US20170326098A1 - Cis-gnetin h and trans-gnetin h as therapeutic agents - Google Patents
Cis-gnetin h and trans-gnetin h as therapeutic agents Download PDFInfo
- Publication number
- US20170326098A1 US20170326098A1 US15/513,375 US201515513375A US2017326098A1 US 20170326098 A1 US20170326098 A1 US 20170326098A1 US 201515513375 A US201515513375 A US 201515513375A US 2017326098 A1 US2017326098 A1 US 2017326098A1
- Authority
- US
- United States
- Prior art keywords
- gnetin
- cis
- trans
- cancer
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- PHIHHTIYURVLDB-JPZOQBBBSA-N 5-[(2s,3s,5s,6s)-3-(3,5-dihydroxyphenyl)-2,6-bis(4-hydroxyphenyl)-4-[(e)-2-(4-hydroxyphenyl)ethenyl]-2,3,5,6-tetrahydrofuro[3,2-f][1]benzofuran-5-yl]benzene-1,3-diol Chemical compound C1=CC(O)=CC=C1\C=C\C1=C([C@@H]([C@H](O2)C=3C=CC(O)=CC=3)C=3C=C(O)C=C(O)C=3)C2=CC2=C1[C@H](C=1C=C(O)C=C(O)C=1)[C@@H](C=1C=CC(O)=CC=1)O2 PHIHHTIYURVLDB-JPZOQBBBSA-N 0.000 title claims abstract description 297
- 239000003814 drug Substances 0.000 title description 33
- 229940124597 therapeutic agent Drugs 0.000 title description 9
- PHIHHTIYURVLDB-LZPIWRFWSA-N 5-[(2s,3s,5s,6s)-3-(3,5-dihydroxyphenyl)-2,6-bis(4-hydroxyphenyl)-4-[(z)-2-(4-hydroxyphenyl)ethenyl]-2,3,5,6-tetrahydrofuro[3,2-f][1]benzofuran-5-yl]benzene-1,3-diol Chemical compound C1=CC(O)=CC=C1\C=C/C1=C([C@@H]([C@H](O2)C=3C=CC(O)=CC=3)C=3C=C(O)C=C(O)C=3)C2=CC2=C1[C@H](C=1C=C(O)C=C(O)C=1)[C@@H](C=1C=CC(O)=CC=1)O2 PHIHHTIYURVLDB-LZPIWRFWSA-N 0.000 claims abstract description 300
- PHIHHTIYURVLDB-UHFFFAOYSA-N H-gnetine Natural products C1=CC(O)=CC=C1C=CC1=C(C(C(O2)C=3C=CC(O)=CC=3)C=3C=C(O)C=C(O)C=3)C2=CC2=C1C(C=1C=C(O)C=C(O)C=1)C(C=1C=CC(O)=CC=1)O2 PHIHHTIYURVLDB-UHFFFAOYSA-N 0.000 claims abstract description 222
- 239000000203 mixture Substances 0.000 claims abstract description 60
- 150000001875 compounds Chemical class 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 50
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 16
- 206010028980 Neoplasm Diseases 0.000 claims description 127
- 201000011510 cancer Diseases 0.000 claims description 77
- 230000004054 inflammatory process Effects 0.000 claims description 52
- 206010061218 Inflammation Diseases 0.000 claims description 50
- 239000013543 active substance Substances 0.000 claims description 44
- 102000004127 Cytokines Human genes 0.000 claims description 39
- 108090000695 Cytokines Proteins 0.000 claims description 39
- 208000023275 Autoimmune disease Diseases 0.000 claims description 27
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 26
- 239000002246 antineoplastic agent Substances 0.000 claims description 25
- 208000006994 Precancerous Conditions Diseases 0.000 claims description 21
- 230000012010 growth Effects 0.000 claims description 20
- 201000010099 disease Diseases 0.000 claims description 19
- 239000008194 pharmaceutical composition Substances 0.000 claims description 19
- 241001465754 Metazoa Species 0.000 claims description 18
- 210000000481 breast Anatomy 0.000 claims description 16
- 208000020816 lung neoplasm Diseases 0.000 claims description 14
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 13
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 13
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 12
- 201000005202 lung cancer Diseases 0.000 claims description 12
- 239000003937 drug carrier Substances 0.000 claims description 11
- 230000002519 immonomodulatory effect Effects 0.000 claims description 11
- 210000004072 lung Anatomy 0.000 claims description 11
- 229940127089 cytotoxic agent Drugs 0.000 claims description 10
- 206010006187 Breast cancer Diseases 0.000 claims description 9
- 208000026310 Breast neoplasm Diseases 0.000 claims description 9
- 208000027866 inflammatory disease Diseases 0.000 claims description 9
- 229960005486 vaccine Drugs 0.000 claims description 9
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 8
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 8
- 230000003078 antioxidant effect Effects 0.000 claims description 8
- 239000002671 adjuvant Substances 0.000 claims description 7
- 239000000427 antigen Substances 0.000 claims description 7
- 239000012627 chemopreventive agent Substances 0.000 claims description 7
- 229940124443 chemopreventive agent Drugs 0.000 claims description 7
- 208000035475 disorder Diseases 0.000 claims description 7
- 230000002163 immunogen Effects 0.000 claims description 7
- 108091007433 antigens Proteins 0.000 claims description 6
- 102000036639 antigens Human genes 0.000 claims description 6
- 210000000988 bone and bone Anatomy 0.000 claims description 6
- 210000000496 pancreas Anatomy 0.000 claims description 6
- 210000002307 prostate Anatomy 0.000 claims description 6
- 206010060862 Prostate cancer Diseases 0.000 claims description 5
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 5
- 229940034982 antineoplastic agent Drugs 0.000 claims description 5
- 239000003963 antioxidant agent Substances 0.000 claims description 5
- 210000003679 cervix uteri Anatomy 0.000 claims description 5
- 230000002441 reversible effect Effects 0.000 claims description 5
- 210000002784 stomach Anatomy 0.000 claims description 5
- 206010005949 Bone cancer Diseases 0.000 claims description 4
- 208000018084 Bone neoplasm Diseases 0.000 claims description 4
- 108010012236 Chemokines Proteins 0.000 claims description 4
- 102000019034 Chemokines Human genes 0.000 claims description 4
- 239000004037 angiogenesis inhibitor Substances 0.000 claims description 4
- 210000004556 brain Anatomy 0.000 claims description 4
- 210000000867 larynx Anatomy 0.000 claims description 4
- 210000003491 skin Anatomy 0.000 claims description 4
- 210000004291 uterus Anatomy 0.000 claims description 4
- 201000005787 hematologic cancer Diseases 0.000 claims description 3
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 claims description 3
- 208000037819 metastatic cancer Diseases 0.000 claims description 3
- 208000011575 metastatic malignant neoplasm Diseases 0.000 claims description 3
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 2
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 2
- 208000000453 Skin Neoplasms Diseases 0.000 claims description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 2
- 208000002495 Uterine Neoplasms Diseases 0.000 claims description 2
- 201000010881 cervical cancer Diseases 0.000 claims description 2
- 206010017758 gastric cancer Diseases 0.000 claims description 2
- 206010023841 laryngeal neoplasm Diseases 0.000 claims description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 2
- 201000002528 pancreatic cancer Diseases 0.000 claims description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 2
- 201000000849 skin cancer Diseases 0.000 claims description 2
- 201000011549 stomach cancer Diseases 0.000 claims description 2
- 206010046766 uterine cancer Diseases 0.000 claims description 2
- 230000003110 anti-inflammatory effect Effects 0.000 abstract description 17
- 230000001093 anti-cancer Effects 0.000 abstract description 16
- 230000000069 prophylactic effect Effects 0.000 abstract description 10
- SXFWLVJIOLHNNS-UHFFFAOYSA-N gnetin H Natural products CC1(Oc2cc3OC(C)(c4ccc(O)cc4)C(C)(c5cc(O)cc(O)c5)c3c(C=Cc6ccc(O)cc6)c2C1(C)c7cc(O)cc(O)c7)c8ccc(O)cc8 SXFWLVJIOLHNNS-UHFFFAOYSA-N 0.000 abstract description 9
- 239000000419 plant extract Substances 0.000 abstract description 7
- 231100000053 low toxicity Toxicity 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 193
- 108010057466 NF-kappa B Proteins 0.000 description 52
- 102000003945 NF-kappa B Human genes 0.000 description 52
- 238000011282 treatment Methods 0.000 description 48
- 230000000694 effects Effects 0.000 description 47
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 39
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 39
- 102100035100 Transcription factor p65 Human genes 0.000 description 35
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 34
- 101710124574 Synaptotagmin-1 Proteins 0.000 description 34
- LUKBXSAWLPMMSZ-OWOJBTEDSA-N Trans-resveratrol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC(O)=CC(O)=C1 LUKBXSAWLPMMSZ-OWOJBTEDSA-N 0.000 description 32
- 239000002158 endotoxin Substances 0.000 description 32
- 229920006008 lipopolysaccharide Polymers 0.000 description 32
- QNVSXXGDAPORNA-UHFFFAOYSA-N Resveratrol Natural products OC1=CC=CC(C=CC=2C=C(O)C(O)=CC=2)=C1 QNVSXXGDAPORNA-UHFFFAOYSA-N 0.000 description 30
- 235000021283 resveratrol Nutrition 0.000 description 28
- 229940016667 resveratrol Drugs 0.000 description 28
- 230000037361 pathway Effects 0.000 description 25
- 240000005001 Paeonia suffruticosa Species 0.000 description 24
- 230000002401 inhibitory effect Effects 0.000 description 24
- 102000001284 I-kappa-B kinase Human genes 0.000 description 23
- 108060006678 I-kappa-B kinase Proteins 0.000 description 23
- 108010052419 NF-KappaB Inhibitor alpha Proteins 0.000 description 22
- 102100039337 NF-kappa-B inhibitor alpha Human genes 0.000 description 22
- 235000003889 Paeonia suffruticosa Nutrition 0.000 description 21
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 20
- 230000006907 apoptotic process Effects 0.000 description 20
- 230000005937 nuclear translocation Effects 0.000 description 19
- 230000026731 phosphorylation Effects 0.000 description 19
- 238000006366 phosphorylation reaction Methods 0.000 description 19
- 230000004044 response Effects 0.000 description 17
- 102100030497 Cytochrome c Human genes 0.000 description 15
- 108010075031 Cytochromes c Proteins 0.000 description 15
- -1 IL-1β Proteins 0.000 description 15
- 230000005764 inhibitory process Effects 0.000 description 15
- 108090000623 proteins and genes Proteins 0.000 description 15
- 230000004913 activation Effects 0.000 description 14
- 230000000259 anti-tumor effect Effects 0.000 description 14
- 230000035899 viability Effects 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 230000022131 cell cycle Effects 0.000 description 13
- 238000009472 formulation Methods 0.000 description 13
- PHEDXBVPIONUQT-UHFFFAOYSA-N Cocarcinogen A1 Natural products CCCCCCCCCCCCCC(=O)OC1C(C)C2(O)C3C=C(C)C(=O)C3(O)CC(CO)=CC2C2C1(OC(C)=O)C2(C)C PHEDXBVPIONUQT-UHFFFAOYSA-N 0.000 description 12
- 238000003556 assay Methods 0.000 description 12
- 208000037976 chronic inflammation Diseases 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 210000003470 mitochondria Anatomy 0.000 description 12
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 11
- 229940079593 drug Drugs 0.000 description 11
- 239000002955 immunomodulating agent Substances 0.000 description 11
- 229940121354 immunomodulator Drugs 0.000 description 11
- 210000002540 macrophage Anatomy 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 11
- 230000035699 permeability Effects 0.000 description 11
- 230000002265 prevention Effects 0.000 description 11
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 10
- 241000196324 Embryophyta Species 0.000 description 10
- 108090001007 Interleukin-8 Proteins 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 229960000074 biopharmaceutical Drugs 0.000 description 10
- 244000309464 bull Species 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 208000024891 symptom Diseases 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 239000000975 dye Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 210000004940 nucleus Anatomy 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 230000005945 translocation Effects 0.000 description 9
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 8
- 108091000080 Phosphotransferase Proteins 0.000 description 8
- 230000003833 cell viability Effects 0.000 description 8
- 230000006020 chronic inflammation Effects 0.000 description 8
- 238000002952 image-based readout Methods 0.000 description 8
- 230000028709 inflammatory response Effects 0.000 description 8
- 230000002438 mitochondrial effect Effects 0.000 description 8
- 102000020233 phosphotransferase Human genes 0.000 description 8
- 239000013641 positive control Substances 0.000 description 8
- 230000035755 proliferation Effects 0.000 description 8
- 210000004881 tumor cell Anatomy 0.000 description 8
- DOEWDSDBFRHVAP-KRXBUXKQSA-N (E)-3-tosylacrylonitrile Chemical compound CC1=CC=C(S(=O)(=O)\C=C\C#N)C=C1 DOEWDSDBFRHVAP-KRXBUXKQSA-N 0.000 description 7
- 102000047934 Caspase-3/7 Human genes 0.000 description 7
- 108700037887 Caspase-3/7 Proteins 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- HKSZLNNOFSGOKW-UHFFFAOYSA-N ent-staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 HKSZLNNOFSGOKW-UHFFFAOYSA-N 0.000 description 7
- 239000000284 extract Substances 0.000 description 7
- 235000013305 food Nutrition 0.000 description 7
- 230000004968 inflammatory condition Effects 0.000 description 7
- 230000002757 inflammatory effect Effects 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical compound C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 description 7
- CGPUWJWCVCFERF-UHFFFAOYSA-N staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(OC)O1 CGPUWJWCVCFERF-UHFFFAOYSA-N 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 6
- PLXBWHJQWKZRKG-UHFFFAOYSA-N Resazurin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3[N+]([O-])=C21 PLXBWHJQWKZRKG-UHFFFAOYSA-N 0.000 description 6
- 239000002775 capsule Substances 0.000 description 6
- 210000000170 cell membrane Anatomy 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 235000015872 dietary supplement Nutrition 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 241000736199 Paeonia Species 0.000 description 5
- 229940098773 bovine serum albumin Drugs 0.000 description 5
- 210000000805 cytoplasm Anatomy 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 5
- 229960003957 dexamethasone Drugs 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 238000000684 flow cytometry Methods 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 5
- 208000037841 lung tumor Diseases 0.000 description 5
- 229960000485 methotrexate Drugs 0.000 description 5
- 230000034190 positive regulation of NF-kappaB transcription factor activity Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 230000004614 tumor growth Effects 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 4
- 102000004121 Annexin A5 Human genes 0.000 description 4
- 108090000672 Annexin A5 Proteins 0.000 description 4
- 108090000397 Caspase 3 Proteins 0.000 description 4
- 108090000567 Caspase 7 Proteins 0.000 description 4
- 102100029855 Caspase-3 Human genes 0.000 description 4
- 102100038902 Caspase-7 Human genes 0.000 description 4
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 4
- 108010036949 Cyclosporine Proteins 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 206010025323 Lymphomas Diseases 0.000 description 4
- 239000012980 RPMI-1640 medium Substances 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 230000005779 cell damage Effects 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 4
- 238000002648 combination therapy Methods 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 231100000433 cytotoxic Toxicity 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 125000000816 ethylene group Chemical class [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 238000007539 photo-oxidation reaction Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000013207 serial dilution Methods 0.000 description 4
- 235000021286 stilbenes Nutrition 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 4
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- 102000011727 Caspases Human genes 0.000 description 3
- 108010076667 Caspases Proteins 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 206010058314 Dysplasia Diseases 0.000 description 3
- 108010008165 Etanercept Proteins 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 101000665442 Homo sapiens Serine/threonine-protein kinase TBK1 Proteins 0.000 description 3
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 3
- 108700021006 Interleukin-1 receptor antagonist Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 229930182555 Penicillin Natural products 0.000 description 3
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 241000508269 Psidium Species 0.000 description 3
- 102100038192 Serine/threonine-protein kinase TBK1 Human genes 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 108010067973 Valinomycin Proteins 0.000 description 3
- ZVQOOHYFBIDMTQ-UHFFFAOYSA-N [methyl(oxido){1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-lambda(6)-sulfanylidene]cyanamide Chemical compound N#CN=S(C)(=O)C(C)C1=CC=C(C(F)(F)F)N=C1 ZVQOOHYFBIDMTQ-UHFFFAOYSA-N 0.000 description 3
- 229960002964 adalimumab Drugs 0.000 description 3
- 238000003349 alamar blue assay Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 230000001640 apoptogenic effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- FCFNRCROJUBPLU-UHFFFAOYSA-N compound M126 Natural products CC(C)C1NC(=O)C(C)OC(=O)C(C(C)C)NC(=O)C(C(C)C)OC(=O)C(C(C)C)NC(=O)C(C)OC(=O)C(C(C)C)NC(=O)C(C(C)C)OC(=O)C(C(C)C)NC(=O)C(C)OC(=O)C(C(C)C)NC(=O)C(C(C)C)OC1=O FCFNRCROJUBPLU-UHFFFAOYSA-N 0.000 description 3
- 239000000287 crude extract Substances 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 238000012137 double-staining Methods 0.000 description 3
- 238000001378 electrochemiluminescence detection Methods 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 235000013373 food additive Nutrition 0.000 description 3
- 239000002778 food additive Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 241000411851 herbal medicine Species 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 229960000598 infliximab Drugs 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 3
- 238000011580 nude mouse model Methods 0.000 description 3
- 201000008968 osteosarcoma Diseases 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 229940049954 penicillin Drugs 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000010814 radioimmunoprecipitation assay Methods 0.000 description 3
- 229960004641 rituximab Drugs 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 150000001629 stilbenes Chemical class 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- FCFNRCROJUBPLU-DNDCDFAISA-N valinomycin Chemical compound CC(C)[C@@H]1NC(=O)[C@H](C)OC(=O)[C@@H](C(C)C)NC(=O)[C@@H](C(C)C)OC(=O)[C@H](C(C)C)NC(=O)[C@H](C)OC(=O)[C@@H](C(C)C)NC(=O)[C@@H](C(C)C)OC(=O)[C@H](C(C)C)NC(=O)[C@H](C)OC(=O)[C@@H](C(C)C)NC(=O)[C@@H](C(C)C)OC1=O FCFNRCROJUBPLU-DNDCDFAISA-N 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- HMLGSIZOMSVISS-ONJSNURVSA-N (7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-(2,2-dimethylpropanoyloxymethoxyimino)acetyl]amino]-3-ethenyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound N([C@@H]1C(N2C(=C(C=C)CSC21)C(O)=O)=O)C(=O)\C(=N/OCOC(=O)C(C)(C)C)C1=CSC(N)=N1 HMLGSIZOMSVISS-ONJSNURVSA-N 0.000 description 2
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 2
- YXHLJMWYDTXDHS-IRFLANFNSA-N 7-aminoactinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=C(N)C=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 YXHLJMWYDTXDHS-IRFLANFNSA-N 0.000 description 2
- 108700012813 7-aminoactinomycin D Proteins 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 2
- 201000003274 CINCA syndrome Diseases 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 206010009900 Colitis ulcerative Diseases 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 208000011231 Crohn disease Diseases 0.000 description 2
- 229930105110 Cyclosporin A Natural products 0.000 description 2
- 206010072224 Deficiency of the interleukin-1 receptor antagonist Diseases 0.000 description 2
- 206010016207 Familial Mediterranean fever Diseases 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- 101710088172 HTH-type transcriptional regulator RipA Proteins 0.000 description 2
- 101000852483 Homo sapiens Interleukin-1 receptor-associated kinase 1 Proteins 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 102100036342 Interleukin-1 receptor-associated kinase 1 Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 102000043136 MAP kinase family Human genes 0.000 description 2
- 108091054455 MAP kinase family Proteins 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- 108010058846 Ovalbumin Proteins 0.000 description 2
- 244000236658 Paeonia lactiflora Species 0.000 description 2
- 235000008598 Paeonia lactiflora Nutrition 0.000 description 2
- 235000006484 Paeonia officinalis Nutrition 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 102000003923 Protein Kinase C Human genes 0.000 description 2
- 108090000315 Protein Kinase C Proteins 0.000 description 2
- 108010018242 Transcription Factor AP-1 Proteins 0.000 description 2
- 108010031154 Transcription Factor RelA Proteins 0.000 description 2
- 102100023132 Transcription factor Jun Human genes 0.000 description 2
- 206010067774 Tumour necrosis factor receptor-associated periodic syndrome Diseases 0.000 description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 235000004283 Vitis amurensis Nutrition 0.000 description 2
- 240000002503 Vitis amurensis Species 0.000 description 2
- 229960003697 abatacept Drugs 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000002160 alpha blocker Substances 0.000 description 2
- 229940124308 alpha-adrenoreceptor antagonist Drugs 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 229960004238 anakinra Drugs 0.000 description 2
- 230000001028 anti-proliverative effect Effects 0.000 description 2
- 238000003782 apoptosis assay Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001363 autoimmune Effects 0.000 description 2
- 229960002170 azathioprine Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 229960003115 certolizumab pegol Drugs 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000035605 chemotaxis Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 229960001334 corticosteroids Drugs 0.000 description 2
- 208000022993 cryopyrin-associated periodic syndrome Diseases 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229960000403 etanercept Drugs 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 229960001743 golimumab Drugs 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- 208000006454 hepatitis Diseases 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 230000002584 immunomodulator Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 230000031146 intracellular signal transduction Effects 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 206010025135 lupus erythematosus Diseases 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- LTYOQGRJFJAKNA-IJCONWDESA-N malonyl-coenzyme a Chemical compound O[C@@H]1[C@@H](OP(O)(O)=O)[C@H](CO[P@](O)(=O)O[P@@](O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 LTYOQGRJFJAKNA-IJCONWDESA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 239000007922 nasal spray Substances 0.000 description 2
- 229940097496 nasal spray Drugs 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 238000013546 non-drug therapy Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002417 nutraceutical Substances 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 229940092253 ovalbumin Drugs 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N p-hydroxybenzoic acid methyl ester Natural products COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000008121 plant development Effects 0.000 description 2
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 230000007115 recruitment Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 208000026082 sterile multifocal osteomyelitis with periostitis and pustulosis Diseases 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 208000023516 stroke disease Diseases 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 229960001967 tacrolimus Drugs 0.000 description 2
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 229960003989 tocilizumab Drugs 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 239000003656 tris buffered saline Substances 0.000 description 2
- 201000008827 tuberculosis Diseases 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 238000012447 xenograft mouse model Methods 0.000 description 2
- XAXVWWYPKOGXSY-UHFFFAOYSA-N (+)-cis-Vitisin A Natural products C1=CC(O)=CC=C1C1C(C=2C=C(O)C=C(O)C=2)C2=C(C=CC=3C=C(C(O)=CC=3)C3C=4C=C(O)C=C5OC(C(C=45)C4=CC(O)=CC(O)=C4C3C=3C=CC(O)=CC=3)C=3C=CC(O)=CC=3)C=C(O)C=C2O1 XAXVWWYPKOGXSY-UHFFFAOYSA-N 0.000 description 1
- XLAIWHIOIFKLEO-UHFFFAOYSA-N (E)-4-<2-(4-hydroxyphenyl)ethenyl>phenol Natural products C1=CC(O)=CC=C1C=CC1=CC=C(O)C=C1 XLAIWHIOIFKLEO-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- DMZOKBALNZWDKI-JBNLOVLYSA-N 4-Coumaroyl-CoA Natural products S(C(=O)/C=C/c1ccc(O)cc1)CCNC(=O)CCNC(=O)[C@@H](O)C(CO[P@@](=O)(O[P@@](=O)(OC[C@H]1[C@@H](OP(=O)(O)O)[C@@H](O)[C@@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C DMZOKBALNZWDKI-JBNLOVLYSA-N 0.000 description 1
- YEBNQUQCOVQUKH-UHFFFAOYSA-N 4-[(1-phenylpiperidin-4-ylidene)methyl]naphthalene-1-carbonitrile Chemical compound C12=CC=CC=C2C(C#N)=CC=C1C=C(CC1)CCN1C1=CC=CC=C1 YEBNQUQCOVQUKH-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000031295 Animal disease Diseases 0.000 description 1
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 1
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 238000003731 Caspase Glo 3/7 Assay Methods 0.000 description 1
- 102000005483 Cell Cycle Proteins Human genes 0.000 description 1
- 108010031896 Cell Cycle Proteins Proteins 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- LUKBXSAWLPMMSZ-UPHRSURJSA-N Cis-resveratrol Chemical compound C1=CC(O)=CC=C1\C=C/C1=CC(O)=CC(O)=C1 LUKBXSAWLPMMSZ-UPHRSURJSA-N 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 108010058546 Cyclin D1 Proteins 0.000 description 1
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 1
- 108010025468 Cyclin-Dependent Kinase 6 Proteins 0.000 description 1
- 102100036252 Cyclin-dependent kinase 4 Human genes 0.000 description 1
- 102100026804 Cyclin-dependent kinase 6 Human genes 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 208000000655 Distemper Diseases 0.000 description 1
- 208000035859 Drug effect increased Diseases 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000004729 Feline Leukemia Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 230000035519 G0 Phase Effects 0.000 description 1
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 240000000018 Gnetum gnemon Species 0.000 description 1
- 235000008612 Gnetum gnemon Nutrition 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 208000032672 Histiocytosis haematophagic Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 1
- 101001018145 Homo sapiens Mitogen-activated protein kinase kinase kinase 3 Proteins 0.000 description 1
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 101000979342 Homo sapiens Nuclear factor NF-kappa-B p105 subunit Proteins 0.000 description 1
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 1
- 101000891649 Homo sapiens Transcription elongation factor A protein-like 1 Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 206010024291 Leukaemias acute myeloid Diseases 0.000 description 1
- 108010075654 MAP Kinase Kinase Kinase 1 Proteins 0.000 description 1
- 101150053046 MYD88 gene Proteins 0.000 description 1
- 208000004987 Macrophage activation syndrome Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 102000006404 Mitochondrial Proteins Human genes 0.000 description 1
- 108010058682 Mitochondrial Proteins Proteins 0.000 description 1
- 102100024193 Mitogen-activated protein kinase 1 Human genes 0.000 description 1
- 102100033115 Mitogen-activated protein kinase kinase kinase 1 Human genes 0.000 description 1
- 102100033059 Mitogen-activated protein kinase kinase kinase 3 Human genes 0.000 description 1
- 102100026888 Mitogen-activated protein kinase kinase kinase 7 Human genes 0.000 description 1
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 101100444898 Mus musculus Egr1 gene Proteins 0.000 description 1
- 101000596402 Mus musculus Neuronal vesicle trafficking-associated protein 1 Proteins 0.000 description 1
- 101000800539 Mus musculus Translationally-controlled tumor protein Proteins 0.000 description 1
- 102100024134 Myeloid differentiation primary response protein MyD88 Human genes 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 102100023050 Nuclear factor NF-kappa-B p105 subunit Human genes 0.000 description 1
- ODSSWVBIADXHCU-GOAVVFBMSA-N OC1=CC=C(/C=C/C2=C3C(=C\C4=C2[C@H](C2=CC(O)=CC(O)=C2)[C@@H](C2=CC=C(O)C=C2)O4)/O[C@H](C2=CC=C(O)C=C2)[C@H]/3C2=CC(O)=CC(O)=C2)C=C1.OC1=CC=C(/C=C\C2=C3C(=C/C4=C2[C@H](C2=CC(O)=CC(O)=C2)[C@@H](C2=CC=C(O)C=C2)O4)\O[C@H](C2=CC=C(O)C=C2)[C@H]\3C2=CC(O)=CC(O)=C2)C=C1 Chemical compound OC1=CC=C(/C=C/C2=C3C(=C\C4=C2[C@H](C2=CC(O)=CC(O)=C2)[C@@H](C2=CC=C(O)C=C2)O4)/O[C@H](C2=CC=C(O)C=C2)[C@H]/3C2=CC(O)=CC(O)=C2)C=C1.OC1=CC=C(/C=C\C2=C3C(=C/C4=C2[C@H](C2=CC(O)=CC(O)=C2)[C@@H](C2=CC=C(O)C=C2)O4)\O[C@H](C2=CC=C(O)C=C2)[C@H]\3C2=CC(O)=CC(O)=C2)C=C1 ODSSWVBIADXHCU-GOAVVFBMSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010033645 Pancreatitis Diseases 0.000 description 1
- 208000029082 Pelvic Inflammatory Disease Diseases 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 229940122907 Phosphatase inhibitor Drugs 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 241000605862 Porphyromonas gingivalis Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 1
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 240000001341 Reynoutria japonica Species 0.000 description 1
- 235000018167 Reynoutria japonica Nutrition 0.000 description 1
- 101100017043 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HIR3 gene Proteins 0.000 description 1
- 241001138501 Salmonella enterica Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 101000781972 Schizosaccharomyces pombe (strain 972 / ATCC 24843) Protein wos2 Proteins 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 1
- 101001009610 Toxoplasma gondii Dense granule protein 5 Proteins 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102000005747 Transcription Factor RelA Human genes 0.000 description 1
- 102100040250 Transcription elongation factor A protein-like 1 Human genes 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- XAXVWWYPKOGXSY-DBHYGPPCSA-N Vitisin A Chemical compound C1=CC(O)=CC=C1[C@@H]1[C@@H](C=2C=C(O)C=C(O)C=2)C2=C(\C=C\C=3C=C(C(O)=CC=3)[C@H]3C=4C=C(O)C=C5O[C@@H]([C@H](C=45)C4=CC(O)=CC(O)=C4[C@@H]3C=3C=CC(O)=CC=3)C=3C=CC(O)=CC=3)C=C(O)C=C2O1 XAXVWWYPKOGXSY-DBHYGPPCSA-N 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229940119059 actemra Drugs 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000001467 acupuncture Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- 239000012996 alamarblue reagent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 102000001307 androgen receptors Human genes 0.000 description 1
- 108010080146 androgen receptors Proteins 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002804 anti-anaphylactic effect Effects 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000002790 anti-mutagenic effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 208000037979 autoimmune inflammatory disease Diseases 0.000 description 1
- 230000006472 autoimmune response Effects 0.000 description 1
- 229940022777 azasan Drugs 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000007321 biological mechanism Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 230000002113 chemopreventative effect Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000012829 chemotherapy agent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 1
- 230000010428 chromatin condensation Effects 0.000 description 1
- 230000012085 chronic inflammatory response Effects 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 208000013507 chronic prostatitis Diseases 0.000 description 1
- 229940090100 cimzia Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000000315 cryotherapy Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 150000002061 ecdysteroids Chemical class 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229940073621 enbrel Drugs 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000469 ethanolic extract Substances 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 201000005206 focal segmental glomerulosclerosis Diseases 0.000 description 1
- 231100000854 focal segmental glomerulosclerosis Toxicity 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 102000057041 human TNF Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229940048921 humira Drugs 0.000 description 1
- 230000003810 hyperpigmentation Effects 0.000 description 1
- 208000000069 hyperpigmentation Diseases 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 229940073062 imuran Drugs 0.000 description 1
- 230000005917 in vivo anti-tumor Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000006749 inflammatory damage Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 229940054136 kineret Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 208000018191 liver inflammation Diseases 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 201000011649 lymphoblastic lymphoma Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- XELZGAJCZANUQH-UHFFFAOYSA-N methyl 1-acetylthieno[3,2-c]pyrazole-5-carboxylate Chemical compound CC(=O)N1N=CC2=C1C=C(C(=O)OC)S2 XELZGAJCZANUQH-UHFFFAOYSA-N 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000010280 mitochondria-mediated cell death Effects 0.000 description 1
- 230000005776 mitochondrial apoptotic pathway Effects 0.000 description 1
- 210000001700 mitochondrial membrane Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003990 molecular pathway Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000017128 negative regulation of NF-kappaB transcription factor activity Effects 0.000 description 1
- 229940063121 neoral Drugs 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 231100001083 no cytotoxicity Toxicity 0.000 description 1
- 239000002773 nucleotide Chemical group 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000021436 nutraceutical agent Nutrition 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 229940035567 orencia Drugs 0.000 description 1
- 229940127084 other anti-cancer agent Drugs 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 229930015704 phenylpropanoid Natural products 0.000 description 1
- 150000002995 phenylpropanoid derivatives Chemical class 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000036515 potency Effects 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000009117 preventive therapy Methods 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- 229940072288 prograf Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000012342 propidium iodide staining Methods 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 201000007094 prostatitis Diseases 0.000 description 1
- 239000012673 purified plant extract Substances 0.000 description 1
- 229940117820 purinethol Drugs 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000000601 reactogenic effect Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229940116176 remicade Drugs 0.000 description 1
- 229940061969 rheumatrex Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229940063122 sandimmune Drugs 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229940068638 simponi Drugs 0.000 description 1
- 201000008261 skin carcinoma Diseases 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007892 solid unit dosage form Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 238000012430 stability testing Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000007447 staining method Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 108010076424 stilbene synthase Proteins 0.000 description 1
- 150000003436 stilbenoids Chemical class 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013595 supernatant sample Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 108091008743 testicular receptors 4 Proteins 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 238000000015 thermotherapy Methods 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- DMZOKBALNZWDKI-MATMFAIHSA-N trans-4-coumaroyl-CoA Chemical compound O=C([C@H](O)C(C)(COP(O)(=O)OP(O)(=O)OC[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C2=NC=NC(N)=C2N=C1)OP(O)(O)=O)C)NCCC(=O)NCCSC(=O)\C=C\C1=CC=C(O)C=C1 DMZOKBALNZWDKI-MATMFAIHSA-N 0.000 description 1
- 235000018991 trans-resveratrol Nutrition 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 231100000747 viability assay Toxicity 0.000 description 1
- 238000003026 viability measurement method Methods 0.000 description 1
- XAXVWWYPKOGXSY-VLYVWKAFSA-N vitisin A Natural products C1=CC(O)=CC=C1[C@@H]1[C@@H](C=2C=C(O)C=C(O)C=2)C2=C(C=CC=3C=C(C(O)=CC=3)[C@H]3C=4C=C(O)C=C5O[C@@H]([C@H](C=45)C4=CC(O)=CC(O)=C4[C@@H]3C=3C=CC(O)=CC=3)C=3C=CC(O)=CC=3)C=C(O)C=C2O1 XAXVWWYPKOGXSY-VLYVWKAFSA-N 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000010153 Šidák test Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
- A61K31/343—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/65—Paeoniaceae (Peony family), e.g. Chinese peony
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2236/00—Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
- A61K2236/10—Preparation or pretreatment of starting material
- A61K2236/17—Preparation or pretreatment of starting material involving drying, e.g. sun-drying or wilting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2236/00—Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
- A61K2236/30—Extraction of the material
- A61K2236/33—Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones
- A61K2236/333—Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones using mixed solvents, e.g. 70% EtOH
Definitions
- cis-gnetin H and trans-gnetin H are trimers of resveratrol, differing from each other in the olefinic moiety between C-7′/C-8′ ( FIGS. 1A and 1B ; He et al., Chem. Pharm. Bull. 2010; 58:843-847).
- These oligostilbenes as well as other resveratrol derivatives can be obtained from the seeds of Paeonia suffruticosa (He et al., Chem. Pharm. Bull. 2010; 58:843-847).
- Paeonia suffruticosa has been widely used in traditional Chinese medicine as an analgesic, anti-anaphylactic, anti-oxidative, and anti-inflammatory agent (He et al., Chem. Pharm. Bull. 2010; 58:843-847; Hu et al., J. Ethnopharmacol., 2010, 128:100-6; Oh et al., J. Ethnopharmacol., 2003, 84:85-9).
- the seeds of the plant contain multiple stilbenes that showed potential cytotoxic, anti-mutagenic, ecdysteroid antagonist, anti-oxidant, hyperpigmentation, antitumor, and anti-inflammatory activity, and have been used in traditional medicine throughout East Asia to treat conditions and diseases such as atherosclerosis, inflammation, infection, and cutaneous diseases (Choi et al., J. Biomed. Sci., 2012, 19:82; Gao et al., J. Ethnopharmacol., 2015, 169:24-33; He et al., Chem. Pharm. Bull. 2010; 58:843-847).
- trans-gnetin H has anti-tumor activity (Kim et al., Arch. Pharm. Res. 2002; 25:293-299; Ha et al., Arch. Pharm. Res. 2009; 32:177-83) but trans-gnetin H′s potential as a cancer chemopreventive has not been clearly elucidated. Additionally, the anti-inflammatory mechanisms of Paeonia suffruticosa have not been fully characterized.
- the invention identifies cis-gnetin H and trans-gnetin H as novel therapeutic agents for the treatment and prevention of various diseases and conditions.
- the invention provides compositions and methods for treating or preventing cancer or a precancerous condition in a subject.
- a composition comprising an effective amount of cis-gnetin H and/or trans-gnetin H, or a derivative thereof is administered to a subject afflicted with or at risk for cancer or a precancerous condition.
- a preferred therapeutic agent for the treatment or prevention of cancer or a precancerous condition in a subject is cis-gnetin H.
- the cancer or precancerous condition can involve any tissue or organ, without limitation, such as bone, brain, breast, cervix, larynx, lung, pancreas, prostate, skin, spine, stomach, uterus or blood.
- the cancer can be a bone cancer, brain cancer, breast cancer, cervical cancer, cancer of the larynx, lung cancer, pancreatic cancer, prostate cancer, skin cancer, cancer of the spine, stomach cancer, uterine cancer, or a blood cancer.
- the cancer can be a metastatic cancer.
- the invention provides compositions and methods for inhibiting the growth of a tumor in a subject.
- a composition comprising an effective amount of cis-gnetin H, trans-gnetin H, and/or a derivative thereof is administered to a subject who is afflicted with a tumor.
- a preferred therapeutic agent for the inhibiting the growth of a tumor in a subject is cis-gnetin H.
- the tumor may include, without limitation, a solid tumor present in the bone, brain, breast, cervix, larynx, lung, pancreas, prostate, skin, spine, stomach, or uterus of the subject.
- the tumor may be a fast growing tumor.
- the invention provides compositions and methods for treating or preventing inflammation in a subject.
- a composition comprising an effective amount of cis-gnetin H, trans-gnetin H, and/or a derivative thereof is administered to a subject who is at risk of or experiencing inflammation.
- inflammatory conditions that can be treated, managed, or prevented include autoimmune and inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease.
- composition used in the methods of the invention may include either or both cis- and trans-gnetin H, and/or derivatives thereof cis-gnetin H or trans-gnetin H may be at least 50%, 60%, 70%, 80%, 90% ,95%, or 99% of the total cis- and trans-gnetin H in the composition.
- the composition may include an extract prepared from Paeonia suffruticosa seeds.
- the composition further includes a pharmaceutically acceptable carrier.
- the composition may further include an additional active agent, such as an anticancer agent, antiangiogenic agent, a chemopreventive agent, an anti-inflammatory agent, a cytokine, a chemokine, a therapeutic antibody, an immunogen, an antigen, an adjuvant, or an antioxidant, an immunomodulatory compound, a biologic compound, an antineoplastic agent, or a chemotherapeutic agent.
- an additional active agent such as an anticancer agent, antiangiogenic agent, a chemopreventive agent, an anti-inflammatory agent, a cytokine, a chemokine, a therapeutic antibody, an immunogen, an antigen, an adjuvant, or an antioxidant, an immunomodulatory compound, a biologic compound, an antineoplastic agent, or a chemotherapeutic agent.
- at least one additional active agent is a non-naturally occurring compound.
- the invention includes cis-gnetin H, trans-gnetin H, and/or derivatives thereof for use as a therapeutic agent, including use in the treatment or prevention of cancer or a precancerous condition, use in inhibiting or reversing the growth of a tumor, or use in the treatment or prevention of inflammation.
- cis-gnetin H, trans-gnetin H, and/or derivatives thereof for preparation of a medicament for the treatment or prevention of cancer or a precancerous condition, or for inhibiting the growth of a tumor, or for treatment or prevention of inflammation is also included in the invention.
- the invention includes a plant extract that includes cis-gnetin H and/or trans-gnetin H for use as a therapeutic agent, including a plant extract that includes cis-gnetin H and/or trans-gnetin H for use in the treatment or prevention of cancer or a precancerous condition, or for use in inhibiting the growth of a tumor, or for use in the treatment or prevention of inflammation.
- a plant extract including cis-gnetin H and/or trans-gnetin H for preparation of a medicament for the treatment or prevention of cancer or a precancerous condition, or for inhibiting the growth of a tumor, or for the treatment or prevention of inflammation is also included in the invention.
- the plant extract is prepared from Paeonia suffruticosa seeds.
- FIG. 1 shows structures of cis-gnetin H and trans-gnetin H compared to resveratrol, and conversion of trans-gnetin H and cis-gnetin H with UV-irradiation.
- A Structures of trans- and cis-gnetin H.
- B Structure of resveratrol.
- C Conversion rate of trans- and cis-gnetin H when individually illuminated by a 12-watt fluorescent lamp for 2, 4 and 6 hours.
- A549 cells were treated with 100 ⁇ M cis- or trans-gnetin H for 4 hours and assessed using Caspase-Glow 3/7 assay. 1 ⁇ M staurosporine served as the positive control and untreated cells were used as the negative control. Error bars indicate the SDs from 3 experiments. *P ⁇ 0.05, **P ⁇ 0.01.
- FIG. 4 shows cell cycle distribution of A549 and BT20 cells treated with cis-gnetin H or trans-gnetin H.
- A Cell count of the cells in different cell cycle stages.
- B Percentage of cell population in different cell cycle stages.
- A549 cells and BT20 cells were synchronized for 24 hours prior to treatment with 100 ⁇ M cis- or trans-gnetin H for 24 hours, and then assessed using PI staining. Error bars indicate SDs from 3 wells.
- FIG. 5 shows inhibition on TNF- ⁇ -induced NF- ⁇ B nuclear translocation by cis-gnetin H or trans-gnetin H in A549 cells.
- A HCS images of NF- ⁇ B translocation.
- B Values of NF- ⁇ B nuclear translocation in A549 cells after the treatment of cis- or trans-gnetin H.
- A549 cells were treated with 100 ⁇ M of cis- or trans-gnetin H for 2 hours, followed by stimulation with 10 ng/ml TNF- ⁇ .
- Cells treated with TNF- ⁇ alone served as the negative control. Error bars indicate SDs from 3 wells. **P ⁇ 0.01, ***P ⁇ 0.005.
- FIG. 6 shows in vivo effects of cis-gnetin H on mouse xenograft lung tumors.
- A Tumor size of mouse A549 xenografts.
- B Inhibitory effects of cis-gnetin H on xenograft tumor volumes.
- C Effects of cis-gnetin H on the weight of nude mice. Four-week old nude mice treated with cis-gnetin or vehicle control every two days for 26 days. Error bars indicate SDs from 5 individual mice. **P ⁇ 0.01.
- FIG. 8 shows HCS images showing simultaneous monitoring of changes in nuclear size, cell permeability, and mitochondrial trans-membrane potential.
- A549 cells were treated with 100 ⁇ M cis- or trans-gnetin H, for 24 hrs (A) and 48 hrs (B), respectively, or were treated with 100 ⁇ M valinomycin as a positive control.
- FIG. 9 shows the cytotoxic effect of cis- and trans-gnetin H on PMA-differentiated THP-1 macrophages.
- PMA-differentiated THP-1 cells were treated with various concentrations of cis- or trans-gnetin H and tested for relative viability using Alamar Blue assay.
- Cells were treated with cis-gnetin H at 3, 6, 13, 25, 50, 100 ⁇ M for 24 h and pretreated with 13, 25, 50 ⁇ M for 1 h with 20 ng/ml of LPS stimulation for 4 h to determine relative viability against untreated control (A).
- FIG. 10 shows cis- and trans-gnetin H inhibit TNF- ⁇ , IL-1 ⁇ , and IL-8, responses in LPS-stimulated THP-1 cells.
- PMA-differentiated THP-1 cells were pretreated with 12.5, 25, and 50 ⁇ M of cis-gnetin H or 8, 15, 30 ⁇ M of trans-gnetin H for 1 h and stimulated with 20 ng/ml of LPS for 4 h.
- the concentration of TNF- ⁇ (A and D), IL-1 ⁇ (B and E), and IL-8 (C and F) in supernatants was determined by ELISA. Results are presented as the mean ⁇ SEM for triplicate measurements of at least 3 independent experiments. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001 compared with LPS-treated group.
- FIG. 11 shows the TNF- ⁇ IC 50 curves of cis- and trans-gnetin H.
- PMA-differentiated THP-1 cells were pretreated with various concentrations of cis-(A) or trans (B)-gnetin H for 1 h and stimulated with LPS for 4 h. Supernatants were tested for human TNF- ⁇ ELISA.
- the IC 50 curves were obtained using Graphpad Prism.
- IC 50 value of cis-gnetin H was 19 ⁇ M and IC 50 value of trans-gnetin H was 6 ⁇ M.
- FIG. 12 shows the effects of cis- and trans-gnetin H on NF- ⁇ B transcription factor nuclear translocation.
- PMA-differentiated cells were treated with cis-gnetin H at 50 04, trans-gnetin H at 30 ⁇ M, or Bay 11-7082 at 10 ⁇ M for 1 h and stimulated with 100 ng/ml LPS for 30 min.
- the transcription factor p65 was stained with rabbit anti-p65 followed by Dylight 488-conjugated secondary antibody (green fluorescence) and Hoechst 33342 dye (blue fluorescence), sequentially (A).
- the numeric index of nuclear fluorescence of p65 was collected using Nuclear Translocation Bioapplication software on the Arrayscan VTI reader (B).
- FIG. 13 shows the effects of cis- and trans-gnetin H on IKK ⁇ , I ⁇ B ⁇ , and p65 in NF- ⁇ B pathway.
- PMA-differentiated cells were pretreated with 12.5, 25, and 50 ⁇ M of cis-gnetin H or 7.5, 15, and 30 ⁇ M of trans-gnetin H for 1 h and stimulated with 1 g/ml of LPS for 15 min.
- Phosphorylated I ⁇ B ⁇ (Ser32) and total I ⁇ B ⁇ (A), and phosphorylated p65 (Ser536) and total p65 (B), phosphorylated (Ser176/180) IKK- ⁇ and total IKK- ⁇ ⁇ (C) were measured by Western blotting. Data are represented as the mean ⁇ SEM for at least three independent experiments. *p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001 compared with LPS-treated group.
- FIG. 14 shows a schematic of the NF- ⁇ B pathway, its role in inflammation, and a potential mechanism underlying the anti-inflammatory effect of cis- and trans-gnetin H.
- the present invention provides compounds, compositions and methods relating to cis-gnetin H and/or trans-gnetin H, including modifications, derivatives and conjugates thereof, and their use as a prophylactic or therapeutic agent, for example, to prevent or treat the cancers or precancerous conditions, to inhibit, slow or reverse the growth of tumors, or to prevent or treat inflammation, autoimmune disease and/or inflammatory disease.
- cis-gnetin H and trans-gnetin H can be isolated or extracted from naturally occurring sources or can be chemically or enzymatically synthesized.
- cis-gnetin H and/or trans-gnetin H can be administered alone or in combination with other therapeutics via a variety of routes of administration.
- cis-gnetin H and trans-gnetin H have significant potential as anticancer agents.
- cis-gnetin H can prevent the growth of bone, breast and lung cancer cell lines with IC 50 values ranging from 2.80-10.04 uM.
- cis-gnetin H worked as well as the routinely utilized anticancer agent, staurosporine, and was significantly better at reducing the sizes of large tumors.
- cis-gnetin H is the more stable of the two isomers and that trans-gnetin H is converted to cis-gnetin H by photooxidation.
- cis-gnetin H is expected to show less toxicity than other commonly employed chemotherapeutic agents, such as staurosporine and 5-fluorouracil (see Example 1 and, for example, Cyr et al., Anticancer Res. 28: 2753-2764 (2008)). Lower toxicity allows cis-gnetin H to be administered at higher doses than other chemotherapeutic agents.
- cis-gnetin H and trans-gnetin H are resveratrol trimers, originally thought to exist in only one form, trans-gnetin H, previously referred to in the art simply as “gnetin H.” See He et al., Chem. Pharm. Bull. 58(6) 843-847 (2010); Kim et al., Arch. Pharm. Res. 25(3):293-9 (002); Choi et al., Planta Med. 77:374-376 (2011). The structures are shown below:
- trans-gnetin H converts to cis-gnetin H.
- cis-gnetin H was found to be more stable than trans-gnetin H. This increased stability allows for easier storage, transport, formulation, and administration. Because it is more stable, the cis form may also prove to be easier to synthesize.
- the invention includes purified and partially purified forms of cis-gnetin H and trans-gnetin H, as well as crude plant extracts that contain cis-gnetin H and/or trans-gnetin H.
- Derivatives include, but are not limited to, alkylated (e.g., methylated), hydroxylated, sulfated and amino derivatives of cis-gnetin H and trans-gnetin H.
- cis-gnetin H and trans-gnetin H can be extracted and/or isolated from peony plants (genus Paeonia ), including but not limited to Paeonia suffruticosa, Paeonia lactiflora, or Paeonia anamola. cis-gnetin H and trans-gnetin H can also be found in other plants, such as the leaf and stem of Vitis amurensis, also known as the Amur grape. Any convenient plant part can serve as a source of cis-gnetin H and trans-gnetin H including, without limitation, the seeds, leaves, stems, roots, or flowers. In a preferred embodiment, cis-gnetin H and/or trans-gnetin H obtained from a root or seed extract of Paeonia suffruticosa or Paeonia lactiflora.
- cis-gnetin H can be produced from photochemical transformation of trans-gnetin H.
- trans-gnetin H can be photooxidized for at least 30 minutes, 45 minutes, 60 minutes, 90 minutes, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 12 hours, 24 hours, 48 hours, or 72 hours.
- Photooxidation can take place with light source such as a fluorescent lamp and optionally a photoactivating compound.
- resveratrol may be a starting material.
- a stilbene synthase can be used, and additional co-factors can also be introduced, including but not limited to, malonyl-coenzyme A (CoA) and p-coumaroyl-CoA (Aggarwal et al., 2004, Anticancer Res. 24:2783-2840).
- CoA malonyl-coenzyme A
- p-coumaroyl-CoA p-coumaroyl-CoA
- the present invention also provides a pharmaceutical composition that includes, as an active agent, at least one of cis-gnetin H, trans-gnetin H, a synthetic derivative thereof, or a combination thereof, and a pharmaceutically acceptable carrier.
- the active agent is formulated in a pharmaceutical composition and then, in accordance with the method of the invention, administered to a subject, such as a human or veterinary subject, in a variety of forms adapted to the chosen route of administration.
- the formulations include, but are not limited to, those suitable for oral, rectal, vaginal, topical, nasal, ophthalmic or parental (including subcutaneous, intramuscular, intraperitoneal, intratumoral, and intravenous) administration.
- the pharmaceutically acceptable carrier can include, for example, an excipient, a diluent, a solvent, an accessory ingredient, a stabilizer, a protein carrier, or a biological compound.
- a protein carrier includes keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA), ovalbumin, or the like.
- BSA bovine serum albumin
- a biological compound which can serve as a carrier include a glycosaminoglycan, a proteoglycan, and albumin.
- the carrier can be a synthetic compound, such as dimethyl sulfoxide or a synthetic polymer, such as a polyalkyleneglycol. Ovalbumin, human serum albumin, other proteins, polyethylene glycol, or the like can be employed as the carrier.
- the pharmaceutically acceptable carrier includes at least one compound that is not naturally occurring or a product of nature.
- the active agent cis-gnetin H, trans-gnetin H, and/or synthetic derivative thereof is optionally formulated in combination with one or more additional active agents.
- the pharmaceutical composition of the invention contains a first active agent that includes cis-gnetin H, trans-gnetin H, and/or a synthetic derivative thereof, and a second active agent that can include one or more of, for example, an anticancer agent, antiangiogenic agent, a chemopreventive agent, an anti-inflammatory agent, a cytokine, a chemokine, a therapeutic antibody, an immunogen, an antigen, an adjuvant, or an antioxidant, an immunomodulatory compound, a biologic compound, an antineoplastic agent, or a chemotherapeutic agent.
- any known therapeutic or prophylactic agent can be included as additional active agent.
- the action of the additional active agent in the combination therapy can be cumulative to the cis-gnetin H, trans-gnetin H or it can be complementary, for example to manage side effects or other aspects of the patient's medical condition.
- An exemplary multicomponent composition is a vaccine.
- a vaccine contains at least one immunogenic or antigenic component, and a pharmaceutically acceptable carrier.
- a vaccine includes one or more adjuvants.
- cis-gnetin H, trans-gnetin H, and/or a derivative thereof can be included in a vaccine composition to ameliorate, reduce, or eliminate a reactogenic inflammatory response in the subject to whom the vaccine is administered.
- Inclusion of cis-gnetin H, trans-gnetin H, and/or derivatives thereof in vaccine formulations may reduce reactogenicity, particularly in live virus vaccines. See Athearn et al., PLoS One. 2012; 7(10):e46516. doi: 10.1371/journal.pone.0046516.
- cis-gnetin H, trans-gnetin H, and/or derivatives thereof can be co-administered with therapeutic agents that might otherwise trigger inflammation, particularly in sensitive, ill or vulnerable individuals, such as the very young or very old, in order to reduce the extent of the inflammatory response.
- a pharmaceutical composition of the invention preferably includes at least one compound that is not naturally occurring or a product of nature.
- the pharmaceutical composition includes at least one non-naturally occurring therapeutic or prophylactic agent.
- the pharmaceutical composition contains purified cis-gnetin H and/or trans-gnetin H or a derivative thereof; in other embodiments, the pharmaceutical composition can contain a partially purified plant extract that contains cis-gnetin H and/or trans-gnetin H.
- the formulations may be conveniently presented in unit dosage form and may be prepared by any of the methods well-known in the art of pharmacy. All methods include the step of bringing the active agent into association with a pharmaceutical carrier. In general, the formulations are prepared by uniformly and intimately bringing the active compound into association with a liquid carrier, a finely divided solid carrier, or both, and then, if necessary, shaping the product into the desired formulations.
- Formulations of the present invention suitable for oral administration can be presented as discrete units such as tablets, troches, capsules, lozenges, wafers, or cachets, each containing a predetermined amount of the active agent as a powder or granules, as liposomes, or as a solution or suspension in an aqueous liquor or non-aqueous liquid such as a syrup, an elixir, an emulsion, or a draught.
- the tablets, troches, pills, capsules, and the like can also contain one or more of the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; an excipient such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid, and the like; a lubricant such as magnesium stearate; a sweetening agent such as sucrose, fructose, lactose, or aspartame; and a natural or artificial flavoring agent.
- a binder such as gum tragacanth, acacia, corn starch or gelatin
- an excipient such as dicalcium phosphate
- a disintegrating agent such as corn starch, potato starch, alginic acid, and the like
- a lubricant such as magnesium stearate
- a sweetening agent such as sucrose, fructose, lactose, or aspartame
- Various other materials can be present as coatings or to otherwise modify the physical form of the solid unit dosage form.
- tablets, pills, or capsules can be coated with gelatin, wax, shellac, sugar, and the like.
- a syrup or elixir can contain one or more of a sweetening agent, a preservative such as methyl- or propylparaben, an agent to retard crystallization of the sugar, an agent to increase the solubility of any other ingredient, such as a polyhydric alcohol, for example glycerol or sorbitol, a dye, and flavoring agent.
- the material used in preparing any unit dosage form is substantially nontoxic in the amounts employed.
- the active agent can be incorporated into sustained-release preparations and devices.
- Formulations suitable for parenteral administration conveniently include a sterile aqueous preparation of the active agent, or dispersions of sterile powders of the active agent, which are preferably isotonic with the blood of the recipient.
- Parenteral administration of cis-gnetin H and/or trans-gnetin H is one form of administration.
- Isotonic agents that can be included in the liquid preparation include sugars, buffers, and sodium chloride. Solutions of the active agent can be prepared in water, optionally mixed with a nontoxic surfactant.
- Dispersions of the active agent can be prepared in water, ethanol, a polyol (such as glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, glycerol esters, and mixtures thereof.
- the ultimate dosage form is sterile, fluid, and stable under the conditions of manufacture and storage.
- the necessary fluidity can be achieved, for example, by using liposomes, by employing the appropriate particle size in the case of dispersions, or by using surfactants.
- Sterilization of a liquid preparation can be achieved by any convenient method that preserves the bioactivity of the active agent, preferably by filter sterilization. Preferred methods for preparing powders include vacuum drying and freeze drying of the sterile injectable solutions.
- antimicrobial agents for example, antibacterial, antiviral and antifungal agents including parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- Absorption of the active agents over a prolonged period can be achieved by including agents for delaying, for example, aluminum monostearate and gelatin.
- Nasal spray formulations include purified aqueous solutions of the active agent with preservative agents and isotonic agents. Such formulations are preferably adjusted to a pH and isotonic state compatible with the nasal mucous membranes. Formulations for rectal or vaginal administration can be presented as a suppository with a suitable carrier such as cocoa butter, or hydrogenated fats or hydrogenated fatty carboxylic acids. Ophthalmic formulations are prepared by a similar method to the nasal spray, except that the pH and isotonic factors are preferably adjusted to match that of the eye. Topical formulations include the active agent dissolved or suspended in one or more media such as mineral oil, petroleum, polyhydroxy alcohols, or other bases used for topical pharmaceutical formulations.
- the active agents cis-gnetin H, trans-gnetin H, and/or synthetic derivatives thereof can be administered to a subject alone or in a pharmaceutical composition that includes the active agent and a pharmaceutically acceptable carrier.
- cis-gnetin H and/or trans-gnetin H, or derivatives thereof can be introduced into the subject either systemically or at the site of a cancer tumor or inflammation.
- the active agent is administered to a human or animal subject, including a domestic or domesticated mammal or other animal, in an amount effective to produce the desired effect.
- cis-gnetin H and/or trans-gnetin H, or derivatives thereof can be administered in a variety of routes, including orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraoccularly, via local delivery by catheter or stent, subcutaneously, intraadiposally, intraarticularly, intrathecally, or in a slow release dosage form.
- Local administration can include topical administration, administration by injection, or perfusion or bathing of an organ or tissue, for example.
- the formulations can be administered as a single dose or in multiple doses.
- Useful dosages of the active agents can be determined by comparing their in vitro activity and the in vivo activity in animal models. Methods for extrapolation of effective dosages in mice, and other animals, to humans are known in the art.
- a mixture of the cis/trans isomers, cis-gnetin H and trans-gnetin H, or derivatives thereof can be administered to a subject.
- the extracted, isolated, purified, or synthesized cis-gnetin H can be present in a mixture that also includes trans-gnetin H, such that cis-gnetin H is at least 50% of the total cis- and trans-gnetin H, more particularly at least 60%, 70%, 80%, 85%, 90%, 95%, or 99% of the total cis- and trans-gnetin H.
- the extracted, isolated, purified, or synthesized trans-gnetin H can be present in a mixture that also includes cis-gnetin H, such that trans-gnetin H is at least 50% of the total cis- and trans-gnetin H, more particularly at least 60%, 70%, 80%, 85%, 90%, 95%, or 99% of the total cis- and trans-gnetin H.
- the relative amounts of cis- and trans-isomers in the mixture may be specified based upon the prophylactic or therapeutic use of the resulting compositions.
- the relative amounts of cis-gnetin H and total cis- and trans-gnetin H can be measured by high-performance liquid chromatography (HPLC).
- cis-gnetin H that is administered to a subject can be substantially or completely free of trans-gnetin H; or trans-gnetin H that is administered to a subject can be substantially or completely free of cis-gnetin H.
- Dosage levels of the active agent, including but not limited to cis-gnetin H, in the pharmaceutical compositions of this invention can be varied so as to obtain an amount of the active agent which is effective to achieve the desired therapeutic response for a particular subject, composition, and mode of administration, without being toxic to the subject.
- the selected dosage level will depend upon a variety of factors including the activity of the particular compound of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the cis- and/or trans-gnetin H, or derivatives thereof, the age, sex, weight, condition, general health and prior medical history of the subject being treated, and like factors well known in the medical arts.
- Dosages and dosing regimens that are suitable for resveratrol and other stilbenoids are likewise suitable for therapeutic or prophylactic administration of cis-gnetin H and/or trans-gnetin H or derivatives thereof.
- purified cis-gnetin H and/or trans-gnetin H or derivatives thereof can be administered orally in an amount of between 10 mg and 100 mg per day, as a medication, nutritional supplement, or food additive.
- cis-gnetin H and/or trans-gnetin H, or derivatives thereof can be administered in dosages ranging from 0.01 mg/kg to 10 mg/kg body weight, or higher; or in a form sufficient to provide a daily dosage of 0.03 mg/kg body weight to about 10 mg per/kg body weight of the subject to which it is to be administered.
- dosages ranging from 0.01 mg/kg to 10 mg/kg body weight, or higher; or in a form sufficient to provide a daily dosage of 0.03 mg/kg body weight to about 10 mg per/kg body weight of the subject to which it is to be administered.
- US Pat. Publ. 20080262081 for nutraceutical compositions, dosing information and methods relating to resveratrol that are equally applicable to cis-gnetin H and/or trans-gnetin H, or derivatives thereof.
- cis-gnetin H and/or trans-gnetin H, or derivatives thereof can also be administered as an extract obtained from a plant source, such as a seed.
- a plant source such as a seed.
- Dosages and dosing regimens that are suitable for melinjo seed extract and other seed extracts are likewise suitable for therapeutic prophylactic administration of plant extracts containing cis-gnetin H and trans-gnetin H.
- between 20 and 1000 mg/day can be administered as a powdered extract in loose, capsule or tablet form.
- a physician having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical composition required.
- the physician could start doses of cis-gnetin H and/or trans-gnetin H, or derivatives thereof, utilized in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
- trans-gnetin H has been shown by others to inhibit the growth of various tumor cell lines, but the efficacy of cis-gnetin H against tumor cell lines was unknown prior to the present work. Additionally, neither trans-gnetin H nor cis-gnetin H has, to our knowledge, been evaluated in any animal studies until now.
- Example I demonstrates that cis-gnetin H and trans-gnetin H have significant anticancer activity.
- the invention therefore provides a method for treating or preventing cancer or a precancerous condition in a subject, and/or inhibiting or reversing tumor growth in a subject, by administering to a subject a composition comprising cis-gnetin H, trans-gnetin H and/or a derivative thereof, in an amount effective to treat or prevent the cancer or precancerous condition, or inhibit or reverse growth of the tumor.
- Administration of the composition can be performed before, during, or after a subject develops cancer, a precancerous condition or a tumor.
- the method is a therapeutic method for treating a subject suffering from a cancer or a precancerous condition by administering cis-gnetin H, trans-gnetin H, and/or derivatives thereof, to the subject in an amount effective to treat the cancer or precancerous condition.
- the therapeutic method includes administering cis-gnetin H trans-gnetin H, and/or derivatives thereof, to a subject who has a tumor, in an amount effective to inhibit, slow, or reverse growth of the tumor.
- Therapeutic treatment is initiated after the development of cancer, a precancerous condition, or a tumor. Treatment initiated after the development of cancer may result in decreasing the severity of the symptoms of one of the conditions, or completely removing the symptoms.
- cis-gnetin H is particularly well-suited for the treatment of fast-growing tumors and metastatic cancers.
- cis-gnetin H, trans-gnetin H, and/or derivatives thereof are administered prophylactically, e.g., as a chemopreventive agent, in an amount effective to prevent or delay the development of cancer or a precancerous condition in a subject.
- Treatment that is prophylactic can be initiated before a subject develops cancer or manifests cancer symptoms.
- An example of a subject that is at particular risk of developing cancer is a person having a risk factor, such as a genetic marker, that is associated with the disease.
- genetic markers indicating a subject has a predisposition to develop certain cancers include alterations in the BRAC1 and/or BRAC2 genes (breast, prostate, or colon cancer) and HPC1 (prostate cancer).
- the method of the invention can be used to treat a variety of cancerous or precancerous conditions, including tumors or dysplasia.
- a tumor can be a solid tumor, such as a carcinoma, a sarcoma, or a lymphoma, and can be present, for example, in the bone, brain, breast, cervix, larynx, lung, pancreas, prostate, skin, spine, stomach, or uterus.
- the cancer treated by the method of the invention can also be a blood cancer, such as a leukemia.
- the dysplasia can be an epithelia dysplasia.
- the tumor can made up of tumor cells, including lymphoid and myeloid cancers; multiple myeloma; cancers of the bone, breast, prostate, stomach, colon, pancreas, and thyroid; melanoma; head and neck squamous cell carcinoma; ovarian carcinoma; and cervical carcinoma.
- tumor cells including lymphoid and myeloid cancers; multiple myeloma; cancers of the bone, breast, prostate, stomach, colon, pancreas, and thyroid; melanoma; head and neck squamous cell carcinoma; ovarian carcinoma; and cervical carcinoma.
- cis-gnetin H, trans-gnetin H, and/or derivatives to treat or prevent cancer, a precancerous condition, or to inhibit or reverse tumor growth, thereof can occur before, during, and/or after other treatments.
- Such combination therapy can involve the administration of cis-gnetin H, trans-gnetin H, and/or derivatives thereof before, during and/or after the use of other anti-cancer agents, for example, chemotherapeutic agents or radiation or both.
- cis-gnetin H, trans-gnetin H, and/or derivatives thereof may potentiate the effects of cytokines, chemotherapeutic agents, or gamma radiation (see, e.g., Aggarwal et al., Anticancer Research, 2004; 24:2783-2840).
- the administration of cis-gnetin H, trans-gnetin H, and/or derivatives thereof can be separated in time from the administration of additional anti-cancer agents or other therapeutic agents by hours, days, or even weeks; alternatively, they can be administered concurrently, either together in the same composition or in separate compositions.
- cis-gnetin H can be combined with other biologically active agents or modalities such as, but not limited to, an antineoplastic agent, and non-drug therapies, such as, but not limited to, surgery.
- a preferred method involves the administration of cis-gnetin H which is shown in Example 1 to be a more potent anticancer agent than its stereoisomer, trans-gnetin H.
- autoimmune disease such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), obesity, diabetes, infectious diseases, inflammatory atherosclerosis, cancer, depression, heart disease, stroke, and Alzheimer's Disease.
- Inflammation can be chronic or acute; systemic or localized; autoimmune or associated with an infection caused by an exogenous agent.
- An autoimmune response is generally characterized as an immune response directed against a self-antigen.
- Inflammation caused by an exogenous agent includes inflammation caused by an infectious agent or a pathogen such as a virus, bacteria, fungus, protist, plant, or other organism.
- Pathogenic bacteria known to induce a chronic inflammatory response include Chlamydophila pneumoniae and Porphyromonas gingivalis (http://www.bumc.bu.edu/gencolab/research/pathogen-induced-chronic-inflammatory-disorders/).
- Immunomodulators are compounds that weaken or modulate the activity of the immune system, which may in turn decrease the inflammatory response. Immunomodulators are used in organ transplantation to prevent rejection of the new organ, and to treat or manage autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease, which appears to be caused by an overactive immune system.
- immunomodulators include azathioprine (available under the tradenames IMURAN and AZASAN), 6-mercaptopurine (6-MP, available under the tradename PURINETHOL), cyclosporine A (available under the tradenames SANDIMMUNE and NEORAL), tacrolimus (available under the tradename PROGRAF), and methotrexate (amethopterin, available under the tradenames MTX, RHEUMATREX, and MEXATE) are exemplary immunomodulators.
- immunomodulators are known to be accompanied by numerous side effects, including headache, nausea, vomiting, diarrhea, and malaise (general feeling of illness), pancreatitis (inflammation of the pancreas), bone marrow suppression, which may increase the risk of infection or serious bleeding, decreased kidney function, hepatitis, diabetes, increased cholesterol levels, sleep problems, mild tremor, high blood pressure, swollen gums, tingling of the fingers and feet, increased facial hair, and increased risk of lymphoma (a cancer of the lymphatic system), low white blood cell count, scarring of the liver and lung inflammation.
- side effects including headache, nausea, vomiting, diarrhea, and malaise (general feeling of illness), pancreatitis (inflammation of the pancreas), bone marrow suppression, which may increase the risk of infection or serious bleeding, decreased kidney function, hepatitis, diabetes, increased cholesterol levels, sleep problems, mild tremor, high blood pressure, swollen gums, tingling of the fingers and feet, increased facial hair, and increased risk of lympho
- biologics are genetically engineered drugs that specific target proteins or other molecules involved in the inflammatory process.
- certain biologics block tumor necrosis factor-alpha, or TNF- ⁇ .
- TNF- ⁇ is an inflammatory cytokine that is present in elevated levels in diseases such as inflammatory bowel disease, and plays a central role in the inflammatory response and damage to the GI tract that leads to symptoms.
- Biologics also have serious side effects, however, such as increased risk of mild to severe infection—from the common cold to tuberculosis (TB) and hepatitis B, and increased risk of certain types of lymphoma, non-melanoma skin cancer, a lupus-like reaction, and exacerbation of pre-existing heart failure.
- TB common cold to tuberculosis
- hepatitis B hepatitis B
- lymphoma non-melanoma skin cancer
- a lupus-like reaction a lupus-like reaction
- exacerbation of pre-existing heart failure Three of the most widely used medications, infliximab (available under the tradename REMICADE), adalimumab (available under the tradename HUMIRA) and etanercept (available under the tradename ENBREL) are antibodies (a type of “biologic” drug) that act by binding to the cytokine tumor necrosis factor (TNF- ⁇
- rheumatoid arthritis or inflammatory bowel disease include tocilizumab (available under the tradename ACTEMRA) certolizumab pegol (available under the tradename CIMZIA), anakinra (available under the tradename KINERET), abatacept (available under the tradename ORENCIA) rituximab (available under the tradename RITUXAN) and golimumab (available under the tradename SIMPONI).
- ACTEMRA certolizumab pegol
- CIMZIA certolizumab pegol
- KINERET anakinra
- abatacept available under the tradename ORENCIA
- rituximab available under the tradename RITUXAN
- golimumab available under the tradename SIMPONI
- cis- and trans-gnetin H can act as immunomodulators for treating or preventing immune-based diseases or conditions, including autoimmune disease.
- Example 3 demonstrates that cis-gnetin H and trans-gnetin H have significant anti-inflammatory activity. Moreover, cis- and trans-gnetin H act at a much earlier step in the cytokine pathway than the biologics in current use, and block the release of multiple cytokines, a clear advantage over these biologics.
- trans-gnetin H may be preferred as an immunomodulator over its stereoisomer cis-gnetin H; however, either or both compounds, or their derivatives, are suitable for use as an immunomodulator.
- compositions that include cis-gnetin H, trans-gnetin H and/or derivatives thereof can thus be used to prevent, inhibit, treat, or control inflammation. These compositions are useful to treat a variety of diseases, disorders, and conditions characterized by or associated with inflammation, including but not limited to autoimmune diseases.
- the invention provides a method for treating or preventing inflammation and/or autoimmune disease in a subject by administering to a subject a composition comprising cis-gnetin H, trans-gnetin H and/or a derivative thereof, in an amount effective to treat or prevent inflammation and/or autoimmune disease
- Administration of the composition can be performed before, during, or after a subject develops an inflammatory condition or autoimmune disease, or manifests inflammation or symptoms of inflammation or autoimmune disease.
- the method is a therapeutic method for treating a subject suffering from inflammation and/or autoimmune disease by administering cis-gnetin H, trans-gnetin H, and/or derivatives thereof, to the subject in an amount effective to treat the inflammation or autoimmune disease.
- Therapeutic treatment is initiated after the development of inflammation and/or autoimmune disease. Treatment initiated after the development of an inflammatory condition or autoimmune disease, or after manifestation of inflammation or symptoms of inflammation, may result in decreasing the severity of the symptoms of one of the conditions, or completely removing the symptoms.
- cis-gnetin H, trans-gnetin H, and/or derivatives thereof are administered prophylactically in an amount effective to prevent or delay the development of inflammation and/or autoimmune disease in a subject.
- Treatment that is prophylactic can be initiated before a subject develops an inflammatory condition or autoimmune disease, or manifests inflammation or symptoms of inflammation or autoimmune disease.
- An example of a subject who is at particular risk of developing inflammation or autoimmune disease is a person having a risk factor, such as a genetic marker, that is associated with inflammatory disease or autoimmune disease, or a person who has recently received a transplant.
- Another example is a subject who is suffering from a disease associated with inflammation, but who has not developed an inflammatory response.
- diseases, disorders or conditions that can be treated or prevented by the composition of the invention include, without limitation, rheumatoid arthritis (RA), inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis, idiopathic orbital inflammation, plaque psoriasis, psoriatic arthritis, ankylosing spondylitis, juvenile idiopathic arthritis, lupus, myasthenia gravis, focal segmental glomerulosclerosis, macrophage activation syndrome, non-Hodgkin's lymphoma, chronic lymphoid leukemia, precursor lymphoblastic lymphoma, familial Mediterranean fever (FMF), neonatal onset multisystem inflammatory disease (NOMID), tumor necrosis factor receptor-associated periodic syndrome (TRAPS), deficiency of the interleukin-1 receptor antagonist (DIRA), and Behcet's disease.
- RA rheumatoid arthritis
- IBD inflammatory bowel disease
- IBD inflammatory bowel disease
- Additional inflammatory disorders that can be treated or prevented using the method of the invention include, for example, transplant rejection, graft vs. host disease, asthma, allergic reactions, chronic prostatitis, pelvic inflammatory disease, glomerulonephritis, reperfusion injury, and vasculitis; others include obesity, diabetes, infectious diseases, cancer, depression, heart disease, stroke, and Alzheimer's Disease.
- Diseases, conditions or disorders characterized by inflammation may include the suffix “itis,” and it is expected that any disease, disorder, or condition having “itis” as part of its name can be treated or prevented using the composition of the invention. Inflammation also plays an important role in the pathogenesis of atherosclerosis. The link between rheumatoid arthritis and an increased risk of cardiovascular disease and mortality is well established.
- cis-gnetin H, trans-gnetin H and derivatives thereof are useful for treating cardiovascular disease associated with or caused by other inflammatory conditions.
- cis-gnetin H, trans-gnetin H, and/or derivatives thereof can occur before, during, and/or after other treatments.
- Such combination therapy can involve the administration of cis-gnetin H, trans-gnetin H, and/or derivatives thereof before, during and/or after the use of other anti-inflammatory agents, for example, non-steroidal anti-inflammatory drugs, corticosteroids, TNF- ⁇ blockers, and other active agents as described herein for cumulative therapy or reduction or elimination of side effects.
- the invention contemplates combination therapy that employs, in addition to cis-gnetin H, trans-gnetin H, and/or a derivative thereof, one or more immunomodulators and/or one or more biologics to treat patients with autoimmune diseases such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis.
- autoimmune diseases such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis.
- the therapeutic and prophylactic methods of the invention therefore encompass administration of a pharmaceutical composition that contains a first active agent that includes, as an immunomodulatory compound, cis-gnetin H, trans-gnetin H, and/or a synthetic derivative thereof, and a second active agent that includes at least one of an immunomodulatory compound (in addition to the cis-gnetin H, trans-gnetin H, and/or a synthetic derivative thereof) and/or a biologic compound.
- the second active agent include one or more compounds selected from, without limitation, azathioprine, 6-mercaptopurine, cyclosporine A, tacrolimus, methotrexate, amethopterin, prednisone, prednisolone, infliximab, adalimumab, etanercept, tocilizumab, certolizumab pegol, anakinra, abatacept, rituximab, and golimumab.
- cis-gnetin H, trans-gnetin H and/or derivatives thereof can be separated in time from the administration of other active agents, such as additional immunomodulatory agents and/or biologics, by hours, days, or even weeks; alternatively, the other active agents can be administered concurrently, either together in the same composition or in separate compositions. Additionally or alternatively, the administration of cis-gnetin H, trans-gnetin H and/or derivatives thereof can be combined with other biologically active agents or modalities such as, for example, anti-inflammatory chemotherapeutic agents, and non-drug therapies, such as, but not limited to, radiotherapy, heat therapy, cryotherapy, electrical therapy, massage, and acupuncture.
- other active agents such as additional immunomodulatory agents and/or biologics
- compositions for veterinary use may contain, in addition cis-gnetin H, trans-gnetin H, and/or derivatives thereof as described herein, routine vaccine components such as those included in vaccinations for distemper, rabies, feline leukemia, and other animal diseases, as well as other medications, thereby allowing cis-gnetin H, trans-gnetin H, and/or derivatives thereof to be co-administered with substances that might otherwise trigger inflammation, particularly in sensitive, diseased or vulnerable animals, such as the very young or very old.
- routine vaccine components such as those included in vaccinations for distemper, rabies, feline leukemia, and other animal diseases, as well as other medications, thereby allowing cis-gnetin H, trans-gnetin H, and/or derivatives thereof to be co-administered with substances that might otherwise trigger inflammation, particularly in sensitive, diseased or vulnerable animals, such as the very young or very old.
- the invention further includes a kit that contains at least one of cis-gnetin H, trans-gnetin H, and/or a derivative thereof, together with instructions for use.
- the instructions for use provide instructions for use in the treatment or prevention of cancer, a precancerous condition, a tumor, inflammation, or an inflammatory and/or autoimmune disease disorder or condition.
- the kit includes a pharmaceutically acceptable carrier.
- the carrier may be separately provided, or it may be present in a composition that includes cis-gnetin H, trans-gnetin H, and/or a derivative thereof.
- the kit may further include one or more additional active agents which can be co-administered with the cis-gnetin H, trans-gnetin H, and/or derivatives thereof
- the one or more active agents may have cumulative or complementary activities, as described in more detail elsewhere herein.
- cis-gnetin H, trans-gnetin H, and/or a derivative thereof is formulated as a nutritional supplement or food additive for domestic or domesticated animals, such as pets or livestock.
- cis-gnetin H, trans-gnetin H, and/or a derivative thereof can be incorporated into animal feed such as fodder and kibble.
- cis-gnetin H and trans-gnetin H purified from the seeds of Paeonia suffruticosa have superior activity in inhibiting the proliferation of four human cancer cell lines, A549 (lung), BT20 (breast), MCF-7 (breast) and U2OS (osteosarcoma), and promote cell apoptosis, while having a minimal effect on two normal human epithelial cell lines, HPL1A (lung) and HMEC (breast) used as controls. 10 ⁇ M cis-gnetin H or trans-gnetin H caused a dramatic reduction in the cell viability of the four cancer cell lines.
- Paeonia suffruticosa Andrews is a well-known Chinese medicine that has been widely used as an anti-tumor, anti-oxidative and anti-inflammatory agent.
- cis- and trans-gnetin H are two resveratrol oligomers isolated from the seeds of PSE.
- resveratrol is widely considered to be one of the most valuable natural chemopreventive agents and there are numerous studies on the antitumor activities of resveratrol, little is known about the antitumor properties of cis- and trans-gnetin H.
- cis- and trans-gnetin H were extracted and isolated from the dried seeds of P. suffruticosa (1.2 kg) as described previously (He et al., Chem. Pharm. Bull. 2010; 58:843-847). Compounds were re-suspended in dimethyl sulfoxide (DMSO) (Sigma) to yield the desired concentration and stored at 4° C.
- DMSO dimethyl sulfoxide
- the cancer cell lines used in this study included human lung carcinoma (A549), human breast carcinoma (BT20 and MCF-7) and human osteosarcoma (U2OS), with the normal cell lines human peripheral lung epithelial cells (HPL1A) and human mammary epithelial cells (HMEC) serving as controls.
- A549, BT20, MCF-7, U2OS and HMEC cells were purchased from American Type Culture Collection (ATCC, USA), and HPL1A cells were obtained from Nagoya University, Japan.
- the proliferation inhibition potential of cis- and trans-gnetin H was determined by a fluorescence dye staining method. Cells were seeded in a 96-well tissue culture-treated plate (BD Falcon) at a density of 4000 cells/well, and treated with cis- or trans-gnetin H for 48 hours. AlamarBlue dye (Invitrogen) was used to assess the viability of cells according to the manufacturer's instructions; the fluorescent intensity was read on a SpectraMax M2e microplate reader (Molecular Devices Inc.).
- IC 50 values For the determination of IC 50 values, cells were treated with a serial dilution (320 ⁇ M, 100 ⁇ M, 32 ⁇ M, 10 ⁇ M, 3.2 ⁇ M, 1 ⁇ M, and 0.32 ⁇ M) of cis- or trans-gnetin H for 48 hours. Cell viability was determined with AlamarBlue dye (Invitrogen) and the IC 50 values were calculated using non-linear regression analysis.
- Multi-parameter cytotoxicity measurement using an Arrayscan VTI HCS Reader A549 cells were seeded in a 96-well plate (BD Falcon) at a density of 4000 cells/well, and then treated with different concentrations (An et al., Mol. Cancer Ther. 2007; 6:61-9; Wilhelm et al., Cancer Res. 2004; 64(19):7099-7109; 100 ⁇ M) of cis- or trans-gnetin H for 24 hours and 48 hours. Non-treated cells and cells treated with 100 ⁇ M Valinomycin were used as negative and positive controls.
- the cells were stained with a mixture of fluorescent dyes including Hoechst 33342 (blue florescence), cell permeability dye (green florescence) and mitochondrial membrane potential dye (red florescence) (Thermo Scientific).
- the three dyes allow changes in nuclear morphology, cell membrane permeability and mitochondrial trans-membrane potential to be determined.
- the cells were fixed and washed, and images for each fluoroprobe were acquired at different channels using suitable filters with a 20 ⁇ X objective and analyzed on the Arrayscan VTI HCS Reader (Thermo Scientific).
- the Cell Health Profiling BioApplication software was used for image acquisition and analysis. For each well, at least 400 cells were automatically acquired and analyzed. The average fluorescent intensity was used to quantify changes in each channel and each experiment was performed in triplicate.
- Apoptosis assay by flow cytometry A549 and BT20 cells were seeded in a 96-well plate (BD Falcon) at a density of 8000 cells/well, and treated with cis- or trans-gnetin H for 24 hours. Apoptosis was assessed using Annexin V/7-AAD double staining as described (Bai et al., Cancer Sci. 2010; 101(2):488-493). Cells were analyzed on a Guava Flow Cytometer (Millipore) using InCyte software and the data was exported to FlowJo software for image display.
- cytochrome c Analysis of cytochrome c by flow cytometry.
- A549 and BT20 cells were seeded in a 96-well plate (BD Falcon) at a density of 8000 cells/well and treated with 100 ⁇ M of cis- or trans-gnetin H for 24 hours.
- the expression of cytochrome c was evaluated using the FlowCellect Cytochrome c Kit (Millipore) according to the manufacturer's instructions. Cells were stained with either Anti-IgG1-FITC Isotype control or Anti-Cytochrome c-FITC, and data was acquired and analyzed using the Guava Flow Cytometer (Millipore).
- Caspase 3/7 activation assay Caspase 3/7 activity was analyzed using an in-situ luminescent marker. A549 and BT20 cells were seeded in a white 96-well plate (Greiner) at a density of 8000 cells/well, and treated with 100 ⁇ M cis- or trans-gnetin H for 24 hours. Caspase activity was then determined using the Caspase-Glo 3/7 Assay (Promega) according to the manufacturer's instructions. The luminescence of each sample was measured using a SpectraMax M2e Microplate Reader (Molecular Devices Inc.).
- TNF- ⁇ activated NF ⁇ B translocation using an Arrayscan VT1 HCS Reader.
- A549 cells were seeded in 96 well plates (BD Falcon) at a density of 4000 cells/well, and were treated with 100 ⁇ M cis- or trans-gnetin H for 2 hrs, followed by treatment of 10 ng/ml tumor necrosis factor-alpha (TNF- ⁇ ) (Sigma). Untreated cells and cells treated with only 10 ng/ml TNF- ⁇ served as controls. Cells were fixed, permeabilized, and stained with Nuclear factor kappa B (NF- ⁇ B) primary antibody, Dylight 488 conjugated secondary antibody, and Hoechst 33342 dye, sequentially.
- NF- ⁇ B Nuclear factor kappa B
- the Hoechst and DyLight fluorophores respectively detect changes in nuclear morphology (blue fluorescence) and NF- ⁇ B distribution (green fluorescence). Images were acquired at different channels using suitable filters with a 20 ⁇ objective and analyzed on the Arrayscan VTI HCS Reader (Thermo Scientific). The Nuclear Translocation BioApplication software (Thermo Scientific) was used for image acquisition and analysis. For each well, at least 400 cells were automatically acquired and analyzed. The translocation index was calculated by measuring the average intensity difference of NF- ⁇ B between the identified cytoplasmic region and nuclear region (MEAN_CircRingAvgIntenDiffCh2). Experiments were performed in triplicates.
- FIG. 1C cis- and trans-gnetin H were extracted with the purities of 93.5% and 92.6%, respectively. After 6-hour treatment, only a slight decrease of the concentration from 93.5% to 88.9% was observed in cis-gnetin H. On the contrary, a dramatic decrease of the concentration from 92.6% to 6.2% was observed in trans-gnetin H after 6-hour treatment, with a large portion (about 86%) converted to its cis-isomer. However, after 6-month storage in the dark at room temperature, the chemical identities of cis-gnetin H and trans-gnetin H exhibited no obvious changes, suggesting that cis-gnetin H and trans-gnetin H are stable under normal storage conditions.
- High-content screening (HCS) image analysis allows simultaneous measurement of the nuclear morphology, plasma membrane permeability and mitochondria potential as indicators of cellular injury. Disruption of the mitochondria potential tends to be an early indicator of cellular injury, whereas nuclear shape changes (nuclear condensation) and an increase in plasma membrane permeability are indicative of acute toxicity (Minamikawa et al., Exp. Cell Res. 1999; 246:26-37; Zakeri et al., The Study of Cell Death by the Use of Cellular and Developmental Models. In When Cells Die. New York: Wiley-Liss. 1998).
- A549 cells were examined for cellular changes using HCS analysis. Untreated A549 cells displayed normal nuclear size, intact plasma membrane integrity and brightly labeled mitochondria. However, after 24 hours treatment with cis-gnetin H or trans-gnetin H, A549 cells showed decreased mitochondria potential as evidenced by lower red florescent intensity, but no alternation of nuclear size and plasma membrane permeability, suggesting that they suffered from early or moderate cellular injury. After treatment for 48 hours, the cells exhibited nuclear condensation, increased plasma membrane permeability as evidenced by higher green florescent intensity, and loss of mitochondrial potential, suggesting that they were undergoing late or severe cellular injury ( FIG. 8 ).
- Caspase-3 and -7 are early apoptotic markers in mammalian cells (Thornberry et al., Science 1998; 281(5381): 1312-1316).
- caspase-3 and -7 activities using a luminogenic substrate containing the tetrapeptide sequence that is selective for caspase-3 and -7.
- FIG. 3D in A549 cells treated by cis-gnetin H or trans-gnetin H, activities of caspase 3/7 increased 3.65-fold or 2.7-fold, respectively compared with untreated A549 cells.
- Staurosporine a known caspase activator, was used as a positive control.
- NF- ⁇ B is a transcription factor that controls the transcription of anti-apoptotic and cell proliferation genes, and is essential for the survival of cancer cells (Sethi et al., Trends Pharmacol. Sci. 2009; 30:313-321).
- cis-gnetin H and trans-gnetin H were assessed the ability of cis-gnetin H and trans-gnetin H to inhibit TNF- ⁇ induced NF- ⁇ B activation in vitro using DyLight 488-conjugated anti-NF- ⁇ B antibody.
- FIG. 5 in A549 cells treated in normal medium without addition of the compound, a high fluorescent intensity of NF- ⁇ B was found in the cytoplasm, but rarely in the nuclei, indicating that NF- ⁇ B is not activated under normal conditions.
- Natural oligostilbenes can be converted from the trans configuration to the cis configuration in the presence of H 2 O 2 , metal, UV and acid (Lin et al. Stud. Nat. Prod. Chem. 2006; 33:601-644).
- the trans isomer of doubly substituted ethylenes is more stable than its cis counterpart because of the more favorable electrostatic and steric interactions of the trans conformer.
- a recent study showed that there can be exceptions, and that the cis isomer of some doubly substituted ethylenes possesses unusual stability, a fact that has been referred to as the cis-effect (Zhao et al., Acta Physico-Chimica Sinica 2013; 1: 43-54).
- Stilbenes and oligostilbenes which are doubly substituted ethylenes, should generally be more stable in the trans configuration than their cis counterpart because of the more favorable electrostatic and steric interactions of the trans conformer (Zhao et al., Acta Physico-Chimica Sinica 2013; 1: 43-54; Bingham, J. Am. Chem. Soc. 1976; 98:535-540).
- Two well-known examples are stilbene (Fischer et al., J. Chem. Soc. B. 1968:1156-1158) and resveratrol (Bonda et al., Cosmetics Toiletries. 2011:126: 652-660).
- trans-gnetin H is more effective in anti-tumor proliferation than resveratrol.
- a couple of studies have been conducted previously on trans-gnetin H. Kim et al. (Kim et al., Arch. Pharm. Res. 2002; 25:293-299) found trans-gnetin H exhibited marked cytotoxic activity against C6 (mouse glioma), HepG2 (human liver), Hela (human cervix), MCF-7 (human breast) and HT-29 (human colon) cancer cell lines with IC50 values ranging from 12.7 to 61.7 ⁇ g/ml. Kang et al. (Kang et al., Exp. Mol. Med.
- Phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells were pretreated with various concentrations of the cis- and trans-gnetin H with and without lipopolysaccharide (LPS). Following treatment, cytotoxicity and the cytokine responses of TNF- ⁇ , IL- ⁇ , and IL-8, were measured.
- LPS lipopolysaccharide
- cytotoxicity and the cytokine responses of TNF- ⁇ , IL- ⁇ , and IL-8 were measured.
- RelA NF- ⁇ B subunit
- cis- and trans-gnetin H also effectively inhibited the nuclear translocation of p65 and inhibited the phosphorylation of IKK- ⁇ , I ⁇ B ⁇ , as well as p65. While both compounds showed promising anti-inflammatory effects, trans-gnetin H was determined to be more effective in suppressing cytokine responses. In conclusion, we demonstrated cis- and trans-gnetin H exert anti-inflammatory effects by suppressing the key signaling molecule involved in the NF- ⁇ B pathway and suggest potential therapeutic usage for conditions and diseases associated with chronic inflammation.
- Inflammation is central to many disease processes including, for example, autoimmune diseases and chronic inflammatory diseases, and there are relatively few classes of compounds used as anti-inflammatory drugs, with steroids and nonsteroidal anti-inflammatory drugs (NSAIDS) comprising the major classes.
- NSAIDS nonsteroidal anti-inflammatory drugs
- monoclonal antibodies and fusion proteins have been developed to treat chronic inflammation (Thalayasingam et al., Best Pract. Res. Clin. Rheumatol., 2011, 25:549-67)
- these treatments can cause severe side effects such as allergic reactions, increased risk of infections, malignancies, and risk of stroke, and are thus their use has been limited to severe inflammatory diseases such as rheumatoid arthritis and ankylosing spondylitis (Bezalel et al., 2012, Isr.
- Activated macrophages produce biologically active cytokines such as tumor-necrosis factor alpha (TNF- ⁇ ) through intracellular signaling pathways through the nuclear factor kappa B (NF- ⁇ B) pathway (Yamamoto et al., Curr. Mol. Med., 2001, 1:287-96).
- TNF- ⁇ tumor-necrosis factor alpha
- NF- ⁇ B nuclear factor kappa B
- Transcription factors that regulate the inflammatory response are sequestered in the cytoplasm by inhibitor molecules, such as inhibitor kappa B ⁇ (I ⁇ B ⁇ ) (Mercurio et al., 1997, Science, 278:860-6; (Mercurio et al., 1997; Nywana et al., 2014).
- I ⁇ B ⁇ binding to the NF- ⁇ B transcription factor inhibits transactivation, translocation, and promoter binding (Ganchi, et al., 1992, Mol. Biol. Cell., 3:1339-52).
- IIK I ⁇ B ⁇ kinase
- NF- ⁇ B ultimately translocates into the nucleus to promote transcription of genes involved in inflammation, including the production and release of biologically active cytokines such as TNF- ⁇ and proinflammatory interleukins (IL). Released cytokines induce chemotaxis, vasodilation, and cell proliferation as well as differentiation.
- THP-1 (ATCC, TIB-202) were purchased from American Type Culture Collection (Manassas, Va., USA).
- Lipopolysaccharide LPS, Salmonella enterica serotype thyphimurium
- dexamethasone 3-(4-methylphenylsulfonyl)-2-propenenitrile
- staurosporine dimethyl sulfoxide (DMSO)
- DMSO dimethyl sulfoxide
- PMA phorbol 12-myristate 13-acetate
- RPMI 1640 culture media were purchased from Sigma-Aldrich (St. Louis, Mo., USA).
- cis- and trans-gnetin H were extracted and isolated from the dried seeds of Paeonia suffruticosa as described previously (He et al., Chem. Pharm. Bull. 2010; 58:843-847). Briefly, the dried seeds were extracted with ethanol for 24 h at room temperature and then subfractionated using water, cyclohexane, chloroform, and ethyl acetate.
- cis- and trans-gnetin H were purified from the ethyl acetate extract and further fractionated using chloroform-methanol elution followed by ODS-A C18 reversed-phase silica gel (MeOH—H1O) and then purified by Sephadex LH-20 column chromatography.
- the compounds were suspended in DMSO to yield the desired concentration and stored at 4° C.
- THP-1 cells were maintained in RPMI 1640 medium supplemented with 10% complement-inactivated FBS and 1% penicillin/streptomycin (complete culture medium) at 37° C. with 5% CO 2 supplemented. Cell concentrations were adjusted to desired concentrations for each experiment by centrifugation at 500 ⁇ g for 5 min and resuspended in complete culture medium with 100 nM of PMA. Cell concentration was adjusted to 5 ⁇ 10 5 cells/ml for all assays and 2.5 ⁇ 10 5 cells/ml were used for NF- ⁇ B nuclear translocation assay. Cells were seeded onto 96-, 24-, or 12-well plates and incubated for 48 to 72 h to allow for differentiation. Cells were washed with serum-free RPMI 1640 medium before each experiment to remove the undifferentiated cells.
- Cell lysates were then tested for protein concentration using a BCA protein assay, and diluted with RIPA lysis buffer to normalize protein concentration in all samples. Lysates were mixed with sample loading buffer containing bromophenol blue, glycerol, sodium dodecyl sulfate (SDS), and 2-mercaptoethanol (2ME). The separated proteins were then transferred onto nitrocellulose membrane and blocked with 5% BSA in 1 ⁇ Tris-buffered saline (TBS) with 0.1% Tween-20 for 30 min.
- TBS Tris-buffered saline
- Cytotoxicity of cis-and trans-Gnetin-H on PMA-Differentiated THP-1 Macrophages We first examined the toxicity of cis- and trans-gnetin H in PMA-differentiated macrophages. Cells were pretreated with various concentrations of cis- and trans-gnetin H for 24 h and relative viability was accessed by Alamar Blue assay. The effect of compounds with LPS was also tested for relative viability. The viability test was done for every supernatant sample collection for cytokine response assay to show the suppression of cytokine response was not due to cell death.
- Neither cis- nor trans-gnetin H affected the viability of the cells at concentration 3, 6, 13, 25, 50, 100 ⁇ M after 24 h treatment ( FIG. 9 ).
- the vehicle control, DMSO was tested and showed no effect on viability of the cells (data not shown).
- Pretreatment with cis-gnetin H at 12.5, 25, 50 ⁇ M and LPS had no effect on cell viability ( FIG. 9A ).
- Pretreated with trans-gnetin H at 50 ⁇ M however, showed decreased viability relative to the untreated control ( FIG. 9B ). Therefore, 7.5, 15, 30 ⁇ M of trans-gnetin H were used for the cytokine response assay.
- p65 phosphorylation was only significantly inhibited at the highest concentration, 50 ⁇ M, of cis-gnetin H treated cells but both 15 and 30 ⁇ M concentrations of trans-gnetin H significantly inhibited p65 phosphorylation in a concentration-dependent manner. IKK ⁇ phosphorylation was also significantly inhibited by cis- and trans-gnetin H ( FIG. 13C ).
- Inflammation is an important component of immune responses that are associated with multiple human diseases. Many of these diseases currently do not have effective treatments to control the inflammatory response. Currently available preventive therapies for chronic inflammatory and autoimmune diseases block the cytokine response, particularly TNF- ⁇ . Anti-TNF therapy has been clinically demonstrated as the most effective approach to control inflammation (Postal et al., Cytokine, 2011, 56:537-43). Cytokines such as TNF- ⁇ that are released by various cell types including macrophages and lymphocytes play a critical role in inflammatory processes by inducing chemotaxis, activation of various types of cells, and amplification of inflammation (Thalayasingam et al., Best Pract. Res. Clin.
- trans-gnetin H showed more effective suppression in all cytokines tested than cis-gnetin H and fold changes dramatically increases in trans-gnetin H treated cells at 30 ⁇ M ( FIG. 10 ).
- LPS-activated macrophages produce biologically active cytokines such as TNF- ⁇ through intracellular signaling pathways, such as the NF- ⁇ B pathway (Medvedev et al., 2002, J. Immunol., 169:5209-16; Yamamoto et al., Curr. Mol. Med., 2001, 1:287-96).
- p65 also known as RelA, is one of the 5 members of NF- ⁇ B transcription factors that are most abundant and most responsible for NF- ⁇ B pathway (Sasaki et al. , J. Biol. Chem., 2005, 280:34538-47; Schmitz et al., EMBO J., 1991, 10:3805-17; Yang et al., J.
- the NF- ⁇ B pathway involves numerous factors and kinases that are regulated mainly through recruitments and phosphorylation processes.
- LPS binds to CD14 and dimerizes TLR4, triggering recruitment of a series of intracellular proteins including MYD88, TIR, RIF, TRAM, and the TRAF family (Laird et al., 2009, J. Leukoc. Biol., 85:966-77) and subsequently activates several kinases including IRAK1, MEKK1 (Lee et al., 1998, Proc. Nat'l. Acad. Sci. USA, 95:9319-9324), MEKK3 (Qin et al., J. Biol.
- Macrophages are key immune cells that regulate inflammation process and therefore, suppressing macrophages activation can alleviate the progression of chronic inflammation and slow the severity of disease progression caused by chronic inflammation.
- Our results suggest that cis-and trans-gnetin H compounds can significantly limit the cytokine response in human THP-1 macrophages with different potencies. Experiments are in progress to better understand the mechanism or target for these compounds, however, our results in support that the inhibition of IKK- ⁇ activation which is an important kinase for NF- ⁇ B pathway.
- cis-and trans-gnetin H have potential pharmacological usages for diseases and conditions characterized by chronic inflammation.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Botany (AREA)
- Alternative & Traditional Medicine (AREA)
- Biotechnology (AREA)
- Medical Informatics (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Plant Substances (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The cis-isomer and trans-isomers of the plant-derived compound gnetin H are shown have anticancer properties, anti-inflammatory properties, and low toxicity. Therapeutic and prophylactic compositions that contain cis-gnetin H, trans-gnetin H, an derivatives thereof, as well as methods of making and using said compositions, are provided, cis-gnetin H and/or trans-gnetin H can be used in purified form or as a plant extract.
Description
- This application claims the benefit of U.S. Provisional Application Ser. No. 62/053,497, filed Sep. 22, 2014, which is incorporated herein by reference in its entirety.
- Resveratrol (3,5,4′-trihydroxystilbene) is a naturally occurring phenylpropanoid produced in a number of plant species, such as grapevines, berries, peanuts, and Japanese knotweeds (Aggarwal et al., Anticancer Res., 2004; 24:2783-2840). Resveratrol has been intensively studied over the past decade and shown to possess anti-tumor potential in a wide variety of human tumor cells and various animal models (Bishayee, Cancer Prev. Res. 2009; 2:409-418). Resveratrol has potential anti-cancer and anti-inflammatory effects (Aggarwal et al., 2004, Anticancer Res., 24:2783-840; Aggarwal et al., 2004, Anticancer Res., 24:2783-840; Manna et al., 2000, J. Immunol., 164:6509-19).
- cis-gnetin H and trans-gnetin H are trimers of resveratrol, differing from each other in the olefinic moiety between C-7′/C-8′ (
FIGS. 1A and 1B ; He et al., Chem. Pharm. Bull. 2010; 58:843-847). These oligostilbenes as well as other resveratrol derivatives can be obtained from the seeds of Paeonia suffruticosa (He et al., Chem. Pharm. Bull. 2010; 58:843-847). Paeonia suffruticosa has been widely used in traditional Chinese medicine as an analgesic, anti-anaphylactic, anti-oxidative, and anti-inflammatory agent (He et al., Chem. Pharm. Bull. 2010; 58:843-847; Hu et al., J. Ethnopharmacol., 2010, 128:100-6; Oh et al., J. Ethnopharmacol., 2003, 84:85-9). The seeds of the plant contain multiple stilbenes that showed potential cytotoxic, anti-mutagenic, ecdysteroid antagonist, anti-oxidant, hyperpigmentation, antitumor, and anti-inflammatory activity, and have been used in traditional medicine throughout East Asia to treat conditions and diseases such as atherosclerosis, inflammation, infection, and cutaneous diseases (Choi et al., J. Biomed. Sci., 2012, 19:82; Gao et al., J. Ethnopharmacol., 2015, 169:24-33; He et al., Chem. Pharm. Bull. 2010; 58:843-847). - While there are numerous studies on the bioactivities of resveratrol, little is known about the biological role of cis-gnetin H or trans-gnetin H. In vitro studies using HL-60 (human leukemia), C6 (mouse glioma), Hela (human cervicse), MCF-7 (human breast) and L1210 (mouse leukemia) cell lines suggested that trans-gnetin H has anti-tumor activity (Kim et al., Arch. Pharm. Res. 2002; 25:293-299; Ha et al., Arch. Pharm. Res. 2009; 32:177-83) but trans-gnetin H′s potential as a cancer chemopreventive has not been clearly elucidated. Additionally, the anti-inflammatory mechanisms of Paeonia suffruticosa have not been fully characterized.
- The invention identifies cis-gnetin H and trans-gnetin H as novel therapeutic agents for the treatment and prevention of various diseases and conditions. In one aspect, the invention provides compositions and methods for treating or preventing cancer or a precancerous condition in a subject. A composition comprising an effective amount of cis-gnetin H and/or trans-gnetin H, or a derivative thereof is administered to a subject afflicted with or at risk for cancer or a precancerous condition. A preferred therapeutic agent for the treatment or prevention of cancer or a precancerous condition in a subject is cis-gnetin H. The cancer or precancerous condition can involve any tissue or organ, without limitation, such as bone, brain, breast, cervix, larynx, lung, pancreas, prostate, skin, spine, stomach, uterus or blood. The cancer can be a bone cancer, brain cancer, breast cancer, cervical cancer, cancer of the larynx, lung cancer, pancreatic cancer, prostate cancer, skin cancer, cancer of the spine, stomach cancer, uterine cancer, or a blood cancer. The cancer can be a metastatic cancer.
- In another aspect, the invention provides compositions and methods for inhibiting the growth of a tumor in a subject. A composition comprising an effective amount of cis-gnetin H, trans-gnetin H, and/or a derivative thereof is administered to a subject who is afflicted with a tumor. A preferred therapeutic agent for the inhibiting the growth of a tumor in a subject is cis-gnetin H. The tumor may include, without limitation, a solid tumor present in the bone, brain, breast, cervix, larynx, lung, pancreas, prostate, skin, spine, stomach, or uterus of the subject. The tumor may be a fast growing tumor.
- In yet another aspect, the invention provides compositions and methods for treating or preventing inflammation in a subject. A composition comprising an effective amount of cis-gnetin H, trans-gnetin H, and/or a derivative thereof is administered to a subject who is at risk of or experiencing inflammation. Examples of inflammatory conditions that can be treated, managed, or prevented include autoimmune and inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease.
- The composition used in the methods of the invention may include either or both cis- and trans-gnetin H, and/or derivatives thereof cis-gnetin H or trans-gnetin H may be at least 50%, 60%, 70%, 80%, 90% ,95%, or 99% of the total cis- and trans-gnetin H in the composition. The composition may include an extract prepared from Paeonia suffruticosa seeds. Optionally, the composition further includes a pharmaceutically acceptable carrier. In some embodiments, the composition may further include an additional active agent, such as an anticancer agent, antiangiogenic agent, a chemopreventive agent, an anti-inflammatory agent, a cytokine, a chemokine, a therapeutic antibody, an immunogen, an antigen, an adjuvant, or an antioxidant, an immunomodulatory compound, a biologic compound, an antineoplastic agent, or a chemotherapeutic agent. Preferably, at least one additional active agent is a non-naturally occurring compound.
- In another aspect, the invention includes cis-gnetin H, trans-gnetin H, and/or derivatives thereof for use as a therapeutic agent, including use in the treatment or prevention of cancer or a precancerous condition, use in inhibiting or reversing the growth of a tumor, or use in the treatment or prevention of inflammation. Use of cis-gnetin H, trans-gnetin H, and/or derivatives thereof for preparation of a medicament for the treatment or prevention of cancer or a precancerous condition, or for inhibiting the growth of a tumor, or for treatment or prevention of inflammation, is also included in the invention.
- In another aspect, the invention includes a plant extract that includes cis-gnetin H and/or trans-gnetin H for use as a therapeutic agent, including a plant extract that includes cis-gnetin H and/or trans-gnetin H for use in the treatment or prevention of cancer or a precancerous condition, or for use in inhibiting the growth of a tumor, or for use in the treatment or prevention of inflammation. Use of a plant extract including cis-gnetin H and/or trans-gnetin H for preparation of a medicament for the treatment or prevention of cancer or a precancerous condition, or for inhibiting the growth of a tumor, or for the treatment or prevention of inflammation, is also included in the invention. In some embodiments, the plant extract is prepared from Paeonia suffruticosa seeds.
-
FIG. 1 shows structures of cis-gnetin H and trans-gnetin H compared to resveratrol, and conversion of trans-gnetin H and cis-gnetin H with UV-irradiation. A, Structures of trans- and cis-gnetin H. B, Structure of resveratrol. C, Conversion rate of trans- and cis-gnetin H when individually illuminated by a 12-watt fluorescent lamp for 2, 4 and 6 hours. -
FIG. 2 shows in vitro inhibitory effects of cis-gnetin H and trans-gnetin H on A549 and BT20 cells. A, Inhibitory rates of cis- and trans-gnetin H at a concentration of 10 μM Inhibitory effects in vitro were assessed in A549, BT20 cells and their normal cell controls after 12, 24, 36 and 48 hours incubation using the AlamarBlue fluorescent assay. B, Values of IC50 (μM) of cis- and trans-gnetin H against four malignant cell lines and two normal cell lines in vitro. Serial dilutions of cis- or trans-gnetin H were used to treat the cells for 48 hours and cell viability was assessed using an AlamarBlue fluorescent assay. C, Multiplex cytotoxicity effects of cis- and trans-gnetin H. A549 cells were treated with a serial dilution of cis- or trans-gnetin H, for 24 hrs and 48 hrs, respectively, and the alteration in nuclear size, cell permeability, and mitochondrial trans-membrane potential was simultaneously quantitated by a high-content screening (HCS) reader. 100 μM valinomycin was used as a positive control. Error bars indicate the standard deviations (SDs) from 3 independent experiments. *P<0.05, **P<0.01, ***P<0.001. -
FIG. 3 shows evaluation of apoptosis induced by cis-gnetin H or trans-gnetin H in A549 and BT20 cells. A, Flow cytometry analysis of apoptosis induced by cis- or trans-gnetin H in A549 and BT20 cells. B, Apoptosis rates for A549 and BT20 cells treated with different concentrations of cis- or trans-gnetin H. A549 and BT20 cells were treated with different concentrations of cis- or trans-gnetin H for 24 hours, and assayed using Annexin V/7-AAD double staining. C, Cytochrome c release in A549 and BT20 cells induced by cis- or trans-gnetin H. Blue curve shows the isotype control, red curve peak shows the negative control (untreated cells), and the yellow curve shows the tested samples. The numbers on the upper corners show the percentage of cells that released or did not release cytochrome c. A549 and BT20 cells were treated with 100 μM cis- or trans-gnetin H for 24 hours, and the release of cytochrome c was assessed using Anti-Cytochrome c-FITC staining. D,Caspase 3/7 activation in A549 cells treated with cis- or trans-gnetin H. A549 cells were treated with 100 μM cis- or trans-gnetin H for 4 hours and assessed using Caspase-Glow 3/7 assay. 1 μM staurosporine served as the positive control and untreated cells were used as the negative control. Error bars indicate the SDs from 3 experiments. *P<0.05, **P<0.01. -
FIG. 4 shows cell cycle distribution of A549 and BT20 cells treated with cis-gnetin H or trans-gnetin H. A, Cell count of the cells in different cell cycle stages. B, Percentage of cell population in different cell cycle stages. A549 cells and BT20 cells were synchronized for 24 hours prior to treatment with 100 μM cis- or trans-gnetin H for 24 hours, and then assessed using PI staining. Error bars indicate SDs from 3 wells. -
FIG. 5 shows inhibition on TNF-α-induced NF-κB nuclear translocation by cis-gnetin H or trans-gnetin H in A549 cells. A, HCS images of NF-κB translocation. B, Values of NF-κB nuclear translocation in A549 cells after the treatment of cis- or trans-gnetin H. A549 cells were treated with 100 μM of cis- or trans-gnetin H for 2 hours, followed by stimulation with 10 ng/ml TNF-α. Cells treated with TNF-α alone served as the negative control. Error bars indicate SDs from 3 wells. **P<0.01, ***P<0.005. -
FIG. 6 shows in vivo effects of cis-gnetin H on mouse xenograft lung tumors. A, Tumor size of mouse A549 xenografts. B, Inhibitory effects of cis-gnetin H on xenograft tumor volumes. C, Effects of cis-gnetin H on the weight of nude mice. Four-week old nude mice treated with cis-gnetin or vehicle control every two days for 26 days. Error bars indicate SDs from 5 individual mice. **P<0.01. -
FIG. 7 shows the determination of the IC50 (μM) values of cis-gnetin H and trans-gnetin H against cancer and normal cell lines in vitro. A serial dilution of cis- or trans-gnetin H were used to treat four human malignant cell lines, A549, BT20, MCF-7 and U2OS, respectively, for 48 hours and cell viability was assessed using an AlamarBlue fluorescent assay. Two normal human cell lines, HPL1A and HMEC, served as controls. Values are means ±SD of 3 independent experiments. -
FIG. 8 shows HCS images showing simultaneous monitoring of changes in nuclear size, cell permeability, and mitochondrial trans-membrane potential. A549 cells were treated with 100 μM cis- or trans-gnetin H, for 24 hrs (A) and 48 hrs (B), respectively, or were treated with 100 μM valinomycin as a positive control. -
FIG. 9 shows the cytotoxic effect of cis- and trans-gnetin H on PMA-differentiated THP-1 macrophages. PMA-differentiated THP-1 cells were treated with various concentrations of cis- or trans-gnetin H and tested for relative viability using Alamar Blue assay. Cells were treated with cis-gnetin H at 3, 6, 13, 25, 50, 100 μM for 24 h and pretreated with 13, 25, 50 μM for 1 h with 20 ng/ml of LPS stimulation for 4 h to determine relative viability against untreated control (A). Cells were treated with trans-gnetin H at 3, 6, 13, 25, 50, 100 μM for 24 h and pretreated with 8, 15, 30 μM for 1 h with 20 ng/ml of LPS for 4 h to determine relative viability against untreated control (B). The viability assay was repeated in at least 3 independent experiments. -
FIG. 10 shows cis- and trans-gnetin H inhibit TNF-α, IL-1β, and IL-8, responses in LPS-stimulated THP-1 cells. PMA-differentiated THP-1 cells were pretreated with 12.5, 25, and 50 μM of cis-gnetin H or 8, 15, 30 μM of trans-gnetin H for 1 h and stimulated with 20 ng/ml of LPS for 4 h. The concentration of TNF-α (A and D), IL-1β (B and E), and IL-8 (C and F) in supernatants was determined by ELISA. Results are presented as the mean ±SEM for triplicate measurements of at least 3 independent experiments. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 compared with LPS-treated group. -
FIG. 11 shows the TNF-α IC50 curves of cis- and trans-gnetin H. PMA-differentiated THP-1 cells were pretreated with various concentrations of cis-(A) or trans (B)-gnetin H for 1 h and stimulated with LPS for 4 h. Supernatants were tested for human TNF-α ELISA. The IC50 curves were obtained using Graphpad Prism. IC50 value of cis-gnetin H was 19 μM and IC50 value of trans-gnetin H was 6 μM. -
FIG. 12 shows the effects of cis- and trans-gnetin H on NF-κB transcription factor nuclear translocation. PMA-differentiated cells were treated with cis-gnetin H at 50 04, trans-gnetin H at 30 μM, or Bay 11-7082 at 10 μM for 1 h and stimulated with 100 ng/ml LPS for 30 min. The transcription factor p65 was stained with rabbit anti-p65 followed by Dylight 488-conjugated secondary antibody (green fluorescence) and Hoechst 33342 dye (blue fluorescence), sequentially (A). The numeric index of nuclear fluorescence of p65 was collected using Nuclear Translocation Bioapplication software on the Arrayscan VTI reader (B). -
FIG. 13 shows the effects of cis- and trans-gnetin H on IKK β, IκB α, and p65 in NF-κB pathway. PMA-differentiated cells were pretreated with 12.5, 25, and 50 μM of cis-gnetin H or 7.5, 15, and 30 μM of trans-gnetin H for 1 h and stimulated with 1 g/ml of LPS for 15 min. Phosphorylated IκB α (Ser32) and total IκB α (A), and phosphorylated p65 (Ser536) and total p65 (B), phosphorylated (Ser176/180) IKK-β and total IKK-α β (C) were measured by Western blotting. Data are represented as the mean ±SEM for at least three independent experiments. *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001 compared with LPS-treated group. -
FIG. 14 shows a schematic of the NF-κB pathway, its role in inflammation, and a potential mechanism underlying the anti-inflammatory effect of cis- and trans-gnetin H. - The present invention provides compounds, compositions and methods relating to cis-gnetin H and/or trans-gnetin H, including modifications, derivatives and conjugates thereof, and their use as a prophylactic or therapeutic agent, for example, to prevent or treat the cancers or precancerous conditions, to inhibit, slow or reverse the growth of tumors, or to prevent or treat inflammation, autoimmune disease and/or inflammatory disease. cis-gnetin H and trans-gnetin H can be isolated or extracted from naturally occurring sources or can be chemically or enzymatically synthesized. cis-gnetin H and/or trans-gnetin H can be administered alone or in combination with other therapeutics via a variety of routes of administration. We have found that cis-gnetin H and trans-gnetin H have significant potential as anticancer agents. For example, we have shown that cis-gnetin H can prevent the growth of bone, breast and lung cancer cell lines with IC50 values ranging from 2.80-10.04 uM. In a mouse xenograft lung tumor model, cis-gnetin H worked as well as the routinely utilized anticancer agent, staurosporine, and was significantly better at reducing the sizes of large tumors. We have also shown that cis-gnetin H is the more stable of the two isomers and that trans-gnetin H is converted to cis-gnetin H by photooxidation. Further, based upon the results shown in Example 1, cis-gnetin H is expected to show less toxicity than other commonly employed chemotherapeutic agents, such as staurosporine and 5-fluorouracil (see Example 1 and, for example, Cyr et al., Anticancer Res. 28: 2753-2764 (2008)). Lower toxicity allows cis-gnetin H to be administered at higher doses than other chemotherapeutic agents.
- We have also found that cis-gnetin H and trans-gnetin H have significant potential as immunomodulatory agents. For example, we have shown that cis- and trans-gnetin H significantly inhibited cytokine responses without affecting cell viability. cis- and trans-gnetin H also effectively inhibited the nuclear translocation of p65 and inhibited the phosphorylation of IKK-β, IκB α, as well as p65. cis- and trans-gnetin H may exert anti-inflammatory or immunomodulatory effects by suppressing the key signaling molecule involved in the NF-κB pathway.
- cis-gnetin H and trans-gnetin H
- cis-gnetin H and trans-gnetin H are resveratrol trimers, originally thought to exist in only one form, trans-gnetin H, previously referred to in the art simply as “gnetin H.” See He et al., Chem. Pharm. Bull. 58(6) 843-847 (2010); Kim et al., Arch. Pharm. Res. 25(3):293-9 (002); Choi et al., Planta Med. 77:374-376 (2011). The structures are shown below:
- Under photooxidation conditions, trans-gnetin H converts to cis-gnetin H. Surprisingly, cis-gnetin H was found to be more stable than trans-gnetin H. This increased stability allows for easier storage, transport, formulation, and administration. Because it is more stable, the cis form may also prove to be easier to synthesize.
- The invention includes purified and partially purified forms of cis-gnetin H and trans-gnetin H, as well as crude plant extracts that contain cis-gnetin H and/or trans-gnetin H.
- Also included in the invention are synthetic derivatives of cis-gnetin H and trans-gnetin H. Derivatives include, but are not limited to, alkylated (e.g., methylated), hydroxylated, sulfated and amino derivatives of cis-gnetin H and trans-gnetin H.
- It is known that the biological activities of cis- and trans-isomers of naturally occurring compounds may differ (see, e.g., Zhao et al., Acta Phys.-Chim. Sin. 2013, 29(1), 43-54; Anisimova et al., Chem. Cent. J. 2011, 5:88; Pettit et al., J. Nat. Prod.,72:1637-1642)); thus, it was not known in advance whether cis-gnetin H would exhibit the anti-cancer and anti-tumor properties described in Example I. Moreover, not all naturally occurring stilbenes or their derivatives have anti-cancer or anti-tumor activity. See, for example Kim et al., Arch. Pharm. Res. 25(3) 293-299 (2002), and Kim et al., Biosci. Biotechnol. Biochem., 66(9): 1990-1993 (2002). Additionally, it was not known in advance whether either or both isomers would exhibit the anti-inflammatory or immunomodulatory properties described Example 3.
- Isolation or synthesis of cis-gnetin H and trans-gnetin H
- cis-gnetin H and trans-gnetin H can be extracted and/or isolated from peony plants (genus Paeonia), including but not limited to Paeonia suffruticosa, Paeonia lactiflora, or Paeonia anamola. cis-gnetin H and trans-gnetin H can also be found in other plants, such as the leaf and stem of Vitis amurensis, also known as the Amur grape. Any convenient plant part can serve as a source of cis-gnetin H and trans-gnetin H including, without limitation, the seeds, leaves, stems, roots, or flowers. In a preferred embodiment, cis-gnetin H and/or trans-gnetin H obtained from a root or seed extract of Paeonia suffruticosa or Paeonia lactiflora.
- cis-gnetin H can be produced from photochemical transformation of trans-gnetin H. For example, trans-gnetin H can be photooxidized for at least 30 minutes, 45 minutes, 60 minutes, 90 minutes, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 12 hours, 24 hours, 48 hours, or 72 hours. Photooxidation can take place with light source such as a fluorescent lamp and optionally a photoactivating compound.
- It is expected that cis-gnetin H and trans-gnetin H can be enzymatically synthesized using the appropriate plant enzymes. In one embodiment, resveratrol may be a starting material.
- Optionally, a stilbene synthase can be used, and additional co-factors can also be introduced, including but not limited to, malonyl-coenzyme A (CoA) and p-coumaroyl-CoA (Aggarwal et al., 2004, Anticancer Res. 24:2783-2840).
- The present invention also provides a pharmaceutical composition that includes, as an active agent, at least one of cis-gnetin H, trans-gnetin H, a synthetic derivative thereof, or a combination thereof, and a pharmaceutically acceptable carrier. The active agent is formulated in a pharmaceutical composition and then, in accordance with the method of the invention, administered to a subject, such as a human or veterinary subject, in a variety of forms adapted to the chosen route of administration. The formulations include, but are not limited to, those suitable for oral, rectal, vaginal, topical, nasal, ophthalmic or parental (including subcutaneous, intramuscular, intraperitoneal, intratumoral, and intravenous) administration.
- The pharmaceutically acceptable carrier can include, for example, an excipient, a diluent, a solvent, an accessory ingredient, a stabilizer, a protein carrier, or a biological compound. Nonlimiting examples of a protein carrier includes keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA), ovalbumin, or the like. Nonlimiting examples of a biological compound which can serve as a carrier include a glycosaminoglycan, a proteoglycan, and albumin. The carrier can be a synthetic compound, such as dimethyl sulfoxide or a synthetic polymer, such as a polyalkyleneglycol. Ovalbumin, human serum albumin, other proteins, polyethylene glycol, or the like can be employed as the carrier. In a preferred embodiment, the pharmaceutically acceptable carrier includes at least one compound that is not naturally occurring or a product of nature.
- In some embodiments, the active agent cis-gnetin H, trans-gnetin H, and/or synthetic derivative thereof is optionally formulated in combination with one or more additional active agents. In some embodiments, the pharmaceutical composition of the invention contains a first active agent that includes cis-gnetin H, trans-gnetin H, and/or a synthetic derivative thereof, and a second active agent that can include one or more of, for example, an anticancer agent, antiangiogenic agent, a chemopreventive agent, an anti-inflammatory agent, a cytokine, a chemokine, a therapeutic antibody, an immunogen, an antigen, an adjuvant, or an antioxidant, an immunomodulatory compound, a biologic compound, an antineoplastic agent, or a chemotherapeutic agent. More generally, any known therapeutic or prophylactic agent can be included as additional active agent. The action of the additional active agent in the combination therapy can be cumulative to the cis-gnetin H, trans-gnetin H or it can be complementary, for example to manage side effects or other aspects of the patient's medical condition.
- An exemplary multicomponent composition is a vaccine. A vaccine contains at least one immunogenic or antigenic component, and a pharmaceutically acceptable carrier. Optionally, a vaccine includes one or more adjuvants. cis-gnetin H, trans-gnetin H, and/or a derivative thereof can be included in a vaccine composition to ameliorate, reduce, or eliminate a reactogenic inflammatory response in the subject to whom the vaccine is administered. Inclusion of cis-gnetin H, trans-gnetin H, and/or derivatives thereof in vaccine formulations may reduce reactogenicity, particularly in live virus vaccines. See Athearn et al., PLoS One. 2012; 7(10):e46516. doi: 10.1371/journal.pone.0046516. Epub 2012 Oct. 8; Lewis et al., J Immunol Res. 2015; 2015:909406. Epub 2015 Aug. 25). More generally, cis-gnetin H, trans-gnetin H, and/or derivatives thereof can be co-administered with therapeutic agents that might otherwise trigger inflammation, particularly in sensitive, ill or vulnerable individuals, such as the very young or very old, in order to reduce the extent of the inflammatory response.
- A pharmaceutical composition of the invention preferably includes at least one compound that is not naturally occurring or a product of nature. In a particularly preferred embodiment, the pharmaceutical composition includes at least one non-naturally occurring therapeutic or prophylactic agent.
- In some embodiments, the pharmaceutical composition contains purified cis-gnetin H and/or trans-gnetin H or a derivative thereof; in other embodiments, the pharmaceutical composition can contain a partially purified plant extract that contains cis-gnetin H and/or trans-gnetin H.
- The formulations may be conveniently presented in unit dosage form and may be prepared by any of the methods well-known in the art of pharmacy. All methods include the step of bringing the active agent into association with a pharmaceutical carrier. In general, the formulations are prepared by uniformly and intimately bringing the active compound into association with a liquid carrier, a finely divided solid carrier, or both, and then, if necessary, shaping the product into the desired formulations.
- Formulations of the present invention suitable for oral administration can be presented as discrete units such as tablets, troches, capsules, lozenges, wafers, or cachets, each containing a predetermined amount of the active agent as a powder or granules, as liposomes, or as a solution or suspension in an aqueous liquor or non-aqueous liquid such as a syrup, an elixir, an emulsion, or a draught. The tablets, troches, pills, capsules, and the like can also contain one or more of the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; an excipient such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid, and the like; a lubricant such as magnesium stearate; a sweetening agent such as sucrose, fructose, lactose, or aspartame; and a natural or artificial flavoring agent. When the unit dosage form is a capsule, it can further contain a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials can be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules can be coated with gelatin, wax, shellac, sugar, and the like. A syrup or elixir can contain one or more of a sweetening agent, a preservative such as methyl- or propylparaben, an agent to retard crystallization of the sugar, an agent to increase the solubility of any other ingredient, such as a polyhydric alcohol, for example glycerol or sorbitol, a dye, and flavoring agent. The material used in preparing any unit dosage form is substantially nontoxic in the amounts employed. The active agent can be incorporated into sustained-release preparations and devices.
- Formulations suitable for parenteral administration conveniently include a sterile aqueous preparation of the active agent, or dispersions of sterile powders of the active agent, which are preferably isotonic with the blood of the recipient. Parenteral administration of cis-gnetin H and/or trans-gnetin H (e.g., through an I.V. drip) is one form of administration. Isotonic agents that can be included in the liquid preparation include sugars, buffers, and sodium chloride. Solutions of the active agent can be prepared in water, optionally mixed with a nontoxic surfactant. Dispersions of the active agent can be prepared in water, ethanol, a polyol (such as glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, glycerol esters, and mixtures thereof. The ultimate dosage form is sterile, fluid, and stable under the conditions of manufacture and storage. The necessary fluidity can be achieved, for example, by using liposomes, by employing the appropriate particle size in the case of dispersions, or by using surfactants. Sterilization of a liquid preparation can be achieved by any convenient method that preserves the bioactivity of the active agent, preferably by filter sterilization. Preferred methods for preparing powders include vacuum drying and freeze drying of the sterile injectable solutions. Subsequent microbial contamination can be prevented using various antimicrobial agents, for example, antibacterial, antiviral and antifungal agents including parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. Absorption of the active agents over a prolonged period can be achieved by including agents for delaying, for example, aluminum monostearate and gelatin.
- Nasal spray formulations include purified aqueous solutions of the active agent with preservative agents and isotonic agents. Such formulations are preferably adjusted to a pH and isotonic state compatible with the nasal mucous membranes. Formulations for rectal or vaginal administration can be presented as a suppository with a suitable carrier such as cocoa butter, or hydrogenated fats or hydrogenated fatty carboxylic acids. Ophthalmic formulations are prepared by a similar method to the nasal spray, except that the pH and isotonic factors are preferably adjusted to match that of the eye. Topical formulations include the active agent dissolved or suspended in one or more media such as mineral oil, petroleum, polyhydroxy alcohols, or other bases used for topical pharmaceutical formulations.
- Administration of cis-gnetin H and trans-gnetin H
- The active agents cis-gnetin H, trans-gnetin H, and/or synthetic derivatives thereof can be administered to a subject alone or in a pharmaceutical composition that includes the active agent and a pharmaceutically acceptable carrier. cis-gnetin H and/or trans-gnetin H, or derivatives thereof, can be introduced into the subject either systemically or at the site of a cancer tumor or inflammation. The active agent is administered to a human or animal subject, including a domestic or domesticated mammal or other animal, in an amount effective to produce the desired effect. cis-gnetin H and/or trans-gnetin H, or derivatives thereof, can be administered in a variety of routes, including orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraoccularly, via local delivery by catheter or stent, subcutaneously, intraadiposally, intraarticularly, intrathecally, or in a slow release dosage form. Local administration can include topical administration, administration by injection, or perfusion or bathing of an organ or tissue, for example.
- The formulations can be administered as a single dose or in multiple doses. Useful dosages of the active agents can be determined by comparing their in vitro activity and the in vivo activity in animal models. Methods for extrapolation of effective dosages in mice, and other animals, to humans are known in the art.
- In some embodiments, a mixture of the cis/trans isomers, cis-gnetin H and trans-gnetin H, or derivatives thereof, can be administered to a subject. For example, the extracted, isolated, purified, or synthesized cis-gnetin H can be present in a mixture that also includes trans-gnetin H, such that cis-gnetin H is at least 50% of the total cis- and trans-gnetin H, more particularly at least 60%, 70%, 80%, 85%, 90%, 95%, or 99% of the total cis- and trans-gnetin H. Analogously, the extracted, isolated, purified, or synthesized trans-gnetin H can be present in a mixture that also includes cis-gnetin H, such that trans-gnetin H is at least 50% of the total cis- and trans-gnetin H, more particularly at least 60%, 70%, 80%, 85%, 90%, 95%, or 99% of the total cis- and trans-gnetin H. The relative amounts of cis- and trans-isomers in the mixture may be specified based upon the prophylactic or therapeutic use of the resulting compositions. The relative amounts of cis-gnetin H and total cis- and trans-gnetin H can be measured by high-performance liquid chromatography (HPLC). In other embodiments, cis-gnetin H that is administered to a subject can be substantially or completely free of trans-gnetin H; or trans-gnetin H that is administered to a subject can be substantially or completely free of cis-gnetin H.
- Dosage levels of the active agent, including but not limited to cis-gnetin H, in the pharmaceutical compositions of this invention can be varied so as to obtain an amount of the active agent which is effective to achieve the desired therapeutic response for a particular subject, composition, and mode of administration, without being toxic to the subject. The selected dosage level will depend upon a variety of factors including the activity of the particular compound of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the cis- and/or trans-gnetin H, or derivatives thereof, the age, sex, weight, condition, general health and prior medical history of the subject being treated, and like factors well known in the medical arts.
- Dosages and dosing regimens that are suitable for resveratrol and other stilbenoids are likewise suitable for therapeutic or prophylactic administration of cis-gnetin H and/or trans-gnetin H or derivatives thereof. For example, purified cis-gnetin H and/or trans-gnetin H or derivatives thereof, can be administered orally in an amount of between 10 mg and 100 mg per day, as a medication, nutritional supplement, or food additive. As another example, cis-gnetin H and/or trans-gnetin H, or derivatives thereof, can be administered in dosages ranging from 0.01 mg/kg to 10 mg/kg body weight, or higher; or in a form sufficient to provide a daily dosage of 0.03 mg/kg body weight to about 10 mg per/kg body weight of the subject to which it is to be administered. See, e.g., US Pat. Publ. 20080262081 for nutraceutical compositions, dosing information and methods relating to resveratrol that are equally applicable to cis-gnetin H and/or trans-gnetin H, or derivatives thereof.
- cis-gnetin H and/or trans-gnetin H, or derivatives thereof, can also be administered as an extract obtained from a plant source, such as a seed. Dosages and dosing regimens that are suitable for melinjo seed extract and other seed extracts are likewise suitable for therapeutic prophylactic administration of plant extracts containing cis-gnetin H and trans-gnetin H. For example, between 20 and 1000 mg/day can be administered as a powdered extract in loose, capsule or tablet form. See, e.g., Konno et al., Evidence-Based Complementary and Alternative Medicine, Volume 2013 (2013), Article ID 589169, 9 pages; http://dx.doi.org/10.1155/2013/589169; Tani et al., J. Agric. Food Chem, 62(8):1999-2007 (2014).
- A physician having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical composition required. For example, the physician could start doses of cis-gnetin H and/or trans-gnetin H, or derivatives thereof, utilized in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
- trans-gnetin H has been shown by others to inhibit the growth of various tumor cell lines, but the efficacy of cis-gnetin H against tumor cell lines was unknown prior to the present work. Additionally, neither trans-gnetin H nor cis-gnetin H has, to our knowledge, been evaluated in any animal studies until now. Example I demonstrates that cis-gnetin H and trans-gnetin H have significant anticancer activity.
- The invention therefore provides a method for treating or preventing cancer or a precancerous condition in a subject, and/or inhibiting or reversing tumor growth in a subject, by administering to a subject a composition comprising cis-gnetin H, trans-gnetin H and/or a derivative thereof, in an amount effective to treat or prevent the cancer or precancerous condition, or inhibit or reverse growth of the tumor. Administration of the composition can be performed before, during, or after a subject develops cancer, a precancerous condition or a tumor.
- In one embodiment, the method is a therapeutic method for treating a subject suffering from a cancer or a precancerous condition by administering cis-gnetin H, trans-gnetin H, and/or derivatives thereof, to the subject in an amount effective to treat the cancer or precancerous condition. In another embodiment, the therapeutic method includes administering cis-gnetin H trans-gnetin H, and/or derivatives thereof, to a subject who has a tumor, in an amount effective to inhibit, slow, or reverse growth of the tumor. Therapeutic treatment is initiated after the development of cancer, a precancerous condition, or a tumor. Treatment initiated after the development of cancer may result in decreasing the severity of the symptoms of one of the conditions, or completely removing the symptoms. Advantageously, cis-gnetin H is particularly well-suited for the treatment of fast-growing tumors and metastatic cancers.
- In another embodiment, cis-gnetin H, trans-gnetin H, and/or derivatives thereof are administered prophylactically, e.g., as a chemopreventive agent, in an amount effective to prevent or delay the development of cancer or a precancerous condition in a subject. Treatment that is prophylactic, for instance, can be initiated before a subject develops cancer or manifests cancer symptoms. An example of a subject that is at particular risk of developing cancer is a person having a risk factor, such as a genetic marker, that is associated with the disease. Examples of genetic markers indicating a subject has a predisposition to develop certain cancers include alterations in the BRAC1 and/or BRAC2 genes (breast, prostate, or colon cancer) and HPC1 (prostate cancer).
- The method of the invention can be used to treat a variety of cancerous or precancerous conditions, including tumors or dysplasia. A tumor can be a solid tumor, such as a carcinoma, a sarcoma, or a lymphoma, and can be present, for example, in the bone, brain, breast, cervix, larynx, lung, pancreas, prostate, skin, spine, stomach, or uterus. The cancer treated by the method of the invention can also be a blood cancer, such as a leukemia. The dysplasia can be an epithelia dysplasia. The tumor can made up of tumor cells, including lymphoid and myeloid cancers; multiple myeloma; cancers of the bone, breast, prostate, stomach, colon, pancreas, and thyroid; melanoma; head and neck squamous cell carcinoma; ovarian carcinoma; and cervical carcinoma.
- Administration of cis-gnetin H, trans-gnetin H, and/or derivatives to treat or prevent cancer, a precancerous condition, or to inhibit or reverse tumor growth, thereof can occur before, during, and/or after other treatments. Such combination therapy can involve the administration of cis-gnetin H, trans-gnetin H, and/or derivatives thereof before, during and/or after the use of other anti-cancer agents, for example, chemotherapeutic agents or radiation or both. It is expected that cis-gnetin H, trans-gnetin H, and/or derivatives thereof may potentiate the effects of cytokines, chemotherapeutic agents, or gamma radiation (see, e.g., Aggarwal et al., Anticancer Research, 2004; 24:2783-2840). The administration of cis-gnetin H, trans-gnetin H, and/or derivatives thereof can be separated in time from the administration of additional anti-cancer agents or other therapeutic agents by hours, days, or even weeks; alternatively, they can be administered concurrently, either together in the same composition or in separate compositions. Additionally or alternatively, the administration of cis-gnetin H, trans-gnetin H, and/or derivatives thereof can be combined with other biologically active agents or modalities such as, but not limited to, an antineoplastic agent, and non-drug therapies, such as, but not limited to, surgery. A preferred method involves the administration of cis-gnetin H which is shown in Example 1 to be a more potent anticancer agent than its stereoisomer, trans-gnetin H.
- Chronic inflammation is known to be associated with a wide variety of diseases and disorders, for example autoimmune disease such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), obesity, diabetes, infectious diseases, inflammatory atherosclerosis, cancer, depression, heart disease, stroke, and Alzheimer's Disease. Inflammation can be chronic or acute; systemic or localized; autoimmune or associated with an infection caused by an exogenous agent. An autoimmune response is generally characterized as an immune response directed against a self-antigen. Inflammation caused by an exogenous agent, on the other hand, includes inflammation caused by an infectious agent or a pathogen such as a virus, bacteria, fungus, protist, plant, or other organism. Pathogenic bacteria known to induce a chronic inflammatory response include Chlamydophila pneumoniae and Porphyromonas gingivalis (http://www.bumc.bu.edu/gencolab/research/pathogen-induced-chronic-inflammatory-disorders/).
- Inflammatory conditions and autoimmune diseases can be treated or prevented using immunomodulators or biologics, or both. Immunomodulators are compounds that weaken or modulate the activity of the immune system, which may in turn decrease the inflammatory response. Immunomodulators are used in organ transplantation to prevent rejection of the new organ, and to treat or manage autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease, which appears to be caused by an overactive immune system. Exemplary immunomodulators include azathioprine (available under the tradenames IMURAN and AZASAN), 6-mercaptopurine (6-MP, available under the tradename PURINETHOL), cyclosporine A (available under the tradenames SANDIMMUNE and NEORAL), tacrolimus (available under the tradename PROGRAF), and methotrexate (amethopterin, available under the tradenames MTX, RHEUMATREX, and MEXATE) are exemplary immunomodulators. However immunomodulators are known to be accompanied by numerous side effects, including headache, nausea, vomiting, diarrhea, and malaise (general feeling of illness), pancreatitis (inflammation of the pancreas), bone marrow suppression, which may increase the risk of infection or serious bleeding, decreased kidney function, hepatitis, diabetes, increased cholesterol levels, sleep problems, mild tremor, high blood pressure, swollen gums, tingling of the fingers and feet, increased facial hair, and increased risk of lymphoma (a cancer of the lymphatic system), low white blood cell count, scarring of the liver and lung inflammation.
- Whereas immunomodulators decrease the body's immune response, which appears to be responsible causing the inflammation and damage associated with it, biologics are genetically engineered drugs that specific target proteins or other molecules involved in the inflammatory process. For example, certain biologics block tumor necrosis factor-alpha, or TNF-α. TNF-α is an inflammatory cytokine that is present in elevated levels in diseases such as inflammatory bowel disease, and plays a central role in the inflammatory response and damage to the GI tract that leads to symptoms. These biologics neutralize TNF-α's ability to cause inflammation. Biologics also have serious side effects, however, such as increased risk of mild to severe infection—from the common cold to tuberculosis (TB) and hepatitis B, and increased risk of certain types of lymphoma, non-melanoma skin cancer, a lupus-like reaction, and exacerbation of pre-existing heart failure. Three of the most widely used medications, infliximab (available under the tradename REMICADE), adalimumab (available under the tradename HUMIRA) and etanercept (available under the tradename ENBREL) are antibodies (a type of “biologic” drug) that act by binding to the cytokine tumor necrosis factor (TNF-α). Unfortunately all three drugs come with a FDA black box warning and have caused numerous problems and even death in patients. Moreover, these drugs also only block the action of one cytokine (TNF-α). Other biologics in current use for management of conditions such as rheumatoid arthritis or inflammatory bowel disease include tocilizumab (available under the tradename ACTEMRA) certolizumab pegol (available under the tradename CIMZIA), anakinra (available under the tradename KINERET), abatacept (available under the tradename ORENCIA) rituximab (available under the tradename RITUXAN) and golimumab (available under the tradename SIMPONI). There is therefore a clear need for safe immunomodulatory agents for treating autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease.
- It has been found that both cis- and trans-gnetin H can act as immunomodulators for treating or preventing immune-based diseases or conditions, including autoimmune disease. Example 3 demonstrates that cis-gnetin H and trans-gnetin H have significant anti-inflammatory activity. Moreover, cis- and trans-gnetin H act at a much earlier step in the cytokine pathway than the biologics in current use, and block the release of multiple cytokines, a clear advantage over these biologics. Example 3 shows that trans-gnetin H may be preferred as an immunomodulator over its stereoisomer cis-gnetin H; however, either or both compounds, or their derivatives, are suitable for use as an immunomodulator.
- Compositions that include cis-gnetin H, trans-gnetin H and/or derivatives thereof can thus be used to prevent, inhibit, treat, or control inflammation. These compositions are useful to treat a variety of diseases, disorders, and conditions characterized by or associated with inflammation, including but not limited to autoimmune diseases.
- Accordingly, the invention provides a method for treating or preventing inflammation and/or autoimmune disease in a subject by administering to a subject a composition comprising cis-gnetin H, trans-gnetin H and/or a derivative thereof, in an amount effective to treat or prevent inflammation and/or autoimmune disease Administration of the composition can be performed before, during, or after a subject develops an inflammatory condition or autoimmune disease, or manifests inflammation or symptoms of inflammation or autoimmune disease.
- In one embodiment, the method is a therapeutic method for treating a subject suffering from inflammation and/or autoimmune disease by administering cis-gnetin H, trans-gnetin H, and/or derivatives thereof, to the subject in an amount effective to treat the inflammation or autoimmune disease. Therapeutic treatment is initiated after the development of inflammation and/or autoimmune disease. Treatment initiated after the development of an inflammatory condition or autoimmune disease, or after manifestation of inflammation or symptoms of inflammation, may result in decreasing the severity of the symptoms of one of the conditions, or completely removing the symptoms.
- In another embodiment, cis-gnetin H, trans-gnetin H, and/or derivatives thereof are administered prophylactically in an amount effective to prevent or delay the development of inflammation and/or autoimmune disease in a subject. Treatment that is prophylactic, for instance, can be initiated before a subject develops an inflammatory condition or autoimmune disease, or manifests inflammation or symptoms of inflammation or autoimmune disease. An example of a subject who is at particular risk of developing inflammation or autoimmune disease is a person having a risk factor, such as a genetic marker, that is associated with inflammatory disease or autoimmune disease, or a person who has recently received a transplant. Another example is a subject who is suffering from a disease associated with inflammation, but who has not developed an inflammatory response.
- Examples of diseases, disorders or conditions that can be treated or prevented by the composition of the invention include, without limitation, rheumatoid arthritis (RA), inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis, idiopathic orbital inflammation, plaque psoriasis, psoriatic arthritis, ankylosing spondylitis, juvenile idiopathic arthritis, lupus, myasthenia gravis, focal segmental glomerulosclerosis, macrophage activation syndrome, non-Hodgkin's lymphoma, chronic lymphoid leukemia, precursor lymphoblastic lymphoma, familial Mediterranean fever (FMF), neonatal onset multisystem inflammatory disease (NOMID), tumor necrosis factor receptor-associated periodic syndrome (TRAPS), deficiency of the interleukin-1 receptor antagonist (DIRA), and Behcet's disease.
- Additional inflammatory disorders that can be treated or prevented using the method of the invention include, for example, transplant rejection, graft vs. host disease, asthma, allergic reactions, chronic prostatitis, pelvic inflammatory disease, glomerulonephritis, reperfusion injury, and vasculitis; others include obesity, diabetes, infectious diseases, cancer, depression, heart disease, stroke, and Alzheimer's Disease. Diseases, conditions or disorders characterized by inflammation may include the suffix “itis,” and it is expected that any disease, disorder, or condition having “itis” as part of its name can be treated or prevented using the composition of the invention. Inflammation also plays an important role in the pathogenesis of atherosclerosis. The link between rheumatoid arthritis and an increased risk of cardiovascular disease and mortality is well established. Thus, cis-gnetin H, trans-gnetin H and derivatives thereof are useful for treating cardiovascular disease associated with or caused by other inflammatory conditions.
- Administration of cis-gnetin H, trans-gnetin H, and/or derivatives thereof can occur before, during, and/or after other treatments. Such combination therapy can involve the administration of cis-gnetin H, trans-gnetin H, and/or derivatives thereof before, during and/or after the use of other anti-inflammatory agents, for example, non-steroidal anti-inflammatory drugs, corticosteroids, TNF-α blockers, and other active agents as described herein for cumulative therapy or reduction or elimination of side effects. In a particularly preferred embodiment, the invention contemplates combination therapy that employs, in addition to cis-gnetin H, trans-gnetin H, and/or a derivative thereof, one or more immunomodulators and/or one or more biologics to treat patients with autoimmune diseases such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. The therapeutic and prophylactic methods of the invention therefore encompass administration of a pharmaceutical composition that contains a first active agent that includes, as an immunomodulatory compound, cis-gnetin H, trans-gnetin H, and/or a synthetic derivative thereof, and a second active agent that includes at least one of an immunomodulatory compound (in addition to the cis-gnetin H, trans-gnetin H, and/or a synthetic derivative thereof) and/or a biologic compound. The second active agent include one or more compounds selected from, without limitation, azathioprine, 6-mercaptopurine, cyclosporine A, tacrolimus, methotrexate, amethopterin, prednisone, prednisolone, infliximab, adalimumab, etanercept, tocilizumab, certolizumab pegol, anakinra, abatacept, rituximab, and golimumab.
- The administration of cis-gnetin H, trans-gnetin H and/or derivatives thereof can be separated in time from the administration of other active agents, such as additional immunomodulatory agents and/or biologics, by hours, days, or even weeks; alternatively, the other active agents can be administered concurrently, either together in the same composition or in separate compositions. Additionally or alternatively, the administration of cis-gnetin H, trans-gnetin H and/or derivatives thereof can be combined with other biologically active agents or modalities such as, for example, anti-inflammatory chemotherapeutic agents, and non-drug therapies, such as, but not limited to, radiotherapy, heat therapy, cryotherapy, electrical therapy, massage, and acupuncture.
- Any of the compositions or methods described herein that include cis-gnetin H, trans-gnetin H, and/or derivatives thereof can be used in veterinary applications. Veterinary uses in domestic or domesticate animals (including small animals such as cats, dogs, and other pets, as well as large animals such as cows, horses, pigs, and other livestock), as well as wild animals (e.g., animals housed in zoos) to treat or prevent cancer or a precancerous conditions, or to treat or prevent inflammation or otherwise modulate an animal's immune response, are examples of contemplated applications. Exemplary compositions for veterinary use may contain, in addition cis-gnetin H, trans-gnetin H, and/or derivatives thereof as described herein, routine vaccine components such as those included in vaccinations for distemper, rabies, feline leukemia, and other animal diseases, as well as other medications, thereby allowing cis-gnetin H, trans-gnetin H, and/or derivatives thereof to be co-administered with substances that might otherwise trigger inflammation, particularly in sensitive, diseased or vulnerable animals, such as the very young or very old.
- The invention further includes a kit that contains at least one of cis-gnetin H, trans-gnetin H, and/or a derivative thereof, together with instructions for use. In some embodiments, the instructions for use provide instructions for use in the treatment or prevention of cancer, a precancerous condition, a tumor, inflammation, or an inflammatory and/or autoimmune disease disorder or condition. Optionally, the kit includes a pharmaceutically acceptable carrier. The carrier may be separately provided, or it may be present in a composition that includes cis-gnetin H, trans-gnetin H, and/or a derivative thereof. Optionally, the kit may further include one or more additional active agents which can be co-administered with the cis-gnetin H, trans-gnetin H, and/or derivatives thereof The one or more active agents may have cumulative or complementary activities, as described in more detail elsewhere herein.
- cis-gnetin H and/or trans-gnetin H, and/or derivatives thereof, can be packaged as a nutritional, health or dietary supplement (e.g., in pill or capsule form). Additionally, cis-gnetin H and/or trans-gnetin H, and/or derivatives thereof, can be added to a food product to yield what is commonly referred to as a “nutriceutical” food or “functional” food. Foods to which cis- gnetin H and trans-gnetin H can be added include, without limitation, cereals, soups and beverages. In one embodiment, cis-gnetin H, trans-gnetin H, and/or a derivative thereof is formulated as a nutritional supplement or food additive for domestic or domesticated animals, such as pets or livestock. Conveniently, cis-gnetin H, trans-gnetin H, and/or a derivative thereof can be incorporated into animal feed such as fodder and kibble.
- The words “preferred” and “preferably” refer to embodiments of the invention that may afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the invention.
- The terms “comprises” and variations thereof do not have a limiting meaning where these terms appear in the description and claims.
- Unless otherwise specified, “a,” “an,” “the,” and “at least one” are used interchangeably and mean one or more than one.
- Also herein, the recitations of numerical ranges by endpoints include all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.).
- For any method disclosed herein that includes discrete steps, the steps may be conducted in any feasible order. And, as appropriate, any combination of two or more steps may be conducted simultaneously.
- The present invention is illustrated by the following examples. It is to be understood that the particular examples, materials, amounts, and procedures are to be interpreted broadly in accordance with the scope and spirit of the invention as set forth herein.
- Two resveratrol oligomers, cis-gnetin H and trans-gnetin H, purified from the seeds of Paeonia suffruticosa have superior activity in inhibiting the proliferation of four human cancer cell lines, A549 (lung), BT20 (breast), MCF-7 (breast) and U2OS (osteosarcoma), and promote cell apoptosis, while having a minimal effect on two normal human epithelial cell lines, HPL1A (lung) and HMEC (breast) used as controls. 10 μM cis-gnetin H or trans-gnetin H caused a dramatic reduction in the cell viability of the four cancer cell lines. The two resveratrol oligomers promote apoptosis by releasing mitochondria cytochrome c, activating
caspase 3/7 and inhibiting NF-κB activation. Flow cytometry analysis showed that cis-gnetin H or trans-gnetin H arrested the cell cycle of cancer cells at the G0-G1 phase. Moreover, cis-gnetin H suppressed the growth of xenograft lung tumors in mice. Collectively, our findings demonstrate the promise of the natural compounds cis-gnetin H and trans-gnetin H as candidates for cancer chemotherapy. See Gao et al., 2015, J. Ethnopharmacol., 169:24-33. - Much attention has been focused on developing or identifying novel resveratrol derivatives as an important approach for enhancing its bioavailability and bio-efficacy. For instance, Lee et al. showed that ging A, a tetramer of resveratrol, had better inhibition efficacy of lung cancer growth than resveratrol in vivo (Carcinogenesis 2006; 27:2059-2069). The mechanism of the anticancer effects of resveratrol and its derivatives involve various complementary molecular pathways in carcinogenesis. Studies have revealed that resveratrol and its derivatives exert their anticancer effects by inducing apoptosis either through the receptor-mediated pathway or the mitochondria pathway, suppressing NF-κB (nuclear factor kappa B), AP-1 (activator protein 1), Egr-1 (early growth response 1), MAPK (mitogen-activated protein kinases), PKC (protein kinase C), NO/NOS, cell cycle proteins, adhesion molecules, androgen receptors or inflammatory cytokine expression (Aggarwal et al. Anticancer Res., 2004; 24:2783-2840).
- Paeonia suffruticosa Andrews (PSE) is a well-known Chinese medicine that has been widely used as an anti-tumor, anti-oxidative and anti-inflammatory agent. cis- and trans-gnetin H are two resveratrol oligomers isolated from the seeds of PSE. Although resveratrol is widely considered to be one of the most valuable natural chemopreventive agents and there are numerous studies on the antitumor activities of resveratrol, little is known about the antitumor properties of cis- and trans-gnetin H.
- The cis isomer of gnetin H, cis-gnetin H, is a recently discovered novel oligostilbene obtained from the seeds of Paeonia suffruticosa. He et al. showed that gnetin H exists as a cis isomer and a trans isomer (Chem. Pharm. Bull. 2010; 58:843-847). Previous studies concerning gnetin H did not identify cis- and trans-forms of the compound; in retrospect, however, it is apparent that these studies utilized the trans form, which was simply referred to as “gnetin H.” He et al. (Chem. Pharm. Bull. 2010; 58:843-847) refer to the trans form as “gnetin H” and the cis form as “cis-gnetin H.” The earlier publications report investigations of the ability of gnetin H (the trans form) to inhibit the growth of various tumor cell lines (Kim et al., Arch. Pharm. Res. 2002; 25:293-299; Kang et al., Exp. Mol. Med. 2003; 35:467-474; Ha et al., Arch. Pharm. Res. 2009; 32:177-83), but no animal studies were conducted.
- The purpose of this study was to investigate the biological role of cis-gnetin H and trans-gnetin H and explore their underlying mechanism of action. We showed that cis-gnetin H and trans-gnetin H can significantly inhibit the growth of a number of tumor cells and that they are capable of promoting apoptosis of cancer cells by releasing mitochondria cytochrome c, activating
caspase 3/7, suppressing NF-κB activation, as well as affecting the cell cycle. Collectively our findings suggest that the natural compounds cis-gnetin H and trans-gnetin H have potential as cancer chemotherapy agents. - Plant material. The seeds of P. suffruticosa were collected in Tongling, Anhui province, P. R. China, and identified in September 2012. A voucher specimen (2012001) has been deposited in the Seed Resource Bank of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College.
- Extraction and isolation. cis- and trans-gnetin H were extracted and isolated from the dried seeds of P. suffruticosa (1.2 kg) as described previously (He et al., Chem. Pharm. Bull. 2010; 58:843-847). Compounds were re-suspended in dimethyl sulfoxide (DMSO) (Sigma) to yield the desired concentration and stored at 4° C.
- Stability and conversion of cis-gnetin H and trans-gnetin H. For stability testing, cis- and trans-gnetin H were dissolved with methanol to a concentration of 1 mg/ml. The stock solutions were sealed in a glass bottle and kept in the dark at room temperature for 6 months and then the purity of the two compounds was tested using the HPLC method previously described (He et al., J. Liq. Chromatog. Rel. Technol. 2013; 36:1708-1724). For conversion testing, cis- and trans-gnetin H were individually illuminated with a 12-watt fluorescent lamp for 2, 4 and 6 hours, and the compounds were identified using HPLC.
- Cell culture. The cancer cell lines used in this study included human lung carcinoma (A549), human breast carcinoma (BT20 and MCF-7) and human osteosarcoma (U2OS), with the normal cell lines human peripheral lung epithelial cells (HPL1A) and human mammary epithelial cells (HMEC) serving as controls. A549, BT20, MCF-7, U2OS and HMEC cells were purchased from American Type Culture Collection (ATCC, USA), and HPL1A cells were obtained from Nagoya University, Japan. A549 and BT20 were grown in RPMI-1640 (Sigma), MCF-7 was grown in Dulbecco's Modified Eagle Medium (DMEM) (Sigma) supplemented with 0.01 mg/ml human recombinant insulin (Sigma), U2OS and HMEC were grown in McCoy's 5A (ATCC), and HPL1A was grown in DMEM/F-12K (Sigma). The mediums were supplemented with 10% Fetal Bovine Serum (FBS) (Gibco), 1% penicillin and streptomycin and incubated in a humidified atmosphere with 5% CO2 at 37° C.
- Inhibition assay of cell proliferation and IC50 determination. The proliferation inhibition potential of cis- and trans-gnetin H was determined by a fluorescence dye staining method. Cells were seeded in a 96-well tissue culture-treated plate (BD Falcon) at a density of 4000 cells/well, and treated with cis- or trans-gnetin H for 48 hours. AlamarBlue dye (Invitrogen) was used to assess the viability of cells according to the manufacturer's instructions; the fluorescent intensity was read on a SpectraMax M2e microplate reader (Molecular Devices Inc.).
- For the determination of IC50 values, cells were treated with a serial dilution (320 μM, 100 μM, 32 μM, 10 μM, 3.2 μM, 1 μM, and 0.32 μM) of cis- or trans-gnetin H for 48 hours. Cell viability was determined with AlamarBlue dye (Invitrogen) and the IC50 values were calculated using non-linear regression analysis.
- Multi-parameter cytotoxicity measurement using an Arrayscan VTI HCS Reader. A549 cells were seeded in a 96-well plate (BD Falcon) at a density of 4000 cells/well, and then treated with different concentrations (An et al., Mol. Cancer Ther. 2007; 6:61-9; Wilhelm et al., Cancer Res. 2004; 64(19):7099-7109; 100 μM) of cis- or trans-gnetin H for 24 hours and 48 hours. Non-treated cells and cells treated with 100 μM Valinomycin were used as negative and positive controls. After treatment, the cells were stained with a mixture of fluorescent dyes including Hoechst 33342 (blue florescence), cell permeability dye (green florescence) and mitochondrial membrane potential dye (red florescence) (Thermo Scientific). The three dyes allow changes in nuclear morphology, cell membrane permeability and mitochondrial trans-membrane potential to be determined. The cells were fixed and washed, and images for each fluoroprobe were acquired at different channels using suitable filters with a 20× X objective and analyzed on the Arrayscan VTI HCS Reader (Thermo Scientific). The Cell Health Profiling BioApplication software (Thermo Scientific) was used for image acquisition and analysis. For each well, at least 400 cells were automatically acquired and analyzed. The average fluorescent intensity was used to quantify changes in each channel and each experiment was performed in triplicate.
- Apoptosis assay by flow cytometry. A549 and BT20 cells were seeded in a 96-well plate (BD Falcon) at a density of 8000 cells/well, and treated with cis- or trans-gnetin H for 24 hours. Apoptosis was assessed using Annexin V/7-AAD double staining as described (Bai et al., Cancer Sci. 2010; 101(2):488-493). Cells were analyzed on a Guava Flow Cytometer (Millipore) using InCyte software and the data was exported to FlowJo software for image display.
- Analysis of cytochrome c by flow cytometry. A549 and BT20 cells were seeded in a 96-well plate (BD Falcon) at a density of 8000 cells/well and treated with 100 μM of cis- or trans-gnetin H for 24 hours. The expression of cytochrome c was evaluated using the FlowCellect Cytochrome c Kit (Millipore) according to the manufacturer's instructions. Cells were stained with either Anti-IgG1-FITC Isotype control or Anti-Cytochrome c-FITC, and data was acquired and analyzed using the Guava Flow Cytometer (Millipore).
-
Caspase 3/7 activation assay.Caspase 3/7 activity was analyzed using an in-situ luminescent marker. A549 and BT20 cells were seeded in a white 96-well plate (Greiner) at a density of 8000 cells/well, and treated with 100 μM cis- or trans-gnetin H for 24 hours. Caspase activity was then determined using the Caspase-Glo 3/7 Assay (Promega) according to the manufacturer's instructions. The luminescence of each sample was measured using a SpectraMax M2e Microplate Reader (Molecular Devices Inc.). - Cell cycle analysis by flow cytometry. A549 and BT20 cells were first synchronized in the G0 phase by culturing cells for 24 hours in serum-free medium and then treated with 100 μM cis- or trans-gnetin H for 24 hours, respectively. Cell cycle analysis was done using propidium iodide (PI) staining as described (An et al., Mol. Cancer Ther. 2007; 6:61-9) and the cells were analyzed on a Guava Flow Cytometer with InCyte software (Millipore).
- Inhibition assay of TNF-α activated NFκB translocation using an Arrayscan VT1 HCS Reader. A549 cells were seeded in 96 well plates (BD Falcon) at a density of 4000 cells/well, and were treated with 100 μM cis- or trans-gnetin H for 2 hrs, followed by treatment of 10 ng/ml tumor necrosis factor-alpha (TNF-α) (Sigma). Untreated cells and cells treated with only 10 ng/ml TNF-α served as controls. Cells were fixed, permeabilized, and stained with Nuclear factor kappa B (NF-κB) primary antibody,
Dylight 488 conjugated secondary antibody, and Hoechst 33342 dye, sequentially. The Hoechst and DyLight fluorophores respectively detect changes in nuclear morphology (blue fluorescence) and NF-κB distribution (green fluorescence). Images were acquired at different channels using suitable filters with a 20× objective and analyzed on the Arrayscan VTI HCS Reader (Thermo Scientific). The Nuclear Translocation BioApplication software (Thermo Scientific) was used for image acquisition and analysis. For each well, at least 400 cells were automatically acquired and analyzed. The translocation index was calculated by measuring the average intensity difference of NF-κB between the identified cytoplasmic region and nuclear region (MEAN_CircRingAvgIntenDiffCh2). Experiments were performed in triplicates. - Xenograft studies. 14 male nude mice (6 weeks old) were injected subcutaneously on both flanks with 2×106 A549 cells. They were injected three times weekly for 4 weeks when tumor volumes reached 200-250 mm3 and then they were treated with 2.4 mg/kg cis-gnetin H in 200
μl 1×phosphate buffered saline (PBS) (n=5), 1 μg/kg staurosporine in 200μl 1×PBS (n=4) or only 200μl 1×PBS (n=4) for 4 weeks, 3 times per week. Tumor sizes were measured 3 times per week, and volumes were calculated using the formula [length (mm)]×[width (mm)]2 /2 (Warburton et al., Clin. Cancer Res. 2004; 10(7): 2512-2524). - Stability and Conversion of cis-gnetin H and trans-gnetin H
- We first evaluated the convertibility of cis- and trans-gnetin H. Under photo oxidant conditions, trans-gnetin H and cis-gnetin H were observed to be photochemically transformed
- (
FIG. 1C ). cis- and trans-gnetin H were extracted with the purities of 93.5% and 92.6%, respectively. After 6-hour treatment, only a slight decrease of the concentration from 93.5% to 88.9% was observed in cis-gnetin H. On the contrary, a dramatic decrease of the concentration from 92.6% to 6.2% was observed in trans-gnetin H after 6-hour treatment, with a large portion (about 86%) converted to its cis-isomer. However, after 6-month storage in the dark at room temperature, the chemical identities of cis-gnetin H and trans-gnetin H exhibited no obvious changes, suggesting that cis-gnetin H and trans-gnetin H are stable under normal storage conditions. - Inhibitory Effects of cis-gnetin H and trans-gnetin H on the Proliferation of Lung, Breast and Bone Cancer Cell Lines
- To investigate the inhibitory effects of cis-gnetin H and trans-gnetin H, we conducted cell cytotoxicity tests. Initially we examined the effects of 10 uM cis-gnetin H or trans-gnetin H on lung cancer A549 cells and breast cancer BT20 cells with normal lung HPL1A cells and normal breast HMEC cells serving as controls. Both cis-gnetin H and trans-gnetin H inhibited the growth of the cancer cells as early as 12 hours and this effect increased over time (
FIG. 2A ), suggesting a time-dependent inhibitory effect. After 48-hours treatment, cis-gnetin H or trans-gnetin H showed about 99% inhibition of both cancer cells. The severe inhibition was confirmed by microscopic examination, which showed cell blebbing, cell shrinkage, chromatin condensation and formation of apoptotic bodies in the cancer cells as compared with the normal polygonal shapes of the control cells. In contrast, no such obvious inhibitory effects were observed in the normal cell controls (HPL1A and HMEC) (data not shown). - To further evaluate the effective dose of cis-gnetin H and trans-gnetin H, IC50 values (
FIG. 7 ) were determined for cis-gnetin H and trans-gnetin H, respectively, using A549 (lung cancer), BT20 (breast cancer), U2OS (osteosarcoma) and MCF-7 (breast) cells, with HPL1A (lung) and HMEC (breast) normal cells serving as controls. Both cis-gnetin H and trans-gnetin H showed dramatic inhibition of the malignant cells, with IC50 values ranging from 1.35 μM to 10.04 μM (FIG. 2B ). The IC50 values in malignant cells were significantly less than those in normal cells (25.87 to 91.03 μM) indicating significantly lower toxicity to normal cells. - cis-gnetin H and trans-gnetin H Cause Multiplex Cytotoxicity Including Nuclear Condensation, Changes in Cell Permeability and Disruption of the Mitochondrial Transmembrane Potential
- High-content screening (HCS) image analysis allows simultaneous measurement of the nuclear morphology, plasma membrane permeability and mitochondria potential as indicators of cellular injury. Disruption of the mitochondria potential tends to be an early indicator of cellular injury, whereas nuclear shape changes (nuclear condensation) and an increase in plasma membrane permeability are indicative of acute toxicity (Minamikawa et al., Exp. Cell Res. 1999; 246:26-37; Zakeri et al., The Study of Cell Death by the Use of Cellular and Developmental Models. In When Cells Die. New York: Wiley-Liss. 1998).
- To further study the inhibitory effects of cis-gnetin H and trans-gnetin H, treated A549 cells were examined for cellular changes using HCS analysis. Untreated A549 cells displayed normal nuclear size, intact plasma membrane integrity and brightly labeled mitochondria. However, after 24 hours treatment with cis-gnetin H or trans-gnetin H, A549 cells showed decreased mitochondria potential as evidenced by lower red florescent intensity, but no alternation of nuclear size and plasma membrane permeability, suggesting that they suffered from early or moderate cellular injury. After treatment for 48 hours, the cells exhibited nuclear condensation, increased plasma membrane permeability as evidenced by higher green florescent intensity, and loss of mitochondrial potential, suggesting that they were undergoing late or severe cellular injury (
FIG. 8 ). As shown inFIG. 2C no alternation in nuclear size occurred following 24 hrs treatment by cis-gnetin H or trans-gnetin H, but a reduction in nuclear size did occur after 48 hrs. Similarly, no alternation in cell permeability occurred following 24 hrs treatment by cis-gnetin H or trans-gnetin H, but an increase in cell permeability was observed after 48 hrs. In comparison, a reduction in the mitochondria transmembrane potential occurred after both 24 hrs and 48 hrs of treatment. In addition, the cytotoxicity effects of cis-gnetin H and trans-gnetin H occurred in a dose-dependent manner as quantified inFIG. 2C . - cis-gnetin H and trans-gnetin H Promote Apoptosis, Cytochrome c Release and the Activation of
Caspases 3/7 In Cancer Cells - To determine how cis-gnetin H and trans-gnetin H caused the death of cancer cells, we employed the Annexin V/PI double staining assay using the two cell lines that were the most sensitive to cis-gnetin H and trans-gnetin H, A549 and BT20, and observed that cis-gnetin H or trans-gnetin H could induce apoptosis in A549 and BT20 cells at a dose of 100 μM (
FIG. 3A ). Moreover, we observed that the test compounds induced apoptosis in a dose-dependent manner (FIG. 3B ). - Cytochrome c is a key mitochondrial protein and the release of mitochondrial cytochrome c is an important hallmark in the pathway of apoptosis and is considered to be a point of no return in the apoptotic process (Newmeyer et al., Cell 2003; 112:481-490). For this reason, we assessed the loss of mitochondrial cytochrome c in A549 and BT20 cells. All treated cells showed a downward shift in fluorescence when compared with the untreated control (
FIG. 3C ), suggesting that cytochrome c is released from mitochondria to the cytoplasm in the treated cells. - Caspase-3 and -7 are early apoptotic markers in mammalian cells (Thornberry et al., Science 1998; 281(5381): 1312-1316). To clarify the pathway of cis-gnetin H— or trans-gnetin H— induced apoptosis, we determined caspase-3 and -7 activities using a luminogenic substrate containing the tetrapeptide sequence that is selective for caspase-3 and -7. As shown in
FIG. 3D , in A549 cells treated by cis-gnetin H or trans-gnetin H, activities ofcaspase 3/7 increased 3.65-fold or 2.7-fold, respectively compared with untreated A549 cells. Staurosporine, a known caspase activator, was used as a positive control. These results suggest that cis- and trans-gnetin H induce apoptosis by promoting the activities of caspase-3 and -7. - cis-gnetin H and trans-gnetin H Affect the Cell Cycle of Cancer Cells
- To examine if cis-gnetin H and trans-gnetin H also altered the distribution of the cell cycle, we performed a cell cycle analysis. cis-gnetin H and trans-gnetin H induced a marked increase in the cell number at the G0-G1 phase, with a corresponding decrease in the other phases in both cancer cell lines (
FIG. 4A ), suggesting that cis-gnetin H and trans-gnetin H disrupt the G1-S transition during cell division. Under treatment with 100 μM of cis-gnetin H or trans-gnetin H, the G0-G1 subpopulation of A549 and BT20 cells increased significantly, while the M and G2-S subpopulation of the cells showed a significant decrease. (FIG. 4B ). - cis-gnetin H and trans-gnetin H Inhibit TNF-α Activated NE-κB Translocation
- NF-κB is a transcription factor that controls the transcription of anti-apoptotic and cell proliferation genes, and is essential for the survival of cancer cells (Sethi et al., Trends Pharmacol. Sci. 2009; 30:313-321). We thus assessed the ability of cis-gnetin H and trans-gnetin H to inhibit TNF-α induced NF-κB activation in vitro using DyLight 488-conjugated anti-NF-κB antibody. As shown in
FIG. 5 , in A549 cells treated in normal medium without addition of the compound, a high fluorescent intensity of NF-κB was found in the cytoplasm, but rarely in the nuclei, indicating that NF-κB is not activated under normal conditions. Following stimulation with TNF-α, the NF-κB fluorescent intensity significantly increased in the nuclear region, consistent with NF-κB translocation from the cytoplasm to the nucleus. However, in A549 cells treated with cis-gnetin H or trans-gnetin H, we observed significant inhibition of TNF-α-induced NF-κB nuclear translocation as evidenced by low nuclear NF-κB-related fluorescence intensity. - cis-gnetin H Suppresses the Growth of Xenograft Lung Tumors In Mice
- Animal models are a key tool for determining the efficacy of potential new therapeutics and thus we wanted to test our compounds using the established lung cancer xenograft mouse model. Since the antitumor activities of cis-gnetin H and trans-gnetin H were very similar in all our in vitro testing that we did and because cis-gnetin H was much more stable than trans-gnetin H and far easier to synthesize in large quantities, we decided to utilize cis-gnetin H in a xenograft mouse model. To test whether cis-gnetin H had anti-tumor activity in vivo, we analyzed the effects of cis-gnetin H on the growth of established A549 lung cancer xenografts. Compared to the control mice which showed a 147 mm3 increase (equals to 65%) in average tumor size, mice treated with cis-gnetin H only had a 89 mm3 (equals to 39%) increase in average tumor size, while the control staurosporine had a 85 mm3 (equals to 37%) increase in average tumor size (
FIG. 6A ). Interestingly, cis-gnetin H was more effective in reducing the size of large tumors (68% less increase compared to the untreated control) than in reducing the size of small tumors (39% less increase compared to the untreated control). In addition no apparent alteration on food intake or body weight was observed in the treated animals (FIG. 6B ), suggesting that cis-gnetin H has in vivo inhibiting activity on lung tumor growth without dramatic toxic side effects. - Herbal medicines have been employed in the treatment of cancers in Asia and the Far East for quite some time now, and many of them have been shown to be effective and safe in clinical practice. However, which chemicals in these botanicals represent the active ingredient largely remains unknown and therefore evidence-based studies to determine the bioactive compounds have increased dramatically over the last few years. Peony is a well-known Chinese medicine that has been widely used as an anti-tumor, anti-oxidative and anti-inflammatory agent. Previously we isolated cis-gnetin H, trans-gnetin H, along with other resveratrol oligomers from the seeds of peony (He et al., Chem. Pharm. Bull. 2010; 58:843-847). In this study we report the in vitro bioactivity of cis-gnetin H and trans-gnetin H, the in vivo anti-tumor activity of cis-gnetin H, and elucidate the mechanism of the anti-tumor activity of these two compounds.
- Natural oligostilbenes can be converted from the trans configuration to the cis configuration in the presence of H2O2, metal, UV and acid (Lin et al. Stud. Nat. Prod. Chem. 2006; 33:601-644). Generally the trans isomer of doubly substituted ethylenes is more stable than its cis counterpart because of the more favorable electrostatic and steric interactions of the trans conformer. Nevertheless, a recent study showed that there can be exceptions, and that the cis isomer of some doubly substituted ethylenes possesses unusual stability, a fact that has been referred to as the cis-effect (Zhao et al., Acta Physico-Chimica Sinica 2013; 1: 43-54).
- Stilbenes and oligostilbenes, which are doubly substituted ethylenes, should generally be more stable in the trans configuration than their cis counterpart because of the more favorable electrostatic and steric interactions of the trans conformer (Zhao et al., Acta Physico-Chimica Sinica 2013; 1: 43-54; Bingham, J. Am. Chem. Soc. 1976; 98:535-540). Two well-known examples are stilbene (Fischer et al., J. Chem. Soc. B. 1968:1156-1158) and resveratrol (Bonda et al., Cosmetics Toiletries. 2011:126: 652-660). Paradoxically, our study showed that cis-gnetin H is more stable than trans-gnetin H as trans-gnetin H is easily converted to cis-gnetin H by photooxidation. The cis conformer of doubly substituted ethylenes can occasionally be more stable than the trans conformer and this phenomenon has been termed the cis or gauche effect (Zhao et al., Acta Physico-Chimica Sinica 2013; 1: 43-54; Bingham, J. Am. Chem. Soc. 1976; 98:535-540). Two other oligostilbenes that exhibit the cis effect are vitisin A and e-viniferin (Lin et al. Stud. Nat. Prod. Chem. 2006; 33:601-644).
- Resveratrol is widely considered to be one of the most valuable natural chemopreventive agents as it possesses significant inhibitory activities to cancer cells while having low or no cytotoxicity to normal cells (Dorrie et al., Cancer Res. 2001; 61(12):4731-4739). Resveratrol has been reported to have IC50 values of 8.9 μM (Yin et al. Pacific J Cancer Prey. 2013; 14(3):1703-1706), above 10 μM (Weng et al., J. Agric. Food Chem. 2009; 57:5235-5243), or higher (Liu et al., Mol. Nutr. Food Res. 2010; 54:S196-S204) against the A549 lung cancer cell line. Our results show that cis-gnetin H and trans-gnetin H are more effective in anti-tumor proliferation than resveratrol. A couple of studies have been conducted previously on trans-gnetin H. Kim et al. (Kim et al., Arch. Pharm. Res. 2002; 25:293-299) found trans-gnetin H exhibited marked cytotoxic activity against C6 (mouse glioma), HepG2 (human liver), Hela (human cervix), MCF-7 (human breast) and HT-29 (human colon) cancer cell lines with IC50 values ranging from 12.7 to 61.7 μg/ml. Kang et al. (Kang et al., Exp. Mol. Med. 2003; 35:467-474) demonstrated that trans-gnetin H reduced the viability of HL-60 (human leukemia) cells in a dose-dependent manner with an IC50 value of 25 μM, and that HL-60 cells treated with 25 μM of trans-gnetin H caused an 11% increase of the sub-G1 population. Ha et al. (Arch. Pharm. Res. 2009; 32:177-83) showed that trans-gnetin H inhibited L1210 (mouse leukemia) cells and had an IC50 value of 40.1 μM. We investigated the antiproliferation activity of both cis-gnetin H and trans-gnetin H using a panel of cancer cell lines (A549, BT20, MCF-7 and U2OS) and observed 2-9 fold more antiproliferation activity of trans-gnetin H than has been previously reported (Kim et al., Arch. Pharm. Res. 2002; 25:293-299; Kang et al., Exp. Mol. Med. 2003; 35:467-474; Ha et al., Arch. Pharm. Res. 2009; 32:177-83). We also observed that trans-gnetin H was slightly more inhibitory to cancer cell lines than its cis-isomer. Consistent with our observation, Anisimova et al. (Chem. Cent. J. 2011; 5: 88) reported that trans-resveratrol was more effective as an anticancer agent against prostate cancer compared with cis-resveratrol.
- Apoptosis plays a critical role in the efficacy of anticancer agents. Our results showed that cis-gnetin H and trans-gnetin H share a common mechanism for the induction of apoptosis in cancer cells. We observed typical apoptotic phenomena including nucleus condensation and decrease of mitochondria membrane potential using high-content screening, and this conclusion was further supported by the Annexin V apoptosis assay. Apoptotic cell death can be induced through the receptor-mediated or the mitochondria-mediated signaling pathways, and the disruption of mitochondria transmembrane potential and the release of cytochrome c are key events in mitochondria-mediated apoptosis pathways (Li-Weber, Cancer Lett. 2010; 332(2): 304-312). In this study we demonstrated that cis-gnetin H and trans-gnetin H triggered the mitochondrial apoptotic pathway in tumor cell lines as evidenced by the release of mitochondrial cytochrome c and the activation of the downstream effectors caspase 3/7.
- NF-κB is closely associated with cancers and acts through the transcription of anti-apoptotic proteins, which causes increased proliferation of cells and tumor growth (Pikarsky et al., Nature 2004; 431:461-6; Escárcega et al., Clin. Oncol. 2007; 19:2154-161), Therefore, targeting the NF-κB signaling pathway represents an attractive therapeutic option for cancer treatment protocols. Resveratrol can suppress proliferation and induce apoptosis of various cancer cells by regulating nuclear factor NF-κB activities (Sun et al., Cancer Genet. Cytogenet. 2006; 165:9-19). In this study, we demonstrated that the treatment of A549 cells with cis-gnetin H or trans-gnetin H resulted in a strong inhibition of cytokine-induced NF-κB activation, suggesting that cis-gnetin H and trans-gnetin H act as NF-κB inhibitors as well and may induce apoptosis mediated by the inhibition of the NF-κB signaling pathway, which contributes to the pro-apoptotic action of cis-gnetin H and trans-gnetin H in cancer cells.
- Proliferation arrest is another main effect that is caused by resveratrol on a variety of cancer cells, and it has been suggested that many stilbene compounds cause a block of cells in a specific phase of the cell cycle, acting as phase-specific drugs (Sun et al., Cancer Genet. Cytogenet. 2006; 165:9-19; Benitez et al., J. Androlog. 2007; 28(2):282-293; Horvath et al., Anticancer Res. 2007; 27(5A): 3459-3464). In this study we examined the phase-specific effect of cis-gnetin H and trans-gnetin H on cell proliferation in both lung and breast cancer cells and showed that both compounds arrested the cell cycle of the cancer cells at the GO-G1 phase. It remains to be determined how the key proteins, Cyclin D1, CDK4, p21, p53, etc. (Harper et al., Cell 1993; 75:805-816; Kohn et al., Mol. Biol. Cell. 1999; 10:2703-2734) involved in regulating the cell cycle, are impacted by cis-gnetin H and trans-gnetin H.
- Finally, we demonstrated that cis-gnetin H significantly suppressed the growth of xenograft tumors in a mouse model. Interestingly, cis-gnetin H was more effective in reducing the size of large tumors than in reducing the size of small tumors, suggesting it might work by suppressing the regulators for fast-growing tumors, such as the vascular endothelial growth factor (VEGF)-dependent Raf/MEK/ERK pathway that is involved in tumor angiogenesis and metastasis (Wilhelm et al., Cancer Res. 2004; 64(19):7099-7109).
- In conclusion, we show that both cis-gnetin H and trans-gnetin H have in vitro activity specifically in suppressing the proliferation of a number of tumor cell lines, that their inhibitory effect is caused by triggering apoptosis, and that cis-gnetin H has in vivo activity against anti- lung cancer cells. Collectively, our studies strongly suggest that cis-gnetin H and trans-gnetin H can be novel, efficient and safe chemotherapeutic agents for the treatment of a number of cancers.
- The dried seeds of P. suffruticosa (4.0 kg) were pulverized and extracted successively with 90% ethanol (EtOH) (4×6L) and 70% EtOH (2×6L) by soaking at room temperature for 24 h each time. The combined EtOH extracts were concentrated under reduced pressure at 60° C. to afford a dark-brown residue (840 g). The residue was resuspended at 10 mg/mL in DMSO and then used directly in the bioassay.
- Table 1 shows that the extract prepared from Paeonia suffruticosa seeds that is used to purify cis-gnetin H and trans-gnetin H has inhibitory activity against multiple cancer cells.
-
TABLE 1 IC50 of the crude extract from Paeonia suffruticosa seeds used to purify cis-gnetin H and trans-gnetin H. Cancer cell lines Normal cell lines IC50 A549 BT20 MCF-7 U2OS HPL1A HMEC cis-gnetin H 2.8 μM 2.15 μM 10.04 μM 9.32 μM 91.03 μM 26.72 μM trans-gnetin H 2.6 μM 1.35 μM 7.58 μM 3.1 μM 72.01 μM 25.87 μM crude extract 11.8 μg/ml 4.22 μg/ml 8.27 μg/ml ND 81.42 μg/ml 47.69 μg/ml ND = not determined - The inflammatory response is an important mechanism in host defense; however, overstimulation and chronic induction of the inflammation is involved in many important human diseases. Currently, tumor necrosis factor-alpha blockers such as infliximab and adalimumab along with methotrexate are used in severe and chronic inflammation. However, there are severe side effects and limitations associated with current treatments. cis- and trans-gnetin H are compounds isolated from the seeds of Paeonia suffruticosa, a medicinal plant used in traditional Chinese medicine for various treatments that include inflammatory diseases. We investigated possible anti-inflammatory mechanisms of these compounds against LPS-stimulated human THP-1 cells for their anti-inflammatory effects. Phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells were pretreated with various concentrations of the cis- and trans-gnetin H with and without lipopolysaccharide (LPS). Following treatment, cytotoxicity and the cytokine responses of TNF-α, IL-β, and IL-8, were measured. We also characterized the nuclear translocation of NF-κB subunit, p65 (RelA), by immunofluorescence and then investigated NF-κB activation by measuring the phosphorylation of NF-κB mediators by western blot. We found that cis- and trans-gnetin H significantly inhibited the cytokine responses in a concentration-dependent manner without affecting cell viability. cis- and trans-gnetin H also effectively inhibited the nuclear translocation of p65 and inhibited the phosphorylation of IKK-β, IκB α, as well as p65. While both compounds showed promising anti-inflammatory effects, trans-gnetin H was determined to be more effective in suppressing cytokine responses. In conclusion, we demonstrated cis- and trans-gnetin H exert anti-inflammatory effects by suppressing the key signaling molecule involved in the NF-κB pathway and suggest potential therapeutic usage for conditions and diseases associated with chronic inflammation.
- Inflammation is central to many disease processes including, for example, autoimmune diseases and chronic inflammatory diseases, and there are relatively few classes of compounds used as anti-inflammatory drugs, with steroids and nonsteroidal anti-inflammatory drugs (NSAIDS) comprising the major classes. Recently, monoclonal antibodies and fusion proteins have been developed to treat chronic inflammation (Thalayasingam et al., Best Pract. Res. Clin. Rheumatol., 2011, 25:549-67), however, these treatments can cause severe side effects such as allergic reactions, increased risk of infections, malignancies, and risk of stroke, and are thus their use has been limited to severe inflammatory diseases such as rheumatoid arthritis and ankylosing spondylitis (Bezalel et al., 2012, Isr. Med. Assoc. J., 14:508-14; Bjarnason et al., 1993, Gastroenterology, 104:1832-47; Bongartz et al., 2006, JAMA, 295: 2275-2285; Diamantopoulos, 2013, Int. J. Cardiol. 167:1719-1723). Another reason for the interest in new anti-inflammatory therapeutics is the associated cost of inflammatory conditions well exceeds the costs associated with cancer treatment. Almost every pathogenic process possesses an inflammatory component and the current classes of inflammatory drugs all have substantial side effects, contraindicating their use.
- Recently, more attention has been given to traditional Chinese medicine herbal ingredients that have been used to treat inflammatory diseases (Wang et al., J. Ethnopharmacol., 2013, 146:9-39). This attention is due to safety and efficacy of herbal medicine, lower risk of side effects, lower costs, and potential usage as adjunct treatments to Western medicine (Zhao et al., 2014, J. Tradit. Chin. Med., 34:145-9). Thus, providing the scientific basis for the active ingredients of herbal medicines further enhances the treatment of serious conditions and diseases associated with chronic inflammation.
- Activated macrophages produce biologically active cytokines such as tumor-necrosis factor alpha (TNF-α) through intracellular signaling pathways through the nuclear factor kappa B (NF-κB) pathway (Yamamoto et al., Curr. Mol. Med., 2001, 1:287-96). This pathway involves numerous factors and kinases that are regulated by phosphorylation. Transcription factors that regulate the inflammatory response are sequestered in the cytoplasm by inhibitor molecules, such as inhibitor kappa B α (IκB α) (Mercurio et al., 1997, Science, 278:860-6; (Mercurio et al., 1997; Nywana et al., 2014). IκB α binding to the NF-κB transcription factor inhibits transactivation, translocation, and promoter binding (Ganchi, et al., 1992, Mol. Biol. Cell., 3:1339-52). When the necessary factors are recruited, the IκB α kinase (IIK) phosphorylates IκB α and releases NF-κB. NF-κB ultimately translocates into the nucleus to promote transcription of genes involved in inflammation, including the production and release of biologically active cytokines such as TNF-α and proinflammatory interleukins (IL). Released cytokines induce chemotaxis, vasodilation, and cell proliferation as well as differentiation.
- Current therapeutics using corticosteroids, monoclonal antibodies, and recombinant proteins suppress inflammation by preventing leukocyte activation or neutralizing TNF-α, which is the most potent cytokine released by various cell types to initiate amplification of inflammation (Aggarwal, 2003, Nature Rev. Immunol., 3:745-756).
- In this study, we examined the anti-inflammatory effects of oligostilbenes, cis-and trans-gnetin H, isolated from the seeds of Paeonia suffruticosa on lipopolysaccharide (LPS)-stimulated human THP-1 cells (Chanput, et al., 2014, Int. Immunopharmacol., 23:37-45) with respect to the NF-κB pathway. We first examined the expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-8). We then assessed the key inhibitory mechanism on signaling molecules in the NF-κB pathway by measuring the nuclear translocation of the activated NF-κB transcription factor, p65, and further examined the expression of activated/phosphorylated upstream kinase, IKK-β, and regulatory factor IκB α, associated with the NF-κB pathway.
- Reagents. THP-1 (ATCC, TIB-202) were purchased from American Type Culture Collection (Manassas, Va., USA). Lipopolysaccharide (LPS, Salmonella enterica serotype thyphimurium), dexamethasone, 3-(4-methylphenylsulfonyl)-2-propenenitrile (Bay 11-7082), staurosporine, dimethyl sulfoxide (DMSO), phorbol 12-myristate 13-acetate (PMA), and RPMI 1640 culture media were purchased from Sigma-Aldrich (St. Louis, Mo., USA). Fetal bovine serum (FBS), enhanced chemiluminescence luminol (ECL) substrate, penicillin/streptomycin, SDS-PAGE gels, and nitrocellulose membranes were obtained from Fisher Scientific (Pittsburgh, Pa., USA). Alamar blue was purchased from Life Technologies (Grand Island, N.Y., USA). ELISA kits and associated reagents were obtained from R&D Systems (Minneapolis, Minn., USA). Bovine serum albumin (BSA) was obtained from EMD Millipore (Billerica, Mass., USA). Cellomics NF-κB kit and BCA kit were purchased from Thermo Scientific (Waltham, Mass., USA). Antibodies for the Western blot analysis were purchased from Cell Signaling Technology (Danvers, Mass., USA).
- Plant Material. The seeds of Paeonia suffruticosa were collected in Tongling, Anhui Province, P.R. China, and a voucher specimen has been deposited in the Seed Resource Bank of the Institution of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College (Gao et al., 2015, J. Ethnopharmacol., 169:24-33).
- Extraction and Isolation of cis- and trans-gnetin H. cis- and trans-gnetin H were extracted and isolated from the dried seeds of Paeonia suffruticosa as described previously (He et al., Chem. Pharm. Bull. 2010; 58:843-847). Briefly, the dried seeds were extracted with ethanol for 24 h at room temperature and then subfractionated using water, cyclohexane, chloroform, and ethyl acetate. cis- and trans-gnetin H were purified from the ethyl acetate extract and further fractionated using chloroform-methanol elution followed by ODS-A C18 reversed-phase silica gel (MeOH—H1O) and then purified by Sephadex LH-20 column chromatography. The compounds were suspended in DMSO to yield the desired concentration and stored at 4° C.
- Maintenance and Differentiation of the THP-1 Cell Line. THP-1 cells were maintained in RPMI 1640 medium supplemented with 10% complement-inactivated FBS and 1% penicillin/streptomycin (complete culture medium) at 37° C. with 5% CO2 supplemented. Cell concentrations were adjusted to desired concentrations for each experiment by centrifugation at 500×g for 5 min and resuspended in complete culture medium with 100 nM of PMA. Cell concentration was adjusted to 5×105 cells/ml for all assays and 2.5×105 cells/ml were used for NF-κB nuclear translocation assay. Cells were seeded onto 96-, 24-, or 12-well plates and incubated for 48 to 72 h to allow for differentiation. Cells were washed with serum-free RPMI 1640 medium before each experiment to remove the undifferentiated cells.
- Cell Viability Alamar Blue Assay. Differentiated THP-1 cells were treated with various concentrations of cis- and trans-gnetin H and 1 μM of dexamethasone for 24 h. Following treatment, the cell supernatants were replaced with culture medium containing 1× Alamar Blue reagent and incubated for an additional 20-24 h. Cell viability was assessed by measuring Relative Fluorescent Units (RFU) on the SpectraMax M2e microplate reader (Molecular Devices Inc., Sunnyvale, Calif., USA) at Ex 560 nm and Em 590 nm. The results were expressed as a percentage, relative to untreated control cells (
FIG. 9 ). Untreated and LPS-treated cells were tested for the effect of DMSO as vehicle control. - Assessment of Cytokine Response by ELISA. Differentiated THP-1 cells were pretreated with various concentrations of cis-gnetin H, trans-gnetin H, or 1 μM of dexamethasone for 1 h and stimulated with 20 ng/ml of LPS for 4 h. Dexamethasone is a synthetic glucocorticoid that suppresses cytokine response and was used as a positive control (Abraham et al., 2006, J. Exp. Med., 203:1883-9; Steer et al., J. Biol. Chem., 2000,275(24):18432-40). Supernatants were collected for human cytokine ELISAs and the manufacturer's protocol was followed to assess the cytokine response. Cells remaining after the supernatant collection were tested for relative viability by Alamar Blue cytotoxicity assay as described earlier.
- Indirect Immunofluorescence for NE-κB Nuclear Translocation. Differentiated THP-1 cells were pretreated with 50 μM of cis-gnetin H, trans-gnetin H, or 10 μM of Bay 11-7082 for 1 h and stimulated with 1 μg/ml of LPS for 30 min. Bay 11-7082 is a compound that inhibits IKK α/β and IκB α phosphorylation and was used as a positive control (Juliana et al., 2010, J. Biol. Chem., 285:9792-802). Treated cells were fixed, permeabilized, blocked, and stained with NF-κB, p65 primary antibody,
Dylight 488 conjugated secondary antibody, and Hoechst 33342 dye, sequentially. The Hoechst and DyLight fluorophores detect changes in nuclear morphology (blue fluorescence) and NF-κB distribution (green fluorescence) respectively. Nuclear Translocation Bioapplication software on the Arrayscan VTI reader was used for image acquisition and analysis. For each well, at least 400 cells were automatically acquired and analyzed. The translocation index was calculated by measuring the average intensity difference of NF-κB between the identified cytoplasmic region and nuclear region. - Western Blot Analysis. Differentiated THP-1 cells were pretreated with various concentrations of cis-gnetin H, trans-gnetin H, or 10 μM of Bay 11-7082 for 1 h and stimulated with 1 μg/ml of LPS for 15 min. Cells were lysed with radio-immunoprecipitation assay (RIPA; 1% Triton X-100, 0.5% Sodium deoxycholate, 0.1% sodium dodecyl sulfate, 150 mM sodium chloride, and 50 mM Tris-chloride) lysis buffer that contained protease and phosphatase inhibitor cocktail. Cell lysates were then tested for protein concentration using a BCA protein assay, and diluted with RIPA lysis buffer to normalize protein concentration in all samples. Lysates were mixed with sample loading buffer containing bromophenol blue, glycerol, sodium dodecyl sulfate (SDS), and 2-mercaptoethanol (2ME). The separated proteins were then transferred onto nitrocellulose membrane and blocked with 5% BSA in 1× Tris-buffered saline (TBS) with 0.1% Tween-20 for 30 min. The blots were incubated with primary antibodies for p-65, phosphorylated p-65 (Ser536), IKK β, phosphorylated IKK a3 (Ser176/180), IκB α, and phosphorylated IκB α (Ser32) at 4° C. overnight or 1 h at 22° C. followed by incubation with HRP—conjugated secondary antibodies for 1 h at 22° C. The membranes were then developed by addition of ECL substrate and images were collected by ChemiDoc XRS+system chemiluminescence imager (Bio-Rad, Hercules, Calif., USA).
- Statistical Analysis. All experiments were conducted at least three times independently. Western blot band intensity analysis was done by image lab software and statistical significance was performed by Graphpad Prism. Numeric values of treated groups were compared to control group and results were expressed as mean ±SEM. Statistical significance was analyzed using one-way analysis of variance followed by Sidak test (Graphpad Prism). A value of *p<0.05 was set for significance.
- Cytotoxicity of cis-and trans-Gnetin-H on PMA-Differentiated THP-1 Macrophages. We first examined the toxicity of cis- and trans-gnetin H in PMA-differentiated macrophages. Cells were pretreated with various concentrations of cis- and trans-gnetin H for 24 h and relative viability was accessed by Alamar Blue assay. The effect of compounds with LPS was also tested for relative viability. The viability test was done for every supernatant sample collection for cytokine response assay to show the suppression of cytokine response was not due to cell death. Neither cis- nor trans-gnetin H affected the viability of the cells at
3, 6, 13, 25, 50, 100 μM after 24 h treatment (concentration FIG. 9 ). The vehicle control, DMSO, was tested and showed no effect on viability of the cells (data not shown). Pretreatment with cis-gnetin H at 12.5, 25, 50 μM and LPS had no effect on cell viability (FIG. 9A ). Pretreated with trans-gnetin H at 50 μM, however, showed decreased viability relative to the untreated control (FIG. 9B ). Therefore, 7.5, 15, 30 μM of trans-gnetin H were used for the cytokine response assay. - The Effects of cis- and trans-Gnetin Hon TNF-α, IL-1β, and IL-8 Response in LPS-Stimulated THP-1 Cells. We then investigated the effects of cis- and trans-gnetin H on expression of the inflammatory cytokines, TNF-α, IL-1β, and IL-8 in LPS-induced THP-1 macrophages. As
FIG. 10 shows, LPS at 20 ng/ml concentration increased the expression of TNF-α, IL-1β, as well as IL-8. DMSO did not affect cytokine response in LPS-treated THP-1 cells (data not shown). Dexamethasone (positive control) at 1μM showed 58%, 56%, and 63% inhibition of TNF-α, IL-1β, and IL-8 respectively. Cells treated with cis-and trans-gnetin H showed significant inhibition of TNF-α, IL-1β, and IL-8 (p<0.05). We then measured the concentrations of cis-and trans-gnetin H that inhibited 50% of TNF-α (IC50) and calculated that IC50 values were 19 μM for cis-gnetin H and 6 μM for trans-gnetin H (FIG. 11 ). - The Effects of cis- and trans-Gnetin H on NF-κB Transcription Factor Nuclear Translocation. We next examined the effects of cis- and trans-gnetin H on NF-κB nuclear translocation by targeting p65 (RelA), a significant transcription factor in NF-κB pathway. As
FIG. 12A shows, p65 (green fluorescence) remained in the cytoplasm in untreated cells whereas p65 translocated into the nucleus in LPS-challenged cells. Bay 11-7082 inhibited the p65 nuclear translocation and both cis- and trans-gnetin H inhibited the p65 nuclear translocation as shown inFIG. 12 . - The Effects of cis- and trans-Gnetin H on IKK β, IκB α, and p65 in NE-κB Pathway. We also measured LPS-induced activation of important mediators in the NF-κB pathway: IKK β, IκB α, and p65. Our results showed that in LPS-stimulated cells IκB α phosphorylation was also significantly inhibited by cis- and trans-gnetin H in a concentration-dependent manner (FIG. 13A). p65 phosphorylation was only significantly inhibited at the highest concentration, 50 μM, of cis-gnetin H treated cells but both 15 and 30 μM concentrations of trans-gnetin H significantly inhibited p65 phosphorylation in a concentration-dependent manner. IKK β phosphorylation was also significantly inhibited by cis- and trans-gnetin H (
FIG. 13C ). - Inflammation is an important component of immune responses that are associated with multiple human diseases. Many of these diseases currently do not have effective treatments to control the inflammatory response. Currently available preventive therapies for chronic inflammatory and autoimmune diseases block the cytokine response, particularly TNF-α. Anti-TNF therapy has been clinically demonstrated as the most effective approach to control inflammation (Postal et al., Cytokine, 2011, 56:537-43). Cytokines such as TNF-α that are released by various cell types including macrophages and lymphocytes play a critical role in inflammatory processes by inducing chemotaxis, activation of various types of cells, and amplification of inflammation (Thalayasingam et al., Best Pract. Res. Clin. Rheumatol., 2011, 25:549-67; Yamamoto et al., Curr. Mol. Med., 2001, 1:287-96). Studies have shown that suppressing the inflammation process reduces the painful symptoms and increases the quality of life in patients that suffer from severe conditions involved in chronic inflammatory diseases (Impellizzeri et al., Pharmacol. Res., 2014, 81:91-102; Postal et al., Cytokine, 2011, 56:537-43). The present study clearly demonstrates that cis- and trans-gnetin H effectively suppress LPS-induced cytokines, TNF-α, IL-1β, and IL-8, in supernatants of cell culture in a concentration-dependent manner without affecting the viability of the cells. Interestingly, trans-gnetin H showed more effective suppression in all cytokines tested than cis-gnetin H and fold changes dramatically increases in trans-gnetin H treated cells at 30 μM (
FIG. 10 ). These results suggest that there is differential effect of cis- and trans-gnetin H, likely as a result of the differences in the olefinic moiety. - LPS-activated macrophages produce biologically active cytokines such as TNF-α through intracellular signaling pathways, such as the NF-κB pathway (Medvedev et al., 2002, J. Immunol., 169:5209-16; Yamamoto et al., Curr. Mol. Med., 2001, 1:287-96). p65, also known as RelA, is one of the 5 members of NF-κB transcription factors that are most abundant and most responsible for NF-κB pathway (Sasaki et al. , J. Biol. Chem., 2005, 280:34538-47; Schmitz et al., EMBO J., 1991, 10:3805-17; Yang et al., J. Immunol., 2003, 170:5630-5). When the NF-κB pathway is activated, phosphorylated p65 translocates into the nucleus and promotes the transcription of various genes including genes encoding cytokines. In this study, we demonstrated that cis-and trans-gnetin H effectively block the translocation of p65 into the nucleus. We also further explored biological mechanism of the cis-and trans-gnetin H in suppressing the cytokine response that lies upstream of the NF-κB nuclear translocation.
- The NF-κB pathway involves numerous factors and kinases that are regulated mainly through recruitments and phosphorylation processes. LPS binds to CD14 and dimerizes TLR4, triggering recruitment of a series of intracellular proteins including MYD88, TIR, RIF, TRAM, and the TRAF family (Laird et al., 2009, J. Leukoc. Biol., 85:966-77) and subsequently activates several kinases including IRAK1, MEKK1 (Lee et al., 1998, Proc. Nat'l. Acad. Sci. USA, 95:9319-9324), MEKK3 (Qin et al., J. Biol. Chem., 2006, 281:21013-21), IRAK1 (Yao et al., J. Biol. Chem., 2007, 282:6075-89), IKKε/TBK1 (Smith et al., Biochem. J., 2011, 434:537-48) and TAK1 (Sakurai, Trends Pharmacol. Sci., 2012, 33:522-30; Shim et al., Genes Dev., 2005, 19:2668-81) that phosphorylate IKK-β (Israël, 2010, Cold Spring Harb. Perspect. Biol., 2:a000158; Laird et al., J. Leukoc. Biol., 2009, 85:966-77). The exact mechanism of LPS-induced IKK-β phosphorylation is obscure, however, IKK-β activation is required to activate NF-κB pathway in LPS-induced macrophages (Israel, Cold Spring Harb. Perspect. Biol., 2010, 2: a000158). As our results show, cis-and trans-gnetin H significantly inhibit the phosphorylation of IKK-β in a concentration-dependent manner (
FIG. 13C ). Activation of IKK-β leads to release and proteasome-dependent degradation of IκB α. IκB α binding to p65 inhibits transactivation, translocation, and promoter binding. Upon phosphorylation of IκB α, p65/50 complex is released and ultimately translocates into the nucleus. Our results suggest cis-and trans-gnetin H significantly abrogate the phosphorylation of IκB α (FIG. 13A ), as indicated by a decrease in IKK-β activation. - Interestingly, we observed a higher level of phosphorylation of p65 than expected (
FIG. 13B ). This observation suggests that there are other kinases involved in the regulation of p65. IKK-α is not the mechanism phosphorylate IκB α, but also phosphorylates p65 at serine residue 536 which is a hallmark of p65 activation. The phosphorylation of p65 remains controversial in that there are multiple kinases that regulate the activation of p65 including IκB α-independent phosphorylation. Recently, Buss et al. identified that cyclin-dependent kinase 6 also phosphorylates p65 at serine 536 residue (PLoS One, 2012, 7:e51847). Moreno et al. suggested serine 536 phosphorylated p65 predominantly remained in the cytosol while serine 468 phosphorylated p65 by IKKε/TBK1 mainly localized in the nucleus (Nucl. Acids Res., 2010, 38:6029-44). This finding suggests that phosphorylation of p65 at serine 536 does not correlate with nuclear translocation and that cis-and trans-gnetin H may exert inhibition of IKKε/TBK1 activity as well as IKK-β. - Macrophages are key immune cells that regulate inflammation process and therefore, suppressing macrophages activation can alleviate the progression of chronic inflammation and slow the severity of disease progression caused by chronic inflammation. Our results suggest that cis-and trans-gnetin H compounds can significantly limit the cytokine response in human THP-1 macrophages with different potencies. Experiments are in progress to better understand the mechanism or target for these compounds, however, our results in support that the inhibition of IKK-β activation which is an important kinase for NF-κB pathway. In conclusion, we suggest cis-and trans-gnetin H have potential pharmacological usages for diseases and conditions characterized by chronic inflammation.
- The complete disclosures of all patents, patent applications including provisional patent applications, publications including patent publications and nonpatent publications, and electronically available material (e.g., GenBank amino acid and nucleotide sequence submissions) cited herein are incorporated by reference. The foregoing detailed description and examples have been provided for clarity of understanding only. No unnecessary limitations are to be understood therefrom. The invention is not limited to the exact details shown and described; many variations will be apparent to one skilled in the art and are intended to be included within the invention defined by the claims.
Claims (24)
1. A method for treating or preventing a disease, disorder, or condition in a subject, the method comprising:
administering to the subject a composition comprising an effective amount of at least one of cis-gnetin H, trans-gnetin H, or a derivative thereof;
wherein the disease, disorder, or condition is selected from the group consisting of a cancer, a precancerous condition, a tumor, an inflammation, an inflammatory disease, and an autoimmune disease.
2. The method of claim 1 , wherein the cancer is selected from bone cancer, brain cancer, breast cancer, cervical cancer, cancer of the larynx, lung cancer, pancreatic cancer, prostate cancer, skin cancer, cancer of the spine, stomach cancer, uterine cancer, or a blood cancer.
3. The method of claim 1 , wherein the cancer is a metastatic cancer.
4. The method of claim 1 , comprising administering the composition in an amount effective to inhibit or reverse the growth of a tumor in the subject.
5. The method of claim 4 , wherein the tumor comprises a solid tumor present in the bone, brain, breast, cervix, larynx, lung, pancreas, prostate, skin, spine, stomach, or uterus of the subject.
6. The method of claim 4 , wherein the tumor is a fast growing tumor.
7. The method of claim 1 , wherein the composition comprises an effective amount of cis-gnetin H.
8. The method of claim 1 , wherein the inflammatory disease or autoimmune disease comprises rheumatoid arthritis or an inflammatory bowel disease.
9. The method of claim 1 , wherein the subject is a domestic animal, a domesticated animal, a zoo animal, or human.
10. (canceled)
11. The method of claim 1 , wherein the composition further comprised a pharmaceutically acceptable carrier.
12. The method of claim 1 , wherein the composition further comprises an additional active agent selected from the group consisting of an anticancer agent, antiangiogenic agent, a chemopreventive agent, an anti-inflammatory agent, a cytokine, a chemokine, a therapeutic antibody, an immunogen, an antigen, an adjuvant, or an antioxidant, an immunomodulatory compound, a biologic compound, an antineoplastic agent, and a chemotherapeutic agent.
13. The method of claim 12 , wherein the additional active agent is a non-naturally occurring compound.
14. A pharmaceutical composition comprising:
at least one of cis-gnetin H, trans-gnetin H, or a derivative thereof; and
a pharmaceutically acceptable carrier.
15. The pharmaceutical composition of claim 14 , comprising:
a first active agent comprising at least one of cis-gnetin H, trans-gnetin H, or a derivative thereof; and
a second active agent comprising at least one compound selected from the group consisting of an anticancer agent, antiangiogenic agent, a chemopreventive agent, an anti-inflammatory agent, a cytokine, a chemokine, a therapeutic antibody, an immunogen, an antigen, an adjuvant, or an antioxidant, an immunomodulatory compound, a biologic compound, an antineoplastic agent, and a chemotherapeutic agent.
16. The pharmaceutical composition of claim 15 , wherein the second active agent is a non-naturally occurring compound.
17. The pharmaceutical composition of claim 15 comprising at least one immunogen or antigen, wherein said composition is formulated for use as a vaccine.
18. The pharmaceutical composition of claim 17 , further comprising at least one adjuvant.
19-31. (canceled)
32. A kit comprising:
at least one of cis-gnetin H, trans-gnetin H, or a derivative thereof;
a pharmaceutically acceptable carrier; and
instructions for use.
33-34. (canceled)
35. The kit of claim 34 further comprising one or more additional active agents selected from the group consisting of an immunogen, an antigen and an adjuvant.
36. The kit of claim 35 , wherein the additional active agent is a non-naturally occurring compound.
37. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/513,375 US20170326098A1 (en) | 2014-09-22 | 2015-09-22 | Cis-gnetin h and trans-gnetin h as therapeutic agents |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462053497P | 2014-09-22 | 2014-09-22 | |
| US15/513,375 US20170326098A1 (en) | 2014-09-22 | 2015-09-22 | Cis-gnetin h and trans-gnetin h as therapeutic agents |
| PCT/US2015/051424 WO2016049012A1 (en) | 2014-09-22 | 2015-09-22 | Cis-gnetin h and trans-gnetin h as therapeutic agents |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/051424 A-371-Of-International WO2016049012A1 (en) | 2014-09-22 | 2015-09-22 | Cis-gnetin h and trans-gnetin h as therapeutic agents |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/265,789 Continuation US11007169B2 (en) | 2014-09-22 | 2019-02-01 | Cis-gnetin H and trans-gnetin H as therapeutic agents |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170326098A1 true US20170326098A1 (en) | 2017-11-16 |
Family
ID=55581893
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/513,375 Abandoned US20170326098A1 (en) | 2014-09-22 | 2015-09-22 | Cis-gnetin h and trans-gnetin h as therapeutic agents |
| US16/265,789 Active US11007169B2 (en) | 2014-09-22 | 2019-02-01 | Cis-gnetin H and trans-gnetin H as therapeutic agents |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/265,789 Active US11007169B2 (en) | 2014-09-22 | 2019-02-01 | Cis-gnetin H and trans-gnetin H as therapeutic agents |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US20170326098A1 (en) |
| EP (1) | EP3197470B1 (en) |
| WO (1) | WO2016049012A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020056425A1 (en) * | 2018-09-14 | 2020-03-19 | University Of Mississippi | Anticancer formulation |
| US11007169B2 (en) | 2014-09-22 | 2021-05-18 | Middle Tennessee State University | Cis-gnetin H and trans-gnetin H as therapeutic agents |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112538066B (en) * | 2020-12-14 | 2023-11-10 | 中国科学院植物研究所 | Peony seed bark extract that resists skin cell aging |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130184342A1 (en) * | 2011-06-27 | 2013-07-18 | The Jackson Laboratory | Methods and compositions for treatment of cancer and autoimmune disease |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MXPA04000695A (en) * | 2001-07-23 | 2005-08-26 | Galileo Pharmaceuticals Inc | Cytoprotective compounds, pharmaceutical and cosmetic formulations, and methods. |
| ES2419164T3 (en) | 2001-11-02 | 2013-08-19 | The Regents Of The University Of California | Compositions for the prevention and treatment of an inflammatory disease, an autoimmune disease, and transplant rejection |
| WO2004093820A2 (en) * | 2003-04-23 | 2004-11-04 | University Of Massachusetts | Methods and compositions for solid tumor treatment |
| WO2006126751A1 (en) * | 2005-05-25 | 2006-11-30 | Korea Research Institute Of Bioscience And Biotechnology | New diaryl-isoxazole derivatives, and pharmaceutical compositions containing the same for the prevention and the treatment of cancers |
| US20080262081A1 (en) | 2005-10-14 | 2008-10-23 | Daniel Raederstorff | Novel Use of Nutraceutical Compositions Comprising Resveratrol |
| WO2014108571A2 (en) * | 2013-01-14 | 2014-07-17 | Biocopea Limited | Cancer drug and uses |
| CN103272007A (en) * | 2013-06-04 | 2013-09-04 | 中国医学科学院药用植物研究所 | Paeonia plant extract and preparation method and applications thereof |
| US20170326098A1 (en) | 2014-09-22 | 2017-11-16 | Middle Tennessee State University | Cis-gnetin h and trans-gnetin h as therapeutic agents |
-
2015
- 2015-09-22 US US15/513,375 patent/US20170326098A1/en not_active Abandoned
- 2015-09-22 WO PCT/US2015/051424 patent/WO2016049012A1/en not_active Ceased
- 2015-09-22 EP EP15845262.3A patent/EP3197470B1/en active Active
-
2019
- 2019-02-01 US US16/265,789 patent/US11007169B2/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130184342A1 (en) * | 2011-06-27 | 2013-07-18 | The Jackson Laboratory | Methods and compositions for treatment of cancer and autoimmune disease |
Non-Patent Citations (2)
| Title |
|---|
| Cai et al., Suppression of the onset and progression of collagen-induced arthritis in rats by QFGJS, a preparation from an anti-arthritic Chinese herbal formula, Journal of Ethnopharmacology 110 (2007) 39-48 * |
| He et al., Simultaneous determination of ten stilbenes in the seeds of Paeonia species using HPLC-DAD, J. Liquid Chromatography & Related Technologies, 36:1708-1724, 2013 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11007169B2 (en) | 2014-09-22 | 2021-05-18 | Middle Tennessee State University | Cis-gnetin H and trans-gnetin H as therapeutic agents |
| WO2020056425A1 (en) * | 2018-09-14 | 2020-03-19 | University Of Mississippi | Anticancer formulation |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3197470A1 (en) | 2017-08-02 |
| US11007169B2 (en) | 2021-05-18 |
| EP3197470A4 (en) | 2018-07-18 |
| WO2016049012A1 (en) | 2016-03-31 |
| US20190290611A1 (en) | 2019-09-26 |
| EP3197470B1 (en) | 2021-08-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Peng et al. | Baicalein induces apoptosis of human cervical cancer HeLa cells in vitro | |
| US8691870B2 (en) | Use of isothiocyanates for treating cancer | |
| Paunovic et al. | The potential roles of gossypol as anticancer agent: advances and future directions | |
| US11007169B2 (en) | Cis-gnetin H and trans-gnetin H as therapeutic agents | |
| CN108853068B (en) | Farnesyl phenol compound grifolin, and pharmaceutical composition and application thereof | |
| EP3043809B1 (en) | Filipendula vulgaris extract and uses thereof | |
| KR102198964B1 (en) | Composition comprising essential oil extract derived anthoxylum coreanum Nakaiis for prevention or treatment of allergic diseases | |
| CN103655559B (en) | Horned artemisia ester alkali compounds is preparing the application in anti-breast cancer medicines | |
| KR20170068029A (en) | A pharmaceutical composition with treating malignant melanoma comprising the extract from pueraria thunbergiana | |
| KR102659740B1 (en) | Anti-cancer use of sea cucumber gonad extract or the compound derived from the same | |
| JP6627141B2 (en) | Method for preparing safflower buckwheat extract, extract prepared thereby, and use of extract | |
| CN103977044B (en) | Hooker winghead root n-butanol portion extract and its production and use | |
| KR100673574B1 (en) | Cancer preventive and therapeutic composition containing cedrol isolated from juniper | |
| KR101320948B1 (en) | Compositions for Treatment or Prevention of Cancer Comprising Extract of Chrysanthemum indicum as Active Ingredient | |
| KR102175269B1 (en) | A pharmaceutical composition comprising compounds isolated from Phlomoides umbrosa(Turcz.) Kamelin and Makhm for preventing or treating cancer | |
| EP4302756B1 (en) | Pharmaceutical composition comprising cannabidiol and etoposide for use in the treatment of lung cancer | |
| US10993920B2 (en) | 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione as a cancer therapeutic | |
| US20180221329A1 (en) | Cis- and trans-suffruticosol d as therapeutic agents | |
| CN108403701B (en) | Application of dihydrotripterine in preparing medicine for preventing or treating blood tumor diseases | |
| KR101675642B1 (en) | A composition comprising Carpinus pubescens extracts having anti-cancer activity | |
| TWI406658B (en) | Use of isothiocyanates for treating cancer | |
| KR20100076614A (en) | A composition comprising eupafolin isolated from artemisia princeps pampanini for preventing and treating cancer disease | |
| KR101558050B1 (en) | A composition comprising Endlicheria anomala extracts having anti-cancer activity | |
| KR101514145B1 (en) | A composition comprising Machaerium cuspidatum extracts having anti-cancer activity | |
| Richardson | Cytotoxic Investigation of Crude Extracts and Isolated Compounds from Ruta Angustifolia Pers. Leaves and Effects of Chalepin on the Expression of Selected Cancer-Related Proteins in Human Lung Carcinoma Cells A549 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MIDDLE TENNESSEE STATE UNIVERSITY, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GAO, YING;ALTMAN, ELLIOT;FARONE, ANTHONY;AND OTHERS;REEL/FRAME:043773/0178 Effective date: 20160805 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |