US20180028457A1 - Compositions and Methods for the Delivery of Therapeutics - Google Patents
Compositions and Methods for the Delivery of Therapeutics Download PDFInfo
- Publication number
- US20180028457A1 US20180028457A1 US15/726,510 US201715726510A US2018028457A1 US 20180028457 A1 US20180028457 A1 US 20180028457A1 US 201715726510 A US201715726510 A US 201715726510A US 2018028457 A1 US2018028457 A1 US 2018028457A1
- Authority
- US
- United States
- Prior art keywords
- nanoparticle
- hiv
- nanoparticles
- instant invention
- particular embodiment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000000203 mixture Substances 0.000 title abstract description 5
- 239000003814 drug Substances 0.000 title description 44
- 239000002105 nanoparticle Substances 0.000 claims description 93
- GSNHKUDZZFZSJB-QYOOZWMWSA-N maraviroc Chemical group CC(C)C1=NN=C(C)N1[C@@H]1C[C@H](N2CC[C@H](NC(=O)C3CCC(F)(F)CC3)C=3C=CC=CC=3)CC[C@H]2C1 GSNHKUDZZFZSJB-QYOOZWMWSA-N 0.000 claims description 45
- 229960004710 maraviroc Drugs 0.000 claims description 42
- 239000004094 surface-active agent Substances 0.000 claims description 37
- 239000008194 pharmaceutical composition Substances 0.000 claims description 31
- 239000003446 ligand Substances 0.000 claims description 30
- 150000001875 compounds Chemical class 0.000 claims description 26
- 230000008685 targeting Effects 0.000 claims description 24
- 150000002327 glycerophospholipids Chemical group 0.000 claims description 22
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims description 21
- 229920001600 hydrophobic polymer Polymers 0.000 claims description 15
- 230000036436 anti-hiv Effects 0.000 claims description 14
- 239000003937 drug carrier Substances 0.000 claims description 11
- 208000031886 HIV Infections Diseases 0.000 claims description 10
- 210000002540 macrophage Anatomy 0.000 claims description 10
- LVNGJLRDBYCPGB-LDLOPFEMSA-N (R)-1,2-distearoylphosphatidylethanolamine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[NH3+])OC(=O)CCCCCCCCCCCCCCCCC LVNGJLRDBYCPGB-LDLOPFEMSA-N 0.000 claims description 9
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 208000037357 HIV infectious disease Diseases 0.000 claims description 7
- 239000002202 Polyethylene glycol Substances 0.000 claims description 7
- 239000003067 chemokine receptor CCR5 antagonist Substances 0.000 claims description 7
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 claims description 7
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 claims description 7
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 claims description 6
- 101001000212 Rattus norvegicus Decorin Proteins 0.000 claims description 6
- FVJZSBGHRPJMMA-UHFFFAOYSA-N distearoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCCCCCC FVJZSBGHRPJMMA-UHFFFAOYSA-N 0.000 claims description 6
- 235000019152 folic acid Nutrition 0.000 claims description 6
- 239000011724 folic acid Substances 0.000 claims description 6
- 229940014144 folate Drugs 0.000 claims description 5
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- FVJZSBGHRPJMMA-DHPKCYQYSA-N [(2r)-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-octadecanoyloxypropyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCCCCCC FVJZSBGHRPJMMA-DHPKCYQYSA-N 0.000 claims description 4
- 239000003443 antiviral agent Substances 0.000 abstract description 2
- 229940121357 antivirals Drugs 0.000 abstract 1
- -1 peptides Chemical class 0.000 description 40
- 210000004027 cell Anatomy 0.000 description 30
- 241000725303 Human immunodeficiency virus Species 0.000 description 25
- 229940124597 therapeutic agent Drugs 0.000 description 23
- 238000011282 treatment Methods 0.000 description 22
- 230000000694 effects Effects 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 17
- 230000000798 anti-retroviral effect Effects 0.000 description 16
- 229940079593 drug Drugs 0.000 description 16
- 102100034349 Integrase Human genes 0.000 description 15
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 13
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 11
- 238000011225 antiretroviral therapy Methods 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 210000004980 monocyte derived macrophage Anatomy 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 208000015181 infectious disease Diseases 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 7
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 7
- 241000700605 Viruses Species 0.000 description 7
- 239000002259 anti human immunodeficiency virus agent Substances 0.000 description 7
- 229940124411 anti-hiv antiviral agent Drugs 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- 229920001477 hydrophilic polymer Polymers 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 150000002632 lipids Chemical class 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- WHBIGIKBNXZKFE-UHFFFAOYSA-N delavirdine Chemical compound CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(NS(C)(=O)=O)C=C3C=2)CC1 WHBIGIKBNXZKFE-UHFFFAOYSA-N 0.000 description 5
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- PEASPLKKXBYDKL-FXEVSJAOSA-N enfuvirtide Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(C)=O)[C@@H](C)O)[C@@H](C)CC)C1=CN=CN1 PEASPLKKXBYDKL-FXEVSJAOSA-N 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- 208000030507 AIDS Diseases 0.000 description 4
- 101710205625 Capsid protein p24 Proteins 0.000 description 4
- 108010032976 Enfuvirtide Proteins 0.000 description 4
- 108060003951 Immunoglobulin Proteins 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 101710177166 Phosphoprotein Proteins 0.000 description 4
- 101710149279 Small delta antigen Proteins 0.000 description 4
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 4
- 102100022563 Tubulin polymerization-promoting protein Human genes 0.000 description 4
- 230000000840 anti-viral effect Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 102000018358 immunoglobulin Human genes 0.000 description 4
- 229940124524 integrase inhibitor Drugs 0.000 description 4
- 239000002850 integrase inhibitor Substances 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 229920001610 polycaprolactone Polymers 0.000 description 4
- 239000004632 polycaprolactone Substances 0.000 description 4
- 239000002464 receptor antagonist Substances 0.000 description 4
- 229940044551 receptor antagonist Drugs 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 239000003419 rna directed dna polymerase inhibitor Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229940124821 NNRTIs Drugs 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- YMARZQAQMVYCKC-OEMFJLHTSA-N amprenavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 YMARZQAQMVYCKC-OEMFJLHTSA-N 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 210000004443 dendritic cell Anatomy 0.000 description 3
- XPOQHMRABVBWPR-ZDUSSCGKSA-N efavirenz Chemical compound C([C@]1(C2=CC(Cl)=CC=C2NC(=O)O1)C(F)(F)F)#CC1CC1 XPOQHMRABVBWPR-ZDUSSCGKSA-N 0.000 description 3
- 230000008029 eradication Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- CBVCZFGXHXORBI-PXQQMZJSSA-N indinavir Chemical compound C([C@H](N(CC1)C[C@@H](O)C[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H]2C3=CC=CC=C3C[C@H]2O)C(=O)NC(C)(C)C)N1CC1=CC=CN=C1 CBVCZFGXHXORBI-PXQQMZJSSA-N 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 229920001427 mPEG Polymers 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- QAGYKUNXZHXKMR-HKWSIXNMSA-N nelfinavir Chemical compound CC1=C(O)C=CC=C1C(=O)N[C@H]([C@H](O)CN1[C@@H](C[C@@H]2CCCC[C@@H]2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-HKWSIXNMSA-N 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- NQDJXKOVJZTUJA-UHFFFAOYSA-N nevirapine Chemical compound C12=NC=CC=C2C(=O)NC=2C(C)=CC=NC=2N1C1CC1 NQDJXKOVJZTUJA-UHFFFAOYSA-N 0.000 description 3
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- NCDNCNXCDXHOMX-XGKFQTDJSA-N ritonavir Chemical compound N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-XGKFQTDJSA-N 0.000 description 3
- QWAXKHKRTORLEM-UGJKXSETSA-N saquinavir Chemical compound C([C@@H]([C@H](O)CN1C[C@H]2CCCC[C@H]2C[C@H]1C(=O)NC(C)(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)C=1N=C2C=CC=CC2=CC=1)C1=CC=CC=C1 QWAXKHKRTORLEM-UGJKXSETSA-N 0.000 description 3
- 229940031307 selzentry Drugs 0.000 description 3
- 238000000935 solvent evaporation Methods 0.000 description 3
- BEUUJDAEPJZWHM-COROXYKFSA-N tert-butyl n-[(2s,3s,5r)-3-hydroxy-6-[[(2s)-1-(2-methoxyethylamino)-3-methyl-1-oxobutan-2-yl]amino]-6-oxo-1-phenyl-5-[(2,3,4-trimethoxyphenyl)methyl]hexan-2-yl]carbamate Chemical compound C([C@@H]([C@@H](O)C[C@H](C(=O)N[C@H](C(=O)NCCOC)C(C)C)CC=1C(=C(OC)C(OC)=CC=1)OC)NC(=O)OC(C)(C)C)C1=CC=CC=C1 BEUUJDAEPJZWHM-COROXYKFSA-N 0.000 description 3
- 230000009385 viral infection Effects 0.000 description 3
- CNPVJJQCETWNEU-CYFREDJKSA-N (4,6-dimethyl-5-pyrimidinyl)-[4-[(3S)-4-[(1R)-2-methoxy-1-[4-(trifluoromethyl)phenyl]ethyl]-3-methyl-1-piperazinyl]-4-methyl-1-piperidinyl]methanone Chemical compound N([C@@H](COC)C=1C=CC(=CC=1)C(F)(F)F)([C@H](C1)C)CCN1C(CC1)(C)CCN1C(=O)C1=C(C)N=CN=C1C CNPVJJQCETWNEU-CYFREDJKSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical group CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 108010019625 Atazanavir Sulfate Proteins 0.000 description 2
- 241000713704 Bovine immunodeficiency virus Species 0.000 description 2
- 229920001661 Chitosan Chemical class 0.000 description 2
- 241000713730 Equine infectious anemia virus Species 0.000 description 2
- 241000713800 Feline immunodeficiency virus Species 0.000 description 2
- 102000011652 Formyl peptide receptors Human genes 0.000 description 2
- 108010076288 Formyl peptide receptors Proteins 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- 241000713311 Simian immunodeficiency virus Species 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 229920000469 amphiphilic block copolymer Polymers 0.000 description 2
- 229960001830 amprenavir Drugs 0.000 description 2
- AXRYRYVKAWYZBR-GASGPIRDSA-N atazanavir Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)OC)C(C)(C)C)[C@@H](O)CN(CC=1C=CC(=CC=1)C=1N=CC=CC=1)NC(=O)[C@@H](NC(=O)OC)C(C)(C)C)C1=CC=CC=C1 AXRYRYVKAWYZBR-GASGPIRDSA-N 0.000 description 2
- CYDRXTMLKJDRQH-UHFFFAOYSA-N benzododecinium Chemical compound CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 CYDRXTMLKJDRQH-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- YQXCVAGCMNFUMQ-UHFFFAOYSA-N capravirine Chemical compound C=1C(Cl)=CC(Cl)=CC=1SC1=C(C(C)C)N=C(COC(N)=O)N1CC1=CC=NC=C1 YQXCVAGCMNFUMQ-UHFFFAOYSA-N 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000002458 cell surface marker Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- PRQROPMIIGLWRP-BZSNNMDCSA-N chemotactic peptide Chemical compound CSCC[C@H](NC=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 PRQROPMIIGLWRP-BZSNNMDCSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 102000006815 folate receptor Human genes 0.000 description 2
- 108020005243 folate receptor Proteins 0.000 description 2
- 229940099052 fuzeon Drugs 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 210000004837 gut-associated lymphoid tissue Anatomy 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- 229960003160 hyaluronic acid Drugs 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 229940042402 non-nucleoside reverse transcriptase inhibitor Drugs 0.000 description 2
- 239000002726 nonnucleoside reverse transcriptase inhibitor Substances 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229940068965 polysorbates Drugs 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- YIBOMRUWOWDFLG-ONEGZZNKSA-N rilpivirine Chemical compound CC1=CC(\C=C\C#N)=CC(C)=C1NC1=CC=NC(NC=2C=CC(=CC=2)C#N)=N1 YIBOMRUWOWDFLG-ONEGZZNKSA-N 0.000 description 2
- 229960000311 ritonavir Drugs 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229960001852 saquinavir Drugs 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- SRLOHQKOADWDBV-NRONOFSHSA-M sodium;[(2r)-2,3-di(octadecanoyloxy)propyl] 2-(2-methoxyethoxycarbonylamino)ethyl phosphate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCCNC(=O)OCCOC)OC(=O)CCCCCCCCCCCCCCCCC SRLOHQKOADWDBV-NRONOFSHSA-M 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- SUJUHGSWHZTSEU-FYBSXPHGSA-N tipranavir Chemical compound C([C@@]1(CCC)OC(=O)C([C@H](CC)C=2C=C(NS(=O)(=O)C=3N=CC(=CC=3)C(F)(F)F)C=CC=2)=C(O)C1)CC1=CC=CC=C1 SUJUHGSWHZTSEU-FYBSXPHGSA-N 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 229950009860 vicriviroc Drugs 0.000 description 2
- 230000007502 viral entry Effects 0.000 description 2
- NIDRYBLTWYFCFV-FMTVUPSXSA-N (+)-calanolide A Chemical compound C1=CC(C)(C)OC2=C1C(O[C@H](C)[C@@H](C)[C@@H]1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-FMTVUPSXSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- IESDGNYHXIOKRW-YXMSTPNBSA-N (2s)-2-[[(2s)-1-[(2s)-6-amino-2-[[(2s,3r)-2-amino-3-hydroxybutanoyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(O)=O IESDGNYHXIOKRW-YXMSTPNBSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- KAKVFSYQVNHFBS-UHFFFAOYSA-N (5-hydroxycyclopenten-1-yl)-phenylmethanone Chemical compound OC1CCC=C1C(=O)C1=CC=CC=C1 KAKVFSYQVNHFBS-UHFFFAOYSA-N 0.000 description 1
- JSRREMIKIHJGAA-JTQLQIEISA-N (6s)-2-[(3-chloro-4-fluorophenyl)methyl]-8-ethyl-10-hydroxy-n,6-dimethyl-1,9-dioxo-6,7-dihydropyrazino[5,6]pyrrolo[1,3-b]pyridazine-4-carboxamide Chemical compound N1([C@@H](C)CN(C2=O)CC)C2=C(O)C(C2=O)=C1C(C(=O)NC)=NN2CC1=CC=C(F)C(Cl)=C1 JSRREMIKIHJGAA-JTQLQIEISA-N 0.000 description 1
- GAIBJCKASOWHGH-UHFFFAOYSA-N 1-(5-bromopyridin-2-yl)-3-(2-thiophen-2-ylethyl)thiourea Chemical compound N1=CC(Br)=CC=C1NC(=S)NCCC1=CC=CS1 GAIBJCKASOWHGH-UHFFFAOYSA-N 0.000 description 1
- BEMBRAMZGVDPMH-UHFFFAOYSA-N 11-ethyl-5-methyl-8-[2-(1-oxidoquinolin-1-ium-4-yl)oxyethyl]dipyrido[2,3-d:2',3'-h][1,4]diazepin-6-one Chemical compound CN1C(=O)C2=CC(CCOC=3C4=CC=CC=C4[N+]([O-])=CC=3)=CN=C2N(CC)C2=NC=CC=C21 BEMBRAMZGVDPMH-UHFFFAOYSA-N 0.000 description 1
- ASOMNDIOOKDVDC-UHFFFAOYSA-N 1h-indol-2-yl-[4-[3-(propan-2-ylamino)pyridin-2-yl]piperazin-1-yl]methanone Chemical compound CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=CC=C3C=2)CC1 ASOMNDIOOKDVDC-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- CDOUZKKFHVEKRI-UHFFFAOYSA-N 3-bromo-n-[(prop-2-enoylamino)methyl]propanamide Chemical compound BrCCC(=O)NCNC(=O)C=C CDOUZKKFHVEKRI-UHFFFAOYSA-N 0.000 description 1
- ILAYIAGXTHKHNT-UHFFFAOYSA-N 4-[4-(2,4,6-trimethyl-phenylamino)-pyrimidin-2-ylamino]-benzonitrile Chemical compound CC1=CC(C)=CC(C)=C1NC1=CC=NC(NC=2C=CC(=CC=2)C#N)=N1 ILAYIAGXTHKHNT-UHFFFAOYSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- ATCRIOJPQXDFNY-ZETCQYMHSA-N 6-chloro-2-(1-furo[2,3-c]pyridin-5-yl-ethylsulfanyl)-pyrimidin-4-ylamine Chemical compound S([C@@H](C)C=1N=CC=2OC=CC=2C=1)C1=NC(N)=CC(Cl)=N1 ATCRIOJPQXDFNY-ZETCQYMHSA-N 0.000 description 1
- 229940023859 AIDSVAX Drugs 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- AXRYRYVKAWYZBR-UHFFFAOYSA-N Atazanavir Natural products C=1C=C(C=2N=CC=CC=2)C=CC=1CN(NC(=O)C(NC(=O)OC)C(C)(C)C)CC(O)C(NC(=O)C(NC(=O)OC)C(C)(C)C)CC1=CC=CC=C1 AXRYRYVKAWYZBR-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 102000004274 CCR5 Receptors Human genes 0.000 description 1
- 108010017088 CCR5 Receptors Proteins 0.000 description 1
- QAGYKUNXZHXKMR-UHFFFAOYSA-N CPD000469186 Natural products CC1=C(O)C=CC=C1C(=O)NC(C(O)CN1C(CC2CCCCC2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 206010013654 Drug abuse Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- XPOQHMRABVBWPR-UHFFFAOYSA-N Efavirenz Natural products O1C(=O)NC2=CC=C(Cl)C=C2C1(C(F)(F)F)C#CC1CC1 XPOQHMRABVBWPR-UHFFFAOYSA-N 0.000 description 1
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010007979 Glycocholic Acid Proteins 0.000 description 1
- 108010035713 Glycodeoxycholic Acid Proteins 0.000 description 1
- WVULKSPCQVQLCU-UHFFFAOYSA-N Glycodeoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCC(O)=O)C)C1(C)C(O)C2 WVULKSPCQVQLCU-UHFFFAOYSA-N 0.000 description 1
- 108010078851 HIV Reverse Transcriptase Proteins 0.000 description 1
- 229940033330 HIV vaccine Drugs 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 101001078158 Homo sapiens Integrin alpha-1 Proteins 0.000 description 1
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 description 1
- 101001134216 Homo sapiens Macrophage scavenger receptor types I and II Proteins 0.000 description 1
- 101000979306 Homo sapiens Nectin-1 Proteins 0.000 description 1
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 1
- 108010016183 Human immunodeficiency virus 1 p16 protease Proteins 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- 101900297506 Human immunodeficiency virus type 1 group M subtype B Reverse transcriptase/ribonuclease H Proteins 0.000 description 1
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 102100025323 Integrin alpha-1 Human genes 0.000 description 1
- 102100025304 Integrin beta-1 Human genes 0.000 description 1
- KJHKTHWMRKYKJE-SUGCFTRWSA-N Kaletra Chemical compound N1([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=2C=CC=CC=2)NC(=O)COC=2C(=CC=CC=2C)C)CC=2C=CC=CC=2)CCCNC1=O KJHKTHWMRKYKJE-SUGCFTRWSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229940124528 MK-2048 Drugs 0.000 description 1
- 102100034184 Macrophage scavenger receptor types I and II Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010031099 Mannose Receptor Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- RFDAIACWWDREDC-UHFFFAOYSA-N Na salt-Glycocholic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCC(O)=O)C)C1(C)C(O)C2 RFDAIACWWDREDC-UHFFFAOYSA-N 0.000 description 1
- 102100023064 Nectin-1 Human genes 0.000 description 1
- 229940122313 Nucleoside reverse transcriptase inhibitor Drugs 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102100029251 Phagocytosis-stimulating peptide Human genes 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical group C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- NCDNCNXCDXHOMX-UHFFFAOYSA-N Ritonavir Natural products C=1C=CC=CC=1CC(NC(=O)OCC=1SC=NC=1)C(O)CC(CC=1C=CC=CC=1)NC(=O)C(C(C)C)NC(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- WBWWGRHZICKQGZ-UHFFFAOYSA-N Taurocholic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCCS(O)(=O)=O)C)C1(C)C(O)C2 WBWWGRHZICKQGZ-UHFFFAOYSA-N 0.000 description 1
- SUJUHGSWHZTSEU-UHFFFAOYSA-N Tipranavir Natural products C1C(O)=C(C(CC)C=2C=C(NS(=O)(=O)C=3N=CC(=CC=3)C(F)(F)F)C=CC=2)C(=O)OC1(CCC)CCC1=CC=CC=C1 SUJUHGSWHZTSEU-UHFFFAOYSA-N 0.000 description 1
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 1
- 206010066901 Treatment failure Diseases 0.000 description 1
- 108010084754 Tuftsin Proteins 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- WOZSCQDILHKSGG-UHFFFAOYSA-N adefovir depivoxil Chemical compound N1=CN=C2N(CCOCP(=O)(OCOC(=O)C(C)(C)C)OCOC(=O)C(C)(C)C)C=NC2=C1N WOZSCQDILHKSGG-UHFFFAOYSA-N 0.000 description 1
- 229960003205 adefovir dipivoxil Drugs 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 230000003281 allosteric effect Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229940124522 antiretrovirals Drugs 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 229940030139 aptivus Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960003277 atazanavir Drugs 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960001716 benzalkonium Drugs 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- YJEJKUQEXFSVCJ-WRFMNRASSA-N bevirimat Chemical compound C1C[C@H](OC(=O)CC(C)(C)C(O)=O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C(=C)C)[C@@H]5[C@H]4CC[C@@H]3[C@]21C YJEJKUQEXFSVCJ-WRFMNRASSA-N 0.000 description 1
- 229950002892 bevirimat Drugs 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- JORVRJNILJXMMG-OLNQLETPSA-N brecanavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=C2OCOC2=CC=1)NC(=O)O[C@@H]1[C@@H]2CCO[C@@H]2OC1)C(C=C1)=CC=C1OCC1=CSC(C)=N1 JORVRJNILJXMMG-OLNQLETPSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- NIDRYBLTWYFCFV-UHFFFAOYSA-N calanolide F Natural products C1=CC(C)(C)OC2=C1C(OC(C)C(C)C1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-UHFFFAOYSA-N 0.000 description 1
- PMDQGYMGQKTCSX-HQROKSDRSA-L calcium;[(2r,3s)-1-[(4-aminophenyl)sulfonyl-(2-methylpropyl)amino]-3-[[(3s)-oxolan-3-yl]oxycarbonylamino]-4-phenylbutan-2-yl] phosphate Chemical compound [Ca+2].C([C@@H]([C@H](OP([O-])([O-])=O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 PMDQGYMGQKTCSX-HQROKSDRSA-L 0.000 description 1
- 229940023860 canarypox virus HIV vaccine Drugs 0.000 description 1
- 229950008230 capravirine Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229940082500 cetostearyl alcohol Drugs 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical class CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229940088900 crixivan Drugs 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 229960005107 darunavir Drugs 0.000 description 1
- CJBJHOAVZSMMDJ-HEXNFIEUSA-N darunavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1[C@@H]2CCO[C@@H]2OC1)C1=CC=CC=C1 CJBJHOAVZSMMDJ-HEXNFIEUSA-N 0.000 description 1
- 229960005319 delavirdine Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- UMGXUWVIJIQANV-UHFFFAOYSA-M didecyl(dimethyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCC[N+](C)(C)CCCCCCCCCC UMGXUWVIJIQANV-UHFFFAOYSA-M 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229960003804 efavirenz Drugs 0.000 description 1
- 239000007938 effervescent tablet Substances 0.000 description 1
- 229960003586 elvitegravir Drugs 0.000 description 1
- JUZYLCPPVHEVSV-LJQANCHMSA-N elvitegravir Chemical compound COC1=CC=2N([C@H](CO)C(C)C)C=C(C(O)=O)C(=O)C=2C=C1CC1=CC=CC(Cl)=C1F JUZYLCPPVHEVSV-LJQANCHMSA-N 0.000 description 1
- MLILORUFDVLTSP-UHFFFAOYSA-N emivirine Chemical compound O=C1NC(=O)N(COCC)C(CC=2C=CC=CC=2)=C1C(C)C MLILORUFDVLTSP-UHFFFAOYSA-N 0.000 description 1
- 229950002002 emivirine Drugs 0.000 description 1
- 229960002062 enfuvirtide Drugs 0.000 description 1
- PYGWGZALEOIKDF-UHFFFAOYSA-N etravirine Chemical compound CC1=CC(C#N)=CC(C)=C1OC1=NC(NC=2C=CC(=CC=2)C#N)=NC(N)=C1Br PYGWGZALEOIKDF-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 229960003142 fosamprenavir Drugs 0.000 description 1
- MLBVMOWEQCZNCC-OEMFJLHTSA-N fosamprenavir Chemical compound C([C@@H]([C@H](OP(O)(O)=O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 MLBVMOWEQCZNCC-OEMFJLHTSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 125000005908 glyceryl ester group Chemical group 0.000 description 1
- RFDAIACWWDREDC-FRVQLJSFSA-N glycocholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 RFDAIACWWDREDC-FRVQLJSFSA-N 0.000 description 1
- 229940099347 glycocholic acid Drugs 0.000 description 1
- WVULKSPCQVQLCU-BUXLTGKBSA-N glycodeoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 WVULKSPCQVQLCU-BUXLTGKBSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 239000004030 hiv protease inhibitor Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- DNZMDASEFMLYBU-RNBXVSKKSA-N hydroxyethyl starch Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O.OCCOC[C@H]1O[C@H](OCCO)[C@H](OCCO)[C@@H](OCCO)[C@@H]1OCCO DNZMDASEFMLYBU-RNBXVSKKSA-N 0.000 description 1
- 229940050526 hydroxyethylstarch Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229960001936 indinavir Drugs 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229940088976 invirase Drugs 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229950004697 lasinavir Drugs 0.000 description 1
- 229940113354 lexiva Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- 229940042880 natural phospholipid Drugs 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229960000884 nelfinavir Drugs 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229960000689 nevirapine Drugs 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229940072250 norvir Drugs 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- ZHALDANPYXAMJF-UHFFFAOYSA-N octadecanoate;tris(2-hydroxyethyl)azanium Chemical compound OCC[NH+](CCO)CCO.CCCCCCCCCCCCCCCCCC([O-])=O ZHALDANPYXAMJF-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical class CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001987 poloxamine Polymers 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 229960004742 raltegravir Drugs 0.000 description 1
- CZFFBEXEKNGXKS-UHFFFAOYSA-N raltegravir Chemical compound O1C(C)=NN=C1C(=O)NC(C)(C)C1=NC(C(=O)NCC=2C=CC(F)=CC=2)=C(O)C(=O)N1C CZFFBEXEKNGXKS-UHFFFAOYSA-N 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229940063627 rescriptor Drugs 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 229940107904 reyataz Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 229940054565 sustiva Drugs 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- WBWWGRHZICKQGZ-GIHLXUJPSA-N taurocholic acid Chemical compound C([C@@H]1C[C@H]2O)[C@@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)[C@H](O)C1 WBWWGRHZICKQGZ-GIHLXUJPSA-N 0.000 description 1
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229960000838 tipranavir Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 210000001912 transporting cell Anatomy 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- 229940029614 triethanolamine stearate Drugs 0.000 description 1
- 229940035670 tuftsin Drugs 0.000 description 1
- IESDGNYHXIOKRW-LEOABGAYSA-N tuftsin Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)N[C@H](CCCNC(N)=N)C(O)=O IESDGNYHXIOKRW-LEOABGAYSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229940023080 viracept Drugs 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 229940098802 viramune Drugs 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
- A61K9/5153—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/46—8-Azabicyclo [3.2.1] octane; Derivatives thereof, e.g. atropine, cocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/24—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5123—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
Definitions
- the present invention relates generally to the delivery of therapeutics. More specifically, the present invention relates to compositions and methods for the delivery of therapeutic agents to a patient for the treatment of a viral infection.
- nanoparticles/nanoformulations comprising at least one therapeutic agent, at least one hydrophobic polymer, and at least one surfactant are provided.
- the surfactant is a glycerophospholipid.
- the hydrophobic polymer is poly (lactic-co-glycolic acid) (PLGA).
- the surfactant is linked to at least one targeting ligand such as a macrophage targeting ligand (e.g., folate).
- An individual nanoparticle may comprise targeted and non-targeted surfactants.
- the therapeutic agent is an antiviral, antiretroviral, or anti-HIV compound, particularly a CCR5 co-receptor antagonist.
- the nanoparticle of the instant invention comprises a CCR5 receptor antagonist (e.g., maraviroc), a hydrophobic polymer (e.g., PLGA), and a surfactant (e.g., glycerophospholipid, optionally conjugated to polyethylene glycol), optionally with a macrophage targeting ligand (e.g., folate).
- a CCR5 receptor antagonist e.g., maraviroc
- a hydrophobic polymer e.g., PLGA
- a surfactant e.g., glycerophospholipid, optionally conjugated to polyethylene glycol
- macrophage targeting ligand e.g., folate
- compositions comprising at least nanoparticle of the instant invention and at least one pharmaceutically acceptable carrier are also provided.
- a disease or disorder e.g., a retroviral (e.g., HIV) infection
- the method comprises administering to the subject at least one nanoparticle/nanoformulation of the instant invention.
- the methods are for treating, inhibiting, or preventing an HIV infection and the therapeutic agent of the nanoparticle is an anti-HIV compound, particularly a CCR5 co-receptor antagonist such as maraviroc.
- the method further comprises administering at least one further therapeutic agent or therapy for the disease or disorder, e.g., at least one additional anti-HIV compound.
- FIG. 1 provides a graph of the microphage uptake of free maraviroc or nanoformulated maraviroc.
- FIG. 2 provides a graph of the microphage retention of free maraviroc or nanoformulated maraviroc.
- FIG. 3A provides images of ceils stained for HIV-1 p24 after treatment with free maraviroc or nanoformulated maraviroc and HIV-1 infection. Control samples are without treatment and without infection. HIV+ samples are without treatment.
- FIG. 3B provides a graph of reverse transcription in negative control (HIV ⁇ ), positive control (HIV+), free maraviroc treated (Free), and nanoformulated maraviroc treated (JL715) cells challenged with HIV-1 at the indicated day.
- FIG. 4 provides a graph of the antiretroviral activity of nanoformulated maraviroc treated cells with variable drug concentrations and challenged with HIV-1 15 days after treatment.
- Antiretroviral therapy shows several limitations in adherence, pharmaceutics and effectiveness. Administrations commonly require life-long frequent daily dosing, substantive toxicities, and demonstrate limited access to tissue and cellular viral-reservoirs. This precludes viral eradication efforts. As there are no current vaccination strategies for HIV eradication, alternative chemical vaccination strategies are desirable. To this end, the instant invention provides long-acting nanoparticles to improve patient adherence, reduce systemic toxicities, and reduce residual viral loads. Such long-acting HIV treatments will facilitate lower dosing intervals from, daily to monthly or even yearly. The instant invention allows for ART for the long-term goal of HIV eradication. The invention may also be used as an efficient pre-exposure prophylaxis (PrEP) strategy.
- PrEP pre-exposure prophylaxis
- Maraviroc is a CCR5 co-receptor antagonist commonly used as part of combination antiretroviral therapy (cART).
- the target is HIV-1 infected people with CCR5-tropic (R5) virus.
- CCR5-tropic R5 virus.
- MVC has drawbacks and limitations that prevent maximal efficacy including: a twice-daily dosing regimen, limitations in virologic suppressive activity, and a lack of specific delivery to sites of viral entry.
- the drug was packaged into nanoparticles enabling monocyte-macrophage uptake and delivery.
- the creation of a cell-based drug depot facilitates particle dissolution and subsequent sustained release of MVC at its action site.
- polymeric lipid-coated poly (lactic-co-glycolic acid) (PLGA)-MVC nanoparticles were manufactured using a single emulsion-solvent evaporation technique.
- PLGA polymeric lipid-coated poly (lactic-co-glycolic acid)
- MDM human monocyte-derived macrophage
- MDM treated with nanoformulated MVC (nMVC) or native MVC for 8 hours exhibited intracellular drug levels of 10.76 and 3.90 ⁇ g/10 6 cells, respectively.
- MDM retained 1.06 ⁇ g MVC/10 6 cells while cells treated with free/native MVC had undetectable levels.
- the antiretroviral activity was determined by reverse transcriptase (RT) activity and HIV-1 p24 antigen expression in HIV-1 infected MDM.
- MDM challenged with HIV-I ADA >15 days after 8 hours of nMVC treatment exhibited dose dependent reductions in RT activity.
- concentrations of 30-100 ⁇ M nMVC and native MVC resulted in 95 and 22% RT activity reductions, respectively, compared to untreated infected cells.
- the instant invention encompasses nanoparticles for the delivery of compounds to a cell.
- the nanoparticle is for the delivery of antiretroviral therapy to a subject.
- the nanoparticles of the instant invention comprise at least one antiretroviral, at least one hydrophobic polymer, and at least one surfactant. These components of the nanoparticle, along with other optional components, are described hereinbelow.
- the nanoparticle may be synthesized using, without limitation, an emulsion (e.g., single emulsion, double emulsion, emulsion-evaporation), milling (e.g., wet milling), homogenization (e.g., high pressure homogenization), particle replication in nonwetting template (PRINT) technology, and/or sonication techniques.
- an emulsion e.g., single emulsion, double emulsion, emulsion-evaporation
- milling e.g., wet milling
- homogenization e.g., high pressure homogenization
- particle replication in nonwetting template (PRINT) technology e.g., PRINT
- sonication techniques e.g., a single emulsion-solvent evaporation technique.
- the surfactants are firstly chemically modified with targeting ligands (e.g., through a linker) and then mixed with non-targeted surfactants in certain molar ratios prior to formation of the nanoparticles comprising the therapeutic agent and hydrophobic polymer.
- Targeted nanoformulations e.g., those using ligands with high molecular weight
- the nanoparticles of the instant invention may be used to deliver any agent(s) or compound(s), particularly bioactive agents, particularly therapeutic agents or diagnostic agents such as antiviral compounds to a cell or a subject (including non-human animals).
- the nanoparticles of the instant invention comprise at least one therapeutic agent, particularly at least one antiretroviral.
- the nanoparticles may be crystalline (solids having the characteristics of crystals) or solid-state nanoparticles of the therapeutic agent.
- the resultant nanoparticle is up to about 1 ⁇ m in diameter.
- the nanoparticle is about 100 nm to about 500 n m in diameter, particularly about 100-300 nm in diameter.
- the nanoparticles may be, for example, rod shaped, elongated rods, irregular, or round shaped. In a particular embodiment, the nanoparticles are round.
- the nanoparticles of the instant invention may be neutral or charged (positively or negatively).
- the therapeutic agent may be hydrophobic, a water insoluble compound, or a poorly water soluble compound.
- the therapeutic agent may have a solubility of less than about 10 mg/ml, less than 1 mg/ml, more particularly less than about 100 ⁇ g/ml, and more particularly less than about 25 ⁇ g/ml in water or aqueous media in a pH range of 0-14, particularly between pH 4 and 10, between pH 6 and 8, or about pH 7, particularly at 20° C.
- the therapeutic agent is an antiviral, more particularly an antiretroviral.
- the antiretroviral may be effective against or specific to lentiviruses.
- Lentiviruses include, without limitation, human immunodeficiency virus (HIV) (e.g., HIV-1, HIV-2), bovine immunodeficiency virus (BIV), feline immunodeficiency virus (FIV), simian immunodeficiency virus (SIV), and equine infectious anemia virus (EIA).
- the therapeutic agent is an anti-HIV agent (e.g., anti-HIV-1 agent).
- the therapeutic agent is a CCR5 receptor antagonist.
- CCR5 antagonists include, for example, maraviroc (Selzentry®, Celsentri) and vicriviroc.
- the therapeutic agent is maraviroc.
- An anti-HIV compound or an anti-HIV agent is a compound which inhibits HIV (e.g., inhibits HIV replication).
- anti-HIV agents include, without limitation:
- NRTIs Nucleoside-analog reverse transcriptase inhibitors
- nucleoside-analog reverse transcriptase inhibitors refer to nucleosides and nucleotides and analogues thereof that inhibit the activity of HIV-1 reverse transcriptase.
- An example of nucleoside-analog reverse transcriptase inhibitors is, without limitation, adefovir dipivoxil.
- NNRTIs Non-nucleoside reverse transcriptase inhibitors
- NNRTIs are allosteric inhibitors which bind reversibly at a nonsubstrate-binding site on the HIV reverse transcriptase, thereby altering the shape of the active site or blocking polymerase activity.
- NNRTIs include, without limitation, delavirdine (BHAP, U-90152; RESCRIPTOR®), efavirenz (DMP-266, SUSTIVA®), nevirapine (VIRAMUNE®), PNU-142721, capravirine (S-1153, AG-1549), emivirine (+)-calanolide A (NSC-675451) and B, etravirine (TMC-125), rilpivirne (TMC278, EdurantTM), DAPY (TMC120), BILR-355 BS, PHI-236, and PHI-443 (TMC-278).
- delavirdine BHAP, U-90152; RESCRIPTOR®
- DMP-266 efavirenz
- SUSTIVA® efavirenz
- VIRAMUNE® nevirapine
- PNU-142721 capravirine
- NSC-675451 emivirine (+)-calanolide A
- B etravirine
- Protease inhibitors are inhibitors of the HIV-1 protease.
- protease inhibitors include, without limitation, darunavir, amprenavir (141W94, AGENERASE®), tipranivir (PNU-140690, APTIVUS®), indinavir (MK-639; CRIXIVAN®), saquinavir (INVIRASE®, FORTOVASE®), fosamprenavir (LEXIVA®), lopinavir (ABT-378), ritonavir (ABT-538, NORVIR®), atazanavir (REYATAZ®), nelfinavir (AG-1343, VIRACEPT®), lasinavir (BMS-234475/CGP-61755), BMS-2322623, GW-640385X (VX-385), AG-001859, and SM-309515.
- Fusion or entry inhibitors are compounds, such as peptides, which act by blocking HIV's entry in to the cell.
- the inhibitor may block access to the cell receptors required for viral entry or may bind to HIV envelope protein and block the structural changes necessary for the virus to fuse with the host cell.
- fusion inhibitors include, without limitation, CCR5 receptor antagonists (e.g., maraviroc (Selzentry®, Celsentri), vicriviroc), enfuvirtide (INN, FUZEON®), T-20 (DP-178, FUZEON®) and T-1249.
- Integrase inhibitors are a class of antiretroviral drug designed to block the action of integrase, a viral enzyme that inserts the viral genome into the DMA of the host cell.
- examples of integrase inhibitors include, without limitation, raltegravir, elvitegravir, and MK-2048.
- Anti-HIV compounds also include maturation inhibitors (e.g., bevirimat). Maturation inhibitors are typically compounds which bind HIV gag and disrupt its processing during the maturation of the virus. Anti-HIV compounds also include HIV vaccines such as, without limitation, ALVAC® HIV (vCP1521), AIDSVAX®B/E (gp120), and combinations thereof. Anti-HIV compounds also include HIV antibodies (e.g., antibodies against gp120or gp41), particularly broadly neutralizing antibodies.
- maturation inhibitors e.g., bevirimat
- Maturation inhibitors are typically compounds which bind HIV gag and disrupt its processing during the maturation of the virus.
- Anti-HIV compounds also include HIV vaccines such as, without limitation, ALVAC® HIV (vCP1521), AIDSVAX®B/E (gp120), and combinations thereof.
- Anti-HIV compounds also include HIV antibodies (e.g., antibodies against gp120or gp41), particularly broadly neutralizing antibodies.
- the anti-HIV therapy is highly active antiretroviral therapy (HAART).
- the therapeutic agents may be contained within the nanoparticle (e.g., with a CCR5 antagonist).
- the nanoparticle comprises a CCR5 antagonist and the other anti-HIV agents are administered to the subject separately.
- the other anti-HIV agents may be administered in separate compositions (e.g., comprising a pharmaceutically acceptable carrier).
- the other anti-HIV agents may be administered concurrently and/or sequentially with the nanoparticle of the instant invention.
- the nanoparticles of the instant invention comprise at least one hydrophobic polymer.
- the hydrophobic polymer(s) and the therapeutic agent may form the core of the nanoparticles of the invention.
- hydrophobic polymers include, but are not limited to: poly(lactide-co-glycolide) (PLGA), polylactic acid (PLA), polycaprolactone (PCL) , other polyesters, poly(propylene oxide), poly(1,2-butylene oxide), poly(n-butylene oxide), poly(tetrahydrofurane), and poly(styrene).
- the hydrophobic polymer is PLGA (e.g., PLGA 75:25).
- PLGA is hydrolyzed in the body to lactic acid and glycolic acid, which can be metabolized via the Krebs cycle, thereby minimizing toxicity.
- the nanoparticles of the instant invention comprise at least one surfactant.
- a “surfactant” refers to a surface-active agent, including substances commonly referred to as wetting agents, detergents, dispersing agents, or emulsifying agents. Surfactants are usually organic compounds that are amphiphilic. Generally, the surfactant will coat the hydrophobic core comprising the therapeutic agent and the hydrophobic polymer. In a particular embodiment, the weight ratio of hydrophobic polymer to surfactant is about 0.001 to about 1, particularly about 0.005 to about 0.8, about 0.01 to about 0.6, or about 0.02 to about 0.5.
- surfactants include, without limitation, synthetic or natural phospholipids, pegylated lipids, polysorbates, poly(ethylene glycol)-co-poly(lactide-co-glycolide) (PEG-PLGA), their derivatives, ligand-conjugated derivatives and combinations thereof.
- PEG-PLGA poly(ethylene glycol)-co-poly(lactide-co-glycolide)
- Other surfactants and their combinations that can form stable nanoparticles or/and can chemically/physically bind to the targeting ligands of HIV infectable/infected CD4+ T cells, macrophages and dendritic cells can be used in the instant invention.
- surfactants include, without limitation: 1) nonionic surfactants (e.g., pegylated and/or polysaccharide-conjugated polyesters and other hydrophobic polymeric blocks such as poly(lactide-co-glycolide) (PLGA), polylactic acid (PLA), polycaprolactone (PCL), other polyesters, poly(propylene oxide), poly(1,2-butylene oxide), poly(n-butylene oxide), poly(tetrahydrofurane), and poly (styrene); glyceryl esters, polyoxyethylene fatty alcohol ethers, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene fatty acid esters, sorbitan esters, glycerol monostearate, polyethylene glycols, polypropyleneglycols, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, aryl alkyl polyether alcohols, polyoxyethylene-polyoxypropylene copolymers, poloxamine
- the surfactant of the instant invention may be charged or neutral.
- the surfactant is neutral or negatively charged (e.g., poloxamers, polysorbates, phospholipids, and their derivatives).
- the surfactant is an amphiphilic block copolymer.
- at least one surfactant of the nanoparticle is an amphiphilic block copolymer, particularly a copolymer comprising at least one block of poly(oxyethylene) and at least one block of poly(oxypropylene).
- the surfactant is a poloxamer.
- Other biocompatible amphiphilic copolymers include those described in Gaucher et al. (J. Control Rel. (2005) 109:169-188).
- the surfactant is a phospholipid, particularly a glycerophospholipid.
- glycerophospholipids include, without limitation: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG).
- the glycerophospholipid may be conjugated to a polymer (e.g., a hydrophilic polymer) such as a polyethylene glycol polymer or derivative thereof (e.g., methoxy poly(ethylene glycol)).
- the nanoparticles of the instant invention may comprise glycerophospholipids and glycerophospholipids conjugated to a hydrophilic polymer such as a polyethylene glycol polymer or derivative thereof.
- a hydrophilic polymer such as a polyethylene glycol polymer or derivative thereof.
- the molar ratio of glycerophospholipids and glycerophospholipids conjugated to a hydrophilic polymer in the nanoparticles of the instant invention is from about 0.001 to 100%.
- the molar ratio of glycerophospholipids and glycerophospholipids conjugated to a hydrophilic polymer is from about 1:1 to about 50:1, from about 2:1 to about 20:1, from about 5:1 to about 12:1, or about 8:1.
- the nanoparticles of the instant invention comprise a glycerophospholipid conjugated to a hydrophilic polymer and a non-conjugated version of the glycerophospholipid.
- the nanoparticle comprises DSPE, DSPC, and/or DSPG.
- the nanoparticle comprises DSPE mpeg 2000, DSPC, and DSPG.
- the surfactant of the instant invention may be linked to a targeting ligand.
- a targeting ligand is a compound that will specifically bind to a specific type of tissue or cell type.
- the targeting ligand is a ligand for a cell surface marker/receptor.
- the targeting ligand may be an antibody or fragment thereof immunologically specific for a cell surface marker (e.g., protein or carbohydrate) preferentially or exclusively expressed on the targeted tissue or cell type.
- the targeting ligand may be linked directly to the surfactant or via a linker.
- the linker is a chemical moiety comprising a covalent bond or a chain of atoms that covalently attaches the ligand to the surfactant.
- the linker can be linked to any synthetically feasible position of the ligand and the surfactant (e.g., the hydrophilic portion).
- exemplary linkers may comprise at least one optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group.
- the linker may also be a polypeptide (e.g., from about 1 to about. 10 amino acids, particularly about 1 to about 5).
- the linker may be a synthetic hydrophilic polymer.
- the linker may be non-degradable and may be a covalent bond or any other chemical structure which cannot be substantially cleaved or cleaved at all under physiological environments or conditions.
- the nanoparticles of the instant invention may comprise targeted and non-targeted surfactants.
- the molar ratio of targeted and non-targeted surfactants in the nanoparticles of the instant invention is from about 0.001 to 100%.
- the nanoparticles of the instant invention comprise a folate targeted surfactant and a non-targeted version of the surfactant.
- the targeted nanoformulations of the instant invention may comprise a targeting ligand for directing the nanoparticles to HIV tissue and cellular sanctuaries/reservoirs (e.g., central nervous system, gut associated lymphoid tissues (GALT), CD4+ T cells, macrophages, dendritic cells, etc.).
- the targeting ligand is a macrophage targeting ligand; CD4+ T cell targeting ligand, or a dendritic cell targeting ligand.
- Macrophage targeting ligands include, without limitation, folate receptor ligands (e.g., folate (folic acid) and folate receptor antibodies and fragments thereof (see, e.g., Sudimack et al. (2000) Adv.
- mannose receptor ligands e.g., mannose
- formyl peptide receptor (FPR) ligands e.g., N-formyl-Met-Leu-Phe (fMLF)
- tuftsin the tetrapeptide Thr-Lys-Pro-Arg
- Other targeting ligands include, without limitation, hyaluronic acid, gp120, and ligands or antibodies specific for CD4, CCR5, CXCR4, CD 7, CD111, CD204, CD49a, or CD29.
- the targeting of the nanoparticles e.g., to macrophage provides for superior targeting, decreased excretion rates, decreased toxicity, and prolonged half life compared to free drug or non-targeted nanoparticles.
- the instant invention encompasses pharmaceutical compositions comprising at least one nanoparticle of the instant invention and at least one pharmaceutically acceptable carrier.
- the nanoparticle may comprise more than one therapeutic agent.
- the pharmaceutical composition comprises a first nanoparticle comprising a first therapeutic agent(s) and a second nanoparticle comprising a second therapeutic agent(s), wherein the first and second therapeutic agents are different.
- the pharmaceutical compositions of the instant invention may further comprise other therapeutic agents (e.g., other anti-HIV compounds (e.g., those described hereinabove)).
- the nanoparticles of the instant invention may be used to treat a viral infection, particularly retroviral or lentiviral infections, particularly HIV (e.g., HIV-1) infections (e.g., a CCR5-dependent HIV).
- HIV e.g., HIV-1 infections
- CCR5-dependent HIV e.g., a CCR5-dependent HIV
- the present invention encompasses methods for preventing, inhibiting, and/or treating a viral infection, particularly retroviral or lentiviral infections, particularly HIV (e.g., HIV-1) infections (e.g., a CCR5-dependent HIV).
- the pharmaceutical compositions of the instant invention can be administered to an animal, in particular a mammal, more particularly a human, in order to treat/inhibit an HIV infection.
- compositions of the instant invention may also comprise at least one other antiviral agent, particularly at least one other anti-HIV compound/agent.
- the additional anti-HIV compound may also be administered in a separate pharmaceutical composition from the anti-HIV NPs of the instant invention.
- the pharmaceutical compositions may be administered at the same time or at different times (e.g., sequentially).
- the present, invention features a use or method of treating or inhibiting an HIV infection by administration of nanoparticles comprising maraviroc, poly(lactic-co-glycolic acid), and glycerophospholipids and glycerophospholipids conjugated to polyethylene glycol.
- the present invention features a use or method of preventing an HIV infection by administration of nanoparticles comprising maraviroc, poly(lactic-co-glycolic acid), and glycerophospholipids and glycerophospholipids conjugated to polyethylene glycol as surfactants.
- the dosage ranges for the administration of the pharmaceutical compositions of the invention are those large enough to produce the desired effect (e.g., curing, relieving, treating, and/or preventing the HIV infection, the symptoms of it (e.g., AIDS, ARC), or the predisposition towards it).
- the pharmaceutical composition of the instant invention is administered to the subject at an amount from about 5 ⁇ g/kg to about 500 mg/kg.
- the pharmaceutical composition of the instant invention is administered to the subject at an amount greater than greater than about 0.5 mg/kg, greater than about 1 mg/kg, greater than about 5 mg/kg, or greater than about 50 mg/kg.
- the pharmaceutical composition of the instant invention is administered to the subject at an amount from about 0.5 mg/kg to about 100 mg/kg, about 10 mg/kg to about 100 mg/kg, or about 15 mg/kg to about 50 mg/kg.
- the dosage should not be so large as to cause significant adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like.
- the dosage will vary with the age, condition, sex and extent of the disease in the patient and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician in the event of any counter indications.
- nanoparticles described herein will generally be administered to a patient as a pharmaceutical composition.
- patient refers to human or animal subjects. These nanoparticles may be employed therapeutically, under the guidance of a physician.
- compositions comprising the nanoparticles of the instant invention may be conveniently formulated for administration with any pharmaceutically acceptable carrier(s).
- the complexes may be formulated with an acceptable medium such as water, buffered saline, detergents, suspending agents, or suitable mixtures thereof.
- concentration of the nanoparticles in the chosen medium may be varied and the medium may be chosen based on the desired route of administration of the pharmaceutical composition. Except insofar as any conventional media or agent is incompatible with the nanoparticles to be administered, its use in the pharmaceutical composition is contemplated.
- the dose and dosage regimen of nanoparticles according to the invention that are suitable for administration to a particular patient may be determined by a physician considering the patient's age, sex, weight, general medical condition, and the specific condition for which the nanoparticles are being administered and the severity thereof.
- the physician may also take into account the route of administration, the pharmaceutical carrier, and the nanoparticle's biological activity.
- a suitable pharmaceutical composition will also depend upon the mode of administration chosen.
- the nanoparticles of the invention may be administered by direct injection or intravenously.
- a pharmaceutical composition comprises the nanoparticle dispersed in a medium that is compatible with the site of injection.
- Nanoparticles of the instant invention may be administered by any method.
- the nanoparticles of the instant invention can be administered, without limitation parenterally, subcutaneously, orally, topically, pulmonarily, rectally, vaginally, intravenously, intraperitoneally, intrathecally, intracerbrally, epidurally, intramuscularly, intradermally, or intracarotidly.
- the nanoparticles are administered parenterally, intramuscularly, subcutaneously, or to the bloodstream (e.g., intravenously).
- Pharmaceutical compositions for injection are known in the art.
- Dosage forms for oral administration include, without limitation, tablets (e.g., coated and uncoated, chewable), gelatin capsules (e.g., soft or hard), lozenges, troches, solutions, emulsions, suspensions, syrups, elixirs, powders/granules (e.g., reconstitutable or dispersible) gums, and effervescent tablets.
- Dosage forms for parenteral administration include, without limitation, solutions, suspensions, syrups, elixirs, dispersions and powders/granules for reconstitution.
- Dosage forms for topical administration include, without limitation, creams, gels, ointments, salves, patches and transdermal delivery systems.
- compositions containing a nanoparticle of the present invention as the active ingredient in intimate admixture with a pharmaceutically acceptable carrier can be prepared according to conventional pharmaceutical compounding techniques.
- the carrier may take a wide variety of forms depending on the form of pharmaceutical composition desired for administration, e.g., intravenous, oral, direct injection, intracranial, and intravitreal.
- a pharmaceutical composition of the invention may be formulated in dosage unit form for ease of administration and uniformity of dosage.
- Dosage unit form refers to a physically discrete unit of the pharmaceutical composition appropriate for the patient undergoing treatment. Each dosage should contain a quantity of active ingredient calculated to produce the desired effect in association with the selected pharmaceutical carrier. Procedures for determining the appropriate dosage unit are well known to those skilled in the art.
- the nanoformulations of the instant invention due to their long-acting therapeutic effect, may be administered once every 0.5, 1, 2, 6, or 12 months or even less frequently.
- the nanoformulations of the instant invention may be administered once every 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21, 24 or more months.
- Dosage units may be proportionately increased or decreased based on the weight of the patient. Appropriate concentrations for alleviation of a particular pathological condition may be determined by dosage concentration curve calculations, as known in the art.
- the appropriate dosage unit for the administration of nanoparticles may be determined by evaluating the toxicity of the molecules or cells in animal models. Various concentrations of nanoparticles in pharmaceutical composition may be administered to mice, and the minimal and maximal dosages may be determined based on the beneficial results and side effects observed as a result of the treatment. Appropriate dosage unit may also be determined by assessing the efficacy of the nanoparticle treatment in combination with other standard drugs. The dosage units of nanoparticle may be determined individually or in combination with each treatment according to the effect detected.
- the pharmaceutical composition comprising the nanoparticles may be administered at appropriate intervals until the pathological symptoms are reduced or alleviated, after which the dosage may be reduced to a maintenance level.
- the appropriate interval in a particular case would normally depend on the condition of the patient.
- the instant invention encompasses methods of treating a disease/disorder comprising administering to a subject in need thereof a pharmaceutical composition comprising a nanoparticle of the instant invention and, particularly, at least one pharmaceutically acceptable carrier.
- the instant invention also encompasses methods wherein the subject is treated via ex vivo therapy.
- the method comprises removing cells from the subject, exposing/contacting the cells in vitro to the nanoparticles of the instant invention, and returning the cells to the subject.
- the cells comprise macrophage.
- Other methods of treating the disease or disorder may be combined with the methods of the instant invention may be co-administered with the pharmaceutical compositions of the instant invention.
- the instant also encompasses delivering the nanoparticle of the instant invention to a cell in vitro (e.g., in culture).
- the nanoparticle may be delivered to the cell in at least one carrier.
- “Pharmaceutically acceptable” indicates approval by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- a “carrier” refers to, for example, a diluent, adjuvant, preservative (e.g., Thimersol, benzyl alcohol), anti-oxidant (e.g., ascorbic acid, sodium metabisulfite), solubilizer (e.g., polysorbate 80), emulsifier, buffer (e.g., Tris HCl, acetate, phosphate), antimicrobial, bulking substance (e.g., lactose, mannitol), excipient, auxiliary agent or vehicle with which an active agent of the present invention is administered.
- Pharmaceutically acceptable carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin.
- Water or aqueous saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions.
- Suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin (Mack Publishing Co., Easton, Pa.); Gennaro, A. R., Remington: The Science and Practice of Pharmacy, (Lippincott, Williams and Wilkins); Liberman, et al., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y.; and Kibbe, et al., Eds., Handbook of Pharmaceutical Excipients, American Pharmaceutical Association, Washington.
- treat refers to any type of treatment that imparts a benefit to a patient afflicted with a disease, including improvement in the condition of the patient (e.g., in one or more symptoms), delay in the progression of the condition, etc.
- the treatment of a retroviral infection results in at least an inhibition/reduction in the number of infected cells.
- a “therapeutically effective amount” of a compound or a pharmaceutical composition refers to an amount effective to prevent, inhibit, treat, or lessen the symptoms of a particular disorder or disease.
- the treatment of a microbial infection e.g., HIV infection
- therapeutic agent refers to a chemical compound or biological molecule including, without limitation, nucleic acids, peptides, proteins, and antibodies that can be used to treat a condition, disease, or disorder or reduce the symptoms of the condition, disease, or disorder.
- small molecule refers to a substance or compound that has a relatively low molecular weight (e.g., less than 4,000, less than 2, 000, particularly less than 1 kDa or 800 Da).
- small molecules are organic, but are not proteins, polypeptides, or nucleic acids, though they may be amino acids or dipeptides.
- antimicrobials indicates a substance that kills or inhibits the growth of microorganisms such as bacteria, fungi, viruses, or protozoans.
- antiviral refers to a substance that destroys a virus or suppresses replication (reproduction) of the virus.
- HAART highly active antiretroviral therapy
- nucleoside reverse transcriptase inhibitors such as nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, HIV protease inhibitors, and fusion inhibitors.
- amphiphilic means the ability to dissolve in both water and lipids/apolar environments.
- an amphiphilic compound comprises a hydrophilic portion and a hydrophobic portion.
- Hydrophilic designates a preference for apolar environments (e.g., a hydrophobic substance or moiety is more readily dissolved in or wetted by non-polar solvents, such as hydrocarbons, than by water).
- hydrophilic means the ability to dissolve in water.
- polymer denotes molecules formed from the chemical union of two or more repeating units or monomers.
- block copolymer most simply refers to conjugates of at least two different polymer segments, wherein each, polymer segment comprises two or more adjacent units of the same kind.
- antibody or “antibody molecule” is any immunoglobulin, including antibodies and fragments thereof (e.g., scFv), that binds to a specific antigen.
- antibody or antibody molecule contemplates intact immunoglobulin molecules, immunologically active portions of an immunoglobulin molecule, and fusions of immunologically active portions of an immunoglobulin molecule.
- immunologically specific refers to proteins/polypeptides, particularly antibodies, that bind to one or more epitopes of a protein or compound of interest, but which do not substantially recognize and bind other molecules in a sample containing a mixed population of antigenic biological molecules.
- Polymeric lipid-coated poly (lactic-co-glycolic acid) (PLGA)-MVC nanoparticles were manufactured using a single emulsion-solvent evaporation technique (Liu et al. (2010) Biomaterials 31:330-338).
- the drug loading in the nanoparticles is about 5% to about 20%.
- the weight ratio of phospholipid to PLGA is about 0.02-0.5.
- the resultant nanoparticles had an average particle size of 241.7 nm, a polydispersity index (PDI) of 0.217, and a zeta potential of ⁇ 34.2.
- PDI polydispersity index
- MDM human monocyte-derived macrophage uptake, retention, release and antiretroviral responses were examined.
- MDM treated with nanoformulated MVC (nMVC) or free MVC for 8 hours exhibited intracellular drug levels of 10.77 and 3.91 ⁇ g/10 6 cells, respectively ( FIG. 1 ).
- Ten days following nMVC treatment (100 ⁇ M) MDM retained 1.07 ⁇ g MVC/10 6 cells while free MVC was undetectable ( FIG. 2 ).
- FIG. 3 shows the comparison of antiretroviral activity of nMVC and free maraviroc (MVC) as determined by HIV-1 p24 antigen expression ( FIG. 3A ) and reverse transcriptase (RT) activity ( FIG. 3B ).
- RT activity was determined by 3 H-TTP incorporation in medium from cells loaded with nMVC or free MVC for 8 hours and then challenged with HIV-1 ADA at 1, 5, 10, 15 days after treatment.
- nMVC therapy led to dramatically reduced p24 expression and RT activity compared to the treatment with free MVC.
- FIG. 4 shows the antiretroviral activity of nMVC as determined by reverse transcriptase (RT) activity. RT activity was determined by 3 H-TIP incorporation in medium from cells loaded with nMVC for 8 hours and then challenged with HIV-1 ADA 15 days after treatment. As seen
- nMVC significantly inhibited HIV-1 replication at concentrations below 100 ⁇ M as evidenced by the reduction in RT activity.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Emergency Medicine (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Virology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
The present invention provides compositions and methods for the delivery of antivirals to a cell or subject.
Description
- This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 61/927,315, filed Jan. 14, 2014. The foregoing application is incorporated by reference herein.
- The present invention relates generally to the delivery of therapeutics. More specifically, the present invention relates to compositions and methods for the delivery of therapeutic agents to a patient for the treatment of a viral infection.
- The need to improve the bioavailability, pharmacology, cytotoxicities, and interval dosing of antiretroviral medications in the treatment of human immunodeficiency virus (HIV) infection is notable (Broder, S. (2010) Antivir. Res., 85:1-18; Este et al. (2010) Antivir. Res., 85:25-33; Moreno et al. (2010) J. Antimicrob. Chemother., 65:827-835). Since the introduction of antiretroviral therapy (ART), incidences of both mortality and co-morbidities associated with HIV-1 infection have decreased dramatically. However, many limitations associated with ART still remain which prevent full suppression of viral replication in HIV-infected individuals. These limitations include poor pharmacokinetics (PK) and biodistribution, life-long daily treatment, and multiple untoward toxic side effects (Garvie et al. (2009) J. Adolesc. Health 44:124-132; Hawkins, T, (2006) AIDS Patient Care STDs 20:6-18; Royal et al. (2009) AIDS Care 21:448-455). Since antiretroviral medications are quickly eliminated from the body and do not thoroughly penetrate all organs, dosing schedules tend to be complex and involve large amounts of drug. Patients have difficulty properly following therapy guidelines leading to suboptimal adherence and increased risk of developing viral resistance, which can result in treatment failure and accelerated progression of disease (Danel et al. (2009) J. Infect. Dis. 199:66-76) . For HIV-infected patients who also experience psychiatric and mental disorders and/or drug abuse, proper adherence to therapy is even more difficult (Meade et al. (2009) AIDS Patient Care STDs 23:259-266; Baum et al. (2009) J. Acquir. Immune Defic. Syndr., 50:93-99). If dosing is not strictly maintained and consistent, virus can mutate and drug resistance will ultimately develop.
- Accordingly, there is a need for drug delivery systems that optimize cell uptake and retention, improve intracellular stability, extend drug release, maintain antiretroviral efficacy, and minimize cellular toxicity within transporting cells.
- In accordance with the instant invention, nanoparticles/nanoformulations comprising at least one therapeutic agent, at least one hydrophobic polymer, and at least one surfactant are provided. In a particular embodiment, the surfactant is a glycerophospholipid. In a particular embodiment, the hydrophobic polymer is poly (lactic-co-glycolic acid) (PLGA). In a particular embodiment, the surfactant is linked to at least one targeting ligand such as a macrophage targeting ligand (e.g., folate). An individual nanoparticle may comprise targeted and non-targeted surfactants. In a particular embodiment, the therapeutic agent is an antiviral, antiretroviral, or anti-HIV compound, particularly a CCR5 co-receptor antagonist.
- In a particular embodiment, the nanoparticle of the instant invention comprises a CCR5 receptor antagonist (e.g., maraviroc), a hydrophobic polymer (e.g., PLGA), and a surfactant (e.g., glycerophospholipid, optionally conjugated to polyethylene glycol), optionally with a macrophage targeting ligand (e.g., folate).
- Pharmaceutical compositions comprising at least nanoparticle of the instant invention and at least one pharmaceutically acceptable carrier are also provided.
- According to another aspect of the instant invention, uses/methods for treating, inhibiting, or preventing a disease or disorder (e.g., a retroviral (e.g., HIV) infection) in a subject are provided. In a particular embodiment, the method comprises administering to the subject at least one nanoparticle/nanoformulation of the instant invention. In a particular embodiment, the methods are for treating, inhibiting, or preventing an HIV infection and the therapeutic agent of the nanoparticle is an anti-HIV compound, particularly a CCR5 co-receptor antagonist such as maraviroc. In a particular embodiment, the method further comprises administering at least one further therapeutic agent or therapy for the disease or disorder, e.g., at least one additional anti-HIV compound.
-
FIG. 1 provides a graph of the microphage uptake of free maraviroc or nanoformulated maraviroc. -
FIG. 2 provides a graph of the microphage retention of free maraviroc or nanoformulated maraviroc. -
FIG. 3A provides images of ceils stained for HIV-1 p24 after treatment with free maraviroc or nanoformulated maraviroc and HIV-1 infection. Control samples are without treatment and without infection. HIV+ samples are without treatment.FIG. 3B provides a graph of reverse transcription in negative control (HIV−), positive control (HIV+), free maraviroc treated (Free), and nanoformulated maraviroc treated (JL715) cells challenged with HIV-1 at the indicated day. -
FIG. 4 provides a graph of the antiretroviral activity of nanoformulated maraviroc treated cells with variable drug concentrations and challenged with HIV-1 15 days after treatment. - Antiretroviral therapy (ART) shows several limitations in adherence, pharmaceutics and effectiveness. Administrations commonly require life-long frequent daily dosing, substantive toxicities, and demonstrate limited access to tissue and cellular viral-reservoirs. This precludes viral eradication efforts. As there are no current vaccination strategies for HIV eradication, alternative chemical vaccination strategies are desirable. To this end, the instant invention provides long-acting nanoparticles to improve patient adherence, reduce systemic toxicities, and reduce residual viral loads. Such long-acting HIV treatments will facilitate lower dosing intervals from, daily to monthly or even yearly. The instant invention allows for ART for the long-term goal of HIV eradication. The invention may also be used as an efficient pre-exposure prophylaxis (PrEP) strategy.
- Maraviroc (MVC; Selzentry®) is a CCR5 co-receptor antagonist commonly used as part of combination antiretroviral therapy (cART). The target is HIV-1 infected people with CCR5-tropic (R5) virus. When used with select antiretrovirals, the efficacy of MVC is significant and sustained. However, MVC has drawbacks and limitations that prevent maximal efficacy including: a twice-daily dosing regimen, limitations in virologic suppressive activity, and a lack of specific delivery to sites of viral entry.
- To overcome the limitations associated with MVC, the drug was packaged into nanoparticles enabling monocyte-macrophage uptake and delivery. The creation of a cell-based drug depot facilitates particle dissolution and subsequent sustained release of MVC at its action site. As shown hereinbelow, polymeric lipid-coated poly (lactic-co-glycolic acid) (PLGA)-MVC nanoparticles were manufactured using a single emulsion-solvent evaporation technique. The physicochemical characteristics of nanoformulated MVC, as well as human monocyte-derived macrophage (MDM) uptake, retention, release and antiretroviral responses were examined. MDM treated with nanoformulated MVC (nMVC) or native MVC for 8 hours exhibited intracellular drug levels of 10.76 and 3.90 μg/106 cells, respectively. At one day or ten days following nMVC treatment (100 μM) , MDM retained 1.06 μg MVC/106 cells while cells treated with free/native MVC had undetectable levels.
- The antiretroviral activity was determined by reverse transcriptase (RT) activity and HIV-1 p24 antigen expression in HIV-1 infected MDM. MDM challenged with HIV-IADA>15 days after 8 hours of nMVC treatment exhibited dose dependent reductions in RT activity. At concentrations of 30-100 μM, nMVC and native MVC resulted in 95 and 22% RT activity reductions, respectively, compared to untreated infected cells. These results demonstrate that nMVC creates a cellular drug depot, which facilitates effective antiretroviral efficacy weeks after treatment. Overall, development of long acting targeted MVC, optionally together with reverse transcriptase, protease and/or integrase inhibitors leads to improved pharmacokinetics of cART and promote improved drug adherence and access.
- The instant invention encompasses nanoparticles for the delivery of compounds to a cell. In a particular embodiment, the nanoparticle is for the delivery of antiretroviral therapy to a subject. The nanoparticles of the instant invention comprise at least one antiretroviral, at least one hydrophobic polymer, and at least one surfactant. These components of the nanoparticle, along with other optional components, are described hereinbelow.
- Methods of synthesizing the nanoparticles/nanoformulations of the instant invention are known in the art. For example, the nanoparticle may be synthesized using, without limitation, an emulsion (e.g., single emulsion, double emulsion, emulsion-evaporation), milling (e.g., wet milling), homogenization (e.g., high pressure homogenization), particle replication in nonwetting template (PRINT) technology, and/or sonication techniques. In a particular embodiment, the nanoformulations are synthesized using an emulsion technique (e.g., a single emulsion-solvent evaporation technique).
- In a particular embodiment, the surfactants are firstly chemically modified with targeting ligands (e.g., through a linker) and then mixed with non-targeted surfactants in certain molar ratios prior to formation of the nanoparticles comprising the therapeutic agent and hydrophobic polymer. Targeted nanoformulations (e.g., those using ligands with high molecular weight) may be developed through either physically or chemically coating or/and binding on the surface of surfactants coating the therapeutic agent and hydrophobic polymer complex.
- The nanoparticles of the instant invention may be used to deliver any agent(s) or compound(s), particularly bioactive agents, particularly therapeutic agents or diagnostic agents such as antiviral compounds to a cell or a subject (including non-human animals). The nanoparticles of the instant invention comprise at least one therapeutic agent, particularly at least one antiretroviral. The nanoparticles may be crystalline (solids having the characteristics of crystals) or solid-state nanoparticles of the therapeutic agent.
- In a particular embodiment, the resultant nanoparticle is up to about 1 μm in diameter. In a particular embodiment, the nanoparticle is about 100 nm to about 500 n m in diameter, particularly about 100-300 nm in diameter. The nanoparticles may be, for example, rod shaped, elongated rods, irregular, or round shaped. In a particular embodiment, the nanoparticles are round. The nanoparticles of the instant invention may be neutral or charged (positively or negatively).
- The therapeutic agent may be hydrophobic, a water insoluble compound, or a poorly water soluble compound. For example, the therapeutic agent may have a solubility of less than about 10 mg/ml, less than 1 mg/ml, more particularly less than about 100 μg/ml, and more particularly less than about 25 μg/ml in water or aqueous media in a pH range of 0-14, particularly between
4 and 10, betweenpH 6 and 8, or aboutpH pH 7, particularly at 20° C. - In a particular embodiment, the therapeutic agent is an antiviral, more particularly an antiretroviral. The antiretroviral may be effective against or specific to lentiviruses. Lentiviruses include, without limitation, human immunodeficiency virus (HIV) (e.g., HIV-1, HIV-2), bovine immunodeficiency virus (BIV), feline immunodeficiency virus (FIV), simian immunodeficiency virus (SIV), and equine infectious anemia virus (EIA). In a particular embodiment, the therapeutic agent is an anti-HIV agent (e.g., anti-HIV-1 agent). In a particular embodiment, the therapeutic agent is a CCR5 receptor antagonist. CCR5 antagonists include, for example, maraviroc (Selzentry®, Celsentri) and vicriviroc. In a particular embodiment, the therapeutic agent is maraviroc.
- An anti-HIV compound or an anti-HIV agent is a compound which inhibits HIV (e.g., inhibits HIV replication). Examples of anti-HIV agents include, without limitation:
- (I) Nucleoside-analog reverse transcriptase inhibitors (NRTIs). NRTIs refer to nucleosides and nucleotides and analogues thereof that inhibit the activity of HIV-1 reverse transcriptase. An example of nucleoside-analog reverse transcriptase inhibitors is, without limitation, adefovir dipivoxil.
- (II) Non-nucleoside reverse transcriptase inhibitors (NNRTIs). NNRTIs are allosteric inhibitors which bind reversibly at a nonsubstrate-binding site on the HIV reverse transcriptase, thereby altering the shape of the active site or blocking polymerase activity. Examples of NNRTIs include, without limitation, delavirdine (BHAP, U-90152; RESCRIPTOR®), efavirenz (DMP-266, SUSTIVA®), nevirapine (VIRAMUNE®), PNU-142721, capravirine (S-1153, AG-1549), emivirine (+)-calanolide A (NSC-675451) and B, etravirine (TMC-125), rilpivirne (TMC278, Edurant™), DAPY (TMC120), BILR-355 BS, PHI-236, and PHI-443 (TMC-278).
- (III) Protease inhibitors (PI). Protease inhibitors are inhibitors of the HIV-1 protease. Examples of protease inhibitors include, without limitation, darunavir, amprenavir (141W94, AGENERASE®), tipranivir (PNU-140690, APTIVUS®), indinavir (MK-639; CRIXIVAN®), saquinavir (INVIRASE®, FORTOVASE®), fosamprenavir (LEXIVA®), lopinavir (ABT-378), ritonavir (ABT-538, NORVIR®), atazanavir (REYATAZ®), nelfinavir (AG-1343, VIRACEPT®), lasinavir (BMS-234475/CGP-61755), BMS-2322623, GW-640385X (VX-385), AG-001859, and SM-309515.
- (IV) Fusion or entry inhibitors. Fusion or entry inhibitors are compounds, such as peptides, which act by blocking HIV's entry in to the cell. For example, the inhibitor may block access to the cell receptors required for viral entry or may bind to HIV envelope protein and block the structural changes necessary for the virus to fuse with the host cell. Examples of fusion inhibitors include, without limitation, CCR5 receptor antagonists (e.g., maraviroc (Selzentry®, Celsentri), vicriviroc), enfuvirtide (INN, FUZEON®), T-20 (DP-178, FUZEON®) and T-1249.
- (V) Integrase inhibitors. Integrase inhibitors are a class of antiretroviral drug designed to block the action of integrase, a viral enzyme that inserts the viral genome into the DMA of the host cell. Examples of integrase inhibitors include, without limitation, raltegravir, elvitegravir, and MK-2048.
- Anti-HIV compounds also include maturation inhibitors (e.g., bevirimat). Maturation inhibitors are typically compounds which bind HIV gag and disrupt its processing during the maturation of the virus. Anti-HIV compounds also include HIV vaccines such as, without limitation, ALVAC® HIV (vCP1521), AIDSVAX®B/E (gp120), and combinations thereof. Anti-HIV compounds also include HIV antibodies (e.g., antibodies against gp120or gp41), particularly broadly neutralizing antibodies.
- More than one anti-HIV agent may be used, particularly where the agents have different mechanisms of action (as outlined above). In a particular embodiment, the anti-HIV therapy is highly active antiretroviral therapy (HAART). The therapeutic agents may be contained within the nanoparticle (e.g., with a CCR5 antagonist). In a particular embodiment, the nanoparticle comprises a CCR5 antagonist and the other anti-HIV agents are administered to the subject separately. For example, the other anti-HIV agents may be administered in separate compositions (e.g., comprising a pharmaceutically acceptable carrier). The other anti-HIV agents may be administered concurrently and/or sequentially with the nanoparticle of the instant invention.
- The nanoparticles of the instant invention comprise at least one hydrophobic polymer. The hydrophobic polymer(s) and the therapeutic agent may form the core of the nanoparticles of the invention. Examples of hydrophobic polymers include, but are not limited to: poly(lactide-co-glycolide) (PLGA), polylactic acid (PLA), polycaprolactone (PCL) , other polyesters, poly(propylene oxide), poly(1,2-butylene oxide), poly(n-butylene oxide), poly(tetrahydrofurane), and poly(styrene). In a particular embodiment, the hydrophobic polymer is PLGA (e.g., PLGA 75:25). Notably, PLGA is hydrolyzed in the body to lactic acid and glycolic acid, which can be metabolized via the Krebs cycle, thereby minimizing toxicity.
- As stated hereinabove, the nanoparticles of the instant invention comprise at least one surfactant. A “surfactant” refers to a surface-active agent, including substances commonly referred to as wetting agents, detergents, dispersing agents, or emulsifying agents. Surfactants are usually organic compounds that are amphiphilic. Generally, the surfactant will coat the hydrophobic core comprising the therapeutic agent and the hydrophobic polymer. In a particular embodiment, the weight ratio of hydrophobic polymer to surfactant is about 0.001 to about 1, particularly about 0.005 to about 0.8, about 0.01 to about 0.6, or about 0.02 to about 0.5.
- Examples of surfactants include, without limitation, synthetic or natural phospholipids, pegylated lipids, polysorbates, poly(ethylene glycol)-co-poly(lactide-co-glycolide) (PEG-PLGA), their derivatives, ligand-conjugated derivatives and combinations thereof. Other surfactants and their combinations that can form stable nanoparticles or/and can chemically/physically bind to the targeting ligands of HIV infectable/infected CD4+ T cells, macrophages and dendritic cells can be used in the instant invention. Further examples of surfactants include, without limitation: 1) nonionic surfactants (e.g., pegylated and/or polysaccharide-conjugated polyesters and other hydrophobic polymeric blocks such as poly(lactide-co-glycolide) (PLGA), polylactic acid (PLA), polycaprolactone (PCL), other polyesters, poly(propylene oxide), poly(1,2-butylene oxide), poly(n-butylene oxide), poly(tetrahydrofurane), and poly (styrene); glyceryl esters, polyoxyethylene fatty alcohol ethers, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene fatty acid esters, sorbitan esters, glycerol monostearate, polyethylene glycols, polypropyleneglycols, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, aryl alkyl polyether alcohols, polyoxyethylene-polyoxypropylene copolymers, poloxamines, cellulose, methylcellulose, hydroxylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polysaccharides, starch and their derivatives, hydroxyethylstarch, polyvinyl alcohol, polyvinylpyrrolidone, and their combination thereof); and 2) ionic surfactants (e.g., phospholipids, amphiphilic lipids, 1,2-dialkylglycero-3-alkylphophocholines, dimethylaminoethanecarbamoyl cheolesterol (DC-Chol), N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP), alkyl pyridinium halides, quaternary ammonium compounds, lauryldimethylbenzylammonium, acyl carnitine hydrochlorides, dimethyldioctadecylammonium (DDAB), n-octylamines, oleylamines, benzalkonium, cetyltrimethylammonium, chitosan, chitosan salts, poly(ethylenimine) (PEI), poly(N-isopropyl acrylamide (PNIPAM), and poly(allylamine) (PAH), poly (dimethyldiallylammonium chloride) (PDDA), alkyl sulfonates, alkyl phosphates, alkyl phosphonates, potassium laurate, triethanolamine stearate, sodium lauryl sulfate, sodium dodecylsulfate, alkyl polyoxyethylene sulfates, alginic acid, alginic acid salts, hyaluronic acid, hyaluronic acid salts, gelatins, dioctyl sodium sulfosuccinate, sodium carboxymethylcellulose, cellulose sulfate, dextran sulfate and carboxymethylcellulose, chondroitin sulfate, heparin, synthetic poly(acrylic acid) (PAA), poly (methacrylic acid) (PMA), poly(vinyl sulfate) (PVS), poly(styrene sulfonate) (PSS), bile acids and their salts, cholic acid, deoxycholic acid, glycocholic acid, taurocholic acid, glycodeoxycholic acid, and combinations thereof).
- The surfactant of the instant invention may be charged or neutral. In a particular embodiment, the surfactant is neutral or negatively charged (e.g., poloxamers, polysorbates, phospholipids, and their derivatives). In a particular embodiment, the surfactant is an amphiphilic block copolymer. In a particular, embodiment, at least one surfactant of the nanoparticle is an amphiphilic block copolymer, particularly a copolymer comprising at least one block of poly(oxyethylene) and at least one block of poly(oxypropylene). In a particular embodiment, the surfactant is a poloxamer. Other biocompatible amphiphilic copolymers include those described in Gaucher et al. (J. Control Rel. (2005) 109:169-188).
- In a particular embodiment, the surfactant is a phospholipid, particularly a glycerophospholipid. Examples of glycerophospholipids include, without limitation: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG). The glycerophospholipid may be conjugated to a polymer (e.g., a hydrophilic polymer) such as a polyethylene glycol polymer or derivative thereof (e.g., methoxy poly(ethylene glycol)). The nanoparticles of the instant invention may comprise glycerophospholipids and glycerophospholipids conjugated to a hydrophilic polymer such as a polyethylene glycol polymer or derivative thereof. In a particular embodiment, the molar ratio of glycerophospholipids and glycerophospholipids conjugated to a hydrophilic polymer in the nanoparticles of the instant invention is from about 0.001 to 100%. In a particular embodiment, the molar ratio of glycerophospholipids and glycerophospholipids conjugated to a hydrophilic polymer is from about 1:1 to about 50:1, from about 2:1 to about 20:1, from about 5:1 to about 12:1, or about 8:1. In a particular embodiment, the nanoparticles of the instant invention comprise a glycerophospholipid conjugated to a hydrophilic polymer and a non-conjugated version of the glycerophospholipid. In a particular embodiment, the nanoparticle comprises DSPE, DSPC, and/or DSPG. In a particular embodiment, the nanoparticle comprises DSPEmpeg2000, DSPC, and DSPG.
- The surfactant of the instant invention may be linked to a targeting ligand. A targeting ligand is a compound that will specifically bind to a specific type of tissue or cell type. In a particular embodiment, the targeting ligand is a ligand for a cell surface marker/receptor. The targeting ligand may be an antibody or fragment thereof immunologically specific for a cell surface marker (e.g., protein or carbohydrate) preferentially or exclusively expressed on the targeted tissue or cell type. The targeting ligand may be linked directly to the surfactant or via a linker. Generally, the linker is a chemical moiety comprising a covalent bond or a chain of atoms that covalently attaches the ligand to the surfactant. The linker can be linked to any synthetically feasible position of the ligand and the surfactant (e.g., the hydrophilic portion). Exemplary linkers may comprise at least one optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group. The linker may also be a polypeptide (e.g., from about 1 to about. 10 amino acids, particularly about 1 to about 5). The linker may be a synthetic hydrophilic polymer. The linker may be non-degradable and may be a covalent bond or any other chemical structure which cannot be substantially cleaved or cleaved at all under physiological environments or conditions.
- The nanoparticles of the instant invention may comprise targeted and non-targeted surfactants. In a particular embodiment, the molar ratio of targeted and non-targeted surfactants in the nanoparticles of the instant invention is from about 0.001 to 100%. In a particular embodiment, the nanoparticles of the instant invention comprise a folate targeted surfactant and a non-targeted version of the surfactant.
- The targeted nanoformulations of the instant invention may comprise a targeting ligand for directing the nanoparticles to HIV tissue and cellular sanctuaries/reservoirs (e.g., central nervous system, gut associated lymphoid tissues (GALT), CD4+ T cells, macrophages, dendritic cells, etc.). In a particular embodiment, the targeting ligand is a macrophage targeting ligand; CD4+ T cell targeting ligand, or a dendritic cell targeting ligand. Macrophage targeting ligands include, without limitation, folate receptor ligands (e.g., folate (folic acid) and folate receptor antibodies and fragments thereof (see, e.g., Sudimack et al. (2000) Adv. Drug Del. Rev., 41:147-162)), mannose receptor ligands (e.g., mannose), formyl peptide receptor (FPR) ligands (e.g., N-formyl-Met-Leu-Phe (fMLF)), and tuftsin (the tetrapeptide Thr-Lys-Pro-Arg). Other targeting ligands (e.g., for targeting HIV reservoirs) include, without limitation, hyaluronic acid, gp120, and ligands or antibodies specific for CD4, CCR5, CXCR4,
CD 7, CD111, CD204, CD49a, or CD29. The targeting of the nanoparticles (e.g., to macrophage) provides for superior targeting, decreased excretion rates, decreased toxicity, and prolonged half life compared to free drug or non-targeted nanoparticles. - The instant invention encompasses pharmaceutical compositions comprising at least one nanoparticle of the instant invention and at least one pharmaceutically acceptable carrier. As stated hereinabove, the nanoparticle may comprise more than one therapeutic agent. In a particular embodiment, the pharmaceutical composition comprises a first nanoparticle comprising a first therapeutic agent(s) and a second nanoparticle comprising a second therapeutic agent(s), wherein the first and second therapeutic agents are different. The pharmaceutical compositions of the instant invention may further comprise other therapeutic agents (e.g., other anti-HIV compounds (e.g., those described hereinabove)).
- The nanoparticles of the instant invention may be used to treat a viral infection, particularly retroviral or lentiviral infections, particularly HIV (e.g., HIV-1) infections (e.g., a CCR5-dependent HIV). The present invention encompasses methods for preventing, inhibiting, and/or treating a viral infection, particularly retroviral or lentiviral infections, particularly HIV (e.g., HIV-1) infections (e.g., a CCR5-dependent HIV). The pharmaceutical compositions of the instant invention can be administered to an animal, in particular a mammal, more particularly a human, in order to treat/inhibit an HIV infection. The pharmaceutical compositions of the instant invention may also comprise at least one other antiviral agent, particularly at least one other anti-HIV compound/agent. The additional anti-HIV compound may also be administered in a separate pharmaceutical composition from the anti-HIV NPs of the instant invention. The pharmaceutical compositions may be administered at the same time or at different times (e.g., sequentially).
- In a particular embodiment, the present, invention features a use or method of treating or inhibiting an HIV infection by administration of nanoparticles comprising maraviroc, poly(lactic-co-glycolic acid), and glycerophospholipids and glycerophospholipids conjugated to polyethylene glycol. In a particular embodiment, the present invention features a use or method of preventing an HIV infection by administration of nanoparticles comprising maraviroc, poly(lactic-co-glycolic acid), and glycerophospholipids and glycerophospholipids conjugated to polyethylene glycol as surfactants.
- The dosage ranges for the administration of the pharmaceutical compositions of the invention are those large enough to produce the desired effect (e.g., curing, relieving, treating, and/or preventing the HIV infection, the symptoms of it (e.g., AIDS, ARC), or the predisposition towards it). In a particular embodiment, the pharmaceutical composition of the instant invention is administered to the subject at an amount from about 5 μg/kg to about 500 mg/kg. In a particular embodiment, the pharmaceutical composition of the instant invention is administered to the subject at an amount greater than greater than about 0.5 mg/kg, greater than about 1 mg/kg, greater than about 5 mg/kg, or greater than about 50 mg/kg. In a particular embodiment, the pharmaceutical composition of the instant invention is administered to the subject at an amount from about 0.5 mg/kg to about 100 mg/kg, about 10 mg/kg to about 100 mg/kg, or about 15 mg/kg to about 50 mg/kg. The dosage should not be so large as to cause significant adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like. Generally, the dosage will vary with the age, condition, sex and extent of the disease in the patient and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician in the event of any counter indications.
- The nanoparticles described herein will generally be administered to a patient as a pharmaceutical composition. The term “patient” as used herein refers to human or animal subjects. These nanoparticles may be employed therapeutically, under the guidance of a physician.
- The pharmaceutical compositions comprising the nanoparticles of the instant invention may be conveniently formulated for administration with any pharmaceutically acceptable carrier(s). For example, the complexes may be formulated with an acceptable medium such as water, buffered saline, detergents, suspending agents, or suitable mixtures thereof. The concentration of the nanoparticles in the chosen medium may be varied and the medium may be chosen based on the desired route of administration of the pharmaceutical composition. Except insofar as any conventional media or agent is incompatible with the nanoparticles to be administered, its use in the pharmaceutical composition is contemplated.
- The dose and dosage regimen of nanoparticles according to the invention that are suitable for administration to a particular patient may be determined by a physician considering the patient's age, sex, weight, general medical condition, and the specific condition for which the nanoparticles are being administered and the severity thereof. The physician may also take into account the route of administration, the pharmaceutical carrier, and the nanoparticle's biological activity.
- Selection of a suitable pharmaceutical composition will also depend upon the mode of administration chosen. For example, the nanoparticles of the invention may be administered by direct injection or intravenously. In this instance, a pharmaceutical composition comprises the nanoparticle dispersed in a medium that is compatible with the site of injection.
- Nanoparticles of the instant invention may be administered by any method. For example, the nanoparticles of the instant invention can be administered, without limitation parenterally, subcutaneously, orally, topically, pulmonarily, rectally, vaginally, intravenously, intraperitoneally, intrathecally, intracerbrally, epidurally, intramuscularly, intradermally, or intracarotidly. In a particular embodiment, the nanoparticles are administered parenterally, intramuscularly, subcutaneously, or to the bloodstream (e.g., intravenously). Pharmaceutical compositions for injection are known in the art. If injection is selected as a method for administering the nanoparticle, steps must be taken to ensure that sufficient amounts of the molecules or cells reach their target cells to exert a biological effect. Dosage forms for oral administration include, without limitation, tablets (e.g., coated and uncoated, chewable), gelatin capsules (e.g., soft or hard), lozenges, troches, solutions, emulsions, suspensions, syrups, elixirs, powders/granules (e.g., reconstitutable or dispersible) gums, and effervescent tablets. Dosage forms for parenteral administration include, without limitation, solutions, suspensions, syrups, elixirs, dispersions and powders/granules for reconstitution. Dosage forms for topical administration include, without limitation, creams, gels, ointments, salves, patches and transdermal delivery systems.
- Pharmaceutical compositions containing a nanoparticle of the present invention as the active ingredient in intimate admixture with a pharmaceutically acceptable carrier can be prepared according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending on the form of pharmaceutical composition desired for administration, e.g., intravenous, oral, direct injection, intracranial, and intravitreal.
- A pharmaceutical composition of the invention may be formulated in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form, as used herein, refers to a physically discrete unit of the pharmaceutical composition appropriate for the patient undergoing treatment. Each dosage should contain a quantity of active ingredient calculated to produce the desired effect in association with the selected pharmaceutical carrier. Procedures for determining the appropriate dosage unit are well known to those skilled in the art. In a particular embodiment, the nanoformulations of the instant invention, due to their long-acting therapeutic effect, may be administered once every 0.5, 1, 2, 6, or 12 months or even less frequently. For example, the nanoformulations of the instant invention may be administered once every 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21, 24 or more months.
- Dosage units may be proportionately increased or decreased based on the weight of the patient. Appropriate concentrations for alleviation of a particular pathological condition may be determined by dosage concentration curve calculations, as known in the art.
- In accordance with the present invention, the appropriate dosage unit for the administration of nanoparticles may be determined by evaluating the toxicity of the molecules or cells in animal models. Various concentrations of nanoparticles in pharmaceutical composition may be administered to mice, and the minimal and maximal dosages may be determined based on the beneficial results and side effects observed as a result of the treatment. Appropriate dosage unit may also be determined by assessing the efficacy of the nanoparticle treatment in combination with other standard drugs. The dosage units of nanoparticle may be determined individually or in combination with each treatment according to the effect detected.
- The pharmaceutical composition comprising the nanoparticles may be administered at appropriate intervals until the pathological symptoms are reduced or alleviated, after which the dosage may be reduced to a maintenance level. The appropriate interval in a particular case would normally depend on the condition of the patient.
- The instant invention encompasses methods of treating a disease/disorder comprising administering to a subject in need thereof a pharmaceutical composition comprising a nanoparticle of the instant invention and, particularly, at least one pharmaceutically acceptable carrier. The instant invention also encompasses methods wherein the subject is treated via ex vivo therapy. In particular, the method comprises removing cells from the subject, exposing/contacting the cells in vitro to the nanoparticles of the instant invention, and returning the cells to the subject. In a particular embodiment, the cells comprise macrophage. Other methods of treating the disease or disorder may be combined with the methods of the instant invention may be co-administered with the pharmaceutical compositions of the instant invention.
- The instant also encompasses delivering the nanoparticle of the instant invention to a cell in vitro (e.g., in culture). The nanoparticle may be delivered to the cell in at least one carrier.
- The following definitions are provided to facilitate an understanding of the present invention.
- The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
- “Pharmaceutically acceptable” indicates approval by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- A “carrier” refers to, for example, a diluent, adjuvant, preservative (e.g., Thimersol, benzyl alcohol), anti-oxidant (e.g., ascorbic acid, sodium metabisulfite), solubilizer (e.g., polysorbate 80), emulsifier, buffer (e.g., Tris HCl, acetate, phosphate), antimicrobial, bulking substance (e.g., lactose, mannitol), excipient, auxiliary agent or vehicle with which an active agent of the present invention is administered. Pharmaceutically acceptable carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin. Water or aqueous saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions. Suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin (Mack Publishing Co., Easton, Pa.); Gennaro, A. R., Remington: The Science and Practice of Pharmacy, (Lippincott, Williams and Wilkins); Liberman, et al., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y.; and Kibbe, et al., Eds., Handbook of Pharmaceutical Excipients, American Pharmaceutical Association, Washington.
- The term “treat” as used herein refers to any type of treatment that imparts a benefit to a patient afflicted with a disease, including improvement in the condition of the patient (e.g., in one or more symptoms), delay in the progression of the condition, etc. In a particular embodiment, the treatment of a retroviral infection results in at least an inhibition/reduction in the number of infected cells.
- A “therapeutically effective amount” of a compound or a pharmaceutical composition refers to an amount effective to prevent, inhibit, treat, or lessen the symptoms of a particular disorder or disease. The treatment of a microbial infection (e.g., HIV infection) herein may refer to curing, relieving, and/or preventing the microbial infection, the symptom(s) of it, or the predisposition towards it.
- As used herein, the term “therapeutic agent” refers to a chemical compound or biological molecule including, without limitation, nucleic acids, peptides, proteins, and antibodies that can be used to treat a condition, disease, or disorder or reduce the symptoms of the condition, disease, or disorder.
- As used herein, the term “small molecule” refers to a substance or compound that has a relatively low molecular weight (e.g., less than 4,000, less than 2, 000, particularly less than 1 kDa or 800 Da). Typically, small molecules are organic, but are not proteins, polypeptides, or nucleic acids, though they may be amino acids or dipeptides.
- The term “antimicrobials” as used herein indicates a substance that kills or inhibits the growth of microorganisms such as bacteria, fungi, viruses, or protozoans.
- As used herein, the term “antiviral” refers to a substance that destroys a virus or suppresses replication (reproduction) of the virus.
- As used herein, the term, “highly active antiretroviral therapy” (HAART) refers to HIV therapy with various combinations of therapeutics such as nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, HIV protease inhibitors, and fusion inhibitors.
- As used herein, the term “amphiphilic” means the ability to dissolve in both water and lipids/apolar environments. Typically, an amphiphilic compound comprises a hydrophilic portion and a hydrophobic portion. “Hydrophobic” designates a preference for apolar environments (e.g., a hydrophobic substance or moiety is more readily dissolved in or wetted by non-polar solvents, such as hydrocarbons, than by water). As used herein, the term “hydrophilic” means the ability to dissolve in water.
- As used herein, the term “polymer” denotes molecules formed from the chemical union of two or more repeating units or monomers. The term “block copolymer” most simply refers to conjugates of at least two different polymer segments, wherein each, polymer segment comprises two or more adjacent units of the same kind.
- An “antibody” or “antibody molecule” is any immunoglobulin, including antibodies and fragments thereof (e.g., scFv), that binds to a specific antigen. As used herein, antibody or antibody molecule contemplates intact immunoglobulin molecules, immunologically active portions of an immunoglobulin molecule, and fusions of immunologically active portions of an immunoglobulin molecule.
- As used herein, the term “immunologically specific” refers to proteins/polypeptides, particularly antibodies, that bind to one or more epitopes of a protein or compound of interest, but which do not substantially recognize and bind other molecules in a sample containing a mixed population of antigenic biological molecules.
- The following example provides illustrative methods of practicing the instant invention, and is not intended to limit the scope of the invention in any way.
- Polymeric lipid-coated poly (lactic-co-glycolic acid) (PLGA)-MVC nanoparticles were manufactured using a single emulsion-solvent evaporation technique (Liu et al. (2010) Biomaterials 31:330-338). Lipid-coated PLGA based nanoparticles containing PLGA (75:25) and 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE) modified with methoxypoly(ethylene glycol) (mPEG) having a mean molecular weight of 2000 (DSPEMPEG2000): 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC): 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) in a 1:7:0.7 molar ratio were synthesized (formula JL715). The drug loading in the nanoparticles is about 5% to about 20%. The weight ratio of phospholipid to PLGA is about 0.02-0.5. The resultant nanoparticles had an average particle size of 241.7 nm, a polydispersity index (PDI) of 0.217, and a zeta potential of −34.2. The physicochemical characteristics of nanoformulated MVC, as well as human monocyte-derived macrophage (MDM) uptake, retention, release and antiretroviral responses were examined. MDM treated with nanoformulated MVC (nMVC) or free MVC for 8 hours exhibited intracellular drug levels of 10.77 and 3.91 μg/106 cells, respectively (
FIG. 1 ). Ten days following nMVC treatment (100 μM), MDM retained 1.07 μg MVC/106 cells while free MVC was undetectable (FIG. 2 ). -
FIG. 3 shows the comparison of antiretroviral activity of nMVC and free maraviroc (MVC) as determined by HIV-1 p24 antigen expression (FIG. 3A ) and reverse transcriptase (RT) activity (FIG. 3B ). RT activity was determined by 3H-TTP incorporation in medium from cells loaded with nMVC or free MVC for 8 hours and then challenged with HIV-1ADA at 1, 5, 10, 15 days after treatment. As seen inFIG. 3 , nMVC therapy led to dramatically reduced p24 expression and RT activity compared to the treatment with free MVC. -
FIG. 4 shows the antiretroviral activity of nMVC as determined by reverse transcriptase (RT) activity. RT activity was determined by 3H-TIP incorporation in medium from cells loaded with nMVC for 8 hours and then challenged with HIV-1ADA 15 days after treatment. As seen - 26in
FIG. 4 , nMVC significantly inhibited HIV-1 replication at concentrations below 100 μM as evidenced by the reduction in RT activity. - A number of publications and patent documents are cited throughout the foregoing specification in order to describe the state of the art to which this invention pertains. The entire disclosure of each of these citations is incorporated by reference herein.
- While certain of the preferred embodiments of the present invention have been described and specifically exemplified above, it is not intended that the invention be limited to such embodiments. Various modifications may be made thereto without departing from the scope and spirit of the present invention, as set forth in the following claims.
Claims (15)
1. A nanoparticle comprising at least one CCR5 receptor antagonist, at least one hydrophobic polymer, and at least one surfactant.
2 The nanoparticle of claim 1 , wherein said hydrophobic polymer is poly(lactic-co-glycolic acid).
3. The nanoparticle of claim 1 , wherein said surfactant is a glycerophospholipid.
4. The nanoparticle of claim 3 , wherein said glycerophospholipid is selected from the group consisting of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG).
5. The nanoparticle of claim 4 , wherein said glycerophospholipid is conjugated to polyethylene glycol.
6. The nanoparticle of claim 1 , wherein said CCR5 receptor antagonist is maraviroc.
7. The nanoparticle of claim 1 , wherein said nanoparticle comprises a surfactant linked to at least one targeting ligand.
8. The nanoparticle of claim 7 , wherein, said targeting ligand is a macrophage targeting ligand.
9. The nanoparticle of claim 8 , wherein said macrophage targeting ligand is folate.
10. The nanoparticle of claim 1 , wherein said CCR5 receptor antagonist is maraviroc, wherein said hydrophobic polymer is poly(lactic-co-glycolic acid), wherein said surfactant is a glycerophospholipid, optionally conjugated to polyethylene glycol.
11. The nanoparticle of claim 10 , wherein said glycerophospholipid is selected from the group consisting of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG).
12. A pharmaceutical composition comprising at least one nanoparticle of claim 1 and at least one pharmaceutically acceptable carrier.
13. The pharmaceutical composition of claim 12 , wherein said pharmaceutical composition further comprises at least one other anti-HIV compound.
14. A method for treating, inhibiting, and/or preventing an HIV infection in a subject in need thereof, said method comprising administering to said subject a nanoparticle of claim 1 .
15. The method of claim 14 , further comprising the administration of at least one additional anti-HIV compound.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/726,510 US20180028457A1 (en) | 2014-01-14 | 2017-10-06 | Compositions and Methods for the Delivery of Therapeutics |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201461927315P | 2014-01-14 | 2014-01-14 | |
| PCT/US2015/011364 WO2015108945A2 (en) | 2014-01-14 | 2015-01-14 | Compositions and methods for the delivery of therapeutics |
| US201615111046A | 2016-07-12 | 2016-07-12 | |
| US15/726,510 US20180028457A1 (en) | 2014-01-14 | 2017-10-06 | Compositions and Methods for the Delivery of Therapeutics |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/011364 Continuation WO2015108945A2 (en) | 2014-01-14 | 2015-01-14 | Compositions and methods for the delivery of therapeutics |
| US15/111,046 Continuation US9808428B2 (en) | 2014-01-14 | 2015-01-14 | Compositions and methods for the delivery of therapeutics |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180028457A1 true US20180028457A1 (en) | 2018-02-01 |
Family
ID=53543609
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/111,046 Active US9808428B2 (en) | 2014-01-14 | 2015-01-14 | Compositions and methods for the delivery of therapeutics |
| US15/726,510 Abandoned US20180028457A1 (en) | 2014-01-14 | 2017-10-06 | Compositions and Methods for the Delivery of Therapeutics |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/111,046 Active US9808428B2 (en) | 2014-01-14 | 2015-01-14 | Compositions and methods for the delivery of therapeutics |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US9808428B2 (en) |
| WO (1) | WO2015108945A2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3203995A4 (en) | 2014-10-09 | 2019-05-15 | Board of Regents of the University of Nebraska | COMPOSITIONS AND METHODS FOR DELIVERY OF THERAPEUTIC AGENTS |
| EP3737359A4 (en) | 2018-01-12 | 2021-11-03 | Board of Regents of the University of Nebraska | ANTIVIRAL PRODRUGS AND THEIR FORMULATIONS |
| CA3132832A1 (en) | 2018-04-09 | 2019-10-17 | Howard E. Gendelman | Antiviral prodrugs and formulations thereof |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5145684A (en) | 1991-01-25 | 1992-09-08 | Sterling Drug Inc. | Surface modified drug nanoparticles |
| US6045829A (en) | 1997-02-13 | 2000-04-04 | Elan Pharma International Limited | Nanocrystalline formulations of human immunodeficiency virus (HIV) protease inhibitors using cellulosic surface stabilizers |
| WO1998035666A1 (en) | 1997-02-13 | 1998-08-20 | Nanosystems Llc | Formulations of nanoparticle naproxen tablets |
| AUPQ014699A0 (en) | 1999-05-04 | 1999-05-27 | Access Pharmaceuticals Australia Pty Limited | Amplification of folate-mediated targeting to tumor cells using nanoparticles |
| US20020041898A1 (en) | 2000-01-05 | 2002-04-11 | Unger Evan C. | Novel targeted delivery systems for bioactive agents |
| EP1663158A2 (en) | 2003-06-24 | 2006-06-07 | Baxter International Inc. | Specific delivery of drugs to the brain |
| US8986736B2 (en) | 2003-06-24 | 2015-03-24 | Baxter International Inc. | Method for delivering particulate drugs to tissues |
| CN1913871A (en) | 2004-01-29 | 2007-02-14 | 巴克斯特国际公司 | Nanosuspensions of anti-retroviral agents for increased central nervous system delivery |
| LT3372281T (en) | 2005-04-28 | 2021-12-10 | Viiv Healthcare Company | POLYCYCLIC CARBAMOYLPYRIDONE DERIVATIVE WITH HIV INTEGRATION INHIBITOR ACTIVITY |
| WO2010009075A1 (en) | 2008-07-14 | 2010-01-21 | The University Of North Carolina At Chapel Hill | Methods and compositions comprising crystalline nanoparticles of hydrophobic compounds |
| KR101695807B1 (en) | 2008-07-25 | 2017-01-13 | 비이브 헬쓰케어 컴퍼니 | Chemical compounds |
| WO2010048572A1 (en) * | 2008-10-23 | 2010-04-29 | Cornell University | A novel anti-viral method |
| WO2010068899A1 (en) * | 2008-12-12 | 2010-06-17 | Creighton University | Nanoparticles comprising combinations of antiretroviral agents and use thereof |
| TWI582097B (en) | 2010-03-23 | 2017-05-11 | Viiv醫療保健公司 | Process for preparing carbamoylpyridone derivatives and intermediates |
| TWI577377B (en) | 2010-09-16 | 2017-04-11 | Viiv醫療保健公司 | Pharmaceutical composition |
| JP2013542945A (en) * | 2010-11-02 | 2013-11-28 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Compositions and methods for delivering therapy |
| WO2013158549A1 (en) * | 2012-04-20 | 2013-10-24 | Board Of Regents Of The University Of Nebraska | Small magnetite therapeutics and methods of use thereof |
| WO2014169207A1 (en) | 2013-04-11 | 2014-10-16 | Board Of Regents Of The University Of Nebraska | Compositions and methods for the delivery of therapeutics |
-
2015
- 2015-01-14 US US15/111,046 patent/US9808428B2/en active Active
- 2015-01-14 WO PCT/US2015/011364 patent/WO2015108945A2/en not_active Ceased
-
2017
- 2017-10-06 US US15/726,510 patent/US20180028457A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| WO2015108945A3 (en) | 2015-11-12 |
| US9808428B2 (en) | 2017-11-07 |
| US20160346222A1 (en) | 2016-12-01 |
| WO2015108945A2 (en) | 2015-07-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12168013B2 (en) | Antiviral prodrugs and nanoformulations thereof | |
| US11117904B2 (en) | Compositions and methods for the delivery of therapeutics | |
| US12257306B2 (en) | Antiviral prodrugs and nanoformulations thereof | |
| US20170165271A1 (en) | Compositions and Methods for the Delivery of Therapeutics | |
| US20160136105A1 (en) | Compositions and Methods for the Delivery of Therapeutics | |
| US20220211714A1 (en) | Compositions and methods for the delivery of therapeutics | |
| US20220288037A1 (en) | Prodrugs and formulations thereof | |
| US20180028457A1 (en) | Compositions and Methods for the Delivery of Therapeutics | |
| US11458136B2 (en) | Antiviral prodrugs and formulations thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |