US20170319577A1 - Combinations of opioid/tlr4 antagonist and acetyl-para-aminophenol (apap) for use in the reduction of toll-like receptor 4(tlr4) and cyclooxygenase-2 (cox-2) activity - Google Patents
Combinations of opioid/tlr4 antagonist and acetyl-para-aminophenol (apap) for use in the reduction of toll-like receptor 4(tlr4) and cyclooxygenase-2 (cox-2) activity Download PDFInfo
- Publication number
- US20170319577A1 US20170319577A1 US15/651,926 US201715651926A US2017319577A1 US 20170319577 A1 US20170319577 A1 US 20170319577A1 US 201715651926 A US201715651926 A US 201715651926A US 2017319577 A1 US2017319577 A1 US 2017319577A1
- Authority
- US
- United States
- Prior art keywords
- pain
- tlr4
- para
- naltrexone
- acetyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010060804 Toll-Like Receptor 4 Proteins 0.000 title claims abstract description 40
- SXLHPBDGZHWKSX-UHFFFAOYSA-N 1-(5-amino-2-hydroxyphenyl)ethanone Chemical compound CC(=O)C1=CC(N)=CC=C1O SXLHPBDGZHWKSX-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 230000000694 effects Effects 0.000 title claims abstract description 17
- 102000008233 Toll-Like Receptor 4 Human genes 0.000 title claims abstract 8
- 239000005557 antagonist Substances 0.000 title description 15
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 title description 6
- 102000010907 Cyclooxygenase 2 Human genes 0.000 title description 4
- 108010037462 Cyclooxygenase 2 Proteins 0.000 title description 4
- 101150071146 COX2 gene Proteins 0.000 title 1
- 101100114534 Caenorhabditis elegans ctc-2 gene Proteins 0.000 title 1
- 101150000187 PTGS2 gene Proteins 0.000 title 1
- 229960003086 naltrexone Drugs 0.000 claims abstract description 50
- DQCKKXVULJGBQN-XFWGSAIBSA-N naltrexone Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-XFWGSAIBSA-N 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims description 7
- 241000124008 Mammalia Species 0.000 claims description 5
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 claims description 5
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 5
- 230000007114 proinflammatory cascade Effects 0.000 claims description 4
- 230000005764 inhibitory process Effects 0.000 claims description 3
- 208000002193 Pain Diseases 0.000 abstract description 66
- 230000036407 pain Effects 0.000 abstract description 63
- 238000011282 treatment Methods 0.000 abstract description 27
- 208000001294 Nociceptive Pain Diseases 0.000 abstract description 13
- 150000001875 compounds Chemical class 0.000 abstract description 13
- 208000004296 neuralgia Diseases 0.000 abstract description 13
- 208000021722 neuropathic pain Diseases 0.000 abstract description 13
- 239000003401 opiate antagonist Substances 0.000 abstract description 13
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 13
- 230000002265 prevention Effects 0.000 abstract description 13
- 239000000203 mixture Substances 0.000 abstract description 9
- 229960004127 naloxone Drugs 0.000 abstract description 9
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 abstract description 8
- 230000002981 neuropathic effect Effects 0.000 abstract description 5
- 230000002195 synergetic effect Effects 0.000 abstract description 5
- 230000000903 blocking effect Effects 0.000 abstract description 3
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 32
- 150000003839 salts Chemical class 0.000 description 21
- 239000012453 solvate Substances 0.000 description 20
- 208000004454 Hyperalgesia Diseases 0.000 description 10
- 206010053552 allodynia Diseases 0.000 description 9
- 229940079593 drug Drugs 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- APSUXPSYBJVPPS-YAUKWVCOSA-N Norbinaltorphimine Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CC=2C=3C[C@]4(O)[C@]67CCN(CC8CC8)[C@@H]4CC=4C7=C(C(=CC=4)O)O[C@H]6C=3NC=25)O)CC1)O)CC1CC1 APSUXPSYBJVPPS-YAUKWVCOSA-N 0.000 description 6
- DQCKKXVULJGBQN-OBZTUIKSSA-N (4s,4ar,7as,12br)-3-(cyclopropylmethyl)-4a,9-dihydroxy-2,4,5,6,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-one Chemical compound N1([C@H]2CC3=CC=C(C=4O[C@H]5[C@@](C3=4)([C@@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-OBZTUIKSSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 230000002757 inflammatory effect Effects 0.000 description 5
- 208000002551 irritable bowel syndrome Diseases 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 229940002612 prodrug Drugs 0.000 description 5
- 239000000651 prodrug Substances 0.000 description 5
- UZHSEJADLWPNLE-PIKADFDJSA-N (4s,4ar,7as,12br)-4a,9-dihydroxy-3-prop-2-enyl-2,4,5,6,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-one Chemical compound O=C([C@H]1O2)CC[C@]3(O)[C@@H]4CC5=CC=C(O)C2=C5[C@]13CCN4CC=C UZHSEJADLWPNLE-PIKADFDJSA-N 0.000 description 4
- 208000008035 Back Pain Diseases 0.000 description 4
- 208000023890 Complex Regional Pain Syndromes Diseases 0.000 description 4
- 208000019695 Migraine disease Diseases 0.000 description 4
- 230000003110 anti-inflammatory effect Effects 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- 206010027599 migraine Diseases 0.000 description 4
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 4
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 4
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 4
- JVLBPIPGETUEET-WIXLDOGYSA-O (3r,4r,4as,7ar,12bs)-3-(cyclopropylmethyl)-4a,9-dihydroxy-3-methyl-2,4,5,6,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-3-ium-7-one Chemical compound C([N@+]1(C)[C@@H]2CC=3C4=C(C(=CC=3)O)O[C@@H]3[C@]4([C@@]2(O)CCC3=O)CC1)C1CC1 JVLBPIPGETUEET-WIXLDOGYSA-O 0.000 description 3
- JLVNEHKORQFVQJ-PYIJOLGTSA-N 6alpha-Naltrexol Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]1(O)CC[C@H]3O)CN2CC1CC1 JLVNEHKORQFVQJ-PYIJOLGTSA-N 0.000 description 3
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- 206010019233 Headaches Diseases 0.000 description 3
- 206010065390 Inflammatory pain Diseases 0.000 description 3
- WJBLNOPPDWQMCH-MBPVOVBZSA-N Nalmefene Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=C)O)CC1)O)CC1CC1 WJBLNOPPDWQMCH-MBPVOVBZSA-N 0.000 description 3
- UIQMVEYFGZJHCZ-SSTWWWIQSA-N Nalorphine Chemical compound C([C@@H](N(CC1)CC=C)[C@@H]2C=C[C@@H]3O)C4=CC=C(O)C5=C4[C@@]21[C@H]3O5 UIQMVEYFGZJHCZ-SSTWWWIQSA-N 0.000 description 3
- 229940127450 Opioid Agonists Drugs 0.000 description 3
- 229940123257 Opioid receptor antagonist Drugs 0.000 description 3
- 208000004550 Postoperative Pain Diseases 0.000 description 3
- RYIDHLJADOKWFM-MAODMQOUSA-N Samidorphan Chemical compound N1([C@@H]2CC3=CC=C(C(=C3[C@@]3([C@]2(CCC(=O)C3)O)CC1)O)C(=O)N)CC1CC1 RYIDHLJADOKWFM-MAODMQOUSA-N 0.000 description 3
- 208000003728 Vulvodynia Diseases 0.000 description 3
- 206010069055 Vulvovaginal pain Diseases 0.000 description 3
- HITDPRAEYNISJU-UHFFFAOYSA-N amenthoflavone Natural products Oc1ccc(cc1)C2=COc3c(C2=O)c(O)cc(O)c3c4cc(ccc4O)C5=COc6cc(O)cc(O)c6C5=O HITDPRAEYNISJU-UHFFFAOYSA-N 0.000 description 3
- YUSWMAULDXZHPY-UHFFFAOYSA-N amentoflavone Chemical compound C1=CC(O)=CC=C1C1=CC(=O)C2=C(O)C=C(O)C(C=3C(=CC=C(C=3)C=3OC4=CC(O)=CC(O)=C4C(=O)C=3)O)=C2O1 YUSWMAULDXZHPY-UHFFFAOYSA-N 0.000 description 3
- HVSKSWBOHPRSBD-UHFFFAOYSA-N amentoflavone Natural products Oc1ccc(cc1)C2=CC(=O)c3c(O)cc(O)c(c3O2)c4cc(ccc4O)C5=COc6cc(O)cc(O)c6C5=O HVSKSWBOHPRSBD-UHFFFAOYSA-N 0.000 description 3
- 230000000202 analgesic effect Effects 0.000 description 3
- 230000008485 antagonism Effects 0.000 description 3
- 230000002917 arthritic effect Effects 0.000 description 3
- INUCRGMCKDQKNA-CEMLEFRQSA-N cyprodime Chemical compound N1([C@@H]2CC=3C=CC=C(C=3[C@@]3([C@]2(CCC(=O)C3)OC)CC1)OC)CC1CC1 INUCRGMCKDQKNA-CEMLEFRQSA-N 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 231100000869 headache Toxicity 0.000 description 3
- 229960002921 methylnaltrexone Drugs 0.000 description 3
- 229960005297 nalmefene Drugs 0.000 description 3
- 229960000938 nalorphine Drugs 0.000 description 3
- ZHVWWEYETMPAMX-PCWWUVHHSA-N naltriben Chemical compound N1([C@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CC=2C3=CC=CC=C3OC=25)O)CC1)O)CC1CC1 ZHVWWEYETMPAMX-PCWWUVHHSA-N 0.000 description 3
- DKJCUVXSBOMWAV-PCWWUVHHSA-N naltrindole Chemical compound N1([C@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CC2=C3[CH]C=CC=C3N=C25)O)CC1)O)CC1CC1 DKJCUVXSBOMWAV-PCWWUVHHSA-N 0.000 description 3
- 239000000014 opioid analgesic Substances 0.000 description 3
- 229940124636 opioid drug Drugs 0.000 description 3
- NQJGJBLOXXIGHL-UHFFFAOYSA-N podocarpusflavone A Natural products COc1ccc(cc1)C2=CC(=O)c3c(O)cc(O)c(c3O2)c4cc(ccc4O)C5=COc6cc(O)cc(O)c6C5=O NQJGJBLOXXIGHL-UHFFFAOYSA-N 0.000 description 3
- 229950006776 samidorphan Drugs 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 206010044652 trigeminal neuralgia Diseases 0.000 description 3
- 208000006820 Arthralgia Diseases 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- 206010058019 Cancer Pain Diseases 0.000 description 2
- 208000001387 Causalgia Diseases 0.000 description 2
- 208000000094 Chronic Pain Diseases 0.000 description 2
- 102000009025 Endorphins Human genes 0.000 description 2
- 108010049140 Endorphins Proteins 0.000 description 2
- 208000001640 Fibromyalgia Diseases 0.000 description 2
- UGJMXCAKCUNAIE-UHFFFAOYSA-N Gabapentin Chemical compound OC(=O)CC1(CN)CCCCC1 UGJMXCAKCUNAIE-UHFFFAOYSA-N 0.000 description 2
- 208000005615 Interstitial Cystitis Diseases 0.000 description 2
- 102000003840 Opioid Receptors Human genes 0.000 description 2
- 108090000137 Opioid Receptors Proteins 0.000 description 2
- 208000004983 Phantom Limb Diseases 0.000 description 2
- 206010056238 Phantom pain Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229940121991 Serotonin and norepinephrine reuptake inhibitor Drugs 0.000 description 2
- 208000000491 Tendinopathy Diseases 0.000 description 2
- 206010043255 Tendonitis Diseases 0.000 description 2
- 102000002689 Toll-like receptor Human genes 0.000 description 2
- 108020000411 Toll-like receptor Proteins 0.000 description 2
- 229940123445 Tricyclic antidepressant Drugs 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 229940035676 analgesics Drugs 0.000 description 2
- 230000001754 anti-pyretic effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 208000014439 complex regional pain syndrome type 2 Diseases 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000000274 microglia Anatomy 0.000 description 2
- 229960005181 morphine Drugs 0.000 description 2
- 102000051367 mu Opioid Receptors Human genes 0.000 description 2
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 2
- 239000003887 narcotic antagonist Substances 0.000 description 2
- 210000004498 neuroglial cell Anatomy 0.000 description 2
- 210000000929 nociceptor Anatomy 0.000 description 2
- 108091008700 nociceptors Proteins 0.000 description 2
- 229960005489 paracetamol Drugs 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000012896 selective serotonin reuptake inhibitor Substances 0.000 description 2
- 229940124834 selective serotonin reuptake inhibitor Drugs 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 239000003775 serotonin noradrenalin reuptake inhibitor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011885 synergistic combination Substances 0.000 description 2
- 201000004415 tendinitis Diseases 0.000 description 2
- 239000003029 tricyclic antidepressant agent Substances 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- 108020001612 μ-opioid receptors Proteins 0.000 description 2
- GJJFMKBJSRMPLA-HIFRSBDPSA-N (1R,2S)-2-(aminomethyl)-N,N-diethyl-1-phenyl-1-cyclopropanecarboxamide Chemical compound C=1C=CC=CC=1[C@@]1(C(=O)N(CC)CC)C[C@@H]1CN GJJFMKBJSRMPLA-HIFRSBDPSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- ZEUITGRIYCTCEM-KRWDZBQOSA-N (S)-duloxetine Chemical compound C1([C@@H](OC=2C3=CC=CC=C3C=CC=2)CCNC)=CC=CS1 ZEUITGRIYCTCEM-KRWDZBQOSA-N 0.000 description 1
- LOWWSYWGAKCKLG-UHFFFAOYSA-N 2-(6-methoxynaphthalen-1-yl)acetic acid Chemical compound OC(=O)CC1=CC=CC2=CC(OC)=CC=C21 LOWWSYWGAKCKLG-UHFFFAOYSA-N 0.000 description 1
- XKSAJZSJKURQRX-UHFFFAOYSA-N 2-acetyloxy-5-(4-fluorophenyl)benzoic acid Chemical compound C1=C(C(O)=O)C(OC(=O)C)=CC=C1C1=CC=C(F)C=C1 XKSAJZSJKURQRX-UHFFFAOYSA-N 0.000 description 1
- SYCHUQUJURZQMO-UHFFFAOYSA-N 4-hydroxy-2-methyl-1,1-dioxo-n-(1,3-thiazol-2-yl)-1$l^{6},2-benzothiazine-3-carboxamide Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=CS1 SYCHUQUJURZQMO-UHFFFAOYSA-N 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 108090000312 Calcium Channels Proteins 0.000 description 1
- 102000003922 Calcium Channels Human genes 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 102100037362 Fibronectin Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 208000035154 Hyperesthesia Diseases 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- SBDNJUWAMKYJOX-UHFFFAOYSA-N Meclofenamic Acid Chemical compound CC1=CC=C(Cl)C(NC=2C(=CC=CC=2)C(O)=O)=C1Cl SBDNJUWAMKYJOX-UHFFFAOYSA-N 0.000 description 1
- ZRVUJXDFFKFLMG-UHFFFAOYSA-N Meloxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=C(C)S1 ZRVUJXDFFKFLMG-UHFFFAOYSA-N 0.000 description 1
- 208000006670 Multiple fractures Diseases 0.000 description 1
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 208000012488 Opiate Overdose Diseases 0.000 description 1
- 208000026251 Opioid-Related disease Diseases 0.000 description 1
- 102100037601 P2X purinoceptor 4 Human genes 0.000 description 1
- 101710189967 P2X purinoceptor 4 Proteins 0.000 description 1
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 1
- 208000010040 Sprains and Strains Diseases 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 201000007930 alcohol dependence Diseases 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 229940125681 anticonvulsant agent Drugs 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229940127555 combination product Drugs 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 229940124581 decongestants Drugs 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical class C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- PCHPORCSPXIHLZ-UHFFFAOYSA-N diphenhydramine hydrochloride Chemical compound [Cl-].C=1C=CC=CC=1C(OCC[NH+](C)C)C1=CC=CC=C1 PCHPORCSPXIHLZ-UHFFFAOYSA-N 0.000 description 1
- 229960002866 duloxetine Drugs 0.000 description 1
- 230000000773 effect on pain Effects 0.000 description 1
- 239000003172 expectorant agent Substances 0.000 description 1
- 230000003419 expectorant effect Effects 0.000 description 1
- 229940066493 expectorants Drugs 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229950005722 flosulide Drugs 0.000 description 1
- 229950007979 flufenisal Drugs 0.000 description 1
- -1 fofecoxib Chemical compound 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229960002870 gabapentin Drugs 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 230000035987 intoxication Effects 0.000 description 1
- 231100000566 intoxication Toxicity 0.000 description 1
- 229940125425 inverse agonist Drugs 0.000 description 1
- YYUAYBYLJSNDCX-UHFFFAOYSA-N isoxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC=1C=C(C)ON=1 YYUAYBYLJSNDCX-UHFFFAOYSA-N 0.000 description 1
- 229950002252 isoxicam Drugs 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229960003803 meclofenamic acid Drugs 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- HYYBABOKPJLUIN-UHFFFAOYSA-N mefenamic acid Chemical compound CC1=CC=CC(NC=2C(=CC=CC=2)C(O)=O)=C1C HYYBABOKPJLUIN-UHFFFAOYSA-N 0.000 description 1
- 229960001929 meloxicam Drugs 0.000 description 1
- 229960000600 milnacipran Drugs 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- 239000003703 n methyl dextro aspartic acid receptor blocking agent Substances 0.000 description 1
- CXJONBHNIJFARE-UHFFFAOYSA-N n-[6-(2,4-difluorophenoxy)-1-oxo-2,3-dihydroinden-5-yl]methanesulfonamide Chemical compound CS(=O)(=O)NC1=CC=2CCC(=O)C=2C=C1OC1=CC=C(F)C=C1F CXJONBHNIJFARE-UHFFFAOYSA-N 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- 229940090008 naprosyn Drugs 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- 230000008284 neuronal mechanism Effects 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 229960000965 nimesulide Drugs 0.000 description 1
- HYWYRSMBCFDLJT-UHFFFAOYSA-N nimesulide Chemical compound CS(=O)(=O)NC1=CC=C([N+]([O-])=O)C=C1OC1=CC=CC=C1 HYWYRSMBCFDLJT-UHFFFAOYSA-N 0.000 description 1
- 230000003040 nociceptive effect Effects 0.000 description 1
- 239000002767 noradrenalin uptake inhibitor Substances 0.000 description 1
- 229940127221 norepinephrine reuptake inhibitor Drugs 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229940127240 opiate Drugs 0.000 description 1
- 201000005040 opiate dependence Diseases 0.000 description 1
- 229940005483 opioid analgesics Drugs 0.000 description 1
- 208000005877 painful neuropathy Diseases 0.000 description 1
- 238000002638 palliative care Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- AYXYPKUFHZROOJ-ZETCQYMHSA-N pregabalin Chemical compound CC(C)C[C@H](CN)CC(O)=O AYXYPKUFHZROOJ-ZETCQYMHSA-N 0.000 description 1
- 229960001233 pregabalin Drugs 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 230000020341 sensory perception of pain Effects 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 239000003772 serotonin uptake inhibitor Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 229950005175 sudoxicam Drugs 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/485—Morphinan derivatives, e.g. morphine, codeine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/167—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
Definitions
- This invention relates to combinations of an opioid/TLR4 antagonist and acetyl-para-aminophenol (APAP) particularly those that exhibit a synergistic effect for the treatment, prevention and reversal of pain.
- opioid/TLR4 antagonist and acetyl-para-aminophenol (APAP) particularly those that exhibit a synergistic effect for the treatment, prevention and reversal of pain.
- APAP acetyl-para-aminophenol
- This invention is a novel approach for the treatment of pain. It is directed to the treatment of neuropathic and nociceptive pain.
- One component of the combination is directed to reducing neuropathic pain and the allodynic component associated with nociceptive pain and the other component address nociceptive pain.
- Specific combination of drugs and the dosage needed to create that effect is the subject of the instant invention.
- TLR4 are activated endogenously and trigger a pro-inflammatory cascade. That cascade is interrupted and in most cases eliminated by treatment using the systemic administration of an opioid/TLR4 antagonist, particularly naltrexone, or a pharmaceutically acceptable salt thereof.
- Acetyl-para-aminophenol enhances the pain relief action of the opioid/TLR4 antagonist naltrexone.
- a specific synergistic dose range of the combination is herein presented.
- TLR4 Toll-like receptor 4
- PAMPs pathogen-associated molecular patterns
- LPS lipopolysaccharide
- Opioid agonists such as morphine act as TLR4 agonists
- opioid antagonists such as naloxone and naltrexone were found to be TLR4 antagonists.
- TLR4 Activation of TLR4 by opioid agonists such as morphine leads to downstream release of inflammatory modulators including TNF- ⁇ and interleukin-1. Constant low-level release of these modulators is thought to reduce the efficacy of opioid drug treatment with time and to be involved in both the development of tolerance to opioid analgesic drugs and in the emergence of side effects such as hyperalgesia and allodynia which can become problems following extended use of opioid drugs.
- the instant invention relates to ⁇ -opioid receptor ligand as ligands of TLR4 as well and contemplates that allodynia is caused by activation of TLR4. Blockage of TLR4 accordingly will eliminate allodynia.
- Naltrexone is an opioid receptor antagonist used primarily in the management of alcohol dependence and opioid dependence. A dose of 50-300 mg once daily is recommended for most patients.
- Naloxone is an opioid inverse agonist: it is a drug used to counter the effects of opiate overdose.
- naltrexone describes the off label use of naltrexone at doses less than 10 mg per day for indications other than chemical dependency or intoxication.
- low dose naltrexone exerts the opposite effect of naltrexone in full dose. While the full dose naltrexone blocks the opiate system, the low dose naltrexone promotes the production of endorphins by the mechanism of up regulation caused by partial opiate receptor blockage. The beneficial effect of naltrexone was attributed to the increase in endorphins. The beneficial effect of low dose naltrexone can be further explained by its antagonism of TLR4.
- opioid receptor antagonists used in clinical or scientific practice that can also be used for the treatment of pain include but are not limited to the following: naloxone, nalmefene, norbinaltorphimine, nalorphine, methylnaltrexone, samidorphan, cyprodime, naltrindole, amentoflavone, naltriben, norbinaltorphimine, and the naltrexone metabolite 6- ⁇ -naltrexol.
- TLRs can be activated not only by well-known “non-self” molecular signals but also by endogenous signals (IL-1 ⁇ , TNF ⁇ , IL-6 and NO) produced during chronic neuropathic pain states.
- endogenous signals IL-1 ⁇ , TNF ⁇ , IL-6 and NO
- Fibronectin an endogenous TLR4 ligand that is produced in response to tissue injury, leads to an up regulation of the purinoceptor P2X4, which is expressed exclusively on microglia.
- opioid antagonist drugs were found to act as antagonists for TLR4, including naloxone and naltrexone. However it was found that not only the “normal” ( ⁇ ) enantiomers, but also the “unnatural” (+) enantiomers of these drugs acted as TLR4 antagonists. The unnatural enantiomers of the opioid antagonists, (+)-naltrexone and (+)-naloxone, dextro-naltrexone and dextro-naloxone, have been discovered to act as selective antagonists of TLR4.
- (+)-naloxone and (+)-naltrexone lack affinity for opioid receptors, they do not block the effects of opioid analgesic drugs, and so can be used to counteract the TLR4-mediated side effects of opioid agonists without affecting analgesia.
- (+)-Naloxone was also found to be neuroprotective, and both (+)-naloxone and (+)-naltrexone are effective in their own right at treating symptoms of neuropathic pain in animal models.
- Acetyl-para-aminophenol or acetaminophen (used in the United States Canada, Japan, South Korea, Hong Kong, and Iran) and paracetamol (used elsewhere) both come from a chemical name for the compound: para-acetylaminophenol and para-acetylaminophenol. In some contexts, it is simply abbreviated as APAP, for acetyl-para-aminophenol.
- APAP acetyl-para-aminophenol
- Acetyl-para-aminophenol is a widely used over-the-counter analgesic and antipyretic. Acetyl-para-aminophenol is classified as a mild analgesic.
- acetyl-para-aminophenol can also be used in the management of more severe pain such as post-surgical pain and providing palliative care in advanced cancer patients. Though acetyl-para-aminophenol is used to treat inflammatory pain, it is not generally classified as an NSAID because it exhibits only weak anti-inflammatory activity.
- Acetyl-para-aminophenol enhances the pain treatment effect of naltrexone by affecting nociceptive pain.
- Nociceptive pain is caused by stimulation of peripheral nerve fibers that respond only to stimuli approaching or exceeding harmful intensity (nociceptors), and may be classified according to the mode of noxious stimulation. Deep somatic pain is initiated by stimulation of nociceptors in ligaments, tendons, bones, blood vessels, fasciae and muscles, and is dull, aching, poorly localized pain. Examples include sprains and broken bones.
- Allodynia is a clinical feature of many painful conditions, such as back pain, chronic pain, neuropathic pain, diabetic neuropathic pain, trigeminal neuralgia pain, phantom limb pain, complex regional pain syndrome pain, acute herpetic pain, post herpetic pain, causalgia pain, idiopathic pain, inflammatory pain, cancer pain, postoperative pain, fibromyalgia pain, headache pain, migraine pain, allodynia pain, vulvodynia pain, interstitial cystitis pain, irritable bowel syndrome (IBS), arthritic joint pain and tendinitis. It becomes apparent that allodynia plays a role in every kind of pain.
- IBS irritable bowel syndrome
- TLR4 are activated endogenously and trigger a pro-inflammatory cascade. That cascade is interrupted by the opioid/TLR4 antagonist drugs as claimed by the instant invention. Additionally, TLR4 antagonism can play a role in improving nociceptive pain as well by affecting the allodynic component of nociceptive pain.
- the instant invention first teaches the use of an opioid/TLR4 antagonist, particularly naltrexone for its antagonism of the TLR4 and blocking release of inflammatory modulators. Secondly, the invention teaches use of acetyl-para-aminophenol, for its action on nociception and its anti-inflammatory action. The invention teaches that the combination is synergy as far as the effect on pain treatment.
- the invention contemplates several forms of opioid antagonist selected from a group consisting of naltrexone, naloxone, nalmefene, norbinaltorphimine, nalorphine, methylnaltrexone, samidorphan, cyprodime, naltrindole, amentoflavone, naltriben, norbinaltorphimine, and metabolite 6- ⁇ -naltrexol and metabolites and pro drugs thereof, including all enantiomeric and epimeric forms as well as the appropriate mixtures thereof, or pharmaceutically acceptable salts or solvates of any thereof.
- the instant invention is a synergistic combination product comprising a first compound and a second compound, where the first compound is an opioid antagonist that treats neuropathic pain by blocking receptor TLR4 and the second compound is a acetyl-para-aminophenol that treats nociceptive pain possibly by highly selective inhibition for cyclooxygenase 2 (COX-2). It enhances the pain treatment effect of the first compound.
- Another invention embodiment is a method for the treatment, prevention, and reversal of pain, neuropathic as well as nociceptive pain.
- This invention provides a combination, comprising an opioid/TLR4 antagonist and acetyl-para-aminophenol, and pharmaceutically acceptable salts or solvate of any thereof.
- Another invention embodiment is a combination, comprising an opioid antagonist and acetyl-para-aminophenol.
- the opioid/TLR4 antagonist is selected from a group consisting of naltrexone, norbinaltorphimine, nalmefene, naloxone, nalorphine, methylnaltrexone, samidorphan, cyprodime, naltrindole, amentoflavone, naltriben, norbinaltorphimine, 6- ⁇ -naltrexol and metabolites thereof, including all enantiomeric and epimeric forms as well as the appropriate mixtures thereof, as well as pro drugs or metabolites thereof or pharmaceutically acceptable salts or solvates of any thereof.
- Another invention embodiment is a combination, comprising an opioid antagonist and acetyl-para-aminophenol, the opioid antagonist/TLR4 is naltrexone as well as pro drugs and all enantiomeric and epimeric forms, specifically, (+)-naltrexone (dextro-naltrexone), as well as the appropriate mixtures thereof, or pharmaceutically acceptable salts or solvates of any thereof.
- Another invention embodiment is a combination, comprising an opioid antagonist and acetyl-para-aminophenol, the opioid antagonist/TLR4 is naltrexone in a sustained release formulation, as well as pro drugs thereof or any enantiomeric and epimeric forms thereof, as well as the appropriate mixtures thereof, or pharmaceutically acceptable salts or solvates of any thereof.
- Another invention embodiment is a combination, comprising an opioid antagonist and acetyl-para-aminophenol, the opioid antagonist/TLR4 is (+)-naltrexone (dextro-naltrexone), as well as pro drugs thereof or any enantiomeric and epimeric forms thereof, as well as the appropriate mixtures thereof, or pharmaceutically acceptable salts or solvates of any thereof.
- Another invention embodiment is a combination, comprising naltrexone, or a pharmaceutically acceptable salt or solvate thereof, and acetyl-para-aminophenol, or a pharmaceutically acceptable salt or solvate thereof.
- Another invention embodiment is a combination, comprising naltrexone and acetyl-para-aminophenol in a weight to weight combination range which corresponds to a synergistic combination range of the order of 2.25:325 parts by weight.
- Another invention embodiment is a combination, comprising the dose range of naltrexone, or a pharmaceutically acceptable salt or solvate thereof, is about 0.004 mg/kg-0.71 mg/kg per day.
- Another invention embodiment is a combination, comprising the dose range of acetyl-para-aminophenol, or a pharmaceutically acceptable salt or solvate thereof, is about 5 mg/kg-57 mg/kg per day.
- Another invention embodiment is a combination, comprising the human dose range of naltrexone, or a pharmaceutically acceptable salt or solvate thereof, is 0.25 mg-50 mg per day.
- Another invention embodiment is a combination, comprising the human dose range of naltrexone, or a pharmaceutically acceptable salt or solvate thereof, is 0.25 mg-25 mg per day.
- Another invention embodiment is a combination, comprising the human dose range of naltrexone, or a pharmaceutically acceptable salt or solvate thereof, is 0.25mg -15 mg per day.
- Another invention embodiment is a combination, comprising the human the dose range of acetyl-para-aminophenol, or a pharmaceutically acceptable salt or solvate thereof, is 324 mg-4000 mg.
- Another invention embodiment is a combination, comprising the human dose range of naltrexone, or a pharmaceutically acceptable salt or solvate thereof, is 0.25 mg-50 mg per day, and the human the dose range of acetyl-para-aminophenol or a pharmaceutically acceptable salt or solvate thereof, is 324 mg-4000 mg, wherein said composition is formulated into a single fixed combination dosage form.
- composition is administered once, twice, three or four times through the day.
- Another invention embodiment, comprising the therapeutically effective dose of the pharmaceutical composition is administered systemically by such routes including but are not limited to mucosal, nasal, oral, parenteral, gastrointestinal, topical or sublingual routes.
- Another invention embodiment comprising, said combination is in a single dosage form, and said single dosage form is in the form of tablets, lozenges, troches, hard candies, liquid, powders, sprays, creams, salves and suppositories.
- the pharmaceutical composition is used for the treatment, prevention and reversal of neuropathic pain and inflammatory nociceptive pain, such as inflammatory arthritic pain, rheumatoid arthritis, back pain, chronic pain, diabetic neuropathic pain, trigeminal neuralgia pain, phantom limb pain, complex regional pain syndrome pain, acute herpetic pain, post herpetic pain, causalgia pain, idiopathic pain, inflammatory pain, cancer pain, postoperative pain, fibromyalgia pain, headache pain, migraine pain, allodynia pain, vulvodynia pain, interstitial cystitis pain, irritable bowel syndrome (IBS), arthritic joint pain and tendinitis.
- neuropathic pain and inflammatory nociceptive pain such as inflammatory arthritic pain, rheumatoid arthritis, back pain, chronic pain, diabetic neuropathic pain, trigeminal neuralgia pain, phantom limb pain, complex regional
- the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is back pain.
- the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is neuropathic pain.
- the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is migraine headache.
- the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is trigeminal neuralgia.
- the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is vulvodynia.
- the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is irritable bowel syndrome.
- the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is post herpetic neuralgia.
- the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is diabetic neuropathy.
- the pharmaceutical composition is used for the treatment, prevention and reversal of nociceptive pain with an allodynic component.
- In another invention embodiment is a method of treating neuropathic, nociceptive and migraine pain in a mammal in need thereof, comprising administering to the mammal a therapeutically effective amount of a combination comprising opioid/TLR4 antagonist and acetyl-para-aminophenol, or a pharmaceutically acceptable salt or solvate thereof.
- naltrexone or a pharmaceutically acceptable salt or solvate thereof, and acetyl-para-amino, or a pharmaceutically acceptable salt solvate thereof may optionally be administered with one or more other pharmacologically active agents.
- Appropriate optional agents include: NSAID's e.g.
- piroxicam sudoxicam
- isoxicam celecoxib, fofecoxib, flosulide, meloxicam, 6-methoxy-2-naphthylacetic acid, nabumetone, nimesulide, steroidal anti-inflammatory drugs, tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), anticonvulsants, muscle relaxants, drugs with NMDA antagonist properties, tetrahydrocannabinol derivatives, antitussive, expectorants, decongestants, or antihistamines.
- TCAs tricyclic antidepressants
- SSRIs selective serotonin reuptake inhibitors
- SNRIs serotonin-norepinephrine reuptake inhibitors
- anticonvulsants muscle relaxants
- drugs with NMDA antagonist properties te
- Naltrexone and acetyl-para-aminophenol were evaluated alone and in combination on a human subject with the purpose of finding whether or not a combination of the two compounds offers a synergistic advantage for the pain treatment effect comparing the amounts used weight to weight.
- the components of the combination were administered to a subject as follows, the naltrexone dose administered by itself was 4.5 mg and the acetyl-para-aminophenol dose administered by itself was 1000 mg, The naltrexone/acetyl-para-aminophenol combination dose was 2.25 mg/325 respectively.
- the pain treatment effect of naltrexone and acetyl-para-aminophenol was evaluated one hour post-dose.
- naltrexone and acetyl-para-aminophenol administered alone were compared to the combination combined amounts.
- W/W weight to weight
- an adjustment for the higher potency of naltrexone was made based on the dose of each compound given by itself.
- Naltrexone and acetyl-para-aminophenol were administered at fixed dose ratios of 2.25:325 to a human subject afflicted with neuropathic back pain.
- the 2.25:325 combination represents a 2-fold lower dose of naltrexone and 3-fold lower dose of acetyl-para-aminophenol when administered together.
- the invention teaches that the optimal contemplated naltrexone, or a pharmaceutically acceptable salt or solvate thereof, to acetyl-para-aminophenol, combination dosage ratio range is 2.25:325, and this dosage ratio exhibits synergy of weight to weight proportion.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Emergency Medicine (AREA)
- Pain & Pain Management (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Disclosed are compositions for the treatment of pain comprising a first compound and a second compound, the first compound is an opioid antagonist that treats pain by blocking Toll-like receptor 4 (TLR4) and the second compound is acetyl-para-aminophenol (APAP) that enhances the pain treatment effect of the first compound. Examples of opioid antagonist include naltrexone and naloxone, synergistic pharmaceutical compositions thereof, and their use in the treatment, prevention, and reversal of neuropathic and nociceptive pain.
Description
- This application is a continuation of U.S. application Ser. No. 14/812,698 filed Jul. 29, 2015, which is a divisional of U.S. application Ser. No. 13/837,099 filed Mar. 15, 2013, the entire teachings of which are incorporated herein by reference.
- This invention relates to combinations of an opioid/TLR4 antagonist and acetyl-para-aminophenol (APAP) particularly those that exhibit a synergistic effect for the treatment, prevention and reversal of pain.
- It is well established in medical literature that treatments currently available for pain have limitations. Opioid drugs cause tolerance, dependence and side effects sufficiently serious to prompt recent action by the FDA to further restrict the drugs. Newly approved treatments, like the calcium channel alpha-2-delta ligands gabapentin and pregabalin and the serotonin and norepinephrine reuptake inhibitors milnacipran and duloxetine, require high doses to show nominal effectiveness, have a high dropout rate and carry many side effects.
- This invention is a novel approach for the treatment of pain. It is directed to the treatment of neuropathic and nociceptive pain. One component of the combination is directed to reducing neuropathic pain and the allodynic component associated with nociceptive pain and the other component address nociceptive pain. Specific combination of drugs and the dosage needed to create that effect is the subject of the instant invention.
- The unifying theory explaining neuropathic pain is the understanding that TLR4 are activated endogenously and trigger a pro-inflammatory cascade. That cascade is interrupted and in most cases eliminated by treatment using the systemic administration of an opioid/TLR4 antagonist, particularly naltrexone, or a pharmaceutically acceptable salt thereof.
- Acetyl-para-aminophenol (APAP) enhances the pain relief action of the opioid/TLR4 antagonist naltrexone. A specific synergistic dose range of the combination is herein presented.
- In a dose finding study the combination of the opioid/TLR4 antagonist, naltrexone and acetyl-para-aminophenol (APAP), acted synergistically, whether administered separately, one right after the other, or administered in combination.
- Various μ-opioid receptor ligands have been tested and were found to also possess action as agonists or antagonists of Toll-like receptor 4 (TLR4). Toll-like receptors, found in the glia, are a class of receptors that play a key role in the innate immune system. They recognize pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. Opioid agonists such as morphine act as TLR4 agonists, while opioid antagonists such as naloxone and naltrexone were found to be TLR4 antagonists. Activation of TLR4 by opioid agonists such as morphine leads to downstream release of inflammatory modulators including TNF-α and interleukin-1. Constant low-level release of these modulators is thought to reduce the efficacy of opioid drug treatment with time and to be involved in both the development of tolerance to opioid analgesic drugs and in the emergence of side effects such as hyperalgesia and allodynia which can become problems following extended use of opioid drugs.
- Accordingly, the instant invention relates to μ-opioid receptor ligand as ligands of TLR4 as well and contemplates that allodynia is caused by activation of TLR4. Blockage of TLR4 accordingly will eliminate allodynia.
- The best known opioid receptor antagonists are naloxone and naltrexone. Naltrexone is an opioid receptor antagonist used primarily in the management of alcohol dependence and opioid dependence. A dose of 50-300 mg once daily is recommended for most patients. Naloxone is an opioid inverse agonist: it is a drug used to counter the effects of opiate overdose.
- Low dose naltrexone describes the off label use of naltrexone at doses less than 10 mg per day for indications other than chemical dependency or intoxication.
- It has been suggested in the literature that low dose naltrexone exerts the opposite effect of naltrexone in full dose. While the full dose naltrexone blocks the opiate system, the low dose naltrexone promotes the production of endorphins by the mechanism of up regulation caused by partial opiate receptor blockage. The beneficial effect of naltrexone was attributed to the increase in endorphins. The beneficial effect of low dose naltrexone can be further explained by its antagonism of TLR4.
- Other opioid receptor antagonists used in clinical or scientific practice that can also be used for the treatment of pain include but are not limited to the following: naloxone, nalmefene, norbinaltorphimine, nalorphine, methylnaltrexone, samidorphan, cyprodime, naltrindole, amentoflavone, naltriben, norbinaltorphimine, and the naltrexone metabolite 6-β-naltrexol.
- Our understanding of pathological pain has primarily revolved around neuronal mechanisms. However, neighboring glia, were TLL4 reside, including astrocytes and microglia; have recently been recognized as powerful modulators of pain.
- Studies show that TLRs can be activated not only by well-known “non-self” molecular signals but also by endogenous signals (IL-1β, TNFα, IL-6 and NO) produced during chronic neuropathic pain states. Fibronectin, an endogenous TLR4 ligand that is produced in response to tissue injury, leads to an up regulation of the purinoceptor P2X4, which is expressed exclusively on microglia.
- Several opioid antagonist drugs were found to act as antagonists for TLR4, including naloxone and naltrexone. However it was found that not only the “normal” (−) enantiomers, but also the “unnatural” (+) enantiomers of these drugs acted as TLR4 antagonists. The unnatural enantiomers of the opioid antagonists, (+)-naltrexone and (+)-naloxone, dextro-naltrexone and dextro-naloxone, have been discovered to act as selective antagonists of TLR4. Since (+)-naloxone and (+)-naltrexone lack affinity for opioid receptors, they do not block the effects of opioid analgesic drugs, and so can be used to counteract the TLR4-mediated side effects of opioid agonists without affecting analgesia. (+)-Naloxone was also found to be neuroprotective, and both (+)-naloxone and (+)-naltrexone are effective in their own right at treating symptoms of neuropathic pain in animal models.
- Acetyl-para-aminophenol (APAP) or acetaminophen (used in the United States Canada, Japan, South Korea, Hong Kong, and Iran) and paracetamol (used elsewhere) both come from a chemical name for the compound: para-acetylaminophenol and para-acetylaminophenol. In some contexts, it is simply abbreviated as APAP, for acetyl-para-aminophenol. Acetyl-para-aminophenol is a widely used over-the-counter analgesic and antipyretic. Acetyl-para-aminophenol is classified as a mild analgesic. It is commonly used for the relief of headaches and other minor aches and pains and is a major ingredient in numerous cold and flu remedies. In combination with opioid analgesics, acetyl-para-aminophenol can also be used in the management of more severe pain such as post-surgical pain and providing palliative care in advanced cancer patients. Though acetyl-para-aminophenol is used to treat inflammatory pain, it is not generally classified as an NSAID because it exhibits only weak anti-inflammatory activity.
- To date, the mechanism of action of acetyl-para-aminophenol is not completely understood. The main mechanism proposed is the inhibition of cyclooxygenase (COX), and recent findings suggest that it is highly selective for COX-2. While it has analgesic and antipyretic properties comparable to those of aspirin or other NSAIDs, its peripheral anti-inflammatory activity is usually limited by several factors, one of which is the high level of peroxides present in inflammatory lesions. However, in some circumstances, even peripheral anti-inflammatory activity comparable to NSAIDs can be observed.
- Acetyl-para-aminophenol enhances the pain treatment effect of naltrexone by affecting nociceptive pain.
- Nociceptive pain is caused by stimulation of peripheral nerve fibers that respond only to stimuli approaching or exceeding harmful intensity (nociceptors), and may be classified according to the mode of noxious stimulation. Deep somatic pain is initiated by stimulation of nociceptors in ligaments, tendons, bones, blood vessels, fasciae and muscles, and is dull, aching, poorly localized pain. Examples include sprains and broken bones.
- Allodynia is a clinical feature of many painful conditions, such as back pain, chronic pain, neuropathic pain, diabetic neuropathic pain, trigeminal neuralgia pain, phantom limb pain, complex regional pain syndrome pain, acute herpetic pain, post herpetic pain, causalgia pain, idiopathic pain, inflammatory pain, cancer pain, postoperative pain, fibromyalgia pain, headache pain, migraine pain, allodynia pain, vulvodynia pain, interstitial cystitis pain, irritable bowel syndrome (IBS), arthritic joint pain and tendinitis. It becomes apparent that allodynia plays a role in every kind of pain.
- The unifying theory of allodynia, or “memory pain”, as allodynia may be described in lay terms, is the understanding that TLR4 are activated endogenously and trigger a pro-inflammatory cascade. That cascade is interrupted by the opioid/TLR4 antagonist drugs as claimed by the instant invention. Additionally, TLR4 antagonism can play a role in improving nociceptive pain as well by affecting the allodynic component of nociceptive pain.
- Based upon this, the instant invention first teaches the use of an opioid/TLR4 antagonist, particularly naltrexone for its antagonism of the TLR4 and blocking release of inflammatory modulators. Secondly, the invention teaches use of acetyl-para-aminophenol, for its action on nociception and its anti-inflammatory action. The invention teaches that the combination is synergy as far as the effect on pain treatment.
- The invention contemplates several forms of opioid antagonist selected from a group consisting of naltrexone, naloxone, nalmefene, norbinaltorphimine, nalorphine, methylnaltrexone, samidorphan, cyprodime, naltrindole, amentoflavone, naltriben, norbinaltorphimine, and metabolite 6-β-naltrexol and metabolites and pro drugs thereof, including all enantiomeric and epimeric forms as well as the appropriate mixtures thereof, or pharmaceutically acceptable salts or solvates of any thereof.
- The instant invention is a synergistic combination product comprising a first compound and a second compound, where the first compound is an opioid antagonist that treats neuropathic pain by blocking receptor TLR4 and the second compound is a acetyl-para-aminophenol that treats nociceptive pain possibly by highly selective inhibition for cyclooxygenase 2 (COX-2). It enhances the pain treatment effect of the first compound. Another invention embodiment is a method for the treatment, prevention, and reversal of pain, neuropathic as well as nociceptive pain.
- This invention provides a combination, comprising an opioid/TLR4 antagonist and acetyl-para-aminophenol, and pharmaceutically acceptable salts or solvate of any thereof.
- Another invention embodiment is a combination, comprising an opioid antagonist and acetyl-para-aminophenol. The opioid/TLR4 antagonist is selected from a group consisting of naltrexone, norbinaltorphimine, nalmefene, naloxone, nalorphine, methylnaltrexone, samidorphan, cyprodime, naltrindole, amentoflavone, naltriben, norbinaltorphimine, 6-β-naltrexol and metabolites thereof, including all enantiomeric and epimeric forms as well as the appropriate mixtures thereof, as well as pro drugs or metabolites thereof or pharmaceutically acceptable salts or solvates of any thereof.
- Another invention embodiment is a combination, comprising an opioid antagonist and acetyl-para-aminophenol, the opioid antagonist/TLR4 is naltrexone as well as pro drugs and all enantiomeric and epimeric forms, specifically, (+)-naltrexone (dextro-naltrexone), as well as the appropriate mixtures thereof, or pharmaceutically acceptable salts or solvates of any thereof.
- Another invention embodiment is a combination, comprising an opioid antagonist and acetyl-para-aminophenol, the opioid antagonist/TLR4 is naltrexone in a sustained release formulation, as well as pro drugs thereof or any enantiomeric and epimeric forms thereof, as well as the appropriate mixtures thereof, or pharmaceutically acceptable salts or solvates of any thereof.
- Another invention embodiment is a combination, comprising an opioid antagonist and acetyl-para-aminophenol, the opioid antagonist/TLR4 is (+)-naltrexone (dextro-naltrexone), as well as pro drugs thereof or any enantiomeric and epimeric forms thereof, as well as the appropriate mixtures thereof, or pharmaceutically acceptable salts or solvates of any thereof.
- Another invention embodiment is a combination, comprising naltrexone, or a pharmaceutically acceptable salt or solvate thereof, and acetyl-para-aminophenol, or a pharmaceutically acceptable salt or solvate thereof.
- Another invention embodiment is a combination, comprising naltrexone and acetyl-para-aminophenol in a weight to weight combination range which corresponds to a synergistic combination range of the order of 2.25:325 parts by weight.
- Another invention embodiment is a combination, comprising the dose range of naltrexone, or a pharmaceutically acceptable salt or solvate thereof, is about 0.004 mg/kg-0.71 mg/kg per day.
- Another invention embodiment is a combination, comprising the dose range of acetyl-para-aminophenol, or a pharmaceutically acceptable salt or solvate thereof, is about 5 mg/kg-57 mg/kg per day.
- Another invention embodiment is a combination, comprising the human dose range of naltrexone, or a pharmaceutically acceptable salt or solvate thereof, is 0.25 mg-50 mg per day.
- Another invention embodiment is a combination, comprising the human dose range of naltrexone, or a pharmaceutically acceptable salt or solvate thereof, is 0.25 mg-25 mg per day.
- Another invention embodiment is a combination, comprising the human dose range of naltrexone, or a pharmaceutically acceptable salt or solvate thereof, is 0.25mg -15 mg per day.
- Another invention embodiment is a combination, comprising the human the dose range of acetyl-para-aminophenol, or a pharmaceutically acceptable salt or solvate thereof, is 324 mg-4000 mg.
- Another invention embodiment, is a combination, comprising the human dose range of naltrexone, or a pharmaceutically acceptable salt or solvate thereof, is 0.25 mg-50 mg per day, and the human the dose range of acetyl-para-aminophenol or a pharmaceutically acceptable salt or solvate thereof, is 324 mg-4000 mg, wherein said composition is formulated into a single fixed combination dosage form.
- Another invention embodiment, comprising the composition is administered once, twice, three or four times through the day.
- Another invention embodiment, comprising the therapeutically effective dose of the pharmaceutical composition is administered systemically by such routes including but are not limited to mucosal, nasal, oral, parenteral, gastrointestinal, topical or sublingual routes.
- Another invention embodiment comprising, said combination is in a single dosage form, and said single dosage form is in the form of tablets, lozenges, troches, hard candies, liquid, powders, sprays, creams, salves and suppositories.
- Another invention embodiment, the pharmaceutical composition is used for the treatment, prevention and reversal of neuropathic pain and inflammatory nociceptive pain, such as inflammatory arthritic pain, rheumatoid arthritis, back pain, chronic pain, diabetic neuropathic pain, trigeminal neuralgia pain, phantom limb pain, complex regional pain syndrome pain, acute herpetic pain, post herpetic pain, causalgia pain, idiopathic pain, inflammatory pain, cancer pain, postoperative pain, fibromyalgia pain, headache pain, migraine pain, allodynia pain, vulvodynia pain, interstitial cystitis pain, irritable bowel syndrome (IBS), arthritic joint pain and tendinitis.
- In another invention embodiment the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is back pain.
- In another invention embodiment the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is neuropathic pain.
- In another invention embodiment, the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is migraine headache.
- In another invention embodiment, the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is trigeminal neuralgia.
- In another invention embodiment, the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is vulvodynia.
- In another invention embodiment, the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is irritable bowel syndrome.
- In another invention embodiment, the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is post herpetic neuralgia.
- In another invention embodiment, the pharmaceutical composition is used for the treatment, prevention and reversal of pain wherein said pain is diabetic neuropathy.
- In another invention embodiment, the pharmaceutical composition is used for the treatment, prevention and reversal of nociceptive pain with an allodynic component.
- In another invention embodiment is a method of treating neuropathic, nociceptive and migraine pain in a mammal in need thereof, comprising administering to the mammal a therapeutically effective amount of a combination comprising opioid/TLR4 antagonist and acetyl-para-aminophenol, or a pharmaceutically acceptable salt or solvate thereof.
- In another invention embodiment, the combination of naltrexone, or a pharmaceutically acceptable salt or solvate thereof, and acetyl-para-amino, or a pharmaceutically acceptable salt solvate thereof may optionally be administered with one or more other pharmacologically active agents. Appropriate optional agents include: NSAID's e.g. aspirin, ibuprofen, naproxen, naprosyn, diclofenac, ketoprofen, tolmetin, sulindac, mefanamic acid, meclofenamic acid, diflunisal, flufenisal, piroxicam, sudoxicam, isoxicam, celecoxib, fofecoxib, flosulide, meloxicam, 6-methoxy-2-naphthylacetic acid, nabumetone, nimesulide, steroidal anti-inflammatory drugs, tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), anticonvulsants, muscle relaxants, drugs with NMDA antagonist properties, tetrahydrocannabinol derivatives, antitussive, expectorants, decongestants, or antihistamines.
- In another invention embodiment for non-human animal administration the term “pharmaceutical” as used herein may be replaced by “veterinary”.
- The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
- Naltrexone and acetyl-para-aminophenol were evaluated alone and in combination on a human subject with the purpose of finding whether or not a combination of the two compounds offers a synergistic advantage for the pain treatment effect comparing the amounts used weight to weight.
- The components of the combination were administered to a subject as follows, the naltrexone dose administered by itself was 4.5 mg and the acetyl-para-aminophenol dose administered by itself was 1000 mg, The naltrexone/acetyl-para-aminophenol combination dose was 2.25 mg/325 respectively. The pain treatment effect of naltrexone and acetyl-para-aminophenol was evaluated one hour post-dose.
- To determine synergy, the amounts of naltrexone and acetyl-para-aminophenol administered alone were compared to the combination combined amounts. For proper weight to weight (W/W) comparison between naltrexone and acetyl-para-aminophenol an adjustment for the higher potency of naltrexone was made based on the dose of each compound given by itself. Naltrexone is 222 times more potent than acetyl-para-aminophenol (1000/4.5=222). Naltrexone and acetyl-para-aminophenol were administered at fixed dose ratios of 2.25:325 to a human subject afflicted with neuropathic back pain.
- illustrates the naltrexone/acetyl-para-aminophenol ratio that exhibited weight to weight (w/w) synergy in a human subject. The 2.25:325 combination represents a 2-fold lower dose of naltrexone and 3-fold lower dose of acetyl-para-aminophenol when administered together.
-
TABLE 1 Naltrexone/acetyl-para-aminophenol Ratio and Weight to Weight (w/w) Synergy Nal- Total Dose trex- Naltrexone + Acetyl- one Adjusted Nal- para- Potency Acetyl-para- trex- amino- Adjust- % amino- one phenol ment Reversal phenol Inter- Ratio mg mg (×222) of Pain mg action 4.5:0 4.50 — 1000 100 1000 — 0:1000 — 1000 — 50 1000 — 2.25:325 2.25 325 500 100 500 + Synergy 325 = 825 - To summarize the naltrexone/acetyl-para-aminophenol synergistic effect, the invention teaches that the optimal contemplated naltrexone, or a pharmaceutically acceptable salt or solvate thereof, to acetyl-para-aminophenol, combination dosage ratio range is 2.25:325, and this dosage ratio exhibits synergy of weight to weight proportion.
-
- Bowling, Allen C. “Low-dose naltrexone (LDN) The “411” on LDN”. National Multiple Sclerosis Society. Retrieved 6 Jul. 2011.
- Breivik H, Borchgrevink P C, Allen S M, Rosseland L A, Romundstad L, Hals E K, Kvarstein G, Stubhaug A. Assessment of pain. Br J Anaesth. 2008;101(1):17-24.doi:10.1093/bja/aen103. PMID 18487245.
- Eur J Neurosci TNFα Levels and Macrophages Expression Reflect an Inflammatory Potential of Trigeminal Ganglia in a Mouse Model of Familial Hemiplegic Migraine Nat Rev Neurosci. 2009 January; 10(1): 23-36.
- Hutchinson M R, Coats B D, Lewis S S, Zhang Y, Sprunger D B, Rezvani N, Baker E M, Jekich B M, Wieseler J L, Somogyi A A, Martin D, Poole S, Judd C M, Maier S F, Watkins L R (November 2008).“Proinflammatory cytokines oppose opioid induced acute and chronic analgesia”. Brain, Behavior, and Immunity 22 (8): 1178-89. doi:10.1016/j.bbi.2008.05.004. PMC 2783238.PMID 18599265.
- Hutchinson M R, Lewis S S, Coats B D, Rezvani N, Zhang Y, Wieseler J L, Somogyi A A, Yin H, Maier S F, Rice K C, Watkins L R (May 2010). “Possible involvement of Toll-Like Receptor 4/MD-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences”. Neuroscience 167 (3): 880-93. doi:10.1016/j.neuroscience.2010.02.011.PMC 2854318. PMID 20178837.
- Hutchinson M R, et al. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence and reward.Sci.World J. 2007;7:98-111.
- Hutchinson M R, et al. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4) Eur.J. Neurosci. 2008;28:20—.
- Hutchinson M R, Lewis S S, Coats B D, Rezvani N, Zhang Y, Wieseler J L, Somogyi A A, Yin H, Maier S F, Rice K C, Watkins L R (May 2010). “Possible involvement of Toll-Like Receptor 4/MD-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences”. Neuroscience 167 (3): 880-93.doi:10.1016/j.neuroscience.2010.02.011. PMC 2854318. PMID 20178837.
- Hutchinson M R, et al. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav. Immun. 2008 Jul. 1.
- Hutchinson M R, et al. Minocycline supresses morphine-induced respiratory depression, supresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav. Immun. 2008 Jul. 31.
- Johnston I N, et al. A role for pro-inflammatory cytokines and fractalkine in analgesia, tolerance and subsequent pain facilitation induced by chronic intrathecal morphine. 2004;24:7353-7365.
- Komatsu T, Sakurada S, Katsuyama S, Sanai K, Sakurada T (2009). “Mechanism of allodynia evoked by intrathecal morphine-3-glucuronide in mice”. International Review of Neurobiology 85: 207-19. doi:10.1016/S0074-7742(09)85016-2.PMID 19607972.
- Lewis S S, Hutchinson M R, Rezvani N, Loram L C, Zhang Y, Maier S F, Rice K C, Watkins L R (January 2010). “Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1β”.Neuroscience 165 (2): 569-83. doi:10.1016/j.neuroscience.2009.10.011.PMC 2795035. PMID 19833175.
- Mannelli P, Gottheil E, Van Bockstaele E J (2006). “Antagonist treatment of opioid withdrawal translational low dose approach”. J Addict Dis 25 (2): 1-8.doi:10.1300/J069v25n02_01. PMID 16785213.
- Milligan, E. D., and Watkins, L. R., Pathological and protective roles of glia in chronic pain, Nature Neuroscience Reviews, 10 (2009) 23-36.
- Nasu-Tada K, Koizumi S, Tsuda M, Kunifusa E, Inoue K. Possible involvement of increase in spinal fibronectin following peripheral nerve injury in upregulation of microglial P2X4, a key molecule for mechanical allodynia. Glia.2006;53:769-775.
- Ngian G S, Guymer E K, Littlejohn G O (February 2011). “The use of opioids in fibromyalgia” (PDF). Int J Rheum Dis 14 (1): 6-11. doi:10.1111/j.1756-185X.2010.01567.x. PMID 21303476.
- Novella, Steven. “Low Dose Naltrexone—Bogus or Cutting Edge Science?”. Retrieved 5 Jul. 2011.
- Obata K, et al. Toll-like receptor 3 contributes to spinal glial activation and tactile allodynia after nerve injury. J. Neurochem. 2008;105:2249-2259.
- Romero-Sandoval E A, Horvath R J, Deleo J A. Neuroimmune interactions and pain: focus on glial modulating targets. Curr. Opin. Investig. Drugs.2008;9:726-734.
- Ploesser J, Weinstock L B, Thomas E. Low Dose Naltrexone: Side Effects and Efficacy in Gastrointestinal Disorders.
- Tanga F Y, Nutile-McMenemy N, DeLeo J A. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc. Natl Acad. Sci. USA. 2005;102:5856-5861.
- Turk D C, Dworkin R H. What should be the core outcomes in chronic pain clinical trials?. Arthritis Res. Ther . . . 2004;6(4):151-4. doi:10.1186/ar1196. PMID 15225358.
- Watkins L R, Hutchinson M R, Rice K C, Maier S F (November 2009). “The “Toll” of Opioid-Induced Glial Activation: Improving the Clinical Efficacy of Opioids by Targeting Glia”. Trends in Pharmacological Sciences 30 (11): 581-91. doi:10.1016/j.tips.2009.08.002. PMC 2783351.PMID 19762094.
- Webster L R (August 2007). “Oxytrex: an oxycodone and ultra-low-dose naltrexone formulation”. Expert Opin Investig Drugs 16 (8): 1277-83. doi:10.1517/13543784.16.8.1277. PMID 17685875.
Claims (5)
1.-16. (canceled)
17. A method of reducing toll-like receptor 4 (TLR4) activity and of cyclooxygenase (COX-2) activity in a mammal by administering to the mammal an effective amount of naltrexone and acetyl-para-aminophenol (APAP).
18. The method of claim 17 , wherein the method is performed in a mammal who has activated TLR4.
19. The method of claim 18 , wherein the activation of TLR4 results in activation of a pro-inflammatory cascade.
20. The method of claim 19 , wherein simultaneous inhibition of TLR4 and COX-2 activation results in reduction of the pro-inflammatory cascade.
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US34348910P | 2010-04-29 | 2010-04-29 | |
| US39577210P | 2010-05-17 | 2010-05-17 | |
| US12/824,367 US20110269727A1 (en) | 2010-04-29 | 2010-06-28 | Composition to reduce allodynic back pain and related method of use |
| US13/837,099 US9095548B2 (en) | 2010-04-29 | 2013-03-15 | Combinations of opioid/TLR4 antagonists and acetyl-para-aminophenol (APAP) for use in the treatment of pain |
| US14/812,698 US9707225B2 (en) | 2010-04-29 | 2015-07-29 | Combinations of opioid/TLR4 antagonist and acetyl-para-aminophenol (APAP) for use in the treatment of pain |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/812,698 Continuation US9707225B2 (en) | 2010-04-29 | 2015-07-29 | Combinations of opioid/TLR4 antagonist and acetyl-para-aminophenol (APAP) for use in the treatment of pain |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170319577A1 true US20170319577A1 (en) | 2017-11-09 |
Family
ID=51529973
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/837,099 Active US9095548B2 (en) | 2010-04-29 | 2013-03-15 | Combinations of opioid/TLR4 antagonists and acetyl-para-aminophenol (APAP) for use in the treatment of pain |
| US14/812,698 Active US9707225B2 (en) | 2010-04-29 | 2015-07-29 | Combinations of opioid/TLR4 antagonist and acetyl-para-aminophenol (APAP) for use in the treatment of pain |
| US15/651,926 Abandoned US20170319577A1 (en) | 2010-04-29 | 2017-07-17 | Combinations of opioid/tlr4 antagonist and acetyl-para-aminophenol (apap) for use in the reduction of toll-like receptor 4(tlr4) and cyclooxygenase-2 (cox-2) activity |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/837,099 Active US9095548B2 (en) | 2010-04-29 | 2013-03-15 | Combinations of opioid/TLR4 antagonists and acetyl-para-aminophenol (APAP) for use in the treatment of pain |
| US14/812,698 Active US9707225B2 (en) | 2010-04-29 | 2015-07-29 | Combinations of opioid/TLR4 antagonist and acetyl-para-aminophenol (APAP) for use in the treatment of pain |
Country Status (1)
| Country | Link |
|---|---|
| US (3) | US9095548B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11058680B2 (en) | 2016-10-31 | 2021-07-13 | Allodynie Therapeutics, LLC | Combinations of opioid/TLR4 antagonists and acetaminophen for use in the treatment of emotional pain and insomnia |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9205081B2 (en) * | 2010-04-29 | 2015-12-08 | Allodynic Therapeutics, Llc | Combinations of opiod/TLR4 antagonist and a cyclooxygenase (COX) inhibitor for use in the treatment of pain |
| US9095548B2 (en) | 2010-04-29 | 2015-08-04 | Allodynic Therapeutics, Llc | Combinations of opioid/TLR4 antagonists and acetyl-para-aminophenol (APAP) for use in the treatment of pain |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6375957B1 (en) | 1997-12-22 | 2002-04-23 | Euro-Celtique, S.A. | Opioid agonist/opioid antagonist/acetaminophen combinations |
| US6716449B2 (en) * | 2000-02-08 | 2004-04-06 | Euro-Celtique S.A. | Controlled-release compositions containing opioid agonist and antagonist |
| US20040024004A1 (en) * | 2001-05-04 | 2004-02-05 | Sherman Barry M. | Novel compositions and methods for enhancing potency or reducing adverse side effects of opioid agonists |
| US20070060500A1 (en) | 2000-08-22 | 2007-03-15 | New River Pharmaceuticals Inc. | Pharmaceutical compositions for prevention of overdose or abuse |
| WO2002089794A1 (en) | 2001-05-07 | 2002-11-14 | Universite Catholique De Louvain | Method for treating neuropathic pain and pharmaceutical preparation therefor |
| US20050038062A1 (en) | 2003-04-14 | 2005-02-17 | Burns Lindsay H. | Methods and materials for the treatment of pain comprising opioid antagonists |
| GB0405200D0 (en) | 2004-03-08 | 2004-04-21 | Pfizer Ltd | Combinations comprising alpha-2-delta ligands |
| JP2006131545A (en) | 2004-11-05 | 2006-05-25 | Japan Science & Technology Agency | Neuropathic pain treatment |
| US20070259939A1 (en) | 2006-05-04 | 2007-11-08 | Accelerated Technologies | Using naltrexone as a multi-purpose health supplement to improve the human condition and preventing multiple diseases and infirmities by stimulating immune system vitality and robustness |
| GB2447014A (en) | 2007-03-01 | 2008-09-03 | Reckitt Benckiser Healthcare | Analgesic composition comprising a specific ratio of buprenorphine and naltrexone |
| CA2785056A1 (en) | 2009-12-22 | 2011-07-21 | Pondera Biotechnologies, LLC | Methods and compositions for treating distress dysfunction and enhancing safety and efficacy of specific medications |
| US20150111916A9 (en) | 2010-04-29 | 2015-04-23 | Annette Channa Toledano | Treatment of pain using a composition of opioid/Toll-like receptor 4 antagonists and dextro enantiomers thereof |
| US20150111917A9 (en) | 2010-04-29 | 2015-04-23 | Annette Channa Toledano | Combinations of an Opioid/TLR4 Antagonist and an Alpha-2-Delta Ligand for Use in the Treatment of Pain |
| US9205081B2 (en) | 2010-04-29 | 2015-12-08 | Allodynic Therapeutics, Llc | Combinations of opiod/TLR4 antagonist and a cyclooxygenase (COX) inhibitor for use in the treatment of pain |
| US20130310412A1 (en) | 2010-06-28 | 2013-11-21 | Annette Channa Toledano | Combinations of an Opioid/TLR4 Antagonist and a Direct-Acting Alpha-2 Adrenergic Agonist for Use in the Treatment of Pain |
| US9095548B2 (en) | 2010-04-29 | 2015-08-04 | Allodynic Therapeutics, Llc | Combinations of opioid/TLR4 antagonists and acetyl-para-aminophenol (APAP) for use in the treatment of pain |
| US20110269727A1 (en) | 2010-04-29 | 2011-11-03 | Toledano Annette C | Composition to reduce allodynic back pain and related method of use |
| US20130189354A1 (en) | 2010-10-07 | 2013-07-25 | Trinity Laboratories, Inc., | Novel Pharmaceutical Compositions for Treating Chronic Pain and Pain Associated with Neuropathy |
-
2013
- 2013-03-15 US US13/837,099 patent/US9095548B2/en active Active
-
2015
- 2015-07-29 US US14/812,698 patent/US9707225B2/en active Active
-
2017
- 2017-07-17 US US15/651,926 patent/US20170319577A1/en not_active Abandoned
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11058680B2 (en) | 2016-10-31 | 2021-07-13 | Allodynie Therapeutics, LLC | Combinations of opioid/TLR4 antagonists and acetaminophen for use in the treatment of emotional pain and insomnia |
Also Published As
| Publication number | Publication date |
|---|---|
| US20160051537A1 (en) | 2016-02-25 |
| US9707225B2 (en) | 2017-07-18 |
| US9095548B2 (en) | 2015-08-04 |
| US20140275141A1 (en) | 2014-09-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Smith et al. | Combination tramadol plus acetaminophen for postsurgical pain | |
| Pergolizzi et al. | The pharmacological management of dental pain | |
| Rawal et al. | Postoperative analgesia at home after ambulatory hand surgery: a controlled comparison of tramadol, metamizol, and paracetamol | |
| US9205081B2 (en) | Combinations of opiod/TLR4 antagonist and a cyclooxygenase (COX) inhibitor for use in the treatment of pain | |
| Breivik et al. | Combining diclofenac with acetaminophen or acetaminophen‐codeine after oral surgery: a randomized, double‐blind single‐dose study | |
| Oyler et al. | Nonopioid management of acute pain associated with trauma: focus on pharmacologic options | |
| Wang et al. | Dezocine exhibits antihypersensitivity activities in neuropathy through spinal μ-opioid receptor activation and norepinephrine reuptake inhibition | |
| Morlion et al. | Oral prolonged‐release oxycodone/naloxone for managing pain and opioid‐induced constipation: a review of the evidence | |
| Mercadante et al. | Combined oral prolonged-release oxycodone and naloxone in chronic pain management | |
| Keyhanfar et al. | Evaluation of antinociceptive effect of pregabalin in mice and its combination with tramadol using tail flick test | |
| CY1108201T1 (en) | OPTIMUM INTERMEDIATE LIBERATION DEVICES APPLICABLE TO INFRINGEMENT | |
| US20140296274A1 (en) | Treatment of pain using a composition of opioid/Toll-like receptor 4 antagonists and dextro enantiomers thereof | |
| WO2006069293A3 (en) | Composition comprising n-acetylcysteine and further pain or anti- inflamm medications | |
| US9707225B2 (en) | Combinations of opioid/TLR4 antagonist and acetyl-para-aminophenol (APAP) for use in the treatment of pain | |
| US20140296275A1 (en) | Combinations of an Opioid/TLR4 Antagonist and an Alpha-2-Delta Ligand for Use in the Treatment of Pain | |
| Raffa et al. | Oxycodone combinations for pain relief | |
| Kraft | Emerging pharmacologic options for treating postoperative ileus | |
| Ortiz et al. | Examination of the interaction between peripheral lumiracoxib and opioids on the 1% formalin test in rats | |
| Deeks | Sufentanil 30 µg sublingual tablet: a review in acute pain | |
| CA2476939A1 (en) | Pharmaceutical combinations of cox-2 inhibitors and opiates | |
| US20130310412A1 (en) | Combinations of an Opioid/TLR4 Antagonist and a Direct-Acting Alpha-2 Adrenergic Agonist for Use in the Treatment of Pain | |
| Pergolizzi Jr et al. | Management of moderate to severe chronic low back pain with buprenorphine buccal film using novel bioerodible mucoadhesive technology | |
| Fishman et al. | Challenges and choices in drug therapy for chronic pain | |
| Chong et al. | Neuropathic agents and pain. New strategies | |
| Gershell et al. | Making gains in pain. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ALLODYNIC THERAPEUTICS, LLC, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TOLEDANO, ANNETTE CHANNA;REEL/FRAME:044014/0035 Effective date: 20140210 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |