US20170362839A1 - Method of manufacturing an acoustical flooring tile - Google Patents
Method of manufacturing an acoustical flooring tile Download PDFInfo
- Publication number
- US20170362839A1 US20170362839A1 US15/695,204 US201715695204A US2017362839A1 US 20170362839 A1 US20170362839 A1 US 20170362839A1 US 201715695204 A US201715695204 A US 201715695204A US 2017362839 A1 US2017362839 A1 US 2017362839A1
- Authority
- US
- United States
- Prior art keywords
- vinyl
- slab
- acoustical
- acoustic
- tile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000009408 flooring Methods 0.000 title abstract description 21
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 188
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 186
- 238000000034 method Methods 0.000 claims abstract description 37
- 229920002209 Crumb rubber Polymers 0.000 claims abstract description 18
- 229920001971 elastomer Polymers 0.000 claims abstract description 18
- 229920005830 Polyurethane Foam Polymers 0.000 claims abstract description 17
- 239000005060 rubber Substances 0.000 claims abstract description 17
- 239000011496 polyurethane foam Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims description 44
- 239000000853 adhesive Substances 0.000 claims description 31
- 230000001070 adhesive effect Effects 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 19
- 239000011230 binding agent Substances 0.000 claims description 14
- 239000004814 polyurethane Substances 0.000 claims description 13
- 229920002635 polyurethane Polymers 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- 238000005520 cutting process Methods 0.000 claims description 10
- 230000000712 assembly Effects 0.000 claims description 8
- 238000000429 assembly Methods 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 239000000806 elastomer Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 239000007799 cork Substances 0.000 abstract description 8
- 239000001589 sorbitan tristearate Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 141
- 239000004800 polyvinyl chloride Substances 0.000 description 11
- 239000012790 adhesive layer Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000002023 wood Substances 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 229920000915 polyvinyl chloride Polymers 0.000 description 7
- 230000007774 longterm Effects 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011120 plywood Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010079 rubber tapping Methods 0.000 description 3
- 241000233866 Fungi Species 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 terrazzo Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/18—Separately-laid insulating layers; Other additional insulating measures; Floating floors
- E04F15/20—Separately-laid insulating layers; Other additional insulating measures; Floating floors for sound insulation
- E04F15/206—Layered panels for sound insulation
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/02—Flooring or floor layers composed of a number of similar elements
- E04F15/10—Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
- E04F15/105—Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials of organic plastics with or without reinforcements or filling materials
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/02—Flooring or floor layers composed of a number of similar elements
- E04F15/10—Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
- E04F15/107—Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials composed of several layers, e.g. sandwich panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0057—Producing floor coverings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/065—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/16—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
- B32B37/18—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
- B32B37/182—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F2290/00—Specially adapted covering, lining or flooring elements not otherwise provided for
- E04F2290/04—Specially adapted covering, lining or flooring elements not otherwise provided for for insulation or surface protection, e.g. against noise, impact or fire
- E04F2290/041—Specially adapted covering, lining or flooring elements not otherwise provided for for insulation or surface protection, e.g. against noise, impact or fire against noise
- E04F2290/043—Specially adapted covering, lining or flooring elements not otherwise provided for for insulation or surface protection, e.g. against noise, impact or fire against noise with a bottom layer for sound insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249987—With nonvoid component of specified composition
- Y10T428/249991—Synthetic resin or natural rubbers
- Y10T428/249992—Linear or thermoplastic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3167—Of cork
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31935—Ester, halide or nitrile of addition polymer
Definitions
- the present disclosure relates to vinyl flooring systems in general, and more particularly to an improved vinyl tile having enhanced acoustical properties coupled with improved long term stability.
- Vinyl flooring has been a popular floor covering material for many years. Vinyl flooring is typically available in either tile or sheet form for both commercial and residential use. As finished flooring material, vinyl tile has been used extensively in commercial, institutional and public building applications, such as, for example, malls, schools, healthcare facilities, convention and exposition centers, civic buildings, private office buildings, sports facilities, and so forth. Vinyl flooring is durable, easy to maintain and is often more moisture-resistant than many alternative flooring materials. Vinyl flooring can also have limited acoustical properties, in that the material offers some rebound or resilience upon compression (i.e., when walked on).
- Vinyl tiles can be composed of colored vinyl formed into generally planar solid sheets by heat and pressure, and cut into squares or other shapes. Manufacturers have created vinyl tiles that very closely resemble wood, stone, terrazzo, and concrete. Tiles are typically applied to a smooth, leveled bare floor or sub-floor usually using a suitable adhesive.
- acoustical base layer such as rubber or cork.
- the acoustical layer can serve one or more of a variety of different functions in a given installation.
- the function of this underlayment material is to provide a cushioning effect to the floor system.
- the function of the underlayment material is to compensate for imperfections in the surface of the subfloor, which can be concrete, plywood, or a number of other different materials that are commonly used and known.
- Another function of the underlayment which is particularly pertinent to the present invention, is to reduce the transmission of sound through the floor to a room below, such as in the case of a multi-floor building. This is particularly significant where the maximum allowable level of sound transmission is controlled by local building codes, which is increasingly common.
- a single acoustical base layer is adhered to the sub-floor, and the vinyl tiles are installed over the acoustical base layer, again using an adhesive.
- the base layer and vinyl tiles are standard elements that are used without regard for the particular sub-floor structure upon which the sub-floor is laid.
- the improved vinyl tile should also provide a desired resilience, with exceptional sound dampening properties that meet applicable acoustical limitations associated with multi-family dwellings.
- the improved vinyl tile should also be easy to manufacture and install.
- an improved vinyl tile system whose structure can be customized to provide a desired acoustical dampening for any of a variety of different flooring structures.
- the improved vinyl tile system includes sound dampening properties that meet applicable acoustical limitations associated with multi-family dwellings.
- the improved vinyl tile also provides a desired resilience, and is easy to manufacture and install.
- the disclosed system and method include an improved vinyl tile having enhanced stability, resilience and acoustical properties.
- the disclosed vinyl tile may incorporate a durable bond between the vinyl and acoustical material layers to ensure long term stability and performance.
- Some embodiments of the disclosed vinyl tile may also include an anti-fungal compound mixed with some or all of the tile raw materials to inhibit growth of fungus.
- the disclosed vinyl tile may incorporate an acoustical layer made up of a plurality of individual sublayers.
- the composition and arrangement of the sublayers can be adjusted to provide desired sound dampening properties that are customized to a particular flooring structure.
- a sound dampening material is bonded to a vinyl tile slab prior to cutting the product into tiles or planks.
- the formulation of the acoustical sound dampening material may be selected to be compatible with the adhesive used to fix the material to the vinyl tile slab. Such a formulation may ensure a good long term bond between the sound dampening material and the vinyl tile slab.
- the acoustical sound dampening material may also be selected to be compatible with the vinyl tile slab material, which may reduce or eliminate discoloration of the vinyl tile over the lifetime of the flooring system.
- Embodiments of the disclose tile incorporate the aforementioned chemical compatibility while still providing desired acoustical properties.
- the disclosed vinyl tiles may find application in multi-family housing developments, which as previously noted can benefit greatly from the associated sound dampening properties.
- the vinyl tile includes a vinyl portion, an acoustical portion, and an adhesive layer for fixing the vinyl portion to the acoustical portion.
- the acoustical portion comprises a crumb rubber component and a polyurethane foam component. In some embodiments, the acoustical portion comprises 10-40% crumb rubber and 60-90% polyurethane foam.
- the acoustical portion may further comprise a resin binder.
- the vinyl portion may comprise polyvinylchloride.
- the vinyl tile may further include a wear layer disposed on a surface of the vinyl portion.
- the vinyl portion may comprise a vinyl backing layer, a print layer and a clear wear layer.
- the vinyl backing layer, the print layer and the clear wear layer are bonded together via hot mold compression.
- a vinyl tile is disclosed.
- the vinyl tile includes a vinyl portion, and an acoustical portion comprising a crumb rubber portion, a polyurethane foam portion, and a resin binder.
- a polyurethane adhesive layer may be interposed between the vinyl portion and the acoustical portion.
- the acoustical portion may comprise 10-40% crumb rubber and 60-90% polyurethane foam.
- the vinyl portion comprises polyvinylchloride.
- a wear layer may be disposed on a surface of the vinyl portion.
- the vinyl portion may comprise a vinyl backing layer, a print layer and a clear wear layer. The vinyl backing layer, the print layer and the clear wear layer may be bonded together via hot mold compression.
- a method of making a vinyl tile may include: providing a vinyl slab portion; providing an acoustical slab portion comprising crumb rubber, polyurethane foam and a resin binder; and bonding the vinyl slab portion to the acoustical portion.
- Providing a vinyl slab portion may comprise stacking a vinyl backing layer, a print film layer, and a clear wear layer on top of a moldboard and molding the layers together using a hot press.
- Providing an acoustical slab portion may comprise mixing the crumb rubber, the polyurethane foam and the resin binder; curing the mixture; cooling the cured mixture to form a cooled roll; and cutting a layer from the cooled roll.
- the method may also include pressing the bonded vinyl slab portion and the acoustical slab portion in a press having die, the die cutting the slab into vinyl tiles of a predetermined shape and size.
- the vinyl slab portion may comprise polyvinylchloride.
- the vinyl tile may include a vinyl portion and an acoustical portion comprising a plurality of individual sub-layers.
- First and second sub-layers of the plurality individual sub-layers may comprise material compositions that are different from each other.
- the first and second sub-layers have thicknesses that are different from each other.
- the first and second sub-layers may have thicknesses that are the same.
- the first sub-layer may comprise rubber and the second sub-layer may comprise rubber and cork.
- the first sub-layer may comprise rubber and cork and the second sub-layer may comprise rubber.
- the plurality of individual sub-layers includes three individual sub-layers.
- the at least three individual sub-layers may each comprise a material composition that is different from the other individual sub-layers.
- the plurality of individual sub-layers comprise greater than three individual sub-layers.
- a method for designing a vinyl tile to suit a particular flooring application may include: determining a type of a sub-floor system that includes the floor/ceiling assembly to which a vinyl tile will be applied; selecting an acoustical portion of said vinyl tile to include “n” sub-layers, where “n” is a number greater than 1 and is based on the type of said sub-floor; and selecting a material composition for each of said “n” sub-layers, where the material composition for each of said “n” sub-layers is based on the type of said sub-floor and the number “n” of sub-layers.
- the method may also include selecting a thickness of each of the “n” sub-layers based on the type of said sub-floor system that includes the floor/ceiling assembly, the number “n” of sub-layers and the material of each of the sub-layers.
- the method may further include bonding the “n” individual sub-layers together to form said acoustical portion.
- the method may also include bonding the acoustical portion to a vinyl tile portion of said vinyl tile.
- the method may also include applying the vinyl tile to the sub-floor.
- FIG. 1 is an isometric view of an embodiment of an exemplary vinyl tile according to the disclosure
- FIG. 2 is a cross-section view of the vinyl tile of FIG. 1 ;
- FIG. 3 is an exemplary stack-up of layers in a portion of the vinyl tile of FIG. 1 ;
- FIG. 4 is a schematic of a molding apparatus for forming a portion of the vinyl tile of FIG. 1 ;
- FIG. 5 is a flow chart illustrating an exemplary method of manufacturing the vinyl tile of FIG. 1 ;
- FIG. 6 is a flow chart illustrating an exemplary method of manufacturing the vinyl tile of FIG. 1 ;
- FIG. 7 is a flow chart illustrating an exemplary method of manufacturing the vinyl tile of FIG. 1 ;
- FIG. 8 is a graph showing impact sound pressure level measurements and ASTM 2179 IIC contour for the exemplary vinyl tile of FIG. 1 ;
- FIG. 9 is an isometric view of an alternative embodiment of an exemplary vinyl tile according to the disclosure.
- FIG. 10 is a cross-section view of the vinyl tile of FIG. 9 ;
- FIG. 11 shows the vinyl tile of FIG. 10 applied over a truss-based sub-floor
- FIG. 12 is a cross-section view of an alternative exemplary vinyl tile according to the disclosure.
- FIG. 13 shows the vinyl tile of FIG. 12 applied over a concrete sub-floor
- FIG. 14 is a logic diagram illustrating a method according to the disclosure.
- the disclosed vinyl tile comprises a vinyl layer with an integrated sound reducing underlayment permanently attached thereto.
- the resulting floor/ceiling assembly including the tile meets one or more of ASTM E 2179, ASTM E 989, ASTM E 492, and ASTM E1007 IIC sound requirements.
- the disclosed vinyl tile also eliminates the two-step installation process associated with prior vinyl tile flooring systems which require installing an underlayment to the subfloor using a first adhesive, then installing the vinyl tile over the underlayment using a second adhesive. The disclosed tile thus reduces the total time required for installation.
- the disclosed vinyl tile includes a customizable sound reducing underlayment (referred to as an “acoustical layer” or “acoustical portion”) that is selected for the particular sub-floor system that includes the floor/ceiling assembly design with this which the tile will be used.
- the disclosed tile thus provides a desired level of sound dampening that is not achievable with prior standard tiles.
- the acoustical layer includes a plurality of sub-layers that can be formulated from different materials, and provided in different thicknesses, to provide superior sound dampening characteristics based on the associated sub-floor system that includes the floor/ceiling assembly design.
- the disclosed vinyl tile includes recycled content (e.g., a combined 60% recycled content).
- the disclosed vinyl tile includes an antifungal compound to inhibit the growth of fungus.
- an exemplary vinyl tile 1 includes an upper vinyl portion 2 and a lower acoustical portion 4 .
- the vinyl tile 1 is shown as having a rectangular plank shaped. It will be appreciated, however, that it can be manufactured in any of a variety of desired geometric and non-geometric shapes. Non-limiting examples of such shapes include rectangular planks with a width of 4-inches and a length of 36-inches, rectangular planks with a width of 6-inches and a length of 36-inches, and 18-inch by 18-inch square shapes.
- the vinyl portion may include a surface wear layer 6 to enhance the wear life of the vinyl portion 2 .
- the surface wear layer 6 may have a thickness of about 0.005-inches (5 mils) to about 30 mils. In one embodiment, the surface wear layer may be about 8 mils.
- the surface wear layer 6 may comprise polyvinyl chloride (PVC). In one non-limiting exemplary embodiment, the surface wear layer 6 includes at least 90% PVC.
- the vinyl portion 2 may comprise a polyvinylchloride (PVC) material, while the acoustical portion 4 may comprise a combination of crumb rubber and polyurethane.
- PVC polyvinylchloride
- the acoustical portion 4 may comprise a combination of crumb rubber and polyurethane.
- the acoustical portion comprises about 10-40% crumb rubber, about 60-90% polyurethane foam, and a resin binder.
- the crumb rubber component is obtained from recycled tires or sneaker rubber.
- the polyurethane foam may be an appropriate open cell or closed cell foam.
- the resin binder may be a polyurethane binder.
- FIG. 2 shows a cross-section of the vinyl tile 1 including vinyl portion 2 , adhesive layer 3 , acoustical portion 4 and surface wear layer 6 .
- the vinyl portion 2 has a thickness of about 2 millimeters (mm)
- the acoustical portion 4 may have a thickness of about 3 mm
- the surface wear layer may be about 0.008 inches or about 0.012 inches.
- the vinyl portion 2 has a thickness of about 3 millimeters (mm)
- the acoustical portion 4 may have a thickness of about 3 mm
- the surface wear layer 6 may be about 0.022 inches.
- the acoustical portion 4 is permanently bonded to the vinyl portion 2 using an adhesive that is highly compatible both with the vinyl portion 2 and the acoustical portion 4 . Moreover, the acoustical portion 4 may also be highly compatible with the vinyl portion to reduce the chances for delamination and/or degradation of the vinyl portion 2 from the acoustical portion 4 during use.
- the total thickness of the resulting vinyl tile 1 may be about 5 mm (0.20-inch) and may develop an IIC in accordance with ASTM E 2179 of greater than 52.
- the vinyl portion 2 may include a vinyl backing layer 8 , a print film layer 10 applied over the backing layer, and a clear wear layer 12 applied over the print film layer 10 ( FIG. 3 ).
- the vinyl backing layer 8 is PVC
- the print film layer is 10
- the clear wear layer 12 are PVC.
- the layers 8 , 10 , 12 may be stacked in order on top of a moldboard 14 .
- a top plate 16 having a desired texture may be placed on top of the assembled layers. This process may be repeated as desired.
- the assembled layers 8 , 10 , 12 may be placed in a multi-plate hot press 18 ( FIG. 4 ) and molded at a desired temperature and under a desired pressure for a desired time.
- the temperature may be from about 175 degrees F. to about 325 degrees F.
- the pressure may be from about 250 psi to about 350 psi.
- the time may be from about 8 minutes to about 16 minutes.
- the bonded slab may be removed from the press and cooled.
- a polyurethane or other coating may then be applied to an upper surface of the vinyl portion 2 and cured with ultraviolet light or other appropriate curing technique.
- the bonded and coated vinyl slab (now vinyl portion 2) may be allowed to acclimate at 68 degrees Fahrenheit (+/ ⁇ 5 degrees F.) for about 48 hours.
- the acoustical portion 4 may comprise a crumb rubber component, a polyurethane foam component, and a resin binder.
- the base acoustical material may be compounded to consist of 10 to 40 parts crumb rubber, 60 to 90 parts polyurethane foam and a resin binder.
- the mixture may be blended in a mixer until the compound is homogenous.
- the crumb rubber and polyurethane may be recycled from postindustrial or post-consumer materials.
- the mixture may be introduced into a drum mold.
- heat and pressure may be applied to cure the mixture.
- the temperature may be up to about 450 degrees F.
- the pressure may be up to about 1,200 psi
- the curing time may be up to about 90 minutes.
- the cured mixture may be removed from the mold and allowed to cool as a cured roll.
- layers are cut off the cured roll in a skiving process to obtain an acoustical layer 4 having a thickness of about 0.118-in (3 mm).
- the acoustical layer 4 may then be cut into slabs of desired size and allowed to acclimate at 68 degrees F. (+/ ⁇ 5 degrees F.) for about 48 hours.
- the acoustical portion 4 may be stored in the same location as the vinyl portion 2 so that the portions acclimate together.
- the vinyl portion 2 and acoustical portion 4 may then be bonded together using a suitable adhesive.
- the adhesive may be heated on a double drum mill to allow the carrier to flash more quickly.
- the adhesive is a polyurethane adhesive, which may prevent any reaction between the acoustical layer 4 and the vinyl portion 2 .
- the drum mill is opened to allow the adhesive to flow evenly onto an upper surface of the acoustical portion 4 as the acoustical portion 4 passes under the mill opening. To facilitate this, the acoustical portion 4 may be carried along on an open metal belt conveyer.
- the vinyl portion 2 may be placed onto the adhesive coated surface of the rubber backing and, at step 330 , the combined portions may be rolled in a pinch roller to ensure a desired spread and transfer of the adhesive to the adjoining surfaces of the portions 2 , 4 .
- the pinch roller applies a pressure of about 150 psi to the combined portions.
- the bonded slab assembly (containing bonded layers 2 , 4 ) may then be placed on a flat surface. This process may be repeated until a desired quantity of bonded slab assemblies is produced or a maximum height of 38 inches is achieved.
- a top plate may be placed on the assembled stack and weighted.
- the assembled stack may be allowed to acclimate at 68 degrees F. (+/ ⁇ 5 degrees F.) for about 48 hours. This acclimation may allow the bonded assembly to equalize any stress in the material prior to cutting to size. This acclimation may also facilitate the dimensional stability of the finished product.
- the acclimated bonded slabs may be inspected and placed in a press, which in one embodiment is a 150-ton clicker press.
- the press may have a die installed that cuts the slab into vinyl tiles 1 of a predetermined shape and size. Each cut vinyl tile may then be inspected visually for pattern and surface defects. The cut pieces can be placed on a smooth glass surface and inspected for gauge. The cut and inspected vinyl tiles 1 may then be packaged and stored for use.
- This method measures the impact sound transmission performance of a floor/ceiling assembly, in a controlled laboratory environment.
- a standard tapping machine (B & K Type 3207) was placed at four positions on a test floor that forms the horizontal separation between two rooms, one directly above the other. The data obtained was normalized to a reference room absorption of 10 square meters in accordance with the test method.
- the standard also prescribes a single-figure classification rating called “Impact Insulation Class, IIC” which can be used by architects, builders and code authorities for acoustical design purposes in building construction.
- the IIC is obtained by matching a standard reference contour to the plotted normalized one third octave band sound pressure levels at each test frequency. The greater the IIC rating, the lower the impact sound transmission through the floor-ceiling assembly.
- the test floor consisted of a 100-sq. ft. opening that forms the horizontal separation of the two rooms, one directly above the other.
- the structural members are open webbed wood floor trusses, 16 inches deep installed 24 inches on center.
- the sub flooring is 5 ⁇ 8-inch-thick plywood.
- the bridging is a continuous 2 ⁇ 4 nailed to the bottom chord and the sides of the diagonals with 2-inch-long nails.
- Single leaf RC-1 acoustical channels 21 ⁇ 2 inch ⁇ 1 ⁇ 2 inch) were spaced 16 inches on center and attached to the bottom chord by screws.
- the insulation is 51 ⁇ 2 inches of fiberglass.
- the ceiling is gypsum board, 5 ⁇ 8 inches thick, with the long edges located between the joists perpendicular to the acoustical channels. Short edges are staggered by 4 ft. Sheets are fastened to the acoustical channels by means of 1 ⁇ 2 inch screws located 1 ⁇ 2 inch away from the edge and 3 inches from the long edges; screws are spaced 6 inches on center. Joints are taped and finished with two layers of compound.
- the exemplary vinyl tile 1 measured 6 inches wide by 36 inches long by 0.20 inches thick.
- the flooring weighed 0.65 lbs/sq. ft.
- the 95% uncertainty level for each tapping machine location is less than 3 dB for the 1 ⁇ 3 octave bands centered in the range from 100 to 400 Hz and less than 2.5 dB for the bands centered in the range from 500 to 3150 Hz.
- the 95% uncertainty limits for the normalized sound pressure levels were determined to be less than 2 dB for the 1 ⁇ 3 octave bands centered in the range from 100 to 3500.
- FIG. 8 shows the results from testing in which impact sound pressure level and IIC contour are plotted for the exemplary vinyl tile 1 .
- the generally accepted minimum passing limit for a floor ceiling assembly is an IIC of 50 or above.
- the exemplary vinyl tile 1 exhibited an IIC of 54 .
- an exemplary vinyl tile 401 includes an upper vinyl portion 402 and a lower acoustical portion 404 .
- the vinyl tile 401 is shown as having a rectangular plank shape, it will be appreciated that tiles according to the disclosure can be manufactured in any of a variety of desired geometric and non-geometric shapes. Non-limiting examples of such shapes include rectangular planks with a width of 4-inches and a length of 36-inches, rectangular planks with a width of 6-inches and a length of 36-inches, and 18-inch by 18-inch square shapes.
- the vinyl portion 402 may include a surface wear layer 406 to enhance the wear life of the vinyl portion.
- the surface wear layer 406 may have a thickness of about 0.005-inches (5 mils) to about 40 mils. In one embodiment, the surface wear layer may be about 8 mils.
- the surface wear layer 406 may comprise polyvinyl chloride (PVC). In one non-limiting exemplary embodiment, the surface wear layer 406 includes at least 90% PVC.
- the vinyl portion 402 may comprise a polyvinylchloride (PVC) material.
- the acoustical portion 404 may comprise a plurality of layers including a variety of different sound dampening materials, as will be described in greater detail later.
- the vinyl portion 402 may be bonded to the acoustical portion 404 using a suitable adhesive 408 .
- FIG. 10 shows a cross-section of the vinyl tile 401 .
- This exemplary embodiment includes a vinyl portion 402 (with surface wear layer 406 ) and an acoustical portion 404 that includes first and second sub-layers 404 a, 404 b.
- the vinyl portion 402 can be bonded to the first sub-layer 404 a by adhesive layer 408 , while the first and second sub-layers 404 a, 404 b can be bonded together by adhesive layer 410 .
- the layers may be bonded to each other without adhesive, such as by heat bonding or the like.
- the acoustical portion 404 (including its sub-layers) can be permanently bonded to the vinyl portion 402 using an adhesive layer 408 material that is highly compatible both with the vinyl portion 402 and the first sub-layer 404 a.
- the material making up the first sub-layer 404 a may be highly compatible with the vinyl portion 402 to reduce the chances for de-lamination and/or degradation of the vinyl portion from the acoustical portion during extended use.
- the same may be true of the compatibility of the adhesive layer 410 and the first and second sub-layers 404 a, b to ensure long term durability of the resulting tile 401 .
- the vinyl portion 402 has a thickness of about 2 millimeters (mm), while the acoustical portion 404 has a combined thickness of about 4 mm.
- the sub-layers 404 a, 404 b are shown as having thicknesses of 2 mm each. It will be understood that these thicknesses are merely exemplary, and that different individual layer thicknesses can be used to suit a particular application, as will be explained.
- the actual composition of layers within the tile 401 be variable so as to be customizable to the particular flooring application. That is to say that different sub-floor structures can require different combinations of acoustical portion sub-layer gauges, thicknesses and materials in order to achieve specific construction demands of a particular building. It will be appreciated that modern construction methods include the manufacture of buildings having concrete sub-flooring (six-inch concrete, light concrete, etc.), and a wide variety of different truss-based sub-floor systems (metal trusses, wooden trusses, and combinations thereof).
- a single building may include multiple different sub-floor types, each of which can have a different acoustical “response.”
- acoustical “response” As will be appreciated, in vinyl tiles 401 used with each of these different sub-flooring types may need to include a customized acoustical portion 404 in order to provide desired sound dampening in such buildings.
- the acoustical portion 404 may include a plurality of sub-layers 404 a - 404 n of sound dampening material.
- the illustrated embodiments include two sub-layers ( 404 a, 404 b ) it will be appreciated that more than two sub-layers (i.e., up to “n” sub-layers) as desired to suit the application.
- the illustrated embodiments show individual sub-layers 404 a, 404 b having respective thicknesses of 2 mm, that other thicknesses may also be used.
- the individual materials used to form the sub-layers 404 a - 404 n may be formulated to minimize sound impact transmissions at specific frequencies.
- the thicknesses of the sub-layers 404 a - 404 n may be selected to work in combination with the individual sub-layer material types to minimize sound impact transmissions at specific frequencies. By structuring the acoustical layers according to the particular type of sub-floor assembly, sound reduction can be fine-tuned for a particular structure.
- a non-limiting exemplary listing of appropriate sub-layer materials include the following:
- the above, and other, materials can be provided in a variety of different densities, multiple thicknesses, and may include one or more fiber components.
- Each of the sub-layers 404 a - 404 n may have a thickness in the range of about 0.5 mm to about 5.5 mm.
- the thickness of the assembled layers i.e., total thickness of the acoustical portion 404
- the layers are bonded together with specific adhesives in various ways depending on the composition of the layers.
- a non-limiting exemplary listing of such adhesives includes cyanoacrylate, latex, acrylic, epoxy and the like.
- incorporating polyurethane into one or more of the sub-layers 404 a - 404 n can enhance compatibility between the acoustical portion 404 and the vinyl portion 402 .
- the acoustical portion comprises about 10-40% crumb rubber, about 60-90% polyurethane foam, and a resin binder.
- the crumb rubber component is obtained from recycled tires or sneaker rubber.
- the polyurethane foam may be an appropriate open cell or closed cell foam, while the resin binder may be a polyurethane binder.
- FIG. 11 shows the tile 401 of FIG. 10 applied over a wood truss sub-floor assembly 412 .
- a wood truss sub-floor assembly 412 might be made of a variety of different burling materials, including plywood sheathing 414 , wood beams 416 , metal fastening plates 418 , gypsum board 420 (where the sub-floor forms part of an adjoining ceiling, as in the illustrated embodiment), resilient channels 422 , etc.
- the acoustical portion 404 includes a first sub-layer 404 a comprising a rubber material, and a second sub-layer 404 b comprising a combination of rubber and cork.
- Each of the sub-layers 404 a, 404 b of this embodiment are about 2 mm thick, and are adhered together using any of a variety of appropriate adhesives, as previously described.
- FIG. 12 shows an exemplary alternative floor tile 424 that includes a vinyl portion 426 , and an acoustical portion 428 adhered thereto using an adhesive layer 430 .
- the acoustical portion 404 again includes first and second sub-layers 404 a, 404 b.
- the first sub-layer 404 a comprises a cork and rubber combination
- the second sub-layer 404 b comprises a rubber layer.
- this alternative tile may be appropriate for use with a concrete sub-floor 432 . Since concrete is more homogenous and rigid than the previously described wooden truss floor assembly 412 , it can transmit more sound at some frequencies than others.
- step 500 the design of a particular sub-floor system that includes the floor/ceiling assembly to which the vinyl tile 401 will be applied is determined.
- an acoustical portion is designed to include “n” individual sub-layers where “n” is a number greater than 1 .
- the number “n” of individual sub-layers is selected based on the design of the sub-floor.
- each the “n” sub-layers are selected to comprise a particular material.
- each of the “n” sub-layers are selected to have a particular thickness, where the thickness of each sub-layer is selected based on the design of the sub-floor, the number “n” of sub-layers and the material of each of the sub-layers.
- the “n” individual sub-layers are bonded together.
- the bonded sub-layers are bonded to a vinyl tile portion.
- the vinyl tile is applied to the sub-floor.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Floor Finish (AREA)
- Building Environments (AREA)
- Laminated Bodies (AREA)
Abstract
Description
- This is a continuation application of pending U.S. patent application Ser. No. 14/108,754, which is a non-provisional of U.S. Provisional Patent Application Ser. No. 61/808,670, filed Apr. 5, 2013, and which is also a continuation-in-part of U.S. Non-Provisional patent application Ser. No. 13/468,103, filed May 10, 2012, now U.S. Pat. No. 8,640,824, the entirety of which applications are expressly incorporated by reference herein.
- The present disclosure relates to vinyl flooring systems in general, and more particularly to an improved vinyl tile having enhanced acoustical properties coupled with improved long term stability.
- Vinyl flooring has been a popular floor covering material for many years. Vinyl flooring is typically available in either tile or sheet form for both commercial and residential use. As finished flooring material, vinyl tile has been used extensively in commercial, institutional and public building applications, such as, for example, malls, schools, healthcare facilities, convention and exposition centers, civic buildings, private office buildings, sports facilities, and so forth. Vinyl flooring is durable, easy to maintain and is often more moisture-resistant than many alternative flooring materials. Vinyl flooring can also have limited acoustical properties, in that the material offers some rebound or resilience upon compression (i.e., when walked on).
- Vinyl tiles can be composed of colored vinyl formed into generally planar solid sheets by heat and pressure, and cut into squares or other shapes. Manufacturers have created vinyl tiles that very closely resemble wood, stone, terrazzo, and concrete. Tiles are typically applied to a smooth, leveled bare floor or sub-floor usually using a suitable adhesive.
- Conventional vinyl tiles are often installed over an acoustical base layer such as rubber or cork. The acoustical layer can serve one or more of a variety of different functions in a given installation. In some installations, the function of this underlayment material is to provide a cushioning effect to the floor system. In other situations, the function of the underlayment material is to compensate for imperfections in the surface of the subfloor, which can be concrete, plywood, or a number of other different materials that are commonly used and known. Another function of the underlayment, which is particularly pertinent to the present invention, is to reduce the transmission of sound through the floor to a room below, such as in the case of a multi-floor building. This is particularly significant where the maximum allowable level of sound transmission is controlled by local building codes, which is increasingly common.
- In such cases, a single acoustical base layer is adhered to the sub-floor, and the vinyl tiles are installed over the acoustical base layer, again using an adhesive.
- Many conventional commercially available adhesive materials are chemically incompatible with vinyl polymers and will in some instances not provide the necessary long-term adhesion. In even more extreme cases, certain adhesives will chemically react with the vinyl polymers resulting in discoloration and/or degradation of the vinyl tiles. Moreover, breakdown of the adhesive bond between the acoustical base layer and the vinyl tile can lead to increased noise, which as previously noted, can be a problem in multi-family dwellings.
- The base layer and vinyl tiles are standard elements that are used without regard for the particular sub-floor structure upon which the sub-floor is laid.
- Different building structures can transmit sound differently, depending upon the materials of construction as well as the construction arrangement (e.g., wooden floor/ceiling beams, poured concrete, and the like). Because current vinyl tile systems employ a standard base layer, they are incapable of dampening sound optimally across a variety of floor/ceiling structure types. For example, while a typical tile may provide reasonable acoustical dampening when applied over a poured concrete floor, it may not provide acceptable dampening when applied over a wood beam-supported floor.
- Thus, there is a need for an improved vinyl tile having improved long term stability as compared to conventional vinyl tiles and vinyl flooring systems. The improved vinyl tile should also provide a desired resilience, with exceptional sound dampening properties that meet applicable acoustical limitations associated with multi-family dwellings. The improved vinyl tile should also be easy to manufacture and install. These and a number of additional objectives are met by the disclosed vinyl tile.
- In view of the aforementioned deficiencies in the prior art, an improved vinyl tile system is disclosed whose structure can be customized to provide a desired acoustical dampening for any of a variety of different flooring structures. The improved vinyl tile system includes sound dampening properties that meet applicable acoustical limitations associated with multi-family dwellings. The improved vinyl tile also provides a desired resilience, and is easy to manufacture and install. These and a number of additional objectives are met by the disclosed vinyl tile.
- The disclosed system and method include an improved vinyl tile having enhanced stability, resilience and acoustical properties. The disclosed vinyl tile may incorporate a durable bond between the vinyl and acoustical material layers to ensure long term stability and performance. Some embodiments of the disclosed vinyl tile may also include an anti-fungal compound mixed with some or all of the tile raw materials to inhibit growth of fungus.
- Alternatively, the disclosed vinyl tile may incorporate an acoustical layer made up of a plurality of individual sublayers. The composition and arrangement of the sublayers can be adjusted to provide desired sound dampening properties that are customized to a particular flooring structure.
- In some embodiments, a sound dampening material is bonded to a vinyl tile slab prior to cutting the product into tiles or planks. The formulation of the acoustical sound dampening material may be selected to be compatible with the adhesive used to fix the material to the vinyl tile slab. Such a formulation may ensure a good long term bond between the sound dampening material and the vinyl tile slab. The acoustical sound dampening material may also be selected to be compatible with the vinyl tile slab material, which may reduce or eliminate discoloration of the vinyl tile over the lifetime of the flooring system. Embodiments of the disclose tile incorporate the aforementioned chemical compatibility while still providing desired acoustical properties. The disclosed vinyl tiles may find application in multi-family housing developments, which as previously noted can benefit greatly from the associated sound dampening properties.
- A vinyl tile is disclosed. In one embodiment, the vinyl tile includes a vinyl portion, an acoustical portion, and an adhesive layer for fixing the vinyl portion to the acoustical portion. The acoustical portion comprises a crumb rubber component and a polyurethane foam component. In some embodiments, the acoustical portion comprises 10-40% crumb rubber and 60-90% polyurethane foam. The acoustical portion may further comprise a resin binder. The vinyl portion may comprise polyvinylchloride.
- The vinyl tile may further include a wear layer disposed on a surface of the vinyl portion. The vinyl portion may comprise a vinyl backing layer, a print layer and a clear wear layer. The vinyl backing layer, the print layer and the clear wear layer are bonded together via hot mold compression.
- A vinyl tile is disclosed. The vinyl tile includes a vinyl portion, and an acoustical portion comprising a crumb rubber portion, a polyurethane foam portion, and a resin binder. A polyurethane adhesive layer may be interposed between the vinyl portion and the acoustical portion. The acoustical portion may comprise 10-40% crumb rubber and 60-90% polyurethane foam. In some embodiments, the vinyl portion comprises polyvinylchloride. A wear layer may be disposed on a surface of the vinyl portion. The vinyl portion may comprise a vinyl backing layer, a print layer and a clear wear layer. The vinyl backing layer, the print layer and the clear wear layer may be bonded together via hot mold compression.
- A method of making a vinyl tile is disclosed. The method may include: providing a vinyl slab portion; providing an acoustical slab portion comprising crumb rubber, polyurethane foam and a resin binder; and bonding the vinyl slab portion to the acoustical portion. Providing a vinyl slab portion may comprise stacking a vinyl backing layer, a print film layer, and a clear wear layer on top of a moldboard and molding the layers together using a hot press. Providing an acoustical slab portion may comprise mixing the crumb rubber, the polyurethane foam and the resin binder; curing the mixture; cooling the cured mixture to form a cooled roll; and cutting a layer from the cooled roll.
- The method may also include coating the vinyl slab portion with a polyurethane layer. Bonding the vinyl slab portion to the acoustical portion may comprise applying a polyurethane adhesive to a surface of the acoustical slab portion; applying the vinyl slab portion to the adhesive coated surface of the acoustical slab portion; and applying force to the acoustical slab portion and the vinyl slab portion for a predetermined time. The method may also include pressing the bonded vinyl slab portion and the acoustical slab portion in a press having die, the die cutting the slab into vinyl tiles of a predetermined shape and size. In some embodiments, the vinyl slab portion may comprise polyvinylchloride.
- In an alternate embodiment, the vinyl tile may include a vinyl portion and an acoustical portion comprising a plurality of individual sub-layers. First and second sub-layers of the plurality individual sub-layers may comprise material compositions that are different from each other. The first and second sub-layers have thicknesses that are different from each other. The first and second sub-layers may have thicknesses that are the same. The first sub-layer may comprise rubber and the second sub-layer may comprise rubber and cork. The first sub-layer may comprise rubber and cork and the second sub-layer may comprise rubber. In some embodiments, the plurality of individual sub-layers includes three individual sub-layers. The at least three individual sub-layers may each comprise a material composition that is different from the other individual sub-layers. In other embodiments, the plurality of individual sub-layers comprise greater than three individual sub-layers.
- A method is disclosed for designing a vinyl tile to suit a particular flooring application. The method may include: determining a type of a sub-floor system that includes the floor/ceiling assembly to which a vinyl tile will be applied; selecting an acoustical portion of said vinyl tile to include “n” sub-layers, where “n” is a number greater than 1 and is based on the type of said sub-floor; and selecting a material composition for each of said “n” sub-layers, where the material composition for each of said “n” sub-layers is based on the type of said sub-floor and the number “n” of sub-layers. The method may also include selecting a thickness of each of the “n” sub-layers based on the type of said sub-floor system that includes the floor/ceiling assembly, the number “n” of sub-layers and the material of each of the sub-layers. The method may further include bonding the “n” individual sub-layers together to form said acoustical portion. The method may also include bonding the acoustical portion to a vinyl tile portion of said vinyl tile. The method may also include applying the vinyl tile to the sub-floor.
- By way of example, a specific embodiment of the disclosed vinyl tile will now be described, with reference to the accompanying drawings, in which:
-
FIG. 1 is an isometric view of an embodiment of an exemplary vinyl tile according to the disclosure; -
FIG. 2 is a cross-section view of the vinyl tile ofFIG. 1 ; -
FIG. 3 is an exemplary stack-up of layers in a portion of the vinyl tile ofFIG. 1 ; -
FIG. 4 is a schematic of a molding apparatus for forming a portion of the vinyl tile ofFIG. 1 ; -
FIG. 5 is a flow chart illustrating an exemplary method of manufacturing the vinyl tile ofFIG. 1 ; -
FIG. 6 is a flow chart illustrating an exemplary method of manufacturing the vinyl tile ofFIG. 1 ; -
FIG. 7 is a flow chart illustrating an exemplary method of manufacturing the vinyl tile ofFIG. 1 ; -
FIG. 8 is a graph showing impact sound pressure level measurements and ASTM 2179 IIC contour for the exemplary vinyl tile ofFIG. 1 ; -
FIG. 9 is an isometric view of an alternative embodiment of an exemplary vinyl tile according to the disclosure; -
FIG. 10 is a cross-section view of the vinyl tile ofFIG. 9 ; -
FIG. 11 shows the vinyl tile ofFIG. 10 applied over a truss-based sub-floor; -
FIG. 12 is a cross-section view of an alternative exemplary vinyl tile according to the disclosure; -
FIG. 13 shows the vinyl tile ofFIG. 12 applied over a concrete sub-floor; and -
FIG. 14 is a logic diagram illustrating a method according to the disclosure. - The disclosed vinyl tile comprises a vinyl layer with an integrated sound reducing underlayment permanently attached thereto. The resulting floor/ceiling assembly including the tile meets one or more of ASTM E 2179, ASTM E 989, ASTM E 492, and ASTM E1007 IIC sound requirements. The disclosed vinyl tile also eliminates the two-step installation process associated with prior vinyl tile flooring systems which require installing an underlayment to the subfloor using a first adhesive, then installing the vinyl tile over the underlayment using a second adhesive. The disclosed tile thus reduces the total time required for installation. Alternatively, the disclosed vinyl tile includes a customizable sound reducing underlayment (referred to as an “acoustical layer” or “acoustical portion”) that is selected for the particular sub-floor system that includes the floor/ceiling assembly design with this which the tile will be used. The disclosed tile thus provides a desired level of sound dampening that is not achievable with prior standard tiles. The acoustical layer includes a plurality of sub-layers that can be formulated from different materials, and provided in different thicknesses, to provide superior sound dampening characteristics based on the associated sub-floor system that includes the floor/ceiling assembly design. In some embodiments, the disclosed vinyl tile includes recycled content (e.g., a combined 60% recycled content). In other embodiments, the disclosed vinyl tile includes an antifungal compound to inhibit the growth of fungus.
- Referring now to
FIG. 1 , anexemplary vinyl tile 1 includes anupper vinyl portion 2 and a lower acoustical portion 4. Thevinyl tile 1 is shown as having a rectangular plank shaped. It will be appreciated, however, that it can be manufactured in any of a variety of desired geometric and non-geometric shapes. Non-limiting examples of such shapes include rectangular planks with a width of 4-inches and a length of 36-inches, rectangular planks with a width of 6-inches and a length of 36-inches, and 18-inch by 18-inch square shapes. - The vinyl portion may include a
surface wear layer 6 to enhance the wear life of thevinyl portion 2. Thesurface wear layer 6 may have a thickness of about 0.005-inches (5 mils) to about 30 mils. In one embodiment, the surface wear layer may be about 8 mils. Thesurface wear layer 6 may comprise polyvinyl chloride (PVC). In one non-limiting exemplary embodiment, thesurface wear layer 6 includes at least 90% PVC. - The
vinyl portion 2 may comprise a polyvinylchloride (PVC) material, while the acoustical portion 4 may comprise a combination of crumb rubber and polyurethane. The inventor has found that incorporating polyurethane into the acoustical layer, in combination with the crumb rubber component, enhances compatibility between the acoustical portion 4 and the vinyl portion 4. In one non-limiting exemplary embodiment, the acoustical portion comprises about 10-40% crumb rubber, about 60-90% polyurethane foam, and a resin binder. In some embodiments, the crumb rubber component is obtained from recycled tires or sneaker rubber. The polyurethane foam may be an appropriate open cell or closed cell foam. The resin binder may be a polyurethane binder. -
FIG. 2 shows a cross-section of thevinyl tile 1 includingvinyl portion 2, adhesive layer 3, acoustical portion 4 andsurface wear layer 6. In one embodiment, thevinyl portion 2 has a thickness of about 2 millimeters (mm), the acoustical portion 4 may have a thickness of about 3 mm, and the surface wear layer may be about 0.008 inches or about 0.012 inches. In other embodiments, thevinyl portion 2 has a thickness of about 3 millimeters (mm), while the acoustical portion 4 may have a thickness of about 3 mm, and thesurface wear layer 6 may be about 0.022 inches. These thicknesses are not critical, and other thicknesses may be selected for each portion. As will be described in greater detail later, the acoustical portion 4 is permanently bonded to thevinyl portion 2 using an adhesive that is highly compatible both with thevinyl portion 2 and the acoustical portion 4. Moreover, the acoustical portion 4 may also be highly compatible with the vinyl portion to reduce the chances for delamination and/or degradation of thevinyl portion 2 from the acoustical portion 4 during use. The total thickness of the resultingvinyl tile 1 may be about 5 mm (0.20-inch) and may develop an IIC in accordance with ASTM E 2179 of greater than 52. - A method for manufacturing the
exemplary vinyl tile 1 will now be described in relation toFIGS. 3-7 . Thevinyl portion 2 may include avinyl backing layer 8, aprint film layer 10 applied over the backing layer, and aclear wear layer 12 applied over the print film layer 10 (FIG. 3 ). In one embodiment, thevinyl backing layer 8 is PVC, the print film layer is 10 and theclear wear layer 12 are PVC. At step 100 (FIG. 5 ), the 8, 10, 12 may be stacked in order on top of alayers moldboard 14. Atstep 110, atop plate 16 having a desired texture may be placed on top of the assembled layers. This process may be repeated as desired. Atstep 120 the assembled 8, 10, 12 may be placed in a multi-plate hot press 18 (layers FIG. 4 ) and molded at a desired temperature and under a desired pressure for a desired time. The temperature may be from about 175 degrees F. to about 325 degrees F. The pressure may be from about 250 psi to about 350 psi. The time may be from about 8 minutes to about 16 minutes. Atstep 130 the bonded slab may be removed from the press and cooled. At step 140 a polyurethane or other coating may then be applied to an upper surface of thevinyl portion 2 and cured with ultraviolet light or other appropriate curing technique. Atstep 150 the bonded and coated vinyl slab (now vinyl portion 2) may be allowed to acclimate at 68 degrees Fahrenheit (+/−5 degrees F.) for about 48 hours. - As previously noted, the acoustical portion 4 may comprise a crumb rubber component, a polyurethane foam component, and a resin binder. In one exemplary embodiment, the base acoustical material may be compounded to consist of 10 to 40 parts crumb rubber, 60 to 90 parts polyurethane foam and a resin binder. At
step 200, the mixture may be blended in a mixer until the compound is homogenous. In some embodiments, the crumb rubber and polyurethane may be recycled from postindustrial or post-consumer materials. At step 210 (FIG. 6 ), the mixture may be introduced into a drum mold. Atstep 220, heat and pressure may be applied to cure the mixture. In some embodiments, the temperature may be up to about 450 degrees F., the pressure may be up to about 1,200 psi, and the curing time may be up to about 90 minutes. Atstep 230, the cured mixture may be removed from the mold and allowed to cool as a cured roll. Atstep 240 layers are cut off the cured roll in a skiving process to obtain an acoustical layer 4 having a thickness of about 0.118-in (3 mm). The acoustical layer 4 may then be cut into slabs of desired size and allowed to acclimate at 68 degrees F. (+/−5 degrees F.) for about 48 hours. The acoustical portion 4 may be stored in the same location as thevinyl portion 2 so that the portions acclimate together. - The
vinyl portion 2 and acoustical portion 4 may then be bonded together using a suitable adhesive. At step 300 (FIG. 7 ), the adhesive may be heated on a double drum mill to allow the carrier to flash more quickly. In one embodiment, the adhesive is a polyurethane adhesive, which may prevent any reaction between the acoustical layer 4 and thevinyl portion 2. Atstep 310, the drum mill is opened to allow the adhesive to flow evenly onto an upper surface of the acoustical portion 4 as the acoustical portion 4 passes under the mill opening. To facilitate this, the acoustical portion 4 may be carried along on an open metal belt conveyer. Atstep 320, thevinyl portion 2 may be placed onto the adhesive coated surface of the rubber backing and, atstep 330, the combined portions may be rolled in a pinch roller to ensure a desired spread and transfer of the adhesive to the adjoining surfaces of theportions 2, 4. In one embodiment, the pinch roller applies a pressure of about 150 psi to the combined portions. Atstep 340, the bonded slab assembly (containing bondedlayers 2, 4) may then be placed on a flat surface. This process may be repeated until a desired quantity of bonded slab assemblies is produced or a maximum height of 38 inches is achieved. Atstep 350, a top plate may be placed on the assembled stack and weighted. Atstep 360, the assembled stack may be allowed to acclimate at 68 degrees F. (+/−5 degrees F.) for about 48 hours. This acclimation may allow the bonded assembly to equalize any stress in the material prior to cutting to size. This acclimation may also facilitate the dimensional stability of the finished product. Atstep 370 the acclimated bonded slabs may be inspected and placed in a press, which in one embodiment is a 150-ton clicker press. The press may have a die installed that cuts the slab intovinyl tiles 1 of a predetermined shape and size. Each cut vinyl tile may then be inspected visually for pattern and surface defects. The cut pieces can be placed on a smooth glass surface and inspected for gauge. The cut and inspectedvinyl tiles 1 may then be packaged and stored for use. - Testing
- Impact Sound Transmission Test and Classification was performed on an
exemplary vinyl tile 1 installed over a wood joist floor/ceiling assembly. The specimen was tested in accordance with the American Society for Testing and Materials (ASTM) designation ASTM E492-09, titled “Standard Test Method for Laboratory Measurement of Impact Sound Transmission Through Floor-Ceiling Assemblies Using the Tapping Machine.” It was classified in accordance with ASTM E989-06, entitled, “Standard Classification for Determination of Impact Insulation Class (IIC)”. - This method measures the impact sound transmission performance of a floor/ceiling assembly, in a controlled laboratory environment. A standard tapping machine (B & K Type 3207) was placed at four positions on a test floor that forms the horizontal separation between two rooms, one directly above the other. The data obtained was normalized to a reference room absorption of 10 square meters in accordance with the test method.
- The standard also prescribes a single-figure classification rating called “Impact Insulation Class, IIC” which can be used by architects, builders and code authorities for acoustical design purposes in building construction.
- The IIC is obtained by matching a standard reference contour to the plotted normalized one third octave band sound pressure levels at each test frequency. The greater the IIC rating, the lower the impact sound transmission through the floor-ceiling assembly.
- The test floor consisted of a 100-sq. ft. opening that forms the horizontal separation of the two rooms, one directly above the other. The structural members are open webbed wood floor trusses, 16 inches deep installed 24 inches on center. The sub flooring is ⅝-inch-thick plywood. The bridging is a continuous 2×4 nailed to the bottom chord and the sides of the diagonals with 2-inch-long nails. Single leaf RC-1 acoustical channels (2½ inch×½ inch) were spaced 16 inches on center and attached to the bottom chord by screws. The insulation is 5½ inches of fiberglass. The ceiling is gypsum board, ⅝ inches thick, with the long edges located between the joists perpendicular to the acoustical channels. Short edges are staggered by 4 ft. Sheets are fastened to the acoustical channels by means of ½ inch screws located ½ inch away from the edge and 3 inches from the long edges; screws are spaced 6 inches on center. Joints are taped and finished with two layers of compound.
- The
exemplary vinyl tile 1 measured 6 inches wide by 36 inches long by 0.20 inches thick. The flooring weighed 0.65 lbs/sq. ft. - Test Results
- The data obtained in the room below the panel normalized to Ao=10 square meters, is as follows:
-
1/3 Octave Band Center Frequency 1/3 Octave Band Sound Pressure Hz Level dB re 0.0002 Microbar 100 66 125 60 160 60 200 62 250 63 315 61 400 60 500 56 630 49 800 40 1000 27 1250 22 1600 20 2000 18 2500 17 3150 13 Impact Insulation Class 54 (IIC) - The 95% uncertainty level for each tapping machine location is less than 3 dB for the ⅓ octave bands centered in the range from 100 to 400 Hz and less than 2.5 dB for the bands centered in the range from 500 to 3150 Hz.
- For the floor/ceiling construction, the 95% uncertainty limits for the normalized sound pressure levels were determined to be less than 2 dB for the ⅓ octave bands centered in the range from 100 to 3500.
-
FIG. 8 shows the results from testing in which impact sound pressure level and IIC contour are plotted for theexemplary vinyl tile 1. The generally accepted minimum passing limit for a floor ceiling assembly is an IIC of 50 or above. As can be seen, theexemplary vinyl tile 1 exhibited an IIC of 54. - Referring to
FIG. 9 , anexemplary vinyl tile 401 includes anupper vinyl portion 402 and a loweracoustical portion 404. Although thevinyl tile 401 is shown as having a rectangular plank shape, it will be appreciated that tiles according to the disclosure can be manufactured in any of a variety of desired geometric and non-geometric shapes. Non-limiting examples of such shapes include rectangular planks with a width of 4-inches and a length of 36-inches, rectangular planks with a width of 6-inches and a length of 36-inches, and 18-inch by 18-inch square shapes. - The
vinyl portion 402 may include asurface wear layer 406 to enhance the wear life of the vinyl portion. Thesurface wear layer 406 may have a thickness of about 0.005-inches (5 mils) to about 40 mils. In one embodiment, the surface wear layer may be about 8 mils. Thesurface wear layer 406 may comprise polyvinyl chloride (PVC). In one non-limiting exemplary embodiment, thesurface wear layer 406 includes at least 90% PVC. Thevinyl portion 402 may comprise a polyvinylchloride (PVC) material. Theacoustical portion 404 may comprise a plurality of layers including a variety of different sound dampening materials, as will be described in greater detail later. Thevinyl portion 402 may be bonded to theacoustical portion 404 using asuitable adhesive 408. -
FIG. 10 shows a cross-section of thevinyl tile 401. This exemplary embodiment includes a vinyl portion 402 (with surface wear layer 406) and anacoustical portion 404 that includes first and 404 a, 404 b. Thesecond sub-layers vinyl portion 402 can be bonded to thefirst sub-layer 404 a byadhesive layer 408, while the first and 404 a, 404 b can be bonded together bysecond sub-layers adhesive layer 410. It will be appreciated that in some embodiments the layers may be bonded to each other without adhesive, such as by heat bonding or the like. - The acoustical portion 404 (including its sub-layers) can be permanently bonded to the
vinyl portion 402 using anadhesive layer 408 material that is highly compatible both with thevinyl portion 402 and thefirst sub-layer 404 a. Likewise, the material making up thefirst sub-layer 404 a may be highly compatible with thevinyl portion 402 to reduce the chances for de-lamination and/or degradation of the vinyl portion from the acoustical portion during extended use. The same may be true of the compatibility of theadhesive layer 410 and the first andsecond sub-layers 404 a, b to ensure long term durability of the resultingtile 401. - In the illustrated embodiment, the
vinyl portion 402 has a thickness of about 2 millimeters (mm), while theacoustical portion 404 has a combined thickness of about 4 mm. The sub-layers 404 a, 404 b are shown as having thicknesses of 2 mm each. It will be understood that these thicknesses are merely exemplary, and that different individual layer thicknesses can be used to suit a particular application, as will be explained. - As previously noted, it is desirable that the actual composition of layers within the
tile 401 be variable so as to be customizable to the particular flooring application. That is to say that different sub-floor structures can require different combinations of acoustical portion sub-layer gauges, thicknesses and materials in order to achieve specific construction demands of a particular building. It will be appreciated that modern construction methods include the manufacture of buildings having concrete sub-flooring (six-inch concrete, light concrete, etc.), and a wide variety of different truss-based sub-floor systems (metal trusses, wooden trusses, and combinations thereof). In addition, a single building may include multiple different sub-floor types, each of which can have a different acoustical “response.” As will be appreciated, invinyl tiles 401 used with each of these different sub-flooring types may need to include a customizedacoustical portion 404 in order to provide desired sound dampening in such buildings. - Thus, to accommodate these applications, the
acoustical portion 404 may include a plurality ofsub-layers 404 a-404 n of sound dampening material. Although the illustrated embodiments include two sub-layers (404 a, 404 b) it will be appreciated that more than two sub-layers (i.e., up to “n” sub-layers) as desired to suit the application. In addition, although the illustrated embodiments show 404 a, 404 b having respective thicknesses of 2 mm, that other thicknesses may also be used. The individual materials used to form theindividual sub-layers sub-layers 404 a-404 n may be formulated to minimize sound impact transmissions at specific frequencies. Likewise, the thicknesses of thesub-layers 404 a-404 n may be selected to work in combination with the individual sub-layer material types to minimize sound impact transmissions at specific frequencies. By structuring the acoustical layers according to the particular type of sub-floor assembly, sound reduction can be fine-tuned for a particular structure. - As can be seen in
FIG. 10 , sound (represented by arrows “A”) is transmitted through thevinyl portion 402. The sound (represented by arrows “B”7) is then transmitted through thefirst sub-layer 404 a. The sound (represented by arrows “C”) is finally transmitted through thesecond sub-layer 404 b at a third frequency and magnitude. The resultingtile 401 meets ASTM E 2179 IIC sound requirements. As the sound moves through each 402, 404 a, 404 b, sound at various frequencies is reduced and absorbed.layer - A non-limiting exemplary listing of appropriate sub-layer materials include the following:
- 1) Rubber layers;
- 2) Rubber and cork formulated together;
- 3) Rubber and polyurethane (PU) foam formulated together;
- 4) PU Foam and cork formulated together; and the like.
- The above, and other, materials can be provided in a variety of different densities, multiple thicknesses, and may include one or more fiber components.
- Each of the
sub-layers 404 a-404 n may have a thickness in the range of about 0.5 mm to about 5.5 mm. The thickness of the assembled layers (i.e., total thickness of the acoustical portion 404) may be between about 2.5 mm to about 6 mm. As previously noted, the number of sub-layers can be as few as two, but is not limited to several as the requirements are met for a particular need. The layers are bonded together with specific adhesives in various ways depending on the composition of the layers. A non-limiting exemplary listing of such adhesives includes cyanoacrylate, latex, acrylic, epoxy and the like. - In some embodiments, incorporating polyurethane into one or more of the
sub-layers 404 a-404 n can enhance compatibility between theacoustical portion 404 and thevinyl portion 402. In one non-limiting exemplary embodiment, the acoustical portion comprises about 10-40% crumb rubber, about 60-90% polyurethane foam, and a resin binder. In some embodiments the crumb rubber component is obtained from recycled tires or sneaker rubber. The polyurethane foam may be an appropriate open cell or closed cell foam, while the resin binder may be a polyurethane binder. - As noted, different sub-floor systems that includes the floor/ceiling assembly structures transmit sound differently, and thus it can be desirable to customize the
individual sub-layers 404 a-404 n of avinyl tile 401 to suit the application.FIG. 11 shows thetile 401 ofFIG. 10 applied over a woodtruss sub-floor assembly 412. As can be seen, a woodtruss sub-floor assembly 412 might be made of a variety of different burling materials, includingplywood sheathing 414, wood beams 416,metal fastening plates 418, gypsum board 420 (where the sub-floor forms part of an adjoining ceiling, as in the illustrated embodiment),resilient channels 422, etc. As will be appreciated, wood trusses tend to deflect and require backings that take such flexure into account. Thus, in theFIG. 11 embodiment, theacoustical portion 404 includes afirst sub-layer 404 a comprising a rubber material, and asecond sub-layer 404 b comprising a combination of rubber and cork. Each of the 404 a, 404 b of this embodiment are about 2 mm thick, and are adhered together using any of a variety of appropriate adhesives, as previously described.sub-layers -
FIG. 12 shows an exemplaryalternative floor tile 424 that includes avinyl portion 426, and anacoustical portion 428 adhered thereto using anadhesive layer 430. In this embodiment, theacoustical portion 404 again includes first and 404 a, 404 b. By contrast to the prior embodiment, however, thesecond sub-layers first sub-layer 404 a comprises a cork and rubber combination, while thesecond sub-layer 404 b comprises a rubber layer. As shown inFIG. 13 , this alternative tile may be appropriate for use with aconcrete sub-floor 432. Since concrete is more homogenous and rigid than the previously described woodentruss floor assembly 412, it can transmit more sound at some frequencies than others. - Referring now to
FIG. 14 , a method for designing, manufacturing, and applying avinyl tile 401 to suit a particular flooring application will now be described. Atstep 500, the design of a particular sub-floor system that includes the floor/ceiling assembly to which thevinyl tile 401 will be applied is determined. Atstep 510, an acoustical portion is designed to include “n” individual sub-layers where “n” is a number greater than 1. The number “n” of individual sub-layers is selected based on the design of the sub-floor. Atstep 520 each the “n” sub-layers are selected to comprise a particular material. The particular material selected for each individual sub-layer is based on the design of the sub-floor system that includes the floor/ceiling assembly and the number “n” of sub-layers. Atstep 530, each of the “n” sub-layers are selected to have a particular thickness, where the thickness of each sub-layer is selected based on the design of the sub-floor, the number “n” of sub-layers and the material of each of the sub-layers. Atstep 540, the “n” individual sub-layers are bonded together. Atstep 550, the bonded sub-layers are bonded to a vinyl tile portion. Atstep 560, the vinyl tile is applied to the sub-floor. - While certain embodiments of the disclosure have been described herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision additional modifications, features, and advantages within the scope and spirit of the claims appended hereto.
Claims (20)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/695,204 US10604946B2 (en) | 2012-05-10 | 2017-09-05 | Method of manufacturing an acoustical flooring tile |
| US16/009,276 US20180291639A1 (en) | 2012-05-10 | 2018-06-15 | Acoustical vinyl flooring with side coupling elements |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/468,103 US8640824B2 (en) | 2012-05-10 | 2012-05-10 | Acoustical vinyl flooring and methods of manufacture |
| US201361808670P | 2013-04-05 | 2013-04-05 | |
| US14/108,754 US20170204620A9 (en) | 2012-05-10 | 2013-12-17 | Multi-layer acoustical flooring tile and method of manufacture |
| US15/695,204 US10604946B2 (en) | 2012-05-10 | 2017-09-05 | Method of manufacturing an acoustical flooring tile |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/108,754 Continuation US20170204620A9 (en) | 2012-05-10 | 2013-12-17 | Multi-layer acoustical flooring tile and method of manufacture |
| US15/695,196 Continuation-In-Part US20170362838A1 (en) | 2012-05-10 | 2017-09-05 | Acoustical flooring tile and method of manufacture |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/009,276 Continuation-In-Part US20180291639A1 (en) | 2012-05-10 | 2018-06-15 | Acoustical vinyl flooring with side coupling elements |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20170362839A1 true US20170362839A1 (en) | 2017-12-21 |
| US10604946B2 US10604946B2 (en) | 2020-03-31 |
Family
ID=51654657
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/108,754 Abandoned US20170204620A9 (en) | 2012-05-10 | 2013-12-17 | Multi-layer acoustical flooring tile and method of manufacture |
| US15/695,204 Active 2032-09-23 US10604946B2 (en) | 2012-05-10 | 2017-09-05 | Method of manufacturing an acoustical flooring tile |
| US15/695,196 Abandoned US20170362838A1 (en) | 2012-05-10 | 2017-09-05 | Acoustical flooring tile and method of manufacture |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/108,754 Abandoned US20170204620A9 (en) | 2012-05-10 | 2013-12-17 | Multi-layer acoustical flooring tile and method of manufacture |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/695,196 Abandoned US20170362838A1 (en) | 2012-05-10 | 2017-09-05 | Acoustical flooring tile and method of manufacture |
Country Status (3)
| Country | Link |
|---|---|
| US (3) | US20170204620A9 (en) |
| CA (1) | CA2899742C (en) |
| WO (1) | WO2014165335A1 (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9777116B2 (en) | 2014-10-16 | 2017-10-03 | International Business Machines Corporation | Porous/nanoporous PHT |
| US9771726B2 (en) | 2015-05-18 | 2017-09-26 | Innovative Construction Technologies, LLC | Flooring product and method of manufacturing same |
| US10546514B2 (en) * | 2016-02-26 | 2020-01-28 | Usg Interiors, Llc | Mobile demonstration device for sound-reducing tiles |
| EP3542011B1 (en) * | 2016-11-18 | 2023-06-14 | Aectual Holding B.V. | A method for making a surface covering |
| US10753100B2 (en) | 2017-08-11 | 2020-08-25 | Ecointeriors Corp. | Flooring panel equipped with quick-release adhesive sheet |
| US11541641B2 (en) * | 2017-10-31 | 2023-01-03 | Novalis Holdings Limited | Surface covering having an acoustical component |
| JP2024500070A (en) | 2020-12-11 | 2024-01-04 | ダウ グローバル テクノロジーズ エルエルシー | Preparation of acoustic flooring and acoustic flooring with improved acoustic performance |
| CN115059253B (en) * | 2022-02-22 | 2023-09-15 | 新疆玖道建设有限公司 | Dampproof T-shaped formwork wall body of fabricated building lightweight steel structure and mounting method |
| MX2024009965A (en) | 2022-02-28 | 2024-08-26 | Dow Global Technologies Llc | ACRYLIC DAMPING ADDITIVES FOR FILLED THERMOPLASTICS. |
| WO2025122310A1 (en) | 2023-12-06 | 2025-06-12 | Dow Global Technologies Llc | Acrylic damping additives for filled thermoplastics |
| WO2025122309A1 (en) | 2023-12-06 | 2025-06-12 | Dow Global Technologies Llc | Acrylic damping additives for filled thermoplastics using small filler particles |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8893850B2 (en) * | 2012-05-10 | 2014-11-25 | Michael Freedman & Associates, Inc. | Acoustical vinyl flooring and methods of manufacture |
Family Cites Families (116)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2336235A (en) | 1940-04-22 | 1943-12-07 | Albert C Fischer | Structural unit |
| US3770536A (en) | 1969-05-09 | 1973-11-06 | Parkwood Laminates Inc | Method of making and installing a laminated product |
| US3593939A (en) | 1969-09-10 | 1971-07-20 | Deering Milliken Res Corp | Apparatus for processing sheet material |
| US4123313A (en) | 1973-02-13 | 1978-10-31 | Sidlaw Industries Limited | Apparatus for making a composite fabric |
| US3865059A (en) | 1973-03-12 | 1975-02-11 | B & J Machinery Co | Tufting machine with positive positioning means for backing material |
| US3895143A (en) * | 1973-03-16 | 1975-07-15 | Nicolet Ind Inc | Metal-fiber-latex-containing sheet materials |
| DE2502025A1 (en) | 1974-02-08 | 1975-08-14 | Leuna Werke Veb | TEXTILE FLOORING WITH THERMOPLASTIC FOAM SUB-FLOOR AND A METHOD FOR ITS MANUFACTURING |
| SE7604655L (en) | 1975-04-23 | 1976-10-24 | Dunlop Ltd | OF PYLYMERA MATERIAL COMPOSITE BODY JUST SET FOR ITS PREPARATION |
| US4056161A (en) * | 1975-10-30 | 1977-11-01 | Tillotson Corporation | Sound attenuation material |
| US4128523A (en) | 1977-08-18 | 1978-12-05 | The General Tire & Rubber Co. | Polyethylene-EDPM compositions |
| US4405668A (en) | 1980-01-17 | 1983-09-20 | Lewis J. McDermott, III | One piece binder-carpet construction |
| IT1132252B (en) | 1980-07-25 | 1986-07-02 | Pirelli | SHEET FOR FLOORING |
| JPS6059379B2 (en) | 1981-03-31 | 1985-12-25 | 住友ゴム工業株式会社 | floor paving structure |
| DE3522899A1 (en) | 1985-06-26 | 1987-01-08 | Osterwald Sportboden Gmbh | SPORTS FLOOR |
| US5011719A (en) | 1985-11-29 | 1991-04-30 | American National Can Company | Polymeric compositions and films |
| BR8800883A (en) | 1987-03-02 | 1988-10-11 | Raychem Ltd | ARTICLE |
| US4923759A (en) | 1988-01-25 | 1990-05-08 | Gencorp Inc. | Cohesive bonding process for forming a laminate of a wear resistant thermoplastic and a weather resistant rubber |
| US5013379A (en) | 1988-01-25 | 1991-05-07 | Gencorp Inc. | Cohesive bonding process for forming a laminate of a wear resistant thermoplastic and a weather resistant rubber |
| US4945697A (en) | 1988-04-28 | 1990-08-07 | Saar-Gummiwerk Gmbh | Floor tile and floor |
| US4994130A (en) | 1988-08-30 | 1991-02-19 | Mitsubishi Kasei Corporation | Method for producing a composite laminate |
| US4942072A (en) | 1989-05-11 | 1990-07-17 | Chung Farn Juoh | Carpet tiles with edges projections and grooves |
| JPH0459352A (en) | 1990-06-29 | 1992-02-26 | Toyoda Gosei Co Ltd | Manufacture of extruded rubber product |
| DE4028475A1 (en) | 1990-09-07 | 1992-03-12 | Phoenix Ag | Heat-resistant sheet e.g. for flooring - consists of substrate of elastomer from specific range, partly penetrating surface of aramid or glass woven or knitted fabric |
| US5906889A (en) | 1990-10-31 | 1999-05-25 | Minnesota Mining And Manufacturing Company | Pavement marking material |
| FR2708777B1 (en) * | 1993-08-06 | 1995-09-22 | Roth Sa Freres | Panel absorbing acoustic energy in the low, medium and high frequencies, in particular in the frequencies between 400 Hz and 5000 Hz. |
| ATE185733T1 (en) | 1993-11-29 | 1999-11-15 | Greiner & Soehne C A | MOLDED PART MADE OF PLASTIC FOAM AND METHOD AND DEVICE FOR THE PRODUCTION THEREOF |
| GB2300593B (en) | 1995-05-12 | 1998-07-15 | Gates | Carpet underlay |
| DE69604290T2 (en) | 1995-06-09 | 2000-03-02 | Minnesota Mining And Mfg. Co., Saint Paul | ROAD MARKING MATERIAL |
| DE19526044C2 (en) | 1995-07-17 | 1999-03-18 | M & W Verpackungen Gmbh | Fluffy composite film and method for producing such a composite film |
| JP3452697B2 (en) | 1995-08-22 | 2003-09-29 | 光洋産業株式会社 | Board heat pressure device and heat pressure method |
| JPH09151596A (en) * | 1995-11-30 | 1997-06-10 | Mitsubishi Chem Mkv Co | Cork flooring |
| BE1010487A6 (en) | 1996-06-11 | 1998-10-06 | Unilin Beheer Bv | FLOOR COATING CONSISTING OF HARD FLOOR PANELS AND METHOD FOR MANUFACTURING SUCH FLOOR PANELS. |
| US6709729B2 (en) | 1997-10-17 | 2004-03-23 | Alan Baruch | Three dimensional protective pads |
| US6197400B1 (en) | 1997-10-24 | 2001-03-06 | Mannington Carpets, Inc. | Repeating series of tiles |
| US5950378A (en) | 1997-12-22 | 1999-09-14 | Council; Walter S. | Composite modular floor tile |
| DE59904449D1 (en) | 1998-03-30 | 2003-04-10 | Phoenix Ag | SEAL RAIL |
| SE512290C2 (en) | 1998-06-03 | 2000-02-28 | Valinge Aluminium Ab | Locking system for mechanical joining of floorboards and floorboard provided with the locking system |
| DE19851656C2 (en) * | 1998-11-10 | 2002-12-05 | Johannes Schulte | floorboard |
| US6576577B1 (en) | 1998-12-03 | 2003-06-10 | Foam Products Corporation | Underlayment for floor coverings |
| US6096156A (en) | 1999-03-11 | 2000-08-01 | Milliken & Company | Vinyl compound plasma pre-treatment for promoting the adhesion between textiles and rubber compounds |
| SE517478C2 (en) | 1999-04-30 | 2002-06-11 | Valinge Aluminium Ab | Locking system for mechanical hoisting of floorboards, floorboard provided with the locking system and method for producing mechanically foldable floorboards |
| US6332941B1 (en) | 1999-10-04 | 2001-12-25 | Invincible Products, Inc. | Modular floor tile with superimposed images |
| JP3893508B2 (en) | 2000-01-25 | 2007-03-14 | 平岡織染株式会社 | Surface treatment sheet capable of hot melt bonding |
| US6472041B1 (en) | 2000-02-28 | 2002-10-29 | Richard L. Burke | Monolithic surfacing system and method for making same |
| DE10062859A1 (en) | 2000-12-16 | 2002-06-27 | Henkel Teroson Gmbh | Multilayer composite materials with organic rubber-based interlayers |
| JP2004522876A (en) | 2001-01-15 | 2004-07-29 | 2752−3273 ケベック インコーポレイテッド | Elastic floor |
| US6623840B2 (en) | 2001-02-23 | 2003-09-23 | Dodge-Regupol, Incorporated | Protective flooring |
| US6920723B2 (en) * | 2001-08-16 | 2005-07-26 | Dodge-Regupol, Incorporated | Impact sound insulation |
| DE10151614C1 (en) | 2001-10-23 | 2003-04-24 | Kaindl Wals M | Floor panel has a sound-improving layer provided on its bottom side which is attached by means of an amino plastic material |
| US6808588B1 (en) | 2001-12-04 | 2004-10-26 | Milliken & Company | Continuous mat making process and product |
| US20030203152A1 (en) | 2002-04-08 | 2003-10-30 | Higgins Kenneth B. | Flooring systems and methods |
| US6972144B2 (en) | 2002-04-19 | 2005-12-06 | Hunter Paine Enterprises, Llc | Composite structural material and method of making same |
| US20060008612A1 (en) | 2002-06-13 | 2006-01-12 | Brazier Peter C | Mat |
| US20040001933A1 (en) | 2002-06-27 | 2004-01-01 | George Eberhard | Floor mat and method for making the same |
| CA2500956C (en) * | 2002-10-01 | 2011-09-13 | Paul C. Downey | Noise and vibration mitigating mat |
| US7431975B2 (en) | 2002-11-29 | 2008-10-07 | Dzs, L.L.C. | Textured composite material |
| CA2418295A1 (en) * | 2003-01-31 | 2004-07-31 | Robert Ducharme | Multi-composite acoustic panel for use in construction |
| WO2004081131A2 (en) | 2003-03-12 | 2004-09-23 | Royal Adhesives And Sealants, Llc | Adhesive composition and adhesive tape for mounting a mirror |
| DE10311245A1 (en) | 2003-03-14 | 2004-09-30 | Greiner Perfoam Ges.m.b.H. | Acoustic part made of composite foam |
| US7029744B2 (en) | 2003-04-24 | 2006-04-18 | Ultimate Systems, Ltd. | High traction flooring laminate |
| WO2004101226A1 (en) | 2003-05-12 | 2004-11-25 | Evan Lipstein | Cushioned grip tape |
| US20050112320A1 (en) | 2003-11-20 | 2005-05-26 | Wright Jeffery J. | Carpet structure with plastomeric foam backing |
| SE526333C2 (en) | 2003-12-11 | 2005-08-23 | Pergo Europ Ab | Flooring system with a plurality of different upper decorative surfaces |
| US10390647B2 (en) | 2004-04-08 | 2019-08-27 | Parallax Group International, Llc | Floor matting |
| US20050250399A1 (en) | 2004-05-07 | 2005-11-10 | Building Materials Investement Corporation | Modified bitumen and thermoplastic composite roofing membrane |
| US20050257875A1 (en) | 2004-05-21 | 2005-11-24 | Building Materials Investment Corporation | Process for coating modified bitumen membranes using reflective laminate coatings |
| US20060037815A1 (en) | 2004-08-18 | 2006-02-23 | Schabel Norman G Jr | Particulate insulation materials |
| DE202004014160U1 (en) * | 2004-09-09 | 2004-11-18 | Mohr, Wolfgang | Flooring element |
| US20070039268A1 (en) | 2004-12-01 | 2007-02-22 | L&P Property Management Company | Energy Absorptive/Moisture Resistive Underlayment Formed using Recycled Materials and a Hard Flooring System Incorporating the Same |
| CN101111367A (en) * | 2004-12-16 | 2008-01-23 | 美利肯公司 | Textile surface covering and manufacturing method thereof |
| TW200635830A (en) | 2004-12-29 | 2006-10-16 | Hunter Paine Entpr Llc | Composite structural material and method of making the same |
| US20060156663A1 (en) | 2005-01-14 | 2006-07-20 | Zaxxon Usa, Inc. | Removable and relayable floor covering |
| US20060165950A1 (en) | 2005-01-21 | 2006-07-27 | Dodge Arthur B Iii | Recyclable rubber surface covering |
| US20060244187A1 (en) * | 2005-05-02 | 2006-11-02 | Downey Paul C | Vibration damper |
| CN101184612A (en) | 2005-05-24 | 2008-05-21 | 美利肯公司 | Surface coverings and related methods |
| US20070014960A1 (en) | 2005-07-18 | 2007-01-18 | Western Nonwovens, Inc. | Fire retardant binding tape for mattresses |
| US20070077398A1 (en) | 2005-10-04 | 2007-04-05 | Viam Manufacturing, Inc. | Plastically deformable mat |
| JP2007203919A (en) | 2006-02-02 | 2007-08-16 | Suminoe Textile Co Ltd | Automotive floor carpet and method of manufacturing the same |
| US20070254131A1 (en) | 2006-04-27 | 2007-11-01 | Mohawk Carpet Corporation | Hot melt carpet tile and process for making same |
| US20070275207A1 (en) | 2006-05-24 | 2007-11-29 | Higgins Kenneth B | Carpet tile and related methods |
| JP4461121B2 (en) | 2006-07-10 | 2010-05-12 | アドコムズ、プロモーショナル、ワールドワイド、インコーポレイテッド | Elastic floor |
| US8051950B2 (en) * | 2006-08-03 | 2011-11-08 | Glacier Bay, Inc. | System for reducing acoustic energy |
| US7735279B2 (en) | 2006-09-22 | 2010-06-15 | Johns Manville | Polymer-based composite structural underlayment board and flooring system |
| KR100824703B1 (en) * | 2006-11-29 | 2008-04-24 | (주)에이피엠티 | Flame Retardant Lightweight Lamination |
| EP2121303B1 (en) | 2007-01-19 | 2010-07-14 | Dimontonate Floccati S.p.A. | Multi-layered film and flocked material comprising such a film |
| US20080182074A1 (en) | 2007-01-31 | 2008-07-31 | Eastman Chemical Company | Rigid pvc melt bonded thermoplastic elastomer composites |
| US8033079B2 (en) | 2007-03-29 | 2011-10-11 | FloorazzoTile, LLC | Method of manufacturing terrazzo tiles, terrazzo tiles and flooring system assembled with terrazzo tiles |
| CN105235355A (en) | 2007-04-03 | 2016-01-13 | 陶氏环球技术有限责任公司 | Hot film lamination (vacuum assisted) for carpet backing applications |
| US20090029097A1 (en) | 2007-06-11 | 2009-01-29 | Riddle Dennis L | Flooring products and methods |
| WO2008154009A1 (en) | 2007-06-11 | 2008-12-18 | Textile Rubber & Chemical Company | Polyurethane coated non-flooring products and methods for making same |
| US7993717B2 (en) | 2007-08-02 | 2011-08-09 | Lj's Products, Llc | Covering or tile, system and method for manufacturing carpet coverings or tiles, and methods of installing coverings or carpet tiles |
| US8205391B2 (en) | 2007-09-20 | 2012-06-26 | Toyoda Gosei Co., Ltd. | Automobile weather strip |
| DE102008003153A1 (en) | 2008-01-03 | 2009-07-09 | Volkswagen Ag | Molded body for interior fitting such as instrument panel of a motor vehicle, comprises a carrier part and a film, which is connected with the carrier part, forms a surface visible for the user and comprises a first- and second layer |
| WO2009111621A1 (en) | 2008-03-06 | 2009-09-11 | Mannington Mills, Inc. | Surface coverings containing reclaimed vct material, and methods and systems for making and using them |
| KR20090131460A (en) | 2008-06-18 | 2009-12-29 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Antistatic Surface Protection Film |
| US8597563B2 (en) | 2008-07-11 | 2013-12-03 | Rohm And Haas Company | Recycled thermoplastic composition comprising waste thermoset material and methods of making |
| DE102008038522A1 (en) | 2008-08-20 | 2010-02-25 | Bayer Materialscience Ag | Plastic composite molding in three-layer construction |
| US8473265B2 (en) * | 2008-10-27 | 2013-06-25 | Schneider Electric It Corporation | Method for designing raised floor and dropped ceiling in computing facilities |
| US8151933B2 (en) | 2009-05-13 | 2012-04-10 | Cvg Management Corporation | Thermally and acoustically insulative vehicle flooring |
| US8474208B2 (en) * | 2009-06-22 | 2013-07-02 | Novalis Holdings Limited | Floor panel containing a polymer and cork |
| US20100330352A1 (en) | 2009-06-30 | 2010-12-30 | Gates Corporation | Bonded Part with Laminated Rubber Member and Method of Making |
| US8468770B2 (en) | 2009-09-23 | 2013-06-25 | Textile Rubber & Chemical Company, Inc. | Floor covering product and method of using same |
| WO2011038276A2 (en) | 2009-09-25 | 2011-03-31 | Jonathan Chang | Elastomeric grip tape |
| US8192823B2 (en) | 2009-12-21 | 2012-06-05 | Regupol America Llc | Flooring tile with mesh layer |
| US20120276348A1 (en) * | 2010-01-07 | 2012-11-01 | Clausi Robert N | Resilient flooring compositions |
| PL2524090T3 (en) | 2010-01-11 | 2022-06-13 | Välinge Innovation AB | Surface covering with interlocking design |
| US10759149B2 (en) | 2010-02-04 | 2020-09-01 | Ecore International Inc. | Recycled rubber backed cushioned vinyl |
| US9340970B2 (en) | 2010-02-04 | 2016-05-17 | Ecore International Inc. | Recycled rubber backed cushioned vinyl |
| US8728260B2 (en) | 2010-02-04 | 2014-05-20 | Ecore International Inc. | Recyclable surface covering and method and system for manufacturing a recyclable surface covering |
| US9096045B2 (en) | 2010-02-04 | 2015-08-04 | Ecore Interntaional Inc. | Recyclable surface covering and method and system for manufacturing a recyclable surface covering |
| ES2748335T3 (en) | 2010-10-06 | 2020-03-16 | Scholz Karl Heinz Peter | Floor covering as well as use of a floor panel |
| US8567557B2 (en) | 2011-01-04 | 2013-10-29 | Rob Kuepfer | Sound-muffling underlay tile systems |
| US20120189819A1 (en) | 2011-01-25 | 2012-07-26 | Uniroll Enterprise Co., Ltd. | Reinforced Rubber Tile with Laminated Top Layer and Air Cushion Effect |
| US8822014B2 (en) | 2012-03-05 | 2014-09-02 | Dongguan Meijer Plastic Products Co., Ltd. | Glue-free anti-slip polyvinyl chloride floor brick and preparing method thereof |
| US8590670B1 (en) | 2012-06-08 | 2013-11-26 | Polyglass S.P.A. | Sound proof membrane |
| CA2854750C (en) | 2013-06-21 | 2022-10-04 | Arthur B. Dodge, Iii | Recyclable rubber securement mat with self-provided incline stop |
-
2013
- 2013-12-17 US US14/108,754 patent/US20170204620A9/en not_active Abandoned
-
2014
- 2014-03-21 WO PCT/US2014/031413 patent/WO2014165335A1/en not_active Ceased
- 2014-03-21 CA CA2899742A patent/CA2899742C/en active Active
-
2017
- 2017-09-05 US US15/695,204 patent/US10604946B2/en active Active
- 2017-09-05 US US15/695,196 patent/US20170362838A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8893850B2 (en) * | 2012-05-10 | 2014-11-25 | Michael Freedman & Associates, Inc. | Acoustical vinyl flooring and methods of manufacture |
Also Published As
| Publication number | Publication date |
|---|---|
| US20140302294A1 (en) | 2014-10-09 |
| US20170204620A9 (en) | 2017-07-20 |
| CA2899742C (en) | 2017-07-18 |
| US20170362838A1 (en) | 2017-12-21 |
| US10604946B2 (en) | 2020-03-31 |
| WO2014165335A1 (en) | 2014-10-09 |
| CA2899742A1 (en) | 2014-10-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10604946B2 (en) | Method of manufacturing an acoustical flooring tile | |
| US8893850B2 (en) | Acoustical vinyl flooring and methods of manufacture | |
| US11680416B2 (en) | Field-assembled flooring systems with mold-resistant isolation boards | |
| US12252888B2 (en) | Field-assembled water control flooring systems | |
| US11851893B2 (en) | Field-assembled wall and flooring systems | |
| US20250198172A1 (en) | Panel suitable for assembling a floor covering | |
| US9598859B2 (en) | Sound reducing underlayment composition, system and method | |
| US20180291639A1 (en) | Acoustical vinyl flooring with side coupling elements | |
| EP2662508B1 (en) | Multi-layer accoustical flooring tile and method of manufacture | |
| US11220827B2 (en) | Floor underlayment | |
| Drerup et al. | Trouble Underfoot—In Situ and Laboratory Investigation of Engineered Wood Flooring |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: MICHAEL FREEDMAN & ASSOCIATES, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FREEDMAN, MICHAEL;TUCKER, DALE;REEL/FRAME:046067/0734 Effective date: 20131209 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |