US20170327866A1 - Methods for in vivo identification of endogenous mrna targets of micrornas - Google Patents
Methods for in vivo identification of endogenous mrna targets of micrornas Download PDFInfo
- Publication number
- US20170327866A1 US20170327866A1 US15/481,323 US201715481323A US2017327866A1 US 20170327866 A1 US20170327866 A1 US 20170327866A1 US 201715481323 A US201715481323 A US 201715481323A US 2017327866 A1 US2017327866 A1 US 2017327866A1
- Authority
- US
- United States
- Prior art keywords
- cell
- protein
- rna
- mrna
- complex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108020004999 messenger RNA Proteins 0.000 title claims abstract description 198
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000001727 in vivo Methods 0.000 title claims abstract description 13
- 108091070501 miRNA Proteins 0.000 title claims description 69
- 239000002679 microRNA Substances 0.000 claims abstract description 149
- 108700011259 MicroRNAs Proteins 0.000 claims abstract description 94
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 94
- 102000044126 RNA-Binding Proteins Human genes 0.000 claims abstract description 65
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 65
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims abstract description 61
- 101710159080 Aconitate hydratase A Proteins 0.000 claims abstract description 34
- 101710159078 Aconitate hydratase B Proteins 0.000 claims abstract description 34
- 101710105008 RNA-binding protein Proteins 0.000 claims abstract description 34
- 230000014509 gene expression Effects 0.000 claims abstract description 32
- 238000000638 solvent extraction Methods 0.000 claims abstract description 18
- 230000001105 regulatory effect Effects 0.000 claims abstract description 14
- 108020004417 Untranslated RNA Proteins 0.000 claims abstract 6
- 102000039634 Untranslated RNA Human genes 0.000 claims abstract 6
- 210000004027 cell Anatomy 0.000 claims description 87
- 108091060294 Messenger RNP Proteins 0.000 claims description 70
- 230000027455 binding Effects 0.000 claims description 41
- 239000003446 ligand Substances 0.000 claims description 36
- 239000012472 biological sample Substances 0.000 claims description 14
- 102000028499 poly(A) binding Human genes 0.000 claims description 13
- 108091023021 poly(A) binding Proteins 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 12
- -1 cdk4 inhibitor Proteins 0.000 claims description 11
- 230000001413 cellular effect Effects 0.000 claims description 11
- 108091027943 miR-16 stem-loop Proteins 0.000 claims description 7
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 6
- 102100040247 Tumor necrosis factor Human genes 0.000 claims description 5
- 108091091751 miR-17 stem-loop Proteins 0.000 claims description 5
- 102000000905 Cadherin Human genes 0.000 claims description 4
- 108050007957 Cadherin Proteins 0.000 claims description 4
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 claims description 4
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 claims description 4
- 108010051696 Growth Hormone Proteins 0.000 claims description 4
- 102000003960 Ligases Human genes 0.000 claims description 4
- 108090000364 Ligases Proteins 0.000 claims description 4
- 102100023087 Protein S100-A4 Human genes 0.000 claims description 4
- 102100038803 Somatotropin Human genes 0.000 claims description 4
- 102000034356 gene-regulatory proteins Human genes 0.000 claims description 4
- 108091006104 gene-regulatory proteins Proteins 0.000 claims description 4
- 108091037473 miR-103 stem-loop Proteins 0.000 claims description 4
- 108091044046 miR-17-1 stem-loop Proteins 0.000 claims description 4
- 108091065423 miR-17-3 stem-loop Proteins 0.000 claims description 4
- 108091037787 miR-19b stem-loop Proteins 0.000 claims description 4
- 102000016914 ras Proteins Human genes 0.000 claims description 4
- 108010014186 ras Proteins Proteins 0.000 claims description 4
- 102000004190 Enzymes Human genes 0.000 claims description 3
- 108090000790 Enzymes Proteins 0.000 claims description 3
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 3
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 claims description 3
- 108090001061 Insulin Proteins 0.000 claims description 3
- 108091007772 MIRLET7C Proteins 0.000 claims description 3
- 102100038895 Myc proto-oncogene protein Human genes 0.000 claims description 3
- 101710135898 Myc proto-oncogene protein Proteins 0.000 claims description 3
- 101710150448 Transcriptional regulator Myc Proteins 0.000 claims description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 3
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 claims description 3
- 230000001580 bacterial effect Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 238000000126 in silico method Methods 0.000 claims description 3
- 229940125396 insulin Drugs 0.000 claims description 3
- 108091091807 let-7a stem-loop Proteins 0.000 claims description 3
- 108091057746 let-7a-4 stem-loop Proteins 0.000 claims description 3
- 108091028376 let-7a-5 stem-loop Proteins 0.000 claims description 3
- 108091024393 let-7a-6 stem-loop Proteins 0.000 claims description 3
- 108091091174 let-7a-7 stem-loop Proteins 0.000 claims description 3
- 108091033753 let-7d stem-loop Proteins 0.000 claims description 3
- 108091063986 let-7f stem-loop Proteins 0.000 claims description 3
- 108091064157 miR-106a stem-loop Proteins 0.000 claims description 3
- 108091031103 miR-181a stem-loop Proteins 0.000 claims description 3
- 108091046591 miR-181a-4 stem-loop Proteins 0.000 claims description 3
- 108091049627 miR-181a-5 stem-loop Proteins 0.000 claims description 3
- 108091043222 miR-181b stem-loop Proteins 0.000 claims description 3
- 108091064825 miR-181c stem-loop Proteins 0.000 claims description 3
- 108091044400 miR-181c-1 stem-loop Proteins 0.000 claims description 3
- 108091048818 miR-181c-2 stem-loop Proteins 0.000 claims description 3
- 108091032779 miR-181c-3 stem-loop Proteins 0.000 claims description 3
- 108091047189 miR-29c stem-loop Proteins 0.000 claims description 3
- 108091054490 miR-29c-2 stem-loop Proteins 0.000 claims description 3
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 claims description 2
- 102100027398 A disintegrin and metalloproteinase with thrombospondin motifs 1 Human genes 0.000 claims description 2
- 102100032635 A disintegrin and metalloproteinase with thrombospondin motifs 8 Human genes 0.000 claims description 2
- 108091005666 ADAMTS8 Proteins 0.000 claims description 2
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 claims description 2
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 claims description 2
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 claims description 2
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 claims description 2
- 102000009091 Amyloidogenic Proteins Human genes 0.000 claims description 2
- 108010048112 Amyloidogenic Proteins Proteins 0.000 claims description 2
- 101100449747 Aneurinibacillus migulanus gsp gene Proteins 0.000 claims description 2
- 102400000068 Angiostatin Human genes 0.000 claims description 2
- 108010079709 Angiostatins Proteins 0.000 claims description 2
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 claims description 2
- 101800001288 Atrial natriuretic factor Proteins 0.000 claims description 2
- 102400001282 Atrial natriuretic peptide Human genes 0.000 claims description 2
- 101800001890 Atrial natriuretic peptide Proteins 0.000 claims description 2
- 108010073466 Bombesin Receptors Proteins 0.000 claims description 2
- 101150013553 CD40 gene Proteins 0.000 claims description 2
- 101001039256 Caenorhabditis elegans Low-density lipoprotein receptor-related protein Proteins 0.000 claims description 2
- 108060001064 Calcitonin Proteins 0.000 claims description 2
- 101710205660 Calcium-transporting ATPase Proteins 0.000 claims description 2
- 101710134161 Calcium-transporting ATPase sarcoplasmic/endoplasmic reticulum type Proteins 0.000 claims description 2
- 101100422412 Catharanthus roseus SSRP1 gene Proteins 0.000 claims description 2
- 102000004171 Cathepsin K Human genes 0.000 claims description 2
- 108090000625 Cathepsin K Proteins 0.000 claims description 2
- 108010066551 Cholestenone 5 alpha-Reductase Proteins 0.000 claims description 2
- 102100022641 Coagulation factor IX Human genes 0.000 claims description 2
- 108010035532 Collagen Proteins 0.000 claims description 2
- 102000008186 Collagen Human genes 0.000 claims description 2
- 101800000414 Corticotropin Proteins 0.000 claims description 2
- 108010058546 Cyclin D1 Proteins 0.000 claims description 2
- 102000003909 Cyclin E Human genes 0.000 claims description 2
- 108090000257 Cyclin E Proteins 0.000 claims description 2
- 229940083347 Cyclin-dependent kinase 4 inhibitor Drugs 0.000 claims description 2
- 102100033270 Cyclin-dependent kinase inhibitor 1 Human genes 0.000 claims description 2
- 102000003903 Cyclin-dependent kinases Human genes 0.000 claims description 2
- 108090000266 Cyclin-dependent kinases Proteins 0.000 claims description 2
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 claims description 2
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 claims description 2
- 102000003849 Cytochrome P450 Human genes 0.000 claims description 2
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 claims description 2
- 101100347633 Drosophila melanogaster Mhc gene Proteins 0.000 claims description 2
- 102400001047 Endostatin Human genes 0.000 claims description 2
- 108010079505 Endostatins Proteins 0.000 claims description 2
- 102000003951 Erythropoietin Human genes 0.000 claims description 2
- 108090000394 Erythropoietin Proteins 0.000 claims description 2
- 101100125311 Escherichia coli (strain K12) hyi gene Proteins 0.000 claims description 2
- 101150021185 FGF gene Proteins 0.000 claims description 2
- 108091008794 FGF receptors Proteins 0.000 claims description 2
- 108010076282 Factor IX Proteins 0.000 claims description 2
- 108010054218 Factor VIII Proteins 0.000 claims description 2
- 102000001690 Factor VIII Human genes 0.000 claims description 2
- 102100028071 Fibroblast growth factor 7 Human genes 0.000 claims description 2
- 108090000385 Fibroblast growth factor 7 Proteins 0.000 claims description 2
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 claims description 2
- 108010005551 GABA Receptors Proteins 0.000 claims description 2
- 102000005915 GABA Receptors Human genes 0.000 claims description 2
- 101150039312 GIP gene Proteins 0.000 claims description 2
- 108700012941 GNRH1 Proteins 0.000 claims description 2
- 101150000435 GSS gene Proteins 0.000 claims description 2
- 102100030708 GTPase KRas Human genes 0.000 claims description 2
- 101710113436 GTPase KRas Proteins 0.000 claims description 2
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 claims description 2
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 claims description 2
- 102400000321 Glucagon Human genes 0.000 claims description 2
- 108060003199 Glucagon Proteins 0.000 claims description 2
- 102000005720 Glutathione transferase Human genes 0.000 claims description 2
- 108010070675 Glutathione transferase Proteins 0.000 claims description 2
- 102000006771 Gonadotropins Human genes 0.000 claims description 2
- 108010086677 Gonadotropins Proteins 0.000 claims description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 claims description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 claims description 2
- 239000000095 Growth Hormone-Releasing Hormone Substances 0.000 claims description 2
- 101150004167 HMG gene Proteins 0.000 claims description 2
- 101710154606 Hemagglutinin Proteins 0.000 claims description 2
- 102100024025 Heparanase Human genes 0.000 claims description 2
- 102100021866 Hepatocyte growth factor Human genes 0.000 claims description 2
- 101000694288 Homo sapiens 40S ribosomal protein SA Proteins 0.000 claims description 2
- 101000936405 Homo sapiens A disintegrin and metalloproteinase with thrombospondin motifs 1 Proteins 0.000 claims description 2
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 claims description 2
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 claims description 2
- 101000944380 Homo sapiens Cyclin-dependent kinase inhibitor 1 Proteins 0.000 claims description 2
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 claims description 2
- 101000898034 Homo sapiens Hepatocyte growth factor Proteins 0.000 claims description 2
- 101001076408 Homo sapiens Interleukin-6 Proteins 0.000 claims description 2
- 101001030069 Homo sapiens Major vault protein Proteins 0.000 claims description 2
- 101000692455 Homo sapiens Platelet-derived growth factor receptor beta Proteins 0.000 claims description 2
- 101001043564 Homo sapiens Prolow-density lipoprotein receptor-related protein 1 Proteins 0.000 claims description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims description 2
- 101000738769 Homo sapiens Receptor-type tyrosine-protein phosphatase alpha Proteins 0.000 claims description 2
- 101000868152 Homo sapiens Son of sevenless homolog 1 Proteins 0.000 claims description 2
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 claims description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 claims description 2
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 claims description 2
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 claims description 2
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 claims description 2
- 108010008212 Integrin alpha4beta1 Proteins 0.000 claims description 2
- 108010050904 Interferons Proteins 0.000 claims description 2
- 102000014150 Interferons Human genes 0.000 claims description 2
- 108010002352 Interleukin-1 Proteins 0.000 claims description 2
- 102000000589 Interleukin-1 Human genes 0.000 claims description 2
- 102000003814 Interleukin-10 Human genes 0.000 claims description 2
- 108090000174 Interleukin-10 Proteins 0.000 claims description 2
- 108090000177 Interleukin-11 Proteins 0.000 claims description 2
- 102000003815 Interleukin-11 Human genes 0.000 claims description 2
- 102000013462 Interleukin-12 Human genes 0.000 claims description 2
- 108010065805 Interleukin-12 Proteins 0.000 claims description 2
- 102000003816 Interleukin-13 Human genes 0.000 claims description 2
- 108090000176 Interleukin-13 Proteins 0.000 claims description 2
- 102000003812 Interleukin-15 Human genes 0.000 claims description 2
- 108090000172 Interleukin-15 Proteins 0.000 claims description 2
- 102000049772 Interleukin-16 Human genes 0.000 claims description 2
- 101800003050 Interleukin-16 Proteins 0.000 claims description 2
- 108050003558 Interleukin-17 Proteins 0.000 claims description 2
- 102000013691 Interleukin-17 Human genes 0.000 claims description 2
- 108010002350 Interleukin-2 Proteins 0.000 claims description 2
- 102000000588 Interleukin-2 Human genes 0.000 claims description 2
- 108010002386 Interleukin-3 Proteins 0.000 claims description 2
- 102000000646 Interleukin-3 Human genes 0.000 claims description 2
- 108090000978 Interleukin-4 Proteins 0.000 claims description 2
- 102000004388 Interleukin-4 Human genes 0.000 claims description 2
- 108010002616 Interleukin-5 Proteins 0.000 claims description 2
- 102000000743 Interleukin-5 Human genes 0.000 claims description 2
- 108090001005 Interleukin-6 Proteins 0.000 claims description 2
- 102000004889 Interleukin-6 Human genes 0.000 claims description 2
- 108010002586 Interleukin-7 Proteins 0.000 claims description 2
- 102000000704 Interleukin-7 Human genes 0.000 claims description 2
- 108090001007 Interleukin-8 Proteins 0.000 claims description 2
- 102000004890 Interleukin-8 Human genes 0.000 claims description 2
- 108010002335 Interleukin-9 Proteins 0.000 claims description 2
- 102000000585 Interleukin-9 Human genes 0.000 claims description 2
- 108090000862 Ion Channels Proteins 0.000 claims description 2
- 102000004310 Ion Channels Human genes 0.000 claims description 2
- 102100020880 Kit ligand Human genes 0.000 claims description 2
- 101710177504 Kit ligand Proteins 0.000 claims description 2
- 108010092277 Leptin Proteins 0.000 claims description 2
- 102000016267 Leptin Human genes 0.000 claims description 2
- 102000011965 Lipoprotein Receptors Human genes 0.000 claims description 2
- 108010061306 Lipoprotein Receptors Proteins 0.000 claims description 2
- 102000009151 Luteinizing Hormone Human genes 0.000 claims description 2
- 108010073521 Luteinizing Hormone Proteins 0.000 claims description 2
- 102000004083 Lymphotoxin-alpha Human genes 0.000 claims description 2
- 108090000542 Lymphotoxin-alpha Proteins 0.000 claims description 2
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 2
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 claims description 2
- 108010058398 Macrophage Colony-Stimulating Factor Receptor Proteins 0.000 claims description 2
- 101710202061 N-acetyltransferase Proteins 0.000 claims description 2
- 108050000637 N-cadherin Proteins 0.000 claims description 2
- 108010025020 Nerve Growth Factor Proteins 0.000 claims description 2
- 102000015336 Nerve Growth Factor Human genes 0.000 claims description 2
- 108010032605 Nerve Growth Factor Receptors Proteins 0.000 claims description 2
- 102000048238 Neuregulin-1 Human genes 0.000 claims description 2
- 108090000556 Neuregulin-1 Proteins 0.000 claims description 2
- 102000002002 Neurokinin-1 Receptors Human genes 0.000 claims description 2
- 108010040718 Neurokinin-1 Receptors Proteins 0.000 claims description 2
- 108090000630 Oncostatin M Proteins 0.000 claims description 2
- 102100031942 Oncostatin-M Human genes 0.000 claims description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 claims description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 claims description 2
- 102000003982 Parathyroid hormone Human genes 0.000 claims description 2
- 108090000445 Parathyroid hormone Proteins 0.000 claims description 2
- 108091005804 Peptidases Proteins 0.000 claims description 2
- 108010069013 Phenylalanine Hydroxylase Proteins 0.000 claims description 2
- 102100038223 Phenylalanine-4-hydroxylase Human genes 0.000 claims description 2
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 claims description 2
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 claims description 2
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 claims description 2
- 101710098940 Pro-epidermal growth factor Proteins 0.000 claims description 2
- 239000004365 Protease Substances 0.000 claims description 2
- 101710176177 Protein A56 Proteins 0.000 claims description 2
- 108010083204 Proton Pumps Proteins 0.000 claims description 2
- 102000006270 Proton Pumps Human genes 0.000 claims description 2
- 101100131297 Rattus norvegicus Abcc2 gene Proteins 0.000 claims description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims description 2
- 102000003800 Selectins Human genes 0.000 claims description 2
- 108090000184 Selectins Proteins 0.000 claims description 2
- 102100022831 Somatoliberin Human genes 0.000 claims description 2
- 101710142969 Somatoliberin Proteins 0.000 claims description 2
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 claims description 2
- 102000007451 Steroid Receptors Human genes 0.000 claims description 2
- 108010085012 Steroid Receptors Proteins 0.000 claims description 2
- 108091008874 T cell receptors Proteins 0.000 claims description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 claims description 2
- 108010017842 Telomerase Proteins 0.000 claims description 2
- 102000036693 Thrombopoietin Human genes 0.000 claims description 2
- 108010041111 Thrombopoietin Proteins 0.000 claims description 2
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 claims description 2
- 102000011923 Thyrotropin Human genes 0.000 claims description 2
- 108010061174 Thyrotropin Proteins 0.000 claims description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 claims description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 claims description 2
- 102000004357 Transferases Human genes 0.000 claims description 2
- 108090000992 Transferases Proteins 0.000 claims description 2
- 102000004338 Transferrin Human genes 0.000 claims description 2
- 108090000901 Transferrin Proteins 0.000 claims description 2
- 102400001320 Transforming growth factor alpha Human genes 0.000 claims description 2
- 101800004564 Transforming growth factor alpha Proteins 0.000 claims description 2
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 claims description 2
- 102100033725 Tumor necrosis factor receptor superfamily member 16 Human genes 0.000 claims description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims description 2
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 claims description 2
- 210000004102 animal cell Anatomy 0.000 claims description 2
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 claims description 2
- 229960004015 calcitonin Drugs 0.000 claims description 2
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- NSQLIUXCMFBZME-MPVJKSABSA-N carperitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 NSQLIUXCMFBZME-MPVJKSABSA-N 0.000 claims description 2
- 229920001436 collagen Polymers 0.000 claims description 2
- 229960005188 collagen Drugs 0.000 claims description 2
- 229960000258 corticotropin Drugs 0.000 claims description 2
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 claims description 2
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims description 2
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims description 2
- 229940105423 erythropoietin Drugs 0.000 claims description 2
- 102000015694 estrogen receptors Human genes 0.000 claims description 2
- 108010038795 estrogen receptors Proteins 0.000 claims description 2
- 229960004222 factor ix Drugs 0.000 claims description 2
- 229960000301 factor viii Drugs 0.000 claims description 2
- 102000052178 fibroblast growth factor receptor activity proteins Human genes 0.000 claims description 2
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 claims description 2
- 229960004666 glucagon Drugs 0.000 claims description 2
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 claims description 2
- 239000002622 gonadotropin Substances 0.000 claims description 2
- 229940035638 gonadotropin-releasing hormone Drugs 0.000 claims description 2
- 239000000122 growth hormone Substances 0.000 claims description 2
- 239000000185 hemagglutinin Substances 0.000 claims description 2
- 108010037536 heparanase Proteins 0.000 claims description 2
- 229940088597 hormone Drugs 0.000 claims description 2
- 239000005556 hormone Substances 0.000 claims description 2
- 229940079322 interferon Drugs 0.000 claims description 2
- 102000002467 interleukin receptors Human genes 0.000 claims description 2
- 108010093036 interleukin receptors Proteins 0.000 claims description 2
- 229940039781 leptin Drugs 0.000 claims description 2
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 claims description 2
- 229940065725 leukotriene receptor antagonists for obstructive airway diseases Drugs 0.000 claims description 2
- 239000003199 leukotriene receptor blocking agent Substances 0.000 claims description 2
- 102000003835 leukotriene receptors Human genes 0.000 claims description 2
- 108090000146 leukotriene receptors Proteins 0.000 claims description 2
- 229940040129 luteinizing hormone Drugs 0.000 claims description 2
- 102000006392 myotrophin Human genes 0.000 claims description 2
- 108010058605 myotrophin Proteins 0.000 claims description 2
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims description 2
- 210000000929 nociceptor Anatomy 0.000 claims description 2
- 238000003499 nucleic acid array Methods 0.000 claims description 2
- 239000000199 parathyroid hormone Substances 0.000 claims description 2
- 229960001319 parathyroid hormone Drugs 0.000 claims description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 claims description 2
- AAEVYOVXGOFMJO-UHFFFAOYSA-N prometryn Chemical compound CSC1=NC(NC(C)C)=NC(NC(C)C)=N1 AAEVYOVXGOFMJO-UHFFFAOYSA-N 0.000 claims description 2
- 239000003488 releasing hormone Substances 0.000 claims description 2
- 108090000064 retinoic acid receptors Proteins 0.000 claims description 2
- 102000003702 retinoic acid receptors Human genes 0.000 claims description 2
- 102000027483 retinoid hormone receptors Human genes 0.000 claims description 2
- 108091008679 retinoid hormone receptors Proteins 0.000 claims description 2
- 239000005495 thyroid hormone Substances 0.000 claims description 2
- 229940036555 thyroid hormone Drugs 0.000 claims description 2
- 102000004217 thyroid hormone receptors Human genes 0.000 claims description 2
- 108090000721 thyroid hormone receptors Proteins 0.000 claims description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 claims description 2
- 239000012581 transferrin Substances 0.000 claims description 2
- 102000027257 transmembrane receptors Human genes 0.000 claims description 2
- 108091008578 transmembrane receptors Proteins 0.000 claims description 2
- 102000003298 tumor necrosis factor receptor Human genes 0.000 claims description 2
- 210000005253 yeast cell Anatomy 0.000 claims description 2
- 102400000113 Calcitonin Human genes 0.000 claims 1
- 102100023915 Insulin Human genes 0.000 claims 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 claims 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 claims 1
- 108700015856 ELAV-Like Protein 1 Proteins 0.000 description 62
- 102000055765 ELAV-Like Protein 1 Human genes 0.000 description 62
- 235000018102 proteins Nutrition 0.000 description 53
- 108700020471 RNA-Binding Proteins Proteins 0.000 description 31
- 102000039446 nucleic acids Human genes 0.000 description 26
- 108020004707 nucleic acids Proteins 0.000 description 26
- 150000007523 nucleic acids Chemical class 0.000 description 26
- 102000042567 non-coding RNA Human genes 0.000 description 22
- 108091027963 non-coding RNA Proteins 0.000 description 22
- 241000282414 Homo sapiens Species 0.000 description 19
- 230000001124 posttranscriptional effect Effects 0.000 description 19
- 230000003993 interaction Effects 0.000 description 13
- 238000002493 microarray Methods 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 230000033228 biological regulation Effects 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 8
- 239000002299 complementary DNA Substances 0.000 description 8
- 230000014616 translation Effects 0.000 description 8
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 238000013519 translation Methods 0.000 description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- 108091023040 Transcription factor Proteins 0.000 description 6
- 108091092328 cellular RNA Proteins 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 5
- 102000040945 Transcription factor Human genes 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000009368 gene silencing by RNA Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 102000016662 ELAV Proteins Human genes 0.000 description 4
- 108010019372 Heterogeneous-Nuclear Ribonucleoproteins Proteins 0.000 description 4
- 102000006479 Heterogeneous-Nuclear Ribonucleoproteins Human genes 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 241000009328 Perro Species 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 description 4
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 4
- 108091034201 anti-miRNA oligonucleotide Proteins 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000022131 cell cycle Effects 0.000 description 4
- 239000013592 cell lysate Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 102100031622 mRNA decay activator protein ZFP36 Human genes 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 108091029842 small nuclear ribonucleic acid Proteins 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 108020005345 3' Untranslated Regions Proteins 0.000 description 3
- 108020005176 AU Rich Elements Proteins 0.000 description 3
- 241000282693 Cercopithecidae Species 0.000 description 3
- 108020004635 Complementary DNA Proteins 0.000 description 3
- 108010053101 ELAV Proteins Proteins 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108091007780 MiR-122 Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 241000282577 Pan troglodytes Species 0.000 description 3
- 230000004570 RNA-binding Effects 0.000 description 3
- 102000039471 Small Nuclear RNA Human genes 0.000 description 3
- 108091023045 Untranslated Region Proteins 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 239000012133 immunoprecipitate Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 102000033952 mRNA binding proteins Human genes 0.000 description 3
- 108091000373 mRNA binding proteins Proteins 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 210000002729 polyribosome Anatomy 0.000 description 3
- 208000022256 primary systemic amyloidosis Diseases 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 108020004418 ribosomal RNA Proteins 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 101001082110 Acanthamoeba polyphaga mimivirus Eukaryotic translation initiation factor 4E homolog Proteins 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 102100032187 Androgen receptor Human genes 0.000 description 2
- 102000007371 Ataxin-3 Human genes 0.000 description 2
- 108010032947 Ataxin-3 Proteins 0.000 description 2
- 102000007368 Ataxin-7 Human genes 0.000 description 2
- 108010032953 Ataxin-7 Proteins 0.000 description 2
- 102000004321 Atrophin-1 Human genes 0.000 description 2
- 108090000806 Atrophin-1 Proteins 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 102000046169 Cationic Amino Acid Transporter 1 Human genes 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 108700026553 Drosophila ELAV Proteins 0.000 description 2
- 102100034235 ELAV-like protein 1 Human genes 0.000 description 2
- 101000587430 Homo sapiens Serine/arginine-rich splicing factor 2 Proteins 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 102100037924 Insulin-like growth factor 2 mRNA-binding protein 1 Human genes 0.000 description 2
- 101710126181 Insulin-like growth factor 2 mRNA-binding protein 1 Proteins 0.000 description 2
- 102100037919 Insulin-like growth factor 2 mRNA-binding protein 2 Human genes 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 101000663223 Mus musculus Serine/arginine-rich splicing factor 1 Proteins 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 108091006229 SLC7A1 Proteins 0.000 description 2
- 102100029666 Serine/arginine-rich splicing factor 2 Human genes 0.000 description 2
- 108020003224 Small Nucleolar RNA Proteins 0.000 description 2
- 102000042773 Small Nucleolar RNA Human genes 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- 108091060271 Small temporal RNA Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 108020004566 Transfer RNA Proteins 0.000 description 2
- SHGAZHPCJJPHSC-NWVFGJFESA-N Tretinoin Chemical compound OC(=O)/C=C(\C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NWVFGJFESA-N 0.000 description 2
- 108010065850 Tristetraprolin Proteins 0.000 description 2
- 108091026838 U1 spliceosomal RNA Proteins 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine group Chemical group [C@@H]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(N)=NC=NC12 OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 206010002022 amyloidosis Diseases 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 238000009509 drug development Methods 0.000 description 2
- 238000010201 enrichment analysis Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 108091051828 miR-122 stem-loop Proteins 0.000 description 2
- 238000010208 microarray analysis Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 150000003833 nucleoside derivatives Chemical class 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 230000022558 protein metabolic process Effects 0.000 description 2
- 230000007115 recruitment Effects 0.000 description 2
- 229930002330 retinoic acid Natural products 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000004055 small Interfering RNA Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000009752 translational inhibition Effects 0.000 description 2
- 229960001727 tretinoin Drugs 0.000 description 2
- 102100026882 Alpha-synuclein Human genes 0.000 description 1
- 208000003808 Amyloid Neuropathies Diseases 0.000 description 1
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 1
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 102100035029 Ataxin-1 Human genes 0.000 description 1
- 108010032963 Ataxin-1 Proteins 0.000 description 1
- 102000007370 Ataxin2 Human genes 0.000 description 1
- 108010032951 Ataxin2 Proteins 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 240000000385 Brassica napus var. napus Species 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 102100025492 CUGBP Elav-like family member 3 Human genes 0.000 description 1
- 101710170319 CUGBP Elav-like family member 3 Proteins 0.000 description 1
- 102000055006 Calcitonin Human genes 0.000 description 1
- 108090000312 Calcium Channels Proteins 0.000 description 1
- 102000003922 Calcium Channels Human genes 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 102100040268 Cleavage stimulation factor subunit 1 Human genes 0.000 description 1
- 101710159009 Cleavage stimulation factor subunit 1 Proteins 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 102000012192 Cystatin C Human genes 0.000 description 1
- 108010061642 Cystatin C Proteins 0.000 description 1
- 102100032620 Cytotoxic granule associated RNA binding protein TIA1 Human genes 0.000 description 1
- 101710086368 Cytotoxic granule associated RNA binding protein TIA1 Proteins 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 201000008163 Dentatorubral pallidoluysian atrophy Diseases 0.000 description 1
- 102100024737 Deoxynucleotidyltransferase terminal-interacting protein 2 Human genes 0.000 description 1
- 102100024364 Disintegrin and metalloproteinase domain-containing protein 8 Human genes 0.000 description 1
- 108010035533 Drosophila Proteins Proteins 0.000 description 1
- 108010008795 ELAV-Like Protein 2 Proteins 0.000 description 1
- 102000007303 ELAV-Like Protein 2 Human genes 0.000 description 1
- 108010056472 Eukaryotic Initiation Factor-4A Proteins 0.000 description 1
- 102100029602 Eukaryotic translation initiation factor 4B Human genes 0.000 description 1
- 101710091919 Eukaryotic translation initiation factor 4G Proteins 0.000 description 1
- 102100020987 Eukaryotic translation initiation factor 5 Human genes 0.000 description 1
- 101710204611 Eukaryotic translation initiation factor 5 Proteins 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 102100026060 Exosome component 10 Human genes 0.000 description 1
- 208000007487 Familial Cerebral Amyloid Angiopathy Diseases 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 102000004878 Gelsolin Human genes 0.000 description 1
- 108090001064 Gelsolin Proteins 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 101710141326 Heterogeneous nuclear ribonucleoprotein C Proteins 0.000 description 1
- 102100028909 Heterogeneous nuclear ribonucleoprotein K Human genes 0.000 description 1
- 102100028818 Heterogeneous nuclear ribonucleoprotein L Human genes 0.000 description 1
- 108010085241 Heterogeneous-Nuclear Ribonucleoprotein D Proteins 0.000 description 1
- 102000031528 Heterogeneous-Nuclear Ribonucleoprotein D Human genes 0.000 description 1
- 108010052492 Heterogeneous-Nuclear Ribonucleoprotein Group F-H Proteins 0.000 description 1
- 102000018753 Heterogeneous-Nuclear Ribonucleoprotein Group F-H Human genes 0.000 description 1
- 108010084680 Heterogeneous-Nuclear Ribonucleoprotein K Proteins 0.000 description 1
- 108010084674 Heterogeneous-Nuclear Ribonucleoprotein L Proteins 0.000 description 1
- 101000775732 Homo sapiens Androgen receptor Proteins 0.000 description 1
- 101000626071 Homo sapiens Deoxynucleotidyltransferase terminal-interacting protein 2 Proteins 0.000 description 1
- 101001055976 Homo sapiens Exosome component 10 Proteins 0.000 description 1
- 101000979249 Homo sapiens Neuromodulin Proteins 0.000 description 1
- 101000604114 Homo sapiens RNA-binding protein Nova-1 Proteins 0.000 description 1
- 101000604116 Homo sapiens RNA-binding protein Nova-2 Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- 208000005531 Immunoglobulin Light-chain Amyloidosis Diseases 0.000 description 1
- 101710150697 Inositol monophosphatase 1 Proteins 0.000 description 1
- 101710150707 Inositol monophosphatase 2 Proteins 0.000 description 1
- 101710126176 Insulin-like growth factor 2 mRNA-binding protein 2 Proteins 0.000 description 1
- 102100037920 Insulin-like growth factor 2 mRNA-binding protein 3 Human genes 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 108010066420 Iron-Regulatory Proteins Proteins 0.000 description 1
- 102000018434 Iron-Regulatory Proteins Human genes 0.000 description 1
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 description 1
- 102100027670 Islet amyloid polypeptide Human genes 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 102100026299 MAP kinase-interacting serine/threonine-protein kinase 1 Human genes 0.000 description 1
- 101710139011 MAP kinase-interacting serine/threonine-protein kinase 1 Proteins 0.000 description 1
- 108091007774 MIR107 Proteins 0.000 description 1
- 208000002569 Machado-Joseph Disease Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 101100034033 Mus musculus Rhpn1 gene Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 102100023206 Neuromodulin Human genes 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108091033760 Oncomir Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 108091007412 Piwi-interacting RNA Proteins 0.000 description 1
- 108010071690 Prealbumin Proteins 0.000 description 1
- 208000009052 Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 208000024777 Prion disease Diseases 0.000 description 1
- 208000033063 Progressive myoclonic epilepsy Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010071563 Proto-Oncogene Proteins c-fos Proteins 0.000 description 1
- 102000007568 Proto-Oncogene Proteins c-fos Human genes 0.000 description 1
- 108020005093 RNA Precursors Proteins 0.000 description 1
- 102000008991 RNA Recognition Motif Proteins Human genes 0.000 description 1
- 108010049094 RNA Recognition Motif Proteins Proteins 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 230000021839 RNA stabilization Effects 0.000 description 1
- 102100038427 RNA-binding protein Nova-1 Human genes 0.000 description 1
- 102100038461 RNA-binding protein Nova-2 Human genes 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000269435 Rana <genus> Species 0.000 description 1
- 101150028940 SXL gene Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 102000054727 Serum Amyloid A Human genes 0.000 description 1
- 108700028909 Serum Amyloid A Proteins 0.000 description 1
- 108050005900 Signal peptide peptidase-like 2a Proteins 0.000 description 1
- 101710111748 Signal peptide peptidase-like 3 Proteins 0.000 description 1
- 108091061750 Signal recognition particle RNA Proteins 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 108010021188 Superoxide Dismutase-1 Proteins 0.000 description 1
- 102100038836 Superoxide dismutase [Cu-Zn] Human genes 0.000 description 1
- 208000029052 T-cell acute lymphoblastic leukemia Diseases 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 241000592342 Tracheophyta Species 0.000 description 1
- 102000009190 Transthyretin Human genes 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 101150025199 Upf1 gene Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 208000006269 X-Linked Bulbo-Spinal Atrophy Diseases 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 201000011186 acute T cell leukemia Diseases 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 108010070037 adenosine-uridine binding factor Proteins 0.000 description 1
- 108090000185 alpha-Synuclein Proteins 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 108010080146 androgen receptors Proteins 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 1
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000007748 combinatorial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 238000010205 computational analysis Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 108010093366 eIF-4B Proteins 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000010901 lateral sclerosis Diseases 0.000 description 1
- 108091053410 let-7 family Proteins 0.000 description 1
- 108091023663 let-7 stem-loop Proteins 0.000 description 1
- 108091063478 let-7-1 stem-loop Proteins 0.000 description 1
- 108091049777 let-7-2 stem-loop Proteins 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 108091057645 miR-15 stem-loop Proteins 0.000 description 1
- 108091069239 miR-17-2 stem-loop Proteins 0.000 description 1
- 108091055042 miR-181 stem-loop Proteins 0.000 description 1
- 108091074848 miR-19 stem-loop Proteins 0.000 description 1
- 108091087148 miR-20 stem-loop Proteins 0.000 description 1
- 108091066984 miR-20-1 stem-loop Proteins 0.000 description 1
- 108091076199 miR-20-2 stem-loop Proteins 0.000 description 1
- 108091007432 miR-29b Proteins 0.000 description 1
- 238000012775 microarray technology Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 230000004031 neuronal differentiation Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 102000015585 poly-pyrimidine tract binding protein Human genes 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 210000001948 pro-b lymphocyte Anatomy 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 230000009822 protein phosphorylation Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 102000021501 regulatory RNA binding proteins Human genes 0.000 description 1
- 108091011116 regulatory RNA binding proteins Proteins 0.000 description 1
- 230000007363 regulatory process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000000528 statistical test Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 208000001608 teratocarcinoma Diseases 0.000 description 1
- 101150058668 tra2 gene Proteins 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 230000028973 vesicle-mediated transport Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000006648 viral gene expression Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 208000027121 wild type ATTR amyloidosis Diseases 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6804—Nucleic acid analysis using immunogens
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6809—Methods for determination or identification of nucleic acids involving differential detection
Definitions
- the present invention concerns methods of identifying microRNAs and the corresponding mRNA targets thereof.
- miRNAs RNA binding proteins
- RNABPs RNA binding proteins
- miRNAs are a large family of small noncoding RNAs (ncRNAs) that repress gene expression by affecting the stability or translation of target messenger RNAs (mRNAs) (1-3).
- ncRNAs small noncoding RNAs
- mRNAs target messenger RNAs
- the current understanding of global miRNA targeting of mRNAs is based upon computational predictions of complementary sequence elements that are refined by considering evolutionary homologies across multiple species (4). While these algorithms predict hundreds of potential mRNA targets per miRNA, it is not certain that each miRNA gains functional access to these target mRNAs in the cell under a given set of conditions. Indeed, recent evidence suggests that RNABPs can influence the regulatory fates of mRNAs targeted by miRNAs in a condition-dependent manner (5, 6).
- RNABPs among the largest protein families encoded in eukaryotic genomes, can regulate gene expression at multiple posttranscriptional levels (7, 8). Like miRNAs, RNABPs also function through binding specific RNA sequence motifs frequently contained within untranslated regions (UTRs) of target mRNAs. When occurring in the cytoplasmic compartment, these interactions may determine mRNA localization, stability and/or translational activation (9). It is becoming increasingly evident that the posttranscriptional infrastructure is highly organized and utilizes multiple cis-trans interactions to combinatorially regulate higher order gene expression (7, 10). Global exploration of the in vivo composition and organization of this posttranscriptional infrastructure has only recently begun.
- RNABPs associated with mRNA subsets that have similar metabolic fates or encode functionally related proteins (7).
- Several predicted functional interactions between miRNAs and mRNAs have been confirmed using reporter systems, while a number of primarily bioinformatics approaches have predicted the global targeting of a substantial proportion of all cellular mRNAs by miRNAs (2, 4, 11). While miRNAs are expected to act combinatorially on their mRNA targets, the composition and organization of endogenous miRNAs, mRNAs and RNABPs within messenger ribonucleoprotein (mRNP) complexes are poorly understood.
- mRNP messenger ribonucleoprotein
- a first aspect of the invention is a method of generating a gene expression profile of noncoding regulatory RNA (ncRNA) in a cell in vivo, comprising the steps of:
- RNP mRNA-protein
- RNP complex comprising: (i) an RNA binding protein (RNABP) or RNA associated protein, (ii) at least one mRNA bound to or associated with said protein, and (iii) at least one ncRNA bound to or associated with said protein, and then
- the ncRNA is a microRNA.
- the invention provides a method of identifying and/or confirming mRNA target(s) of one or more microRNAs. Such a method comprises:
- a subset of cellular mRNAs is a plurality of mRNAs that includes less than, all mRNAs in the biological sample. In some embodiments, such a subset is represented by less than 75%, 70%, 60%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 2%, 1% or less of all mRNAs.
- a subset of microRNAs is a plurality of microRNAs that includes less than all microRNAs in the biological sample. In some embodiments, such a subset is represented by less than 75%, 70%, 60%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 2%, 1% or less of all microRNAs.
- a subset of mRNAs comprises at least 2 but may comprise 3, 4, 5, 10, 15, 20 or more mRNAs.
- a subset of microRNAs comprises at least 2 but may comprise 3, 4, 5, 10, 15, 20 or more microRNAs.
- the subsets of mRNAs and microRNA may be identified in the methods of the invention, for example, by using a nucleic acid array, e.g., a microarray (e.g., cDNA array).
- the step of partitioning may comprise contacting an mRNP complex with (i) an antibody that specifically binds at least one component of the mRNP complex or (ii) an ectopically expressed epitope-tagged RNA-binding protein or an RNA-associated protein.
- the component of the mRNP complex to which the antibody binds to an RNA-binding protein or an RNA-associated protein present in the mRNP complex is a native or tagged Hu protein (e.g., HuR) or poly(A)-binding protein (PABP).
- the identified subset of the microRNAs includes an miRNA selected from the group consisting of miR-181a, miR-181b, miR-181c, miR-103, miR-107m miR-29c, miR-17-5p, miR-106a, miR-19b, miR-16, let-7a, let-7c, let-7d, and let-7f.
- the step of partitioning may comprise: contacting a biological sample comprising said RNP complex from the cell with at least one ligand that specifically binds at least one component of the RNP complex; separating the RNP complex by binding the ligand with an antibody specific for the ligand, wherein the antibody is attached to a solid support; and collecting the RNP complex by removing the RNP complex from the solid support.
- Any suitable cell or cells can be used to carry out the present invention, including but not limited to plant, animal, bacterial, yeast, and protozoal cell.
- FIG. 1 HuR-associated mRNAs and miRNAs are discrete subsets of total cellular RNA. Venn diagrams representing distinct (A) messenger RNAs (mRNAs) and (B) microRNAs (miRNAs) present in total cellular RNA, the PABP mRNP and the HuR mRNP. All RNA populations were isolated as single samples from log phase Jurkat cells and subsequently divided for analysis of mRNAs and miRNAs on specific microarray platforms. Data was gathered from three biological replicates and triplicate array analyses.
- mRNAs messenger RNAs
- miRNAs microRNAs
- FIG. 2 Combinatorial posttranscriptional regulation mediated by RNA binding proteins and miRNAs. Depiction of gene expression networks localized to the nucleus (N) and cytoplasm. The nuclear networks involve DNA binding transcription factors, while the cytoplasmic networks involve RNABPs and miRNAs. In the nucleus, multiple promoter elements can be regulated by transcription factors. Posttranscriptional regulation primarily occurs through interaction of RNA binding factors with 5′ and 3′ untranslated regions (UTRs) of mRNAs. As shown, an mRNA subset regulated by a given RNABP can be further subdivided into discrete mRNA subpopulations that are also regulated in a combinatorial manner by miRNAs. The coordinated outcome depicted here applies to functional relationships among the encoded proteins or to the fates of the associated mRNAs (stability/translational state).
- UTRs untranslated regions
- RNA essential RNA
- mRNA has its ordinary meaning in the art, and generally refers to an RNA transcribed from DNA that carries encoded information to a site of protein synthesis from that mRNA by translation.
- mRNA as used herein may be unprocessed (pre-mRNA) or processed and hence the term is to include both.
- mRNA as used herein may be from any suitable source, typically vertebrate and preferably mammalian (e.g. human, dog, cat, monkey, chimpanzee, mouse, rat, rabbit, etc.).
- Noncoding regulatory RNA or “ncRNA” as used herein has its ordinary meaning in the art. Examples include but are not limited to piRNAs, microRNAs, ribosomal RNA (rRNA), small interfering RNA (siRNA), small nuclear RNA (snRNA), small non-mRNA (snmRNA), small nucleolar RNA (snoRNA), small temporal RNA (stRNA) and other RNAs that interact with mRNAs to regulate the function thereof. See, e.g., PCT Application Publication No. WO 2005/102298.
- miRNA or “miRNA” as used herein has its ordinary meaning in the art.
- a miRNA is a RNA molecule derived from genomic loci processed from transcripts that can form local RNA precursor miRNA structures.
- the mature miRNA usually has 20, 21, 22, 23, or 24 nucleotides, although in some cases, other numbers of nucleotides may be present, for example, between 18 and 26 nucleotides.
- miRNAs are often detectable on Northern blots. The miRNA has the potential to pair to flanking genomic sequences, placing the mature miRNA within an imperfect RNA duplex which may be needed for its processing from a longer precursor transcript.
- miRNA duplex comprises the miRNA and a similar-sized segment, known as the miRNA* (miRNA star), from the other arm of the stem-loop.
- the miRNA is the strand that enters the silencing complex, whereas the miRNA* degrades.
- miRNAs are typically derived from a segment of the genome that is distinct from predicted protein-coding regions. See, e.g., US Patent Application Publication No. 20060185027.
- miRNA as used herein may be from any suitable source, typically vertebrate and preferably mammalian (e.g. human, dog, cat, monkey, chimpanzee, mouse, rat, rabbit, etc.)
- RNA binding protein or “RNABP”, along with RNA associated proteins, as used herein have their ordinary meaning in the art, and includes global RNABPs (those that bind to nearly all mRNAs without distinguishing unique sequences), group-specific RNABPs (those that associate with subsets of the global mRNA population), and type-specific RNABPs (those that recognize a highly unique mRNA sequence, in some cases present in only one mRNA, with high specificity). See, e.g., J. Keene et al., Proc. Natl. Acad. Sci. USA 98, 7018, 7021 (2001). Examples include but are not limited to the ELAV/Hu family (e.g.
- RNABPs miRNAs, and mRNAs as used herein may be from any suitable source, including bacteria, protozoa, plants and animals.
- Plants may be vascular plants such as monocots and dicots, with particular examples including but not limited to corn or maize, wheat, soybean, canola, tomato, etc.
- Animals are typically vertebrates and preferably mammals, with particular examples including but not limited to human, dog, cat, monkey, chimpanzee, mouse, rat, rabbit, etc.
- the RNABP, miRNA, and mRNA may all be from the same cell or tissue from the same species of origin in native (non-transgenic) form.
- ncRNAs such as miRNAs
- ncRNAs which can be carried out in essentially the same manner as the selection and identification of mRNAs, typically with different probe sets or microarray chips optimized for the selection and identification of the ncRNAs such as miRNAs.
- Nucleotides and amino acids are represented herein in the manner recommended by the IUPAC-IUB Biochemical Nomenclature Commission, or (for amino acids) by three letter code, in accordance with 37 C.F.R. .sctn.1.822 and established usage. See, e.g., Patentin User Manual, 99-102 (November 1990) (U.S. Patent and Trademark Office).
- nucleic acid or “nucleic acid sequence” may also be used in reference to genes, cDNA, and mRNA encoded by a gene.
- gene is used broadly to refer to any segment of DNA associated with a biological function. Thus, genes include coding sequences and/or the regulatory sequences required for their expression. Genes also include non-expressed DNA segments that, for example, form recognition sequences for other proteins. Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known or predicted sequence information.
- RNA RNA
- DNA DNA
- PNA peptide nucleic acid
- Nucleic acid molecules of the present invention may be linear or circular, an entire gene or a fragment thereof, full-length or fragmented/digested, “chimeric” in the sense of comprising more than one kind of nucleic acid, and may be single-stranded or double-stranded.
- Nucleic acid from any source may be used in the present invention; that is, nucleic acids of the present invention include but are not limited to genomic nucleic acid, synthetic nucleic acid, nucleic acid obtained from a plasmid, cDNA, recombinant nucleic acid, and nucleic acid that has been modified by known chemical methods, as further described herein.
- Nucleic acids may also be products of in vitro selection experiments (also called aptamers) and other nucleic acid molecules useful for their ability to bind or be bound by other ligands. See D. Kenan, TIBS 19, 57-64 (1994); L. Gold, et al., Annu. Rev. Biochem. 64, 763-798 (1995); S. E. Osborne and A. D. Ellington, Chem. Rev. 97, 349-370 (1997).
- the present invention relates to in vivo methods for partitioning RNP complexes from a cell.
- mRNP complexes of the present invention is preferably from a biological sample, such as a tissue sample, whole tissue, a whole organ (e.g., an entire brain, liver, kidney, etc.), bodily fluid sample, cell culture, cell lysate, cell extract or the like.
- the biological sample comprises or is obtained from a population of cells.
- a “population of cells” herein is meant at least two cells, with at least about 10 3 being preferred, at least about 10 6 being particularly preferred, and at least about 10 8 to 10 9 being especially preferred.
- the population or sample can contain a mixture of different cell types from either primary or secondary cultures, or from a complex tissue such as a tumor, or may alternatively contain only a single cell type.
- cells that are proliferating are used.
- non-proliferating cells may be used.
- an mRNP complex endogenously forms in a cell when a RNA-binding protein that is a component of the mRNP complex is ectopically expressed in the cell by (for example) transforming the cell or infecting the cell with an expression vector that carries nucleic acid encoding the protein, and a mRNP complex in which the protein binds is formed.
- the method comprises contacting a biological sample that comprises at least one mRNP complex with a ligand that specifically binds a component of the mRNP complex.
- the component of the mRNP complex may be a RNA binding protein, a RNA-associated protein, a nucleic acid associated with the mRNP complex including the mRNA itself, ncRNAs, or another molecule or compound (e.g., carbohydrate, lipid, vitamin, etc.) that associates with the mRNP complex.
- a component “associates” with a mRNP complex if it binds or otherwise attaches to the mRNP complex with a Kd of about 10 6 to about 10 9 .
- the component associates with the complex with a Kd of about 10 7 to about 10 9 .
- the component associates with the complex with a Kd of about 10 8 to about 10 9 .
- the ligand may be any molecule that specifically binds the component of the mRNP complex.
- the ligand may be an antibody that specifically binds the component, a nucleic acid that binds the component (e.g., an antisense molecule, a RNA molecule that binds the component), or any other compound or molecule that specifically binds the component of the complex.
- the ligand may be obtained by using the serum of a subject (i.e., a human or animal subject) that has a disorder known to be associated with the production of mRNP-complex specific antibodies or proteins.
- Suitable tags are known in the art and include but are not limited to biotin, the MS2 protein binding site sequence, the U1snRNA 70 k binding site sequence, the U1snRNA A binding site sequence, the g10 binding site sequence (commercially available from Novagen, Inc., Madison, Wis., USA), and FLAG-TAG® (Sigma Chemical, St. Louis, Mo., USA).
- the mRNP complex may then be separated by binding the ligand (now bound to the mRNP complex) to a binding molecule that specifically binds the ligand.
- the binding molecule may bind the ligand directly (i.e., may be an antibody or protein specific for the ligand), or may bind the ligand indirectly (i.e., may be an antibody or binding partner for a tag on the ligand).
- Suitable binding molecules include but are not limited to protein A, protein G, streptavidin. Binding molecules may also be obtained by using the serum of a subject suffering from, for example, an autoimmune disorder or cancer.
- the ligand is an antibody that binds the component of the mRNP complex via the Fab region of the antibody, and the binding molecule in turn binds the Fc region of the antibody.
- the binding molecule will be attached to a solid support, such as a bead, well, pin, plate or column, as known in the art. Accordingly, the mRNP complex will be attached to the solid support via the ligand and binding molecule.
- the mRNP complex may then be collected by removing it from the solid support (i.e., the complex is washed off the solid support under appropriate stringency conditions, using suitable solvents that may be determined by skilled artisans).
- the mRNP complex may be stabilized by cross-linking prior to binding the ligand thereto.
- Cross-linking means covalently binding (e.g., covalently binding the components of the mRNP complex together).
- Cross-linking may be contrasted with ligand-target binding, or binding molecule-ligand binding, which is generally non-covalent binding.
- Cross-linking may be carried out by physical means (e.g., by heat or ultraviolet radiation), or chemical means (e.g., by contacting the complex with formaldehyde, paraformaldehyde, or other known cross-linking agents), which means are known or determinable by those skilled in the art.
- the ligand may be cross-linked to the mRNP complex after binding the mRNP complex.
- the binding molecule may be cross-linked to the ligand after binding to the ligand.
- the binding molecule may be cross-linked to the solid support.
- a biological sample may be contacted with a plurality of ligands specific for different mRNP complex components.
- a plurality of mRNP complexes from the sample will bind the various ligands.
- the plurality of mRNP complexes can then be separated using appropriate binding molecules, thus isolating the plurality of mRNP complexes.
- the mRNP complexes and the mRNAs and ncRNAs contained within the complexes may then be characterized and/or identified by methods described herein and known in the art.
- the method may be carried out on one sample numerous times, the inventive steps being performed in a sequential fashion, with each iteration of steps utilizing a different ligand.
- a subset of mRNA and/or ncRNAs identifies a pattern-recognition profile that is characteristic of the RNA structural or functional networks in that sample.
- the collection of mRNA and/or ncRNA subsets for any particular cell or tissue sample constitutes a gene expression profile, and more specifically a ribonomic gene expression profile, for that cell or tissue.
- ribonomic expression profiles may differ from cell to cell, depending on the type of cell in the sample (e.g., what species or tissue type the cell is), the differentiation status of the cell, the viability of the cell (i.e., if the cell is infected or if it is expressing a deleterious gene, such as an oncogene, or if the cell is lacking a particular gene or not expressing a particular gene), the specific ligands used to isolate the mRNP complexes, etc.
- the ribonomic expression profile of a cell may be used as an identifier for the cell, enabling the artisan to compare and distinguish profiles or subprofiles of different cells.
- the genes identified by the RNAs present in each ribonomic pattern form distinct subsets that may be associated with a particular cell cycle, stage of differentiation, apoptosis or stress induction, viral infection, or cancer.
- cDNAs may be used to identify mRNP complexes partitioned with a ligand or ligands specific for a component of the mRNP complex.
- cDNA microarray grids may be used to identify mRNA and ncRNA subsets en masse.
- genomic microarrays e.g., microarrays wherein the target nucleic acids may contain introns and exons
- each gene or target nucleic acid being examined on a microarray has a precise address that can be located, and the binding can be quantitated.
- Microarrays in the form of siliconized chips or those based upon cDNA blots on nylon or nitrocellulose are commercially available.
- Glass slides can also be customized with oligonucleotides or DNAs for detection of complementary RNA sequences.
- the hybridization platforms allow identification of the mRNAs and ncRNAs in a sample based upon the stringency of binding and washing. This has been referred to as “sequencing by hybridization.”
- microarray technology is one method of analysis, it is only one way to identify and/or sequence the mRNAs and ncRNAs in the mRNA and ncRNA subset.
- Alternative approaches include but are not limited to differential display, phage display/analysis, SAGE or simply preparing cDNA libraries from the mRNA and ncRNA preparation and sequencing all members of the library.
- Methods for DNA sequencing which are well known and generally available in the art may be used to practice any of the embodiments of the invention.
- the methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE® (US Biochemical Corp, Cleveland, Ohio), Taq polymerase (Perkin Elmer), thermostable T7 polymerase (Amersham, Chicago, Ill.), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE Amplification System marketed by Gibco/BRL (Gaithersburg, Md.).
- the process is automated with machines such as the Hamilton Micro Lab 2200 (Hamilton, Reno, Nev.), Peltier Thermal Cycler (PTC200; MJ Research, Watertown, Mass.) and the ABI Catalyst and 373 and 377 DNA Sequencers (Perkin Elmer).
- machines such as the Hamilton Micro Lab 2200 (Hamilton, Reno, Nev.), Peltier Thermal Cycler (PTC200; MJ Research, Watertown, Mass.) and the ABI Catalyst and 373 and 377 DNA Sequencers (Perkin Elmer).
- amplification of the mRNA and ncRNA isolated according to the present invention, and/or the cDNA obtained from the mRNA is not carried out during the identification of the nucleic acid, and is not necessary or required by the present invention.
- the skilled artisan may choose to amplify the nucleic acid that is the subject of identification (e.g., the nucleic acid being identified via microarray analysis and/or sequencing) for convenience, as a matter of preference, and/or to comply with the specification/instructions of certain commercially available microarrays or microarray analysis systems.
- the nucleic acid may be amplified according to any of the numerous known nucleic acid amplification methods that are well-known in the art (e.g., PCR, RT-PCR, QC-PCR, SDA, and the like).
- Methods of the present invention may be carried out in several ways, according to the needs of the practitioner and the purpose for which the invention is carried out. For example, in one embodiment, mRNA-binding protein complexes that are unique to a cell type of interest are identified. In an example of such an embodiment, an antibody that is specific for the mRNP complex can be used to immunoprecipitate the complex with its associated mRNAs and ncRNAs. The RNAs may then identified to form the ribonomic expression profile of that cell type, or alternatively may be isolated for (as an example) drug screening.
- the mRNA and/or ncRNA candidates for post-transcriptional regulation may be analyzed en masse, as a subset, for changes in mRNA and/or ncRNA stability during the cell cycle or developmental events.
- the methods may be carried out by isolating nuclei from cells undergoing developmental or cell cycle changes, performing nuclear run-off assays according to known techniques to obtain transcribing mRNAs and/or ncRNAs, and then comparing the transcribing mRNAs and/or ncRNAs with the global mRNA and/or ncRNA levels in the same cells using cDNA microarrays. These methods thus provide the ability to distinguish transcriptional from post-transcriptional effects on steady state mRNA and/or ncRNA levels en masse.
- cells in culture are transformed to express a RNA-binding protein (RBP) or RNA-associated protein (RAP) that will associate with particular mRNAs and ncRNAs only in a cell type of interest.
- RBP RNA-binding protein
- RAP RNA-associated protein
- DNA encoding the RBP or RAP may be carried by a recombinant vector (e.g., a plasmid, a viral vector) and transformed into the cell by known means, after which the RBP or RAP is expressed in the cell. Any RBP or RAP can be used, as described further herein.
- the protein may be in its native form, or it may be tagged (e.g., epitope tagged) for easy recovery from the cell.
- RNA targets in vivo that are bound or associated with RBPs or RAPs may be carried out by using accessible epitopes, if necessary, but preferably is carried out without tags.
- epitope tags on ectopically expressed recombinant proteins may be used.
- the transformed cell may be mixed with other cell types or may be implanted in an animal or human subject.
- a ligand e.g., an antibody
- a ligand that is specific for the protein can used to immunoprecipitate the protein with its associated messenger RNAs from an extract of a tissue containing the transformed cell.
- the mRNA and ncRNA complexes and its associated RNAs may then identified to form the expression profile of that cell type or is otherwise analyzed (e.g., for drug development).
- RNA binding proteins RBPs
- RAPs RNA-associated proteins
- RNA binding proteins are now known to be involved in the control of a variety of cellular regulatory and developmental processes, such as RNA processing and compartmentalization, RNA stabilization, mRNA translation and viral gene expression.
- RNA binding proteins include poly A-binding protein (“PABP,” which gives rise to a subset of the total mRNA population that is quantitatively different from the total mRNA population), and other general RNA binding proteins, as well as RNA-binding proteins that are attached to only one or a few messenger RNAs in a particular cell type.
- PABP poly A-binding protein
- Other useful proteins are autoantibodies reactive with RNA and RNA-binding proteins.
- RNA binding proteins and RNA associated proteins examples include the four ELAV/Hu mammalian homologues of the Drosophila ELAV RNA-binding protein (Good (1995) Proc. Natl. Acad. Sci. USA 92, 4557-4561; Antic and Keene, supra.
- HuA HuR
- HuB, HuC and HuD and their respective alternatively-spliced isoforms
- are predominantly found in neuronal tissue but can also be expressed as tumor cell-specific antigens in some small cell carcinomas, neuroblastomas, and medulloblastomas (reviewed in Keene (1999) Proc. Natl. Acad. Sci. USA 96, 5-7).
- Hu proteins The binding of Hu proteins to ARE-containing mRNAs can result in the stabilization and increased translatability of the mRNA transcripts (Jain et al. (1997) Mol. Cell Biol. 17, 954-962; Levy et al. (1998) J. Biol. Chem. 273, 6417-6423; Fan and Steitz (1998) EMBO J. 17, 3448-3460; Peng et al. (1998) EMBO J. 17, 3461-3470).
- the neuron-specific Hu proteins are one of the earliest neuronal markers produced in teratocarcinoma cells following retinoic acid (RA)-treatment to induce neuronal differentiation (Antic et al., supra; Gao and Keene (1996) J. Cell Sci. 109, 579-589).
- the ligand used to carry out the invention is a RNA binding protein selected from the RNA Recognition Motif (RRM) family of cellular proteins involved in pre-messenger RNA processing.
- RRM RNA Recognition Motif
- U1A snRNP protein More than 200 members of the RRM superfamily have been reported to date, the majority of which are ubiquitously expressed and conserved in phylogeny (Query et al, Cell (1989) 57: 89-101; Kenan et al, Trends Biochem. Sci. (1991) 16: 214-220). Most are known to have binding specificity for polyadenylate mRNA or small nuclear ribonucleic acids (e.g.
- U1, U2, etc. transfer RNAs include but are not limited to hnRNP proteins (A, B, C, D, E, F, G, H, I, K, L), RRM proteins CArG, DT-7, PTB, K1, K2, K3, HuD, HUC, rbp9, elF4B, sxl, tra-2, AUBF, AUF, 32KD protein, ASF/SF2, U2AF, SC35, and other hnRNP proteins.
- hnRNP proteins A, B, C, D, E, F, G, H, I, K, L
- RRM proteins CArG, DT-7, PTB, K1, K2, K3, HuD, HUC, rbp9, elF4B, sxl, tra-2, AUBF, AUF, 32KD protein, ASF/SF2, U2AF, SC35, and other hnRNP proteins.
- Tissue-specific members of the RRM family are less common, including IMP, Bruno, AZP-RRMI, X16 which is expressed in pre-B cells, Bj6 which is a puff-specific Drosophila protein and ELAV/Hu, which are neuron specific.
- RNA-binding and RNA-associated proteins useful in the practice of the present invention include but are not limited to those described above.
- Antibodies that specifically bind mRNP complexes are known and described in, for example, U.S. Pat. No. 6,635,422 to Keene et al.
- the present invention can be used to identify ncRNAs such as miRNAs that bind to, or interact with in an RNP, an mRNA encoding for a protein with which progression of a disease is associated (protein of interest).
- an mRNA may be predetermined, or identified from a subpopulation, subset of mRNAs generated by the methods of the present invention (e.g., where a cell known to express the protein of interest is utilized in carrying out the method).
- Examples of mRNAs encoding such proteins include but are not limited to those described in U.S. Pat. No. 6,503,713 to Rana at section 5.1 therein.
- mRNAs that encode proteins such as amyloid protein, amyloid precursor protein, angiostatin, endostatin, METH-1, METH-2, Factor IX, Factor VIII, collagen, cyclin dependent kinase, cyclin D1, cyclin E, WAF1, cdk4 inhibitor, MTS1, cystic fibrosis transmembrane conductance regulator gene, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, erythropoietin, G-CSF, GM-CSF, M-CSF, SCF, thrombopoietin, BNDF, BMP, GGRP, EGF, FGF, GDNF, GGF, HGF, IGF-1, IGF-2, KGF, myotrophin
- ncRNAs and miRNAs identified by the methods of the present invention are useful in native form or derivatized form as RNA interference (RNAi) active agents, such as described in U.S. Pat. No. 7,078,196; U.S. Pat. No. 6,503,713 (particularly section 5.2 therein); and US Patent Application 2004/0086884.
- RNAi RNA interference
- the molecular interactions and interaction sites as defined using this invention can provide validated targets for the development of compounds and reagents such as interfering RNAs.
- ncRNAs and miRNAs identified by the present invention are useful in the production of proteins or peptides in vitro or in vivo, where it is desired to downregulate the production of one or more particular proteins or peptides (e.g., RNA interference during a growth phase of bacterial, plant, animal, or yeast cells), and then remove that downregulation during a subsequent production phase.
- Such applications would be useful in treating diseases such as those described herein and in the production of recombinant proteins and peptides.
- ncRNAs and miRNAs of the invention are useful for designing anti-miRNA or anti-ncRNA oligonucleotides (AMOs) that hybridize thereto, which AMOs can be designed and synthesized in accordance with known techniques in order to regulate the expression of a given protein that is encoded by the mRNA target so defined. See, e.g., J. Weiler et al., Anti - miRNA oligonucleotides ( AMOs ): ammunition to target miRNAs implicated in human disease, Gene Therapy 13: 496-502 (2006).
- AMOs anti-miRNA or anti-ncRNA oligonucleotides
- these HuR RNP-associated miRNAs and mRNAs provide a greatly reduced sequence space in which to examine miRNA targeting and the outcomes of predicted miRNA:mRNA interactions in a given cellular context.
- RNABPs RNA-binding protein
- miRNAs regulated by one posttranscriptional mechanism such as RNABPs may have preferentially evolved or acquired additional posttranscriptional regulators to diversify and coordinate the outcomes of gene expression.
- RNABPs Two other RNABPs were also tested and did not produce these RNA subsets (data not shown).
- the 14 miRNAs associated with HuR are grouped into 7 miRNA families out of the approximately 62 known families based on seed sequence conservation (Table 1A) (18, 19).
- Several of the HuR-associated miRNAs have previously been reported to function in processes also associated with ARE-mediated RNA stability and translation in which Hu proteins are well established regulators. These include effects on cellular proliferation and apoptosis by miR-16, the miR-17 oncomir cluster (including miR17-5p and miR-19b) and the let-7 family (13, 15, 16, 20, 21).
- miR-16 has been implicated in TNF- ⁇ mRNA instability mediated through an ARE sequence motif that is also an expected binding site of the RNABPs tristetraprolin (TTP) and HuR (5).
- RNABPs and RNPs in general, have been demonstrated to exhibit condition dependent association with mRNA targets (22). It is apparent that the simple presence of an RNABP and a target mRNA in a given cell is not the sole determinant of their in vivo interaction.
- RNABP TTP functions interdependently with miR-16 in ARE-mediated decay of tumor necrosis factor mRNA, and that HuR can conditionally derepress miR-122 mediated translational inhibition, also indicate the importance of cellular context in which to investigate functional interactions between posttranscriptional mediators (5, 6).
- the relief of miR-122 repression by HuR resulted in recruitment of the targeted mRNA to actively translating polysomes, consistent with previous studies with the neuronal HuB protein (12).
- HuR is the first RNABP reported to associate with a discrete subset of miRNAs, in addition to a subset of mRNAs enriched for predicted targets of miRNAs. As HuR is an established ARE binding and regulatory protein, these data are consistent with bioinformatics approaches that have been used to predict the preferential targeting by human miRNAs of mRNAs containing AU-rich 3′UTRs (27). Moreover, UTR evolution and the robustness of gene expression programs appear to have been significantly influenced by posttranscriptional regulators (7-9, 28-30). Our data suggest that the combinatorial effects of different classes of posttranscriptional factors may in fact mediate this evolutionary progression.
- HuR associates with seven miRNA families* Human miRNA Family Seed + m8 HuR-associated miRNAs miR-181 ACAUUCA miR-181a, miR-181b, miR-181c miR-103 GCAGCAU miR-103, miR-107 miR-29b AGCACCA miR-29c miR-20 AAAGUGC miR-17-5p, miR-106a miR-19 GUGCAAA miR-19b miR-15 AGCAGCA miR-16 let-7 GAGGUAG let-7a, let-7c, let-7d, let-7f *The 14 miRNAs associated with HuR in Jurkat cells represent 7 families based on seed sequence conservation. These 7 human miRNA families, the related seed sequence plus 1 nucleotide (utilized for predicting mRNA targets of miRNAs), and the HuR-associated miRNAs which are grouped into each microRNA family are shown.
- HuR associates with mRNAs enriched for predicted targets of miRNAs.
- Mapped mRNA Targets of HuR- RNA Source mRNAs associated miRNAs Total RNA 7543 439 HuR mRNP 1013 108 HuR mRNP as % of Total RNA 11% 25% # *The 7 families of miRNAs associated with HuR are predicted by the TargetScanS algorithm to target a subpopulation of mRNAs that are significantly enriched in the HuR RNP when compared to total cellular RNA.
- Mapped mRNA numbers represent those unique mRNAs in total cellular RNA and the HuR mRNP that were found to overlap between the array platform and the gene list utilized for TargetScanS predictions.
- mRNA targets of HuR-associated miRNAs are enriched for specific gene ontology functional categories.
- IP of endogenous HuR and PABP mRNP complexes were used to assess association of endogenous target mRNAs. Assays were performed essentially as described (1, 2). IPs utilized 200 ⁇ l pre-swollen and packed Protein-A Sepharose beads (Sigma) loaded with 60 ⁇ g of anti-HuR (3A2) (3), anti-PABP (4), IgG1 (BD PharMingen) or normal rabbit sera immunoglobulin.
- Antibody loaded beads were incubated with 5 mg (total protein) cell lysate for four hours at 4° C., washed 4 times with ice-cold NT2 buffer (50 mM Tris pH 7.4/150 mM NaCl/1 mM MgCl2/0.05% Nonidet P-40) followed by 3 washes with ice-cold NT2 supplemented with 1M Urea. Extraction of associated RNA was performed as described (1), and total RNA was isolated using the Trizol reagent (GIBCO/BRL). All RNA samples were divided into two aliquots for subsequent analysis on mRNA or miRNA arrays.
- RNAs were assayed for mRNAs on two color Operon Human Oligo Arrays (version 2.1) as described (5). Probe production used direct labeling of experimental samples (Cy 3) and Stratagene Universal Human Reference RNA (Cy 5). Results were analyzed using GeneSpring GX 7.3 (Agilent) with per spot and per chip (lowess) normalization. mRNAs were determined to be components of total RNA or specific endogenous targets of a given RNABP if present on 2 of 3 biological replicate arrays at a level of 2 fold above local background in the experimental channel as well as 10 fold above signal/noise ratio of parallel negative control IP (IgG1 or normal rabbit sera).
- Probe production used direct labeling of experimental samples (Cy 3) and Stratagene Universal Human Reference RNA (Cy 5). Results were analyzed using GeneSpring GX 7.3 (Agilent) with per spot and per chip (lowess) normalization. mRNAs were determined to be components of total RNA or specific endogen
- Total and RNP-associated RNA (and negative control IPs) were assayed for miRNAs using a custom array platform capable of detecting 156 human miRNAs essentially as described (6). Exceptions include using 10 ⁇ g/ml BSA in the labeling buffer and a reference oligonucleotide concentration of 0.05 ⁇ M for labeling. Arrays were washed once in 2 ⁇ SSC/0.025% SDS at 25° C., three times in 0.8 ⁇ SSC at 23° C., and twice in 0.4 ⁇ SSC at 4° C. Computational analysis on each array was performed as described (6).
- miRNAs were determined to be components of total RNA or associated with a given RNABP if present on 2 of 3 biological replicate arrays at a level of 2 fold above local background in duplicate spots as well as 10 fold above signal/noise ratio of parallel negative control IP (IgG1 or normal rabbit sera).
- miRNA target predictions were taken from the supplementary data of Lewis et al. (7). This algorithm uses multiple alignments to identify conserved Watson/Crick hexamer matches to bases 2-7 of a miRNA, flanked by either a Watson/Crick match to position 8 of the miRNA or a conserved adenosine in position 1 of the target. We used the 12928 predictions conserved in 5-species alignments (human, mouse, rat, dog, and chicken). Lewis et al. provide these predictions as IDs of cDNAs obtained from the UCSC genome annotations which may lead to duplicate entries in the form of several cDNAs reported for one gene.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
A method of generating a gene expression profile of noncoding regulatory RNA (ncRNA; e.g. a microRNA) in a cell in vivo, is carried out by: (a) partitioning from a cell at least one mRNA-protein (RNP) complex, the RNP complex comprising: (i) an RNA binding protein (RNABP) or RNA associated protein, (ii) at least one mRNA bound to or associated with said protein, and (iii) at least one ncRNA bound to or associated with said protein, and then (b) identifying at least one ncRNA in at least one RNP complex, thereby to produce a gene expression profile comprising the identity of an ncRNA in an RNP complex.
Description
- This application is a continuation application of, and claims priority to, U.S. application Ser. No. 12/438,383, filed Jun. 24, 2010 (issued Apr. 11, 2017 as U.S. Pat. No. 9,617,581), which is a 35 U.S.C. §371 national phase application of International Application No. PCT/US2007/018793, filed Aug. 24, 2007, which claims the benefit, under 35 U.S.C. §119(e), of U.S. Provisional Application No. 60/823,581, filed Aug. 25, 2006, the entire contents of each of which are incorporated by reference herein.
- This invention was made with government support under grant number CA79907 from the National Institutes of Health. The U.S. Government has certain rights in the invention.
- The present invention concerns methods of identifying microRNAs and the corresponding mRNA targets thereof.
- MicroRNAs (miRNAs), together with RNA binding proteins (RNABPs), constitute the primary regulators of eukaryotic posttranscriptional gene expression and function in a broad range of cellular processes. miRNAs are a large family of small noncoding RNAs (ncRNAs) that repress gene expression by affecting the stability or translation of target messenger RNAs (mRNAs) (1-3). The current understanding of global miRNA targeting of mRNAs is based upon computational predictions of complementary sequence elements that are refined by considering evolutionary homologies across multiple species (4). While these algorithms predict hundreds of potential mRNA targets per miRNA, it is not certain that each miRNA gains functional access to these target mRNAs in the cell under a given set of conditions. Indeed, recent evidence suggests that RNABPs can influence the regulatory fates of mRNAs targeted by miRNAs in a condition-dependent manner (5, 6).
- RNABPs, among the largest protein families encoded in eukaryotic genomes, can regulate gene expression at multiple posttranscriptional levels (7, 8). Like miRNAs, RNABPs also function through binding specific RNA sequence motifs frequently contained within untranslated regions (UTRs) of target mRNAs. When occurring in the cytoplasmic compartment, these interactions may determine mRNA localization, stability and/or translational activation (9). It is becoming increasingly evident that the posttranscriptional infrastructure is highly organized and utilizes multiple cis-trans interactions to combinatorially regulate higher order gene expression (7, 10). Global exploration of the in vivo composition and organization of this posttranscriptional infrastructure has only recently begun. A number of studies have identified RNABPs associated with mRNA subsets that have similar metabolic fates or encode functionally related proteins (7). Several predicted functional interactions between miRNAs and mRNAs have been confirmed using reporter systems, while a number of primarily bioinformatics approaches have predicted the global targeting of a substantial proportion of all cellular mRNAs by miRNAs (2, 4, 11). While miRNAs are expected to act combinatorially on their mRNA targets, the composition and organization of endogenous miRNAs, mRNAs and RNABPs within messenger ribonucleoprotein (mRNP) complexes are poorly understood.
- A first aspect of the invention is a method of generating a gene expression profile of noncoding regulatory RNA (ncRNA) in a cell in vivo, comprising the steps of:
- (a) partitioning from a cell at least one mRNA-protein (RNP or mRNP) complex, said RNP complex comprising: (i) an RNA binding protein (RNABP) or RNA associated protein, (ii) at least one mRNA bound to or associated with said protein, and (iii) at least one ncRNA bound to or associated with said protein, and then
- (b) identifying at least one ncRNA in at least one mRNP complex, thereby to produce a gene expression profile comprising the identity of an ncRNA in an RNP complex.
- In some embodiments the ncRNA is a microRNA.
- In some embodiments, the invention provides a method of identifying and/or confirming mRNA target(s) of one or more microRNAs. Such a method comprises:
-
- (a) partitioning from a biological sample at least one RNP complex, said complex containing a subset of mRNAs associated with the RNP complex(es), and
- (b) identifying a subset of microRNA associated with the RNP complex(es), thereby determining the association between a microRNA and an mRNA target. In some embodiment, the step of partitioning comprising capturing the RNP complex(es) on a solid support. In other embodiments, the method may further comprise the step of assaying activity of at least one of the identified miRNA with respect to one or more of the identified mRNAs. In further embodiments, the method may comprise the step of predicting an mRNA target of a microRNA using in silico methods (e.g., using the TargetScanS algorithm) and validating the in silico results experimentally as described above.
- A subset of cellular mRNAs is a plurality of mRNAs that includes less than, all mRNAs in the biological sample. In some embodiments, such a subset is represented by less than 75%, 70%, 60%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 2%, 1% or less of all mRNAs. A subset of microRNAs is a plurality of microRNAs that includes less than all microRNAs in the biological sample. In some embodiments, such a subset is represented by less than 75%, 70%, 60%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 2%, 1% or less of all microRNAs. A subset of mRNAs comprises at least 2 but may comprise 3, 4, 5, 10, 15, 20 or more mRNAs. Likewise, a subset of microRNAs comprises at least 2 but may comprise 3, 4, 5, 10, 15, 20 or more microRNAs. The subsets of mRNAs and microRNA may be identified in the methods of the invention, for example, by using a nucleic acid array, e.g., a microarray (e.g., cDNA array).
- In some embodiments, the step of partitioning may comprise contacting an mRNP complex with (i) an antibody that specifically binds at least one component of the mRNP complex or (ii) an ectopically expressed epitope-tagged RNA-binding protein or an RNA-associated protein. In some embodiments, the component of the mRNP complex to which the antibody binds to an RNA-binding protein or an RNA-associated protein present in the mRNP complex. In some embodiments, such an RNA-binding protein is a native or tagged Hu protein (e.g., HuR) or poly(A)-binding protein (PABP). In some embodiments, the identified subset of the microRNAs includes an miRNA selected from the group consisting of miR-181a, miR-181b, miR-181c, miR-103, miR-107m miR-29c, miR-17-5p, miR-106a, miR-19b, miR-16, let-7a, let-7c, let-7d, and let-7f.
- In some embodiments the step of partitioning may comprise: contacting a biological sample comprising said RNP complex from the cell with at least one ligand that specifically binds at least one component of the RNP complex; separating the RNP complex by binding the ligand with an antibody specific for the ligand, wherein the antibody is attached to a solid support; and collecting the RNP complex by removing the RNP complex from the solid support.
- In some embodiments the mRNA in said RNP complex is predetermined; in some embodiments the method further comprises the step of: (c) identifying the mRNA in the mRNP complex, thereby to produce a gene expression profile further comprising the identity of the mRNA associated with said miRNA.
- Any suitable cell or cells can be used to carry out the present invention, including but not limited to plant, animal, bacterial, yeast, and protozoal cell.
- In some embodiments the partitioning step comprises partitioning a plurality of RNP complexes; the identifying step comprises identifying a plurality of ncRNAs associated with the plurality of RNP complexes; and the method further comprises: (c) identifying a plurality of mRNAs associated with said plurality of RNP complexes; thereby to produce a gene expression profile further comprising the identity of a subset of ncRNAs associated with a subset of mRNAs.
- The present invention is explained in greater detail in the drawings herein and the specification set forth below.
-
FIG. 1 . HuR-associated mRNAs and miRNAs are discrete subsets of total cellular RNA. Venn diagrams representing distinct (A) messenger RNAs (mRNAs) and (B) microRNAs (miRNAs) present in total cellular RNA, the PABP mRNP and the HuR mRNP. All RNA populations were isolated as single samples from log phase Jurkat cells and subsequently divided for analysis of mRNAs and miRNAs on specific microarray platforms. Data was gathered from three biological replicates and triplicate array analyses. -
FIG. 2 . Combinatorial posttranscriptional regulation mediated by RNA binding proteins and miRNAs. Depiction of gene expression networks localized to the nucleus (N) and cytoplasm. The nuclear networks involve DNA binding transcription factors, while the cytoplasmic networks involve RNABPs and miRNAs. In the nucleus, multiple promoter elements can be regulated by transcription factors. Posttranscriptional regulation primarily occurs through interaction of RNA binding factors with 5′ and 3′ untranslated regions (UTRs) of mRNAs. As shown, an mRNA subset regulated by a given RNABP can be further subdivided into discrete mRNA subpopulations that are also regulated in a combinatorial manner by miRNAs. The coordinated outcome depicted here applies to functional relationships among the encoded proteins or to the fates of the associated mRNAs (stability/translational state). - The present invention is explained in greater detail in the non-limiting specification and examples set forth below. The disclosures of all United States patent references cited herein are to be incorporated by reference herein in their entirety.
- The present invention will now be described more fully with reference to the accompanying drawings and specification, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
- The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only, and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety.
- “Messenger RNA” or “mRNA” as used herein has its ordinary meaning in the art, and generally refers to an RNA transcribed from DNA that carries encoded information to a site of protein synthesis from that mRNA by translation. mRNA as used herein may be unprocessed (pre-mRNA) or processed and hence the term is to include both. mRNA as used herein may be from any suitable source, typically vertebrate and preferably mammalian (e.g. human, dog, cat, monkey, chimpanzee, mouse, rat, rabbit, etc.).
- “Noncoding regulatory RNA” or “ncRNA” as used herein has its ordinary meaning in the art. Examples include but are not limited to piRNAs, microRNAs, ribosomal RNA (rRNA), small interfering RNA (siRNA), small nuclear RNA (snRNA), small non-mRNA (snmRNA), small nucleolar RNA (snoRNA), small temporal RNA (stRNA) and other RNAs that interact with mRNAs to regulate the function thereof. See, e.g., PCT Application Publication No. WO 2005/102298.
- “MicroRNA” or “miRNA” as used herein has its ordinary meaning in the art. Typically, a miRNA is a RNA molecule derived from genomic loci processed from transcripts that can form local RNA precursor miRNA structures. The mature miRNA usually has 20, 21, 22, 23, or 24 nucleotides, although in some cases, other numbers of nucleotides may be present, for example, between 18 and 26 nucleotides. miRNAs are often detectable on Northern blots. The miRNA has the potential to pair to flanking genomic sequences, placing the mature miRNA within an imperfect RNA duplex which may be needed for its processing from a longer precursor transcript. In animals, this processing may occur through the action of Drosha and Dicer endonucleases, which excise a miRNA duplex from the hairpin portion of the longer primary transcript. The miRNA duplex comprises the miRNA and a similar-sized segment, known as the miRNA* (miRNA star), from the other arm of the stem-loop. The miRNA is the strand that enters the silencing complex, whereas the miRNA* degrades. In addition, miRNAs are typically derived from a segment of the genome that is distinct from predicted protein-coding regions. See, e.g., US Patent Application Publication No. 20060185027. miRNA as used herein may be from any suitable source, typically vertebrate and preferably mammalian (e.g. human, dog, cat, monkey, chimpanzee, mouse, rat, rabbit, etc.)
- “mRNA binding protein” or “RNABP”, along with RNA associated proteins, as used herein have their ordinary meaning in the art, and includes global RNABPs (those that bind to nearly all mRNAs without distinguishing unique sequences), group-specific RNABPs (those that associate with subsets of the global mRNA population), and type-specific RNABPs (those that recognize a highly unique mRNA sequence, in some cases present in only one mRNA, with high specificity). See, e.g., J. Keene et al., Proc. Natl. Acad. Sci. USA 98, 7018, 7021 (2001). Examples include but are not limited to the ELAV/Hu family (e.g. HuR/Hu1,) eIF-4E, poly(A) binding proteins, the PUMILIO family (e.g., Pum1), etc. Additional examples are given in Keene et al., U.S. Pat. No. 6,635,422, at Table 1 therein, as follows:
-
TABLE 1 RNA Binding and RNA Associated Proteins SLBP DAN TTP HeI-N1 Hel-N2 eIF-4A eIF-4B eIF-4G eIF-4E eIF-5 eIF-4EBP MNK1 PABP p62 KOC p90 La Sm Ro U1-70K AUF-1 RNAse-L GAPDH GRSF Ribosomal Po, P1, P2/L32 PM-Scl FMR Stauffen Crab 95 TIA-1 Upf1 RNA BP1 RNA BP2 RNA BP3 CstF-50 NOVA-1 NOVA-2 CREBP GRBP SXL SC35 U2AF ASF/SF2 ETR-1 IMP-1 IMP-2 IMP-3 ZBP LRBP-1 Barb PTB uPAmRNA BP BARB1 BARB2 GIFASBP CYP mRNA BP IRE-BP p50 RHA FN mRNA BP AUF-1 GA mRNA BP Vigillin ERBP CRD-BP HuA HuB HuC HuD hnRNP A hnRNP B hnRNP C hnRNP D hnRNP E hnRNP F hnRNP G hnRNP H hnRNP K hnRNP L U2AF - RNABPs miRNAs, and mRNAs as used herein may be from any suitable source, including bacteria, protozoa, plants and animals. Plants may be vascular plants such as monocots and dicots, with particular examples including but not limited to corn or maize, wheat, soybean, canola, tomato, etc. Animals are typically vertebrates and preferably mammals, with particular examples including but not limited to human, dog, cat, monkey, chimpanzee, mouse, rat, rabbit, etc. In particular embodiments of the invention the RNABP, miRNA, and mRNA may all be from the same cell or tissue from the same species of origin in native (non-transgenic) form.
- A “subset” of mRNA, ncRNA, miRNA has its ordinary meaning in the art and is a plurality thereof, typically in an RNP complex. In other words, subsets are defined by their ability to bind within or to a particular RNP complex or subset of RNP complexes. The subset will preferably be a quantitative or qualitative fraction of the total population thereof of the cell. Furthermore, subsets within subsets of mRNAs, ncRNAs, or miRNAs may be identified using the invention. See, e.g., U.S. Pat. No. 6,635,422.
- “RNA interference” or “RNAi” as used herein refers to post-transcriptional process for attenuating gene expression in which a natural (e.g., a miRNA) or artificial (e.g., an exogenously administered double stranded RNA) interferes with the translation of a target or corresponding mRNA, e.g., by hybridization to the mRNA in a manner that interferes with normal translation thereof.
- The present invention can be carried out utilizing techniques described in part in U.S. Pat. No. 6,635,422 to Keene et al., or variations thereof that will be apparent to those skilled in the art, with the provision where necessary of additional selection and identification steps for ncRNAs such as miRNAs (which can be carried out in essentially the same manner as the selection and identification of mRNAs, typically with different probe sets or microarray chips optimized for the selection and identification of the ncRNAs such as miRNAs.
- Except as otherwise indicated, standard methods may be used for the production of cloned genes, expression cassettes, vectors, and transformed cells and plants according to the present invention. Such methods are known to those skilled in the art. See e.g., J. Sambrook et al., Molecular Cloning: A Laboratory Manual Second Edition (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989); F. M. Ausubel et al., Current Protocols In Molecular Biology (Green Publishing Associates, Inc. and Wiley-Interscience, New York, 1991).
- Nucleotides and amino acids are represented herein in the manner recommended by the IUPAC-IUB Biochemical Nomenclature Commission, or (for amino acids) by three letter code, in accordance with 37 C.F.R. .sctn.1.822 and established usage. See, e.g., Patentin User Manual, 99-102 (November 1990) (U.S. Patent and Trademark Office).
- The terms “nucleic acid” or “nucleic acid sequence” may also be used in reference to genes, cDNA, and mRNA encoded by a gene. The term “gene” is used broadly to refer to any segment of DNA associated with a biological function. Thus, genes include coding sequences and/or the regulatory sequences required for their expression. Genes also include non-expressed DNA segments that, for example, form recognition sequences for other proteins. Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known or predicted sequence information.
- As used herein, a nucleic acid molecule may be RNA (the term “RNA” encompassing all ribonucleic acids, including but not limited to ncRNA, pre-mRNA, mRNA, rRNA, hnRNA, snRNA and tRNA); DNA; peptide nucleic acid (PNA, as described in, e.g., U.S. Pat. No. 5,539,082 to Nielsen et al., and U.S. Pat. No. 5,821,060 to Arlinghaus et al.); and the analogs and modified forms thereof. Nucleic acid molecules of the present invention may be linear or circular, an entire gene or a fragment thereof, full-length or fragmented/digested, “chimeric” in the sense of comprising more than one kind of nucleic acid, and may be single-stranded or double-stranded. Nucleic acid from any source may be used in the present invention; that is, nucleic acids of the present invention include but are not limited to genomic nucleic acid, synthetic nucleic acid, nucleic acid obtained from a plasmid, cDNA, recombinant nucleic acid, and nucleic acid that has been modified by known chemical methods, as further described herein. Nucleic acids may also be products of in vitro selection experiments (also called aptamers) and other nucleic acid molecules useful for their ability to bind or be bound by other ligands. See D. Kenan, TIBS 19, 57-64 (1994); L. Gold, et al., Annu. Rev. Biochem. 64, 763-798 (1995); S. E. Osborne and A. D. Ellington, Chem. Rev. 97, 349-370 (1997).
- As summarized above, the present invention relates to in vivo methods for partitioning RNP complexes from a cell. mRNP complexes of the present invention is preferably from a biological sample, such as a tissue sample, whole tissue, a whole organ (e.g., an entire brain, liver, kidney, etc.), bodily fluid sample, cell culture, cell lysate, cell extract or the like. In a preferred embodiment, the biological sample comprises or is obtained from a population of cells. By a “population of cells” herein is meant at least two cells, with at least about 103 being preferred, at least about 106 being particularly preferred, and at least about 108 to 109 being especially preferred. The population or sample can contain a mixture of different cell types from either primary or secondary cultures, or from a complex tissue such as a tumor, or may alternatively contain only a single cell type. In a preferred embodiment, cells that are proliferating are used. Alternatively, non-proliferating cells may be used.
- As summarized above, one aspect of the invention is an in vivo method of partitioning endogenous cellular mRNA-binding protein (mRNP) complexes. “Endogenous” is used herein to mean that the mRNP complex forms in a cell (i.e., in vivo or in situ). The mRNP complex may form in the cell naturally, i.e., the components of the mRNP complex naturally occur in the cell and form the mRNP complex. Alternatively, the mRNP complex forms in a cell, even though one or more components of the complex is introduced into the cell by, e.g., infection or transformation. For example, an mRNP complex endogenously forms in a cell when a RNA-binding protein that is a component of the mRNP complex is ectopically expressed in the cell by (for example) transforming the cell or infecting the cell with an expression vector that carries nucleic acid encoding the protein, and a mRNP complex in which the protein binds is formed.
- The method, in one embodiment, comprises contacting a biological sample that comprises at least one mRNP complex with a ligand that specifically binds a component of the mRNP complex. The component of the mRNP complex may be a RNA binding protein, a RNA-associated protein, a nucleic acid associated with the mRNP complex including the mRNA itself, ncRNAs, or another molecule or compound (e.g., carbohydrate, lipid, vitamin, etc.) that associates with the mRNP complex. A component “associates” with a mRNP complex if it binds or otherwise attaches to the mRNP complex with a Kd of about 106 to about 109. In a preferred embodiment, the component associates with the complex with a Kd of about 107 to about 109. In a more preferred embodiment, the component associates with the complex with a Kd of about 108 to about 109.
- The ligand may be any molecule that specifically binds the component of the mRNP complex. For example, the ligand may be an antibody that specifically binds the component, a nucleic acid that binds the component (e.g., an antisense molecule, a RNA molecule that binds the component), or any other compound or molecule that specifically binds the component of the complex. In certain embodiments, the ligand may be obtained by using the serum of a subject (i.e., a human or animal subject) that has a disorder known to be associated with the production of mRNP-complex specific antibodies or proteins. Examples of these disorders include autoimmune disorders such as systemic lupus erythematosus (“lupus” or SLE) and a number of cancers. In certain embodiments, the ligand may be “tagged” with another compound or molecule in order to facilitate the separation, observation or detection of the ligand. In one embodiment of the invention, the ligand is “epitope tagged,” as described in the art. Suitable tags are known in the art and include but are not limited to biotin, the MS2 protein binding site sequence, the U1snRNA 70 k binding site sequence, the U1snRNA A binding site sequence, the g10 binding site sequence (commercially available from Novagen, Inc., Madison, Wis., USA), and FLAG-TAG® (Sigma Chemical, St. Louis, Mo., USA).
- The mRNP complex may then be separated by binding the ligand (now bound to the mRNP complex) to a binding molecule that specifically binds the ligand. The binding molecule may bind the ligand directly (i.e., may be an antibody or protein specific for the ligand), or may bind the ligand indirectly (i.e., may be an antibody or binding partner for a tag on the ligand). Suitable binding molecules include but are not limited to protein A, protein G, streptavidin. Binding molecules may also be obtained by using the serum of a subject suffering from, for example, an autoimmune disorder or cancer. In certain embodiments, the ligand is an antibody that binds the component of the mRNP complex via the Fab region of the antibody, and the binding molecule in turn binds the Fc region of the antibody. The binding molecule will be attached to a solid support, such as a bead, well, pin, plate or column, as known in the art. Accordingly, the mRNP complex will be attached to the solid support via the ligand and binding molecule.
- The mRNP complex may then be collected by removing it from the solid support (i.e., the complex is washed off the solid support under appropriate stringency conditions, using suitable solvents that may be determined by skilled artisans).
- In certain embodiments of the invention, the mRNP complex may be stabilized by cross-linking prior to binding the ligand thereto. Cross-linking, as used herein, means covalently binding (e.g., covalently binding the components of the mRNP complex together). Cross-linking may be contrasted with ligand-target binding, or binding molecule-ligand binding, which is generally non-covalent binding. Cross-linking may be carried out by physical means (e.g., by heat or ultraviolet radiation), or chemical means (e.g., by contacting the complex with formaldehyde, paraformaldehyde, or other known cross-linking agents), which means are known or determinable by those skilled in the art. In other embodiments, the ligand may be cross-linked to the mRNP complex after binding the mRNP complex. In additional embodiments, the binding molecule may be cross-linked to the ligand after binding to the ligand. In yet other embodiments, the binding molecule may be cross-linked to the solid support.
- The skilled artisan will appreciate the present method allows for the identification of a plurality of mRNP complexes simultaneously (e.g., “en masse”). For example, a biological sample may be contacted with a plurality of ligands specific for different mRNP complex components. A plurality of mRNP complexes from the sample will bind the various ligands. The plurality of mRNP complexes can then be separated using appropriate binding molecules, thus isolating the plurality of mRNP complexes. The mRNP complexes and the mRNAs and ncRNAs contained within the complexes may then be characterized and/or identified by methods described herein and known in the art. Alternatively, the method may be carried out on one sample numerous times, the inventive steps being performed in a sequential fashion, with each iteration of steps utilizing a different ligand.
- As set forth above, a subset of mRNA and/or ncRNAs identifies a pattern-recognition profile that is characteristic of the RNA structural or functional networks in that sample. The collection of mRNA and/or ncRNA subsets for any particular cell or tissue sample constitutes a gene expression profile, and more specifically a ribonomic gene expression profile, for that cell or tissue. It will be appreciated that ribonomic expression profiles may differ from cell to cell, depending on the type of cell in the sample (e.g., what species or tissue type the cell is), the differentiation status of the cell, the viability of the cell (i.e., if the cell is infected or if it is expressing a deleterious gene, such as an oncogene, or if the cell is lacking a particular gene or not expressing a particular gene), the specific ligands used to isolate the mRNP complexes, etc. Thus, the ribonomic expression profile of a cell may be used as an identifier for the cell, enabling the artisan to compare and distinguish profiles or subprofiles of different cells. The genes identified by the RNAs present in each ribonomic pattern form distinct subsets that may be associated with a particular cell cycle, stage of differentiation, apoptosis or stress induction, viral infection, or cancer.
- cDNAs may be used to identify mRNP complexes partitioned with a ligand or ligands specific for a component of the mRNP complex. cDNA microarray grids, for example, may be used to identify mRNA and ncRNA subsets en masse. Alternatively, genomic microarrays (e.g., microarrays wherein the target nucleic acids may contain introns and exons) may be used. Therefore, each gene or target nucleic acid being examined on a microarray has a precise address that can be located, and the binding can be quantitated. Microarrays in the form of siliconized chips or those based upon cDNA blots on nylon or nitrocellulose are commercially available. Glass slides can also be customized with oligonucleotides or DNAs for detection of complementary RNA sequences. In all of these cases, the hybridization platforms allow identification of the mRNAs and ncRNAs in a sample based upon the stringency of binding and washing. This has been referred to as “sequencing by hybridization.” Although microarray technology is one method of analysis, it is only one way to identify and/or sequence the mRNAs and ncRNAs in the mRNA and ncRNA subset. Alternative approaches include but are not limited to differential display, phage display/analysis, SAGE or simply preparing cDNA libraries from the mRNA and ncRNA preparation and sequencing all members of the library.
- Methods for DNA sequencing which are well known and generally available in the art may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE® (US Biochemical Corp, Cleveland, Ohio), Taq polymerase (Perkin Elmer), thermostable T7 polymerase (Amersham, Chicago, Ill.), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE Amplification System marketed by Gibco/BRL (Gaithersburg, Md.). Preferably, the process is automated with machines such as the Hamilton Micro Lab 2200 (Hamilton, Reno, Nev.), Peltier Thermal Cycler (PTC200; MJ Research, Watertown, Mass.) and the ABI Catalyst and 373 and 377 DNA Sequencers (Perkin Elmer).
- In a preferred embodiment, amplification of the mRNA and ncRNA isolated according to the present invention, and/or the cDNA obtained from the mRNA is not carried out during the identification of the nucleic acid, and is not necessary or required by the present invention. However, the skilled artisan may choose to amplify the nucleic acid that is the subject of identification (e.g., the nucleic acid being identified via microarray analysis and/or sequencing) for convenience, as a matter of preference, and/or to comply with the specification/instructions of certain commercially available microarrays or microarray analysis systems. Thus, if desired, the nucleic acid may be amplified according to any of the numerous known nucleic acid amplification methods that are well-known in the art (e.g., PCR, RT-PCR, QC-PCR, SDA, and the like).
- Methods of the present invention may be carried out in several ways, according to the needs of the practitioner and the purpose for which the invention is carried out. For example, in one embodiment, mRNA-binding protein complexes that are unique to a cell type of interest are identified. In an example of such an embodiment, an antibody that is specific for the mRNP complex can be used to immunoprecipitate the complex with its associated mRNAs and ncRNAs. The RNAs may then identified to form the ribonomic expression profile of that cell type, or alternatively may be isolated for (as an example) drug screening. The mRNA and/or ncRNA candidates for post-transcriptional regulation may be analyzed en masse, as a subset, for changes in mRNA and/or ncRNA stability during the cell cycle or developmental events. In certain embodiments, the methods may be carried out by isolating nuclei from cells undergoing developmental or cell cycle changes, performing nuclear run-off assays according to known techniques to obtain transcribing mRNAs and/or ncRNAs, and then comparing the transcribing mRNAs and/or ncRNAs with the global mRNA and/or ncRNA levels in the same cells using cDNA microarrays. These methods thus provide the ability to distinguish transcriptional from post-transcriptional effects on steady state mRNA and/or ncRNA levels en masse.
- In another embodiment, cells in culture are transformed to express a RNA-binding protein (RBP) or RNA-associated protein (RAP) that will associate with particular mRNAs and ncRNAs only in a cell type of interest. DNA encoding the RBP or RAP may be carried by a recombinant vector (e.g., a plasmid, a viral vector) and transformed into the cell by known means, after which the RBP or RAP is expressed in the cell. Any RBP or RAP can be used, as described further herein. The protein may be in its native form, or it may be tagged (e.g., epitope tagged) for easy recovery from the cell. Detection of multiple RNA targets in vivo that are bound or associated with RBPs or RAPs may be carried out by using accessible epitopes, if necessary, but preferably is carried out without tags. In cases where the epitopes on the RBPs or RAPs are inaccessible or obscured, epitope tags on ectopically expressed recombinant proteins may be used. The transformed cell may be mixed with other cell types or may be implanted in an animal or human subject. A ligand (e.g., an antibody) that is specific for the protein can used to immunoprecipitate the protein with its associated messenger RNAs from an extract of a tissue containing the transformed cell. The mRNA and ncRNA complexes and its associated RNAs may then identified to form the expression profile of that cell type or is otherwise analyzed (e.g., for drug development).
- In still another embodiment, a specific cell type in an animal is engineered with one or more cell-type specific gene promoters to express a RBP or RAP in the cell type of interest. As set forth above, the gene promoter and the RBP or RAP may be carried on one or more vectors and transformed into the cell, where the RBP or RAP is expressed. In one embodiment, a ligand (e.g., an antibody) that is specific for this protein can used to immunoprecipitate the protein with its attached or associated mRNAs and ncRNAs from an extract of a tissue containing the cell type of interest. The RNAs are then identified to form the expression profile of that cell type or isolated, e.g., for drug development.
- RNA binding proteins (RBPs) and RNA-associated proteins (RAPs) useful in the practice of the present invention are known in the art, or may alternatively be identified and discovered by methods described herein. RNA binding proteins are now known to be involved in the control of a variety of cellular regulatory and developmental processes, such as RNA processing and compartmentalization, RNA stabilization, mRNA translation and viral gene expression. RNA binding proteins include poly A-binding protein (“PABP,” which gives rise to a subset of the total mRNA population that is quantitatively different from the total mRNA population), and other general RNA binding proteins, as well as RNA-binding proteins that are attached to only one or a few messenger RNAs in a particular cell type. Other useful proteins are autoantibodies reactive with RNA and RNA-binding proteins.
- Examples of useful RNA binding proteins and RNA associated proteins are described above and include the four ELAV/Hu mammalian homologues of the Drosophila ELAV RNA-binding protein (Good (1995) Proc. Natl.
Acad. Sci. USA 92, 4557-4561; Antic and Keene, supra. HuA (HuR) is ubiquitously expressed while HuB, HuC and HuD (and their respective alternatively-spliced isoforms) are predominantly found in neuronal tissue, but can also be expressed as tumor cell-specific antigens in some small cell carcinomas, neuroblastomas, and medulloblastomas (reviewed in Keene (1999) Proc. Natl. Acad. Sci. USA 96, 5-7). All Hu proteins contain three RNA-recognition motifs (RRMs), which confer their binding specificity for AREs (Antic and Keene, supra; Kenan et al. (1991) Trends Biochem. Sci. 16, 214-220; Burd and Dreyfuss (1994) Science 265, 615-621). The evidence for ARE binding by Hu proteins began with the identification of an AU-rich binding consensus sequence from a randomized combinatorial RNA library that was screened with recombinant HuB (Levine et al. (1993) Mol. Cell Biol. 13, 3494-3504; Gao et al. (1994) Proc. Natl. Acad. Sci. USA 91, 11207-11211). These and other studies demonstrated that Hu proteins bind in vitro to several ARE-containing ERG mRNAs including c-myc, c-fos, GM-CSF and GAP-43 (Levine et al. (1993) Mol. Cell Biol. 13, 3494-3504; Gao et al. (1994) Proc. Natl. Acad. Sci. USA 91, 11207-11211; King et al. (1994) J. Neurosci. 14, 1943-1952; Liu et a. (1995) Neurology 45, 544-550; Ma et al (1996) J. Biol. Chem. 271, 8144-8151; Abe et al. (1996) Nucleic Acids Res. 24, 2011-2016; Chung et al. (1997) J. Biol. Chem. 272, 6593-6598; Fan and Steitz (1998) EMBO J. 17, 3448-3460; Antic et al. (1999) Genes Dev. 13, 449-461). - The binding of Hu proteins to ARE-containing mRNAs can result in the stabilization and increased translatability of the mRNA transcripts (Jain et al. (1997) Mol. Cell Biol. 17, 954-962; Levy et al. (1998) J. Biol. Chem. 273, 6417-6423; Fan and Steitz (1998) EMBO J. 17, 3448-3460; Peng et al. (1998) EMBO J. 17, 3461-3470). The neuron-specific Hu proteins are one of the earliest neuronal markers produced in teratocarcinoma cells following retinoic acid (RA)-treatment to induce neuronal differentiation (Antic et al., supra; Gao and Keene (1996) J. Cell Sci. 109, 579-589).
- In one embodiment, the ligand used to carry out the invention is a RNA binding protein selected from the RNA Recognition Motif (RRM) family of cellular proteins involved in pre-messenger RNA processing. One example of such a protein is the U1A snRNP protein. More than 200 members of the RRM superfamily have been reported to date, the majority of which are ubiquitously expressed and conserved in phylogeny (Query et al, Cell (1989) 57: 89-101; Kenan et al, Trends Biochem. Sci. (1991) 16: 214-220). Most are known to have binding specificity for polyadenylate mRNA or small nuclear ribonucleic acids (e.g. U1, U2, etc.) transfer RNAs, 5S or 7S RNAs. They include but are not limited to hnRNP proteins (A, B, C, D, E, F, G, H, I, K, L), RRM proteins CArG, DT-7, PTB, K1, K2, K3, HuD, HUC, rbp9, elF4B, sxl, tra-2, AUBF, AUF, 32KD protein, ASF/SF2, U2AF, SC35, and other hnRNP proteins. Tissue-specific members of the RRM family are less common, including IMP, Bruno, AZP-RRMI, X16 which is expressed in pre-B cells, Bj6 which is a puff-specific Drosophila protein and ELAV/Hu, which are neuron specific.
- RNA-binding and RNA-associated proteins useful in the practice of the present invention include but are not limited to those described above.
- Antibodies that specifically bind mRNP complexes are known and described in, for example, U.S. Pat. No. 6,635,422 to Keene et al.
- The present invention can be used to identify ncRNAs such as miRNAs that bind to, or interact with in an RNP, an mRNA encoding for a protein with which progression of a disease is associated (protein of interest). Such an mRNA may be predetermined, or identified from a subpopulation, subset of mRNAs generated by the methods of the present invention (e.g., where a cell known to express the protein of interest is utilized in carrying out the method). Examples of mRNAs encoding such proteins include but are not limited to those described in U.S. Pat. No. 6,503,713 to Rana at section 5.1 therein. Specific examples include but are not limited to mRNAs that encode proteins such as amyloid protein, amyloid precursor protein, angiostatin, endostatin, METH-1, METH-2, Factor IX, Factor VIII, collagen, cyclin dependent kinase, cyclin D1, cyclin E, WAF1, cdk4 inhibitor, MTS1, cystic fibrosis transmembrane conductance regulator gene, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, erythropoietin, G-CSF, GM-CSF, M-CSF, SCF, thrombopoietin, BNDF, BMP, GGRP, EGF, FGF, GDNF, GGF, HGF, IGF-1, IGF-2, KGF, myotrophin, NGF, OSM, PDGF, somatotrophin, TGF-.beta., TGF-alpha, VEGF, interferon, INF-alpha, TNF-beta, cathepsin K, cytochrome p-450, famesyl transferase, glutathione-s transferase, heparanase, HMG CoA synthetase, n-acetyltransferase, phenylalanine hydroxylase, phosphodiesterase, ras carboxyl-terminal protease, telomerase, TNF converting enzyme, E-cadherin, N-cadherin, selectin, CD40, 5-alpha reductase, atrial natriuretic factor, calcitonin, corticotrophin releasing factor, glucagon, gonadotropin, gonadotropin releasing hormone, growth hormone, growth hormone releasing factor, somatotropin, insulin, leptin, luteinizing hormone, luteinizing hormone releasing hormone, parathyroid hormone, thyroid hormone, thyroid stimulating hormone, antibodies, CTLA4, hemagglutinin, MHC proteins, VLA-4, kallikrein-kininogen-kinin system, CD4, sis, hst, ras, abl, mos, myc, fos, jun, H-ras, ki-ras, c-fms, bcl-2, L-myc, c-myc, gip, gsp, HER-2, bombesin receptor, estrogen receptor, GABA receptor, EGFR, PDGFR, FGFR, NGFR, GTP-binding regulatory proteins, interleukin receptors, ion channel receptors, leukotriene receptor antagonists, lipoprotein receptors, opioid pain receptors, substance P receptors, retinoic acid and retinoid receptors, steroid receptors, T-cell receptors, thyroid hormone receptors, TNF receptors, tissue plasminogen activator; transmembrane receptors, calcium pump, proton pump, Na/Ca exchanger, MRP 1, MRP2, P170, LRP, cMOAT, transferrin, APC, brca1, brca2, DCC, MCC, MTS1, NF1, NF2, nm23, p53 and Rb. See, e.g., U.S. Pat. No. 6,503,713. Additional examples are given in US Patent Application No. 2003/0073610, at Table 1 therein, and include but are not limited to mRNAs that encode proteins involved in aberant protein deposition, such as: alpha-synuclein (Parkinson's Disease); Amyloid-beta (Alzheimer's Disease) Tau (Alzheimer's Disease), PrP (Prion Diseases); huntingtin (Huntington's Disease); Ataxin-1 (Spinocerebellar ataxia-1) Ataxin-2 (Spinocerebellar ataxia-2); Ataxin-3 (Spinocerebellar ataxia-3); Calcium channel (Spinocerebellar ataxia-6); Ataxin-7 (Spinocerebellar ataxia-7); Androgen receptor (Spinal and bulbar Muscular atrophy); Atrophin-1 (Dentatorubral Pallidoluysian atrophy); SOD1 (Amyotropic lateral sclerosis); Immunoglobulin light chain (Primary systemic amyloidosis); Transthyretin (Famylial amyloid polyneuropathy; Senile systemic amyloidosis); Serum amyloid A (Secondary systemic amyloidosis); Islet amyloid polypeptide (Type 2 diabetes); Insulin (Injection-localized amyloidosis); beta 2-microglobulin (Hemodialysis-related amyloidosis); Cystatin-C(Hereditary cerebral amyloid angiopathy); Gelsolin (Finnish hereditary systemic amyloidosis); and Lysozyme.
- ncRNAs and miRNAs identified by the methods of the present invention are useful in native form or derivatized form as RNA interference (RNAi) active agents, such as described in U.S. Pat. No. 7,078,196; U.S. Pat. No. 6,503,713 (particularly section 5.2 therein); and US Patent Application 2004/0086884. Moreover, the molecular interactions and interaction sites as defined using this invention can provide validated targets for the development of compounds and reagents such as interfering RNAs.
- ncRNAs and miRNAs identified by the present invention are useful in the production of proteins or peptides in vitro or in vivo, where it is desired to downregulate the production of one or more particular proteins or peptides (e.g., RNA interference during a growth phase of bacterial, plant, animal, or yeast cells), and then remove that downregulation during a subsequent production phase. Such applications would be useful in treating diseases such as those described herein and in the production of recombinant proteins and peptides.
- In some cases it is desired to inhibit or inactivate an ncRNA or miRNA in vivo, for example where the downregulation of expression of a protein is undesired or pathological. In such cases ncRNAs and miRNAs of the invention are useful for designing anti-miRNA or anti-ncRNA oligonucleotides (AMOs) that hybridize thereto, which AMOs can be designed and synthesized in accordance with known techniques in order to regulate the expression of a given protein that is encoded by the mRNA target so defined. See, e.g., J. Weiler et al., Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease, Gene Therapy 13: 496-502 (2006).
- ncRNAS and miRNAs (or subsets and combinations thereof) identified by the methods of the present invention, together with the RNABPs and corresponding mRNAs to which they bind or with which they are associated (or subsets thereof), are useful in providing confirming data, validating data, or training data to refine models and algorithms for identifying or generating hypothetical or proposed miRNAs from known corresponding mRNAs, such as described in US Patent Application 2006/0185027. For example, the data set forth in Table 2 below illustrates the narrowing of a class of 1013 mRNAs predicted as potential miRNA targets by a commercial algorithm to a smaller subset of 108 mRNAs, thereby speeding and facilitating the identification of miRNA targets.
- The present invention is explained in greater detail in the following non-limiting Examples.
- To examine the RNA and protein components of endogenous RNPs, we conducted a genome-wide analysis of miRNA and mRNA populations associated with the regulatory RNA binding protein HuR in the human Jurkat T cell line. The ubiquitously expressed mammalian HuR protein is one of four members of the ELAV/Hu family that all function primarily through association with AU-rich elements (AREs) in the 3′UTRs of target mRNAs, resulting in enhanced message stability and/or translation (12-14). Recently, HuR has also been shown to derepress the microRNA miR-122 translational repression of cationic amino acid transporter 1 (CAT-1) mRNA in a human hepatocellular carcinoma cell line subjected to stress conditions (6).
- Here we report that discrete subsets of miRNAs and mRNAs are associated with HuR in human Jurkat T cells and that the mRNA subpopulation is highly enriched for computationally predicted miRNA targets that encode many growth regulatory proteins. Among the fourteen miRNAs found in the HuR mRNP are members of the mir-17-92 cluster previously implicated as an oncogene, as well as miR-16 which is reported to be associated with apoptosis, chronic lymphocytic leukemia and ARE-mediated mRNA decay (5, 15-17). This report is the first demonstration that subsets of miRNAs are components of specific RNP complexes that are also enriched for functionally related target mRNAs. As biologically derived co-subsets, these HuR RNP-associated miRNAs and mRNAs provide a greatly reduced sequence space in which to examine miRNA targeting and the outcomes of predicted miRNA:mRNA interactions in a given cellular context. We address possible combinatorial relationships between RNABPs and miRNAs, regulation of the targeted mRNA subpopulations and resultant gene expression networks. We propose that mRNAs regulated by one posttranscriptional mechanism such as RNABPs may have preferentially evolved or acquired additional posttranscriptional regulators to diversify and coordinate the outcomes of gene expression.
- In this study, endogenous HuR and poly(A)-binding protein (PABP) mRNPs were directly isolated from Jurkat cell lysates by immunoprecipitation with specific antibodies. RNA extracted from these mRNPs, as well as from total cellular RNA, was analyzed on a commercially available mRNA microarray platform and a previously validated array platform specific for miRNAs (see Materials and Methods). The results demonstrate that HuR associates in vivo with a distinct subset of both the total cellular mRNAs and miRNAs (
FIG. 1 ). Interestingly, HuR associates with a larger fraction of cellular miRNAs (23%) than mRNAs (10%), while PABP associates proportionally with each (85% and 84%, respectively). Two other RNABPs were also tested and did not produce these RNA subsets (data not shown). The 14 miRNAs associated with HuR are grouped into 7 miRNA families out of the approximately 62 known families based on seed sequence conservation (Table 1A) (18, 19). Several of the HuR-associated miRNAs have previously been reported to function in processes also associated with ARE-mediated RNA stability and translation in which Hu proteins are well established regulators. These include effects on cellular proliferation and apoptosis by miR-16, the miR-17 oncomir cluster (including miR17-5p and miR-19b) and the let-7 family (13, 15, 16, 20, 21). In addition, miR-16 has been implicated in TNF-α mRNA instability mediated through an ARE sequence motif that is also an expected binding site of the RNABPs tristetraprolin (TTP) and HuR (5). - To address the targeting of mRNAs by the HuR-associated miRNA subset, we utilized the TargetScanS algorithm that relies upon evolutionary conservation of miRNA seed matches to predict target mRNAs (19). The 7 HuR-associated miRNA families are predicted to target 1084 mapped mRNAs conserved in the 3′UTRs of 5 vertebrate species (see Materials and Methods). 439 of these mRNAs are expressed in Jurkat cell total RNA, while 108 are associated with HuR (Table 2). The association of these 108 mRNAs with HuR represents an exceptional enrichment of miRNA targets as determined using TargetScanS and was confirmed by a hypergeometric statistical test that yields a P value of 2.6e-16 (probability that miRNA target enrichment in the HuR mRNP occurs by chance). Additional analyses of groups of 7 miRNA family sets randomly chosen from all miRNAs (representing 62 families) also show target enrichment to mRNAs in the HuR mRNP. Interestingly, only an additional 130 mRNAs are added to the targeted subpopulation in this case (data not shown). Taken together, these data demonstrate that the discrete subpopulation of HuR-associated mRNAs is preferentially targeted by miRNAs. This is consistent with the fact that many mRNA targets of Hu family proteins encode early response gene proteins involved in cell growth and differentiation, processes also implicated in miRNA regulation (1, 2, 12, 13, 22).
- Gene ontology analysis of mRNAs predicted to be targets of HuR-associated miRNAs reveals an enrichment of several functional annotation groups (Table 3). HuR-associated miRNA targets encode proteins that show statistically significant enrichment in 10 annotation groups, while those expressed globally in Jurkat total RNA are enriched in 16 categories. Interestingly, only 3 functional groups overlap between the two analyses, suggesting again that the association of predicted miRNA targets with HuR is not random and represents enrichment in distinct functional classes. The predicted mRNA targets of miRNAs found to be associated with HuR are predominantly enriched in functional categories relating to transcriptional regulation and RNA metabolism, two areas also attributed to HuR regulation (13, 23). These findings are consistent with an interconnection and potential coordination of transcriptional and posttranscriptional regulatory networks by RNABPs and miRNAs (7, 22-24).
- Current understanding of the global populations of mRNAs that may be directly targeted by miRNAs relies almost entirely upon computational approaches, and these algorithms have significantly advanced functional predictions of these interactions. However, reliance upon strict evolutionary conservation in these predictions may overlook mRNA targets that are species specific. Isolation of endogenously associated miRNA:mRNA subpopulations as reported here substantially reduces the sequence space to be examined for productive interactions, many of which may depend upon cell type, growth condition or intracellular context. As an analogy, RNABPs, and RNPs in general, have been demonstrated to exhibit condition dependent association with mRNA targets (22). It is apparent that the simple presence of an RNABP and a target mRNA in a given cell is not the sole determinant of their in vivo interaction. The mechanisms underlying these dynamics are not well understood, but may include subcellular compartmentalization, posttranslational modification of components of the RNP, the presence of either protein or noncoding RNA accessory factors and competition or cooperation with other posttranscriptional mediators (13, 25). Previous reports that the RNABP TTP functions interdependently with miR-16 in ARE-mediated decay of tumor necrosis factor mRNA, and that HuR can conditionally derepress miR-122 mediated translational inhibition, also indicate the importance of cellular context in which to investigate functional interactions between posttranscriptional mediators (5, 6). The relief of miR-122 repression by HuR resulted in recruitment of the targeted mRNA to actively translating polysomes, consistent with previous studies with the neuronal HuB protein (12). Our current results support the suggestion that miRNA:mRNA interactions are maintained upon HuR binding of co-targeted transcripts (6). However, it is not known whether relief of miRNA-mediated translational inhibition is universally the result of co-targeting of mRNAs by HuR. If HuR recruitment of these mRNAs to active polysomes is a more general mechanism of miRNA derepression, and the miRNA interactions with the mRNAs are maintained, it would provide the potential for dynamic reversibility of this derepression on a more global level if cellular conditions change and the HuR association is then lost. Further studies will be required to understand how HuR and the HuR RNP-associated miRNA subset reported here influence the contextual fate of the broader co-associated mRNA populations and resultant protein expression.
- The data presented here also support a corollary to the posttranscriptional RNA operon theory (7, 24). A central assertion of this model is that functionally related genes are co-regulated combinatorially at the posttranscriptional level by trans-acting factors such as RNABPs and miRNAs that recognize related regulatory sequence elements in the respective mRNAs. Our demonstration of the association of a discrete miRNA subset with a specific group of target-enriched mRNAs in the HuR mRNP supports this model. Furthermore, it suggests that RNABP-associated mRNAs may be further divided into subpopulations based upon potential regulation by other posttranscriptional mediators such as miRNAs. The added layers of combinatorial regulation are potentially vast, and may allow for extensive fine-tuning of gene expression as well as agility, while maintaining broader canalization of developmental programs (26).
- HuR is the first RNABP reported to associate with a discrete subset of miRNAs, in addition to a subset of mRNAs enriched for predicted targets of miRNAs. As HuR is an established ARE binding and regulatory protein, these data are consistent with bioinformatics approaches that have been used to predict the preferential targeting by human miRNAs of mRNAs containing AU-rich 3′UTRs (27). Moreover, UTR evolution and the robustness of gene expression programs appear to have been significantly influenced by posttranscriptional regulators (7-9, 28-30). Our data suggest that the combinatorial effects of different classes of posttranscriptional factors may in fact mediate this evolutionary progression. Given that we find a subpopulation of HuR-associated mRNAs highly enriched for predicted miRNA targets in mammalian cells, we propose that many posttranscriptionally regulated mRNAs may have evolved or acquired sequence elements that enabled combinatorial regulation via multiple mechanisms. A more thorough understanding of the coordination of these RNA-RNA and RNA-protein interactions will require the elucidation of biologically defined networks involving RNABPs, miRNAs and the messenger RNAs they co-target.
-
- 1. V. Ambros, Cell 107, 823 (2001).
- 2. D. P. Bartel, Cell 116, 281 (2004).
- 3. M. A. Valencia-Sanchez, J. Liu, G J Hannon, R. Parker, Genes Dev 20, 515 (2006).
- 4. N. Rajewsky, Nat Genet 38 Suppi 1, S8 (2006).
- 5. Q. Jing et al., Cell 120, 623 (2005).
- 6. S. N. Bhattacharyya, R. Habermacher, U. Martine, E. I. Closs, W. Filipowicz, Cell 125, 1111 (2006).
- 7. J. D. Keene, P. J. Lager,
Chromosome Res 13, 327 (2005). - 8. H. Hieronymus, P. A. Silver, Genes Dev 18, 2845 (2004).
- 9. M. J. Moore, Science 309, 1514 (2005).
- 10. D. P. Bartel, C. Z. Chen, Nat Rev Genet 5, 396 (2004).
- 11. L. P. Lim et al., Nature 433, 769 (2005).
- 12. D. Antic, N. Lu, J. D. Keene,
Genes Dev 13, 449 (1999). - 13. C. M. Brennan, J. A. Steitz, Cell Mol Life Sci 58, 266 (2001).
- 14. I. Lopez de Silanes, M. Zhan, A. Lal, X. Yang, M. Gorospe, Proc Natl Acad Sci USA 101, 2987 (2004).
- 15. L. He et al., Nature 435, 828 (2005).
- 16. A. Cimmino et al., Proc Natl Acad Sci USA 102, 13944 (2005).
- 17. K. A. O'Donnell, E. A. Wentzel, K. I. Zeller, C. V. Dang, J. T. Mendell, Nature 435, 839 (2005).
- 18. B. P. Lewis, I. H. Shih, M. W. Jones-Rhoades, D. P. Bartel, C. B. Burge, Cell 115, 787 (2003).
- 19. B. P. Lewis, C. B. Burge, D. P. Bartel, Cell 120, 15 (2005).
- 20. A. Lal, T. Kawai, X. Yang, K. Mazan-Mamczarz, M. Gorospe, Embo J 24, 1852 (2005).
- 21. S. M. Johnson et al., Cell 120, 635 (2005).
- 22. S. A. Tenenbaum, C. C. Carson, P. J. Lager, J. D. Keene, Proc Natl Acad Sci USA 97, 14085 (2000).
- 23. J. D. Keene, Proc Natl Acad Sci USA 98, 7018 (2001).
- 24. J. D. Keene, S. A. Tenenbaum, Mol Cell 9, 1161 (2002).
- 25. A. Lal et al., Embo J 23, 3092 (2004).
- 26. E. Hornstein, N. Shomron, Nat Genet 38 Suppl 1, S20 (2006).
- 27. H. Robins, W. H. Press, Proc Natl Acad Sci USA 102, 15557 (2005).
- 28. A. Stark, J. Brennecke, N. Bushati, R. B. Russell, S. M. Cohen, Cell 123, 1133 (2005).
- 29. M. Legendre, W. Ritchie, F. Lopez, D. Gautheret, PLoS Comput Biol 2, e43 (2006).
- 30. I. Rigoutsos et al., Proc Natl Acad Sci USA 103, 6605 (2006).
-
TABLE 1A HuR associates with seven miRNA families* Human miRNA Family Seed + m8 HuR-associated miRNAs miR-181 ACAUUCA miR-181a, miR-181b, miR-181c miR-103 GCAGCAU miR-103, miR-107 miR-29b AGCACCA miR-29c miR-20 AAAGUGC miR-17-5p, miR-106a miR-19 GUGCAAA miR-19b miR-15 AGCAGCA miR-16 let-7 GAGGUAG let-7a, let-7c, let-7d, let-7f *The 14 miRNAs associated with HuR in Jurkat cells represent 7 families based on seed sequence conservation. These 7 human miRNA families, the related seed sequence plus 1 nucleotide (utilized for predicting mRNA targets of miRNAs), and the HuR-associated miRNAs which are grouped into each microRNA family are shown. -
TABLE 2 HuR associates with mRNAs enriched for predicted targets of miRNAs.* Mapped mRNA Targets of HuR- RNA Source mRNAs associated miRNAs Total RNA 7543 439 HuR mRNP 1013 108 HuR mRNP as % of Total RNA 11% 25%# *The 7 families of miRNAs associated with HuR are predicted by the TargetScanS algorithm to target a subpopulation of mRNAs that are significantly enriched in the HuR RNP when compared to total cellular RNA. Mapped mRNA numbers represent those unique mRNAs in total cellular RNA and the HuR mRNP that were found to overlap between the array platform and the gene list utilized for TargetScanS predictions. This overlap consisted of 7543 mRNAs in total RNA and 1013 mRNAs in the HuR mRNP. P value for enrichment of predicted targets in the HuR mRNP (2.6e−16) was calculated using a hypergeometric statistical analysis (see Materials and Methods). #p value = 2.6e−16 (miRNA target enrichment in HuR mRNP) -
TABLE 3 Predicted mRNA targets of HuR-associated miRNAs are enriched for specific gene ontology functional categories.* A. miRNA targets in HuR mRNP B. miRNA targets in total RNA only GO Category p value GO Category p value Nucleoside, Nucleotide and 7.30e−06 Nucleoside, Nucleotide and 1.47e−08 Nucleic Acid Metabolism Nucleic Acid Metabolism Nucleic Acid Binding 7.65e−04 mRNA Transcription 1.36e−07 Other Ligase 6.50e−03 mRNA Transcription Regulation 1.19e−06 Other Transcription Factor 1.04e−02 Protein Kinase 3.06e−05 Ligase 1.06e−02 Protein Phosphorylation 4.44e−05 Other Protein Metabolism 1.69e−02 Transcription Factor 5.48e−05 Pre-mRNA Processing 1.94e−02 Protein Modification 2.49e−04 mRNA Splicing 3.10e−02 Cell Cycle 2.57e−04 mRNA Transcription 3.12e−02 Developmental Process 3.25e−04 Other Miscellaneous Protein 4.80e−02 Kinase 3.57e−04 Function Protein Metabolism & 2.42e−03 Modification Non-receptor Serine/ 5.66e−03 Threonine Protein Kinase Transcription Cofactor 1.75e−02 General Vesicle Transport 1.77e−02 Intracellular Protein Traffic 1.98e−02 Other Transcription Factor 4.32e−02 *Gene ontology functional category enrichment for predicted mRNA targets of HuR-associated miRNAs in (A) HuR mRNP and (B) total RNA only. Gene list comparisons were carried out using the “PANTHER” database. Enrichment p values were calculated against NCBI Homo sapiens gene list using the Binomial statistic with Bonferroni correction for multiple testing. - Cell Culture and Preparation of Lysates.
- Human acute T cell leukemia Jurkat cells were cultured in RPMI 1640 supplemented with 10% FBS (GIBCO/BRL). Lysates were prepared essentially as described (1). Exceptions include the addition of 10% glycerol to the polysome lysis buffer and passage of cell lysate through a 27 gauge needle 10 times after resuspension of harvested cells in lysis buffer.
- IP Assays and Isolation of RNA.
- IP of endogenous HuR and PABP mRNP complexes were used to assess association of endogenous target mRNAs. Assays were performed essentially as described (1, 2). IPs utilized 200 μl pre-swollen and packed Protein-A Sepharose beads (Sigma) loaded with 60 μg of anti-HuR (3A2) (3), anti-PABP (4), IgG1 (BD PharMingen) or normal rabbit sera immunoglobulin. Antibody loaded beads were incubated with 5 mg (total protein) cell lysate for four hours at 4° C., washed 4 times with ice-cold NT2 buffer (50 mM Tris pH 7.4/150 mM NaCl/1 mM MgCl2/0.05% Nonidet P-40) followed by 3 washes with ice-cold NT2 supplemented with 1M Urea. Extraction of associated RNA was performed as described (1), and total RNA was isolated using the Trizol reagent (GIBCO/BRL). All RNA samples were divided into two aliquots for subsequent analysis on mRNA or miRNA arrays.
- mRNA Array Analysis.
- Total and RNP-associated RNA (and negative control IPs) were assayed for mRNAs on two color Operon Human Oligo Arrays (version 2.1) as described (5). Probe production used direct labeling of experimental samples (Cy 3) and Stratagene Universal Human Reference RNA (Cy 5). Results were analyzed using GeneSpring GX 7.3 (Agilent) with per spot and per chip (lowess) normalization. mRNAs were determined to be components of total RNA or specific endogenous targets of a given RNABP if present on 2 of 3 biological replicate arrays at a level of 2 fold above local background in the experimental channel as well as 10 fold above signal/noise ratio of parallel negative control IP (IgG1 or normal rabbit sera).
- microRNA Array Analysis.
- Total and RNP-associated RNA (and negative control IPs) were assayed for miRNAs using a custom array platform capable of detecting 156 human miRNAs essentially as described (6). Exceptions include using 10 μg/ml BSA in the labeling buffer and a reference oligonucleotide concentration of 0.05 μM for labeling. Arrays were washed once in 2×SSC/0.025% SDS at 25° C., three times in 0.8×SSC at 23° C., and twice in 0.4×SSC at 4° C. Computational analysis on each array was performed as described (6). miRNAs were determined to be components of total RNA or associated with a given RNABP if present on 2 of 3 biological replicate arrays at a level of 2 fold above local background in duplicate spots as well as 10 fold above signal/noise ratio of parallel negative control IP (IgG1 or normal rabbit sera).
- microRNA Target Enrichment Analysis.
- miRNA target predictions were taken from the supplementary data of Lewis et al. (7). This algorithm uses multiple alignments to identify conserved Watson/Crick hexamer matches to bases 2-7 of a miRNA, flanked by either a Watson/Crick match to position 8 of the miRNA or a conserved adenosine in position 1 of the target. We used the 12928 predictions conserved in 5-species alignments (human, mouse, rat, dog, and chicken). Lewis et al. provide these predictions as IDs of cDNAs obtained from the UCSC genome annotations which may lead to duplicate entries in the form of several cDNAs reported for one gene. To remove these duplicates, we mapped the predicted mRNA targets to unique Ensembl gene IDs as of August 2005, leaving 10182 predictions. Ensembl IDs also allowed us to match predicted target genes to the mRNA microarray probes (Table 2). We mapped targets for all 62 miRNA families to 2518 genes represented on the mRNA array platform, 1003 of which were detected as expressed in Jurkat cells. Enrichment of targeted mRNAs associated with HuR was determined by hypergeometric tests in comparison with total cellular RNA.
- Gene Ontology Enrichment Analysis.
- Gene lists of mRNAs predicted to be targets of HuR-associated miRNAs were compared against the complete NCBI H. sapiens gene list using the Panther database (8). Significant enrichment in a functional category was determined using the Binomial statistic with Bonferroni correction for multiple testing (p value <0.05).
-
- 1. S. A. Tenenbaum, C. C. Carson, P. J. Lager, J. D. Keene, Proc Natl Acad Sci USA 97, 14085 (2000).
- 2. I. Lopez de Silanes, M. Zhan, A. Lal, X. Yang, M. Gorospe, Proc Natl Acad Sci USA 101, 2987 (2004).
- 3. I. E. Gallouzi et al., Proc Natl Acad Sci USA 97, 3073 (2000).
- 4. L. O. Penalva, M. D. Burdick, S. M. Lin, H. Sutterluety, J. D. Keene, Mol Cancer 3, 24 (2004).
- 5. J. A. Gollob, C. J. Sciambi, Z. Huang, H. K. Dressman, Cancer Res 65, 8869 (2005).
- 6. J. M. Thomson, J. Parker, C. M. Perou, S. M. Hammond, Nat Methods 1, 47 (2004).
- 7. B. P. Lewis, C. B. Burge, D. P. Bartel, Cell 120, 15 (2005).
- 8. H. Mi et al.,
Nucleic Acids Res 33, D284 (2005). - The foregoing is illustrative of the present invention, and is not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.
Claims (25)
1. A method of generating a gene expression profile of noncoding regulatory RNA (ncRNA) in a cell in vivo, comprising the steps of:
(a) partitioning from a cell at least one mRNA-protein (RNP) complex, said RNP complex comprising: (i) an RNA binding protein (RNABP) or RNA associated protein, (ii) at least one mRNA bound to or associated with said protein, and (iii) at least one ncRNA bound to or associated with said protein, and then
(b) identifying at least one ncRNA in at least one RNP complex, thereby to produce a gene expression profile comprising the identity of an ncRNA in an RNP complex.
2. The method of claim 1 , wherein said ncRNA is a microRNA.
3. The method of claim 1 , said step of partitioning comprising:
contacting a biological sample comprising said RNP complex from the cell with at least one ligand that specifically binds at least one component of the RNP complex;
separating the RNP complex by binding the ligand with an antibody specific for the ligand, wherein the antibody is attached to a solid support; and
collecting the RNP complex by removing the RNP complex from the solid support.
4. The method of claim 1 , wherein said mRNA in said RNP complex is predetermined.
5. The method of claim 1 , further comprising the step of:
(c) identifying the mRNA in the RNP complex, thereby to produce a gene expression profile further comprising the identity of the mRNA associated with said miRNA.
6. The method of claim 1 , wherein said mRNA encodes a protein selected from the group consisting of amyloid protein, amyloid precursor protein, angiostatin, endostatin, METH-1, METH-2, Factor IX, Factor VIII, collagen, cyclin dependent kinase, cyclin D1, cyclin E, WAF1, cdk4 inhibitor, MTS1, cystic fibrosis transmembrane conductance regulator gene, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, erythropoietin, G-CSF, GM-CSF, M-CSF, SCF, thrombopoietin, BNDF, BMP, GGRP, EGF, FGF, GDNF, GGF, HGF, IGF-1, IGF-2, KGF, myotrophin, NGF, OSM, PDGF, somatotrophin, TGF-beta, TGF-alpha, VEGF, interferon, TNF-alpha, TNF-beta, cathepsin K, cytochrome p-450, famesyl transferase, glutathione-s transferase, heparanase, HMG CoA synthetase, n-acetyltransferase, phenylalanine hydroxylase, phosphodiesterase, ras carboxyl-terminal protease, telomerase, TNF converting enzyme, E-cadherin, N-cadherin, selectin, CD40, 5-alpha reductase, atrial natriuretic factor, calcitonin, corticotrophin releasing factor, glucagon, gonadotropin, gonadotropin releasing hormone, growth hormone, growth hormone releasing factor, somatotropin, insulin, leptin, luteinizing hormone, luteinizing hormone releasing hormone, parathyroid hormone, thyroid hormone, thyroid stimulating hormone, antibodies, CTLA4, hemagglutinin, MHC proteins, VLA-4, kallikrein-kininogen-kinin system, CD4, sis, hst, ras, abl, mos, myc, fos, jun, H-ras, ki-ras, c-fms, bcl-2, L-myc, c-myc, gip, gsp, HER-2, bombesin receptor, estrogen receptor, GABA receptor, EGFR, PDGFR, FGFR, NGFR, GTP-binding regulatory proteins, interleukin receptors, ion channel receptors, leukotriene receptor antagonists, lipoprotein receptors, opioid pain receptors, substance P receptors, retinoic acid and retinoid receptors, steroid receptors, T-cell receptors, thyroid hormone receptors, TNF receptors, tissue plasminogen activator; transmembrane receptors, calcium pump, proton pump, Na/Ca exchanger, MRP 1, MRP2, P170, LRP, cMOAT, transferrin, APC, brca1, brca2, DCC, MCC, MTS1, NF1, NF2, nm23, p53 and Rb.
7. The method of claim 1 , wherein said partitioning step comprises partitioning a plurality of RNP complexes; and wherein said identifying step comprises identifying a plurality of ncRNAs associated with said plurality of RNP complexes; said method further comprising:
(c) identifying a plurality of mRNAs associated with said plurality of RNP complexes; thereby to produce a gene expression profile further comprising the identity of a subset of ncRNAs associated with a subset of mRNAs.
8. The method of claim 1 , wherein said cell is a plant cell.
9. The method of claim 1 , wherein said cell is an animal cell.
10. The method of claim 1 , wherein said cell is a bacterial cell.
11. The method of claim 1 , wherein said cell is a yeast cell.
12. The method of claim 1 , wherein said cell is a protozoal cell.
13. A method of identifying and/or confirming mRNA target(s) of one or more microRNAs, the method comprising:
(a) partitioning from a biological sample at least one RNP complex, said complex containing a subset of mRNAs associated with the RNP complex(es), and
(b) identifying a subset of microRNA associated with the RNP complex, thereby determining the association between a microRNA and an mRNA target.
14. The method of claim 13 , wherein the step of partitioning comprises capturing the RNP complex(es) on a solid support.
15. The method of claim 13 , further comprising assaying activity of at least one of the identified miRNA with respect to one or more of the identified mRNAs.
16. The method of claim 13 , further comprising predicting an mRNA target of a microRNA in silico.
17. The method of claim 13 , wherein the subset of mRNAs is represented by less than 75% of all mRNAs in the biological sample.
18. The method of claim 13 , wherein the subset of mRNAs comprises at least 2 mRNAs.
19. The method of claim 13 , wherein the subset of miRNAs is represented by less than 75% of all miRNAs in the biological sample.
20. The method of claim 13 , wherein the subset of miRNAs is comprises at least 2 miRNAs.
21. The method of claim 13 , wherein the subset of miRNAs and/or the subset of the cellular miRNAs is/are identified by using a nucleic acid array.
22. The method of claim 13 , wherein the step of partitioning may comprise contacting an mRNP complex with (i) an antibody that specifically binds at least one component of the mRNP complex or (ii) an ectopically expressed epitope-tagged RNA-binding protein or an RNA-associated protein.
23. The method of claim 19 , wherein the RNA-binding protein is a native or tagged Hu protein or poly(A)-binding protein (PABP).
24. The method of claim 13 , where the identified subset of the microRNAs includes an miRNA selected from the group consisting of miR-181a, miR-181b, miR-181c, miR-103, miR-107m miR-29c, miR-17-5p, miR-106a, miR-19b, miR-16, let-7a, let-7c, let-7d, and let-7f.
25. A method of identifying and/or confirming mRNA target(s) of one or more microRNAs, the method comprising:
(a) obtaining a biological sample comprising an mRNP complex;
(b) contacting the mRNP complex with (i) an antibody that specifically binds at least one component of the mRNP complex or (ii) an ectopically expressed epitope-tagged RNA-binding protein (RBP) or an RNA-associated protein (RAP),
(c) capturing the antibody, the RBP, or the RAP on a solid support, thereby partitioning from the biological sample at least one RNP complex, and
(d) identifying a subset of microRNA associated with the RNP complex(es),
thereby determining the association between a microRNA and an mRNA target.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/481,323 US20170327866A1 (en) | 2006-08-25 | 2017-04-06 | Methods for in vivo identification of endogenous mrna targets of micrornas |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US82358106P | 2006-08-25 | 2006-08-25 | |
| PCT/US2007/018793 WO2008024499A2 (en) | 2006-08-25 | 2007-08-24 | Methods for in vivo identification of endogenous mrna targets of micrornas |
| US43838310A | 2010-06-24 | 2010-06-24 | |
| US15/481,323 US20170327866A1 (en) | 2006-08-25 | 2017-04-06 | Methods for in vivo identification of endogenous mrna targets of micrornas |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2007/018793 Continuation WO2008024499A2 (en) | 2006-08-25 | 2007-08-24 | Methods for in vivo identification of endogenous mrna targets of micrornas |
| US12/438,383 Continuation US9617581B2 (en) | 2006-08-25 | 2007-08-24 | Methods for in vivo identification of endogenous mRNA targets of MicroRNAs |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170327866A1 true US20170327866A1 (en) | 2017-11-16 |
Family
ID=39107454
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/438,383 Expired - Fee Related US9617581B2 (en) | 2006-08-25 | 2007-08-24 | Methods for in vivo identification of endogenous mRNA targets of MicroRNAs |
| US15/481,323 Abandoned US20170327866A1 (en) | 2006-08-25 | 2017-04-06 | Methods for in vivo identification of endogenous mrna targets of micrornas |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/438,383 Expired - Fee Related US9617581B2 (en) | 2006-08-25 | 2007-08-24 | Methods for in vivo identification of endogenous mRNA targets of MicroRNAs |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US9617581B2 (en) |
| EP (1) | EP2054529B1 (en) |
| JP (1) | JP2010501200A (en) |
| WO (1) | WO2008024499A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10954558B2 (en) | 2016-11-11 | 2021-03-23 | Bio-Rad Laboratories, Inc. | Methods for processing nucleic acid samples |
| US20250051788A1 (en) * | 2021-05-24 | 2025-02-13 | Donald Danforth Plant Science Center | Compositions for rna-protein tethering and methods of using |
Families Citing this family (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8513209B2 (en) | 2007-11-09 | 2013-08-20 | The Board Of Regents, The University Of Texas System | Micro-RNAS of the MIR-15 family modulate cardiomyocyte survival and cardiac repair |
| JP5753838B2 (en) * | 2009-03-31 | 2015-07-22 | ザ ジェネラル ホスピタル コーポレイション | Regulation of MIR-33 microRNA in the treatment of cholesterol-related disorders |
| US20120020938A1 (en) * | 2010-07-26 | 2012-01-26 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | MHC- less cells |
| US9539324B2 (en) | 2010-12-01 | 2017-01-10 | Alderbio Holdings, Llc | Methods of preventing inflammation and treating pain using anti-NGF compositions |
| US9067988B2 (en) | 2010-12-01 | 2015-06-30 | Alderbio Holdings Llc | Methods of preventing or treating pain using anti-NGF antibodies |
| US11214610B2 (en) | 2010-12-01 | 2022-01-04 | H. Lundbeck A/S | High-purity production of multi-subunit proteins such as antibodies in transformed microbes such as Pichia pastoris |
| US9884909B2 (en) | 2010-12-01 | 2018-02-06 | Alderbio Holdings Llc | Anti-NGF compositions and use thereof |
| US9078878B2 (en) | 2010-12-01 | 2015-07-14 | Alderbio Holdings Llc | Anti-NGF antibodies that selectively inhibit the association of NGF with TrkA, without affecting the association of NGF with p75 |
| AU2011336470B8 (en) | 2010-12-01 | 2017-09-14 | Alderbio Holdings Llc | Anti-NGF compositions and use thereof |
| US10208305B2 (en) | 2011-07-05 | 2019-02-19 | The General Hospital Corporation | RNA-YY1 interactions |
| WO2013007874A1 (en) | 2011-07-12 | 2013-01-17 | Mart Saarma | A transgenic animal comprising a deletion or functional deletion of the 3'utr of an endogenous gene. |
| US10273529B2 (en) | 2011-08-19 | 2019-04-30 | The General Hospital Corporation | Isolation of factors that associate directly or indirectly with non-coding RNAS |
| WO2013040320A1 (en) * | 2011-09-16 | 2013-03-21 | Oregon Health & Science University | Methods and kits used in identifying microrna targets |
| CA2873766A1 (en) | 2012-05-16 | 2013-11-21 | Rana Therapeutics Inc. | Compositions and methods for modulating atp2a2 expression |
| US10837014B2 (en) | 2012-05-16 | 2020-11-17 | Translate Bio Ma, Inc. | Compositions and methods for modulating SMN gene family expression |
| EP2850185A4 (en) | 2012-05-16 | 2015-12-30 | Rana Therapeutics Inc | COMPOSITIONS AND METHODS FOR MODULATING UTRN EXPRESSION |
| EP2850190B1 (en) | 2012-05-16 | 2020-07-08 | Translate Bio MA, Inc. | Compositions and methods for modulating mecp2 expression |
| AU2013262649A1 (en) | 2012-05-16 | 2015-01-22 | Rana Therapeutics, Inc. | Compositions and methods for modulating smn gene family expression |
| US10174315B2 (en) | 2012-05-16 | 2019-01-08 | The General Hospital Corporation | Compositions and methods for modulating hemoglobin gene family expression |
| US9163235B2 (en) | 2012-06-21 | 2015-10-20 | MiRagen Therapeutics, Inc. | Inhibitors of the miR-15 family of micro-RNAs |
| GB201219976D0 (en) * | 2012-11-06 | 2012-12-19 | Nairz Knud | Means and methods for identifying ribosome associated RNA molecules |
| US10006026B2 (en) | 2013-03-14 | 2018-06-26 | Medimmune, Llc | Recombinant polypeptide production |
| JP2019525774A (en) * | 2016-07-19 | 2019-09-12 | ブランダイス ユニバーシティー | Compositions and methods for identifying targets of RNA binding polypeptides |
| CN111629737A (en) * | 2018-01-08 | 2020-09-04 | 阿彻罗伊斯肿瘤公司 | miRNA regulation of T cell signaling and its applications |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1226115A4 (en) | 1999-10-04 | 2006-03-15 | Univ New Jersey Med | CARBAMATE AND UREA |
| WO2001048480A1 (en) * | 1999-12-28 | 2001-07-05 | Keene Jack D | METHODS FOR ISOLATING AND CHARACTERIZING ENDOGENOUS mRNA-PROTEIN (mRNP) COMPLEXES |
| US8815517B2 (en) * | 1999-12-28 | 2014-08-26 | Ribonomics, Inc. | Methods for identifying functionally related genes and drug targets |
| US20070065840A1 (en) * | 2005-03-23 | 2007-03-22 | Irena Naguibneva | Novel oligonucleotide compositions and probe sequences useful for detection and analysis of microRNAS and their target mRNAS |
-
2007
- 2007-08-24 JP JP2009526659A patent/JP2010501200A/en active Pending
- 2007-08-24 US US12/438,383 patent/US9617581B2/en not_active Expired - Fee Related
- 2007-08-24 EP EP07837349.5A patent/EP2054529B1/en not_active Not-in-force
- 2007-08-24 WO PCT/US2007/018793 patent/WO2008024499A2/en not_active Ceased
-
2017
- 2017-04-06 US US15/481,323 patent/US20170327866A1/en not_active Abandoned
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10954558B2 (en) | 2016-11-11 | 2021-03-23 | Bio-Rad Laboratories, Inc. | Methods for processing nucleic acid samples |
| US10954557B2 (en) | 2016-11-11 | 2021-03-23 | Bio-Rad Laboratories, Inc. | Methods for processing nucleic acid samples |
| US11104943B2 (en) | 2016-11-11 | 2021-08-31 | Bio-Rad Laboratories, Inc. | Methods for processing nucleic acid samples |
| US12297493B2 (en) | 2016-11-11 | 2025-05-13 | Bio-Rad Laboratories, Inc. | Methods for processing nucleic acid samples |
| US20250051788A1 (en) * | 2021-05-24 | 2025-02-13 | Donald Danforth Plant Science Center | Compositions for rna-protein tethering and methods of using |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2054529A4 (en) | 2010-05-12 |
| EP2054529A2 (en) | 2009-05-06 |
| US9617581B2 (en) | 2017-04-11 |
| WO2008024499A3 (en) | 2008-12-31 |
| US20100267573A1 (en) | 2010-10-21 |
| EP2054529B1 (en) | 2014-03-26 |
| JP2010501200A (en) | 2010-01-21 |
| WO2008024499A2 (en) | 2008-02-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9617581B2 (en) | Methods for in vivo identification of endogenous mRNA targets of MicroRNAs | |
| Cui et al. | 5-Methylcytosine RNA methylation in Arabidopsis thaliana | |
| Nozawa et al. | RNA: nuclear glue for folding the genome | |
| Chassé et al. | Analysis of translation using polysome profiling | |
| Della Bella et al. | Translation and emerging functions of non‐coding RNAs in inflammation and immunity | |
| Thum et al. | MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure | |
| Guerau-de-Arellano et al. | miRNA profiling for biomarker discovery in multiple sclerosis: from microarray to deep sequencing | |
| Yin et al. | Profiling microRNA expression with microarrays | |
| Keene et al. | RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts | |
| Bort et al. | Dynamic mRNA and miRNA profiling of CHO‐K1 suspension cell cultures | |
| Bolognani et al. | Novel recognition motifs and biological functions of the RNA-binding protein HuD revealed by genome-wide identification of its targets | |
| Waminal et al. | Rapid and efficient FISH using pre-labeled oligomer probes | |
| Ramkissoon et al. | Nonisotopic detection of microRNA using digoxigenin labeled RNA probes | |
| Krichevsky | MicroRNA profiling: from dark matter to white matter, or identifying new players in neurobiology | |
| Yang et al. | LncRNA OIP5-AS1-directed miR-7 degradation promotes MYMX production during human myogenesis | |
| Wolin et al. | SPIDR: a highly multiplexed method for mapping RNA-protein interactions uncovers a potential mechanism for selective translational suppression upon cellular stress | |
| Rossi et al. | Increased PTCHD4 expression via m6A modification of PTCHD4 mRNA promotes senescent cell survival | |
| Ye et al. | Technological advancements in deciphering RNA-RNA interactions | |
| Wang et al. | MiR-CLIP reveals iso-miR selective regulation in the miR-124 targetome | |
| Khyzha et al. | Profiling transcriptome composition and dynamics within nuclear compartments using SLAM-RT&Tag | |
| Zhao et al. | Advances in the identification of long non-coding RNA binding proteins | |
| US20160002722A1 (en) | Methods employing non-coding rna expression assays | |
| Komatsu et al. | UPA-seq: prediction of functional lncRNAs using differential sensitivity to UV crosslinking | |
| Boo et al. | Transcriptome-wide analysis for glucocorticoid receptor-mediated mRNA decay reveals various classes of target transcripts | |
| Chen et al. | Global Profiling and Analysis of 5′ Monophosphorylated mRNA Decay Intermediates |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |