US20170327474A1 - Therapeutic agent for pain - Google Patents
Therapeutic agent for pain Download PDFInfo
- Publication number
- US20170327474A1 US20170327474A1 US15/664,733 US201715664733A US2017327474A1 US 20170327474 A1 US20170327474 A1 US 20170327474A1 US 201715664733 A US201715664733 A US 201715664733A US 2017327474 A1 US2017327474 A1 US 2017327474A1
- Authority
- US
- United States
- Prior art keywords
- pain
- compound
- lower alkyl
- formula
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000002193 Pain Diseases 0.000 title abstract description 74
- 230000036407 pain Effects 0.000 title abstract description 66
- 239000003814 drug Substances 0.000 title abstract description 23
- 229940124597 therapeutic agent Drugs 0.000 title abstract description 13
- 208000001640 Fibromyalgia Diseases 0.000 claims abstract description 24
- 150000001875 compounds Chemical class 0.000 claims description 107
- 238000000034 method Methods 0.000 claims description 36
- 150000003839 salts Chemical class 0.000 claims description 26
- MEVMMVKGARBYIW-UHFFFAOYSA-N 3-[2-(4-chloro-2,6-difluorophenoxy)propan-2-yl]-5-(2-chlorophenyl)-4-methyl-1,2,4-triazole Chemical compound CN1C(C=2C(=CC=CC=2)Cl)=NN=C1C(C)(C)OC1=C(F)C=C(Cl)C=C1F MEVMMVKGARBYIW-UHFFFAOYSA-N 0.000 claims description 5
- RLMHTTIIAURQCM-UHFFFAOYSA-N 3-(2-chloro-4-fluorophenyl)-4-methyl-5-[2-(2,4,6-trifluorophenoxy)propan-2-yl]-1,2,4-triazole Chemical compound CN1C(C=2C(=CC(F)=CC=2)Cl)=NN=C1C(C)(C)OC1=C(F)C=C(F)C=C1F RLMHTTIIAURQCM-UHFFFAOYSA-N 0.000 claims description 4
- NZDMVTVSABUXKT-UHFFFAOYSA-N 3-fluoro-4-[4-propan-2-yl-5-[2-(2,4,6-trifluorophenoxy)propan-2-yl]-1,2,4-triazol-3-yl]benzamide Chemical compound CC(C)N1C(C=2C(=CC(=CC=2)C(N)=O)F)=NN=C1C(C)(C)OC1=C(F)C=C(F)C=C1F NZDMVTVSABUXKT-UHFFFAOYSA-N 0.000 claims description 4
- IZGUXNGNFWFYQZ-UHFFFAOYSA-N 4-[5-[2-(4-chloro-2,6-difluorophenoxy)propan-2-yl]-4-ethyl-1,2,4-triazol-3-yl]benzamide Chemical compound CCN1C(C=2C=CC(=CC=2)C(N)=O)=NN=C1C(C)(C)OC1=C(F)C=C(Cl)C=C1F IZGUXNGNFWFYQZ-UHFFFAOYSA-N 0.000 claims description 4
- TXQQNXFLXHFHPG-UHFFFAOYSA-N 4-[4-cyclopropyl-5-[2-(2,4-difluorophenoxy)propan-2-yl]-1,2,4-triazol-3-yl]-3-fluorobenzamide Chemical compound N=1N=C(C=2C(=CC(=CC=2)C(N)=O)F)N(C2CC2)C=1C(C)(C)OC1=CC=C(F)C=C1F TXQQNXFLXHFHPG-UHFFFAOYSA-N 0.000 claims description 3
- CMQOKZCYVZFZLZ-UHFFFAOYSA-N 4-[5-[2-(4-chloro-2,6-difluorophenoxy)propan-2-yl]-4-methyl-1,2,4-triazol-3-yl]-3-fluorobenzamide Chemical compound CN1C(C=2C(=CC(=CC=2)C(N)=O)F)=NN=C1C(C)(C)OC1=C(F)C=C(Cl)C=C1F CMQOKZCYVZFZLZ-UHFFFAOYSA-N 0.000 claims description 3
- -1 triazole compound Chemical class 0.000 abstract description 40
- 238000011282 treatment Methods 0.000 abstract description 33
- 239000004480 active ingredient Substances 0.000 abstract description 30
- 208000004296 neuralgia Diseases 0.000 abstract description 25
- 208000021722 neuropathic pain Diseases 0.000 abstract description 25
- 102000008645 11-beta-Hydroxysteroid Dehydrogenase Type 1 Human genes 0.000 abstract description 24
- 108010088011 11-beta-Hydroxysteroid Dehydrogenase Type 1 Proteins 0.000 abstract description 24
- 229940126558 11β-HSD1 inhibitor Drugs 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 10
- 241001465754 Metazoa Species 0.000 abstract description 7
- 208000000094 Chronic Pain Diseases 0.000 abstract description 6
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 5
- 125000004122 cyclic group Chemical group 0.000 abstract description 4
- 150000003852 triazoles Chemical group 0.000 abstract description 2
- 239000003112 inhibitor Substances 0.000 abstract 1
- 125000000217 alkyl group Chemical group 0.000 description 67
- 0 *.[1*]OC([2*])([3*])C1=NN=C(C)N1[4*] Chemical compound *.[1*]OC([2*])([3*])C1=NN=C(C)N1[4*] 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 24
- 229910052736 halogen Inorganic materials 0.000 description 24
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 21
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 21
- 238000012360 testing method Methods 0.000 description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- 201000010099 disease Diseases 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 18
- 125000005843 halogen group Chemical group 0.000 description 17
- 230000002401 inhibitory effect Effects 0.000 description 16
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 15
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 14
- 125000000623 heterocyclic group Chemical group 0.000 description 14
- 125000003118 aryl group Chemical group 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- 150000002367 halogens Chemical class 0.000 description 12
- 208000008589 Obesity Diseases 0.000 description 11
- 235000020824 obesity Nutrition 0.000 description 11
- 125000001424 substituent group Chemical group 0.000 description 11
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 11
- 206010022489 Insulin Resistance Diseases 0.000 description 10
- 241000700159 Rattus Species 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- 201000001421 hyperglycemia Diseases 0.000 description 10
- 210000003205 muscle Anatomy 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 206010012601 diabetes mellitus Diseases 0.000 description 9
- 239000003862 glucocorticoid Substances 0.000 description 9
- 208000027866 inflammatory disease Diseases 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 9
- 206010020772 Hypertension Diseases 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 125000000753 cycloalkyl group Chemical group 0.000 description 8
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 8
- 238000007363 ring formation reaction Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 208000010412 Glaucoma Diseases 0.000 description 7
- 208000031226 Hyperlipidaemia Diseases 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- 208000001132 Osteoporosis Diseases 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 125000006239 protecting group Chemical group 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 208000004454 Hyperalgesia Diseases 0.000 description 6
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 6
- 208000000114 Pain Threshold Diseases 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 235000011054 acetic acid Nutrition 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- 238000007112 amidation reaction Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000037040 pain threshold Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 5
- 208000001145 Metabolic Syndrome Diseases 0.000 description 5
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 5
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 5
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 125000001072 heteroaryl group Chemical group 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- BJOIZNZVOZKDIG-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 BJOIZNZVOZKDIG-MDEJGZGSSA-N 0.000 description 5
- 229960003147 reserpine Drugs 0.000 description 5
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 206010012289 Dementia Diseases 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 206010053552 allodynia Diseases 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 150000008282 halocarbons Chemical class 0.000 description 4
- 229960000890 hydrocortisone Drugs 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 150000007529 inorganic bases Chemical class 0.000 description 4
- 125000000842 isoxazolyl group Chemical group 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 210000005036 nerve Anatomy 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 150000007524 organic acids Chemical class 0.000 description 4
- 150000007530 organic bases Chemical class 0.000 description 4
- 125000001715 oxadiazolyl group Chemical group 0.000 description 4
- 125000002971 oxazolyl group Chemical group 0.000 description 4
- 208000027753 pain disease Diseases 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 239000002798 polar solvent Substances 0.000 description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 description 4
- 239000000651 prodrug Substances 0.000 description 4
- 229940002612 prodrug Drugs 0.000 description 4
- 125000004076 pyridyl group Chemical group 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 125000000335 thiazolyl group Chemical group 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 206010060378 Hyperinsulinaemia Diseases 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 230000009435 amidation Effects 0.000 description 3
- 230000002421 anti-septic effect Effects 0.000 description 3
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 125000000392 cycloalkenyl group Chemical group 0.000 description 3
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 210000003414 extremity Anatomy 0.000 description 3
- 125000002541 furyl group Chemical group 0.000 description 3
- 230000003451 hyperinsulinaemic effect Effects 0.000 description 3
- 201000008980 hyperinsulinism Diseases 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 125000001786 isothiazolyl group Chemical group 0.000 description 3
- 210000003141 lower extremity Anatomy 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 125000002911 monocyclic heterocycle group Chemical group 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 201000008482 osteoarthritis Diseases 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 description 3
- 239000008247 solid mixture Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 125000001113 thiadiazolyl group Chemical group 0.000 description 3
- 125000001544 thienyl group Chemical group 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 2
- 229940124681 11 beta HSD inhibitor Drugs 0.000 description 2
- 102000006739 11-beta-Hydroxysteroid Dehydrogenase Type 2 Human genes 0.000 description 2
- 108010086356 11-beta-Hydroxysteroid Dehydrogenase Type 2 Proteins 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- DFQDMZNVZFQQDG-UHFFFAOYSA-N 3-(2-bromo-4-fluorophenyl)-4-methyl-5-[2-(2,4,6-trifluorophenoxy)propan-2-yl]-1,2,4-triazole Chemical compound CN1C(C=2C(=CC(F)=CC=2)Br)=NN=C1C(C)(C)OC1=C(F)C=C(F)C=C1F DFQDMZNVZFQQDG-UHFFFAOYSA-N 0.000 description 2
- FAZIITATMRRNIP-UHFFFAOYSA-N 3-(2-chlorophenyl)-4-methyl-5-[2-(2,4,6-trifluorophenoxy)propan-2-yl]-1,2,4-triazole Chemical compound CN1C(C=2C(=CC=CC=2)Cl)=NN=C1C(C)(C)OC1=C(F)C=C(F)C=C1F FAZIITATMRRNIP-UHFFFAOYSA-N 0.000 description 2
- UIDZQQMIAGZLNY-UHFFFAOYSA-N 3-(2-fluorophenyl)-4-methyl-5-[2-(2,4,6-trifluorophenoxy)propan-2-yl]-1,2,4-triazole Chemical compound CN1C(C=2C(=CC=CC=2)F)=NN=C1C(C)(C)OC1=C(F)C=C(F)C=C1F UIDZQQMIAGZLNY-UHFFFAOYSA-N 0.000 description 2
- NHNTWNCYHJZBBI-UHFFFAOYSA-N 3-[2-(4-chloro-2,6-difluorophenoxy)propan-2-yl]-5-(2-chloro-4-fluorophenyl)-4-methyl-1,2,4-triazole Chemical compound CN1C(C=2C(=CC(F)=CC=2)Cl)=NN=C1C(C)(C)OC1=C(F)C=C(Cl)C=C1F NHNTWNCYHJZBBI-UHFFFAOYSA-N 0.000 description 2
- JLJUOEFHMCXSOU-UHFFFAOYSA-N 3-chloro-4-[4-cyclopropyl-5-[2-(2,4,6-trifluorophenoxy)propan-2-yl]-1,2,4-triazol-3-yl]benzamide Chemical compound N=1N=C(C=2C(=CC(=CC=2)C(N)=O)Cl)N(C2CC2)C=1C(C)(C)OC1=C(F)C=C(F)C=C1F JLJUOEFHMCXSOU-UHFFFAOYSA-N 0.000 description 2
- KISQZTRHFJEYTP-UHFFFAOYSA-N 3-fluoro-4-[4-methyl-5-[2-(2,4,6-trifluorophenoxy)propan-2-yl]-1,2,4-triazol-3-yl]benzamide Chemical compound CN1C(C=2C(=CC(=CC=2)C(N)=O)F)=NN=C1C(C)(C)OC1=C(F)C=C(F)C=C1F KISQZTRHFJEYTP-UHFFFAOYSA-N 0.000 description 2
- JRMRPFVGEJYJCP-UHFFFAOYSA-N 4-[4-propan-2-yl-5-[2-(2,4,6-trifluorophenoxy)propan-2-yl]-1,2,4-triazol-3-yl]benzamide Chemical compound CC(C)N1C(C=2C=CC(=CC=2)C(N)=O)=NN=C1C(C)(C)OC1=C(F)C=C(F)C=C1F JRMRPFVGEJYJCP-UHFFFAOYSA-N 0.000 description 2
- DPKIGCZKRGLTDA-UHFFFAOYSA-N 4-[5-[2-(4-chloro-2,6-difluorophenoxy)propan-2-yl]-4-propan-2-yl-1,2,4-triazol-3-yl]benzamide Chemical compound CC(C)N1C(C=2C=CC(=CC=2)C(N)=O)=NN=C1C(C)(C)OC1=C(F)C=C(Cl)C=C1F DPKIGCZKRGLTDA-UHFFFAOYSA-N 0.000 description 2
- PXFLBRNOLCGGGK-UHFFFAOYSA-N 4-methyl-3-[5-(trifluoromethyl)-1h-pyrazol-4-yl]-5-[2-(2,4,6-trifluorophenoxy)propan-2-yl]-1,2,4-triazole Chemical compound CN1C(C=2C(=NNC=2)C(F)(F)F)=NN=C1C(C)(C)OC1=C(F)C=C(F)C=C1F PXFLBRNOLCGGGK-UHFFFAOYSA-N 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 2
- BQENDLAVTKRQMS-SBBGFIFASA-L Carbenoxolone sodium Chemical compound [Na+].[Na+].C([C@H]1C2=CC(=O)[C@H]34)[C@@](C)(C([O-])=O)CC[C@]1(C)CC[C@@]2(C)[C@]4(C)CC[C@@H]1[C@]3(C)CC[C@H](OC(=O)CCC([O-])=O)C1(C)C BQENDLAVTKRQMS-SBBGFIFASA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 208000023890 Complex Regional Pain Syndromes Diseases 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- 208000032928 Dyslipidaemia Diseases 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 208000035154 Hyperesthesia Diseases 0.000 description 2
- 208000017170 Lipid metabolism disease Diseases 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- 208000001294 Nociceptive Pain Diseases 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229940124639 Selective inhibitor Drugs 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 208000005298 acute pain Diseases 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000005275 alkylenearyl group Chemical group 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 238000006254 arylation reaction Methods 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 2
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 2
- 229960000530 carbenoxolone Drugs 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 208000010877 cognitive disease Diseases 0.000 description 2
- 230000003920 cognitive function Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 239000003889 eye drop Substances 0.000 description 2
- 229940012356 eye drops Drugs 0.000 description 2
- 239000003885 eye ointment Substances 0.000 description 2
- 206010016256 fatigue Diseases 0.000 description 2
- 238000001640 fractional crystallisation Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 231100000640 hair analysis Toxicity 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 238000002868 homogeneous time resolved fluorescence Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 125000005956 isoquinolyl group Chemical group 0.000 description 2
- 238000011813 knockout mouse model Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 125000002757 morpholinyl group Chemical group 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 125000005542 phthalazyl group Chemical group 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 125000003386 piperidinyl group Chemical group 0.000 description 2
- 208000028173 post-traumatic stress disease Diseases 0.000 description 2
- AYXYPKUFHZROOJ-ZETCQYMHSA-N pregabalin Chemical compound CC(C)C[C@H](CN)CC(O)=O AYXYPKUFHZROOJ-ZETCQYMHSA-N 0.000 description 2
- 229960001233 pregabalin Drugs 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 201000000980 schizophrenia Diseases 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 210000001032 spinal nerve Anatomy 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 125000003831 tetrazolyl group Chemical group 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 125000001425 triazolyl group Chemical group 0.000 description 2
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 1
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 1
- ZEUITGRIYCTCEM-KRWDZBQOSA-N (S)-duloxetine Chemical compound C1([C@@H](OC=2C3=CC=CC=C3C=CC=2)CCNC)=CC=CS1 ZEUITGRIYCTCEM-KRWDZBQOSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- PFKFTWBEEFSNDU-UHFFFAOYSA-N 1,1'-Carbonyldiimidazole Substances C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OPCMVVKRCLOEDQ-UHFFFAOYSA-N 1-(4-chlorophenyl)-2-(methylamino)pentan-1-one Chemical group ClC1=CC=C(C=C1)C(C(CCC)NC)=O OPCMVVKRCLOEDQ-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- 102000004277 11-beta-hydroxysteroid dehydrogenases Human genes 0.000 description 1
- 108090000874 11-beta-hydroxysteroid dehydrogenases Proteins 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 1
- KMGUEILFFWDGFV-UHFFFAOYSA-N 2-benzoyl-2-benzoyloxy-3-hydroxybutanedioic acid Chemical compound C=1C=CC=CC=1C(=O)C(C(C(O)=O)O)(C(O)=O)OC(=O)C1=CC=CC=C1 KMGUEILFFWDGFV-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 208000008035 Back Pain Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- PDPKZSPBWWIRIT-UHFFFAOYSA-N CCC.[Y] Chemical compound CCC.[Y] PDPKZSPBWWIRIT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108090000312 Calcium Channels Proteins 0.000 description 1
- 102000003922 Calcium Channels Human genes 0.000 description 1
- 206010058019 Cancer Pain Diseases 0.000 description 1
- 206010064012 Central pain syndrome Diseases 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 206010054089 Depressive symptom Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010023302 HDL Cholesterol Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 208000008930 Low Back Pain Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 208000019022 Mood disease Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- WXNXCEHXYPACJF-ZETCQYMHSA-N N-acetyl-L-leucine Chemical compound CC(C)C[C@@H](C(O)=O)NC(C)=O WXNXCEHXYPACJF-ZETCQYMHSA-N 0.000 description 1
- XJLXINKUBYWONI-NNYOXOHSSA-N NADP zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-NNYOXOHSSA-N 0.000 description 1
- ACFIXJIJDZMPPO-NNYOXOHSSA-N NADPH Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](OP(O)(O)=O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 ACFIXJIJDZMPPO-NNYOXOHSSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 206010033425 Pain in extremity Diseases 0.000 description 1
- 208000004983 Phantom Limb Diseases 0.000 description 1
- 206010056238 Phantom pain Diseases 0.000 description 1
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 101000928759 Rattus norvegicus 11-beta-hydroxysteroid dehydrogenase 1 Proteins 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- 208000032140 Sleepiness Diseases 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 206010041349 Somnolence Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229960000669 acetylleucine Drugs 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 230000003556 anti-epileptic effect Effects 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 208000022371 chronic pain syndrome Diseases 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000003678 cyclohexadienyl group Chemical group C1(=CC=CCC1)* 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- LTVOKYUPTHZZQH-UHFFFAOYSA-N difluoromethane Chemical group F[C]F LTVOKYUPTHZZQH-UHFFFAOYSA-N 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 239000003136 dopamine receptor stimulating agent Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 229940112141 dry powder inhaler Drugs 0.000 description 1
- 229960002866 duloxetine Drugs 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229940071870 hydroiodic acid Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 230000004179 hypothalamic–pituitary–adrenal axis Effects 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- 230000003914 insulin secretion Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 208000002551 irritable bowel syndrome Diseases 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000006371 metabolic abnormality Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000003533 narcotic effect Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 239000002767 noradrenalin uptake inhibitor Substances 0.000 description 1
- 229940126569 noradrenaline reuptake inhibitor Drugs 0.000 description 1
- 239000003883 ointment base Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 208000019906 panic disease Diseases 0.000 description 1
- 208000035824 paresthesia Diseases 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- NTTOTNSKUYCDAV-UHFFFAOYSA-N potassium hydride Chemical compound [KH] NTTOTNSKUYCDAV-UHFFFAOYSA-N 0.000 description 1
- 229910000105 potassium hydride Inorganic materials 0.000 description 1
- FASDKYOPVNHBLU-ZETCQYMHSA-N pramipexole Chemical compound C1[C@@H](NCCC)CCC2=C1SC(N)=N2 FASDKYOPVNHBLU-ZETCQYMHSA-N 0.000 description 1
- 229960003089 pramipexole Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 230000001107 psychogenic effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 229940126570 serotonin reuptake inhibitor Drugs 0.000 description 1
- 239000003772 serotonin uptake inhibitor Substances 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 230000037321 sleepiness Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000003797 solvolysis reaction Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000004632 tetrahydrothiopyranyl group Chemical group S1C(CCCC1)* 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000012929 tonicity agent Substances 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 206010044652 trigeminal neuralgia Diseases 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 231100000691 up-and-down procedure Toxicity 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4196—1,2,4-Triazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4245—Oxadiazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
Definitions
- the present invention relates to a pharmaceutical composition which is useful as a therapeutic agent for pain, in particular, neuropathic pain or fibromyalgia.
- pain there are various classifications of pain, but in terms of the duration or nature, they may be classified into acute pain which plays a role as a biological alert system and chronic pain in which a duration taken for curing the diseases is exceeded usually but complaints of pain continue. According to the causes, pain can be classified into three main types, that is, nociceptive pain, neuropathic pain, and psychogenic pain. Neuropathic pain refers to intractable chronic pain which occurs as a result of dysfunction of the peripheral or central nervous system.
- neuropathic pain include pain associated with diabetic neuropathy, postherpetic neuralgia, low back pain and leg pain, trigeminal neuralgia, cancer pain, post-operative or post-traumatic prolonged pain, pain induced by spinal cord injury, thalamic pain, multiple sclerosis-derived pain, a complex regional pain syndrome (CRPS), phantom limb pain, HIV-related neuropathic pain, and the like.
- CRPS complex regional pain syndrome
- Typical examples of neuropathic pain include allodynia, hyperalgesia, hyperesthesia, and the like. These symptoms exhibit characteristic pain which is expressed by “burning”, “pins and needles”, “electric shock-like”, or the like.
- Non-Patent Document 1 As a treatment method for neuropathic pain, neurosurgical treatments such as nerve block, electrical stimulation of spinal epidural, and the like, an antidepressant (Non-Patent Document 2), an antiepileptic (Non-Patent Document 3), and the like have been used, but a safe and effective treatment method has not been established.
- Fibromyalgia has a core symptom of unbearable chronic pain throughout the whole body, and is a chronic pain disease accompanied by a variety of associated symptoms such as insomnia, systemic fatigue, depressive symptoms, and the like.
- the symptoms of fibromyalgia are very diverse.
- the pain symptoms of fibromyalgia are characterized by being accompanied by chronic pain in deep tissues such as muscle tissues, and pain during finger pressure massage. Further, fibromyalgia is often associated with allodynia such as touch allodynia and cold allodynia, or thermal hyperalgesia.
- patients with fibromyalgia have higher rates of being associated with accompanying symptoms including affective disorders such as depression, anxiety, and the like, feeling of fatigue, sleep disorders, irritable bowel syndrome, and the like.
- affective disorders such as depression, anxiety, and the like, feeling of fatigue, sleep disorders, irritable bowel syndrome, and the like.
- organic disorder or functional disorder which causes pain are clear to certain degrees, whereas for the patients with fibromyalgia, the causes accounting for pain are not clear.
- fibromyalgia is defined as history of widespread pain lasting for at least three months, and pain being present in at least 11 of 18 tender point sites in the whole body (ligaments, tendon, muscles, and the like in contact with the bones) (Non-Patent Document 4). These diagnostic criteria are clearly different from those of other pain diseases. That is, fibromyalgia is a chronic disease which is independently present and clearly different from other pain diseases from the viewpoints of symptoms, causes of pain, diagnostic criteria, and the like.
- Non-Patent Document 5 agents including pregabalin (Non-Patent Document 5), duloxetine which is an SNRI (serotonin- and noradrenaline-reuptake inhibitor) (Non-Patent Document 6), pramipexole which is a dopamine agonist (Non-Patent Document 7), and the like have been reported to statistically significantly reduce the pain symptom scores of patients with fibromyalgia, as compared with a placebo group, but the effects of these agents are limited.
- a safe and effective treatment method for fibromyalgia has yet to be established, and therefore, there is a strong demand for development of a superior therapeutic agent having fewer side effects with sufficient efficacy.
- Glucocorticoid is a hormone which causes metabolic disorders such as hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension and the like, and is not only produced from adrenal glands but also converted from the inactive form into the active form at the tissue level, and acts via its receptor.
- 11 ⁇ -Hydroxysteroid dehydrogenase is an enzyme which catalyzes this conversion and the presence of two subtypes thereof is known.
- 11 ⁇ -Hydroxysteroid dehydrogenase type 1 (11 ⁇ -HSD1) is an enzyme which converts the inactive form into the active form and highly expressed in the liver
- 11 ⁇ -hydroxysteroid dehydrogenase type 2 (11 ⁇ -HSD2) is an enzyme which converts the active form into the inactive form and highly expressed in the kidney.
- 11 ⁇ -HSD1 has a wide range of substrate specificity (Non-Patent Document 8), but the relation thereof with glucocorticoid is most well-known.
- an 11 ⁇ -HSD1 knockout mouse exhibits improved glucose tolerance, lowered blood triglyceride, and increased HDL-cholesterol (Non-Patent Document 9) and a non-selective 11 ⁇ -HSD inhibitor, carbenoxolone, improves the lowering of insulin secretion in mouse pancreatic ⁇ -cell caused by the addition of inactive-form glucocorticoid (Non-Patent Document 10)
- an 11 ⁇ -HSD1 selective inhibitor inhibits the conversion into active-form glucocorticoid, and thus inhibits the glucocorticoid action in the tissues, and as a result, metabolic abnormalities such as hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, and the like induced by glucocorticoid, are cured (Patent Document 1).
- 11 ⁇ -HSD1 is also expressed in the central nervous system such as the brain and the spinal cord (Non-Patent Documents 11 and 12). Since an action of improving language memory by administering a nonselective 11 ⁇ -HSD inhibitor to a patient with type II diabetes (Non-Patent Document 12), and an action of ameliorating cognition disorders in aged 11 ⁇ -HSD1 knockout mice (Non-Patent Document 13), and the like have been reported, it is expected that the 11 ⁇ -HSD1-selective inhibitor inhibits the action of glucocorticoid in the brain through the inhibition of conversion into an active-form glucocorticoid, and as a result, cognition disorders induced by glucocorticoid is cured (Patent Document 1).
- the 11 ⁇ -HSD1 inhibitor is also expected to have an effect to ameliorate, in addition to dementia, diseases in the central nervous system, such as schizophrenia, depression, anxiety, post-traumatic stress disorder (PTSD), attention deficit/hyperactivity disorder (AD/HD), panic disorder, somnipathy, and the like, which are greatly related to stress and in which an HPA axis disorder, an increase in cortisol in the blood plasma, or the like is recognized.
- diseases in the central nervous system such as schizophrenia, depression, anxiety, post-traumatic stress disorder (PTSD), attention deficit/hyperactivity disorder (AD/HD), panic disorder, somnipathy, and the like, which are greatly related to stress and in which an HPA axis disorder, an increase in cortisol in the blood plasma, or the like is recognized.
- Patent Document 1 it is described that a triazole compound represented by the following general formula (A) has an 11 ⁇ -HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, dimentia, schizophrenia, depression, and the like.
- diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, dimentia, schizophrenia, depression, and the like.
- diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, dimentia, schizophrenia, depression, and the like.
- diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, dimentia, schizophrenia, depression, and the like.
- a triazole compound represented by the following general formula (B) has an 11 ⁇ -HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, hyperglycemia, obesity, insulin resistance, dyslipidemia, hyperlipidemia, hypertension, a metabolic syndrome, and the like.
- diseases such as diabetes, hyperglycemia, obesity, insulin resistance, dyslipidemia, hyperlipidemia, hypertension, a metabolic syndrome, and the like.
- diseases such as diabetes, hyperglycemia, obesity, insulin resistance, dyslipidemia, hyperlipidemia, hypertension, a metabolic syndrome, and the like.
- diseases such as diabetes, hyperglycemia, obesity, insulin resistance, dyslipidemia, hyperlipidemia, hypertension, a metabolic syndrome, and the like.
- there is no description of usefulness for the treatment of pain there is no description of usefulness for the treatment of pain.
- a triazole compound represented by the following general formula (C) has an 11 ⁇ -HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, hyperglycemia, hypertension, obesity, insulin resistance, dyslipidemia, hyperlipidemia, hypertension, an X syndrome, and the like.
- diseases such as diabetes, hyperglycemia, hypertension, obesity, insulin resistance, dyslipidemia, hyperlipidemia, hypertension, an X syndrome, and the like.
- diseases such as diabetes, hyperglycemia, hypertension, obesity, insulin resistance, dyslipidemia, hyperlipidemia, hypertension, an X syndrome, and the like.
- diseases such as diabetes, hyperglycemia, hypertension, obesity, insulin resistance, dyslipidemia, hyperlipidemia, hypertension, an X syndrome, and the like.
- X syndrome an X syndrome
- Patent Document 5 it is described that a triazole compound represented by the following general formula (D) has an 11 ⁇ -HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, obesity, and a metabolic syndrome. However, there is no description of usefulness for the treatment of pain.
- a triazole compound represented by the following general formula (E) has an 11 ⁇ -HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, lowering of cognitive function, and the like.
- diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, lowering of cognitive function, and the like.
- diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, lowering of cognitive function, and the like.
- diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, lowering of cognitive function, and the like.
- there is no description of usefulness for the treatment of pain there is no description of usefulness for the treatment of pain.
- a triazole compound represented by the following general formula (F) has an 11 ⁇ -HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, lowering of cognitive function, and the like.
- diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, lowering of cognitive function, and the like.
- diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, lowering of cognitive function, and the like.
- diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, lowering of cognitive function, and the like.
- there is no description of usefulness for the treatment of pain there is no description of usefulness for the treatment of pain.
- R 1 represents a heterocyclic group or —N(R 0 )—R 4
- a and B represent lower alkyl, or a cycloalkyl ring formed by the combination with carbon atoms to which these are bonded.
- a compound represented by the following general formula (G) has an 11 ⁇ -HSD1 inhibitory action and is useful for the treatment of diabetes, metabolic syndrome, insulin resistance, obesity, glaucoma, hyperglycemia, hyperinsulinemia, osteoporosis, tuberculosis, atherosclerosis, dementia, depression, virus diseases, inflammatory disease, and diseases in which the liver is a target organ. Further, there is a description of pain for lots of diseases exemplified as an inflammatory disease, but there is no description of neuropathic pain.
- a compound represented by the following general formula (H) has an 11 ⁇ -HSD1 inhibitory action and is useful for the treatment of diabetes, metabolic syndrome, insulin resistance, obesity, glaucoma, hyperglycemia, hyperinsulinemia, osteoporosis, atherosclerosis, dementia, depression, virus disease, inflammatory disease, and diseases in which the liver is a target organ. Further, there is a description of pain for lots of diseases exemplified as an inflammatory disease, but there is no description of neuropathic pain.
- Patent Document 10 it is described that a compound represented by the following general formula (J) has an 11 ⁇ -HSD1 inhibitory action and is useful for the treatment of diabetes, metabolic syndrome, insulin resistance, obesity, glaucoma, hyperglycemia, hyperinsulinemia, osteoporosis, atherosclerosis dementia, depression, virus disease, inflammatory disease, and diseases in which the liver is a target organ. Further, there is a description of pain for lots of diseases exemplified as an inflammatory disease, but there is no description of neuropathic pain.
- Patent Document 11 which has been published after the priority date of the present application, it is described that an 11 ⁇ -HSD1 inhibitor such as a compound represented by the following general formula (K) and the like is useful for the treatment of inflammation, chronic inflammation, pain, rheumatoid arthritis (RA), or osteoarthritis (OA), and as specific examples of the pain, pain associated with neuropathic pain and fibromyalgia, and the like are described.
- K general formula
- OA osteoarthritis
- Patent Document 11 a test method for neuropathic pain is described, but there is no disclosure of any test results for neuropathic pain and pain accompanied by fibromyalgia is described only in one line.
- An object of the present invention is to provide medicine which is useful for the treatment of pain (in particular, neuropathic pain or fibromyalgia).
- the present inventors have made extensive studies using model animals with pain for the purpose of providing a therapeutic agent for pain. As a result, they have found that a compound having an 11 ⁇ -HSD1 inhibitory activity, in particular, a triazole compound having a cyclic group at the 3-position (or 5-position) of a triazole ring has a good chronic pain-ameliorating effect, thereby completing the present invention.
- the present invention relates to:
- a therapeutic agent for pain comprising a compound represented by the formula (I-a) or a pharmaceutically acceptable salt thereof as an active ingredient:
- Ring A aryl, heterocyclic group, or cycloalkyl, each of which may be substituted,
- R 1a aryl or heterocyclic group each of which may be substituted, or lower alkylene-cycloalkyl,
- R 2a lower alkyl
- R 1a —H or lower alkyl
- R 2a and R 1a are combined with each other to form C 2-6 alkylene
- R 4 lower alkyl, halogeno-lower alkyl, lower alkylene-O-lower alkyl, cycloalkyl, lower alkylene-S-lower alkyl, lower alkylene-S(O)-lower alkyl, lower alkylene-S(O) 2 -lower alkyl, or lower alkylene-cycloalkyl (the same shall apply hereinafter)];
- the present invention further relates to use of the compound of the formula (I-a) or a pharmaceutically acceptable salt thereof for the manufacture of a pharmaceutical composition for preventing or treating pain (in particular, neuropathic pain or fibromyalgia), the compound of the formula (I-a) or a salt thereof used for the treatment of pain (in particular, neuropathic pain or fibromyalgia), and a method for treating pain, including a step of administering an effective amount of the compound of the formula (I-a) or a salt thereof to a subject.
- pain in particular, neuropathic pain or fibromyalgia
- a salt thereof used for the treatment of pain
- a method for treating pain including a step of administering an effective amount of the compound of the formula (I-a) or a salt thereof to a subject.
- the present invention relates to:
- a method for treating pain comprising a step of administering a therapeutically effective amount of the compound represented by the formula (I-a) or a pharmaceutically acceptable salt thereof to a patient.
- the present invention further relates to:
- a therapeutic agent for fibromyalgia comprising an 11 ⁇ -HSD1 inhibitor as an active ingredient.
- the “lower alkyl” is preferably linear or branched alkyl having 1 to 6 carbon atoms (hereinafter abbreviated as C 1-6 ), specifically methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, or the like, more preferably C 1-4 alkyl, and particularly preferably methyl, ethyl, n-propyl, or isopropyl.
- C 1-6 linear or branched alkyl having 1 to 6 carbon atoms
- the “lower alkylene” is preferably linear or branched C 1-6 alkylene, specifically, methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, propylene, methylmethylene, ethylethylene, 1,2-dimethylethylene, 1,1,2,2-tetramethylethylene, or the like, more preferably, C 1-4 alkylene, and particularly preferably methylene, ethylene, or trimethylene.
- halogen means F, Cl, Br, or I.
- halogeno-lower alkyl is lower alkyl substituted with one or more halogen atoms, preferably lower alkyl substituted with 1 to 7 halogen atoms, more preferably lower alkyl substituted with 1 to 5 halogen atoms, and still more preferably fluoromethyl, difluoromethyl, or trifluoromethyl.
- halogen-lower alkylene is lower alkylene substituted with one or more halogen atoms, preferably lower alkylene substituted with 1 to 7 halogen atoms, and more preferably fluoromethylene, difluoromethylene, trifluoromethylmethylene, or bistrifluoromethylmethylene.
- cycloalkyl is a C 3-10 saturated hydrocarbon ring group, which may have a bridge, specifically, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, adamantyl, or the like, preferably C 3-8 cycloalkyl, and more preferably cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
- cycloalkenyl is C 3-15 cycloalkenyl, which may have a bridge and includes a cyclic group fused with a benzene ring in a moiety with a double bond, specifically, a cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, 1-tetrahydronaphthyl, 1-indenyl, 9-fluorenyl, or the like, more preferably C 5-10 cycloalkenyl, and particularly preferably cyclopentenyl or cyclohexenyl.
- aryl is a C 6-14 monocyclic to tricyclic aromatic hydrocarbon ring group, preferably phenyl or naphthyl, and more preferably phenyl.
- heterocyclic group means a cyclic group of i) a monocyclic 3- to 8-membered (preferably 5- to 7-membered) heterocycle having 1 to 4 hetero atoms selected from O, S, and N, or ii) a bicyclic 8- to 14-membered (preferably 9- to 11-membered) heterocycle or a tricyclic 11- to 20-membered (preferably 12- to 15-membered) heterocycle having 1 to 5 hetero atoms selected from O, S, and N, which is formed by the ring fusion of the monocyclic heterocycle with one or two rings selected from the group consisting of a monocyclic heterocycle, a benzene ring, a C 5-8 cycloalkane, and a C 5-8 cycloalkene.
- the ring atom, S or N may be oxidized to form an oxide or a dioxide.
- the “heterocyclic” group is preferably aziridinyl, azetidyl, pyrrolidinyl, piperidinyl, piperazinyl, homopiperazinyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, morpholinyl, homomorpholinyl, tetrahydrothiopyranyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyrazinyl, furyl, thienyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, indolyl, isoindolinyl,
- heteroaryl means an aromatic heterocyclic ring among the “heterocyclic” groups above, specifically, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyrazinyl, furyl, thienyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, indolyl, indazolyl, benzimidazolyl, imidazo[1,2-a]pyridinyl, quinoxalinyl, quinolyl, isoquinolyl, quinazolyl, cinnonyl, phthalazyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl, benzotriazolyl, or carbazolyl, and preferably monocyclic heteroaryl,
- the expression “which may be substituted” means “unsubstituted” or “having 1 to 5 substituents which may be the same as or different from one another”.
- substituted means “having 1 to 5 substituents which may be the same as or different from one another”.
- substituents may be the same as or different from one another.
- R 1a The substituent in the “aryl” and the “heterocyclic group”, each of which may be substituted, in R 1a is preferably a group selected from the following Group G 1 (in which R 0 means —H or lower alkyl; and the same shall apply hereinafter), and more preferably halogen, lower alkyl, halogeno-lower alkyl, —O-lower alkyl, —O-halogeno-lower alkyl, —C(O)NH 2 or heteroaryl, and still more preferably halogen, halogeno-lower alkyl, or —C(O)NH 2 .
- Group G 1 halogen, cyano, lower alkyl, halogeno-lower alkyl, lower alkylene-OR 0 , lower)alkylene-N(R 0 ) 2 , lower)alkylene-N(R 0 )C(O)R 0 , lower)alkylene-N(R 0 )S(O) 2 -lower alkyl, —OR 0 , —O-halogen-lower alkyl, —O-cycloalkyl, —O-aryl, —O-heterocyclic group, —C(O)R 0 , —CO 2 R 0 , —C(O)NH 2 , —C(O)N(R 0 )-(lower alkyl which may be substituted with —OR 0 or —CO 2 R 0 ), —C(O)N(R 0 )-lower alkylene-OR 0 , —C(O)N(R
- the aryl and the heterocyclic group in Group G 1 may be substituted with a group selected from the following Group G 2 .
- Group G 2 halogen, cyano, lower alkyl, halogeno-lower alkyl, —OR 0 , —O-halogeno-lower alkyl, —CO 2 R 0 , —C(O)N(R 0 ) 2 , —C(O)N(R 0 )S(O) 2 -lower alkyl, —C(O)N(R 0 )S(O) 2 N(R 0 ) 2 , cycloalkyl, and a heterocyclic group.
- the substituent in the “aryl”, “heterocyclic group”, and “cycloalkyl”, each of which may be substituted, in Ring A is preferably a group selected from the following Group G 3 , more preferably halogen, lower alkyl, halogen-lower alkyl, —O-lower alkyl, —O-halogeno-lower alkyl, or —C(O)NH 2 , and still more preferably halogen, halogeno-lower alkyl, or —C(O)NH 2 .
- Group G 3 halogen, cyano, lower alkyl, halogeno-lower alkyl, lower alkylene-OR 0 , halogeno-lower alkylene-OR 0 , lower)alkylene-N(R 0 ) 2 , lower alkylene-aryl, —OR 0 , —O-halogeno-lower alkyl, —O-lower alkylene-OR 0 , —O-lower)alkylene-N(R 0 ) 2 , —O-lower alkylene-CO 2 R 0 , —O-lower)alkylene-C(O)N(R 0 ) 2 , —O-lower alkylene-aryl, —O-aryl, —C(O)R 0 , —CO 2 R 0 , —CON(R 0 ) 2 , —CON(R 0 )-lower alkylene-OR 0 , —N(R
- the aryl and heterocyclic group in Group G 3 may be substituted with halogen, lower alkyl, halogeno-lower alkyl, —OR 0 , —O-halogeno-lower alkyl, —CO 2 R 0 , or —CON(R 0 ) 2 .
- the substituent in the “aryl” which may be substituted in R ib is preferably halogen, lower alkyl, halogeno-lower alkyl, —O-lower alkyl, or —O-halogeno-lower alkyl, and more preferably halogen.
- the substituent in the “aryl” and the “heteroaryl”, each of which may be substituted, in Ring A b is preferably halogen, lower alkyl, halogeno-lower alkyl, —O-lower alkyl, —O-halogeno-lower alkyl or —C(O)NH 2 , and still more preferably halogen, halogeno-lower alkyl, or —C(O)NH 2 .
- the “11 ⁇ -HSD1 inhibitor” is a compound inhibiting the enzyme activity of an 11 ⁇ -HSD1, and not particularly limited as long as it is effective for pains.
- the 11 ⁇ -HSD1 inhibitor is a compound having an IC 50 value of 10 ⁇ M or less, more preferably 3 ⁇ M or less, and still more preferably 1 ⁇ M or less in the measurement test on the rat 1113-HSD1 inhibitory activity according to the test method described in Example 1 described later.
- the “pain” is preferably neuropathic pain. Further, in other embodiments, it is preferably fibromyalgia.
- R 1b aryl which may be substituted
- R 2b lower alkyl
- R 3b lower alkyl
- R 4b lower alkyl or cycloalkyl
- Ring A b aryl or heteroaryl, each of which may be substituted, and
- R 1c phenyl substituted with halogen
- R 4c methyl, ethyl, isopropyl, or cyclopropyl
- Ring A c phenyl substituted with halogen or —C(O)NH 2 ].
- Ring A c is phenyl, which is substituted with —C(O)NH 2 at the 4-position and may be further substituted with halogen.
- R 1a is preferably aryl which may be substituted, more preferably phenyl which may be substituted, still more preferably phenyl substituted with halogen, and even still more preferably phenyl substituted with halogens at the 2- and 4-positions, or phenyl substituted with halogens at the 2-, 4-, and 6-positions.
- R 2a is preferably lower alkyl, and more preferably methyl.
- R 1a is preferably lower alkyl, and more preferably methyl.
- R 4 is preferably lower alkyl or cycloalkyl, and more preferably methyl, ethyl, isopropyl, or cyclopropyl.
- Ring A is preferably aryl or heteroaryl, each of which may be substituted, more preferably aryl which may be substituted, still more preferably phenyl which may be substituted, even still more preferably phenyl substituted with halogen or —C(O)NH 2 , even still more preferably phenyl substituted with halogen, particularly preferably phenyl substituted with halogen at the 2-position, or phenyl substituted with halogens at the 2- and 4-positions.
- Ring A is preferably phenyl which is substituted with —C(O)NH 2 and may be further substituted with halogen, more preferably phenyl which is substituted with —C(O)NH 2 at the 4-position and may be further substituted with halogen.
- Ring A is preferably phenyl or pyrrole, each of which is substituted with a group selected from halogen, halogeno-lower alkyl, and —C(O)NH 2 .
- the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention may exist in the form of tautomers or geometrical isomers depending on the kind of substituents.
- the compound of the formula (I-a) shall be described in only one form of isomer, but the active ingredient for the pharmaceutical of the present invention includes other isomers, isolated forms of the isomers, or a mixture thereof.
- the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention may have asymmetric carbon atoms or axial chirality in some cases, and correspondingly, it may exist in the form of optical isomers.
- the active ingredient for the pharmaceutical of the present invention includes both an isolated form of the optical isomers or a mixture thereof.
- the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention also includes a pharmaceutically acceptable prodrug thereof.
- the pharmaceutically acceptable prodrug is a compound having a group that can be converted into an amino group, a hydroxyl group, a carboxyl group, or the like through solvolysis or under physiological conditions. Examples of the group forming the prodrug include the groups described in Prog. Med., 5, 2157-2161 (1985) and “Iyakuhin no Kaihatsu (Pharmaceutical Research and Development)” (Hirokawa Publishing Company, 1990), Vol. 7, Bunshi Sekkei (Molecular Design), 163-198.
- the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention may form an acid addition salt or a salt with a base depending on the kind of substituents.
- acid addition salts with inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, and the like, and with organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, mandelic acid, tartaric acid, dibenzoyltartaric acid, ditoluoyltartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid, glutamic acid, and the like, and salts with inorganic bases such as
- the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention also includes various hydrates or solvates, and crystal polymorphs.
- the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention also includes compounds labeled with various radioactive or non-radioactive isotopes.
- the compound of the formula (I-a) and a salt thereof, which are active ingredients for the pharmaceutical of the present invention, can be prepared using the characteristics based on the basic structure or the type of substituent and by applying various known synthesis methods.
- replacement of the relevant functional group with a suitable protective group (a group that can be easily converted into the relevant functional group) at the stage from starting material to an intermediate may be effective depending on the type of the functional group in the production technology in some cases.
- the protective group for such a functional group may include, for example, the protective groups described in “Greene's Protective Groups in Organic Synthesis (4 th Ed, 2006)” written by P. G M. Wuts and T. W. Greene, and one of these should only be selected and used as necessary depending on reaction conditions.
- a desired compound can be obtained by introducing the protective group, by carrying out a reaction and by eliminating the protective group as necessary.
- the prodrug of the compound of the formula (I-a) can be produced by introducing a specific group at the stage from a starting material to an intermediate or by carrying out the reaction using the obtained compound of the formula (I-a), just as in the case of the above-mentioned protective group.
- the reaction can be carried out using methods known to those skilled in the art, such as ordinary esterification, amidation, dehydration, and the like.
- the present production process is a method for preparing the compound (I-a) which is an active ingredient for the pharmaceutical of the present invention by cyclization of a compound (1) with a compound (2).
- Examples of the leaving group of L 1 include chloro, bromo, methoxy, methylsulfanyl, and the like.
- the reaction can be carried out in a solvent, for example, such as ethers such as tetrahydrofuran (THF), 1,4-dioxane, diglyme, and the like; alcohols such as methanol, ethanol, propanol, butanol, and the like; aprotic polar solvents such as N,N-dimethylformamide (DMF), N-methylpyrrolidin-2-one (NMP), dimethylimidazolidinone, dimethylacetamide (DMA), dimethylsulfoxide (DMSO), and the like; aromatic hydrocarbons such as benzene, toluene, xylene, and the like; halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, and the like; etc., at room temperature or under heating conditions.
- a solvent for example, such as ethers such as tetrahydrofuran (THF), 1,4-dioxane, digly
- an acid for example, an organic acid such as acetic acid, p-toluenesulfonic acid, and the like; a mineral acid such as sulfuric acid, hydrochloric acid, and the like; etc., or in the presence of an organic base such as triethylamine, N,N-diisopropylethylamine, and the like; or an inorganic base such as sodium hydrogen carbonate, potassium carbonate, and the like.
- a phase transfer catalyst such as tetra-n-butylammonium iodide and the like.
- the present preparation process is a method for obtaining the compound (I-a) which is an active ingredient for the pharmaceutical of the present invention by reacting a compound (3) with a compound (4).
- the reaction can be carried out using the compound (3) and the compound (4) in equivalent amounts, or with either thereof in an excess amount in a solvent inert to the reaction, for example, alcohols, aromatic hydrocarbons such as benzene, toluene, xylene, and the like, acetic acid, or the like, or in the absence of a solvent, under room temperature to heating, preferably under heating.
- a solvent inert for example, alcohols, aromatic hydrocarbons such as benzene, toluene, xylene, and the like, acetic acid, or the like, or in the absence of a solvent, under room temperature to heating, preferably under heating.
- an acid for example, an organic acid such as acetic acid, p-toluenesulfonic acid, trifluoroacetic acid, and the like; a mineral acid such as sulfuric acid, hydrochloric acid, and the like; etc.
- R 1z is aryl or heteroaryl, each of which may be substituted, and L 2 represents a leaving group. The same shall apply hereinafter.
- the present preparation process is a method for obtaining the compound (I-a-1) which is an active ingredient for the pharmaceutical of the present invention, by O-arylation of a compound (5).
- the leaving group of L 2 include halogen such as fluoro, chloro, bromo and the like.
- the arylation reaction can be carried out using a compound (5) and a compound (6) in equivalent amounts, or with either thereof in an excess amount, under cooling to heating with refluxing, in the presence of a base, in a solvent inert to the reaction, such as an aprotic polar solvent such as DMF, DMSO, and the like; ethers; etc.
- a base in a solvent inert to the reaction, such as an aprotic polar solvent such as DMF, DMSO, and the like; ethers; etc.
- the base include sodium hydride, potassium hydride, butyl lithium, potassium carbonate and the like.
- the present preparation process is a method for preparing the compound (I-a) which is an active ingredient for the pharmaceutical of the present invention by cyclization reaction of a compound (7) with a compound (8).
- the cyclization reaction can be carried out in the same manner as in the Production Process 1.
- the present preparation process is a method for obtaining the compound (I-a) which is an active ingredient for the pharmaceutical of the present invention by cyclization of a compound (9).
- the cyclization reaction can be carried out in a solvent such as ethers, aromatic hydrocarbons, halogenated hydrocarbons, and the like, at room temperature or under heating conditions.
- a solvent such as ethers, aromatic hydrocarbons, halogenated hydrocarbons, and the like
- an acid such as an organic acid such as acetic acid, p-toluenesulfonic acid, and the like, or a mineral acid such as sulfuric acid, hydrochloric acid, and the like, etc.
- the starting materials for use in the preparation of the compound (I-a) which is an active ingredient for the pharmaceutical of the present invention can be prepared by applying the methods described below, the methods described in Preparation Examples to be mentioned below, known methods or methods obvious to those skilled in the art, or modified methods thereof.
- the compound (3) can be prepared by cyclization of compound (11) obtained by amidation of the compound (1) and a compound (10).
- examples of the leaving group of L 3 include chloro, bromo, hydroxy, and the like.
- the amidation reaction can be carried out using the compound (1) and the compound (10) in equivalent amounts, or with either thereof in an excess amount, in a solvent such as halogenated hydrocarbons, aprotic polar solvents, and the like, under room temperature to heating conditions.
- a solvent such as halogenated hydrocarbons, aprotic polar solvents, and the like
- the reaction be carried out in the presence of a condensing agent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (WSC), dicyclohexylcarbodiimide (DCC), 1,1′-carbonyldiimidazole (CDI), O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluroniumhexafluorophosphate (HBTU), and the like.
- a condensing agent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (WSC), dicyclohexylcarbodiimide (DCC), 1,1′-carbonyldiimidazole (CDI), O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluroniumhexafluorophosphate (HBTU), and the like.
- an additive for example,
- the cyclization reaction can be carried out by reacting the compound (11) with a dehydrating agent such as phosphorus oxychloride, trifluoromethanesulfonic anhydride, a reagent prepared from triphenylphosphine and carbon tetrabromide, and the like in a solvent such as an aprotic polar solvent such as halogenated hydrocarbons and the like.
- a dehydrating agent such as phosphorus oxychloride, trifluoromethanesulfonic anhydride, a reagent prepared from triphenylphosphine and carbon tetrabromide, and the like
- a solvent such as an aprotic polar solvent such as halogenated hydrocarbons and the like.
- an organic base such as triethylamine, N,N-diisopropylethylamine, pyridine, and the like
- an inorganic base such as potassium carbonate, sodium carbonate, and the like.
- the compound (5) can be prepared from a compound (12) and the compound (2) in the same manner as in the Preparation Process 1.
- R represents lower alkyl and L 4 represents a leaving group. The same shall apply hereinafter.
- the compound (3) can also be prepared by cyclization of the compound (1) with a compound (13).
- examples of the leaving group of L 4 include chloro, bromo, and the like.
- the reaction can be carried out in the same manner as in the Preparation Process 1.
- the compound (9) can be prepared by the amidation reaction of a compound (14) and a compound (15).
- the amidation reaction can be carried out in the same condition as in the amidation of the first step of the starting material synthesis 1.
- the compound of the formula (I-a) is isolated and purified as a free compound or a salt, a hydrate, a solvate, or a crystal polymorph thereof.
- the salt of the compound of the formula (I-a) can also be prepared using a conventional salt formation reaction.
- Isolation and purification are carried out by applying common chemical operations such as extraction, fractional crystallization, various types of fractional chromatography, and the like.
- optical isomers can be prepared by selecting suitable starting compounds or separated using differences in the physicochemical properties between the isomers.
- optical isomers are obtained by a general optical resolution method of racemic forms (for example, fractional crystallization in which the racemic form is converted into diastereomer salts with an optically active base or acid, chromatography using a chiral column and the like, and the like), or can also be prepared from suitable starting compounds which are optically active.
- a pharmaceutical composition for treating pain of the present invention including one or two or more kinds of the compound of the formula (I-a) as an active ingredient, can be prepared using excipients that are usually used in the art, that is, excipients for pharmaceutical preparation, carriers for pharmaceutical preparation, and the like, according to the methods usually used.
- Administration can be accomplished either by oral administration via tablets, pills, capsules, granules, powders, solutions, and the like, or parenteral administration via injections, such as intraarticular, intravenous, or intramuscular injections, and the like, suppositories, eye drops, eye ointments, transdermal liquid preparations, ointments, transdermal patches, transmucosal liquid preparations, transmucosal patches, inhalers, and the like.
- injections such as intraarticular, intravenous, or intramuscular injections, and the like, suppositories, eye drops, eye ointments, transdermal liquid preparations, ointments, transdermal patches, transmucosal liquid preparations, transmucosal patches, inhalers, and the like.
- a solid composition for oral administration tablets, powders, granules, and the like are used.
- one or two or more kinds of the active ingredient(s) are mixed with at least one inactive excipient.
- the composition may contain inactive additives, such as a lubricant, a disintegrating agent, a stabilizer, or a solubilization assisting agent. If necessary, tablets or pills may be coated with sugar or with a film of a gastric or enteric coating substance.
- the liquid composition for oral administration includes pharmaceutically acceptable emulsions, solutions, suspensions, syrups, elixirs, or the like, and also includes generally used inert diluents, for example, purified water or ethanol.
- the liquid composition may also include auxiliary agents such as a solubilization assisting agent, a moistening agent, and a suspending agent, sweeteners, flavors, aromatics, and antiseptics.
- the injections for parenteral administration include sterile aqueous or non-aqueous solution preparations, suspensions, or emulsions.
- the aqueous solvent includes, for example, distilled water for injection and physiological saline.
- the non-aqueous solvent include alcohols such as ethanol.
- Such a composition may further include a tonicity agent, an antiseptic, a moistening agent, an emulsifying agent, a dispersing agent, a stabilizing agent, or a solubilizing assisting agent. These are sterilized, for example, by filtration through a bacteria retaining filter, blending of a bactericide, or irradiation. In addition, these can also be used by preparing a sterile solid composition, and dissolving or suspending it in sterile water or a sterile solvent for injection prior to its use.
- the agent for external use includes ointments, plasters, creams, jellies, patches, sprays, lotions, eye drops, eye ointments, and the like.
- the agents include generally used ointment bases, lotion bases, aqueous or non-aqueous liquid preparations, suspensions, emulsions, and the like.
- transmucosal agents such as an inhaler, a transnasal agent, and the like, those in the form of a solid, liquid, or semi-solid state are used, can be prepared in accordance with a conventionally known method.
- a known excipient and also a pH adjusting agent, an antiseptic, a surfactant, a lubricant, a stabilizing agent, a thickening agent, or the like may be appropriately added thereto.
- an appropriate device for inhalation or blowing can be used.
- a compound may be administered alone or as a powder of formulated mixture, or as a solution or suspension in combination with a pharmaceutically acceptable carrier, using a conventionally known device such as a measured administration inhalation device, and the like, or sprayer.
- a dry powder inhaler or the like may be for single or multiple administration use, and a dry powder or a powder-containing capsule may be used.
- this may be in a form such as a pressurized aerosol spray which uses an appropriate ejection agent, for example, a suitable gas such as chlorofluoroalkane, carbon dioxide, and the like, or other forms.
- the daily dose is from about 0.001 to 100 mg/kg, preferably from 0.1 to 30 mg/kg, and more preferably from 0.1 to 10 mg/kg, per body weight, administered in one portion or in 2 to 4 divided portions.
- the daily dose is suitably administered from about 0.0001 to 10 mg/kg per body weight, once a day or two or more times a day.
- a transmucosal agent is administered at a dose from about 0.001 to 100 mg/kg per body weight, once or plural times a day. The dose is appropriately decided in response to the individual case by taking the symptoms, the age, and the gender, and the like into consideration.
- a therapeutic agent for pain including the compound of the formula (I-a) or a pharmaceutically acceptable salt thereof as an active ingredient may be used in combination with other therapeutic agents for pain.
- Such the combined preparations may be administered simultaneously, or separately and continuously, or at a desired time interval.
- the preparations to be co-administered may be a blend, or may be prepared individually.
- the procedure for measuring the 11 ⁇ -HSD1-inhibitory activity is as follows.
- the enzyme reaction and the measurement were carried out using a 384-well plate.
- the enzyme was prepared in accordance with Journal of Biological Chemistry, 2001, Vol. 276, p. 21343-21350.
- the reaction was carried out by adding a test compound at various concentrations to a reaction liquid consisting of a 5 mM phosphate buffer (pH 6.6), 200 nM cortisone, 40 ⁇ M reduced nicotinamide adenine dinucleotide phosphate (NADPH), and rat recombinant 113-HSD1, followed by incubating at room temperature for one hour (10 ⁇ l/well).
- a reaction liquid consisting of a 5 mM phosphate buffer (pH 6.6), 200 nM cortisone, 40 ⁇ M reduced nicotinamide adenine dinucleotide phosphate (NADPH), and rat recombinant
- test compound was prepared by dissolving in dimethyl sulfoxide (DMSO) such that a DMSO concentration reached 1% in the reaction liquid.
- DMSO dimethyl sulfoxide
- HTRF homogeneous time-resolved fluorescence
- a d2-labeled cortisol containing 400 ⁇ M carbenoxolone and a cryptate-labeled cortisol antibody (CIS Bio International Co., Ltd.) was added at 5 ml/well, followed by incubating at room temperature for 2 hours, and then the fluorescence intensity was measured using a fluorophotometer (trade name: ARVO HTS 1420, Perkin Elmer/Wallac), and the enzyme inhibitory activity was calculated from the fluorescence intensity ratio of two wavelengths (665 nm/620 nm).
- the measurement results were calculated by averaging the values of 3 wells of the same condition.
- the ratio when DMSO was added instead of the test compound was taken as 0% and the ratio when 11 ⁇ -HSD1 was not added was taken as 100%, thereby calculating the 50% inhibition concentration of the test compound as IC 50 of the compound inhibitory activity.
- IC 50 values of the typical compounds with respect to the active ingredients for the pharmaceutical of the present invention are shown in Table 1 below. Further, Cpd represents Compound No. (the same shall apply hereinafter).
- the test was carried out in accordance with Pain, 1992, Vol. 50, p. 355-363.
- the lumbar skin and muscle of a rat (SD, male, 5- to 6-week old) were incised under pentobarbital anesthesia and the transverse processes of lumbar L6 were removed to expose lumbar nerves.
- the L5 and L6 spinal nerves were ligated with silk thread and then the wound was sutured.
- the treatment was performed on the left side. However, in a case of a pseudo-operation, the wound was sutured without carrying out the nerve ligation.
- Drug efficacy evaluation was carried out by a von Frey hair test 7 to 20 days after the operation.
- the withdrawal response threshold was calculated in accordance with Journal of Neuroscience Methods, 1994, Vol. 53, p. 55-63.
- the plantar of hindlimb was stimulated using 8 kinds of von Frey filaments (0.41 to 15.14 g), and 50% withdrawal response thresholds were determined by an up-and-down method. The test was initiated from 2.04 g of the filament, and a case where the withdrawal response of the limb was observed was taken as presence of the response.
- test substance was suspended in a 0.5% methylcellulose solution and administered orally 2 hours before the drug efficacy evaluation.
- the evaluation of the test substance was carried out by determining the improvement rate of the group administered with the test substance when the threshold of the limb on the treatment side in the pseudo-operation animal group was taken as 100% and the threshold of the limb on the treatment side in an operated animal group administered with a solvent was taken as 0%.
- the threshold measurement for the muscle pressure pain was carried out according to the method of Schafers et al. (Pain, 2003, Vol. 104, p. 579-588).
- the pressure stimulus gradually increasing up to 250 g was applied to the gastrocnemius muscle of the right hindlimb of the rat.
- the magnitude of the minimum pressure stimulus at which the rat showed a withdrawal response with respect to pressure stimulus of the right hindlimb was measured as a muscle pressure pain threshold (g).
- the measurements were carried out in triplicate for each point of time and the average thereof was taken as a measured value.
- a solvent (0.5% acetic acid/water) or reserpine at 1 mg/kg was subcutaneously administered on a dorsal subcutaneous part for 3 days once per day.
- the administration volume of the solvent or reserpine was taken as 1 mL per kg of a body weight of an animal.
- the muscle pressure pain thresholds of the respective rats were measured at 6 days after the initiation of the administration of the solvent or reserpine, and grouped such that the difference in the average values of the thresholds between the respective groups was reduced.
- the drug efficacy evaluation was carried out the next day.
- the test substance was suspended in a 0.5% methylcellulose solution and the muscle pressure pain thresholds were measured 30, 60, and 120 minutes after oral administration.
- drug administration was not carried out, and only the measurement of the muscle pressure pain thresholds was carried out.
- the measurement of the drug effect was carried out by an experimenter who does not know the drug treatment context to an animal.
- the evaluation of the test substance was carried out by determining the maximal improvement rate of the group administered with the test substance among at time points of 30, 60, and 120 minutes after the administration when the muscle pressure pain threshold of the normal rat is taken as 100% and the muscle pressure pain threshold of the rat treated with reserpine while administered with the solvent is taken as 0%.
- the compound represented by the formula (I-a) is effective in various pain models. Therefore, it is apparent that the compound represented by the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention can be used for the treatment of pain (in particular, neuropathic pain, fibromyalgia, or the like).
- Cpd Compound No., Structure: Structural formula (in the case where HCl is described in the structural formula, it denotes that the compound is hydrochloride salt).
- An 11 ⁇ -HSD1 inhibitor which is an active ingredient for the pharmaceutical of the present invention, in particular, the compound of the formula (I-a), is useful for the treatment of pain (in particular, neuropathic pain or fibromyalgia).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
[Problem]
Provided is a pharmaceutical, in particular, a pharmaceutical composition which is useful for the treatment of pain.
[Means for Solution]
The present inventors have made extensive studies using model animals with pain for the purpose of providing a therapeutic agent for pain. As a result, they have found that 11β-hydroxydehydrogenase type 1 (11β-HSD1) inhibitor, in particular, a triazole compound having a cyclic group at the 3-position (or 5-position) of a triazole ring has a good effect of ameliorating chronic pain. That is, according to the present invention, a pharmaceutical composition comprising an 11β-HSD1 inhibitor, in particular, the triazole compound of the present invention, as an active ingredient, is useful for the treatment of pain (particularly, neuropathic pain or fibromyalgia).
Description
- This is a divisional of U.S. application Ser. No. 13/820,873, filed Mar. 5, 2013, which is the National Stage of International Application no. PCT/JP2011/070205, filed Sep. 6, 2011, which claimed priority to Japanese Patent Application no. 2010-200305, filed Sep. 7, 2010, of which all of the disclosures are incorporated herein by reference in their entireties.
- The present invention relates to a pharmaceutical composition which is useful as a therapeutic agent for pain, in particular, neuropathic pain or fibromyalgia.
- There are various classifications of pain, but in terms of the duration or nature, they may be classified into acute pain which plays a role as a biological alert system and chronic pain in which a duration taken for curing the diseases is exceeded usually but complaints of pain continue. According to the causes, pain can be classified into three main types, that is, nociceptive pain, neuropathic pain, and psychogenic pain. Neuropathic pain refers to intractable chronic pain which occurs as a result of dysfunction of the peripheral or central nervous system. Typical examples of neuropathic pain include pain associated with diabetic neuropathy, postherpetic neuralgia, low back pain and leg pain, trigeminal neuralgia, cancer pain, post-operative or post-traumatic prolonged pain, pain induced by spinal cord injury, thalamic pain, multiple sclerosis-derived pain, a complex regional pain syndrome (CRPS), phantom limb pain, HIV-related neuropathic pain, and the like. There are many unclear points about the onset mechanism of the disease, but believed to be induced by persistent abnormal firing of sensory nerves or the like. Typical examples of neuropathic pain include allodynia, hyperalgesia, hyperesthesia, and the like. These symptoms exhibit characteristic pain which is expressed by “burning”, “pins and needles”, “electric shock-like”, or the like.
- It is known that non-steroidal anti-inflammatory analgesics which are effective for common nociceptive pain are ineffective for neuropathic pain, and even narcotic analgesics such as morphine and the like do not work well for neuropathic pain (Non-Patent Document 1). As a treatment method for neuropathic pain, neurosurgical treatments such as nerve block, electrical stimulation of spinal epidural, and the like, an antidepressant (Non-Patent Document 2), an antiepileptic (Non-Patent Document 3), and the like have been used, but a safe and effective treatment method has not been established. In recent years, new drugs such as pregabalin which is a ligand for an α2δ subunit of a voltage-dependent calcium channel have been launched commercially, but their efficacy rates are not so high and there are problems in side effects such as sleepiness, dizziness, and the like. Since a safe and effective treatment method for neuropathic pain has not been still established, there is a strong demand for development of a superior therapeutic agent having fewer side effects with sufficient efficacy.
- Fibromyalgia has a core symptom of unbearable chronic pain throughout the whole body, and is a chronic pain disease accompanied by a variety of associated symptoms such as insomnia, systemic fatigue, depressive symptoms, and the like. The symptoms of fibromyalgia are very diverse. The pain symptoms of fibromyalgia are characterized by being accompanied by chronic pain in deep tissues such as muscle tissues, and pain during finger pressure massage. Further, fibromyalgia is often associated with allodynia such as touch allodynia and cold allodynia, or thermal hyperalgesia. Further, as compared with patients with other pain diseases (neuropathic pain, rheumatoid arthritis, osteoarthritis, acute pain after operation, and the like), patients with fibromyalgia have higher rates of being associated with accompanying symptoms including affective disorders such as depression, anxiety, and the like, feeling of fatigue, sleep disorders, irritable bowel syndrome, and the like. For other pain diseases, organic disorder or functional disorder which causes pain are clear to certain degrees, whereas for the patients with fibromyalgia, the causes accounting for pain are not clear. In accordance with the American College of Rheumatology, diagnostic criteria for fibromyalgia is defined as history of widespread pain lasting for at least three months, and pain being present in at least 11 of 18 tender point sites in the whole body (ligaments, tendon, muscles, and the like in contact with the bones) (Non-Patent Document 4). These diagnostic criteria are clearly different from those of other pain diseases. That is, fibromyalgia is a chronic disease which is independently present and clearly different from other pain diseases from the viewpoints of symptoms, causes of pain, diagnostic criteria, and the like.
- In recent years, agents including pregabalin (Non-Patent Document 5), duloxetine which is an SNRI (serotonin- and noradrenaline-reuptake inhibitor) (Non-Patent Document 6), pramipexole which is a dopamine agonist (Non-Patent Document 7), and the like have been reported to statistically significantly reduce the pain symptom scores of patients with fibromyalgia, as compared with a placebo group, but the effects of these agents are limited. A safe and effective treatment method for fibromyalgia has yet to be established, and therefore, there is a strong demand for development of a superior therapeutic agent having fewer side effects with sufficient efficacy.
- Glucocorticoid is a hormone which causes metabolic disorders such as hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension and the like, and is not only produced from adrenal glands but also converted from the inactive form into the active form at the tissue level, and acts via its receptor.
- 11β-Hydroxysteroid dehydrogenase (11β-HSD) is an enzyme which catalyzes this conversion and the presence of two subtypes thereof is known. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an enzyme which converts the inactive form into the active form and highly expressed in the liver, and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is an enzyme which converts the active form into the inactive form and highly expressed in the kidney. 11β-HSD1 has a wide range of substrate specificity (Non-Patent Document 8), but the relation thereof with glucocorticoid is most well-known. Since it has been reported, for example, that an 11β-HSD1 knockout mouse exhibits improved glucose tolerance, lowered blood triglyceride, and increased HDL-cholesterol (Non-Patent Document 9) and a non-selective 11β-HSD inhibitor, carbenoxolone, improves the lowering of insulin secretion in mouse pancreatic β-cell caused by the addition of inactive-form glucocorticoid (Non-Patent Document 10), it is expected that an 11β-HSD1 selective inhibitor inhibits the conversion into active-form glucocorticoid, and thus inhibits the glucocorticoid action in the tissues, and as a result, metabolic abnormalities such as hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, and the like induced by glucocorticoid, are cured (Patent Document 1).
- 11β-HSD1 is also expressed in the central nervous system such as the brain and the spinal cord (Non-Patent Documents 11 and 12). Since an action of improving language memory by administering a nonselective 11β-HSD inhibitor to a patient with type II diabetes (Non-Patent Document 12), and an action of ameliorating cognition disorders in aged 11β-HSD1 knockout mice (Non-Patent Document 13), and the like have been reported, it is expected that the 11β-HSD1-selective inhibitor inhibits the action of glucocorticoid in the brain through the inhibition of conversion into an active-form glucocorticoid, and as a result, cognition disorders induced by glucocorticoid is cured (Patent Document 1). The 11β-HSD1 inhibitor is also expected to have an effect to ameliorate, in addition to dementia, diseases in the central nervous system, such as schizophrenia, depression, anxiety, post-traumatic stress disorder (PTSD), attention deficit/hyperactivity disorder (AD/HD), panic disorder, somnipathy, and the like, which are greatly related to stress and in which an HPA axis disorder, an increase in cortisol in the blood plasma, or the like is recognized.
- As for other diseases in which 11β-HSD1 is involved, osteoporosis and glaucoma are known, and the ameliorating effects by the 11β-HSD1 inhibitor on these diseases are expected.
- While the involvement of 11β-HSD1 is known in a number of these diseases, the involvement of 11β-HSD1 in pain has not been clearly known, and in addition, the therapeutic effect of the 11β-HSD1 inhibitor for pain has been unexplained thus far.
- As the 11β-HSD1 inhibitor, for example, there are reports of Patent Documents 1 to 11.
- In Patent Document 1, it is described that a triazole compound represented by the following general formula (A) has an 11β-HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, dimentia, schizophrenia, depression, and the like. However, there is no description of usefulness for the treatment of pain.
- (Refer to this publication for the symbols in the formula.)
- In Patent Document 2, it is described that a triazole compound represented by the following general formula (B) has an 11β-HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, hyperglycemia, obesity, insulin resistance, dyslipidemia, hyperlipidemia, hypertension, a metabolic syndrome, and the like. However, there is no description of usefulness for the treatment of pain.
- (Refer to this publication for the symbols in the formula)
- In Patent Documents 3 and 4, it is described that a triazole compound represented by the following general formula (C) has an 11β-HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, hyperglycemia, hypertension, obesity, insulin resistance, dyslipidemia, hyperlipidemia, hypertension, an X syndrome, and the like. However, there is no description of usefulness for the treatment of pain.
- (Refer to this publication for the symbols in the formula.)
- In Patent Document 5, it is described that a triazole compound represented by the following general formula (D) has an 11β-HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, obesity, and a metabolic syndrome. However, there is no description of usefulness for the treatment of pain.
- (Z in the formula represents —(CH(R14))p-, —(CH(R14))p-N(R16)—(CH(R15))q-, or
- Refer to this publication for other symbols.)
- In Patent Document 6, it is described that a triazole compound represented by the following general formula (E) has an 11β-HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, lowering of cognitive function, and the like. However, there is no description of usefulness for the treatment of pain.
- (Refer to this publication for other symbols in the formula.)
- In Patent Document 7, it is described that a triazole compound represented by the following general formula (F) has an 11β-HSD1 inhibitory action and is useful for the treatment of diseases such as diabetes, hyperglycemia, insulin resistance, obesity, hyperlipidemia, hypertension, osteoporosis, glaucoma, lowering of cognitive function, and the like. However, there is no description of usefulness for the treatment of pain.
- (In the formula, R1 represents a heterocyclic group or —N(R0)—R4, and A and B represent lower alkyl, or a cycloalkyl ring formed by the combination with carbon atoms to which these are bonded. Refer to this publication for other symbols.)
- In Patent Document 8, it is described that a compound represented by the following general formula (G) has an 11β-HSD1 inhibitory action and is useful for the treatment of diabetes, metabolic syndrome, insulin resistance, obesity, glaucoma, hyperglycemia, hyperinsulinemia, osteoporosis, tuberculosis, atherosclerosis, dementia, depression, virus diseases, inflammatory disease, and diseases in which the liver is a target organ. Further, there is a description of pain for lots of diseases exemplified as an inflammatory disease, but there is no description of neuropathic pain.
- (Refer to this publication for other symbols in the formula.)
- In Patent Document 9, it is described that a compound represented by the following general formula (H) has an 11β-HSD1 inhibitory action and is useful for the treatment of diabetes, metabolic syndrome, insulin resistance, obesity, glaucoma, hyperglycemia, hyperinsulinemia, osteoporosis, atherosclerosis, dementia, depression, virus disease, inflammatory disease, and diseases in which the liver is a target organ. Further, there is a description of pain for lots of diseases exemplified as an inflammatory disease, but there is no description of neuropathic pain.
- (Refer to this publication for other symbols in the formula.)
- In Patent Document 10, it is described that a compound represented by the following general formula (J) has an 11β-HSD1 inhibitory action and is useful for the treatment of diabetes, metabolic syndrome, insulin resistance, obesity, glaucoma, hyperglycemia, hyperinsulinemia, osteoporosis, atherosclerosis dementia, depression, virus disease, inflammatory disease, and diseases in which the liver is a target organ. Further, there is a description of pain for lots of diseases exemplified as an inflammatory disease, but there is no description of neuropathic pain.
- (Refer to this publication for other symbols in the formula.)
- In Patent Document 11 which has been published after the priority date of the present application, it is described that an 11β-HSD1 inhibitor such as a compound represented by the following general formula (K) and the like is useful for the treatment of inflammation, chronic inflammation, pain, rheumatoid arthritis (RA), or osteoarthritis (OA), and as specific examples of the pain, pain associated with neuropathic pain and fibromyalgia, and the like are described. However, in Patent Document 11, a test method for neuropathic pain is described, but there is no disclosure of any test results for neuropathic pain and pain accompanied by fibromyalgia is described only in one line.
- (Refer to this publication for other symbols in the formula.)
-
- Patent Document 1: Pamphlet of International Publication WO 2010/001946
- Patent Document 2: Specification of U. S. Publication No. 2004/0133011
- Patent Document 3: Pamphlet of International Publication WO 03/104207
- Patent Document 4: Pamphlet of International Publication WO 03/104208
- Patent Document 5: Pamphlet of International Publication WO 2005/044192
- Patent Document 6: Pamphlet of International Publication WO 2006/030805
- Patent Document 7: Pamphlet of International Publication WO 2007/105753
- Patent Document 8: Pamphlet of International Publication WO 2005/060963
- Patent Document 9: Pamphlet of International Publication WO 2006/134467 Patent Document 10: Pamphlet of International Publication WO 2006/134481 Patent Document 11: Pamphlet of International Publication WO 2011/068927
-
- Non-Patent Document 1: Lancet, 1999, Vol. 353, p. 1959-1966
- Non-Patent Document 2: Basic & Clinical Pharmacology & Toxicology, 2005, Vol. 96, p. 399-409
- Non-Patent Document 3: Clinical Therapeutics, 2003, Vol. 25, p. 2506-2538
- Non-Patent Document 4: Arthritis & Rheumatism, 1990, Vol. 33, p. 160-172
- Non-Patent Document 5: Journal of Rheumatology, 2008, Vol. 35, p. 502-514
- Non-Patent Document 6: Pain, 2008, Vol. 136, p. 432-444
- Non-Patent Document 7: Arthritis & Rheumatism, 2005, Vol. 52, p. 2495-2505
- Non-Patent Document 8: Journal of Steroid Biochemistry & Molecular Biology, 2010, 119, p. 1-13
- Non-Patent Document 9: Journal of Biological Chemistry, 2001, Vol. 276, p. 41293-41300
- Non-Patent Document 10: Journal of Biological Chemistry, 2000, Vol. 275, p. 34841-34844
- Non-Patent Document 11: Endocrinology, 1990, Vol. 127, p. 1450-1455
- Non-Patent Document 12: Proceeding of the National Academy of Science, 2004, Vol. 101, p. 6734-6739
- Non-Patent Document 13: Proceeding of the National Academy of Science, 2001, Vol. 98, p. 4716-4721
- An object of the present invention is to provide medicine which is useful for the treatment of pain (in particular, neuropathic pain or fibromyalgia).
- The present inventors have made extensive studies using model animals with pain for the purpose of providing a therapeutic agent for pain. As a result, they have found that a compound having an 11β-HSD1 inhibitory activity, in particular, a triazole compound having a cyclic group at the 3-position (or 5-position) of a triazole ring has a good chronic pain-ameliorating effect, thereby completing the present invention.
- That is, the present invention relates to:
- (1) a therapeutic agent for pain comprising a compound represented by the formula (I-a) or a pharmaceutically acceptable salt thereof as an active ingredient:
- [the symbols in the formula have the following meanings:
- Ring A: aryl, heterocyclic group, or cycloalkyl, each of which may be substituted,
- R1a: aryl or heterocyclic group each of which may be substituted, or lower alkylene-cycloalkyl,
- R2a: lower alkyl,
- R1a: —H or lower alkyl, or
- R2a and R1a are combined with each other to form C2-6 alkylene, and
- R4: lower alkyl, halogeno-lower alkyl, lower alkylene-O-lower alkyl, cycloalkyl, lower alkylene-S-lower alkyl, lower alkylene-S(O)-lower alkyl, lower alkylene-S(O)2-lower alkyl, or lower alkylene-cycloalkyl (the same shall apply hereinafter)];
- (2) the therapeutic agent for pain as set forth in (1), wherein the pain is neuropathic pain; and
- (3) the therapeutic agent for pain as set forth in (1), wherein the pain is fibromyalgia.
- The present invention further relates to use of the compound of the formula (I-a) or a pharmaceutically acceptable salt thereof for the manufacture of a pharmaceutical composition for preventing or treating pain (in particular, neuropathic pain or fibromyalgia), the compound of the formula (I-a) or a salt thereof used for the treatment of pain (in particular, neuropathic pain or fibromyalgia), and a method for treating pain, including a step of administering an effective amount of the compound of the formula (I-a) or a salt thereof to a subject.
- That is, the present invention relates to:
- (4) use of the compound represented by the formula (I-a) or a pharmaceutically acceptable salt thereof for the manufacture of a therapeutic agent for pain;
- (5) use of the compound represented by the formula (I-a) or a pharmaceutically acceptable salt thereof for the treatment of pain;
- (6) the compound represented by the formula (I-a) or a pharmaceutically acceptable salt thereof for the treatment of pain; and
- (7) a method for treating pain, comprising a step of administering a therapeutically effective amount of the compound represented by the formula (I-a) or a pharmaceutically acceptable salt thereof to a patient.
- The present invention further relates to:
- (8) a therapeutic agent for fibromyalgia comprising an 11β-HSD1 inhibitor as an active ingredient.
- Hereinafter, the present invention will be described in detail.
- The “lower alkyl” is preferably linear or branched alkyl having 1 to 6 carbon atoms (hereinafter abbreviated as C1-6), specifically methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, or the like, more preferably C1-4 alkyl, and particularly preferably methyl, ethyl, n-propyl, or isopropyl.
- The “lower alkylene” is preferably linear or branched C1-6 alkylene, specifically, methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, propylene, methylmethylene, ethylethylene, 1,2-dimethylethylene, 1,1,2,2-tetramethylethylene, or the like, more preferably, C1-4 alkylene, and particularly preferably methylene, ethylene, or trimethylene.
- The “halogen” means F, Cl, Br, or I.
- The “halogeno-lower alkyl” is lower alkyl substituted with one or more halogen atoms, preferably lower alkyl substituted with 1 to 7 halogen atoms, more preferably lower alkyl substituted with 1 to 5 halogen atoms, and still more preferably fluoromethyl, difluoromethyl, or trifluoromethyl.
- The “halogen-lower alkylene” is lower alkylene substituted with one or more halogen atoms, preferably lower alkylene substituted with 1 to 7 halogen atoms, and more preferably fluoromethylene, difluoromethylene, trifluoromethylmethylene, or bistrifluoromethylmethylene.
- The “cycloalkyl” is a C3-10 saturated hydrocarbon ring group, which may have a bridge, specifically, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, adamantyl, or the like, preferably C3-8 cycloalkyl, and more preferably cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
- The “cycloalkenyl” is C3-15 cycloalkenyl, which may have a bridge and includes a cyclic group fused with a benzene ring in a moiety with a double bond, specifically, a cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, 1-tetrahydronaphthyl, 1-indenyl, 9-fluorenyl, or the like, more preferably C5-10 cycloalkenyl, and particularly preferably cyclopentenyl or cyclohexenyl.
- The “aryl” is a C6-14 monocyclic to tricyclic aromatic hydrocarbon ring group, preferably phenyl or naphthyl, and more preferably phenyl.
- The “heterocyclic” group means a cyclic group of i) a monocyclic 3- to 8-membered (preferably 5- to 7-membered) heterocycle having 1 to 4 hetero atoms selected from O, S, and N, or ii) a bicyclic 8- to 14-membered (preferably 9- to 11-membered) heterocycle or a tricyclic 11- to 20-membered (preferably 12- to 15-membered) heterocycle having 1 to 5 hetero atoms selected from O, S, and N, which is formed by the ring fusion of the monocyclic heterocycle with one or two rings selected from the group consisting of a monocyclic heterocycle, a benzene ring, a C5-8 cycloalkane, and a C5-8 cycloalkene. The ring atom, S or N, may be oxidized to form an oxide or a dioxide. The “heterocyclic” group is preferably aziridinyl, azetidyl, pyrrolidinyl, piperidinyl, piperazinyl, homopiperazinyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, morpholinyl, homomorpholinyl, tetrahydrothiopyranyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyrazinyl, furyl, thienyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, indolyl, isoindolinyl, indazolyl, indolizinyl, benzimidazolyl, imidazo[1,2-a]pyridinyl, quinoxalinyl, quinolyl, isoquinolyl, quinazolyl, cinnonyl, phthalazyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl, benzotriazolyl, 4,5,6,7-tetrahydroindazolyl, 4,5,6,7-tetrahydropyrazolo[4,3-c]pyridinyl, 4,5,6,7-tetrahydrobenzimidazolyl, carbazolyl, or quinuclidinyl, more preferably a monocyclic heterocyclic group, and still more preferably pyrrolidinyl, piperidinyl, piperadinyl, morpholinyl, pyridyl, pyrimidinyl, oxazolyl, isoxazolyl, oxadiazolyl, or thiazolyl.
- The “heteroaryl” means an aromatic heterocyclic ring among the “heterocyclic” groups above, specifically, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyrazinyl, furyl, thienyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, indolyl, indazolyl, benzimidazolyl, imidazo[1,2-a]pyridinyl, quinoxalinyl, quinolyl, isoquinolyl, quinazolyl, cinnonyl, phthalazyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl, benzotriazolyl, or carbazolyl, and preferably monocyclic heteroaryl, more preferably pyridyl, furyl, thienyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, or thiadiazolyl.
- The expression “which may be substituted” means “unsubstituted” or “having 1 to 5 substituents which may be the same as or different from one another”. The term “substituted” means “having 1 to 5 substituents which may be the same as or different from one another”. In addition, in a case where a plurality of substituents is present, the substituents may be the same as or different from one another.
- The substituent in the “aryl” and the “heterocyclic group”, each of which may be substituted, in R1a is preferably a group selected from the following Group G1 (in which R0 means —H or lower alkyl; and the same shall apply hereinafter), and more preferably halogen, lower alkyl, halogeno-lower alkyl, —O-lower alkyl, —O-halogeno-lower alkyl, —C(O)NH2 or heteroaryl, and still more preferably halogen, halogeno-lower alkyl, or —C(O)NH2.
- Group G1: halogen, cyano, lower alkyl, halogeno-lower alkyl, lower alkylene-OR0, lower)alkylene-N(R0)2, lower)alkylene-N(R0)C(O)R0, lower)alkylene-N(R0)S(O)2-lower alkyl, —OR0, —O-halogen-lower alkyl, —O-cycloalkyl, —O-aryl, —O-heterocyclic group, —C(O)R0, —CO2R0, —C(O)NH2, —C(O)N(R0)-(lower alkyl which may be substituted with —OR0 or —CO2R0), —C(O)N(R0)-lower alkylene-OR0, —C(O)N(R0)-lower)alkylene-N(R0)2, —C(O)N(R0)-lower alkylene-S-lower alkyl, —C(O)N(R0)-lower alkylene-S(O)-lower alkyl, —C(O)N(R0)-lower alkylene-S(O)2-lower alkyl, —C(O)N(R0)-lower alkylene-C(O)N(R0)2, —C(O)N(R0)-lower)alkylene-C(O)N(R0)-cycloalkyl, —C(O)N(R0)-lower alkylene-heterocyclic group, —C(O)N(R0)-cycloalkyl, —C(O)N(R0)-heterocyclic group, —C(O)N(R0)N(R0)2, —C(O)N(R0)N(R0)C(O)R0, —C(O)N(R0)S(O)2-lower alkyl, —C(O)-heterocyclic group, —C(═NOR0)—N(R0)2, —S-lower alkyl, —S(O)-lower alkyl, —S(O)2-lower alkyl, oxo, and a heterocyclic group.
- In this case, the aryl and the heterocyclic group in Group G1 may be substituted with a group selected from the following Group G2.
- Group G2: halogen, cyano, lower alkyl, halogeno-lower alkyl, —OR0, —O-halogeno-lower alkyl, —CO2R0, —C(O)N(R0)2, —C(O)N(R0)S(O)2-lower alkyl, —C(O)N(R0)S(O)2N(R0)2, cycloalkyl, and a heterocyclic group.
- The substituent in the “aryl”, “heterocyclic group”, and “cycloalkyl”, each of which may be substituted, in Ring A is preferably a group selected from the following Group G3, more preferably halogen, lower alkyl, halogen-lower alkyl, —O-lower alkyl, —O-halogeno-lower alkyl, or —C(O)NH2, and still more preferably halogen, halogeno-lower alkyl, or —C(O)NH2.
- Group G3: halogen, cyano, lower alkyl, halogeno-lower alkyl, lower alkylene-OR0, halogeno-lower alkylene-OR0, lower)alkylene-N(R0)2, lower alkylene-aryl, —OR0, —O-halogeno-lower alkyl, —O-lower alkylene-OR0, —O-lower)alkylene-N(R0)2, —O-lower alkylene-CO2R0, —O-lower)alkylene-C(O)N(R0)2, —O-lower alkylene-aryl, —O-aryl, —C(O)R0, —CO2R0, —CON(R0)2, —CON(R0)-lower alkylene-OR0, —N(R0)2, —N(R0)C(O)R0, —S-lower alkyl, —S(O)-lower alkyl, —S(O)2-lower alkyl, —S(O)2-aryl, oxo, cycloalkyl, aryl, and a heterocyclic group.
- In this case, the aryl and heterocyclic group in Group G3 may be substituted with halogen, lower alkyl, halogeno-lower alkyl, —OR0, —O-halogeno-lower alkyl, —CO2R0, or —CON(R0)2.
- The substituent in the “aryl” which may be substituted in Rib is preferably halogen, lower alkyl, halogeno-lower alkyl, —O-lower alkyl, or —O-halogeno-lower alkyl, and more preferably halogen.
- The substituent in the “aryl” and the “heteroaryl”, each of which may be substituted, in Ring Ab is preferably halogen, lower alkyl, halogeno-lower alkyl, —O-lower alkyl, —O-halogeno-lower alkyl or —C(O)NH2, and still more preferably halogen, halogeno-lower alkyl, or —C(O)NH2.
- The “11β-HSD1 inhibitor” is a compound inhibiting the enzyme activity of an 11β-HSD1, and not particularly limited as long as it is effective for pains. Preferably, the 11β-HSD1 inhibitor is a compound having an IC50 value of 10 μM or less, more preferably 3 μM or less, and still more preferably 1 μM or less in the measurement test on the rat 1113-HSD1 inhibitory activity according to the test method described in Example 1 described later.
- The “pain” is preferably neuropathic pain. Further, in other embodiments, it is preferably fibromyalgia.
- Preferred embodiments of the compound represented by the formula (I-a), which is an active ingredient for the pharmaceutical of the present invention, are shown below.
- (1) A compound represented by the formula (I-b):
- [the symbols in the formula denote the following meanings:
- R1b: aryl which may be substituted,
- R2b: lower alkyl,
- R3b: lower alkyl,
- R4b: lower alkyl or cycloalkyl,
- Ring Ab: aryl or heteroaryl, each of which may be substituted, and
- the other symbols have the same meanings].
- (2) A compound represented by the formula (I-c):
- [the symbols in the formula denote the following meanings:
- R1c: phenyl substituted with halogen,
- R4c: methyl, ethyl, isopropyl, or cyclopropyl, and
- Ring Ac: phenyl substituted with halogen or —C(O)NH2].
- (3) The compound as set forth in (2), wherein Ring Ac is phenyl, which is substituted with —C(O)NH2 at the 4-position and may be further substituted with halogen.
- (4) The compound as set forth in (2), wherein Ring Ac is phenyl substituted with halogen.
- (5) A compound selected from the group consisting of:
- 3-(2-bromo-4-fluorophenyl)-4-methyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazole,
- 3-(2-chloro-4-fluorophenyl)-4-methyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazole,
- 3-(2-chlorophenyl)-4-methyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazole,
- 3-[1-(4-chloro-2,6-difluorophenoxy)-1-methylethyl]-5-(2-chlorophenyl)-4-methyl-4H-1,2,4-triazole,
- 3-[1-(4-chloro-2,6-difluorophenoxy)-1-methylethyl]-5-(2-chloro-4-fluorophenyl)-4-methyl-4H-1,2,4-triazole,
- 3-(2-fluorophenyl)-4-methyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazole,
- 4-methyl-3-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-5-[3-(trifluoromethyl)-1H-pyrazol-4-yl]-4H-1,2,4-triazole,
- 4-{5-[1-(4-chloro-2,6-difluorophenoxy)-1-methylethyl]-4-ethyl-4H-1,2,4-triazol-3-yl}benzamide,
- 4-{4-isopropyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazol-3-yl}benzamide,
- 4-{5-[1-(4-chloro-2,6-difluorophenoxy)-1-methylethyl]-4-methyl-4H-1,2,4-triazol-3-yl}-3-fluorobenzamide,
- 4-{4-cyclopropyl-5-[1-(2,4-difluorophenoxy)-1-methylethyl]-4H-1,2,4-triazol-3-yl}-3-fluorobenzamide,
- 3-fluoro-4-{4-methyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazol-3-yl}benzamide,
- 4-{5-[1-(4-chloro-2,6-difluorophenoxy)-1-methylethyl]-4-isopropyl-4H-1,2,4-triazol-3-yl}benzamide,
- 3-chloro-4-{4-cyclopropyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazol-3-yl}benzamide, and
- 3-fluoro-4-{4-isopropyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazol-3-yl}benzamide.
- Other preferred embodiments of the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention are shown below.
- (a) R1a is preferably aryl which may be substituted, more preferably phenyl which may be substituted, still more preferably phenyl substituted with halogen, and even still more preferably phenyl substituted with halogens at the 2- and 4-positions, or phenyl substituted with halogens at the 2-, 4-, and 6-positions.
- (b) R2a is preferably lower alkyl, and more preferably methyl.
- (c) R1a is preferably lower alkyl, and more preferably methyl.
- (d) R4 is preferably lower alkyl or cycloalkyl, and more preferably methyl, ethyl, isopropyl, or cyclopropyl.
- (e) Ring A is preferably aryl or heteroaryl, each of which may be substituted, more preferably aryl which may be substituted, still more preferably phenyl which may be substituted, even still more preferably phenyl substituted with halogen or —C(O)NH2, even still more preferably phenyl substituted with halogen, particularly preferably phenyl substituted with halogen at the 2-position, or phenyl substituted with halogens at the 2- and 4-positions. In another embodiment, Ring A is preferably phenyl which is substituted with —C(O)NH2 and may be further substituted with halogen, more preferably phenyl which is substituted with —C(O)NH2 at the 4-position and may be further substituted with halogen. Further, in a further embodiment, Ring A is preferably phenyl or pyrrole, each of which is substituted with a group selected from halogen, halogeno-lower alkyl, and —C(O)NH2.
- (f) The compound formed by two or more combination of the groups described in (a) to (e) above.
- The compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention may exist in the form of tautomers or geometrical isomers depending on the kind of substituents. In the present specification, the compound of the formula (I-a) shall be described in only one form of isomer, but the active ingredient for the pharmaceutical of the present invention includes other isomers, isolated forms of the isomers, or a mixture thereof.
- In addition, the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention may have asymmetric carbon atoms or axial chirality in some cases, and correspondingly, it may exist in the form of optical isomers. The active ingredient for the pharmaceutical of the present invention includes both an isolated form of the optical isomers or a mixture thereof.
- Furthermore, the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention also includes a pharmaceutically acceptable prodrug thereof. The pharmaceutically acceptable prodrug is a compound having a group that can be converted into an amino group, a hydroxyl group, a carboxyl group, or the like through solvolysis or under physiological conditions. Examples of the group forming the prodrug include the groups described in Prog. Med., 5, 2157-2161 (1985) and “Iyakuhin no Kaihatsu (Pharmaceutical Research and Development)” (Hirokawa Publishing Company, 1990), Vol. 7, Bunshi Sekkei (Molecular Design), 163-198.
- Moreover, the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention may form an acid addition salt or a salt with a base depending on the kind of substituents. Specific examples thereof include acid addition salts with inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, and the like, and with organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, mandelic acid, tartaric acid, dibenzoyltartaric acid, ditoluoyltartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid, glutamic acid, and the like, and salts with inorganic bases such as sodium, potassium, magnesium, calcium, aluminum, and the like, or organic bases such as methylamine, ethylamine, ethanolamine, lysine, ornithine, and the like, salts with various amino acids or amino acid derivatives such as acetylleucine and the like, ammonium salts, etc.
- Moreover, the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention also includes various hydrates or solvates, and crystal polymorphs. In addition, the compound of the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention also includes compounds labeled with various radioactive or non-radioactive isotopes.
- (Preparation Methods)
- The compound of the formula (I-a) and a salt thereof, which are active ingredients for the pharmaceutical of the present invention, can be prepared using the characteristics based on the basic structure or the type of substituent and by applying various known synthesis methods. During the preparation, replacement of the relevant functional group with a suitable protective group (a group that can be easily converted into the relevant functional group) at the stage from starting material to an intermediate may be effective depending on the type of the functional group in the production technology in some cases. The protective group for such a functional group may include, for example, the protective groups described in “Greene's Protective Groups in Organic Synthesis (4th Ed, 2006)” written by P. G M. Wuts and T. W. Greene, and one of these should only be selected and used as necessary depending on reaction conditions. In such a method, a desired compound can be obtained by introducing the protective group, by carrying out a reaction and by eliminating the protective group as necessary.
- In addition, the prodrug of the compound of the formula (I-a) can be produced by introducing a specific group at the stage from a starting material to an intermediate or by carrying out the reaction using the obtained compound of the formula (I-a), just as in the case of the above-mentioned protective group. The reaction can be carried out using methods known to those skilled in the art, such as ordinary esterification, amidation, dehydration, and the like.
- Hereinbelow, typical preparation methods for the compound of the formula (I-a) will be described. Each of the production processes may also be carried out with reference to the References appended in the present description. Further, the preparation methods of the present invention are not limited to the examples shown below.
- (In the formula, L1 represents a leaving group. The same shall apply hereinafter.)
- The present production process is a method for preparing the compound (I-a) which is an active ingredient for the pharmaceutical of the present invention by cyclization of a compound (1) with a compound (2). Examples of the leaving group of L1 include chloro, bromo, methoxy, methylsulfanyl, and the like. The reaction can be carried out in a solvent, for example, such as ethers such as tetrahydrofuran (THF), 1,4-dioxane, diglyme, and the like; alcohols such as methanol, ethanol, propanol, butanol, and the like; aprotic polar solvents such as N,N-dimethylformamide (DMF), N-methylpyrrolidin-2-one (NMP), dimethylimidazolidinone, dimethylacetamide (DMA), dimethylsulfoxide (DMSO), and the like; aromatic hydrocarbons such as benzene, toluene, xylene, and the like; halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, and the like; etc., at room temperature or under heating conditions. Depending on the compound, it may be advantageous in some cases to carry out the reaction in the presence of an acid, for example, an organic acid such as acetic acid, p-toluenesulfonic acid, and the like; a mineral acid such as sulfuric acid, hydrochloric acid, and the like; etc., or in the presence of an organic base such as triethylamine, N,N-diisopropylethylamine, and the like; or an inorganic base such as sodium hydrogen carbonate, potassium carbonate, and the like. Depending on the compound, it may be advantageous in some cases to carry out the reaction in the presence of a phase transfer catalyst such as tetra-n-butylammonium iodide and the like.
- The present preparation process is a method for obtaining the compound (I-a) which is an active ingredient for the pharmaceutical of the present invention by reacting a compound (3) with a compound (4).
- The reaction can be carried out using the compound (3) and the compound (4) in equivalent amounts, or with either thereof in an excess amount in a solvent inert to the reaction, for example, alcohols, aromatic hydrocarbons such as benzene, toluene, xylene, and the like, acetic acid, or the like, or in the absence of a solvent, under room temperature to heating, preferably under heating. Depending on the compound, it may be advantageous in some cases to carry out the reaction in the presence of an acid, for example, an organic acid such as acetic acid, p-toluenesulfonic acid, trifluoroacetic acid, and the like; a mineral acid such as sulfuric acid, hydrochloric acid, and the like; etc. Also, it is advantageous in some cases to carry out the reaction using a microwave.
- (In the formula, R1z is aryl or heteroaryl, each of which may be substituted, and L2 represents a leaving group. The same shall apply hereinafter.)
- The present preparation process is a method for obtaining the compound (I-a-1) which is an active ingredient for the pharmaceutical of the present invention, by O-arylation of a compound (5). Examples of the leaving group of L2 include halogen such as fluoro, chloro, bromo and the like.
- The arylation reaction can be carried out using a compound (5) and a compound (6) in equivalent amounts, or with either thereof in an excess amount, under cooling to heating with refluxing, in the presence of a base, in a solvent inert to the reaction, such as an aprotic polar solvent such as DMF, DMSO, and the like; ethers; etc. Examples of the base include sodium hydride, potassium hydride, butyl lithium, potassium carbonate and the like.
- The present preparation process is a method for preparing the compound (I-a) which is an active ingredient for the pharmaceutical of the present invention by cyclization reaction of a compound (7) with a compound (8).
- The cyclization reaction can be carried out in the same manner as in the Production Process 1.
- The present preparation process is a method for obtaining the compound (I-a) which is an active ingredient for the pharmaceutical of the present invention by cyclization of a compound (9).
- The cyclization reaction can be carried out in a solvent such as ethers, aromatic hydrocarbons, halogenated hydrocarbons, and the like, at room temperature or under heating conditions. Depending on the compound, it may be advantageous in some cases for the progress of the reaction that the reaction is carried out in the presence of an acid such as an organic acid such as acetic acid, p-toluenesulfonic acid, and the like, or a mineral acid such as sulfuric acid, hydrochloric acid, and the like, etc.
- Furthermore, several compounds represented by the formula (I-a) can also be prepared from the compound (I-a) which is an active ingredient for the pharmaceutical of the present invention obtained as above by optionally combining processes commonly adoptable by those skilled in the art, such as known alkylation, acylation, substitution reaction, oxidation, reduction, hydrolysis, and the like.
- The starting materials for use in the preparation of the compound (I-a) which is an active ingredient for the pharmaceutical of the present invention can be prepared by applying the methods described below, the methods described in Preparation Examples to be mentioned below, known methods or methods obvious to those skilled in the art, or modified methods thereof.
- (In the formula, L3 represents a leaving group. The same shall apply hereinafter.)
- The compound (3) can be prepared by cyclization of compound (11) obtained by amidation of the compound (1) and a compound (10). Here, examples of the leaving group of L3 include chloro, bromo, hydroxy, and the like.
- The amidation reaction can be carried out using the compound (1) and the compound (10) in equivalent amounts, or with either thereof in an excess amount, in a solvent such as halogenated hydrocarbons, aprotic polar solvents, and the like, under room temperature to heating conditions. Depending on the compounds, it is advantageous for the smooth progress of the reaction in some cases to carry out the reaction in the presence of an organic base such as triethylamine, N,N-diisopropylethylamine, pyridine, and the like, or an inorganic base such as potassium carbonate, sodium carbonate, and the like.
- In the case where the leaving group of L3 is hydroxy, it is preferable that the reaction be carried out in the presence of a condensing agent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (WSC), dicyclohexylcarbodiimide (DCC), 1,1′-carbonyldiimidazole (CDI), O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluroniumhexafluorophosphate (HBTU), and the like. In addition, it is preferable in some cases that an additive (for example, 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7-azabenzotriazole (HOAt), and the like) is used.
- The cyclization reaction can be carried out by reacting the compound (11) with a dehydrating agent such as phosphorus oxychloride, trifluoromethanesulfonic anhydride, a reagent prepared from triphenylphosphine and carbon tetrabromide, and the like in a solvent such as an aprotic polar solvent such as halogenated hydrocarbons and the like. Depending on the compound, it is advantageous for the smooth progress of the reaction in some cases to carry out the reaction in the presence of an organic base such as triethylamine, N,N-diisopropylethylamine, pyridine, and the like, or an inorganic base such as potassium carbonate, sodium carbonate, and the like.
- The compound (5) can be prepared from a compound (12) and the compound (2) in the same manner as in the Preparation Process 1.
- (In the formula, R represents lower alkyl and L4 represents a leaving group. The same shall apply hereinafter.)
- In addition, the compound (3) can also be prepared by cyclization of the compound (1) with a compound (13). Here, examples of the leaving group of L4 include chloro, bromo, and the like.
- The reaction can be carried out in the same manner as in the Preparation Process 1.
- The compound (9) can be prepared by the amidation reaction of a compound (14) and a compound (15).
- The amidation reaction can be carried out in the same condition as in the amidation of the first step of the starting material synthesis 1.
- The compound of the formula (I-a) is isolated and purified as a free compound or a salt, a hydrate, a solvate, or a crystal polymorph thereof. The salt of the compound of the formula (I-a) can also be prepared using a conventional salt formation reaction.
- Isolation and purification are carried out by applying common chemical operations such as extraction, fractional crystallization, various types of fractional chromatography, and the like.
- A variety of isomers can be prepared by selecting suitable starting compounds or separated using differences in the physicochemical properties between the isomers. For example, optical isomers are obtained by a general optical resolution method of racemic forms (for example, fractional crystallization in which the racemic form is converted into diastereomer salts with an optically active base or acid, chromatography using a chiral column and the like, and the like), or can also be prepared from suitable starting compounds which are optically active.
- A pharmaceutical composition for treating pain of the present invention, including one or two or more kinds of the compound of the formula (I-a) as an active ingredient, can be prepared using excipients that are usually used in the art, that is, excipients for pharmaceutical preparation, carriers for pharmaceutical preparation, and the like, according to the methods usually used.
- Administration can be accomplished either by oral administration via tablets, pills, capsules, granules, powders, solutions, and the like, or parenteral administration via injections, such as intraarticular, intravenous, or intramuscular injections, and the like, suppositories, eye drops, eye ointments, transdermal liquid preparations, ointments, transdermal patches, transmucosal liquid preparations, transmucosal patches, inhalers, and the like.
- As a solid composition for oral administration, tablets, powders, granules, and the like are used. In such a solid composition, one or two or more kinds of the active ingredient(s) are mixed with at least one inactive excipient. In a conventional method, the composition may contain inactive additives, such as a lubricant, a disintegrating agent, a stabilizer, or a solubilization assisting agent. If necessary, tablets or pills may be coated with sugar or with a film of a gastric or enteric coating substance.
- The liquid composition for oral administration includes pharmaceutically acceptable emulsions, solutions, suspensions, syrups, elixirs, or the like, and also includes generally used inert diluents, for example, purified water or ethanol. In addition to the inert diluent, the liquid composition may also include auxiliary agents such as a solubilization assisting agent, a moistening agent, and a suspending agent, sweeteners, flavors, aromatics, and antiseptics.
- The injections for parenteral administration include sterile aqueous or non-aqueous solution preparations, suspensions, or emulsions. The aqueous solvent includes, for example, distilled water for injection and physiological saline. Examples of the non-aqueous solvent include alcohols such as ethanol. Such a composition may further include a tonicity agent, an antiseptic, a moistening agent, an emulsifying agent, a dispersing agent, a stabilizing agent, or a solubilizing assisting agent. These are sterilized, for example, by filtration through a bacteria retaining filter, blending of a bactericide, or irradiation. In addition, these can also be used by preparing a sterile solid composition, and dissolving or suspending it in sterile water or a sterile solvent for injection prior to its use.
- The agent for external use includes ointments, plasters, creams, jellies, patches, sprays, lotions, eye drops, eye ointments, and the like. The agents include generally used ointment bases, lotion bases, aqueous or non-aqueous liquid preparations, suspensions, emulsions, and the like.
- The transmucosal agents such as an inhaler, a transnasal agent, and the like, those in the form of a solid, liquid, or semi-solid state are used, can be prepared in accordance with a conventionally known method. For example, a known excipient, and also a pH adjusting agent, an antiseptic, a surfactant, a lubricant, a stabilizing agent, a thickening agent, or the like may be appropriately added thereto. For their administration, an appropriate device for inhalation or blowing can be used. For example, a compound may be administered alone or as a powder of formulated mixture, or as a solution or suspension in combination with a pharmaceutically acceptable carrier, using a conventionally known device such as a measured administration inhalation device, and the like, or sprayer. A dry powder inhaler or the like may be for single or multiple administration use, and a dry powder or a powder-containing capsule may be used. Alternatively, this may be in a form such as a pressurized aerosol spray which uses an appropriate ejection agent, for example, a suitable gas such as chlorofluoroalkane, carbon dioxide, and the like, or other forms.
- Usually, in the case of oral administration, the daily dose is from about 0.001 to 100 mg/kg, preferably from 0.1 to 30 mg/kg, and more preferably from 0.1 to 10 mg/kg, per body weight, administered in one portion or in 2 to 4 divided portions. In the case of intravenous administration, the daily dose is suitably administered from about 0.0001 to 10 mg/kg per body weight, once a day or two or more times a day. In addition, a transmucosal agent is administered at a dose from about 0.001 to 100 mg/kg per body weight, once or plural times a day. The dose is appropriately decided in response to the individual case by taking the symptoms, the age, and the gender, and the like into consideration.
- A therapeutic agent for pain including the compound of the formula (I-a) or a pharmaceutically acceptable salt thereof as an active ingredient may be used in combination with other therapeutic agents for pain. Such the combined preparations may be administered simultaneously, or separately and continuously, or at a desired time interval. The preparations to be co-administered may be a blend, or may be prepared individually.
- Hereinafter, the present invention will be described in detail with reference to Examples, but these do not restrict the scope of the present invention.
- The procedure for measuring the 11β-HSD1-inhibitory activity is as follows. The enzyme reaction and the measurement were carried out using a 384-well plate. The enzyme was prepared in accordance with Journal of Biological Chemistry, 2001, Vol. 276, p. 21343-21350. The reaction was carried out by adding a test compound at various concentrations to a reaction liquid consisting of a 5 mM phosphate buffer (pH 6.6), 200 nM cortisone, 40 μM reduced nicotinamide adenine dinucleotide phosphate (NADPH), and rat recombinant 113-HSD1, followed by incubating at room temperature for one hour (10 μl/well). The test compound was prepared by dissolving in dimethyl sulfoxide (DMSO) such that a DMSO concentration reached 1% in the reaction liquid. After the enzyme reaction was completed, the enzyme inhibitory action was measured by detecting cortisol using a homogeneous time-resolved fluorescence (HTRF) method. Each of a d2-labeled cortisol containing 400 μM carbenoxolone and a cryptate-labeled cortisol antibody (CIS Bio International Co., Ltd.) was added at 5 ml/well, followed by incubating at room temperature for 2 hours, and then the fluorescence intensity was measured using a fluorophotometer (trade name: ARVO HTS 1420, Perkin Elmer/Wallac), and the enzyme inhibitory activity was calculated from the fluorescence intensity ratio of two wavelengths (665 nm/620 nm).
- The measurement results were calculated by averaging the values of 3 wells of the same condition. The ratio when DMSO was added instead of the test compound was taken as 0% and the ratio when 11β-HSD1 was not added was taken as 100%, thereby calculating the 50% inhibition concentration of the test compound as IC50 of the compound inhibitory activity.
- The IC50 values of the typical compounds with respect to the active ingredients for the pharmaceutical of the present invention are shown in Table 1 below. Further, Cpd represents Compound No. (the same shall apply hereinafter).
-
TABLE 1 Cpd IC50 (nM) 1 35 2 52 3 24 4 32 5 263 6 322 7 32 8 70 9 26 10 135 11 64 12 182 13 68 14 16 15 23 - The test was carried out in accordance with Pain, 1992, Vol. 50, p. 355-363. The lumbar skin and muscle of a rat (SD, male, 5- to 6-week old) were incised under pentobarbital anesthesia and the transverse processes of lumbar L6 were removed to expose lumbar nerves. The L5 and L6 spinal nerves were ligated with silk thread and then the wound was sutured. The treatment was performed on the left side. However, in a case of a pseudo-operation, the wound was sutured without carrying out the nerve ligation.
- Drug efficacy evaluation was carried out by a von Frey hair test 7 to 20 days after the operation. The withdrawal response threshold was calculated in accordance with Journal of Neuroscience Methods, 1994, Vol. 53, p. 55-63. The plantar of hindlimb was stimulated using 8 kinds of von Frey filaments (0.41 to 15.14 g), and 50% withdrawal response thresholds were determined by an up-and-down method. The test was initiated from 2.04 g of the filament, and a case where the withdrawal response of the limb was observed was taken as presence of the response.
- On the previous day of the drug efficacy evaluation, the animals showing reduction in the thresholds according to a von Frey hair test were preliminarily selected and grouped such that the difference in the average values of the thresholds between the respective groups was reduced.
- The test substance was suspended in a 0.5% methylcellulose solution and administered orally 2 hours before the drug efficacy evaluation. The evaluation of the test substance was carried out by determining the improvement rate of the group administered with the test substance when the threshold of the limb on the treatment side in the pseudo-operation animal group was taken as 100% and the threshold of the limb on the treatment side in an operated animal group administered with a solvent was taken as 0%.
- The improvement rates of the typical compounds with respect to the active ingredients for the pharmaceuticals of the present invention are shown in Table 2 below.
-
TABLE 2 Improvement rate % Cpd (dose) 1 71 (0.3 mg/kg) 2 88 (0.3 mg/kg) 3 62 (0.3 mg/kg) 4 85 (0.3 mg/kg) 5 65 (0.3 mg/kg) 6 52 (0.3 mg/kg) 7 73 (0.3 mg/kg) 8 87 (0.3 mg/kg) 9 78 (0.3 mg/kg) 10 81 (0.3 mg/kg) 11 82 (0.3 mg/kg) 12 54 (0.3 mg/kg) 13 53 (0.3 mg/kg) 14 73 (0.3 mg/kg) 15 86 (0.3 mg/kg) - The test was carried out in accordance with Pain, 2009, Vol. 146, p. 26-33. Rats (SD, male, 7 weeks old) were used.
- The threshold measurement for the muscle pressure pain was carried out according to the method of Schafers et al. (Pain, 2003, Vol. 104, p. 579-588). The pressure stimulus gradually increasing up to 250 g was applied to the gastrocnemius muscle of the right hindlimb of the rat. The magnitude of the minimum pressure stimulus at which the rat showed a withdrawal response with respect to pressure stimulus of the right hindlimb was measured as a muscle pressure pain threshold (g). The measurements were carried out in triplicate for each point of time and the average thereof was taken as a measured value.
- A solvent (0.5% acetic acid/water) or reserpine at 1 mg/kg was subcutaneously administered on a dorsal subcutaneous part for 3 days once per day. The administration volume of the solvent or reserpine was taken as 1 mL per kg of a body weight of an animal. The muscle pressure pain thresholds of the respective rats were measured at 6 days after the initiation of the administration of the solvent or reserpine, and grouped such that the difference in the average values of the thresholds between the respective groups was reduced.
- The drug efficacy evaluation was carried out the next day. The test substance was suspended in a 0.5% methylcellulose solution and the muscle pressure pain thresholds were measured 30, 60, and 120 minutes after oral administration. For the normal rats, drug administration was not carried out, and only the measurement of the muscle pressure pain thresholds was carried out. The measurement of the drug effect was carried out by an experimenter who does not know the drug treatment context to an animal. The evaluation of the test substance was carried out by determining the maximal improvement rate of the group administered with the test substance among at time points of 30, 60, and 120 minutes after the administration when the muscle pressure pain threshold of the normal rat is taken as 100% and the muscle pressure pain threshold of the rat treated with reserpine while administered with the solvent is taken as 0%.
- The improvement rates of the typical compounds with respect to the active ingredients for the pharmaceuticals of the present invention are shown in Table 3 below.
-
TABLE 3 Maximum improvement rate % Point for calculation Cpd (dose) (min) 2 30 (1 mg/kg) 120 4 82 (1 mg/kg) 30 8 41 (1 mg/kg) 120 10 65 (1 mg/kg) 120 11 83 (1 mg/kg) 30 15 45 (1 mg/kg) 120 - As the results of the tests above, it was confirmed that the compound represented by the formula (I-a) is effective in various pain models. Therefore, it is apparent that the compound represented by the formula (I-a) which is an active ingredient for the pharmaceutical of the present invention can be used for the treatment of pain (in particular, neuropathic pain, fibromyalgia, or the like).
- The methods for preparing the compounds with respect to the active ingredients for the pharmaceuticals of the present invention are shown below.
- All the compounds 1 to 15 described in Tables 4 to 6 below are known compounds and can be prepared in the following manner.
- All the compounds 1 to 15 are described as Example compounds in the pamphlet of International Publication WO 2010/001946, and can be prepared by the method described in this publication. For example, the compound 2 is described as Example 65 of this publication.
- The following abbreviations are used in Tables below.
- Cpd: Compound No., Structure: Structural formula (in the case where HCl is described in the structural formula, it denotes that the compound is hydrochloride salt).
- An 11β-HSD1 inhibitor which is an active ingredient for the pharmaceutical of the present invention, in particular, the compound of the formula (I-a), is useful for the treatment of pain (in particular, neuropathic pain or fibromyalgia).
Claims (8)
1. (canceled)
2. A method for treating fibromyalgia, comprising administering, to a subject in need thereof, an effective amount of a compound selected from the group consisting of:
3-(2-chloro-4-fluorophenyl)-4-methyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazole,
3-[1-(4-chloro-2,6-difluorophenoxy)-1-methylethyl]-5-(2-chlorophenyl)-4-methyl-4H-1,2,4-triazole,
4-{5-[1-(4-chloro-2,6-difluorophenoxy)-1-methylethyl]-4-ethyl-4H-1,2,4-triazol-3-yl}benzamide,
4-{5-[1-(4-chloro-2,6-difluorophenoxy)-1-methylethyl]-4-methyl-4H-1,2,4-triazol-3-yl}-3-fluorobenzamide,
4-{4-cyclopropyl-5-[1-(2,4-difluorophenoxy)-1-methylethyl]-4H-1,2,4-triazol-3-yl}-3-fluorobenzamide, and
3-fluoro-4-{4-isopropyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazol-3-yl}benzamide, or
a pharmaceutically acceptable salt thereof.
3. The method according to claim 2 , wherein said compound is 3-(2-chloro-4-fluorophenyl)-4-methyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazole or a pharmaceutically acceptable salt thereof.
4. The method according to claim 2 , wherein said compound is 3-[1-(4-chloro-2,6-difluorophenoxy)-1-methylethyl]-5-(2-chlorophenyl)-4-methyl-4H-1,2,4-triazole or a pharmaceutically acceptable salt thereof.
5. The method according to claim 2 , wherein said compound is 4-{5-[1-(4-chloro-2,6-difluorophenoxy)-1-methylethyl]-4-ethyl-4H-1,2,4-triazol-3-yl}benzamide or a pharmaceutically acceptable salt thereof.
6. The method according to claim 2 , wherein said compound is 4-{5-[1-(4-chloro-2,6-difluorophenoxy)-1-methylethyl]-4-methyl-4H-1,2,4-triazol-3-yl-3-fluorobenzamide or a pharmaceutically acceptable salt thereof.
7. The method according to claim 2 , wherein said compound is 4-4-cyclopropyl-5-[1-(2,4-difluorophenoxy)-1-methylethyl]-4H-1,2,4-triazol-3-yl}-3-fluorobenzamide or a pharmaceutically acceptable salt thereof.
8. The method according to claim 2 , wherein said compound is 3-fluoro-4-{4-isopropyl-5-[1-methyl-1-(2,4,6-trifluorophenoxy)ethyl]-4H-1,2,4-triazol-3-yl}benzamide or a pharmaceutically acceptable salt thereof.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/664,733 US20170327474A1 (en) | 2010-09-07 | 2017-07-31 | Therapeutic agent for pain |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010-200305 | 2010-09-07 | ||
| JP2010200305 | 2010-09-07 | ||
| PCT/JP2011/070205 WO2012033070A1 (en) | 2010-09-07 | 2011-09-06 | Therapeutic agent for pain |
| US201313820873A | 2013-03-05 | 2013-03-05 | |
| US15/664,733 US20170327474A1 (en) | 2010-09-07 | 2017-07-31 | Therapeutic agent for pain |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2011/070205 Division WO2012033070A1 (en) | 2010-09-07 | 2011-09-06 | Therapeutic agent for pain |
| US13/820,873 Division US9765040B2 (en) | 2010-09-07 | 2011-09-06 | Therapeutic agent for pain |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170327474A1 true US20170327474A1 (en) | 2017-11-16 |
Family
ID=45810669
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/820,873 Expired - Fee Related US9765040B2 (en) | 2010-09-07 | 2011-09-06 | Therapeutic agent for pain |
| US15/664,733 Abandoned US20170327474A1 (en) | 2010-09-07 | 2017-07-31 | Therapeutic agent for pain |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/820,873 Expired - Fee Related US9765040B2 (en) | 2010-09-07 | 2011-09-06 | Therapeutic agent for pain |
Country Status (23)
| Country | Link |
|---|---|
| US (2) | US9765040B2 (en) |
| EP (1) | EP2614824B1 (en) |
| JP (1) | JP5822079B2 (en) |
| KR (1) | KR101747486B1 (en) |
| CN (2) | CN103079564B (en) |
| AU (1) | AU2011299905B2 (en) |
| BR (1) | BR112013005532A2 (en) |
| CA (1) | CA2809778C (en) |
| CY (1) | CY1116274T1 (en) |
| DK (1) | DK2614824T3 (en) |
| EA (1) | EA022338B1 (en) |
| ES (1) | ES2533310T3 (en) |
| HR (1) | HRP20150544T1 (en) |
| IL (1) | IL224920A (en) |
| MX (1) | MX2013002649A (en) |
| PH (1) | PH12013500371A1 (en) |
| PL (1) | PL2614824T3 (en) |
| PT (1) | PT2614824E (en) |
| SI (1) | SI2614824T1 (en) |
| TW (1) | TWI486336B (en) |
| UA (1) | UA112418C2 (en) |
| WO (1) | WO2012033070A1 (en) |
| ZA (1) | ZA201301458B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020106337A1 (en) * | 2018-11-20 | 2020-05-28 | Sparrow Pharmaceuticals, Inc. | Methods for administering corticosteroids |
| US12329745B2 (en) | 2022-05-16 | 2025-06-17 | Sparrow Pharmaceuticals, Inc. | Methods and compositions for treating glucocorticoid excess |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI545113B (en) | 2011-10-18 | 2016-08-11 | 安斯泰來製藥股份有限公司 | Bicyclic heterocyclic compound |
| US9994658B2 (en) | 2015-10-02 | 2018-06-12 | Exxonmobil Chemical Patents Inc. | Polymerization process using bis phenolate compounds supported on organoaluminum treated layered silicate supports |
| WO2017096148A1 (en) * | 2015-12-03 | 2017-06-08 | Katz Robert S | Methods and systems for diagnosing and treating fibromyalgia |
| RU2643583C1 (en) * | 2016-10-24 | 2018-02-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Уральский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО УГМУ Минздрава России) | Method for treatment of chronic pain syndromes, formed on basis of post-traumatic stress disorder, combined with combat brain injury effects |
| WO2018117063A1 (en) * | 2016-12-20 | 2018-06-28 | アステラス製薬株式会社 | Therapeutic agent for agitation |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070022429A1 (en) * | 2005-07-25 | 2007-01-25 | Mark Rosenbluth | Lock sequencing |
| US20110015900A1 (en) * | 2009-07-17 | 2011-01-20 | Airbus Operations (Societe Par Actions Simplifiee) | Method of routing the physical links of an avionics platform |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AUPR878201A0 (en) * | 2001-11-09 | 2001-12-06 | Fujisawa Pharmaceutical Co., Ltd. | New compounds |
| AR040241A1 (en) | 2002-06-10 | 2005-03-23 | Merck & Co Inc | INHIBITORS OF 11-BETA-HYDROXIESTEROID DEHYDROGRENASE 1 FOR THE TREATMENT OF DIABETES OBESITY AND DISLIPIDEMIA |
| MXPA05001594A (en) | 2002-08-09 | 2005-09-20 | Astrazeneca Ab | "1,2,4"oxadiazoles as modulators of metabotropic glutamate receptor-5. |
| JO2397B1 (en) | 2002-12-20 | 2007-06-17 | ميرك شارب اند دوم كوربوريشن | Triazole Derivatives As Inhibitors Of 11-Beta -Hydroxysteriod Dehydrogenase-1 |
| EP2239012A3 (en) | 2003-04-11 | 2011-06-15 | High Point Pharmaceuticals, LLC | Substituted amide derivatives and pharmaceutical uses thereof |
| WO2005035553A2 (en) * | 2003-10-10 | 2005-04-21 | Novo Nordisk A/S | Conjugation of peptides |
| AU2004286836A1 (en) | 2003-10-28 | 2005-05-19 | Amgen Inc. | Triazole compounds and uses related thereto |
| JP2005170939A (en) * | 2003-11-20 | 2005-06-30 | Takeda Chem Ind Ltd | Prophylactic/therapeutic agent for diabetes |
| BRPI0417687A (en) * | 2003-12-19 | 2007-04-03 | Pfizer | benzenesulfonylamino-pyridin-2-yl derivatives and related compounds as 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-hsd-1) inhibitors for the treatment of diabetes and obesity |
| CA2549385A1 (en) | 2003-12-22 | 2005-07-21 | Eli Lilly And Company | Triazole, oxadiazole and thiadiazole derivative as ppar modulators for the treatment of diabetes |
| WO2006030805A1 (en) | 2004-09-16 | 2006-03-23 | Astellas Pharma Inc. | Triazole derivative or salt thereof |
| WO2006048750A2 (en) | 2004-11-02 | 2006-05-11 | Pfizer Inc. | Novel compounds of substituted and unsubstituted adamantyl amides |
| WO2006134481A1 (en) | 2005-06-16 | 2006-12-21 | Pfizer Inc. | Inhibitors of 11-beta hydroxysteroid dehydrogenase type 1 |
| CN101198605A (en) * | 2005-06-16 | 2008-06-11 | 辉瑞大药厂 | N-(pyridin-2-yl)-sulfonamide derivatives |
| JP4250675B2 (en) | 2005-06-16 | 2009-04-08 | ファイザー・インク | N- (Pyridin-2-yl) -sulfonamide derivative |
| CA2620179C (en) * | 2005-08-16 | 2013-10-29 | Icagen, Inc. | Inhibitors of voltage-gated sodium channels |
| UY29796A1 (en) * | 2005-09-29 | 2007-04-30 | Astrazeneca Ab | NEW COMPOUNDS FOR THE TREATMENT OF NEUROLOGICAL, PSYCHIATRIC OR PAIN DISORDERS |
| TWI391378B (en) | 2006-03-16 | 2013-04-01 | Astellas Pharma Inc | Quinolone derivative or pharmaceutically acceptable salt thereof |
| JPWO2007105753A1 (en) | 2006-03-16 | 2009-07-30 | アステラス製薬株式会社 | Triazole derivative or salt thereof |
| PL2298747T3 (en) * | 2008-07-03 | 2017-05-31 | Astellas Pharma Inc. | Triazole derivative or salt thereof |
| US8871208B2 (en) * | 2009-12-04 | 2014-10-28 | Abbvie Inc. | 11-β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors and uses thereof |
-
2011
- 2011-06-09 UA UAA201304329A patent/UA112418C2/en unknown
- 2011-09-06 ES ES11823545.6T patent/ES2533310T3/en active Active
- 2011-09-06 PH PH1/2013/500371A patent/PH12013500371A1/en unknown
- 2011-09-06 KR KR1020137008722A patent/KR101747486B1/en not_active Expired - Fee Related
- 2011-09-06 CN CN201180042963.2A patent/CN103079564B/en not_active Expired - Fee Related
- 2011-09-06 US US13/820,873 patent/US9765040B2/en not_active Expired - Fee Related
- 2011-09-06 AU AU2011299905A patent/AU2011299905B2/en not_active Ceased
- 2011-09-06 HR HRP20150544TT patent/HRP20150544T1/en unknown
- 2011-09-06 PL PL11823545T patent/PL2614824T3/en unknown
- 2011-09-06 SI SI201130469T patent/SI2614824T1/en unknown
- 2011-09-06 MX MX2013002649A patent/MX2013002649A/en active IP Right Grant
- 2011-09-06 EA EA201390345A patent/EA022338B1/en not_active IP Right Cessation
- 2011-09-06 EP EP11823545.6A patent/EP2614824B1/en active Active
- 2011-09-06 CA CA2809778A patent/CA2809778C/en not_active Expired - Fee Related
- 2011-09-06 TW TW100132078A patent/TWI486336B/en not_active IP Right Cessation
- 2011-09-06 CN CN201710421919.1A patent/CN107041885A/en active Pending
- 2011-09-06 JP JP2012532977A patent/JP5822079B2/en not_active Expired - Fee Related
- 2011-09-06 BR BR112013005532A patent/BR112013005532A2/en not_active Application Discontinuation
- 2011-09-06 DK DK11823545.6T patent/DK2614824T3/en active
- 2011-09-06 PT PT118235456T patent/PT2614824E/en unknown
- 2011-09-06 WO PCT/JP2011/070205 patent/WO2012033070A1/en not_active Ceased
-
2013
- 2013-02-26 IL IL224920A patent/IL224920A/en not_active IP Right Cessation
- 2013-02-26 ZA ZA2013/01458A patent/ZA201301458B/en unknown
-
2015
- 2015-05-13 CY CY20151100424T patent/CY1116274T1/en unknown
-
2017
- 2017-07-31 US US15/664,733 patent/US20170327474A1/en not_active Abandoned
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070022429A1 (en) * | 2005-07-25 | 2007-01-25 | Mark Rosenbluth | Lock sequencing |
| US20110015900A1 (en) * | 2009-07-17 | 2011-01-20 | Airbus Operations (Societe Par Actions Simplifiee) | Method of routing the physical links of an avionics platform |
Non-Patent Citations (1)
| Title |
|---|
| 101198605 A * |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020106337A1 (en) * | 2018-11-20 | 2020-05-28 | Sparrow Pharmaceuticals, Inc. | Methods for administering corticosteroids |
| CN113329754A (en) * | 2018-11-20 | 2021-08-31 | 麻雀制药股份有限公司 | Methods for administering corticosteroids |
| EP3883578A4 (en) * | 2018-11-20 | 2022-07-27 | Sparrow Pharmaceuticals, Inc. | METHOD OF ADMINISTRATION OF CORTICOSTEROIDS |
| US12220412B2 (en) | 2018-11-20 | 2025-02-11 | Sparrow Pharmaceuticals, Inc. | Methods for administering corticosteroids |
| IL283069B1 (en) * | 2018-11-20 | 2025-05-01 | Sparrow Pharmaceuticals Inc | Methods for administering corticosteroids |
| IL283069B2 (en) * | 2018-11-20 | 2025-09-01 | Sparrow Pharmaceuticals Inc | Methods for administering corticosteroids |
| US12329745B2 (en) | 2022-05-16 | 2025-06-17 | Sparrow Pharmaceuticals, Inc. | Methods and compositions for treating glucocorticoid excess |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20170327474A1 (en) | Therapeutic agent for pain | |
| US20230125280A1 (en) | Tetrahydroisoquinoline derivatives | |
| HUE031419T2 (en) | Triazole derivative or salt thereof | |
| US20100227866A1 (en) | Tetrahydroisoquinolin-1-one derivative or salt thereof | |
| US9266840B2 (en) | Bicyclic heterocyclic compound | |
| HK40077141A (en) | Tetrahydroisoquinoline derivative | |
| US20230321086A1 (en) | Methods and materials for inhibiting nicotinamide phosphoribosyltransferase activity | |
| HK40001944B (en) | Tetrahydroisoquinoline derivatives | |
| HK40001944A (en) | Tetrahydroisoquinoline derivatives |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |