN201710687594.1A patent/CN107733588B/zh active Active
- 2017-08-11 TW TW106127374A patent/TWI650970B/zh active
-
2019
- 2019-04-08 US US16/378,473 patent/US10530534B2/en active Active
- 2019-04-08 US US16/378,493 patent/US10708003B2/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160119840A1 (en) * | 2013-06-21 | 2016-04-28 | Panasonic Intellectual Property Corporation Of America | Uplink switching of communication links for mobile stations in dual connectivity |
| US20170117992A1 (en) * | 2014-04-04 | 2017-04-27 | Nokia Solutions And Networks Oy | Hybrid automatic repeat request timing in communications |
| US20170290008A1 (en) * | 2014-09-08 | 2017-10-05 | Interdigital Patent Holdings, Inc. | Systems and Methods of Operating with Different Transmission Time Interval (TTI) Durations |
| US20160205540A1 (en) * | 2015-01-09 | 2016-07-14 | Htc Corporation | Methods of handling wireless communications for communication system |
| US20170223670A1 (en) * | 2016-02-03 | 2017-08-03 | Qualcomm Incorporated | Control channel signaling techniques in wireless systems with multiple possible transmission time intervals |
| US20170288819A1 (en) * | 2016-03-30 | 2017-10-05 | Qualcomm Incorporated | Hybrid automatic repeat request timing for reduced transmission time intervals |
| US20180020335A1 (en) * | 2016-07-18 | 2018-01-18 | Sharp Laboratories Of America, Inc. | Systems and methods for processing time reduction signaling |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180146444A1 (en) * | 2016-11-18 | 2018-05-24 | Qualcomm Incorporated | Asynchronous ca handling |
| US11304164B2 (en) * | 2016-11-18 | 2022-04-12 | Qualcomm Incorporated | Asynchronous CA handling |
| US12069601B2 (en) | 2016-11-18 | 2024-08-20 | Qualcomm Incorporated | Asynchronous CA handling |
| US12081328B2 (en) | 2017-08-10 | 2024-09-03 | Beijing Xiaomi Mobile Software Co., Ltd. | Offset parameters for uplink control information |
| CN111356173A (zh) * | 2018-12-24 | 2020-06-30 | 财团法人工业技术研究院 | 通信系统的无线存取及接收方法、及应用其的基站 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107733588A (zh) | 2018-02-23 |
| CN107733588B (zh) | 2020-11-17 |
| TW201806346A (zh) | 2018-02-16 |
| US10708003B2 (en) | 2020-07-07 |
| US10530534B2 (en) | 2020-01-07 |
| TWI650970B (zh) | 2019-02-11 |
| EP3282621A1 (fr) | 2018-02-14 |
| US20190238277A1 (en) | 2019-08-01 |
| US20190238276A1 (en) | 2019-08-01 |
| EP3282621B1 (fr) | 2023-07-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10925045B2 (en) | Device and method handling transmission in unlicensed band | |
| EP3439216B1 (fr) | Dispositif et procédé de gestion de transmission de liaison montante | |
| US10912067B2 (en) | Device and method of handling communication operations with cells in timing advance groups | |
| US10530534B2 (en) | Device and method of handling hybrid automatic repeat request timing | |
| US10485017B2 (en) | Device and method of handling a schedule request | |
| US10708899B2 (en) | Device and method for handling a code block group-based transmission | |
| US10237863B2 (en) | Device and method of handling a hybrid automatic repeat request process in a licensed assisted access secondary cell | |
| EP3139689B1 (fr) | Dispositif et procédé de gestion de transmission de requête de planification | |
| US10201030B2 (en) | Device and method of handling dual connectivity | |
| EP3301991A1 (fr) | Dispositif et procédé de gestion de l'accès aux canaux dans une bande sans licence | |
| US10225837B2 (en) | Device and method of handling HARQ operation for unlicensed band | |
| US9794800B2 (en) | Device and method of handling deactivating timer for secondary cell | |
| US20160338084A1 (en) | Device and Method of Handling PUCCH Resource for Scheduling Request |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HTC CORPORATION, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WU, CHIH-HSIANG;REEL/FRAME:043265/0059 Effective date: 20170810 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |