US20180002741A1 - Method of diagnosis and treating gastrointestinal and neurological diseases associated with species of genus clostridium - Google Patents
Method of diagnosis and treating gastrointestinal and neurological diseases associated with species of genus clostridium Download PDFInfo
- Publication number
- US20180002741A1 US20180002741A1 US15/641,035 US201715641035A US2018002741A1 US 20180002741 A1 US20180002741 A1 US 20180002741A1 US 201715641035 A US201715641035 A US 201715641035A US 2018002741 A1 US2018002741 A1 US 2018002741A1
- Authority
- US
- United States
- Prior art keywords
- toxin
- clostridium perfringens
- beta2
- gene
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000003745 diagnosis Methods 0.000 title abstract description 3
- 241000193403 Clostridium Species 0.000 title description 16
- 208000012902 Nervous system disease Diseases 0.000 title description 5
- 230000002496 gastric effect Effects 0.000 title description 4
- 208000018522 Gastrointestinal disease Diseases 0.000 title description 2
- 208000025966 Neurological disease Diseases 0.000 title description 2
- 241000894007 species Species 0.000 title description 2
- 241000193468 Clostridium perfringens Species 0.000 claims abstract description 293
- 208000012868 Overgrowth Diseases 0.000 claims abstract description 75
- 206010003805 Autism Diseases 0.000 claims abstract description 60
- 208000020706 Autistic disease Diseases 0.000 claims abstract description 60
- 208000024891 symptom Diseases 0.000 claims abstract description 19
- 239000003053 toxin Substances 0.000 claims description 122
- 230000002550 fecal effect Effects 0.000 claims description 31
- 231100000765 toxin Toxicity 0.000 claims description 27
- 239000003795 chemical substances by application Substances 0.000 claims description 26
- 108010081427 Clostridium perfringens alpha toxin Proteins 0.000 claims description 23
- 230000001332 colony forming effect Effects 0.000 claims description 22
- 108090000623 proteins and genes Proteins 0.000 claims description 22
- 230000000694 effects Effects 0.000 claims description 21
- 101710124951 Phospholipase C Proteins 0.000 claims description 19
- 239000006041 probiotic Substances 0.000 claims description 18
- 230000000529 probiotic effect Effects 0.000 claims description 18
- 235000018291 probiotics Nutrition 0.000 claims description 18
- 108050004280 Epsilon toxin Proteins 0.000 claims description 16
- MVTQIFVKRXBCHS-SMMNFGSLSA-N N-[(3S,6S,12R,15S,16R,19S,22S)-3-benzyl-12-ethyl-4,16-dimethyl-2,5,11,14,18,21,24-heptaoxo-19-phenyl-17-oxa-1,4,10,13,20-pentazatricyclo[20.4.0.06,10]hexacosan-15-yl]-3-hydroxypyridine-2-carboxamide (10R,11R,12E,17E,19E,21S)-21-hydroxy-11,19-dimethyl-10-propan-2-yl-9,26-dioxa-3,15,28-triazatricyclo[23.2.1.03,7]octacosa-1(27),6,12,17,19,25(28)-hexaene-2,8,14,23-tetrone Chemical compound CC(C)[C@H]1OC(=O)C2=CCCN2C(=O)c2coc(CC(=O)C[C@H](O)\C=C(/C)\C=C\CNC(=O)\C=C\[C@H]1C)n2.CC[C@H]1NC(=O)[C@@H](NC(=O)c2ncccc2O)[C@@H](C)OC(=O)[C@@H](NC(=O)[C@@H]2CC(=O)CCN2C(=O)[C@H](Cc2ccccc2)N(C)C(=O)[C@@H]2CCCN2C1=O)c1ccccc1 MVTQIFVKRXBCHS-SMMNFGSLSA-N 0.000 claims description 16
- 239000000523 sample Substances 0.000 claims description 16
- 239000004599 antimicrobial Substances 0.000 claims description 15
- 241001515965 unidentified phage Species 0.000 claims description 13
- 108010021408 Clostridium perfringens iota toxin Proteins 0.000 claims description 12
- -1 synergistin Chemical compound 0.000 claims description 12
- 238000011282 treatment Methods 0.000 claims description 10
- 108010059993 Vancomycin Proteins 0.000 claims description 9
- 229960003165 vancomycin Drugs 0.000 claims description 9
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 claims description 9
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 claims description 9
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 claims description 8
- 230000000845 anti-microbial effect Effects 0.000 claims description 8
- 229960004675 fusidic acid Drugs 0.000 claims description 8
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical compound O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 claims description 8
- IUPCWCLVECYZRV-JZMZINANSA-N rosaramicin Chemical compound O([C@@H]1[C@@H](C)[C@H](O)CC(=O)O[C@@H]([C@H]([C@@H]2O[C@@]2(C)/C=C/C(=O)[C@H](C)C[C@@H]1CC=O)C)CC)[C@@H]1O[C@H](C)C[C@H](N(C)C)[C@H]1O IUPCWCLVECYZRV-JZMZINANSA-N 0.000 claims description 8
- 229960005486 vaccine Drugs 0.000 claims description 8
- 210000003608 fece Anatomy 0.000 claims description 7
- 235000013406 prebiotics Nutrition 0.000 claims description 7
- 108010076689 ramoplanin Proteins 0.000 claims description 7
- KGZHFKDNSAEOJX-WIFQYKSHSA-N Ramoplanin Chemical compound C([C@H]1C(=O)N[C@H](CCCN)C(=O)N[C@H](C(=O)N[C@@H](C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C)C(=O)N[C@H](C(=O)O[C@@H]([C@@H](C(N[C@@H](C(=O)N[C@H](CCCN)C(=O)N[C@@H](C(=O)N[C@H](C(=O)N[C@@H](C(=O)N[C@H](C(=O)N1)[C@H](C)O)C=1C=CC(O)=CC=1)C=1C=CC(O)=CC=1)[C@@H](C)O)C=1C=CC(O)=CC=1)=O)NC(=O)[C@H](CC(N)=O)NC(=O)\C=C/C=C/CC(C)C)C(N)=O)C=1C=C(Cl)C(O)=CC=1)C=1C=CC(O)=CC=1)[C@@H](C)O)C=1C=CC(O[C@@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O[C@@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)=CC=1)C1=CC=CC=C1 KGZHFKDNSAEOJX-WIFQYKSHSA-N 0.000 claims description 6
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 claims description 6
- 229960000282 metronidazole Drugs 0.000 claims description 6
- 229950003551 ramoplanin Drugs 0.000 claims description 6
- 241000186000 Bifidobacterium Species 0.000 claims description 5
- 241000186660 Lactobacillus Species 0.000 claims description 5
- XBNDESPXQUOOBQ-LSMLZNGOSA-N (2r,3s)-4-[[(2s)-1-[[2-[[(2s)-1-[[2-[[(2r,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-[(3s,9ar)-1,4-dioxo-3,6,7,8,9,9a-hexahydro-2h-pyrido[1,2-a]pyrazin-3-yl]ethyl]carbamoyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]amino]-3-amino-1-oxobutan-2-yl]amino]-2-oxoethyl]am Chemical compound CCC(C)CCCCC\C=C\CC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)C(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@H]([C@H](C)N)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)[C@H]1C(=O)N2CCCC[C@@H]2C(=O)N1 XBNDESPXQUOOBQ-LSMLZNGOSA-N 0.000 claims description 4
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 claims description 4
- ACTOXUHEUCPTEW-BWHGAVFKSA-N 2-[(4r,5s,6s,7r,9r,10r,11e,13e,16r)-6-[(2s,3r,4r,5s,6r)-5-[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[(2s,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-o Chemical compound O([C@H]1/C=C/C=C/C[C@@H](C)OC(=O)C[C@@H](O)[C@@H]([C@H]([C@@H](CC=O)C[C@H]1C)O[C@H]1[C@@H]([C@H]([C@H](O[C@@H]2O[C@@H](C)[C@H](O)[C@](C)(O)C2)[C@@H](C)O1)N(C)C)O)OC)[C@@H]1CC[C@H](N(C)C)[C@@H](C)O1 ACTOXUHEUCPTEW-BWHGAVFKSA-N 0.000 claims description 4
- YZEUHQHUFTYLPH-UHFFFAOYSA-N 2-nitroimidazole Chemical compound [O-][N+](=O)C1=NC=CN1 YZEUHQHUFTYLPH-UHFFFAOYSA-N 0.000 claims description 4
- 241000701474 Alistipes Species 0.000 claims description 4
- 108010001478 Bacitracin Proteins 0.000 claims description 4
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 claims description 4
- 241000588724 Escherichia coli Species 0.000 claims description 4
- 241001350695 Ethanoligenens Species 0.000 claims description 4
- IECPWNUMDGFDKC-UHFFFAOYSA-N Fusicsaeure Natural products C12C(O)CC3C(=C(CCC=C(C)C)C(O)=O)C(OC(C)=O)CC3(C)C1(C)CCC1C2(C)CCC(O)C1C IECPWNUMDGFDKC-UHFFFAOYSA-N 0.000 claims description 4
- 108010026389 Gramicidin Proteins 0.000 claims description 4
- 108010046774 Mikamycin Proteins 0.000 claims description 4
- 229930192051 Mikamycin Natural products 0.000 claims description 4
- YJQPYGGHQPGBLI-UHFFFAOYSA-N Novobiocin Natural products O1C(C)(C)C(OC)C(OC(N)=O)C(O)C1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-UHFFFAOYSA-N 0.000 claims description 4
- 239000004104 Oleandomycin Substances 0.000 claims description 4
- RZPAKFUAFGMUPI-UHFFFAOYSA-N Oleandomycin Natural products O1C(C)C(O)C(OC)CC1OC1C(C)C(=O)OC(C)C(C)C(O)C(C)C(=O)C2(OC2)CC(C)C(OC2C(C(CC(C)O2)N(C)C)O)C1C RZPAKFUAFGMUPI-UHFFFAOYSA-N 0.000 claims description 4
- 229930192776 Ostreogrycin Natural products 0.000 claims description 4
- 241000160321 Parabacteroides Species 0.000 claims description 4
- 108010079780 Pristinamycin Proteins 0.000 claims description 4
- RLNUPSVMIYRZSM-UHFFFAOYSA-N Pristinamycin Natural products CC1OC(=O)C(C=2C=CC=CC=2)NC(=O)C2CC(=O)CCN2C(=O)C(CC=2C=CC(=CC=2)N(C)C)CCN(C)C(=O)C2CCCN2C(=O)C(CC)NC(=O)C1NC(=O)C1=NC=CC=C1O RLNUPSVMIYRZSM-UHFFFAOYSA-N 0.000 claims description 4
- 108010081391 Ristocetin Proteins 0.000 claims description 4
- ZUHRLTIPDRLJHR-UHFFFAOYSA-N Rosamicin Natural products CCC1OC(=O)CC(O)C(C)C(OC2OC(C)CC(C2O)N(C)C)C(CC=O)CC(C)C(=O)C=CC3OC3C1C ZUHRLTIPDRLJHR-UHFFFAOYSA-N 0.000 claims description 4
- 239000004187 Spiramycin Substances 0.000 claims description 4
- 241000194017 Streptococcus Species 0.000 claims description 4
- 108010034396 Streptogramins Proteins 0.000 claims description 4
- 108010053950 Teicoplanin Proteins 0.000 claims description 4
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 claims description 4
- 108010021006 Tyrothricin Proteins 0.000 claims description 4
- 108010080702 Virginiamycin Proteins 0.000 claims description 4
- 239000004188 Virginiamycin Substances 0.000 claims description 4
- PENDGIOBPJLVBT-HMMOOPTJSA-N abt-773 Chemical compound O([C@@H]1[C@@H](C)C(=O)[C@@H](C)C(=O)O[C@@H]([C@]2(OC(=O)N[C@@H]2[C@@H](C)C(=O)[C@H](C)C[C@]1(C)OC\C=C\C=1C=C2C=CC=CC2=NC=1)C)CC)[C@@H]1O[C@H](C)C[C@H](N(C)C)[C@H]1O PENDGIOBPJLVBT-HMMOOPTJSA-N 0.000 claims description 4
- 108010079465 amphomycin Proteins 0.000 claims description 4
- 229960000723 ampicillin Drugs 0.000 claims description 4
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 claims description 4
- 229960004099 azithromycin Drugs 0.000 claims description 4
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 claims description 4
- 229960003071 bacitracin Drugs 0.000 claims description 4
- 229930184125 bacitracin Natural products 0.000 claims description 4
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 claims description 4
- BGTFCAQCKWKTRL-YDEUACAXSA-N chembl1095986 Chemical compound C1[C@@H](N)[C@@H](O)[C@H](C)O[C@H]1O[C@@H]([C@H]1C(N[C@H](C2=CC(O)=CC(O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)=C2C=2C(O)=CC=C(C=2)[C@@H](NC(=O)[C@@H]2NC(=O)[C@@H]3C=4C=C(C(=C(O)C=4)C)OC=4C(O)=CC=C(C=4)[C@@H](N)C(=O)N[C@@H](C(=O)N3)[C@H](O)C=3C=CC(O4)=CC=3)C(=O)N1)C(O)=O)=O)C(C=C1)=CC=C1OC1=C(O[C@@H]3[C@H]([C@H](O)[C@@H](O)[C@H](CO[C@@H]5[C@H]([C@@H](O)[C@H](O)[C@@H](C)O5)O)O3)O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@@H]3[C@H]([C@H](O)[C@@H](CO)O3)O)C4=CC2=C1 BGTFCAQCKWKTRL-YDEUACAXSA-N 0.000 claims description 4
- DDTDNCYHLGRFBM-YZEKDTGTSA-N chembl2367892 Chemical compound CC(=O)N[C@H]1[C@@H](O)[C@H](O)[C@H](CO)O[C@H]1O[C@@H]([C@H]1C(N[C@@H](C2=CC(O)=CC(O[C@@H]3[C@H]([C@H](O)[C@H](O)[C@@H](CO)O3)O)=C2C=2C(O)=CC=C(C=2)[C@@H](NC(=O)[C@@H]2NC(=O)[C@@H]3C=4C=C(O)C=C(C=4)OC=4C(O)=CC=C(C=4)[C@@H](N)C(=O)N[C@H](CC=4C=C(Cl)C(O5)=CC=4)C(=O)N3)C(=O)N1)C(O)=O)=O)C(C=C1Cl)=CC=C1OC1=C(O[C@H]3[C@H]([C@@H](O)[C@H](O)[C@H](CO)O3)NC(C)=O)C5=CC2=C1 DDTDNCYHLGRFBM-YZEKDTGTSA-N 0.000 claims description 4
- 229960002626 clarithromycin Drugs 0.000 claims description 4
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 claims description 4
- 229960003324 clavulanic acid Drugs 0.000 claims description 4
- HZZVJAQRINQKSD-PBFISZAISA-N clavulanic acid Chemical compound OC(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21 HZZVJAQRINQKSD-PBFISZAISA-N 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 4
- 229960003276 erythromycin Drugs 0.000 claims description 4
- 229960001625 furazolidone Drugs 0.000 claims description 4
- PLHJDBGFXBMTGZ-WEVVVXLNSA-N furazolidone Chemical compound O1C([N+](=O)[O-])=CC=C1\C=N\N1C(=O)OCC1 PLHJDBGFXBMTGZ-WEVVVXLNSA-N 0.000 claims description 4
- 229960004905 gramicidin Drugs 0.000 claims description 4
- ZWCXYZRRTRDGQE-SORVKSEFSA-N gramicidina Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 ZWCXYZRRTRDGQE-SORVKSEFSA-N 0.000 claims description 4
- 229960002182 imipenem Drugs 0.000 claims description 4
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 claims description 4
- 229960004144 josamycin Drugs 0.000 claims description 4
- XJSFLOJWULLJQS-NGVXBBESSA-N josamycin Chemical compound CO[C@H]1[C@H](OC(C)=O)CC(=O)O[C@H](C)C\C=C\C=C\[C@H](O)[C@H](C)C[C@H](CC=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](N(C)C)[C@H](O[C@@H]2O[C@@H](C)[C@H](OC(=O)CC(C)C)[C@](C)(O)C2)[C@@H](C)O1 XJSFLOJWULLJQS-NGVXBBESSA-N 0.000 claims description 4
- TYZROVQLWOKYKF-ZDUSSCGKSA-N linezolid Chemical compound O=C1O[C@@H](CNC(=O)C)CN1C(C=C1F)=CC=C1N1CCOCC1 TYZROVQLWOKYKF-ZDUSSCGKSA-N 0.000 claims description 4
- 229960003907 linezolid Drugs 0.000 claims description 4
- 239000003120 macrolide antibiotic agent Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229950007764 mikamycin Drugs 0.000 claims description 4
- 229960004023 minocycline Drugs 0.000 claims description 4
- DYKFCLLONBREIL-KVUCHLLUSA-N minocycline Chemical compound C([C@H]1C2)C3=C(N(C)C)C=CC(O)=C3C(=O)C1=C(O)[C@@]1(O)[C@@H]2[C@H](N(C)C)C(O)=C(C(N)=O)C1=O DYKFCLLONBREIL-KVUCHLLUSA-N 0.000 claims description 4
- IAIWVQXQOWNYOU-FPYGCLRLSA-N nitrofural Chemical compound NC(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 IAIWVQXQOWNYOU-FPYGCLRLSA-N 0.000 claims description 4
- 229960001907 nitrofurazone Drugs 0.000 claims description 4
- 229960002950 novobiocin Drugs 0.000 claims description 4
- YJQPYGGHQPGBLI-KGSXXDOSSA-N novobiocin Chemical compound O1C(C)(C)[C@H](OC)[C@@H](OC(N)=O)[C@@H](O)[C@@H]1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-KGSXXDOSSA-N 0.000 claims description 4
- 229960002351 oleandomycin Drugs 0.000 claims description 4
- RZPAKFUAFGMUPI-KGIGTXTPSA-N oleandomycin Chemical compound O1[C@@H](C)[C@H](O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](C)C(=O)O[C@H](C)[C@H](C)[C@H](O)[C@@H](C)C(=O)[C@]2(OC2)C[C@H](C)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C RZPAKFUAFGMUPI-KGIGTXTPSA-N 0.000 claims description 4
- 235000019367 oleandomycin Nutrition 0.000 claims description 4
- HHXMXAQDOUCLDN-RXMQYKEDSA-N penem Chemical compound S1C=CN2C(=O)C[C@H]21 HHXMXAQDOUCLDN-RXMQYKEDSA-N 0.000 claims description 4
- 229960002292 piperacillin Drugs 0.000 claims description 4
- IVBHGBMCVLDMKU-GXNBUGAJSA-N piperacillin Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 IVBHGBMCVLDMKU-GXNBUGAJSA-N 0.000 claims description 4
- 229960003961 pristinamycin Drugs 0.000 claims description 4
- DAIKHDNSXMZDCU-OUDXUNEISA-N pristinamycin-IIA Natural products CC(C)[C@H]1OC(=O)C2=CCCN2C(=O)c3coc(CC(=O)C[C@H](O)C=C(C)C=CCNC(=O)C=C[C@@H]1C)n3 DAIKHDNSXMZDCU-OUDXUNEISA-N 0.000 claims description 4
- JOOMGSFOCRDAHL-XKCHLWDXSA-N pristinamycin-IIB Natural products CC(C)[C@@H]1OC(=O)[C@H]2CCCN2C(=O)c3coc(CC(=O)C[C@@H](O)C=C(C)C=CCNC(=O)C=C[C@H]1C)n3 JOOMGSFOCRDAHL-XKCHLWDXSA-N 0.000 claims description 4
- 229950004257 ristocetin Drugs 0.000 claims description 4
- 229950001447 rosaramicin Drugs 0.000 claims description 4
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 claims description 4
- 229960000268 spectinomycin Drugs 0.000 claims description 4
- 229960001294 spiramycin Drugs 0.000 claims description 4
- 235000019372 spiramycin Nutrition 0.000 claims description 4
- 229930191512 spiramycin Natural products 0.000 claims description 4
- 229960005256 sulbactam Drugs 0.000 claims description 4
- FKENQMMABCRJMK-RITPCOANSA-N sulbactam Chemical compound O=S1(=O)C(C)(C)[C@H](C(O)=O)N2C(=O)C[C@H]21 FKENQMMABCRJMK-RITPCOANSA-N 0.000 claims description 4
- LPQZKKCYTLCDGQ-WEDXCCLWSA-N tazobactam Chemical compound C([C@]1(C)S([C@H]2N(C(C2)=O)[C@H]1C(O)=O)(=O)=O)N1C=CN=N1 LPQZKKCYTLCDGQ-WEDXCCLWSA-N 0.000 claims description 4
- 229960003865 tazobactam Drugs 0.000 claims description 4
- 229960001608 teicoplanin Drugs 0.000 claims description 4
- 229960003250 telithromycin Drugs 0.000 claims description 4
- LJVAJPDWBABPEJ-PNUFFHFMSA-N telithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)[C@@H](C)C(=O)O[C@@H]([C@]2(OC(=O)N(CCCCN3C=C(N=C3)C=3C=NC=CC=3)[C@@H]2[C@@H](C)C(=O)[C@H](C)C[C@@]1(C)OC)C)CC)[C@@H]1O[C@H](C)C[C@H](N(C)C)[C@H]1O LJVAJPDWBABPEJ-PNUFFHFMSA-N 0.000 claims description 4
- OHKOGUYZJXTSFX-KZFFXBSXSA-N ticarcillin Chemical compound C=1([C@@H](C(O)=O)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)C=CSC=1 OHKOGUYZJXTSFX-KZFFXBSXSA-N 0.000 claims description 4
- 229960004659 ticarcillin Drugs 0.000 claims description 4
- 229960005041 troleandomycin Drugs 0.000 claims description 4
- LQCLVBQBTUVCEQ-QTFUVMRISA-N troleandomycin Chemical compound O1[C@@H](C)[C@H](OC(C)=O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](C)C(=O)O[C@H](C)[C@H](C)[C@H](OC(C)=O)[C@@H](C)C(=O)[C@@]2(OC2)C[C@H](C)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)OC(C)=O)[C@H]1C LQCLVBQBTUVCEQ-QTFUVMRISA-N 0.000 claims description 4
- GSXRBRIWJGAPDU-BBVRJQLQSA-N tyrocidine A Chemical compound C([C@H]1C(=O)N[C@H](C(=O)N[C@@H](CCCN)C(=O)N[C@H](C(N[C@H](CC=2C=CC=CC=2)C(=O)N2CCC[C@H]2C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N1)=O)CC(C)C)C(C)C)C1=CC=C(O)C=C1 GSXRBRIWJGAPDU-BBVRJQLQSA-N 0.000 claims description 4
- 229960003281 tyrothricin Drugs 0.000 claims description 4
- 229960003842 virginiamycin Drugs 0.000 claims description 4
- 235000019373 virginiamycin Nutrition 0.000 claims description 4
- 241000702460 Akkermansia Species 0.000 claims description 3
- 241000193464 Clostridium sp. Species 0.000 claims description 3
- 230000001147 anti-toxic effect Effects 0.000 claims description 3
- 230000002596 correlated effect Effects 0.000 claims description 3
- 241001156739 Actinobacteria <phylum> Species 0.000 claims description 2
- 241000197729 Alkaliphilus Species 0.000 claims description 2
- 101710092462 Alpha-hemolysin Proteins 0.000 claims description 2
- 101710197219 Alpha-toxin Proteins 0.000 claims description 2
- 241000511612 Anaerofilum Species 0.000 claims description 2
- 241001558988 Anaerovorax Species 0.000 claims description 2
- 241000217846 Bacteroides caccae Species 0.000 claims description 2
- 241000606124 Bacteroides fragilis Species 0.000 claims description 2
- 241001148536 Bacteroides sp. Species 0.000 claims description 2
- 241000606123 Bacteroides thetaiotaomicron Species 0.000 claims description 2
- 241000606215 Bacteroides vulgatus Species 0.000 claims description 2
- 241000186018 Bifidobacterium adolescentis Species 0.000 claims description 2
- 241000186014 Bifidobacterium angulatum Species 0.000 claims description 2
- 241001608472 Bifidobacterium longum Species 0.000 claims description 2
- 241001464956 Collinsella Species 0.000 claims description 2
- 241001262170 Collinsella aerofaciens Species 0.000 claims description 2
- 241001535083 Dialister Species 0.000 claims description 2
- 241001624700 Dialister invisus Species 0.000 claims description 2
- 241001143779 Dorea Species 0.000 claims description 2
- 241000588921 Enterobacteriaceae Species 0.000 claims description 2
- 241000194032 Enterococcus faecalis Species 0.000 claims description 2
- 241000186588 Erysipelatoclostridium ramosum Species 0.000 claims description 2
- 241000186394 Eubacterium Species 0.000 claims description 2
- 241000143590 Eubacterium ruminantium Species 0.000 claims description 2
- 241001608234 Faecalibacterium Species 0.000 claims description 2
- 241000192125 Firmicutes Species 0.000 claims description 2
- 241001430278 Helcococcus Species 0.000 claims description 2
- 241000862469 Holdemania Species 0.000 claims description 2
- 240000001046 Lactobacillus acidophilus Species 0.000 claims description 2
- 241000194036 Lactococcus Species 0.000 claims description 2
- 241000192132 Leuconostoc Species 0.000 claims description 2
- 241001446614 Papillibacter Species 0.000 claims description 2
- 241000606210 Parabacteroides distasonis Species 0.000 claims description 2
- 241001464924 Phascolarctobacterium faecium Species 0.000 claims description 2
- 241000605894 Porphyromonas Species 0.000 claims description 2
- 241000605861 Prevotella Species 0.000 claims description 2
- 241000184247 Pseudoramibacter Species 0.000 claims description 2
- 241000605947 Roseburia Species 0.000 claims description 2
- 241000192031 Ruminococcus Species 0.000 claims description 2
- 241000168515 Sporobacter Species 0.000 claims description 2
- 241000194020 Streptococcus thermophilus Species 0.000 claims description 2
- 241001425419 Turicibacter Species 0.000 claims description 2
- 241001148134 Veillonella Species 0.000 claims description 2
- 241000202221 Weissella Species 0.000 claims description 2
- 241001246487 [Clostridium] bolteae Species 0.000 claims description 2
- 241000186569 [Clostridium] leptum Species 0.000 claims description 2
- 241001656805 [Clostridium] methylpentosum Species 0.000 claims description 2
- 239000002776 alpha toxin Substances 0.000 claims description 2
- 229940009291 bifidobacterium longum Drugs 0.000 claims description 2
- 239000012472 biological sample Substances 0.000 claims description 2
- 229940039696 lactobacillus Drugs 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims description 2
- 241000186672 Lactobacillus delbrueckii subsp. bulgaricus Species 0.000 claims 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 35
- 210000004027 cell Anatomy 0.000 description 34
- 108700012359 toxins Proteins 0.000 description 27
- 239000012634 fragment Substances 0.000 description 21
- 241000894006 Bacteria Species 0.000 description 12
- 229940079593 drug Drugs 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- 101150085553 cpb-2 gene Proteins 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 150000007523 nucleic acids Chemical group 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 229920001817 Agar Polymers 0.000 description 4
- 241000589562 Brucella Species 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 238000010222 PCR analysis Methods 0.000 description 4
- 239000008272 agar Substances 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- 241001112696 Clostridia Species 0.000 description 3
- 206010016952 Food poisoning Diseases 0.000 description 3
- 208000019331 Foodborne disease Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 230000006735 deficit Effects 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 230000001373 regressive effect Effects 0.000 description 3
- CWERGRDVMFNCDR-UHFFFAOYSA-M thioglycolate(1-) Chemical compound [O-]C(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-M 0.000 description 3
- 241000271566 Aves Species 0.000 description 2
- 206010012735 Diarrhoea Diseases 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 241000702072 Podoviridae Species 0.000 description 2
- 241000702202 Siphoviridae Species 0.000 description 2
- 241000191940 Staphylococcus Species 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 238000011203 antimicrobial therapy Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 238000002869 basic local alignment search tool Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000033077 cellular process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 238000001066 phage therapy Methods 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000012353 t test Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 108700026220 vif Genes Proteins 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- FSBZBQUUCNYWOK-YIOPJBSBSA-N 2-[[(2r)-2-[[(2s)-2-[[2-[[2-[[(2s,3s)-2-[[2-[[(2r)-5-amino-2-[[(2s)-2-[[(2s,3s)-2-[[(2r)-2-[[(2r)-2-[[(2r,3s)-2-[[(2r)-5-amino-2-[[(2r)-2-[[4-amino-2-[[(2s)-4-amino-2-[[(2z,4z)-octa-2,4-dienoyl]amino]-4-oxobutanoyl]amino]-4-oxobutanoyl]amino]-2-(4-hydroxy Chemical compound C1([C@@H](NC(=O)C(CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)/C=C\C=C/CCC)C(=O)N[C@H](CCCN)C(=O)N[C@H]([C@H](C)O)C(=O)N[C@H](C2CCC(O)CC2)C(=O)N[C@H](C2CCC(O)CC2)C(=O)N[C@@H]([C@H](C)O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](CCCN)C(=O)NC(C2CCC(O)CC2)C(=O)N[C@@H]([C@H](C)O)C(=O)NC(C2CCC(O)CC2)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C)C(=O)NC(C2CC(Cl)C(O)CC2)C(O)=O)CCC(O)CC1 FSBZBQUUCNYWOK-YIOPJBSBSA-N 0.000 description 1
- SATHPVQTSSUFFW-UHFFFAOYSA-N 4-[6-[(3,5-dihydroxy-4-methoxyoxan-2-yl)oxymethyl]-3,5-dihydroxy-4-methoxyoxan-2-yl]oxy-2-(hydroxymethyl)-6-methyloxane-3,5-diol Chemical compound OC1C(OC)C(O)COC1OCC1C(O)C(OC)C(O)C(OC2C(C(CO)OC(C)C2O)O)O1 SATHPVQTSSUFFW-UHFFFAOYSA-N 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 241000606125 Bacteroides Species 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 241001112695 Clostridiales Species 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 241001327126 Clostridium perfringens C Species 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 101710146739 Enterotoxin Proteins 0.000 description 1
- 238000000729 Fisher's exact test Methods 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- 244000199885 Lactobacillus bulgaricus Species 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 102000005431 Molecular Chaperones Human genes 0.000 description 1
- 206010027951 Mood swings Diseases 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 101000606032 Pomacea maculata Perivitellin-2 31 kDa subunit Proteins 0.000 description 1
- 101000606027 Pomacea maculata Perivitellin-2 67 kDa subunit Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 238000012181 QIAquick gel extraction kit Methods 0.000 description 1
- 229920000294 Resistant starch Polymers 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 231100001102 clostridial toxin Toxicity 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000147 enterotoxin Substances 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 244000005709 gut microbiome Species 0.000 description 1
- 208000013403 hyperactivity Diseases 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 208000028774 intestinal disease Diseases 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 230000006799 invasive growth in response to glucose limitation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000007403 mPCR Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 231100000189 neurotoxic Toxicity 0.000 description 1
- 230000002887 neurotoxic effect Effects 0.000 description 1
- 230000003957 neurotransmitter release Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003989 repetitive behavior Effects 0.000 description 1
- 208000013406 repetitive behavior Diseases 0.000 description 1
- 235000021254 resistant starch Nutrition 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/118—Prognosis of disease development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- intestinal clostridia contribute to the clinical picture of autism (U.S. Pat. No. 9,168,275).
- our microbiological studies revealed a higher incidence and higher counts of clostridia in autism subjects' fecal samples compared to control samples and there is a significantly reduced overall bacterial diversity in the feces of the autistic group children (1-4).
- autistic children may harbor an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in their intestinal microflora and that such toxin-producing organisms are an important target to alleviate autism and its symptoms.
- This discovery provides additional methods for diagnosis and treating autistic children positive for toxin-producing Clostridium perfringens in their gut.
- the invention includes a method of treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject.
- the method comprises administering to the subject having an overgrowth of Clostridium perfringens positive for beta2-toxin gene one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism; thereby, treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the autistic subject.
- the method comprises administering to the subject (e.g.
- the method comprises a) determining an overgrowth of Clostridium perfringens positive for beta2-toxin gene in a sample from the subject; and (b) administering to the subject, who has been determined to have the overgrowth of Clostridium perfringens positive for beta2-toxin gene in (a), one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism.
- FIG. 1 indicates an outline of an analysis of stool specimens from autistic children and control children.
- FIG. 2 is a diagram illustrating correlation between C. perfringens CFU/g and the CFU/g of beta2-toxin-producing C. perfringens presented in log 10 scale.
- FIG. 3 is a PCR analysis of toxin genes of Clostridium perfringens.
- the invention includes methods of treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject.
- the method comprises administering to the subject (e.g., a subject having an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut) one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism.
- symptoms of autism include, but are not limited to, social deficits, language impairment, and repetitive behaviors. Additional examples include associated neurological issues such as sleep deficits, mood swings, anxiety, hyperactivity, immune dysfunction, and seizures.
- Autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens includes early onset autism, late onset autism, and regressive autism. In one embodiment, autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens is regressive autism.
- feces, fecal specimen or stool may be used to determine an overgrowth of beta2-toxin-gene-positive Clostridium perfringens strain, Clostridium perfringens species or Clostridium genus in the gut of a subject.
- the sample from a subject is a fecal specimen or stool.
- an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut includes a range of about 10 3 -10 4 CFU per gram dry weight of fecal specimen from a subject.
- Overgrowth of beta2-toxin-gene-positive Clostridium perfringens includes other ranges described herein.
- the method comprises administering to the subject (e.g., a subject having an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut) one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism; thereby treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the autistic subject.
- the subject e.g., a subject having an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut
- the method comprises a) determining an overgrowth of Clostridium perfringens positive for beta2-toxin gene in a sample from the subject; and (b) administering to the subject, who has been determined to have the overgrowth of Clostridium perfringens positive for beta2-toxin gene in (a), one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism.
- the sample may be a fecal sample.
- the overgrowth of beta2-toxin-gene-positive Clostridium perfringens is an overrepresentation or excess of beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, in the gut of the autistic subject compared to non-autistic subject or population of non-autistic subjects.
- overrepresentation of beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof may be with respect to total Clostridium or total Clostridium perfringens .
- the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, as a fraction of total Clostridium count or total Clostridium perfringens count is higher in the autistic subject compared to non-autistic subject or population of non-autistic subjects.
- the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium in the autistic subject is about 3-fold higher than non-autistic subject or population of non-autistic subjects. In one embodiment, the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium in the autistic subject is more than 3-fold higher than non-autistic subject or population of non-autistic subjects.
- the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium perfringens in the autistic subject is more than 3-fold higher than non-autistic subject or population of non-autistic subjects. In one embodiment, the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium perfringens in the autistic subject is 10-fold higher than non-autistic subject or population of non-autistic subjects.
- the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium perfringens in the autistic subject is 20-fold higher than non-autistic subject or population of non-autistic subjects. In one embodiment, the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium perfringens in the autistic subject is about 22-fold higher than non-autistic subject or population of non-autistic subjects.
- the amount of beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof exceeds mean counts of beta2-toxin-gene-positive Clostridium perfringens of a non-autistic subject or population of non-autistic subjects. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds 1.48 ⁇ 10 3 colony forming unit (CFU) per gram dry weight of fecal specimen, the mean counts of beta2-toxin-gene-positive Clostridium perfringens of a non-autistic subject or population of non-autistic subjects.
- CFU colony forming unit
- the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 1.48 ⁇ 10 3 colony forming unit (CFU) per gram dry weight of fecal specimen. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by more than 3-fold. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by more than 10-fold.
- CFU colony forming unit
- the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by more than 20-fold. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by more than 30-fold. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by more than 40-fold.
- the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by about 44-fold. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 4.5 ⁇ 10 3 colony forming unit (CFU) per gram dry weight of fecal specimen. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 1.5 ⁇ 10 4 colony forming unit (CFU) per gram dry weight of fecal specimen.
- CFU colony forming unit
- the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 3.0 ⁇ 10 4 colony forming unit (CFU) per gram dry weight of fecal specimen. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 4.5 ⁇ 10 4 colony forming unit (CFU) per gram dry weight of fecal specimen. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 6.0 ⁇ 10 4 colony forming unit (CFU) per gram dry weight of fecal specimen. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is about 6.55 ⁇ 10 4 colony forming unit (CFU) per gram dry weight of fecal specimen.
- CFU colony forming unit
- the overgrowth of beta2-toxin-gene-positive Clostridium perfringens is detected as an overrepresentation or excess of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, in the feces of an autistic subject compared to a control subject or population of control subjects.
- the control subject or population of control subjects may have about 1.5 ⁇ 10 3 colony forming units of beta2-toxin-gene-positive Clostridium perfringens per gram dry weight of fecal specimen.
- the autistic subject has more than about 1.9 ⁇ 10 3 colony forming units of beta2-toxin-gene-positive Clostridium perfringens per gram dry weight of fecal specimen. In yet a further embodiment, the autistic subject may have more than about 6 ⁇ 10 4 colony forming units of beta2-toxin-gene-positive Clostridium perfringens per gram dry weight of fecal specimen.
- overrepresentation of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof is the presence of greater percent Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, wherein the percent is determined from the amount of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, in a fecal specimen and dividing by the amount of total Clostridium within the same specimen.
- An overrepresentation of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, for an autistic subject means that the percent Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof is greater for the autistic subject than in the case of a control subject or a population of control subjects.
- an excess of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, in the feces of an autistic subject means that the number of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, is greater in the case of in the feces of an autistic subject compared to a control subject or population of control subjects.
- control subject or population of control subjects may be non-autistic subject or population of non-autistic subjects. In one embodiment, the non-autistic subject or population of non-autistic subjects do not have GI symptoms or neurologic disease.
- the autistic subject has GI abnormalities. In one embodiment, the subject may have a different neurologic disease other than autism.
- the autistic subject, control subject or population of control subjects is a child or are children.
- the child or children are 3 years of age or younger.
- the child or children are less than 12 years of age.
- the child or children are less than 14 years of age.
- the child or children are less than 16 years of age.
- the child or children are more than 2 years of age.
- the child or children are 2-9 years of age.
- the child or children is human.
- the overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject may be positively correlated with an overgrowth of Clostridium perfringens .
- the overgrowth of Clostridium perfringens may result in at least a 3-fold increase in Clostridium perfringens colony forming units in the autistic subject over a control subject or a population of control subjects.
- the overgrowth of Clostridium perfringens may result in at least a 10-fold increase in Clostridium perfringens colony forming units in the autistic subject over a control subject or a population of control subjects.
- control subject or the population of control subjects may have about 1.7 ⁇ 10 4 colony forming units of Clostridium perfringens per gram dry weight of fecal specimen.
- autistic subject may have more than about 5 ⁇ 10 4 colony forming units of Clostridium perfringens per gram dry weight of fecal specimen.
- autistic subject may have more than about 1.7 ⁇ 10 5 colony forming units of Clostridium perfringens per gram dry weight of fecal specimen.
- autistic subject may have about 2.1 ⁇ 10 5 colony forming units of Clostridium perfringens per gram dry weight of fecal specimen.
- the beta2-toxin alters normal cellular process of a host cell afflicted with said toxin, a neighboring cell, or a group of cells participating in communication between the gut and the brain of the subject or a combination thereof.
- the group of cells may include neurons or nerve cells participating in communication between the gut and the brain of the autistic subject.
- alteration of normal cellular process may include a genomic effect, a non-genomic effect, a cytotoxic effect or a combination thereof.
- the genomic effect may include a change in gene expression.
- the non-genomic effect may include a change in signal transduction, action potential, neurotransmitter release, cell membrane fluidity, cell membrane porosity, cell membrane integrity or a combination thereof.
- the cytotoxic effect may result in necrosis or apoptosis.
- the host cell or the neighboring cell is a cell of the gastrointestinal tract, a neuron innervating the gastrointestinal tract or a combination thereof.
- a beta2-toxin-gene-positive Clostridium perfringens includes, but is not limited to, a Clostridium perfringens beta2-toxin gene, cpb2.
- the Clostridium perfringens beta2-toxin gene, cpb2 comprises a nucleic acid sequence as given in any of GenBank Accession Nos.: KF155292, GU581185, GU581184, GU581183, GU581182, GU581181, GU581180, GU581179, GU581177, GU581176, HQ853338, HQ853337, HQ853336, HQ853335, HQ853334, HQ853333, HQ853332, HQ853331, HQ853330, HQ853329, AY609177, AY609176, AY609175, AY609174, AY609172, AY609171, AY609170, AY609169
- the presence of the Clostridium perfringens beta2-toxin gene, cpb2 may be detected with a primer pair direct to sense and anti-sense strands of Clostridium perfringens cpb2 gene, having a nucleic acid sequence as given in any of GenBank Accession Nos.: KF155292, GU581185, GU581184, GU581183, GU581182, GU581181, GU581180, GU581179, GU581177, GU581176, HQ853338, HQ853337, HQ853336, HQ853335, HQ853334, HQ853333, HQ853332, HQ853331, HQ853330, HQ853329, AY609177, AY609176, AY609175, AY609174, AY609172, AY609171, AY609170, AY609169, AY609168, AY609167,
- the Clostridium perfringens beta-toxin gene, cpb comprises a nucleic acid sequence as given in any of GenBank Accession Nos.: KP064410, KP064409, KP064408, KP064407, KP064406, KP064405, KP064404, GU054492, HQ424445, X83275 and KP768395.
- the beta2-toxin-gene-positive Clostridium perfringens found in the gut of the subject includes a Clostridium perfringens alpha-toxin gene.
- the beta2-toxin-gene-positive Clostridium perfringens found in the gut of the subject does not include a Clostridium perfringens alpha-toxin gene, a Clostridium perfringens beta-toxin gene, a Clostridium perfringens epsilon-toxin gene, a Clostridium perfringens iota-toxin gene or a combination thereof.
- the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject comprises a Clostridium perfringens alpha-toxin gene but is free of a Clostridium perfringens beta-toxin gene, epsilon-toxin gene and iota-toxin gene.
- the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject is free of a Clostridium perfringens alpha-toxin gene, beta-toxin gene, epsilon-toxin gene and iota-toxin gene.
- the beta2-toxin-gene-positive Clostridium perfringens produces Clostridium perfringens beta2-toxin.
- the beta2-toxin-gene-positive Clostridium perfringens additionally comprises Clostridium perfringens alpha-toxin gene and produces Clostridium perfringens beta2-toxin.
- the beta2-toxin-gene-positive Clostridium perfringens produces Clostridium perfringens alpha-toxin.
- the beta2-toxin-gene-positive Clostridium perfringens produces a toxin that is free of Clostridium perfringens alpha-toxin.
- the beta2-toxin-gene-positive Clostridium perfringens is free of Clostridium perfringens alpha-toxin, free of a Clostridium perfringens beta-toxin, free of a Clostridium perfringens epsilon-toxin, free of a Clostridium perfringens iota-toxin or a combination thereof.
- beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject produces a Clostridium perfringens beta2-toxin and alpha-toxin but is free of a Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin and Clostridium perfringens iota-toxin.
- the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject produces a Clostridium perfringens beta2-toxin but is free of a Clostridium perfringens alpha-toxin, Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin and Clostridium perfringens iota-toxin.
- the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject is free of a Clostridium perfringens beta2-toxin, Clostridium per alpha-toxin, Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin and Clostridium perfringens iota-toxin.
- the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject produces a toxin other than a Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin and Clostridium perfringens iota-toxin.
- one or more agent(s) includes any of an antimicrobial, a bacteriophage, a probiotic, a probiotic group, a prebiotic or a vaccine which would lead to production of an anti-toxin against a toxin produced by the beta2-toxin-gene-positive Clostridium perfringens in the gut of the autistic subject.
- the agent may be a polypeptide, a nucleic acid or a small molecule which inhibits the transcription of Clostridium perfringens beta2-toxin gene, destabilizes a beta2-toxin RNA, inhibits the translation of Clostridium perfringens beta2-toxin mRNA transcript, or decreases the half-life of a Clostridium perfringens beta2-toxin protein.
- agents to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens include, but are not limited to, ABT-773, ampicillin, sulbactam, amphomycin, azithromycin, bacitracin, carboxmycin, cephlosporins, clarithromycin, erythromycin, furazolidone, nitrofuran, fusidic acid, sodium fusidate, gramicidin, a penem, imipenem, josamycin, linezolid, oxazolidinone, a macrolide, metronidazole, nitroimidazole, mikamycin, minocycline, novobiocin, oleandomycin, triacetyloleandomycin, ostreogrycin, piperacillin, tazobactam, pristinamycin, ramoplanin, ristocetin, rosamicin, rosaramicin, spectinomycin, spiramycin
- antimicrobial agents include, but are not limited to, ABT-773, ampicillin, sulbactam, amphomycin, azithromycin, bacitracin, carboxmycin, cephlosporins, clarithromycin, erythromycin, furazolidone, nitrofuran, fusidic acid, sodium fusidate, gramicidin, a penem, imipenem, josamycin, linezolid, oxazolidinone, a macrolide, metronidazole, nitroimidazole, mikamycin, minocycline, novobiocin, oleandomycin, triacetyloleandomycin, ostreogrycin, piperacillin, tazobactam, pristinamycin, ramoplanin, ristocetin, rosamicin, rosaramicin, spectinomycin, spiramycin, streptogramin, synergistin, teicoplanin,
- Suitable examples of a probiotic or the probiotic agent include, but are not limited to, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides distasonis, Bacteroides fragilis, Bifidobacterium adolescentis group, Eubacterium aerofaciens, Clostridium ramosum, Escherichia coli, Streptococcus faecalis group, Lactobacillus spp., L.
- thermophilus Collinsella genus, Bifidobacterium genus, Bifidobacterium longum, Bifidobacterium angulatum, Dialister invisus, Clostridium leptum, Firmicutes, Actinobacteria, Faecalibacterium, Ruminococcus, Eubacterium, Alistipes, Roseburia, Anaerofilum, Streptococcus, Turicibacter, Parabacteroides, Dorea, Veillonella, Akkermansia, Sporobacter, Ethanoligenens, Papillibacter, Holdemania, Weissella, Dialister, Pseudoramibacter, Streptococcus, Anaerovorax, Lactococcus, Leuconostoc, Ethanoligenens, Helcococcus, Alkaliphilus, Clostridium bolteae, Clostridium methylpentosum, Eubacterium ruminantium, Phascolarctobacter
- Examples of a prebiotic include, but are not limited to, trans-galactooligosaccharide, inulin, Larch arabinogalactan, resistant starch, pectin, beta-glucans, xylooligosaccharides, and a combination thereof.
- the prebiotic promotes the growth of gut-colonizing bacteria that compete with the beta2-toxin-gene-positive Clostridium perfringens or inhibits the growth of the beta2-toxin-gene-positive Clostridium perfringens .
- the Clostridium sp. is free of beta2-toxin-gene-positive Clostridium perfringens of.
- the prebiotic promotes the growth of Bifidobacterium species, Lactobacillus species, Akkermansia , or a combination thereof.
- a discussion of prebiotics may be found in the following references which are incorporated in their entirety: Gibson G R and Roberfroid M G (1995) J Nutr. 125 (6): 1401-1412; Roberfroid M B (2007) J Nutr. 137 (3 Suppl 2): 830S-7S; Kelly G S (1999) Alternative Medicine Review 4 (2): 96-103; Zaman et al. (2015) Critical Reviews in Biotechnology: 1-7; Gomez et al. (2014) Journal of Agricultural and Food Chemistry 62 (40): 9769-9782; Arena et al. (2014) International Journal of Molecular Sciences 15 (2): 3025-3039; and Jain et al. (2015) Indian Journal of Experimental Biology 53 (3): 131-142.
- an anti-toxin agent includes, but is not limited to, an antibody against a toxin.
- the antibody is an antibody against Clostridium perfringens beta2-toxin, a fragment of Clostridium perfringens beta2-toxin, Clostridium perfringens alpha-toxin, a fragment of Clostridium perfringens alpha-toxin or a combination thereof.
- Antibodies Clostridium perfringens beta2-toxin are commercially available and well known (J. Zeng et al. Journal of Immunology Research, volume 2016, Article ID 570868; Novus Biologicals).
- Antibodies Clostridium perfringens alpha-toxin are commercially available and well known (H. Saito, et al., FEMS Microbiology Letters (1989), 59:173-176; US Biological).
- the antibody is an antibody against a toxin from a beta2-toxin-gene-positive Clostridium perfringens wherein the toxin is not Clostridium per beta2-toxin or its fragment, Clostridium perfringens alpha-toxin or its fragment, Clostridium perfringens beta-toxin or its fragment, Clostridium perfringens epsilon-toxin or its fragment, or Clostridium perfringens iota-toxin or its fragment.
- the antibody may be a neutralizing antibody or an inhibitory antibody.
- the antibody is a polyclonal antibody, a monoclonal antibody, an antigen-binding fragment of an antibody or a bispecific antibody.
- the antigen-binding fragment of an antibody comprises a Fab antibody fragment, a F(ab′)2 antibody fragment, a Fv antibody fragment or a single chain variable fragment (scFv).
- Suitable examples of toxins include, but are not limited to, Clostridium perfringens beta2-toxin and Clostridium perfringens alpha-toxin.
- the vaccine comprises Clostridium perfringens beta2-toxin, a fragment of Clostridium perfringens beta2-toxin, Clostridium perfringens alpha-toxin, a fragment of Clostridium perfringens alpha-toxin or a combination thereof.
- the vaccine is free of Clostridium perfringens beta-toxin, a fragment of Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin, a fragment of Clostridium perfringens epsilon-toxin, Clostridium perfringens iota-toxin, a fragment of Clostridium per iota-toxin or a combination thereof.
- the vaccine comprises a toxin or a fragment thereof produced by the beta2-toxin-gene-positive Clostridium perfringens wherein the toxin is not Clostridium perfringens beta2-toxin or its fragment, Clostridium perfringens alpha-toxin or its fragment, Clostridium perfringens beta-toxin or its fragment, Clostridium perfringens epsilon-toxin or its fragment, or Clostridium perfringens iota-toxin or its fragment.
- a suitable example of a vaccine is one that leads to the production of an antibody against Clostridium perfringens beta2-toxin or Clostridium perfringens alpha-toxin or a combination thereof.
- the antibody may be free of an antibody against Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin or Clostridium perfringens iota-toxin or a combination thereof.
- the vaccine leads to the production of an antibody against a toxin produced by the beta2-toxin-gene-positive Clostridium perfringens wherein the toxin is not Clostridium perfringens beta2-toxin, Clostridium perfringens alpha-toxin, Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin or Clostridium perfringens iota-toxin.
- agents that reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens include, but are not limited to, an antibody, a lectin, a protease, or a protein, peptide, carbohydrate or small molecule that interacts with beta2-toxin of Clostridium perfringens .
- the antibody is an anti-beta2-toxin antibody.
- the antibody inhibits activity, decreases stability or alters localization of beta2-toxin of Clostridium perfringens .
- examples of a protein, peptide, carbohydrate or small molecule that interact with beta2-toxin are those that inhibit formation of a functional toxin, prevent post-translational modification, prevent protein assembly, prevent formation of a potential pore-forming complex, prevent association with chaperone protein, accessory protein or receptor, promote degradation of said toxin, mis-localize said beta2-toxin, inhibit expression of said beta2-toxin or stabilize beta2-toxin with a natural inhibitor to Clostridium perfringens beta2-toxin so as to maintain an inactive state of the Clostridium perfringens beta2-toxin.
- the natural inhibitor may be an inhibitor to Clostridium perfringens beta2-toxin present in fecal material or sample.
- the protein, peptide, carbohydrate or small molecule are those that prevent normal folding or assembly of the beta2-toxin, prevent insertion of the beta2-toxin into a cell membrane, prevent interaction with other toxin subunits and prevent its function as a pore-forming toxin.
- an agent that reduces or eliminates beta2-toxin-gene-positive Clostridium perfringens may be a bacteriophage.
- the bacteriophage may be virulent for Clostridium perfringens .
- examples of bacteriophages virulent for Clostridium perfringens include, but are not limited to, bacteriophages from the Siphoviridae family and Podoviridae family.
- Suitable members of the Siphoviridae family virulent for Clostridium perfringens may be used in a bacteriophage or phage therapy to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens or beta-toxin-gene-related toxin-gene-positive Clostridium perfringens include ⁇ CP39O and ⁇ CP26F (Seal et al., Arch. Virol. 2011; 156:25-35 [PubMed: 20963614]).
- Suitable members of the Podoviridae family virulent for Clostridium perfringens and may be used in a bacteriophage or phage therapy to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens include ⁇ CPV1 (Volozhantsev et al., Virus Res. 2011; 155:433-439 [PubMed: 21144870]), ⁇ CP24R (Morales et al., Arch. Virol. 2012; 157:769-772 [PubMed: 22218967]), ⁇ CPV4, ⁇ ZP2, and ⁇ CP7R (Volozhantsev et al., PLoS ONE.
- ⁇ CPV1 Volozhantsev et al., Virus Res. 2011; 155:433-439 [PubMed: 21144870]
- ⁇ CP24R Meorales et al., Arch. Virol. 2012
- Clostridium perfringens Use of bacteriophages virulent for Clostridium perfringens and its gene products to control animal and human diseases without having deleterious effects on beneficial probiotic bacteria are discussed in Seal el al., Poult Sci. 2013; 92(2): 526-533, whose reference is incorporated in its entirety.
- An agent to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens may be administered singly or in a combination with other agents, concurrently or sequentially, and by any suitable route.
- the invention further provides methods of identifying an autistic subject whose autism may be alleviated by a course of treatment directed against an overgrowth of beta2-toxin-positive Clostridium perfringens so as to reduce or eliminate the overgrowth.
- the method comprises (a) determining existence of said overgrowth in the autistic subject, thereby identifying the autistic subject whose autism may be alleviated by a course of treatment directed against the overgrowth of beta2-toxin-positive Clostridium perfringens.
- the overgrowth of Clostridium perfringens comprises an overgrowth of beta2-toxin-positive Clostridium perfringens.
- the overgrowth of Clostridium perfringens is an overgrowth of beta2-toxin-positive Clostridium perfringens.
- the step of determining the existence of said overgrowth in the autistic subject comprises (a) detecting presence of beta2-toxin-positive Clostridium perfringens in a sample from the subject; (b) quantifying the amount of beta2-toxin-positive Clostridium perfringens in the sample; (c) comparing the value in (b) with a value for the amount of beta2-toxin-positive Clostridium perfringens in non-autistic subject or subjects; and (d) finding that the value of (b) is greater than the value from non-autistic subject or subjects. In one embodiment, the value of (b) being greater than the value from non-autistic subject or subjects is a statistically significant difference.
- the Clostridium perfringens may include a vegetative cell, spore or combination thereof.
- the method comprises (a) determining existence of said overgrowth in the autistic subject, thereby identifying the autistic subject whose autism may be alleviated by a course of treatment directed against the overgrowth of beta2-toxin-producing Clostridium perfringens .
- the step of determining existence of said overgrowth in the autistic subject comprises (a) detecting presence of beta2-toxin-positive Clostridium perfringens in a sample from the subject; (b) quantifying the activity of Clostridium perfringens beta2-toxin in a sample from the subject; (c) comparing the value in (b) with a value for the activity of Clostridium perfringens beta2-toxin in a sample or samples from non-autistic subject or subjects; and (d) finding that the value of (b) is greater than the value of sample or samples from non-autistic subject or subjects.
- the method comprises the step of determining the presence of said beta2-toxin in the autistic subject, thereby, identifying the autistic subject whose autism may be alleviated by a course of treatment directed against beta2-toxin of Clostridium perfringens .
- the method further comprises (b) quantifying activity of beta2-toxin; (c) comparing a value obtained in (b) against a threshold value; and (d) finding greater activity of beta2-toxin in the autistic subject.
- the Clostridium perfringens comprises a vegetative cell.
- the fecal material of the autistic subject is used to determine said overgrowth.
- the fecal material of the autistic subject is used to determine presence of beta2-toxin of Clostridium perfringens .
- the presence of beta2-toxin of Clostridium perfringens is determined by detecting the presence of nucleic acid encoding beta2-toxin of Clostridium perfringens or presence of polypeptide for beta2-toxin of Clostridium perfringens .
- the presence of beta2-toxin of Clostridium perfringens is determined by determining the activity of beta2-toxin of Clostridium perfringens.
- the invention further provides methods of screening autistic subjects whose autism may be alleviated by a course of treatment directed against beta2-toxin of Clostridium perfringens by identifying the subject by any of the methods of the invention.
- the invention additionally provides methods for monitoring the course of autism in an autistic subject by identifying the subject by any of the methods of the invention and quantitatively determining a level of overgrowth of Clostridium perfringens , overgrowth of beta2-toxin-gene-positive Clostridium perfringens , activity of Clostridium perfringens beta2-toxin from a biological sample from the subject at one time point and comparing a value so determined with the value determined from in a second sample from the subject, such samples being taken at different points in time, a difference in the values determined being indicative of the course of the autistic condition.
- a decrease in the overgrowth of Clostridium perfringens , overgrowth of beta2-toxin-gene-positive Clostridium perfringens , activity of Clostridium perfringens beta2-toxin is indicative or predictive of reducing severity or duration of one or more symptoms associated with austism.
- an increase in the overgrowth of Clostridium perfringens , overgrowth of beta2-toxin-gene-positive Clostridium perfringens , activity of Clostridium perfringens beta2-toxin is indicative or predictive of reducing severity or duration of one or more symptoms associated with austism.
- one or more symptoms associated with autism is any of early onset autism, late stage autism or regressive autism.
- a method of treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject comprising: a) determining existence of an overgrowth of Clostridium perfringens positive for beta2-toxin gene in a sample from the subject; and (b) administering to the subject one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism; thereby, treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the autistic subject.
- an antimicrobial used to treat autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens so as to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens should have certain characteristics for optimal benefit and minimal side effects. Certain antimicrobials have characteristics appropriate to treat even very young children, and such drugs are useful to treat disorders having the gut-brain involvement. Preferably, an antimicrobial selected as a therapy will have one or more of the following properties:
- Drugs that have one or more of the above characteristics may have utility for antimicrobial therapy in treating neurological disorders with gut flora etiology, such as those associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens.
- Appropriate doses of the antimicrobials are within the range given for many other conditions for which the antimicrobials are prescribed. Dosage information can be found, for example, in the Physicians' Desk Reference, 54 th edition, Medical Economics Company, Montvale, N.J. (2000 or subsequent editions). In certain instances, the doses may be elevated to the extent necessary to maintain a bactericidal or bacteriostatic concentration throughout the gastrointestinal tract.
- the antimicrobials are preferably formulated for oral administration, such as in liquid form, tablet, capsule, granules, chewable, etc. Tablets or capsules may be enterically coated to minimize gastric absorption of the drug when the pH of the stomach is high or emptying is slow due to certain drugs or diseases, the stomach can be colonized with many bacteria.
- the antimicrobials can be administered as known in the art. It is desirable to select a route of administration that is most effective for the therapy, examples thereof being oral administration or parenteral administration such as intravenous administration with subsequent excretion into the bowel.
- a preferred compound for treating Clostridium overgrowth in the gut is ramoplanin, also known as A-16686 (see, e.g., U.S. Pat. Nos. 4,303,646; 4,328,316; 4,427,656; 5,539,087; and 5,925,550; and Parenti et al.; Drugs Exp Clin Res 16(9):451-5 (1990); all herein incorporated by reference).
- This antibiotic is not cross-resistant with vancomycin, it engenders very little to no resistance in bacteria, is not detectably absorbed systemically in humans (making it exceptionally safe, even for young children), can be made palatable in a liquid form, achieves high concentrations in the large intestine, has very good activity against clostridia, can be given twice a day, and is primarily active against gram positive organisms at the dosage levels administered.
- Ramoplanin is preferable to drugs such as vancomycin and metronidazole, which have previously been used, because, for example, vancomycin, while achieving a high concentration in the intestines throughout, is effective against Bacteroides , a beneficial genus of gut flora, as well as clostridial species.
- Metronidazole is not an ideal candidate because of its ready systemic absorption, which can lead to neurotoxic side effects when given in high enough concentrations to remain effective in the gut, and the fact that it is quite bitter and thus difficult to formulate as a liquid for oral use.
- dosage colony forming units (cfu) of each bacterium
- cfu colony forming units
- the formulation can be provided as active cells or spores. It can be provided in an enterically coated form (e.g., for active cells) to protect sensitive cells from the gastric environment.
- a preferred therapy involves temporary elimination or suppression of the patient's flora (primarily or entirely with the use of antimicrobial agents, preferably directed specifically against beta2-toxin-gene-positive Clostridium perfringens ) and introduction of a new, non-pathogenic flora that consists of a number of bacteria normally found in the bowel that convey colonization resistance (to prevent regrowth or re-implantation of the offending bacteria).
- therapies are preferably patterned after those described in the poultry literature, for example, Wooley et al., Avian Dis. 43(2):245-50, (1999); Hume et al., J. Food Prot. 61(6):673-6 (1998); Cornier et al., J. Food Prot.
- bacteriophage specific for the bacterium producing the toxin can be introduced to the patient's gastrointestinal tract to reduce or kill the toxin-producing bacteria, and probiotic therapy mixtures can be concurrently or subsequently administered.
- An example of a successful protocol involving this strategy with Clostridium difficile can be found in Ramesh et al., Anaerobe 5:69-78 (1999), herein incorporated by reference.
- Bacteriophage may be susceptible to gastric acidity and such acidity should be neutralized prior to phage administration, or else the bacteriophage can be administered in an enterically coated tablet or capsule.
- Probiotic therapy can be used in conjunction with antimicrobials used to treat infections in otherwise normal patients (i.e., before the onset of aneurological disorder) in order to prevent or reduce the risk of the occurrence of a neurological disorder.
- antimicrobials being used to reduce, eliminate or inhibit the beta2-toxin-gene-positive Clostridium perfringens species overgrown in a patient's gastrointestinal tract, and to promote the re-emergence of normal gut flora.
- probiotic therapy may take the form of a fecal therapy using fecal material obtained from a normal subject without autism or GI abnormality and this fecal material is administered to an autistic subject with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens alone or in combination with an antimicrobial, a different probiotic, a different probiotic group, a prebiotic, a bacteriophage or a vaccine.
- FIG. 1 We studied stool specimens from 33 autistic children aged 2-9 years with GI abnormalities and 13 control children without autism and without GI symptoms.
- perfringens colonies were selected, described and subcultured on Brucella agar and incubated for 48 h., as described above. Additionally, as a back-up enrichment culture, the heat-treated thioglycollate tubes were incubated at 37° C. for 72 h and then let stand at room temperature for one week before subculturing.
- C. perfringens reference strains ATCC 3626 and ATCC 14809 were obtained from the American Type Culture Collection (ATCC). The strains were grown 48 h on Brucella agar and processed as described below.
- PCR assay to detect the genes for C. perfringens a-toxin (cpa), b-toxin (cpb), b2-toxin (cpb2), i-toxin (iA), and enterotoxin (cpe) was performed using primer pairs as shown in Table 1.
- the C. perfringens strains were typed utilizing methods as previously described (9, 10) with the exception that instead of multiplex PCR, single PCR's were performed with each primer pair.
- the PCR conditions were as follows: DNA was denatured for 2 min at 95° C. and amplified for 35 cycles (1 min at 94° C., 1 min at 55° C., 1 min at 72° C.
- PCR products were separated by electrophoresis in a 2% (w/v) agarose gel stained with ethidium bromide. Amplified bands were visualized and photographed under UV illumination.
- Verification of the PCR products was done by DNA sequencing of purified PCR product.
- the PCR products were excised from an agarose gel and purified using the QIAquick gel extraction kit (Qiagen, Valencia, Calif.).
- the purified PCR products were sequenced directly with a Biotech Diagnostic Big Dye sequencing kit (Biotech Diagnostics, CA) on an ABI 3130 Avant sequencer (Applied Biosystems, Foster City, Calif.).
- the sequencing data were analyzed by comparison of the consensus sequences with GenBank sequences by using Ribosomal Database Project (RDP-II) (Michigan State University, East Lansing) (11), and Basic Local Alignment Search Tool (BLAST) (12). Analyses of the sequences were performed by comparing with the sequences of the type strains retrieved from GenBank by using the program Clustal W (13).
- C. perfringens beta2-toxin was first studied and described in 1997 by Popoff's group (5). Initially it was found in enteric disease in animals (piglets, horses) and in food. Subsequently, it was found in other animals and in soil, and finally in humans. C. perfringens isolates carrying beta2-toxin have been described in human gastrointestinal diseases, including food poisoning, antibiotic-associated diarrhea (AAD) and sporadic diarrhea (SD). Altogether, 24% (7/29) isolates from humans with food poisoning were shown to produce beta2-toxin; whereas, 76% (34/46) isolates from humans suffering with either AAD or SD were beta2-toxin positive (15).
- AAD antibiotic-associated diarrhea
- SD sporadic diarrhea
- Clostridium perfringens mean counts (CFU/g) and toxin typing of isolates from fecal specimens of autistic and control children CFU/g Specimens Beta2- Number of positive specimens C. perfringens Toxin-positive Beta2- Total isolated Clostridium C. perfringens C.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
The invention includes a method of diagnosis and treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject. In one embodiment, the method comprises administering to the subject (e.g. a subject having an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut) one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism.
Description
- This patent application claims the benefit of U.S. Ser. No. 62/357,549, filed Jul. 1, 2016, the contents of which is herein incorporated by reference in its entirety into the present patent application.
- Throughout this application various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
- This invention was made with support from the Autism Research Institute. The government has certain rights in the invention.
- It was known that intestinal clostridia contribute to the clinical picture of autism (U.S. Pat. No. 9,168,275). For example, our microbiological studies revealed a higher incidence and higher counts of clostridia in autism subjects' fecal samples compared to control samples and there is a significantly reduced overall bacterial diversity in the feces of the autistic group children (1-4).
- Now we have discovered that autistic children may harbor an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in their intestinal microflora and that such toxin-producing organisms are an important target to alleviate autism and its symptoms. This discovery provides additional methods for diagnosis and treating autistic children positive for toxin-producing Clostridium perfringens in their gut.
- The invention includes a method of treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject. In one embodiment, the method comprises administering to the subject having an overgrowth of Clostridium perfringens positive for beta2-toxin gene one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism; thereby, treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the autistic subject. In another embodiment, the method comprises administering to the subject (e.g. a subject having an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut) one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism.
- In another embodiment, the method comprises a) determining an overgrowth of Clostridium perfringens positive for beta2-toxin gene in a sample from the subject; and (b) administering to the subject, who has been determined to have the overgrowth of Clostridium perfringens positive for beta2-toxin gene in (a), one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism.
-
FIG. 1 indicates an outline of an analysis of stool specimens from autistic children and control children. -
FIG. 2 is a diagram illustrating correlation between C. perfringens CFU/g and the CFU/g of beta2-toxin-producing C. perfringens presented in log 10 scale. -
FIG. 3 is a PCR analysis of toxin genes of Clostridium perfringens. - The invention includes methods of treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject. In one embodiment, the method comprises administering to the subject (e.g., a subject having an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut) one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism. Examples of symptoms of autism include, but are not limited to, social deficits, language impairment, and repetitive behaviors. Additional examples include associated neurological issues such as sleep deficits, mood swings, anxiety, hyperactivity, immune dysfunction, and seizures. Autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens includes early onset autism, late onset autism, and regressive autism. In one embodiment, autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens is regressive autism.
- In one embodiment, feces, fecal specimen or stool may be used to determine an overgrowth of beta2-toxin-gene-positive Clostridium perfringens strain, Clostridium perfringens species or Clostridium genus in the gut of a subject. In one embodiment, the sample from a subject is a fecal specimen or stool. For example, an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut includes a range of about 103-104 CFU per gram dry weight of fecal specimen from a subject. Overgrowth of beta2-toxin-gene-positive Clostridium perfringens includes other ranges described herein.
- In another embodiment of the invention, the method comprises administering to the subject (e.g., a subject having an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut) one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism; thereby treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the autistic subject.
- In another embodiment, the method comprises a) determining an overgrowth of Clostridium perfringens positive for beta2-toxin gene in a sample from the subject; and (b) administering to the subject, who has been determined to have the overgrowth of Clostridium perfringens positive for beta2-toxin gene in (a), one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism. For example, wherein the sample may be a fecal sample.
- In one embodiment of the invention, the overgrowth of beta2-toxin-gene-positive Clostridium perfringens is an overrepresentation or excess of beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, in the gut of the autistic subject compared to non-autistic subject or population of non-autistic subjects. In one embodiment, overrepresentation of beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, may be with respect to total Clostridium or total Clostridium perfringens. The percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, as a fraction of total Clostridium count or total Clostridium perfringens count is higher in the autistic subject compared to non-autistic subject or population of non-autistic subjects.
- In one embodiment, the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium in the autistic subject is about 3-fold higher than non-autistic subject or population of non-autistic subjects. In one embodiment, the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium in the autistic subject is more than 3-fold higher than non-autistic subject or population of non-autistic subjects. In one embodiment, the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium perfringens in the autistic subject is more than 3-fold higher than non-autistic subject or population of non-autistic subjects. In one embodiment, the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium perfringens in the autistic subject is 10-fold higher than non-autistic subject or population of non-autistic subjects. In one embodiment, the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium perfringens in the autistic subject is 20-fold higher than non-autistic subject or population of non-autistic subjects. In one embodiment, the percent beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, of total Clostridium perfringens in the autistic subject is about 22-fold higher than non-autistic subject or population of non-autistic subjects.
- In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, exceeds mean counts of beta2-toxin-gene-positive Clostridium perfringens of a non-autistic subject or population of non-autistic subjects. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds 1.48×103 colony forming unit (CFU) per gram dry weight of fecal specimen, the mean counts of beta2-toxin-gene-positive Clostridium perfringens of a non-autistic subject or population of non-autistic subjects. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 1.48×103 colony forming unit (CFU) per gram dry weight of fecal specimen. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by more than 3-fold. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by more than 10-fold. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by more than 20-fold. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by more than 30-fold. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by more than 40-fold. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject exceeds the amount of a non-autistic subject or population of non-autistic subjects by about 44-fold. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 4.5×103 colony forming unit (CFU) per gram dry weight of fecal specimen. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 1.5×104 colony forming unit (CFU) per gram dry weight of fecal specimen. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 3.0×104 colony forming unit (CFU) per gram dry weight of fecal specimen. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 4.5×104 colony forming unit (CFU) per gram dry weight of fecal specimen. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is more than 6.0×104 colony forming unit (CFU) per gram dry weight of fecal specimen. In one embodiment, the amount of beta2-toxin-gene-positive Clostridium perfringens of the autistic subject is about 6.55×104 colony forming unit (CFU) per gram dry weight of fecal specimen.
- In another embodiment, the overgrowth of beta2-toxin-gene-positive Clostridium perfringens is detected as an overrepresentation or excess of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, in the feces of an autistic subject compared to a control subject or population of control subjects. For example, the control subject or population of control subjects may have about 1.5×103 colony forming units of beta2-toxin-gene-positive Clostridium perfringens per gram dry weight of fecal specimen. In another example, the autistic subject has more than about 1.9×103 colony forming units of beta2-toxin-gene-positive Clostridium perfringens per gram dry weight of fecal specimen. In yet a further embodiment, the autistic subject may have more than about 6×104 colony forming units of beta2-toxin-gene-positive Clostridium perfringens per gram dry weight of fecal specimen.
- In one embodiment, overrepresentation of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, is the presence of greater percent Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, wherein the percent is determined from the amount of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, in a fecal specimen and dividing by the amount of total Clostridium within the same specimen. An overrepresentation of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, for an autistic subject means that the percent Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof is greater for the autistic subject than in the case of a control subject or a population of control subjects.
- In one embodiment, an excess of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, in the feces of an autistic subject means that the number of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, is greater in the case of in the feces of an autistic subject compared to a control subject or population of control subjects.
- In one embodiment, the control subject or population of control subjects may be non-autistic subject or population of non-autistic subjects. In one embodiment, the non-autistic subject or population of non-autistic subjects do not have GI symptoms or neurologic disease.
- In one embodiment, the autistic subject has GI abnormalities. In one embodiment, the subject may have a different neurologic disease other than autism.
- In one embodiment, the autistic subject, control subject or population of control subjects is a child or are children. In one embodiment, the child or children are 3 years of age or younger. In another embodiment, the child or children are less than 12 years of age. In another embodiment, the child or children are less than 14 years of age. In a further embodiment, the child or children are less than 16 years of age. In yet a further embodiment, the child or children are more than 2 years of age. In one embodiment, the child or children are 2-9 years of age. In one embodiment, the child or children is human.
- In one embodiment of the invention, the overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject may be positively correlated with an overgrowth of Clostridium perfringens. For example, the overgrowth of Clostridium perfringens may result in at least a 3-fold increase in Clostridium perfringens colony forming units in the autistic subject over a control subject or a population of control subjects. In another example, the overgrowth of Clostridium perfringens may result in at least a 10-fold increase in Clostridium perfringens colony forming units in the autistic subject over a control subject or a population of control subjects.
- In yet a further example, the control subject or the population of control subjects may have about 1.7×104 colony forming units of Clostridium perfringens per gram dry weight of fecal specimen. In another example, the autistic subject may have more than about 5×104 colony forming units of Clostridium perfringens per gram dry weight of fecal specimen. In an additional example, the autistic subject may have more than about 1.7×105 colony forming units of Clostridium perfringens per gram dry weight of fecal specimen. In an additional example, the autistic subject may have about 2.1×105 colony forming units of Clostridium perfringens per gram dry weight of fecal specimen.
- For a value described as being “about” refers to any value within the range of values encompassed by ±10%.
- In one embodiment of the invention, the beta2-toxin alters normal cellular process of a host cell afflicted with said toxin, a neighboring cell, or a group of cells participating in communication between the gut and the brain of the subject or a combination thereof. For example, the group of cells may include neurons or nerve cells participating in communication between the gut and the brain of the autistic subject. For example, alteration of normal cellular process may include a genomic effect, a non-genomic effect, a cytotoxic effect or a combination thereof. In an embodiment of the invention, the genomic effect may include a change in gene expression. In yet a further embodiment, the non-genomic effect may include a change in signal transduction, action potential, neurotransmitter release, cell membrane fluidity, cell membrane porosity, cell membrane integrity or a combination thereof. For example, the cytotoxic effect may result in necrosis or apoptosis. In one example, the host cell or the neighboring cell is a cell of the gastrointestinal tract, a neuron innervating the gastrointestinal tract or a combination thereof.
- An example of a beta2-toxin-gene-positive Clostridium perfringens includes, but is not limited to, a Clostridium perfringens beta2-toxin gene, cpb2. In one embodiment, the Clostridium perfringens beta2-toxin gene, cpb2, comprises a nucleic acid sequence as given in any of GenBank Accession Nos.: KF155292, GU581185, GU581184, GU581183, GU581182, GU581181, GU581180, GU581179, GU581177, GU581176, HQ853338, HQ853337, HQ853336, HQ853335, HQ853334, HQ853333, HQ853332, HQ853331, HQ853330, HQ853329, AY609177, AY609176, AY609175, AY609174, AY609172, AY609171, AY609170, AY609169, AY609168, AY609167, AY609166, AY609165, AY609163, AY609162, AY609161, GU581178, EU260099, AY730636, AY730635, AY730634, AY730633, AY730632, AY730631, AY730630, EF076030, EF076029, EF076028, AY297455, KJ874348, AY609183, AY609182, AY609181, AY609180, AY609179, AY609178, AY609173, AY609164, AY884041, AY884040, AY884039, AY884038, AY884037, AY884036, AY884035, DQ525205 and L77965.
- In one embodiment of the invention, the presence of the Clostridium perfringens beta2-toxin gene, cpb2, may be detected with a primer pair direct to sense and anti-sense strands of Clostridium perfringens cpb2 gene, having a nucleic acid sequence as given in any of GenBank Accession Nos.: KF155292, GU581185, GU581184, GU581183, GU581182, GU581181, GU581180, GU581179, GU581177, GU581176, HQ853338, HQ853337, HQ853336, HQ853335, HQ853334, HQ853333, HQ853332, HQ853331, HQ853330, HQ853329, AY609177, AY609176, AY609175, AY609174, AY609172, AY609171, AY609170, AY609169, AY609168, AY609167, AY609166, AY609165, AY609163, AY609162, AY609161, GU581178, EU260099, AY730636, AY730635, AY730634, AY730633, AY730632, AY730631, AY730630, EF076030, EF076029, EF076028, AY297455, KJ874348, AY609183, AY609182, AY609181, AY609180, AY609179, AY609178, AY609173, AY609164, AY884041, AY884040, AY884039, AY884038, AY884037, AY884036, AY884035, DQ525205 and L77965. In a particular embodiment, the pair of primers is AGATTTTAAATATGATCCTAACC and CAATACCCTTCACCAAATACTC. In another example, the pair of primers produces a polymerase chain product of 548 bp.
- In another embodiment of the invention, the Clostridium perfringens beta-toxin gene, cpb, comprises a nucleic acid sequence as given in any of GenBank Accession Nos.: KP064410, KP064409, KP064408, KP064407, KP064406, KP064405, KP064404, GU054492, HQ424445, X83275 and KP768395.
- In yet another embodiment, the beta2-toxin-gene-positive Clostridium perfringens found in the gut of the subject includes a Clostridium perfringens alpha-toxin gene. In another embodiment, the beta2-toxin-gene-positive Clostridium perfringens found in the gut of the subject does not include a Clostridium perfringens alpha-toxin gene, a Clostridium perfringens beta-toxin gene, a Clostridium perfringens epsilon-toxin gene, a Clostridium perfringens iota-toxin gene or a combination thereof. In yet a further embodiment, the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject comprises a Clostridium perfringens alpha-toxin gene but is free of a Clostridium perfringens beta-toxin gene, epsilon-toxin gene and iota-toxin gene. In an additional embodiment, the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject is free of a Clostridium perfringens alpha-toxin gene, beta-toxin gene, epsilon-toxin gene and iota-toxin gene.
- Additionally, in one embodiment of the invention, the beta2-toxin-gene-positive Clostridium perfringens produces Clostridium perfringens beta2-toxin. In one example, the beta2-toxin-gene-positive Clostridium perfringens additionally comprises Clostridium perfringens alpha-toxin gene and produces Clostridium perfringens beta2-toxin. In another example, the beta2-toxin-gene-positive Clostridium perfringens produces Clostridium perfringens alpha-toxin. In yet a further example, the beta2-toxin-gene-positive Clostridium perfringens produces a toxin that is free of Clostridium perfringens alpha-toxin. Additionally, in another example, the beta2-toxin-gene-positive Clostridium perfringens is free of Clostridium perfringens alpha-toxin, free of a Clostridium perfringens beta-toxin, free of a Clostridium perfringens epsilon-toxin, free of a Clostridium perfringens iota-toxin or a combination thereof. In an additional example, beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject produces a Clostridium perfringens beta2-toxin and alpha-toxin but is free of a Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin and Clostridium perfringens iota-toxin. In a further example, the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject produces a Clostridium perfringens beta2-toxin but is free of a Clostridium perfringens alpha-toxin, Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin and Clostridium perfringens iota-toxin. In another example, the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject is free of a Clostridium perfringens beta2-toxin, Clostridium per alpha-toxin, Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin and Clostridium perfringens iota-toxin. In a further example, the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject produces a toxin other than a Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin and Clostridium perfringens iota-toxin.
- In accordance with the practice of the invention, in the composition of the invention, one or more agent(s) includes any of an antimicrobial, a bacteriophage, a probiotic, a probiotic group, a prebiotic or a vaccine which would lead to production of an anti-toxin against a toxin produced by the beta2-toxin-gene-positive Clostridium perfringens in the gut of the autistic subject. For example, the agent may be a polypeptide, a nucleic acid or a small molecule which inhibits the transcription of Clostridium perfringens beta2-toxin gene, destabilizes a beta2-toxin RNA, inhibits the translation of Clostridium perfringens beta2-toxin mRNA transcript, or decreases the half-life of a Clostridium perfringens beta2-toxin protein.
- Suitable examples of agents to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens include, but are not limited to, ABT-773, ampicillin, sulbactam, amphomycin, azithromycin, bacitracin, carboxmycin, cephlosporins, clarithromycin, erythromycin, furazolidone, nitrofuran, fusidic acid, sodium fusidate, gramicidin, a penem, imipenem, josamycin, linezolid, oxazolidinone, a macrolide, metronidazole, nitroimidazole, mikamycin, minocycline, novobiocin, oleandomycin, triacetyloleandomycin, ostreogrycin, piperacillin, tazobactam, pristinamycin, ramoplanin, ristocetin, rosamicin, rosaramicin, spectinomycin, spiramycin, streptogramin, synergistin, teicoplanin, telithromycin, ticarcillin, clavulanic acid, tyrocidin, tyrothricin, vancomycin, vernamycin, and virginiamycin. Such an agent to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens may be administered singly or in a combination with other agents, concurrently or sequentially, and by any suitable route.
- Suitable examples of antimicrobial agents include, but are not limited to, ABT-773, ampicillin, sulbactam, amphomycin, azithromycin, bacitracin, carboxmycin, cephlosporins, clarithromycin, erythromycin, furazolidone, nitrofuran, fusidic acid, sodium fusidate, gramicidin, a penem, imipenem, josamycin, linezolid, oxazolidinone, a macrolide, metronidazole, nitroimidazole, mikamycin, minocycline, novobiocin, oleandomycin, triacetyloleandomycin, ostreogrycin, piperacillin, tazobactam, pristinamycin, ramoplanin, ristocetin, rosamicin, rosaramicin, spectinomycin, spiramycin, streptogramin, synergistin, teicoplanin, telithromycin, ticarcillin, clavulanic acid, tyrocidin, tyrothricin, vancomycin, vernamycin, and virginiamycin. Such an antimicrobial agent may be administered singly or in a combination with other agents, concurrently or sequentially, and by any suitable route.
- Suitable examples of a probiotic or the probiotic agent include, but are not limited to, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides distasonis, Bacteroides fragilis, Bifidobacterium adolescentis group, Eubacterium aerofaciens, Clostridium ramosum, Escherichia coli, Streptococcus faecalis group, Lactobacillus spp., L. acidophilus, gram-negative anaerobes, enterococci, Bacteroides sp., Parabacteroides, Prevotella, Porphyromonas, gram-positive anaerobic cocci, Clostridium sp., Enterobacteriaceae, E. coli, L. bulgaricus, S. thermophilus, Collinsella genus, Bifidobacterium genus, Bifidobacterium longum, Bifidobacterium angulatum, Dialister invisus, Clostridium leptum, Firmicutes, Actinobacteria, Faecalibacterium, Ruminococcus, Eubacterium, Alistipes, Roseburia, Anaerofilum, Streptococcus, Turicibacter, Parabacteroides, Dorea, Veillonella, Akkermansia, Sporobacter, Ethanoligenens, Papillibacter, Holdemania, Weissella, Dialister, Pseudoramibacter, Streptococcus, Anaerovorax, Lactococcus, Leuconostoc, Ethanoligenens, Helcococcus, Alkaliphilus, Clostridium bolteae, Clostridium methylpentosum, Eubacterium ruminantium, Phascolarctobacterium faecium, Alistipes species, Bifidobacterium species, Lactobacillus species, and Bacteroides caccae. Such a probiotic or the probiotic agent may be administered singly or in a combination with other agents, concurrently or sequentially, and by any suitable route.
- Examples of a prebiotic include, but are not limited to, trans-galactooligosaccharide, inulin, Larch arabinogalactan, resistant starch, pectin, beta-glucans, xylooligosaccharides, and a combination thereof. In one embodiment, the prebiotic promotes the growth of gut-colonizing bacteria that compete with the beta2-toxin-gene-positive Clostridium perfringens or inhibits the growth of the beta2-toxin-gene-positive Clostridium perfringens. In one embodiment, the Clostridium sp. is free of beta2-toxin-gene-positive Clostridium perfringens of. In one embodiment, the prebiotic promotes the growth of Bifidobacterium species, Lactobacillus species, Akkermansia, or a combination thereof. A discussion of prebiotics may be found in the following references which are incorporated in their entirety: Gibson G R and Roberfroid M G (1995) J Nutr. 125 (6): 1401-1412; Roberfroid M B (2007) J Nutr. 137 (3 Suppl 2): 830S-7S; Kelly G S (1999) Alternative Medicine Review 4 (2): 96-103; Zaman et al. (2015) Critical Reviews in Biotechnology: 1-7; Gomez et al. (2014) Journal of Agricultural and Food Chemistry 62 (40): 9769-9782; Arena et al. (2014) International Journal of Molecular Sciences 15 (2): 3025-3039; and Jain et al. (2015) Indian Journal of Experimental Biology 53 (3): 131-142.
- An example of an anti-toxin agent includes, but is not limited to, an antibody against a toxin.
- In one embodiment, the antibody is an antibody against Clostridium perfringens beta2-toxin, a fragment of Clostridium perfringens beta2-toxin, Clostridium perfringens alpha-toxin, a fragment of Clostridium perfringens alpha-toxin or a combination thereof. Antibodies Clostridium perfringens beta2-toxin are commercially available and well known (J. Zeng et al. Journal of Immunology Research, volume 2016, Article ID 570868; Novus Biologicals). Antibodies Clostridium perfringens alpha-toxin are commercially available and well known (H. Saito, et al., FEMS Microbiology Letters (1989), 59:173-176; US Biological).
- In another embodiment, the antibody is an antibody against a toxin from a beta2-toxin-gene-positive Clostridium perfringens wherein the toxin is not Clostridium per beta2-toxin or its fragment, Clostridium perfringens alpha-toxin or its fragment, Clostridium perfringens beta-toxin or its fragment, Clostridium perfringens epsilon-toxin or its fragment, or Clostridium perfringens iota-toxin or its fragment.
- For example, the antibody may be a neutralizing antibody or an inhibitory antibody.
- In one embodiment, the antibody is a polyclonal antibody, a monoclonal antibody, an antigen-binding fragment of an antibody or a bispecific antibody.
- In a further embodiment, the antigen-binding fragment of an antibody comprises a Fab antibody fragment, a F(ab′)2 antibody fragment, a Fv antibody fragment or a single chain variable fragment (scFv).
- Suitable examples of toxins include, but are not limited to, Clostridium perfringens beta2-toxin and Clostridium perfringens alpha-toxin.
- In one embodiment, the vaccine comprises Clostridium perfringens beta2-toxin, a fragment of Clostridium perfringens beta2-toxin, Clostridium perfringens alpha-toxin, a fragment of Clostridium perfringens alpha-toxin or a combination thereof.
- In another embodiment, the vaccine is free of Clostridium perfringens beta-toxin, a fragment of Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin, a fragment of Clostridium perfringens epsilon-toxin, Clostridium perfringens iota-toxin, a fragment of Clostridium per iota-toxin or a combination thereof.
- In another embodiment, the vaccine comprises a toxin or a fragment thereof produced by the beta2-toxin-gene-positive Clostridium perfringens wherein the toxin is not Clostridium perfringens beta2-toxin or its fragment, Clostridium perfringens alpha-toxin or its fragment, Clostridium perfringens beta-toxin or its fragment, Clostridium perfringens epsilon-toxin or its fragment, or Clostridium perfringens iota-toxin or its fragment.
- A suitable example of a vaccine is one that leads to the production of an antibody against Clostridium perfringens beta2-toxin or Clostridium perfringens alpha-toxin or a combination thereof. For example, the antibody may be free of an antibody against Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin or Clostridium perfringens iota-toxin or a combination thereof. In a separate embodiment, the vaccine leads to the production of an antibody against a toxin produced by the beta2-toxin-gene-positive Clostridium perfringens wherein the toxin is not Clostridium perfringens beta2-toxin, Clostridium perfringens alpha-toxin, Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin or Clostridium perfringens iota-toxin.
- Suitable examples of agents that reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens include, but are not limited to, an antibody, a lectin, a protease, or a protein, peptide, carbohydrate or small molecule that interacts with beta2-toxin of Clostridium perfringens. In one embodiment, the antibody is an anti-beta2-toxin antibody. In another embodiment, the antibody inhibits activity, decreases stability or alters localization of beta2-toxin of Clostridium perfringens. Additionally, examples of a protein, peptide, carbohydrate or small molecule that interact with beta2-toxin are those that inhibit formation of a functional toxin, prevent post-translational modification, prevent protein assembly, prevent formation of a potential pore-forming complex, prevent association with chaperone protein, accessory protein or receptor, promote degradation of said toxin, mis-localize said beta2-toxin, inhibit expression of said beta2-toxin or stabilize beta2-toxin with a natural inhibitor to Clostridium perfringens beta2-toxin so as to maintain an inactive state of the Clostridium perfringens beta2-toxin. Merely by way of example, the natural inhibitor may be an inhibitor to Clostridium perfringens beta2-toxin present in fecal material or sample. In another example, the protein, peptide, carbohydrate or small molecule are those that prevent normal folding or assembly of the beta2-toxin, prevent insertion of the beta2-toxin into a cell membrane, prevent interaction with other toxin subunits and prevent its function as a pore-forming toxin.
- In one embodiment, an agent that reduces or eliminates beta2-toxin-gene-positive Clostridium perfringens may be a bacteriophage. The bacteriophage may be virulent for Clostridium perfringens. In one embodiment, examples of bacteriophages virulent for Clostridium perfringens include, but are not limited to, bacteriophages from the Siphoviridae family and Podoviridae family. Suitable members of the Siphoviridae family virulent for Clostridium perfringens and may be used in a bacteriophage or phage therapy to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens or beta-toxin-gene-related toxin-gene-positive Clostridium perfringens include ΦCP39O and ΦCP26F (Seal et al., Arch. Virol. 2011; 156:25-35 [PubMed: 20963614]). Suitable members of the Podoviridae family virulent for Clostridium perfringens and may be used in a bacteriophage or phage therapy to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens include ΦCPV1 (Volozhantsev et al., Virus Res. 2011; 155:433-439 [PubMed: 21144870]), ΦCP24R (Morales et al., Arch. Virol. 2012; 157:769-772 [PubMed: 22218967]), ΦCPV4, ΦZP2, and ΦCP7R (Volozhantsev et al., PLoS ONE. 2012; 7:e38283 [PubMed: 22666499]. Use of bacteriophages virulent for Clostridium perfringens and its gene products to control animal and human diseases without having deleterious effects on beneficial probiotic bacteria are discussed in Seal el al., Poult Sci. 2013; 92(2): 526-533, whose reference is incorporated in its entirety. An agent to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens may be administered singly or in a combination with other agents, concurrently or sequentially, and by any suitable route.
- The invention further provides methods of identifying an autistic subject whose autism may be alleviated by a course of treatment directed against an overgrowth of beta2-toxin-positive Clostridium perfringens so as to reduce or eliminate the overgrowth. In one embodiment, the method comprises (a) determining existence of said overgrowth in the autistic subject, thereby identifying the autistic subject whose autism may be alleviated by a course of treatment directed against the overgrowth of beta2-toxin-positive Clostridium perfringens.
- In another embodiment, the overgrowth of Clostridium perfringens comprises an overgrowth of beta2-toxin-positive Clostridium perfringens.
- In another further embodiment, the overgrowth of Clostridium perfringens is an overgrowth of beta2-toxin-positive Clostridium perfringens.
- In one embodiment, the step of determining the existence of said overgrowth in the autistic subject comprises (a) detecting presence of beta2-toxin-positive Clostridium perfringens in a sample from the subject; (b) quantifying the amount of beta2-toxin-positive Clostridium perfringens in the sample; (c) comparing the value in (b) with a value for the amount of beta2-toxin-positive Clostridium perfringens in non-autistic subject or subjects; and (d) finding that the value of (b) is greater than the value from non-autistic subject or subjects. In one embodiment, the value of (b) being greater than the value from non-autistic subject or subjects is a statistically significant difference. The Clostridium perfringens may include a vegetative cell, spore or combination thereof.
- In another embodiment of the invention, the method comprises (a) determining existence of said overgrowth in the autistic subject, thereby identifying the autistic subject whose autism may be alleviated by a course of treatment directed against the overgrowth of beta2-toxin-producing Clostridium perfringens. Further, in one embodiment, the step of determining existence of said overgrowth in the autistic subject comprises (a) detecting presence of beta2-toxin-positive Clostridium perfringens in a sample from the subject; (b) quantifying the activity of Clostridium perfringens beta2-toxin in a sample from the subject; (c) comparing the value in (b) with a value for the activity of Clostridium perfringens beta2-toxin in a sample or samples from non-autistic subject or subjects; and (d) finding that the value of (b) is greater than the value of sample or samples from non-autistic subject or subjects.
- In yet a further embodiment, the method comprises the step of determining the presence of said beta2-toxin in the autistic subject, thereby, identifying the autistic subject whose autism may be alleviated by a course of treatment directed against beta2-toxin of Clostridium perfringens. The method further comprises (b) quantifying activity of beta2-toxin; (c) comparing a value obtained in (b) against a threshold value; and (d) finding greater activity of beta2-toxin in the autistic subject. In one embodiment, the Clostridium perfringens comprises a vegetative cell. In an embodiment of the invention, the fecal material of the autistic subject is used to determine said overgrowth. In yet another embodiment, the fecal material of the autistic subject is used to determine presence of beta2-toxin of Clostridium perfringens. In an additional embodiment, the presence of beta2-toxin of Clostridium perfringens is determined by detecting the presence of nucleic acid encoding beta2-toxin of Clostridium perfringens or presence of polypeptide for beta2-toxin of Clostridium perfringens. In an additional embodiment, the presence of beta2-toxin of Clostridium perfringens is determined by determining the activity of beta2-toxin of Clostridium perfringens.
- The invention further provides methods of screening autistic subjects whose autism may be alleviated by a course of treatment directed against beta2-toxin of Clostridium perfringens by identifying the subject by any of the methods of the invention.
- The invention additionally provides methods for monitoring the course of autism in an autistic subject by identifying the subject by any of the methods of the invention and quantitatively determining a level of overgrowth of Clostridium perfringens, overgrowth of beta2-toxin-gene-positive Clostridium perfringens, activity of Clostridium perfringens beta2-toxin from a biological sample from the subject at one time point and comparing a value so determined with the value determined from in a second sample from the subject, such samples being taken at different points in time, a difference in the values determined being indicative of the course of the autistic condition.
- In one embodiment, a decrease in the overgrowth of Clostridium perfringens, overgrowth of beta2-toxin-gene-positive Clostridium perfringens, activity of Clostridium perfringens beta2-toxin is indicative or predictive of reducing severity or duration of one or more symptoms associated with austism.
- In another embodiment, an increase in the overgrowth of Clostridium perfringens, overgrowth of beta2-toxin-gene-positive Clostridium perfringens, activity of Clostridium perfringens beta2-toxin is indicative or predictive of reducing severity or duration of one or more symptoms associated with austism.
- In another embodiment, one or more symptoms associated with autism is any of early onset autism, late stage autism or regressive autism.
- In a further embodiment, a method of treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject comprising: a) determining existence of an overgrowth of Clostridium perfringens positive for beta2-toxin gene in a sample from the subject; and (b) administering to the subject one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism; thereby, treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the autistic subject. In one embodiment, an antimicrobial used to treat autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens so as to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens should have certain characteristics for optimal benefit and minimal side effects. Certain antimicrobials have characteristics appropriate to treat even very young children, and such drugs are useful to treat disorders having the gut-brain involvement. Preferably, an antimicrobial selected as a therapy will have one or more of the following properties:
- 1) Good in vitro activity against beta2-toxin-gene-positive Clostridium perfringens;
- 2) Relatively poor activity against most other organisms normally found in the gut flora;
- 3) Safe doses capable of achieving a concentration in the colon or elsewhere in the GI tract where the offending organism proliferates exceeding the minimal inhibitory concentration or minimal bactericidal concentration of the drug by at least four or five-fold concentrations;
- 4) Preferably absorbed very little or not at all when given orally (to minimize systemic effects);
- 5) Bactericidal activity preferred (rather than purely inhibitory activity);
- 6) Not cross-resistant with vancomycin or other drugs that are important for treatment of systemic infections;
- 7) Resistance does not develop readily (i.e., the drug does not readily engender resistance in bacteria);
- 8) Palatable in liquid form when taken orally (for administration to children), or readily formulated into other oral doses (to enhance patient compliance);
- 9) Well tolerated orally over extended period of time (preferably at least 3-4 months);
- 10) Little or no toxicity, either systemically or in the bowel;
- 11) Preferably effective when given only once or twice daily; and
- 12) Preferably moderate in price.
- Drugs that have one or more of the above characteristics may have utility for antimicrobial therapy in treating neurological disorders with gut flora etiology, such as those associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens.
- Appropriate doses of the antimicrobials (as given above) are within the range given for many other conditions for which the antimicrobials are prescribed. Dosage information can be found, for example, in the Physicians' Desk Reference, 54th edition, Medical Economics Company, Montvale, N.J. (2000 or subsequent editions). In certain instances, the doses may be elevated to the extent necessary to maintain a bactericidal or bacteriostatic concentration throughout the gastrointestinal tract. The antimicrobials are preferably formulated for oral administration, such as in liquid form, tablet, capsule, granules, chewable, etc. Tablets or capsules may be enterically coated to minimize gastric absorption of the drug when the pH of the stomach is high or emptying is slow due to certain drugs or diseases, the stomach can be colonized with many bacteria.
- The antimicrobials can be administered as known in the art. It is desirable to select a route of administration that is most effective for the therapy, examples thereof being oral administration or parenteral administration such as intravenous administration with subsequent excretion into the bowel.
- A preferred compound for treating Clostridium overgrowth in the gut is ramoplanin, also known as A-16686 (see, e.g., U.S. Pat. Nos. 4,303,646; 4,328,316; 4,427,656; 5,539,087; and 5,925,550; and Parenti et al.; Drugs Exp Clin Res 16(9):451-5 (1990); all herein incorporated by reference). This antibiotic is not cross-resistant with vancomycin, it engenders very little to no resistance in bacteria, is not detectably absorbed systemically in humans (making it exceptionally safe, even for young children), can be made palatable in a liquid form, achieves high concentrations in the large intestine, has very good activity against clostridia, can be given twice a day, and is primarily active against gram positive organisms at the dosage levels administered. Ramoplanin is preferable to drugs such as vancomycin and metronidazole, which have previously been used, because, for example, vancomycin, while achieving a high concentration in the intestines throughout, is effective against Bacteroides, a beneficial genus of gut flora, as well as clostridial species. In a special formulation it is also a potent antibiotic against, e.g., systemic methicillin-resistant Staphylococcus infections, and widespread use for other purposes risks inducing vancomycin-resistant Staphylococcus or other species. Metronidazole, on the other hand, is not an ideal candidate because of its ready systemic absorption, which can lead to neurotoxic side effects when given in high enough concentrations to remain effective in the gut, and the fact that it is quite bitter and thus difficult to formulate as a liquid for oral use.
- When using antimicrobial in treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens, it is desirable to minimize the extent of normal bacterial flora disruption of the gut during antimicrobial treatment. As such, it is highly desirable to tailor an antimicrobial therapy as specifically as possible against beta2-toxin-gene-positive Clostridium perfringens.
- When using a probiotic or probiotic agent to treat autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens, dosage (colony forming units (cfu) of each bacterium) is preferably at least the number found in the mean count/gram, and is supplied to the patient daily or twice daily for a number of days until it is determined that the bacteria have become established. The formulation can be provided as active cells or spores. It can be provided in an enterically coated form (e.g., for active cells) to protect sensitive cells from the gastric environment. A preferred therapy involves temporary elimination or suppression of the patient's flora (primarily or entirely with the use of antimicrobial agents, preferably directed specifically against beta2-toxin-gene-positive Clostridium perfringens) and introduction of a new, non-pathogenic flora that consists of a number of bacteria normally found in the bowel that convey colonization resistance (to prevent regrowth or re-implantation of the offending bacteria). Therapies are preferably patterned after those described in the poultry literature, for example, Wooley et al., Avian Dis. 43(2):245-50, (1999); Hume et al., J. Food Prot. 61(6):673-6 (1998); Cornier et al., J. Food Prot. 61(7):796-801 (1998); Hume et al., Avian Dis. 40(2):391-7 (1996); Cornier et al., Poult Sci. 74(7):1093-101 (1995); and Cornier et al., Poult Sci. 74(6):916-24 (1995), all herein incorporated by reference.
- Alternatively, bacteriophage specific for the bacterium producing the toxin can be introduced to the patient's gastrointestinal tract to reduce or kill the toxin-producing bacteria, and probiotic therapy mixtures can be concurrently or subsequently administered. An example of a successful protocol involving this strategy with Clostridium difficile can be found in Ramesh et al., Anaerobe 5:69-78 (1999), herein incorporated by reference. Bacteriophage may be susceptible to gastric acidity and such acidity should be neutralized prior to phage administration, or else the bacteriophage can be administered in an enterically coated tablet or capsule.
- Probiotic therapy can be used in conjunction with antimicrobials used to treat infections in otherwise normal patients (i.e., before the onset of aneurological disorder) in order to prevent or reduce the risk of the occurrence of a neurological disorder. Alternatively, it can be used in conjunction with antimicrobials being used to reduce, eliminate or inhibit the beta2-toxin-gene-positive Clostridium perfringens species overgrown in a patient's gastrointestinal tract, and to promote the re-emergence of normal gut flora. In one embodiment, probiotic therapy may take the form of a fecal therapy using fecal material obtained from a normal subject without autism or GI abnormality and this fecal material is administered to an autistic subject with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens alone or in combination with an antimicrobial, a different probiotic, a different probiotic group, a prebiotic, a bacteriophage or a vaccine.
- The following Examples are intended to be illustrative rather than encompassing.
- We studied stool specimens from 33 autistic children aged 2-9 years with GI abnormalities and 13 control children without autism and without GI symptoms (
FIG. 1 ). We performed quantitative comparison of overall Clostridium species, C. perfringens strains from the fecal microflora of autistic and control children by conventional, selective anaerobic culture methods. We performed PCR analysis for main C. perfringens toxins. - Clostridium Culture.
- This study used previously processed and homogenized stool specimens stored frozen at −80° C. Aliquots of the homogenized specimens were diluted 1:10 in pre-reduced thioglycollate broth (Anaerobe Systems, Morgan Hill, Calif.). For the selective isolation of Clostridium, these diluted aliquots of the stool specimens were processed two ways, utilizing ethanol and heat treatments, to select spores. For ethanol treatment, a 1 ml aliquot was incubated with 100% ethanol for 10 minutes. For heat treatment, the rest of the thioglycollate tube was incubated at 80° C. for 10 min. Subsequently, 10-fold serial dilutions were plated (100 μl/plate) onto Brucella and CDC agar plates (Anaerobe Systems) from both preparations. The plates were incubated under anaerobic conditions at 37° C. for 72 h before initial inspection and re-incubated up to 7 days (8). Anaerobic conditions consisted of a gas mixture of 5% CO2, 5% H2, and 90% N2; the residual oxygen was removed by palladium catalysts. Clostridium colonies were counted and the counts were adjusted to dry weight of stool. Similarly, characteristic C. perfringens colony types were counted and the counts were adjusted to dry weight of stool. Single C. perfringens colonies were selected, described and subcultured on Brucella agar and incubated for 48 h., as described above. Additionally, as a back-up enrichment culture, the heat-treated thioglycollate tubes were incubated at 37° C. for 72 h and then let stand at room temperature for one week before subculturing.
- Reference Strains.
- C. perfringens reference strains ATCC 3626 and ATCC 14809 were obtained from the American Type Culture Collection (ATCC). The strains were grown 48 h on Brucella agar and processed as described below.
- DNA Extraction.
- For PCR analysis of C. perfringens, several single colonies obtained after 48 h cultivation on Brucella agar were inoculated into 250 μl nuclease-free water and boiled for 20 min to lyse the cells. After centrifugation at 13000 g for 5 min at room temperature, the supernatant fluid was removed and used in the PCR reaction.
- Toxin PCR.
- PCR assay to detect the genes for C. perfringens a-toxin (cpa), b-toxin (cpb), b2-toxin (cpb2), i-toxin (iA), and enterotoxin (cpe) was performed using primer pairs as shown in Table 1. The C. perfringens strains were typed utilizing methods as previously described (9, 10) with the exception that instead of multiplex PCR, single PCR's were performed with each primer pair. The PCR conditions were as follows: DNA was denatured for 2 min at 95° C. and amplified for 35 cycles (1 min at 94° C., 1 min at 55° C., 1 min at 72° C. for denaturation, annealing and extension phases, respectively), followed by an additional period of extension for 10 min at 72° C. PCR products were separated by electrophoresis in a 2% (w/v) agarose gel stained with ethidium bromide. Amplified bands were visualized and photographed under UV illumination.
- Verification of PCR Products.
- Verification of the PCR products was done by DNA sequencing of purified PCR product. The PCR products were excised from an agarose gel and purified using the QIAquick gel extraction kit (Qiagen, Valencia, Calif.). The purified PCR products were sequenced directly with a Biotech Diagnostic Big Dye sequencing kit (Biotech Diagnostics, CA) on an ABI 3130 Avant sequencer (Applied Biosystems, Foster City, Calif.). The sequencing data were analyzed by comparison of the consensus sequences with GenBank sequences by using Ribosomal Database Project (RDP-II) (Michigan State University, East Lansing) (11), and Basic Local Alignment Search Tool (BLAST) (12). Analyses of the sequences were performed by comparing with the sequences of the type strains retrieved from GenBank by using the program Clustal W (13).
- We performed quantitative, selective anaerobic culture from stool specimens of 33 autistic children and 13 control children (7) (Table 2). Overall, the mean colony-forming unit (CFU) Clostridium cell count obtained from stool samples of the autistic children was 9.2×107 cfu/g dry weight, and 4.73×107 cfu/g dry weight from normal control children. 30/33 and 10/13 autism and control samples, respectively, yielded C. perfringens. The mean colony forming unit (CFU) C. perfringens cell count obtained from stool samples of the autistic children was 2.12×105 cfu/g dry weight, and 1.7×104 cfu/g dry weight from normal control children. Altogether, we isolated 111 different C. perfringens strains (based on colony morphology) from the autism samples and 23 from the control samples. The PCR analysis (8) for clostridial toxins of these C. perfringens isolates (
FIG. 3 ) revealed that autism samples had statistically significantly (p=0.014) higher incidence of C. perfringens beta2-toxin (Table 2). The mean CFU of beta2-toxin-producing C. perfringens cell count obtained from stool samples of the autistic children was 6.55×104 cfu/g dry weight, and 1.48×103 cfu/g dry weight from normal control children. C. perfringens CFU/g and the CFU/g of beta2-toxin-producing C. perfringens were moderately, positively correlated (Spearman corr==0.7125) (FIG. 2 ). - C. perfringens beta2-toxin was first studied and described in 1997 by Popoff's group (5). Initially it was found in enteric disease in animals (piglets, horses) and in food. Subsequently, it was found in other animals and in soil, and finally in humans. C. perfringens isolates carrying beta2-toxin have been described in human gastrointestinal diseases, including food poisoning, antibiotic-associated diarrhea (AAD) and sporadic diarrhea (SD). Altogether, 24% (7/29) isolates from humans with food poisoning were shown to produce beta2-toxin; whereas, 76% (34/46) isolates from humans suffering with either AAD or SD were beta2-toxin positive (15). Thirty-four of these AAD- and SD-isolates produced beta2-toxin in vitro, whereas only one food poisoning isolate produced the toxin in vitro. From the one healthy person tested, a beta2-toxin-harboring C. perfringens was also isolated and was capable of producing the beta2-toxin in vitro (15). Another study characterizing C. perfringens isolates of SD patients demonstrated the presence of beta2-toxin in 87% (12/14) isolates; ten of these isolates produced the beta2-toxin in vitro (16). In a study of fecal samples of 43 healthy North Americans, 13 (30%) people had beta2-toxin-harboring C. perfringens (17).
- Our findings suggest that the involvement of beta2-toxin in autism is remarkable, with 79% of the 33 autism patients showing its presence in feces, compared to 38% of the 13 control subjects. Our results are similar to reports where subjects with AAD and SD were shown to harbor 76-87% of beta2-toxin producing C. perfringens (15, 16), and normal healthy subjects 30% (17).
- We have not seen this high incidence with any of the other bacteria that we have described as having involvement in autism.
-
TABLE 1 Primers for PCR detection of Clostridium perfringens toxin genes cpa, cpb, cpb2, etx, iA and cpe Forward primer Reverse primer Size Ref. cpa GCTAATGTTACTGCCGTTGA CCTCTGATACATCGTGTAAG 324 9 cpb GCGAATATGCTGAATCATCTA GCAGGAACATTAGTATATCTTC 196 9 cpb2 AGATTTTAAATATGATCCTAACC CAATACCCTTCACCAAATACTC 548 10 cpe GGAGATGGTTGGATATTAGG GGACCAGCAGTTGTAGATA 233 9 cpetx TGGGAACTTCGATACAAGCA AACTGCACTATAATTTCCTTTTC 655 9 C cpia ACTACTCTCAGACAAGACAG CTTTCCTTCTATTACTATACG 446 9 -
TABLE 2 Clostridium perfringens mean counts (CFU/g) and toxin typing of isolates from fecal specimens of autistic and control children CFU/g Specimens Beta2- Number of positive specimens C. perfringens Toxin-positive Beta2- Total isolated Clostridium C. perfringens C. perfringens Toxin CPE Alpha Beta Epsilon Iota Autism 33 30 9.20E+07 2.12E+05 6.55E+04 26/33 3/33 30 0 0 0 (79%) (9%) Control 13 10 4.73E+07 1.70E+04 1.48E+03 5/13 1/13 10 0 0 0 (38%) (8%) p-value 0.17{circumflex over ( )} 0.031{circumflex over ( )} 0.0028{circumflex over ( )} 0.014* 0.015{circumflex over ( )}{circumflex over ( )} {circumflex over ( )}t-test; {circumflex over ( )}{circumflex over ( )}Wilcoxon t-test *2-tail Fisher exact test -
- 1. Sandler R H, Finegold S M, Bolte E R, Buchanan C P, Maxwell A P, Vaisanen M L, Nelson M N, Wexler H M. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 2000; 15:429-435.
- 2. Finegold S M, Molitoris D, Song Y, Liu C, Väisänen M-L, Bolte E, McTeague M, Sandler R, Wexler H, Marlowe E M, Collins M D, Lawson P A, Summanen P, Baysallar M, Tomzynski T J, Read E, Johnson E, Rolfe R, Nasir P, Shah H, Haake D A, Manning P, Kaul A. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 2002; 35 (Suppl.1):S6-S16.
- 3. Finegold S M. Therapy and epidemiology of autism-clostridial spores as key elements. Medical hypotheses 2008; 70:508-511.
- 4. Song Y, Liu C, Finegold S. M. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 2004; 70:6459-6465.
- 5. Popoff M R, Poulain B. Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins 2010; 2:683-737.
- 6. Gibert M, Jolivet-Reynaud C, Popoff M R. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene. 1997 Dec. 5; 203(1):65-73.
- 7. Fisher D J. Clostridium perfringens beta2 toxin: a potential accessory toxin in gastrointestinal diseases of humans and domestic animals. Theses. 2006. University of Pittsburgh.
- 8. Jousimies-Somer H R, Summanen P, Citron D, Baron E, Wexler H M, Finegold S. M. Wadsworth-KTL Anaerobic Bacteriology Manual, 6th Edit, Belmont, Calif.: Star Publishing, 2002.
- 9. Meer R R, Songer J G. Multiplex polymerase chain reaction assay for genotyping Clostridium perfringens. Am J Vet Res. 1997 July; 58(7):702-5.
- 10. Garmory H S, Chanter N, French N P, Bueschel D, Songer J G, Titball R W. Occurrence of Clostridium perfringens b2-toxin amongst animals, determined using genotyping and subtyping PCR assays. Epidemiol. Infect. 2000; 124, 61-67.
- 11. Maidak B L, Cole J R, Lilburn T G, Parker C T, Saxman P R, Farris R J, Garrity G M, Olsen G J, Schmidt T M, Tiedje J M. The RDP-II (Ribosomal Database Project). Nucleic Acid Res 2001; 29:173-174.
- 12. Benson D A, Kars I, Lipman D J, Ostell J, Rapp B A, Wheeler D L. GenBank. Nucleic Acid Res 2002; 30:17-20.
- 13. Higgins D, Thompson J, Gibson T, Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weigh matrix choice. Nucleic Acid Res 1994; 22:4673-4680.
- 14. Rumah K R, Linden J, Fischetti V A, Vartanian T. (2013). Isolation of Clostridium perfringens Type B in an Individual at First Clinical Presentation of Multiple Sclerosis Provides Clues for Environmental Triggers of the Disease. Plos One, 8, e76359.
- 15. Fisher D J, Miyamoto K, Harrison B, Akimoto S, Sarker M R, McCLane B A. Association of beta2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Molecular Microbiology 2005; 56:747-762.
- 16. Harrison B, Raju D, Garmory H S, Brett M M, Titball R W, Sarker M R. Molecular characterization of Clostridium perfringens isolates from humans with sporadic diarrhea: evidence for transcriptional regulation of the beta2-toxin-encoding gene. Applied and Environmental Microbiology 2005; 71: 8362-8370.
- 17. Carman, R. J., Sayeed, S., Li, J., Genheimer, C. W., Hilton-Smith, M. F., Wikins, T. D., McClane, B. A., 2008. Clostridium perfringens toxin genotypes in the feces of healthy North Americans. Anaerobe 2008; 14:102-108.
Claims (33)
1. A method of treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject comprising administering to the subject having an overgrowth of Clostridium perfringens positive for beta2-toxin gene one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism; thereby, treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the autistic subject.
2. The method of claim 1 , wherein the overgrowth of beta2-toxin-gene-positive Clostridium perfringens is an overrepresentation or excess of beta2-toxin-gene-positive Clostridium perfringens vegetative cells, spores or a combination thereof, in the gut of the autistic subject.
3. The method of claim 2 , wherein the overgrowth of beta2-toxin-gene-positive Clostridium perfringens is detected as an overrepresentation or excess of Clostridium perfringens vegetative cells, Clostridium perfringens spores or combination thereof, in the feces of an autistic subject compared to a control subject or population of control subjects.
4. The method of claim 1 , wherein the control subject or population of control subjects has about 1.5×103 colony forming units of beta2-toxin-gene-positive Clostridium perfringens per gram dry weight of fecal specimen.
5. (canceled)
6. (canceled)
7. The method of claim 1 , wherein the overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject is positively correlated with an overgrowth of Clostridium perfringens.
8. The method of claim 7 , wherein the overgrowth of Clostridium perfringens results in at least a 3-fold increase in Clostridium perfringens colony forming units in the autistic subject over a control subject or a population of control subjects.
9.-17. (canceled)
18. The method of claim 1 , wherein the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject additionally comprises a Clostridium perfringens alpha-toxin gene.
19. The method of claim 1 , wherein the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject is free of a Clostridium perfringens alpha-toxin gene.
20.-32. (canceled)
33. The method of claim 1 , wherein the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject produces a Clostridium perfringens beta2-toxin and alpha-toxin but is free of a Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin and Clostridium perfringens iota-toxin.
34. The method of claim 1 , wherein the beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject produces a Clostridium perfringens beta2-toxin but is free of a Clostridium perfringens alpha-toxin, Clostridium perfringens beta-toxin, Clostridium perfringens epsilon-toxin and Clostridium perfringens iota-toxin.
35. (canceled)
36. (canceled)
37. The method of claim 1 , wherein the one or more agent(s) is an antimicrobial, a bacteriophage, a probiotic, a probiotic group, a prebiotic or a vaccine which would lead to production of an anti-toxin against a toxin produced by the beta2-toxin-gene-positive Clostridium perfringens in the gut of the autistic subject, or a combination thereof.
38. The method of claim 1 , wherein the agent to reduce or eliminate beta2-toxin-gene-positive Clostridium perfringens is selected from the group consisting of ABT-773, ampicillin, sulbactam, amphomycin, azithromycin, bacitracin, carboxmycin, cephlosporins, clarithromycin, erythromycin, furazolidone, nitrofuran, fusidic acid, sodium fusidate, gramicidin, a penem, imipenem, josamycin, linezolid, oxazolidinone, a macrolide, metronidazole, nitroimidazole, mikamycin, minocycline, novobiocin, oleandomycin, triacetyloleandomycin, ostreogrycin, piperacillin, tazobactam, pristinamycin, ramoplanin, ristocetin, rosamicin, rosaramicin, spectinomycin, spiramycin, streptogramin, synergistin, teicoplanin, telithromycin, ticarcillin, clavulanic acid, tyrocidin, tyrothricin, vancomycin, vernamycin, and virginiamycin.
39. The method of claim 37 , wherein the antimicrobial is selected from the group consisting of ABT-773, ampicillin, sulbactam, amphomycin, azithromycin, bacitracin, carboxmycin, cephlosporins, clarithromycin, erythromycin, furazolidone, nitrofuran, fusidic acid, sodium fusidate, gramicidin, a penem, imipenem, josamycin, linezolid, oxazolidinone, a macrolide, metronidazole, nitroimidazole, mikamycin, minocycline, novobiocin, oleandomycin, triacetyloleandomycin, ostreogrycin, piperacillin, tazobactam, pristinamycin, ramoplanin, ristocetin, rosamicin, rosaramicin, spectinomycin, spiramycin, streptogramin, synergistin, teicoplanin, telithromycin, ticarcillin, clavulanic acid, tyrocidin, tyrothricin, vancomycin, vernamycin, and virginiamycin.
40. The method of claim 37 , wherein the probiotic or the probiotic group is selected from the group consisting of Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides distasonis, Bacteroides fragilis, Bifidobacterium adolescentis group, Eubacterium aerofaciens, Clostridium ramosum, Escherichia coli, Streptococcus faecalis group, Lactobacillus spp., L. acidophilus, gram-negative anaerobes, enterococci, Bacteroides sp., Parabacteroides, Prevotella, Porphyromonas, gram-positive anaerobic cocci, Clostridium sp., Enterobacteriaceae, E. coli, L. bulgaricus, S. thermophilus, Collinsella genus, Bifidobacterium genus, Bifidobacterium longum, Bifidobacterium angulatum, Dialister invisus, Clostridium leptum, Firmicutes, Actinobacteria, Faecalibacterium, Ruminococcus, Eubacterium, Alistipes, Roseburia, Anaerofilum, Streptococcus, Turicibacter, Parabacteroides, Dorea, Veillonella, Akkermansia, Sporobacter, Ethanoligenens, Papillibacter, Holdemania, Weissella, Dialister, Pseudoramibacter, Streptococcus, Anaerovorax, Lactococcus, Leuconostoc, Ethanoligenens, Helcococcus, Alkaliphilus, Clostridium bolteae, Clostridium methylpentosum, Eubacterium ruminantium, Phascolarctobacterium faecium, Alistipes species, Bifidobacterium species, Lactobacillus species, and Bacteroides caccae.
41.-45. (canceled)
46. The method of claim 37 , wherein the toxin is Clostridium perfringens beta2-toxin.
47. (canceled)
48. A method of treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the gut of an autistic subject comprising: a) determining existence of an overgrowth of Clostridium perfringens positive for beta2-toxin gene in a sample from the subject; and (b) administering to the subject one or more agents to reduce or eliminate beta2-toxin-gene positive Clostridium perfringens in the subject so as to relieve one or more symptoms of autism; thereby, treating autism associated with an overgrowth of beta2-toxin-gene-positive Clostridium perfringens in the autistic subject.
49.-56. (canceled)
57. A method of identifying an autistic subject whose autism may be alleviated by a course of treatment directed against an overgrowth of Clostridium perfringens so as to reduce or eliminate the overgrowth comprising (a) determining existence of said overgrowth in the autistic subject, thereby, identifying the autistic subject whose autism may be alleviated by a course of treatment directed against the overgrowth of Clostridium perfringens.
58.-65. (canceled)
66. A method for monitoring the course of autism in an autistic subject by identifying the subject by the method of claim 57 or 58 and quantitatively determining a level of overgrowth of Clostridium perfringens, overgrowth of beta2-toxin-gene-positive Clostridium perfringens, activity of Clostridium perfringens beta2-toxin from a biological sample from the subject at one time point and comparing a value so determined with the value determined from a second sample from the subject, such samples being taken at different points in time, a difference in the values determined being indicative of the course of the autistic condition.
67. (canceled)
68. (canceled)
69. The method of claim 66 , wherein a decrease in the overgrowth of Clostridium perfringens, overgrowth of beta2-toxin-gene-positive Clostridium perfringens, activity of Clostridium perfringens beta2-toxin is indicative or predictive of reducing severity or duration of one or more symptoms associated with autism.
70. The method of claim 66 , wherein an increase in the overgrowth of Clostridium perfringens, overgrowth of beta2-toxin-gene-positive Clostridium perfringens, activity of Clostridium perfringens beta2-toxin is indicative or predictive of increasing severity or duration of one or more symptoms associated with autism.
71. (canceled)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/641,035 US20180002741A1 (en) | 2016-07-01 | 2017-07-03 | Method of diagnosis and treating gastrointestinal and neurological diseases associated with species of genus clostridium |
| US16/409,334 US11174521B2 (en) | 2016-07-01 | 2019-05-10 | Method of diagnosis and treating gastrointestinal and neurological diseases associated with species of genus Clostridium |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662357549P | 2016-07-01 | 2016-07-01 | |
| US15/641,035 US20180002741A1 (en) | 2016-07-01 | 2017-07-03 | Method of diagnosis and treating gastrointestinal and neurological diseases associated with species of genus clostridium |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/409,334 Division US11174521B2 (en) | 2016-07-01 | 2019-05-10 | Method of diagnosis and treating gastrointestinal and neurological diseases associated with species of genus Clostridium |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180002741A1 true US20180002741A1 (en) | 2018-01-04 |
Family
ID=60806168
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/641,035 Abandoned US20180002741A1 (en) | 2016-07-01 | 2017-07-03 | Method of diagnosis and treating gastrointestinal and neurological diseases associated with species of genus clostridium |
| US16/409,334 Active US11174521B2 (en) | 2016-07-01 | 2019-05-10 | Method of diagnosis and treating gastrointestinal and neurological diseases associated with species of genus Clostridium |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/409,334 Active US11174521B2 (en) | 2016-07-01 | 2019-05-10 | Method of diagnosis and treating gastrointestinal and neurological diseases associated with species of genus Clostridium |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20180002741A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109182577A (en) * | 2018-09-25 | 2019-01-11 | 深圳市英马诺生物科技有限公司 | Self-closing disease biomarker and its application |
| WO2019141780A1 (en) * | 2018-01-17 | 2019-07-25 | Consorcio Centro de Investigación Biomédica en Red, M.P. | Targeted interventions directed at reducing the levels of circulating succinate in a subject, and kits and method for determining effectiveness of said interventions |
| CN113881607A (en) * | 2021-11-17 | 2022-01-04 | 宜兴市天石饲料有限公司 | Research and development method for preventing and treating avian clostridium perfringens |
| EP3870550A4 (en) * | 2018-10-26 | 2022-11-02 | Sun Genomics Inc. | Universal method for extracting nucleic acid molecules from a diverse population of microbes |
| US11959125B2 (en) | 2016-09-15 | 2024-04-16 | Sun Genomics, Inc. | Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ZA801629B (en) | 1979-04-07 | 1981-03-25 | Lepetit Spa | Antibiotic a/16686 and process for the preparation thereof |
| ATE7031T1 (en) | 1980-08-16 | 1984-04-15 | Gruppo Lepetit S.P.A. | ANTIBIOTIC A/16686 FACTOR A2, PROCESS FOR PRODUCTION THEREOF AND THE SIMULTANEOUSLY PREPARED ANTIBIOTIC A/16686 FACTORS A1 AND A3. |
| GB8621911D0 (en) | 1986-09-11 | 1986-10-15 | Lepetit Spa | Increasing ratio of components of anti-biotic complex |
| EP0427142B1 (en) | 1989-11-07 | 1995-05-17 | GRUPPO LEPETIT S.p.A. | Antibiotic A/16686 recovery process |
| US20040062757A1 (en) * | 2001-06-05 | 2004-04-01 | Finegold Sydney M. | Method of testing gastrointestinal diseases associated with species of genus clostridium |
-
2017
- 2017-07-03 US US15/641,035 patent/US20180002741A1/en not_active Abandoned
-
2019
- 2019-05-10 US US16/409,334 patent/US11174521B2/en active Active
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11959125B2 (en) | 2016-09-15 | 2024-04-16 | Sun Genomics, Inc. | Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample |
| WO2019141780A1 (en) * | 2018-01-17 | 2019-07-25 | Consorcio Centro de Investigación Biomédica en Red, M.P. | Targeted interventions directed at reducing the levels of circulating succinate in a subject, and kits and method for determining effectiveness of said interventions |
| CN111936639A (en) * | 2018-01-17 | 2020-11-13 | 生物技术网络研究中心联合会 | Targeted intervention for reducing circulating succinate levels in a subject, and kits and methods for determining the effectiveness of the intervention |
| JP2021511055A (en) * | 2018-01-17 | 2021-05-06 | コンソルシオ セントロ デ インベスティガシオン バイオメディカ エン レッド エム.ピー.Consorcio Centro De Investigacion Biomedica En Red, M.P. | Targeted interventions aimed at reducing the level of circulating succinate in a subject and kits and methods for determining the effectiveness of said interventions. |
| JP7523350B2 (en) | 2018-01-17 | 2024-07-26 | コンソルシオ セントロ デ インベスティガシオン バイオメディカ エン レッド | TARGETED INTERVENTIONS AIMED AT REDUCING CIRCULATING LEVELS OF SUCCINATE IN A SUBJECT AND KITS AND METHODS FOR DETERMINING THE EFFICACY OF THE INTERVENTIONS - Patent application |
| CN109182577A (en) * | 2018-09-25 | 2019-01-11 | 深圳市英马诺生物科技有限公司 | Self-closing disease biomarker and its application |
| EP3870550A4 (en) * | 2018-10-26 | 2022-11-02 | Sun Genomics Inc. | Universal method for extracting nucleic acid molecules from a diverse population of microbes |
| CN113881607A (en) * | 2021-11-17 | 2022-01-04 | 宜兴市天石饲料有限公司 | Research and development method for preventing and treating avian clostridium perfringens |
Also Published As
| Publication number | Publication date |
|---|---|
| US20200071747A1 (en) | 2020-03-05 |
| US11174521B2 (en) | 2021-11-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11174521B2 (en) | Method of diagnosis and treating gastrointestinal and neurological diseases associated with species of genus Clostridium | |
| Knox et al. | The gut microbiome as a target for IBD treatment: are we there yet? | |
| US11701396B2 (en) | Treatment of Clostridium difficile infection | |
| ES2960053T3 (en) | Clostridium difficile infection treatment | |
| De Vrese et al. | Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: a double blind, randomized, controlled trial | |
| CN114127258B (en) | Bifidobacterium bifidum bacterial strains, compositions thereof and related uses | |
| US20040062757A1 (en) | Method of testing gastrointestinal diseases associated with species of genus clostridium | |
| US20040170617A1 (en) | Method of treating diseases associated with abnormal gastrointestinal flora | |
| KR20210091119A (en) | How to reduce intestinal microbiome and restore microbiome | |
| Fedorak et al. | Probiotic bacteria in the prevention and the treatment of inflammatory bowel disease | |
| JP2024504697A (en) | Compositions and methods for treating hepatic encephalopathy | |
| US11666611B2 (en) | Defined therapeutic microbiota and methods of use thereof | |
| US20240173365A1 (en) | Methods of colonizing a microbiome, treating and/or preventing inflammatory bowel disease and graft versus host disease | |
| Gu et al. | Bifidobacterium breve HH079 alleviates early-life antibiotic-exposed colon dysbiosis in mice by restoring the gut microbiota and gut barrier function | |
| Visconti | Gut Microbiota As Potential Non-Invasive Biomarker For Kidney Graft Rejection | |
| Jang et al. | WITHDRAWN: Enterococcus Faecium is a Risk Factor for The Outbreak of Anxiety and Depression in Patients With Inflammatory Bowel Disease | |
| US20230127277A1 (en) | Microbiome-based therapeutics | |
| US20240000861A1 (en) | Therapeutic bacterial composition | |
| Kafil et al. | Multidrug resistant and most virulent Enterococcus faecium (strain 2653), isolated from hospitalized patient wound in Iran | |
| Sohn | Unraveling the Role of Oral Microbiota in Inflammatory Bowel Disease | |
| JP2022134885A (en) | Pharmaceutical composition for treating or preventing hyperammonemia | |
| Lewis | Microbiota-and Pathogen-Specific Contributions to Clostridium Difficile Virulence in the Mouse Model | |
| Astó Sánchez-Lafuente et al. | The Efficacy of Probiotics, Prebiotic Inulin-Type Fructans, and Synbiotics in Human Ulcerative Colitis: A Systematic Review and Meta-Analysis | |
| Lewis | Microbiota-And Pathogen-Specific Contributions To Clostridium Difficile Susceptibility And Virulence In The Mouse Model | |
| Libertucci | The intestinal microbiome in inflammatory bowel disease and its response to therapy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |