US20170314154A1 - Manufacturing method of composite electrode material - Google Patents
Manufacturing method of composite electrode material Download PDFInfo
- Publication number
- US20170314154A1 US20170314154A1 US15/284,556 US201615284556A US2017314154A1 US 20170314154 A1 US20170314154 A1 US 20170314154A1 US 201615284556 A US201615284556 A US 201615284556A US 2017314154 A1 US2017314154 A1 US 2017314154A1
- Authority
- US
- United States
- Prior art keywords
- manufacturing
- electrode
- active material
- composite electrode
- conductive material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 71
- 239000002131 composite material Substances 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000011149 active material Substances 0.000 claims abstract description 45
- 239000004020 conductor Substances 0.000 claims abstract description 43
- 238000004070 electrodeposition Methods 0.000 claims abstract description 23
- 239000011259 mixed solution Substances 0.000 claims abstract description 16
- 239000002243 precursor Substances 0.000 claims abstract description 14
- 238000003487 electrochemical reaction Methods 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 25
- 229910021389 graphene Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 229920001940 conductive polymer Polymers 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 5
- 238000009713 electroplating Methods 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 238000006479 redox reaction Methods 0.000 claims description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 2
- 238000001652 electrophoretic deposition Methods 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims 1
- 229910021393 carbon nanotube Inorganic materials 0.000 claims 1
- 238000004146 energy storage Methods 0.000 description 22
- 238000007599 discharging Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- UUCGKVQSSPTLOY-UHFFFAOYSA-J cobalt(2+);nickel(2+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Co+2].[Ni+2] UUCGKVQSSPTLOY-UHFFFAOYSA-J 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(II) nitrate Inorganic materials [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940075397 calomel Drugs 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- 238000007613 slurry method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/18—Electroplating using modulated, pulsed or reversing current
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D15/00—Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/045—Electrochemical coating; Electrochemical impregnation
- H01M4/0452—Electrochemical coating; Electrochemical impregnation from solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/045—Electrochemical coating; Electrochemical impregnation
- H01M4/0457—Electrochemical coating; Electrochemical impregnation from dispersions or suspensions; Electrophoresis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/562—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a manufacturing method of an electrode material, and more particularly to a manufacturing method of a composite electrode material.
- An energy storage technique usually indicates a storage of electric energy, mainly including an energy storage with physical properties (e.g., a capacitor), an energy storage with electrochemical properties (e.g., a battery) or a combination thereof (e.g., a supercapacitor).
- an energy storage with physical properties e.g., a capacitor
- an energy storage with electrochemical properties e.g., a battery
- a combination thereof e.g., a supercapacitor
- an electrode material of the energy storage device is usually manufactured with a slurry coating, a chemical vapour deposition, a DC electroplating or a DC electrophoresis.
- the above method requires a mixing or a stage-by-stage approach to prepare the electrode material. Such method is time-consuming and the electrode material cannot be sufficiently mixed. Therefore, poor contact exists between the components of the electrode material, such that the electrochemical properties of the energy storage device decrease (e.g., a low specific capacitance) and a rapid decline in specific capacitance at a high-speed charging/discharging are observed.
- the present invention provides a manufacturing method of a composite electrode material.
- the composite electrode material is manufactured with a high specific capacitance, and such high specific capacitance can be maintained at a high-speed charging/discharging.
- the present invention also provides a manufacturing method of a composite electrode material which includes the following steps.
- An electro-deposition device is provided.
- the electro-deposition device includes a mixed solution and a working electrode and an auxiliary electrode placed in the mixed solution.
- the mixed solution includes a conductive material precursor and an active material precursor.
- An alternating voltage is applied to the electro-deposition device, so as to perform a plurality of electrochemical reactions on a surface of the auxiliary electrode and therefore to form a composite electrode material.
- a composite electrode material is formed on the surface of an auxiliary electrode by applying an alternating voltage to an electro-deposition device.
- the conductive material layers and the active material layers of the composite electrode material are stacked alternately along the direction non-parallel to the surface of the electrode, and are arranged disorderly along the direction parallel to the surface of the electrode.
- the bonding properties between the conductive material layers and the active material layers can be improved, and the conductive material layers and the active material layers can be sufficiently mixed.
- the energy storage device including the composite electrode material of the present embodiment can maintain a high specific capacitance at a high current density charging/discharging. That is, the energy storage device including the composite electrode material of the present embodiment can significantly reduce the charging time so as to meet the users' requirements.
- a stacked composite electrode material can be formed merely with a one-step method. Therefore, the performance of simplifying the process and reducing the cost can be easily achieved with the manufacturing method of the present embodiment.
- FIG. 1 is a schematic cross-sectional view of a composite electrode material according to an embodiment of the present invention.
- FIG. 2 is a schematic view of an electro-deposition device according to an embodiment of the present invention.
- FIG. 3 is a cyclic voltammetry curve of the composite electrode material of Example 1.
- FIG. 4 is a resulting curve of a charging/discharging test of the composite electrode material of Example 1.
- FIG. 5 is resulting curve of an AC impedance of the composite electrode material of Example 1.
- FIG. 6A is a graph showing the relationship between the current density and the specific capacitance of a conventional electrode material.
- FIG. 6B is a graph showing the relationship between the current density and the specific capacitance of the composite electrode material of Example 1.
- FIG. 1 is a schematic cross-sectional view of a composite electrode material according to an embodiment of the present invention.
- the present embodiment provides a composite electrode material 100 disposed on a surface S 1 of an electrode 110 .
- the electrode 110 includes a conductive material, such as platinum (Pt) or another metal material, but the present invention is not limited thereto.
- the type of the electrode 110 is not limited by the present invention.
- the electrode 110 can be an electrode plate or a porous/foam electrode or another type of the electrode.
- the composite electrode material 100 includes a plurality of stacked structures 100 a , 100 b , 100 c and 100 d .
- the stacked structure 100 a has N+1 conductive material layers 102 a and N active material layers 104 a , wherein N is an integer equal to or greater than 1.
- one active material layer 104 a is located between two adjacent conductive material layers 102 a , and the lowest first conductive material layer 102 a is in contact with the surface S 1 of the electrode 110 .
- the stacked structure 100 b has i+1 active material layers 104 b and i conductive material layers 102 b , wherein i is an integer equal to or greater than 1. As shown in FIG. 1 , one conductive material layer 102 b is located between two adjacent active material layers 104 b , and the lowest active material layer 104 b is in contact with the surface S 1 of the electrode 110 .
- the stacked structure 100 c has N conductive material layers 102 c and N active material layers 104 c , wherein N is an integer equal to or greater than 1. As shown in FIG. 1 , the conductive material layers 102 c and the active material layers 104 c are stacked alternately along the direction D 1 perpendicular to the surface S of the electrode 110 , and the lowest conductive material layer 102 c is in contact with the surface S 1 of the electrode 110 .
- the stacked structure 100 d has i conductive material layers 102 d and i active material layers 104 d , wherein i is an integer equal to or greater than 1. As shown in FIG. 1 , the conductive material layers 102 d and the active material layers 104 d are stacked alternately along the direction D 1 perpendicular to the surface S 1 of the electrode 110 , and the lowest active material layer 104 d is in contact with the surface S 1 of the electrode 110 .
- FIG. 1 the embodiment of FIG. 1 in which only four stacked structures are shown and the conductive material layers and the active material layers are stacked alternately along the direction perpendicular to the surface of the electrode is provided for illustration purposes, and is not construed as limiting the present invention.
- the number of the stacked structures can be one, two, three or more than four. Stacked structures are contemplated as falling within the scope of the invention as long as the conductive material layers and the active material layers of such stacked structures are stacked alternately along the direction D 1 or D 3 non-parallel to the surface S 1 of the electrode 110 , and are arranged disorderly along the direction D 2 parallel to the surface S 1 of the electrode 110 .
- the direction D 1 /D 3 non-parallel to the surface S 1 of the electrode 110 can be the direction D 1 perpendicular to the surface of the electrode or the direction D 3 which forms an included angle ⁇ ( ⁇ is not zero) with the direction D 2 parallel to the surface S 1 of the electrode 110 .
- a direction is contemplated as falling within the scope of the invention as long as such direction is not the direction D 2 that is parallel to the surface S 1 of the electrode 110 .
- the term “arranged disorderly” indicates that multiple stacked structures can be arranged in a staggered or random manner.
- the conductive material layers and the active material layers of the present embodiment can be sufficiently mixed, so as to increase the contact areas between the conductive material layers and the active material layers.
- the electrons generated from the active material layers can be quickly transmitted by the conductive material layers, so as to improve the charging/discharging efficiency.
- multiple active material layers of the present embodiment can provide a greater effective reaction area. That is, in the present embodiment, the effective reaction area between the active material layers and the electrolyte solution of the energy storage device is increased, so the specific capacitance of the energy storage device is accordingly improved.
- the stacked structures 100 a , 100 b , 100 c and 100 d in FIG. 1 are not in contact with each other and are separated by a distance.
- the present invention is not limited thereto.
- the sidewalls of the stacked structures 100 a , 100 b , 100 c and 100 d are in contact with each other, or the sidewalls of only parts of the stacked structures 100 a , 100 b , 100 c and 100 d are in contact with each other.
- the material of each of the conductive material layers 102 a - 102 d includes a conductive material such as graphene, a graphene derivative, nanotubes, a monomer for a conductive polymer, or a combination thereof.
- the graphene derivative can be a doped graphene, an undoped graphene, a doped graphene oxide, an undoped graphene oxide, or a combination thereof.
- the monomer for the conductive polymer can be aniline.
- Each of the conductive material layers 102 a - 102 d has a thickness of about 0.3 nm to 10 ⁇ m.
- the material of each of the active material layers 104 a - 104 d can be a positive active material or a negative active material. That is, the composite electrode material 100 of the present embodiment can be applied to a positive electrode or a negative electrode depending on the materials or species of the active material layers.
- the material of each of the active material layers 104 a - 104 d can be a metal oxide, a metal hydroxide, a metal oxysulfide, a metal sulfide, a metal fluoride, a metal or a combination thereof.
- Each of the active material layers 104 a - 104 d has a thickness of about 0.3 nm to 10 ⁇ m.
- the manufacturing method of the composite electrode material 100 of the above embodiment is described in the following.
- the manufacturing method of the present invention is illustrated below with reference to the electro-deposition device and the cross-sectional view of the composite electrode material 100 .
- FIG. 2 is a schematic view of an electro-deposition device according to an embodiment of the present invention.
- the present embodiment provides a method of manufacturing a composite electrode material by an electro-deposition device which includes the following steps.
- an electro-deposition device 200 is provided.
- the electro-deposition device 200 includes a reaction device 210 , a working electrode 204 , an auxiliary electrode 206 and a power supply 208 .
- the reaction device 210 can be a beaker, a culture dish or a suitable vessel which is adapted for containing the mixed solution 202 without chemically reacting with the mixed solution 202 .
- the mixed solution 202 includes a conductive material precursor and an active material precursor.
- the conductive material precursor includes a conductive material such as graphene, a graphene derivative, nanotubes, a monomer for a conductive polymer, or a combination thereof.
- the graphene derivative can be a doped graphene, an undoped graphene, a doped graphene oxide, an undoped graphene oxide or a combination thereof.
- the monomer for the conductive polymer can be aniline.
- the active material precursor can be a metal salt, and the metal salt includes a metal nitride, a metal acetate, a metal sulfate, or a combination thereof.
- the working electrode 204 and the auxiliary electrode 206 are dipped in the mixed solution 202 , and one terminal of the power supply 208 is electrically connected to the working electrode 204 and another terminal of the power supply 208 is electrically connected to the auxiliary electrode 206 .
- the working electrode 204 and the auxiliary electrode 206 can be platinum electrodes which are not easily eroded or consumed by chemically reacting with the mixed solution 202 .
- the electro-deposition device 200 can further include a reference electrode.
- the composite electrode material 100 has a specific capacitance of about 2,000 F/g to 3,000 F/g.
- a high current density e.g. 10 A/g
- the composite electrode material 100 still has a specific capacitance of about 2,000 F/g to 3,000 F/g.
- each of the electrochemical reactions can be an oxidation-reduction reaction, an electrophoretic deposition or a combination thereof.
- the electro-deposition device 200 of the present embodiment is constantly switched between a high voltage mode and a low voltage mode.
- the conductive material precursor in the mixed solution 202 is transformed into conductive material layers in the high voltage mode, while the active material precursor in the mixed solution 202 is transformed into active material layers in the low voltage mode.
- the manufacturing method is a deposition technique at an atomic scale, the conductive material layers and the active material layers can be uniformly stacked by multiple switching between high and low voltages.
- the conventional technique such as a precipitation method or a slurry method has the issue that materials per se are aggregated without contacting the electrode, so the performance of the energy storage device is degraded.
- the present embodiment accordingly provides a method to solve the above conventional issue.
- the alternating voltage can be a pulse voltage, an AC voltage (e.g., a sine-wave AC voltage) or a cycle voltage.
- the present invention is not limited thereto.
- an operation is contemplated as falling within the scope of the present invention as long as such operation includes continuously switching between high and low voltages applied to the auxiliary electrode 206 .
- the high voltage can be a positive voltage
- the low voltage can be a negative voltage.
- the thickness of each of the conductive material layers and the active material layers can be adjusted by changing the pulse period. That is, when the pulse period is decreased, the oxidation-reduction reaction is carried out for a shorter time, and each of the conductive material layers and the active material layers is accordingly formed thinner.
- the number of the stacked layers can be controlled by changing the total electro-deposition time. That is, when the total electro-deposition time is increased, the total number of the conductive material layers and the active material layers is accordingly increased.
- an alternating voltage can be applied to a roll-to-roll electroplating device, in addition to the electro-deposition device 200 , so as to form a composite electrode material.
- the roll-to-roll electroplating device can be used for mass production with a reduced process cost, and thus, the competitive advantage can be easily achieved.
- a graphene oxide was prepared through a Hummer's method. Specifically, 720 mL of H 2 SO 4 and 80 mL of H 3 PO 4 were uniformly mixed. Thereafter, 3 g of graphene and 12 g of KMnO 4 were added to the mixture, the reaction temperature was increased to 60 C and the mixture was reacted for 18 hours. Afterwards, 600 mL of ice cubes (prepared by deionized water) and 5-10 mL of H 2 O 2 were added to the mixture to stop the reaction. The mixture was then washed several times with deionized water, hydrochloric acid and ethanol, filtered by a glass fiber filter, and finally centrifuged.
- ether was added to the mixture, filtered by a polytetrafluoroethylene (PTFE) filter with a pore size of 0.2 ⁇ m, and finally vacuum baked at 40° C. for 12 hours, and a solid graphene oxide was thus obtained.
- PTFE polytetrafluoroethylene
- PBS phosphate buffered saline
- Example 1 A potentiostat (CH Instruments, CHI 608) with a foam nickel as a working electrode, a standard calomel electrode as a reference electrode and a platinum electrode as an auxiliary electrode was used, and 200 pulse signals were applied, so as to prepare a graphene/nickel-cobalt hydroxide composite electrode material (abbreviated “composite electrode material of Example 1” hereinafter).
- the graphene layer has a thickness of about 10 nm to 100 nm
- the nickel-cobalt hydroxide layer has a thickness of about 10 nm to 100 nm.
- Example 1 the composite electrode material of Example 1 was placed in a vacuum oven to remove water, the electrochemical properties thereof were measured with a potentiostat (CH Instruments, CHI 608), and the results were shown in FIG. 3 , FIG. 4 and FIG. 5 .
- a potentiostat CH Instruments, CHI 608
- FIG. 3 is a cyclic voltammetry curve of the composite electrode material of Example 1.
- FIG. 4 is a resulting curve of a charging/discharging test of the composite electrode material of Example 1.
- FIG. 5 is resulting curve of an AC impedance of the composite electrode material of Example 1.
- the composite electrode material of Example 1 has a reversible oxidation and reduction property.
- the composite electrode material of Example 1 has an oxidation peak potential of about 0.25 V and a reduction peak potential of about 0.075 V at a scan rate of 5 mV/s. That is, the composite electrode material of Example 1 is formed with a charging/discharging property.
- the composite electrode material of Example 1 has a charging time of about 2,300 seconds at a current density of 1 A/g, and has a charging time of about 235 seconds at a current density of 10 A/g. That is, the charging time of the composite electrode material of Example 1 can be quickly shortened at a high current density.
- the energy storage device can be charged more quickly than a conventional energy storage device, either in a constant current mode or under the case of charging the same capacitance.
- no conductive layer or merely single conductive layer is included in the conventional energy storage device, an issue which electrons cannot be transmitted rapidly at a high current density is generated. Based on the above, the issue of the conventional energy storage device can be resolved by the present invention.
- the composite electrode material of Example 1 when the composite electrode material of Example 1 is applied to an energy storage device, the composite electrode material of Example 1 has a smaller internal resistance of about zero Ohms. That is, the composite electrode material of Example 1 is formed without excessive impedance leading to a reduction in charging/discharging performance.
- the specific capacitance of the composite electrode material of Example 1 can be calculated from the data from FIGS. 3-5 and the following equation.
- I is the current density
- ⁇ t is the charging/discharging time
- m is the mass of the sample
- ⁇ V is the working voltage
- FIG. 6B is a graph showing the relationship between the current density and the specific capacitance of the composite electrode material of Example 1 calculated from the above equation.
- FIG. 6A is a graph showing the relationship between the current density and the specific capacitance of a conventional electrode material.
- the so-called conventional electrode material indicates a single nickel-cobalt hydroxide layer coated on the electrode.
- the specific capacitances (about 2,800-3,000 F/g) of the composite electrode material of Example 1 at different current densities (i.e., 1, 3, 5, 10 A/g) are all higher than the specific capacitance (about 1,000-2,300 F/g) of the conventional electrode material.
- the composite electrode material of Example 1 still has a high specific capacitance of about 2800-3,000 F/g at a high current density of 10 A/g.
- the specific capacitance of the conventional electrode material is reduced to 1,000 F/g at a high current density of 10 A/g. That is, the composite electrode material of the present invention can effectively solve the issue of rapid decline in specific capacitance at a high current density.
- the present invention can solve the issue of long charging time of the conventional energy storage device.
- the energy storage device including the composite electrode material of the invention can be provided with a shorter charging time and thus drawn attention from consumers in terms of a commercial product.
- the energy storage device is beneficial for a green energy field. When such energy storage device is applied to an electric vehicle, the fossil energy consumption and therefore the carbon emissions can be reduced, and the greenhouse effect can be alleviated.
- a composite electrode material is formed on the surface of an auxiliary electrode by applying an alternating voltage to an electro-deposition device.
- the conductive material layers and the active material layers of the composite electrode material are stacked alternately along the direction non-parallel to the surface of the electrode, and are arranged disorderly along the direction parallel to the surface of the electrode.
- the bonding properties between the conductive material layers and the active material layers can be improved, and the conductive material layers and the active material layers can be sufficiently mixed.
- the energy storage device including the composite electrode material of the present embodiment can maintain a high specific capacitance at a high current density charging/discharging. That is, the energy storage device including the composite electrode material of the present embodiment can significantly reduce the charging time so as to meet the users' requirements.
- a stacked composite electrode material can be formed merely with a one-step method. Therefore, the performance of simplifying the process and reducing the cost can be easily achieved with the manufacturing method of the present embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Chemistry (AREA)
Abstract
Provided is a manufacturing method of a composite electrode material which includes the following steps. An electro-deposition device is provided. The electro-deposition device includes a mixed solution and a working electrode and an auxiliary electrode placed in the mixed solution. The mixed solution includes a conductive material precursor and an active material precursor. An alternating voltage is applied to the electro-deposition device, so as to perform a plurality of electrochemical reactions on a surface of the auxiliary electrode and therefore to form a composite electrode material.
Description
- This application claims the priority benefit of Taiwan application serial no. 105113269, filed on Apr. 28, 2016. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
- The present invention relates to a manufacturing method of an electrode material, and more particularly to a manufacturing method of a composite electrode material.
- An energy storage technique usually indicates a storage of electric energy, mainly including an energy storage with physical properties (e.g., a capacitor), an energy storage with electrochemical properties (e.g., a battery) or a combination thereof (e.g., a supercapacitor).
- Generally speaking, an electrode material of the energy storage device is usually manufactured with a slurry coating, a chemical vapour deposition, a DC electroplating or a DC electrophoresis. However, the above method requires a mixing or a stage-by-stage approach to prepare the electrode material. Such method is time-consuming and the electrode material cannot be sufficiently mixed. Therefore, poor contact exists between the components of the electrode material, such that the electrochemical properties of the energy storage device decrease (e.g., a low specific capacitance) and a rapid decline in specific capacitance at a high-speed charging/discharging are observed.
- The present invention provides a manufacturing method of a composite electrode material. The composite electrode material is manufactured with a high specific capacitance, and such high specific capacitance can be maintained at a high-speed charging/discharging.
- The present invention also provides a manufacturing method of a composite electrode material which includes the following steps. An electro-deposition device is provided. The electro-deposition device includes a mixed solution and a working electrode and an auxiliary electrode placed in the mixed solution. The mixed solution includes a conductive material precursor and an active material precursor. An alternating voltage is applied to the electro-deposition device, so as to perform a plurality of electrochemical reactions on a surface of the auxiliary electrode and therefore to form a composite electrode material.
- In view of the above, in the present embodiment, a composite electrode material is formed on the surface of an auxiliary electrode by applying an alternating voltage to an electro-deposition device. The conductive material layers and the active material layers of the composite electrode material are stacked alternately along the direction non-parallel to the surface of the electrode, and are arranged disorderly along the direction parallel to the surface of the electrode. By such manner, the bonding properties between the conductive material layers and the active material layers can be improved, and the conductive material layers and the active material layers can be sufficiently mixed. Accordingly, the energy storage device including the composite electrode material of the present embodiment can maintain a high specific capacitance at a high current density charging/discharging. That is, the energy storage device including the composite electrode material of the present embodiment can significantly reduce the charging time so as to meet the users' requirements.
- Besides, in the manufacturing method of the present embodiment, a stacked composite electrode material can be formed merely with a one-step method. Therefore, the performance of simplifying the process and reducing the cost can be easily achieved with the manufacturing method of the present embodiment.
- In order to make the aforementioned and other objects, features and advantages of the present invention comprehensible, a preferred embodiment accompanied with figures is described in detail below.
- The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
-
FIG. 1 is a schematic cross-sectional view of a composite electrode material according to an embodiment of the present invention. -
FIG. 2 is a schematic view of an electro-deposition device according to an embodiment of the present invention. -
FIG. 3 is a cyclic voltammetry curve of the composite electrode material of Example 1. -
FIG. 4 is a resulting curve of a charging/discharging test of the composite electrode material of Example 1. -
FIG. 5 is resulting curve of an AC impedance of the composite electrode material of Example 1. -
FIG. 6A is a graph showing the relationship between the current density and the specific capacitance of a conventional electrode material. -
FIG. 6B is a graph showing the relationship between the current density and the specific capacitance of the composite electrode material of Example 1. - The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. The invention may, however, be embodied in other forms and should not be construed as being limited to the embodiments set forth herein. In the following embodiments, the directional terminology, such as “top,” “bottom,” or the like, is used with reference to the orientation of the Figure(s) being described. As such, the directional terminology is used for purposes of illustration and is in no way limiting. Besides, the dimensions or thicknesses of layers and regions are exaggerated for clarity. Wherever possible, the same or like reference numbers are used in the drawings and the description to refer to the same or like parts.
-
FIG. 1 is a schematic cross-sectional view of a composite electrode material according to an embodiment of the present invention. - Referring to
FIG. 1 , the present embodiment provides acomposite electrode material 100 disposed on a surface S1 of anelectrode 110. In an embodiment, theelectrode 110 includes a conductive material, such as platinum (Pt) or another metal material, but the present invention is not limited thereto. Besides, the type of theelectrode 110 is not limited by the present invention. For example, theelectrode 110 can be an electrode plate or a porous/foam electrode or another type of the electrode. - Specifically, the
composite electrode material 100 includes a plurality of 100 a, 100 b, 100 c and 100 d. For example, the stacked structure 100 a has N+1stacked structures conductive material layers 102 a and Nactive material layers 104 a, wherein N is an integer equal to or greater than 1. As shown inFIG. 1 , oneactive material layer 104 a is located between two adjacentconductive material layers 102 a, and the lowest firstconductive material layer 102 a is in contact with the surface S1 of theelectrode 110. - The stacked
structure 100 b has i+1active material layers 104 b and iconductive material layers 102 b, wherein i is an integer equal to or greater than 1. As shown inFIG. 1 , oneconductive material layer 102 b is located between two adjacentactive material layers 104 b, and the lowestactive material layer 104 b is in contact with the surface S1 of theelectrode 110. - The stacked
structure 100 c has Nconductive material layers 102 c and Nactive material layers 104 c, wherein N is an integer equal to or greater than 1. As shown inFIG. 1 , theconductive material layers 102 c and theactive material layers 104 c are stacked alternately along the direction D1 perpendicular to the surface S of theelectrode 110, and the lowestconductive material layer 102 c is in contact with the surface S1 of theelectrode 110. - The stacked
structure 100 d has iconductive material layers 102 d and iactive material layers 104 d, wherein i is an integer equal to or greater than 1. As shown inFIG. 1 , theconductive material layers 102 d and theactive material layers 104 d are stacked alternately along the direction D1 perpendicular to the surface S1 of theelectrode 110, and the lowestactive material layer 104 d is in contact with the surface S1 of theelectrode 110. - It is noted that, the embodiment of
FIG. 1 in which only four stacked structures are shown and the conductive material layers and the active material layers are stacked alternately along the direction perpendicular to the surface of the electrode is provided for illustration purposes, and is not construed as limiting the present invention. In another embodiment, the number of the stacked structures can be one, two, three or more than four. Stacked structures are contemplated as falling within the scope of the invention as long as the conductive material layers and the active material layers of such stacked structures are stacked alternately along the direction D1 or D3 non-parallel to the surface S1 of theelectrode 110, and are arranged disorderly along the direction D2 parallel to the surface S1 of theelectrode 110. Herein, the direction D1/D3 non-parallel to the surface S1 of theelectrode 110 can be the direction D1 perpendicular to the surface of the electrode or the direction D3 which forms an included angle θ (θ is not zero) with the direction D2 parallel to the surface S1 of theelectrode 110. In other words, a direction is contemplated as falling within the scope of the invention as long as such direction is not the direction D2 that is parallel to the surface S1 of theelectrode 110. The term “arranged disorderly” indicates that multiple stacked structures can be arranged in a staggered or random manner. In other words, the conductive material layers and the active material layers of the present embodiment can be sufficiently mixed, so as to increase the contact areas between the conductive material layers and the active material layers. Therefore, during the charging/discharging operation, the electrons generated from the active material layers can be quickly transmitted by the conductive material layers, so as to improve the charging/discharging efficiency. On the other hand, as compared to the conventional single active material layer, multiple active material layers of the present embodiment can provide a greater effective reaction area. That is, in the present embodiment, the effective reaction area between the active material layers and the electrolyte solution of the energy storage device is increased, so the specific capacitance of the energy storage device is accordingly improved. - Besides, the
100 a, 100 b, 100 c and 100 d instacked structures FIG. 1 are not in contact with each other and are separated by a distance. However, the present invention is not limited thereto. In another embodiment, the sidewalls of the 100 a, 100 b, 100 c and 100 d are in contact with each other, or the sidewalls of only parts of thestacked structures 100 a, 100 b, 100 c and 100 d are in contact with each other.stacked structures - In an embodiment, the material of each of the conductive material layers 102 a-102 d includes a conductive material such as graphene, a graphene derivative, nanotubes, a monomer for a conductive polymer, or a combination thereof. The graphene derivative can be a doped graphene, an undoped graphene, a doped graphene oxide, an undoped graphene oxide, or a combination thereof. The monomer for the conductive polymer can be aniline. Each of the conductive material layers 102 a-102 d has a thickness of about 0.3 nm to 10 μm.
- In an embodiment, the material of each of the active material layers 104 a-104 d can be a positive active material or a negative active material. That is, the
composite electrode material 100 of the present embodiment can be applied to a positive electrode or a negative electrode depending on the materials or species of the active material layers. For example, the material of each of the active material layers 104 a-104 d can be a metal oxide, a metal hydroxide, a metal oxysulfide, a metal sulfide, a metal fluoride, a metal or a combination thereof. Each of the active material layers 104 a-104 d has a thickness of about 0.3 nm to 10 μm. - The manufacturing method of the
composite electrode material 100 of the above embodiment is described in the following. The manufacturing method of the present invention is illustrated below with reference to the electro-deposition device and the cross-sectional view of thecomposite electrode material 100. -
FIG. 2 is a schematic view of an electro-deposition device according to an embodiment of the present invention. - Referring to
FIG. 2 , the present embodiment provides a method of manufacturing a composite electrode material by an electro-deposition device which includes the following steps. First, an electro-deposition device 200 is provided. Specifically, the electro-deposition device 200 includes areaction device 210, a workingelectrode 204, anauxiliary electrode 206 and apower supply 208. - Thereafter, a
mixed solution 202 is placed in thereaction device 210. In an embodiment, thereaction device 210 can be a beaker, a culture dish or a suitable vessel which is adapted for containing themixed solution 202 without chemically reacting with themixed solution 202. - Specifically, the
mixed solution 202 includes a conductive material precursor and an active material precursor. In an embodiment, the conductive material precursor includes a conductive material such as graphene, a graphene derivative, nanotubes, a monomer for a conductive polymer, or a combination thereof. The graphene derivative can be a doped graphene, an undoped graphene, a doped graphene oxide, an undoped graphene oxide or a combination thereof. The monomer for the conductive polymer can be aniline. The active material precursor can be a metal salt, and the metal salt includes a metal nitride, a metal acetate, a metal sulfate, or a combination thereof. - Afterwards, the working
electrode 204 and theauxiliary electrode 206 are dipped in themixed solution 202, and one terminal of thepower supply 208 is electrically connected to the workingelectrode 204 and another terminal of thepower supply 208 is electrically connected to theauxiliary electrode 206. In an embodiment, the workingelectrode 204 and theauxiliary electrode 206 can be platinum electrodes which are not easily eroded or consumed by chemically reacting with themixed solution 202. In another embodiment, the electro-deposition device 200 can further include a reference electrode. - An alternating voltage is then applied to the
auxiliary electrode 206 by thepower supply 208, such that a plurality of electrochemical reactions are carried out on the surface of theauxiliary electrode 206, and thecomposite electrode material 100 ofFIG. 1 is thus formed. In an embodiment, thecomposite electrode material 100 has a specific capacitance of about 2,000 F/g to 3,000 F/g. At a high current density (e.g., 10 A/g) charging/discharging, thecomposite electrode material 100 still has a specific capacitance of about 2,000 F/g to 3,000 F/g. In an embodiment, each of the electrochemical reactions can be an oxidation-reduction reaction, an electrophoretic deposition or a combination thereof. - Specifically, the electro-
deposition device 200 of the present embodiment is constantly switched between a high voltage mode and a low voltage mode. The conductive material precursor in themixed solution 202 is transformed into conductive material layers in the high voltage mode, while the active material precursor in themixed solution 202 is transformed into active material layers in the low voltage mode. Since the manufacturing method is a deposition technique at an atomic scale, the conductive material layers and the active material layers can be uniformly stacked by multiple switching between high and low voltages. The conventional technique such as a precipitation method or a slurry method has the issue that materials per se are aggregated without contacting the electrode, so the performance of the energy storage device is degraded. The present embodiment accordingly provides a method to solve the above conventional issue. - In an embodiment, the alternating voltage can be a pulse voltage, an AC voltage (e.g., a sine-wave AC voltage) or a cycle voltage. However, the present invention is not limited thereto. In another embodiment, an operation is contemplated as falling within the scope of the present invention as long as such operation includes continuously switching between high and low voltages applied to the
auxiliary electrode 206. In another embodiment, the high voltage can be a positive voltage, and the low voltage can be a negative voltage. - In addition, in the present embodiment, the thickness of each of the conductive material layers and the active material layers can be adjusted by changing the pulse period. That is, when the pulse period is decreased, the oxidation-reduction reaction is carried out for a shorter time, and each of the conductive material layers and the active material layers is accordingly formed thinner. Besides, in the present embodiment, the number of the stacked layers can be controlled by changing the total electro-deposition time. That is, when the total electro-deposition time is increased, the total number of the conductive material layers and the active material layers is accordingly increased.
- Besides, an alternating voltage can be applied to a roll-to-roll electroplating device, in addition to the electro-
deposition device 200, so as to form a composite electrode material. The roll-to-roll electroplating device can be used for mass production with a reduced process cost, and thus, the competitive advantage can be easily achieved. - In order to prove the feasibility of the present invention, several experiments are provided below to further illustrate the composite electrode material of the present invention. Experiments are provided below to more specifically describe the invention. Although the following experiments are described, the materials used and the amount and ratio of each thereof, as well as handling details and handling procedures, etc., can be suitably modified without exceeding the scope of the invention. Accordingly, restrictive interpretation should not be made to the invention based on the experiments described below.
- First, a graphene oxide was prepared through a Hummer's method. Specifically, 720 mL of H2SO4 and 80 mL of H3PO4 were uniformly mixed. Thereafter, 3 g of graphene and 12 g of KMnO4 were added to the mixture, the reaction temperature was increased to 60 C and the mixture was reacted for 18 hours. Afterwards, 600 mL of ice cubes (prepared by deionized water) and 5-10 mL of H2O2 were added to the mixture to stop the reaction. The mixture was then washed several times with deionized water, hydrochloric acid and ethanol, filtered by a glass fiber filter, and finally centrifuged. Next, ether was added to the mixture, filtered by a polytetrafluoroethylene (PTFE) filter with a pore size of 0.2 μm, and finally vacuum baked at 40° C. for 12 hours, and a solid graphene oxide was thus obtained.
- Afterwards, 2 mM of Ni(NO3)2 and 4 mM of Co(NO3)2 were prepared in a 0.01 M phosphate buffered saline (PBS, pH=7.4) solution, and a graphene oxide PBS solution in which the graphene oxide had a weight equal to the total weight of Ni(NO3)2 and Co(NO3)2 was added thereto, and the mixture was fully stirred. A potentiostat (CH Instruments, CHI 608) with a foam nickel as a working electrode, a standard calomel electrode as a reference electrode and a platinum electrode as an auxiliary electrode was used, and 200 pulse signals were applied, so as to prepare a graphene/nickel-cobalt hydroxide composite electrode material (abbreviated “composite electrode material of Example 1” hereinafter). In Example 1, the graphene layer has a thickness of about 10 nm to 100 nm, and the nickel-cobalt hydroxide layer has a thickness of about 10 nm to 100 nm.
- Afterwards, the composite electrode material of Example 1 was placed in a vacuum oven to remove water, the electrochemical properties thereof were measured with a potentiostat (CH Instruments, CHI 608), and the results were shown in
FIG. 3 ,FIG. 4 andFIG. 5 . -
FIG. 3 is a cyclic voltammetry curve of the composite electrode material of Example 1.FIG. 4 is a resulting curve of a charging/discharging test of the composite electrode material of Example 1.FIG. 5 is resulting curve of an AC impedance of the composite electrode material of Example 1. - As shown in
FIG. 3 , the composite electrode material of Example 1 has a reversible oxidation and reduction property. The composite electrode material of Example 1 has an oxidation peak potential of about 0.25 V and a reduction peak potential of about 0.075 V at a scan rate of 5 mV/s. That is, the composite electrode material of Example 1 is formed with a charging/discharging property. - Afterwards, a charging/discharging test is performed to the composite electrode material of Example 1 in a constant current mode, and the results are shown in
FIG. 4 . The composite electrode material of Example 1 has a charging time of about 2,300 seconds at a current density of 1 A/g, and has a charging time of about 235 seconds at a current density of 10 A/g. That is, the charging time of the composite electrode material of Example 1 can be quickly shortened at a high current density. When such composite electrode material is applied to an energy storage device, the energy storage device can be charged more quickly than a conventional energy storage device, either in a constant current mode or under the case of charging the same capacitance. Specifically, since no conductive layer or merely single conductive layer is included in the conventional energy storage device, an issue which electrons cannot be transmitted rapidly at a high current density is generated. Based on the above, the issue of the conventional energy storage device can be resolved by the present invention. - As shown in
FIG. 5 , when the composite electrode material of Example 1 is applied to an energy storage device, the composite electrode material of Example 1 has a smaller internal resistance of about zero Ohms. That is, the composite electrode material of Example 1 is formed without excessive impedance leading to a reduction in charging/discharging performance. - In addition, the specific capacitance of the composite electrode material of Example 1 can be calculated from the data from
FIGS. 3-5 and the following equation. -
C=I×Δt/ΔV×m (1) - wherein I is the current density, Δt is the charging/discharging time, m is the mass of the sample, and ΔV is the working voltage.
-
FIG. 6B is a graph showing the relationship between the current density and the specific capacitance of the composite electrode material of Example 1 calculated from the above equation.FIG. 6A is a graph showing the relationship between the current density and the specific capacitance of a conventional electrode material. The so-called conventional electrode material indicates a single nickel-cobalt hydroxide layer coated on the electrode. - Referring to
FIG. 6A andFIG. 6B , the specific capacitances (about 2,800-3,000 F/g) of the composite electrode material of Example 1 at different current densities (i.e., 1, 3, 5, 10 A/g) are all higher than the specific capacitance (about 1,000-2,300 F/g) of the conventional electrode material. On the other hand, the composite electrode material of Example 1 still has a high specific capacitance of about 2800-3,000 F/g at a high current density of 10 A/g. On the contrary, the specific capacitance of the conventional electrode material is reduced to 1,000 F/g at a high current density of 10 A/g. That is, the composite electrode material of the present invention can effectively solve the issue of rapid decline in specific capacitance at a high current density. - Therefore, the present invention can solve the issue of long charging time of the conventional energy storage device. The energy storage device including the composite electrode material of the invention can be provided with a shorter charging time and thus drawn attention from consumers in terms of a commercial product. For example, the energy storage device is beneficial for a green energy field. When such energy storage device is applied to an electric vehicle, the fossil energy consumption and therefore the carbon emissions can be reduced, and the greenhouse effect can be alleviated.
- In summary, in the present embodiment, a composite electrode material is formed on the surface of an auxiliary electrode by applying an alternating voltage to an electro-deposition device. The conductive material layers and the active material layers of the composite electrode material are stacked alternately along the direction non-parallel to the surface of the electrode, and are arranged disorderly along the direction parallel to the surface of the electrode. By such manner, the bonding properties between the conductive material layers and the active material layers can be improved, and the conductive material layers and the active material layers can be sufficiently mixed. Accordingly, the energy storage device including the composite electrode material of the present embodiment can maintain a high specific capacitance at a high current density charging/discharging. That is, the energy storage device including the composite electrode material of the present embodiment can significantly reduce the charging time so as to meet the users' requirements.
- Besides, in the manufacturing method of the present embodiment, a stacked composite electrode material can be formed merely with a one-step method. Therefore, the performance of simplifying the process and reducing the cost can be easily achieved with the manufacturing method of the present embodiment.
- The present invention has been disclosed above in the preferred embodiments, but is not limited to those. It is known to persons skilled in the art that some modifications and innovations may be made without departing from the spirit and scope of the present invention. Therefore, the scope of the present invention should be defined by the following claims.
Claims (8)
1. A manufacturing method of a composite electrode material, comprising:
providing an electro-deposition device, wherein the electro-deposition device comprises:
a mixed solution, having a conductive material precursor and an active material precursor; and
a working electrode and an auxiliary electrode, placed in the mixed solution; and
applying an alternating voltage to the electro-deposition device, so as to perform a plurality of electrochemical reactions on a surface of the auxiliary electrode and therefore to form a composite electrode material.
2. The manufacturing method of claim 1 , wherein the alternating voltage comprises a pulse voltage, an AC voltage or a cycle voltage.
3. The manufacturing method of claim 1 , wherein the conductive material precursor comprises a graphene, a graphene derivative, carbon nanotubes, a monomer for a conductive polymer or a combination thereof.
4. The manufacturing method of claim 1 , wherein the active material precursor comprises a metal salt, and the metal salt comprises a metal nitride, a metal acetate, a metal sulfate or a combination thereof.
5. The manufacturing method of claim 1 , wherein each of the electrochemical reactions comprises an oxidation-reduction reaction, an electrophoretic deposition or a combination thereof.
6. The manufacturing method of claim 1 , wherein the electro-deposition device comprises a roll-to-roll electroplating device.
7. The manufacturing method of claim 1 , wherein the composite electrode material comprises:
a plurality of conductive material layers; and
a plurality of active material layers, wherein the conductive material layers and the active material layers are stacked alternately along a direction non-parallel to the surface of the auxiliary electrode, and are arranged disorderly along a direction parallel to the surface of the auxiliary electrode.
8. The manufacturing method of claim 1 , wherein the composite electrode material comprises:
a plurality of first stacked structures, disposed on the surface of the auxiliary electrode, wherein each of the first stacked structures has at least one first conductive material layer and at least one first active material layer, wherein the first conductive material layer is in contact with the surface of the auxiliary electrode; and
a plurality of second stacked structures, disposed on the surface of the auxiliary electrode, wherein each of the second stacked structures has at least one second conductive material layer and at least one second active material layer, wherein the second active material layer is in contact with the surface of the auxiliary electrode,
wherein the first stacked structures and the second stacked structures are arranged disorderly along a direction parallel to the surface of the auxiliary electrode.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW105113269 | 2016-04-28 | ||
| TW105113269A TWI608648B (en) | 2016-04-28 | 2016-04-28 | Composite electrode material and method of manufacturing same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170314154A1 true US20170314154A1 (en) | 2017-11-02 |
Family
ID=60157531
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/284,556 Abandoned US20170314154A1 (en) | 2016-04-28 | 2016-10-04 | Manufacturing method of composite electrode material |
| US15/284,554 Active 2037-10-31 US10601032B2 (en) | 2016-04-28 | 2016-10-04 | Composite electrode material |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/284,554 Active 2037-10-31 US10601032B2 (en) | 2016-04-28 | 2016-10-04 | Composite electrode material |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US20170314154A1 (en) |
| TW (1) | TWI608648B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI676193B (en) * | 2018-07-31 | 2019-11-01 | 國家中山科學研究院 | A supercapacitor of n-p doping holey graphene material in ionic liquid electrolyte and method for producing thereof |
| CN115125569B (en) * | 2022-04-28 | 2024-05-07 | 西安交通大学 | A nickel-iron hydroxide electrocatalyst and its preparation method and application |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110303274A1 (en) * | 2010-06-10 | 2011-12-15 | International Business Machines Corporation | Solar cells with plated back side surface field and back side electrical contact and method of fabricating same |
| CN103668376A (en) * | 2013-12-25 | 2014-03-26 | 清华大学深圳研究生院 | Roll-to-roll fabrication method of electrode material |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI509865B (en) | 2009-01-12 | 2015-11-21 | A123 Systems Llc | Stacked battery unit and method of manufacturing same |
| US9184444B2 (en) | 2009-11-03 | 2015-11-10 | Zpower, Llc | Electrodes and rechargeable batteries |
| JP5348144B2 (en) * | 2010-03-11 | 2013-11-20 | トヨタ自動車株式会社 | Current collector and manufacturing method thereof, battery and manufacturing method thereof |
| CN101944396B (en) | 2010-07-29 | 2013-01-02 | 兰州理工大学 | Method for preparing porous mold charcoal/metal oxide composite material for super capacitor electrode |
| US8855705B2 (en) * | 2010-08-05 | 2014-10-07 | Blackberry Limited | Electronic device including actuator for providing tactile output |
| CN102208598B (en) * | 2011-05-12 | 2014-03-12 | 中国科学院宁波材料技术与工程研究所 | Electrode plate of graphene coating modified lithium secondary battery and manufacturing method thereof |
| JP6000017B2 (en) * | 2011-08-31 | 2016-09-28 | 株式会社半導体エネルギー研究所 | Power storage device and manufacturing method thereof |
| US9150736B2 (en) | 2012-11-27 | 2015-10-06 | Ppg Industries Ohio, Inc. | Methods of coating an electrically conductive substrate and related electrodepositable compositions |
| CN103700827B (en) | 2012-09-27 | 2016-04-27 | 清华大学 | Anode composite material of lithium ion battery and lithium ion battery |
| KR102140146B1 (en) | 2013-02-19 | 2020-08-11 | 삼성전자주식회사 | Heterogeneous laminate comprising graphene, preparing method thereof, thermoelectric material, thermoelectric module and thermoelectric apparatus comprising same |
| CN103219162B (en) | 2013-03-27 | 2016-04-06 | 江苏华富储能新技术股份有限公司 | A kind of nanometer carbon-lead super capacitor battery |
| KR101723186B1 (en) | 2013-05-07 | 2017-04-05 | 주식회사 엘지화학 | Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
| CN104577050B (en) | 2013-10-17 | 2017-07-07 | 清华大学 | Active material of lithium ion battery electrode and preparation method thereof |
| TWI513861B (en) | 2013-11-12 | 2015-12-21 | Nat Univ Chung Hsing | Method and instrument for fabricating tin/carbon composite and using the same |
| TW201533960A (en) | 2014-02-21 | 2015-09-01 | Long Time Tech Co Ltd | Silicon carbon composite electrode material and method of preparing the same |
| TWI504891B (en) | 2014-05-08 | 2015-10-21 | 中原大學 | Electrode for uric acid and method of producing the same |
-
2016
- 2016-04-28 TW TW105113269A patent/TWI608648B/en not_active IP Right Cessation
- 2016-10-04 US US15/284,556 patent/US20170314154A1/en not_active Abandoned
- 2016-10-04 US US15/284,554 patent/US10601032B2/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110303274A1 (en) * | 2010-06-10 | 2011-12-15 | International Business Machines Corporation | Solar cells with plated back side surface field and back side electrical contact and method of fabricating same |
| CN103668376A (en) * | 2013-12-25 | 2014-03-26 | 清华大学深圳研究生院 | Roll-to-roll fabrication method of electrode material |
Non-Patent Citations (3)
| Title |
|---|
| Li, Y., et al., "Retaining high areal in-plane magnetic energy density over large magnetic thickness: a permanent magnetic microlamination approach based on sequential multilayer electroplating", Solid-State Sensors, Actuators and Microsystems Workshop, June 2014. * |
| Liu, C., et al., "Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films", 7, No. 9, Small, 2011, 1203-1206. * |
| Xue. Z., et al.,"Direct electrodeposition of well dispersed electrochemical reduction graphene oxide assembled with nickel oxide nanocomposite and its improved electrocatalytic activity toward 2,4, 6-Trinitrophenol", Electrochimica Acta, 192, 2016, 512-520. * |
Also Published As
| Publication number | Publication date |
|---|---|
| TWI608648B (en) | 2017-12-11 |
| TW201739087A (en) | 2017-11-01 |
| US20170317341A1 (en) | 2017-11-02 |
| US10601032B2 (en) | 2020-03-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Hu et al. | Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition | |
| Sayyed et al. | Nano-metal oxide based supercapacitor via electrochemical deposition | |
| JP5714724B2 (en) | Nanoporous electrode for supercapacitor and method for producing the same | |
| Faraji et al. | The development supercapacitor from activated carbon by electroless plating—A review | |
| Upadhyay et al. | On the supercapacitive behaviour of anodic porous WO3-based negative electrodes | |
| US8139343B2 (en) | Electrical energy storage device containing an electroactive separator | |
| KR101060828B1 (en) | Hybrid Supercapacitor | |
| Tang et al. | Highly oxidized graphene anchored Ni (OH) 2 nanoflakes as pseudocapacitor materials for ultrahigh loading electrode with high areal specific capacitance | |
| BR112018069339B1 (en) | ELECTROCHEMICAL SYSTEM, AND, METHOD FOR MANUFACTURING AN ELECTROCHEMICAL SYSTEM | |
| US20150116906A1 (en) | Two-dimensional transition metal dichalcogenide sheets and methods of preparation and use | |
| CN108766776B (en) | A kind of preparation method suitable for carbon cloth-based flexible supercapacitor electrode material | |
| CN113257582A (en) | Porous interconnected corrugated carbon-based network (ICCN) composite | |
| CN103380469A (en) | Electrode foils, current collectors, electrodes, and power storage components using them | |
| CN104134788A (en) | Three-dimensional gradient metal hydroxide/oxide electrode material and preparation method and application thereof | |
| Muslu et al. | Research progress on flexible WO3 based thin film electrodes for supercapacitor applications: a comprehensive review | |
| Rai et al. | Electrochemical analysis of graphene oxide and reduced graphene oxide for super capacitor applications | |
| Xiao et al. | Synthesis of CuO/NiO nanostructured hybrid electrode for supercapacitors | |
| CN105448536B (en) | Nickel oxide/TiOx nano composite material and preparation method thereof and stored energy application | |
| US10601032B2 (en) | Composite electrode material | |
| KR101391136B1 (en) | Method for manufacturing graphite film electro-deposited metal oxide for supercapacitor electrode and supercapacitor comprising the same | |
| Zhang et al. | Alternating electrodeposition fabrication of graphene-buffered nickel-cobalt layered double hydroxide supercapacitor electrodes with superior rate capability | |
| CN112117135B (en) | Preparation method of graphite foil electrode and energy storage application thereof | |
| Isakov et al. | Grass-like alumina nanoelectrodes for hierarchical porous silicon supercapacitors | |
| Jolayemi et al. | Emerging capacitive materials for on-chip electronics energy storage technologies | |
| CN108417411A (en) | Super capacitor and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NATIONAL CHIAO TUNG UNIVERSITY, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TSENG, TSEUNG-YUEN;YANG, CHIH-CHIEH;REEL/FRAME:039980/0369 Effective date: 20160907 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |