US20170283823A1 - Gene for increasing the production of plant biomass and/or seeds and method for use thereof - Google Patents
Gene for increasing the production of plant biomass and/or seeds and method for use thereof Download PDFInfo
- Publication number
- US20170283823A1 US20170283823A1 US15/484,525 US201715484525A US2017283823A1 US 20170283823 A1 US20170283823 A1 US 20170283823A1 US 201715484525 A US201715484525 A US 201715484525A US 2017283823 A1 US2017283823 A1 US 2017283823A1
- Authority
- US
- United States
- Prior art keywords
- seq
- plant
- amino acid
- gene
- protein phosphatase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 97
- 239000002028 Biomass Substances 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- 230000001965 increasing effect Effects 0.000 title claims abstract description 37
- 108090000623 proteins and genes Proteins 0.000 title claims description 175
- 108010047313 Protein phosphatase 2C Proteins 0.000 claims abstract description 228
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 138
- 241000196324 Embryophyta Species 0.000 claims description 284
- 102000006831 Protein phosphatase 2C Human genes 0.000 claims description 158
- 240000007594 Oryza sativa Species 0.000 claims description 65
- 235000007164 Oryza sativa Nutrition 0.000 claims description 51
- 241000219195 Arabidopsis thaliana Species 0.000 claims description 50
- 235000009566 rice Nutrition 0.000 claims description 42
- 150000001413 amino acids Chemical class 0.000 claims description 41
- 102000004169 proteins and genes Human genes 0.000 claims description 21
- 230000000694 effects Effects 0.000 claims description 20
- 238000006467 substitution reaction Methods 0.000 claims description 14
- 240000000111 Saccharum officinarum Species 0.000 claims description 9
- 235000007201 Saccharum officinarum Nutrition 0.000 claims description 9
- 240000008100 Brassica rapa Species 0.000 claims description 8
- 235000011292 Brassica rapa Nutrition 0.000 claims description 8
- 241000209510 Liliopsida Species 0.000 claims description 8
- 238000003780 insertion Methods 0.000 claims description 8
- 230000037431 insertion Effects 0.000 claims description 8
- 241000219193 Brassicaceae Species 0.000 claims description 6
- 241000209504 Poaceae Species 0.000 claims description 6
- 241001233957 eudicotyledons Species 0.000 claims description 6
- 238000012217 deletion Methods 0.000 claims description 5
- 230000037430 deletion Effects 0.000 claims description 5
- 241000209094 Oryza Species 0.000 claims 2
- 108091035707 Consensus sequence Proteins 0.000 abstract description 35
- 125000000539 amino acid group Chemical group 0.000 description 79
- 239000013604 expression vector Substances 0.000 description 60
- 239000012634 fragment Substances 0.000 description 57
- 239000013598 vector Substances 0.000 description 43
- 101100350623 Arabidopsis thaliana At3g05640 gene Proteins 0.000 description 41
- 235000001014 amino acid Nutrition 0.000 description 39
- 108700026244 Open Reading Frames Proteins 0.000 description 36
- 239000002773 nucleotide Substances 0.000 description 36
- 125000003729 nucleotide group Chemical group 0.000 description 36
- 229940024606 amino acid Drugs 0.000 description 35
- 108020004414 DNA Proteins 0.000 description 28
- 210000004027 cell Anatomy 0.000 description 26
- 239000000463 material Substances 0.000 description 26
- 101100406701 Arabidopsis thaliana At3g16800 gene Proteins 0.000 description 25
- 101100350621 Arabidopsis thaliana PPC6-1 gene Proteins 0.000 description 24
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 24
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 23
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 23
- 239000004474 valine Substances 0.000 description 23
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 22
- 229960000310 isoleucine Drugs 0.000 description 22
- 108091026890 Coding region Proteins 0.000 description 20
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 20
- 239000002609 medium Substances 0.000 description 20
- 241000219194 Arabidopsis Species 0.000 description 18
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 18
- 101100189026 Oryza sativa subsp. japonica Os05g0358500 gene Proteins 0.000 description 18
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 17
- 101100028364 Arabidopsis thaliana PPC6-7 gene Proteins 0.000 description 17
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 16
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 16
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 16
- 230000002018 overexpression Effects 0.000 description 16
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 15
- 239000002299 complementary DNA Substances 0.000 description 15
- 238000010276 construction Methods 0.000 description 15
- 235000018102 proteins Nutrition 0.000 description 15
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 14
- 229930027917 kanamycin Natural products 0.000 description 14
- 229960000318 kanamycin Drugs 0.000 description 14
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 14
- 229930182823 kanamycin A Natural products 0.000 description 14
- 241000589158 Agrobacterium Species 0.000 description 13
- 238000010367 cloning Methods 0.000 description 13
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 13
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 12
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 12
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 12
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 12
- 240000008042 Zea mays Species 0.000 description 12
- 239000003921 oil Substances 0.000 description 12
- 235000019198 oils Nutrition 0.000 description 12
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 11
- 235000004279 alanine Nutrition 0.000 description 11
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 10
- 235000003704 aspartic acid Nutrition 0.000 description 10
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 10
- 239000003925 fat Substances 0.000 description 10
- 235000019197 fats Nutrition 0.000 description 10
- 235000013922 glutamic acid Nutrition 0.000 description 10
- 239000004220 glutamic acid Substances 0.000 description 10
- 229930182817 methionine Natural products 0.000 description 10
- 108010058731 nopaline synthase Proteins 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 101100135280 Arabidopsis thaliana At1g16220 gene Proteins 0.000 description 9
- 101100296065 Arabidopsis thaliana At1g79630 gene Proteins 0.000 description 9
- 101100082018 Arabidopsis thaliana At4g32950 gene Proteins 0.000 description 9
- 101100082026 Arabidopsis thaliana At5g01700 gene Proteins 0.000 description 9
- 101100028362 Arabidopsis thaliana At5g26010 gene Proteins 0.000 description 9
- 101100028366 Arabidopsis thaliana At5g36250 gene Proteins 0.000 description 9
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 9
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 9
- 235000005822 corn Nutrition 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000002689 soil Substances 0.000 description 9
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 8
- -1 I) or valine (Val Chemical compound 0.000 description 8
- 238000012300 Sequence Analysis Methods 0.000 description 8
- 235000009582 asparagine Nutrition 0.000 description 8
- 229960001230 asparagine Drugs 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 8
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 8
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 8
- 108091008146 restriction endonucleases Proteins 0.000 description 8
- 240000002791 Brassica napus Species 0.000 description 7
- 239000004472 Lysine Substances 0.000 description 7
- 240000003768 Solanum lycopersicum Species 0.000 description 7
- 108090000848 Ubiquitin Proteins 0.000 description 7
- 238000012790 confirmation Methods 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 241000723873 Tobacco mosaic virus Species 0.000 description 6
- 230000003321 amplification Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000004520 electroporation Methods 0.000 description 6
- 230000008595 infiltration Effects 0.000 description 6
- 238000001764 infiltration Methods 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 101100350626 Arabidopsis thaliana At3g06270 gene Proteins 0.000 description 5
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 5
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 5
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 5
- 241000218976 Populus trichocarpa Species 0.000 description 5
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 5
- 239000004473 Threonine Substances 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 230000010153 self-pollination Effects 0.000 description 5
- 239000004475 Arginine Substances 0.000 description 4
- 241000701489 Cauliflower mosaic virus Species 0.000 description 4
- 241000195597 Chlamydomonas reinhardtii Species 0.000 description 4
- 240000001980 Cucurbita pepo Species 0.000 description 4
- 206010059866 Drug resistance Diseases 0.000 description 4
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 241000219828 Medicago truncatula Species 0.000 description 4
- 244000021685 Mesembryanthemum crystallinum Species 0.000 description 4
- 235000009071 Mesembryanthemum crystallinum Nutrition 0.000 description 4
- 235000002731 Mimulus guttatus Nutrition 0.000 description 4
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 4
- 241000195887 Physcomitrella patens Species 0.000 description 4
- 244000184734 Pyrus japonica Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 244000044283 Toxicodendron succedaneum Species 0.000 description 4
- 235000014787 Vitis vinifera Nutrition 0.000 description 4
- 240000006365 Vitis vinifera Species 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 239000003225 biodiesel Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 4
- 244000221633 Brassica rapa subsp chinensis Species 0.000 description 3
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 description 3
- 235000009852 Cucurbita pepo Nutrition 0.000 description 3
- 244000127993 Elaeis melanococca Species 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 244000020551 Helianthus annuus Species 0.000 description 3
- 235000003222 Helianthus annuus Nutrition 0.000 description 3
- 206010020649 Hyperkeratosis Diseases 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- 240000003433 Miscanthus floridulus Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- 235000007244 Zea mays Nutrition 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000002869 basic local alignment search tool Methods 0.000 description 3
- 239000002551 biofuel Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000005030 transcription termination Effects 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 108010085238 Actins Proteins 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 244000144725 Amygdalus communis Species 0.000 description 2
- 235000011437 Amygdalus communis Nutrition 0.000 description 2
- 244000226021 Anacardium occidentale Species 0.000 description 2
- 101100244158 Arabidopsis thaliana PLPZETA2 gene Proteins 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000011293 Brassica napus Nutrition 0.000 description 2
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 240000008067 Cucumis sativus Species 0.000 description 2
- 235000009854 Cucurbita moschata Nutrition 0.000 description 2
- 241000190106 Cyanidioschyzon merolae Species 0.000 description 2
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 2
- 240000006497 Dianthus caryophyllus Species 0.000 description 2
- 235000001950 Elaeis guineensis Nutrition 0.000 description 2
- PLUBXMRUUVWRLT-UHFFFAOYSA-N Ethyl methanesulfonate Chemical compound CCOS(C)(=O)=O PLUBXMRUUVWRLT-UHFFFAOYSA-N 0.000 description 2
- 241000220485 Fabaceae Species 0.000 description 2
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 2
- 241000234435 Lilium Species 0.000 description 2
- 235000011430 Malus pumila Nutrition 0.000 description 2
- 235000014826 Mangifera indica Nutrition 0.000 description 2
- 240000007228 Mangifera indica Species 0.000 description 2
- 241000219823 Medicago Species 0.000 description 2
- 240000004658 Medicago sativa Species 0.000 description 2
- 235000010624 Medicago sativa Nutrition 0.000 description 2
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 2
- 244000016966 Mimulus guttatus Species 0.000 description 2
- 244000171805 Mimulus langsdorfii Species 0.000 description 2
- 235000013667 Mimulus langsdorfii Nutrition 0.000 description 2
- 241001230286 Narenga Species 0.000 description 2
- 241000208125 Nicotiana Species 0.000 description 2
- 101150099368 Os05g0358500 gene Proteins 0.000 description 2
- 235000006089 Phaseolus angularis Nutrition 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- 235000010659 Phoenix dactylifera Nutrition 0.000 description 2
- 244000104275 Phoenix dactylifera Species 0.000 description 2
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 2
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 2
- 235000003447 Pistacia vera Nutrition 0.000 description 2
- 240000006711 Pistacia vera Species 0.000 description 2
- 240000004713 Pisum sativum Species 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- 235000019485 Safflower oil Nutrition 0.000 description 2
- 241000218998 Salicaceae Species 0.000 description 2
- 241000208292 Solanaceae Species 0.000 description 2
- 235000002560 Solanum lycopersicum Nutrition 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- 244000061458 Solanum melongena Species 0.000 description 2
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 2
- 235000019486 Sunflower oil Nutrition 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- 235000010749 Vicia faba Nutrition 0.000 description 2
- 240000006677 Vicia faba Species 0.000 description 2
- 240000007098 Vigna angularis Species 0.000 description 2
- 235000010711 Vigna angularis Nutrition 0.000 description 2
- 244000195452 Wasabia japonica Species 0.000 description 2
- 235000000760 Wasabia japonica Nutrition 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 235000002532 grape seed extract Nutrition 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 125000001841 imino group Chemical group [H]N=* 0.000 description 2
- 238000009630 liquid culture Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- VOEYXMAFNDNNED-UHFFFAOYSA-N metolcarb Chemical compound CNC(=O)OC1=CC=CC(C)=C1 VOEYXMAFNDNNED-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 235000005713 safflower oil Nutrition 0.000 description 2
- 239000003813 safflower oil Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000002600 sunflower oil Substances 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical compound NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 235000003840 Amygdalus nana Nutrition 0.000 description 1
- 241000208223 Anacardiaceae Species 0.000 description 1
- 235000001274 Anacardium occidentale Nutrition 0.000 description 1
- 108010037365 Arabidopsis Proteins Proteins 0.000 description 1
- 101100135270 Arabidopsis thaliana PPC6-6 gene Proteins 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 241000233788 Arecaceae Species 0.000 description 1
- 241000208838 Asteraceae Species 0.000 description 1
- 235000000832 Ayote Nutrition 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 244000060924 Brassica campestris Species 0.000 description 1
- 235000005637 Brassica campestris Nutrition 0.000 description 1
- 244000026811 Brassica nipposinica Species 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 244000178937 Brassica oleracea var. capitata Species 0.000 description 1
- 235000008744 Brassica perviridis Nutrition 0.000 description 1
- 244000233513 Brassica perviridis Species 0.000 description 1
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 description 1
- 241000499436 Brassica rapa subsp. pekinensis Species 0.000 description 1
- 241001604477 Brassica rapa var. rapa Species 0.000 description 1
- 235000010570 Brassica rapa var. rapa Nutrition 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 235000002567 Capsicum annuum Nutrition 0.000 description 1
- 240000004160 Capsicum annuum Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000219321 Caryophyllaceae Species 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- GXGJIOMUZAGVEH-UHFFFAOYSA-N Chamazulene Chemical group CCC1=CC=C(C)C2=CC=C(C)C2=C1 GXGJIOMUZAGVEH-UHFFFAOYSA-N 0.000 description 1
- 241000723353 Chrysanthemum Species 0.000 description 1
- 235000009604 Chrysanthemum X morifolium Nutrition 0.000 description 1
- 235000005633 Chrysanthemum balsamita Nutrition 0.000 description 1
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 1
- 241001677238 Copernicia Species 0.000 description 1
- 235000009849 Cucumis sativus Nutrition 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- 240000004244 Cucurbita moschata Species 0.000 description 1
- 235000009804 Cucurbita pepo subsp pepo Nutrition 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- YAHZABJORDUQGO-NQXXGFSBSA-N D-ribulose 1,5-bisphosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)C(=O)COP(O)(O)=O YAHZABJORDUQGO-NQXXGFSBSA-N 0.000 description 1
- 235000018060 Elaeis melanococca Nutrition 0.000 description 1
- 241000220223 Fragaria Species 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 238000012218 Kunkel's method Methods 0.000 description 1
- 240000007741 Lagenaria siceraria Species 0.000 description 1
- 235000009797 Lagenaria vulgaris Nutrition 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 241000234280 Liliaceae Species 0.000 description 1
- 241000215452 Lotus corniculatus Species 0.000 description 1
- 241001480167 Lotus japonicus Species 0.000 description 1
- 239000006142 Luria-Bertani Agar Substances 0.000 description 1
- 244000081841 Malus domestica Species 0.000 description 1
- 244000141359 Malus pumila Species 0.000 description 1
- 235000015103 Malus silvestris Nutrition 0.000 description 1
- VZUNGTLZRAYYDE-UHFFFAOYSA-N N-methyl-N'-nitro-N-nitrosoguanidine Chemical compound O=NN(C)C(=N)N[N+]([O-])=O VZUNGTLZRAYYDE-UHFFFAOYSA-N 0.000 description 1
- 101710202365 Napin Proteins 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 101710089395 Oleosin Proteins 0.000 description 1
- 101100242406 Oryza sativa subsp. japonica Os02g0224100 gene Proteins 0.000 description 1
- 101100242410 Oryza sativa subsp. japonica Os02g0471500 gene Proteins 0.000 description 1
- 101100406696 Oryza sativa subsp. japonica Os04g0321800 gene Proteins 0.000 description 1
- 101100082025 Oryza sativa subsp. japonica Os07g0566200 gene Proteins 0.000 description 1
- 101100082029 Oryza sativa subsp. japonica Os08g0500300 gene Proteins 0.000 description 1
- 101100028365 Oryza sativa subsp. japonica Os11g0109000 gene Proteins 0.000 description 1
- 101100028369 Oryza sativa subsp. japonica Os11g0417400 gene Proteins 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 241000209117 Panicum Species 0.000 description 1
- 235000006443 Panicum miliaceum subsp. miliaceum Nutrition 0.000 description 1
- 235000009037 Panicum miliaceum subsp. ruderale Nutrition 0.000 description 1
- 241001520808 Panicum virgatum Species 0.000 description 1
- 241000209046 Pennisetum Species 0.000 description 1
- 244000130556 Pennisetum purpureum Species 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- 241000745988 Phyllostachys Species 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 240000003889 Piper guineense Species 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 241000218982 Populus nigra Species 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- 235000011432 Prunus Nutrition 0.000 description 1
- 241000220299 Prunus Species 0.000 description 1
- 241001290151 Prunus avium subsp. avium Species 0.000 description 1
- 235000019057 Raphanus caudatus Nutrition 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000011380 Raphanus sativus Nutrition 0.000 description 1
- 235000005733 Raphanus sativus var niger Nutrition 0.000 description 1
- 244000155437 Raphanus sativus var. niger Species 0.000 description 1
- 240000000528 Ricinus communis Species 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 235000011449 Rosa Nutrition 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000220222 Rosaceae Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 240000003829 Sorghum propinquum Species 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000008049 TAE buffer Substances 0.000 description 1
- 235000008326 Trichosanthes anguina Nutrition 0.000 description 1
- 244000078912 Trichosanthes cucumerina Species 0.000 description 1
- 240000000890 Trichosanthes cucumeroides Species 0.000 description 1
- 235000018854 Trichosanthes cucumeroides Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 241000722923 Tulipa Species 0.000 description 1
- 241000722921 Tulipa gesneriana Species 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- 241000219995 Wisteria Species 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 244000042312 Wisteria floribunda Species 0.000 description 1
- HGEVZDLYZYVYHD-UHFFFAOYSA-N acetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound CC(O)=O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O HGEVZDLYZYVYHD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 239000001511 capsicum annuum Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 235000020226 cashew nut Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000006870 ms-medium Substances 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 235000020233 pistachio Nutrition 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 235000014774 prunus Nutrition 0.000 description 1
- 235000015136 pumpkin Nutrition 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/03—Phosphoric monoester hydrolases (3.1.3)
- C12Y301/03016—Phosphoprotein phosphatase (3.1.3.16), i.e. calcineurin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- the present invention relates to: a plant in which a given gene is over-expressed; a method for increasing the production of biomass and/or seeds through overexpression of a given gene; and a method for producing such plant capable of producing an increased amount of biomass and/or seeds.
- biomass generally refers to the total amount of organisms that inhabit or exist in a given area. When such term is used with regard to plants, in particular, it refers to dry weight per unit area. Biomass units are quantified in terms of mass or energy.
- biomass is synonymous with “Seibutsutairyo” or “Seibutsuryo.”
- standing crop is occasionally used for “biomass.” Since plant biomass is generated by fixing atmospheric carbon dioxide with the use of solar energy, it can be regarded as so-called “carbon-neutral energy.” Accordingly, an increase of plant biomass is effective for global environmental preservation, the prevention of global warming, and mitigation of greenhouse gas emissions. Thus, technologies for increasing the production of plant biomass have been industrially significant.
- Plants are cultivated for the purpose of using some tissues thereof (e.g., seeds, roots, leaves, or stems) or for the purpose of producing various materials, such as fats and oils.
- fats and oils produced from plants that have been heretofore known include soybean oil, sesame oil, olive oil, coconut oil, rice oil, cottonseed oil, sunflower oil, corn oil, safflower oil, palm oil, and rapeseed oil.
- Such fats and oils are extensively used for household and industrial applications.
- fats and oils produced from plants are used as raw materials for biodiesel fuel or bioplastic, and the applicability thereof is increasing for alternative energy to petroleum.
- an energy crop such as sugar cane can be used as a raw material for biofuel.
- the increased production of the total mass of a plant itself (the amount of plant biomass) is expected.
- improvement in productivity per unit of cultivation area is required in order to increase the production of the amount of plant biomass. It has been found that if the number of cultivated plants is assumed to be constant per unit of cultivation area, improvement in the amount of biomass per plant would be necessary.
- an object of the present invention is to search for genes having novel functions of drastically improving the amount of plant biomass and thus to provide a technique with which the production of plant biomass can be drastically increased.
- the present inventors have made the novel finding that the production of plant biomass can be drastically increased by causing overexpression of a gene encoding protein phosphatase 2C having characteristic consensus sequences. Thus, they have completed the present invention.
- the plant according to the present invention is a plant in which a gene encoding protein phosphatase 2C having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order is over-expressed.
- the method for increasing the production of biomass comprises causing the overexpression of a gene encoding protein phosphatase 2C having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order.
- the method for producing a plant according to the present invention comprises the steps of:
- the above gene encoding protein phosphatase 2C can be at least one type of gene selected from the group consisting of At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), At5g27930-AtPP2C6-7 (SEQ ID NO:36), At2g20050 (SEQ ID NO:66), and At3g06270 (SEQ ID NO:67), or a gene functionally equivalent thereto.
- At1g03590-AtPP2C6-6 SEQ ID NO:63
- At1g16220
- the gene encoding protein phosphatase 2C preferably encodes any one of the following proteins (a) to (c):
- a protein comprising an amino acid sequence that has a deletion, a substitution, an addition, or an insertion of one or a plurality of amino acids with respect to an amino acid sequence selected from the group consisting of SEQ ID NOS: 5, 7, 36, 42, and 48 and having protein phosphatase 2C activity;
- an example of the above functionally equivalent gene is a protein phosphatase 2C gene from an organism other than Arabidopsis thaliana.
- Another example of an organism other than Arabidopsis thaliana is an organism selected from the group consisting of rice ( Oryza sativa ), black cottonwood ( Populus trichocarpa ), European grape ( Vitis vinifera ), Medicago truncatula ( Medicago truncatula ), alfalfa ( Medicago sativa ), Physcomitrella patens ( Physcomitrella patens ), ice plant ( Mesembryanthemum crystallinum ), Chlamydomonas reinhardtii ( Chlamydomonas reinhardtii ), corn ( Zea mays ), rapeseed ( Brassica rapa ), tomato ( Solanum lycopersicum ), monkey flower ( Mimulus guttatus ), and
- Examples of plants to be subjected to the present invention include dicotyledons such as plants of the family Brassicaceae. Examples of plants of the family Brassicaceae include Arabidopsis thaliana and rapeseed. Other examples of plants to be subjected to the present invention include monocotyledons such as plants of the family Gramineae. Examples of plants of the family Gramineae include rice and sugarcane.
- the plant according to the present invention is a plant capable of producing significantly improved amount of biomass and/or seeds compared with wild-type plants. Also, the method for increasing the production of biomass and/or seeds according to the present invention can realize the significantly increased production of biomass and/or seeds compared with target wild-type plants. Furthermore, the method for producing a plant according to the present invention makes it possible to produce a plant capable of producing significantly improved amount of biomass and/or seeds compared with wild-type plants. Therefore, through application of the present invention, for example, productivity can be improved when the plant itself is a product and this can be achieved at lower cost. Also, through application of the present invention, for example, the productivity can be improved when seeds are directly products or ingredients contained in seeds are directly products and this can be achieved at lower cost.
- FIGS. 1-1, 1-2 and 1-3 are characteristic diagrams showing the results of alignment analysis using a CLUSTAL W (1.83) multiple sequence alignment program for amino acid sequences encoded by At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), At5g27930-AtPP2C6-7 (SEQ ID NO:36), At2g20050 (SEQ ID NO:66), and At3g06270 (SEQ ID NO:67).
- SEQ ID NO:63 amino acid sequences encoded by At1g03590-AtPP2
- FIGS. 2-1, 2-2 and 2-3 are characteristic diagrams showing the results of alignment analysis using a CLUSTAL W (1.83) multiple sequence alignment program for amino acid sequences encoded by At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), and At5g27930-AtPP2C6-7 (SEQ ID NO:36).
- SEQ ID NO:63 amino acid sequences encoded by At1g03590-AtPP2C6-6
- At1g16220 SEQ ID NO:61
- At1g79630 SEQ ID
- FIG. 3 is a photo showing the above-ground parts of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) was introduced.
- PP2C protein phosphatase 2C
- FIG. 4 is a characteristic diagram showing the results of measuring the amounts of biomass of the above-ground parts of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) was introduced.
- the result for the wild-type plants is the average value for 12 individual wild-type plants and each result for the transformed plants is the average value for 5 individual transformed plants.
- FIG. 5 is a characteristic diagram showing the results of measuring the amounts of seeds of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) was introduced.
- the result for wild-type plants is the average value for 12 individual wild-type plants and each result for the transformed plants is the average value for 5 individual transformed plants.
- FIG. 6 shows photos showing the above-ground parts of a rice control plant into which a plant expression vector (constructed by ligating 3 multiple cloning sites of a pST-Blue1 vector to pBI-sGFP-R4R3) was introduced and a transformed rice plant into which the coding region of PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) was introduced.
- a plant expression vector constructed by ligating 3 multiple cloning sites of a pST-Blue1 vector to pBI-sGFP-R4R3
- PP2C protein phosphatase 2C
- FIG. 7 shows photos showing the above-ground parts of a control rice plant into which no gene was introduced and a transformed rice plant into which the coding region of rice-derived PP2C (protein phosphatase 2C) (Os05g0358500) was introduced.
- rice-derived PP2C protein phosphatase 2C
- FIG. 8 is a photo showing the above-ground parts of a wild type plant and a transformed plant into which a fragment containing ORF of a PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)) was introduced.
- PP2C protein phosphatase 2C
- FIG. 9 is a photo showing the above-ground parts of a wild-type plant and a transformed plant into which a fragment containing ORF of a PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)) was introduced.
- PP2C protein phosphatase 2C
- FIG. 10 is a photo showing the above-ground parts of a wild-type plant and transformed plants into which a fragment containing ORF of a PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)) was introduced.
- PP2C protein phosphatase 2C
- FIG. 11 is a photo showing the above-ground parts of a wild-type plant and transformed plants into which a fragment containing ORF of a PP2C (protein phosphatase 2C) gene (At3g16800 (SEQ ID NO:48)) was introduced.
- PP2C protein phosphatase 2C
- FIG. 12 is a photo showing the above-ground parts of a wild-type plant and transformed plants into which the coding region of a rice-derived PP2C (protein phosphatase 2C) gene (Os05g0358500) was introduced.
- PP2C protein phosphatase 2C
- the plant according to the present invention is a plant in which: a gene encoding protein phosphatase 2C having characteristic consensus sequences is over-expressed; and the amount of biomass is significantly improved compared with wild-type plants.
- the plant according to the present invention may be a plant in which the protein phosphatase 2C gene is over-expressed in all plant tissues or at least some plant tissues.
- plant tissue(s) refers to plant organ(s) such as leaves, stems, seeds, roots, and flowers.
- overexpression refers to an expression level that can be confirmed as a transcript as a result of transcription of the protein phosphatase 2C gene introduced into a plant.
- the protein phosphatase 2C gene to be over-expressed in a plant encodes protein phosphatase 2C that has 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side.
- a gene group classified as Group E as in FIG. 1 of Topographic cladogram encodes protein phosphatase 2C having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side.
- the reference predicts the presence of 76 protein phosphatase 2C genes in Arabidopsis thaliana and discloses the results of producing a phylogenetic tree of these genes using T-Coffee software (reference; Notredame, C. et al. 2000 T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-247) as in FIGS. 1-1, 1-2 and 1-3 .
- protein phosphatase 2C genes classified as members of Group E encode protein phosphatase 2C that has 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side.
- the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 are characteristic sequences in Group E in the above-mentioned classification and serve as a basis for clear differentiation from other groups.
- Group E in the above classification includes protein phosphatase 2C genes specified by Arabidopsis thaliana -derived At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), At5g27930-AtPP2C6-7 (SEQ ID NO:36), At2g20050 (SEQ ID NO:66), and At3g06270 (SEQ ID NO:67).
- FIGS. 1-1, 1-2 and 1-3 show the results of alignment analysis using a CLUSTAL W (1.83) multiple sequence alignment program (which can be used with the DDBJ of the National Institute of Genetics (on world wide web at clustalw.ddbj.nig.ac.jp/top-j)) for the amino acid sequences encoded by these Arabidopsis thaliana -derived protein phosphatase 2C genes, At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), At5g27930-A
- these protein phosphatase 2C genes classified as members of Group E have consensus sequences characteristic in the regions denoted as I to III. These regions denoted as I to III are subjected with a rice-derived protein phosphatase 2C gene (described later) to alignment analysis, so that the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 can be defined.
- amino acid sequence shown in SEQ ID NO: 1 which is an amino acid residue denoted as “Xaa,” may be any amino acid, and it is not limited to any particular amino acid.
- the 1 st amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 1 is preferably leucine (three character code: Leu and single character code: L; the same applies to the following) or phenylalanine (Phe, F).
- the 4 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 1 is preferably valine (Val, V), isoleucine (Ile, I), or methionine (Met, M).
- the 16 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 1 is preferably serine (Ser, S) or alanine (Ala, A).
- the 17 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 1 is preferably lysine (Lys, K), arginine (Arg, R), glutamine (Gln, Q), or asparagine (Asn, N). More specifically, a consensus sequence comprising the amino acid sequence shown in SEQ ID NO: 1 is preferably (L/F)XG(V/I/M)FDGHGXXGXXX(S/A)(K/R/Q/N)XV.
- pluralities of amino acids in parentheses represent possible variations of amino acid residues at the relevant positions.
- “X” means that any amino acid residue may be present at the relevant position.
- such a consensus sequence may be a sequence containing the following 3 amino acid residues on the N-terminal side of Region I in FIGS. 1-1, 1-2 and 1-3 : (D/E/N)XX.
- an amino acid residue denoted as “Xaa,” may be any amino acid, and it is not limited to any particular amino acid.
- the 5 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably glycine (Gly, G), alanine (Ala, A), or serine (Ser, S).
- the 6 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably valine (Val, V), leucine (Leu, L), or isoleucine (Ile, I).
- the 9 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably isoleucine (Ile, I), valine (Val, V), phenylalanine (Phe, F), methionine (Met, M), or leucine (Leu, L).
- the 12 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably glycine (Gly, G) or alanine (Ala, A).
- the 15 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably leucine (Leu, L), valine (Val, V), or isoleucine (Ile, I).
- the 17 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably isoleucine (Ile, I), valine (Val, V), or methionine (Met, M).
- the 18 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably glycine (Gly, G) or alanine (Ala, A).
- the 22 nd amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably aspartic acid (Asp, D) or histidine (His, H).
- the 26 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably valine (Val, V) or isoleucine (Ile, I).
- the 27 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably leucine (Leu, L), methionine (Met, M), or isoleucine (Ile, I).
- a consensus sequence comprising the amino acid sequence shown in SEQ ID NO: 2 is preferably SGXT(G/A/S)(V/L/I)XX(I/V/F/M/L)XX(G/A)XX(L/V/I)X(I/V/M)(A/G)NXG(D/H)SRA(V/I) (L/M/I).
- pluralities of amino acids in parentheses represent possible variations of amino acid residues at the relevant positions.
- “X” means that any amino acid residue may be present at the relevant position.
- amino acid sequence shown in SEQ ID NO: 3 may be any amino acid, and it is not limited to any particular amino acid.
- the 4 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably methionine (Met, M), valine (Val, V), or phenylalanine (Phe, F).
- the 5 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably serine (Ser, S), alanine (Ala, A), or threonine (Thr, T).
- the 7 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably alanine (Ala, A) or serine (Ser, S).
- the 8 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably phenylalanine (Phe, F), isoleucine (Ile, I), or valine (Val, V).
- the 14 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably lysine (Lys, K) or glutamic acid (Glu, E).
- the 18 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably valine (Val, V) or leucine (Leu, L).
- the 19 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably isoleucine (Ile, I) or valine (Val, V).
- the 23 rd amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably glutamic acid (Glu, E), glutamine (Gln, Q), or aspartic acid (Asp, D).
- the 24 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably isoleucine (Ile, I), valine (Val, V), or phenylalanine (Phe, F).
- the 29 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably isoleucine (Ile, I), leucine (Leu, L), or valine (Val, V).
- the 30 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably serine (Ser, S), threonine (Thr, T), or asparagine (Asn, N).
- the 33 rd amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably aspartic acid (Asp, D), asparagine (Asn, N), or histidine (His, H).
- the 35 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably phenylalanine (Phe, F) or tyrosine (Tyr, Y).
- the 36 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably leucine (Leu, L), isoleucine (Ile, I), valine (Val, V), phenylalanine (Phe, F), or methionine (Met, M).
- the 37 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably valine (Val, V), leucine (Leu, L), or isoleucine (Ile, I).
- the 38 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably leucine (Leu, L) or valine (Val, V).
- the 40 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably threonine (Thr, T) or serine (Ser, S).
- the 43 rd amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably valine (Val, V), isoleucine (Ile, I), or methionine (Met, M).
- the 44 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably tryptophan (Trp, W) or phenylalanine (Phe, F).
- the 45 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably aspartic acid (Asp, D) or glutamic acid (Glu, E).
- the 47 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably leucine (Leu, L), isoleucine (Ile, I), or methionine (Met, M).
- the 48 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably serine (Ser, S), threonine (Thr, T), or proline (Pro, P).
- the 49 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably asparagine (Asn, N) or serine (Ser, S).
- the 52 nd amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably valine (Val, V) or alanine (Ala, A).
- the 55 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably leucine (Leu, L), valine (Val, V), isoleucine (Ile, I), or methionine (Met, M).
- the 56 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably isoleucine (Ile, I) or valine (Val, V).
- an example of the consensus sequence comprising the amino acid sequence shown in SEQ ID NO: 3 is more specifically GXA(M/V/F)(S/A/T)R(A/S)(F/I/V)GDXXX(K/E)XXG(V/L)(I/V)XXP(E/Q/D)(I/V/F)XXXX X(I/L/V)(T/S)XX(D/N/H)X(F/Y)(L/I/V/F)(V/L/I)(L/V)A(T/S)DG(V/I/M)(W/F)(D/E)X(L/I/M) (S/T/P)(N/S)XX(V/A)XX(V/A
- the 20 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is more preferably alanine (Ala, A), serine (Ser, S), or cysteine (Cys, C).
- the 50 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is more preferably aspartic acid (Asp, D), glutamic acid (Glu, E), lysine (Lys, K), glutamine (Gln, Q), or asparagine (Asn, N).
- a substitution (mutation) score matrix for amino acid residues (BLOSUM: Blocks of Amino Acid Substitution Matrix) is proposed in FIGS. 2-1, 2-2 and 2-3 of Reference (2): Henikoff S., Henikoff J. G., Amino-acid substitution matrices from protein blocks, Proc. Natl. Acad. Sci. U.S.A., 89, 10915-10919 (1992) and is broadly used.
- Reference (2) is based on a finding that amino acid substitutions that take place among amino acids with side chains having similar chemical properties result in less structural or functional changes in the entire protein.
- amino acid side chain groups to be used in multiple alignment can be considered based on indices such as chemical properties and physical sizes. They are shown as amino acid groups with a score of 0 or higher and preferably as amino acid groups with a score of 1 or higher through the use of the score matrix (BLOSUM) disclosed in Reference (2). Typical groups are the following 8 groups. Further precisely grouped amino acid groups may be amino acid groups with a score of 0 or higher, preferably a score of 1 or higher, and further preferably a score of 2 or higher.
- This group is a group of amino acids having aliphatic hydrophobic side chains, among neutral nonpolar amino acids disclosed in Reference (1) above, which is composed of V (Val, valine), L (Leu, leucine), I (Ile, isoleucine), and M (Met, methionine).
- FGACWP is not included in this “aliphatic hydrophobic amino acid group” because of the following reasons: G (Gly, glycine) and A (Ala, alanine) are the same size as that of or smaller in size than a methyl group and have weak non polar effects; C (Cys, cysteine) may play an important role in S-S bonds and has a property of forming a hydrogen bond with an oxygen atom or a nitrogen atom; F (Phe, phenylalanine) and W (Trp, tryptophan) have side chains with significantly large molecular weights and have strong aromatic effects; P (Pro, proline) has strong imino acid effects, so as to fix the angle of the main chain of the polypeptide.
- This group is a group of amino acids (from among neutral polar amino acids) having hydroxymethylene groups in side chains, which is composed of S (Ser, serine) and T (Thr, threonine). Hydroxy groups existing in the side chains of S and T constitute sugar-binding sites, so that these sites are often important for a polypeptide (protein) to have specific activity.
- This group is a group of amino acids having acidic carboxyl groups in side chains, which is composed of D (Asp, aspartic acid) and E (Glu, glutamic acid).
- This group is a group of basic amino acids, which is composed of K (Lys, lysine) and R (Arg, arginine). These K and R are positively charged within a wide pH range and have basic properties. On the other hand, H (His, histidine) classified in basic amino acids is almost never ionized at pH 7, so that H is not classified in this group.
- This group is characterized in that: in all cases, a methylene group as a side chain binds to an ⁇ -carbon element beyond which a polar group is present; and the physical sizes of methylene groups (nonpolar groups) closely resemble from each other.
- This group is composed of N (Asn, asparagine; polar group is an amide group), D (Asp, aspartic acid; polar groups are carboxyl groups), and H (His, histidine; polar groups are imidazole groups).
- This group is characterized in that: in all cases, linear hydrocarbon having a length longer than that of a dimethylene group binds as a side chain to an ⁇ -carbon element, beyond which a polar group is present; and the physical sizes of dimethylene groups that are nonpolar groups closely resemble from each other.
- This group is composed of E (Glu, glutamic acid, polar group is a carboxyl group), K (Lys, lysine; polar groups are amino groups), Q (Gln, glutamine; polar groups are amide groups), and R (Arg, arginine; polar groups are imino groups and amino groups).
- This group is a group of aromatic amino acids having benzene nuclei in the side chains and characterized by having chemical properties unique in aromatic series. This group is composed of F (Phe, phenylalanine), Y (Tyr, tyrosine), and W (Trp, tryptophan).
- This group is a group of amino acids having both ring structures in the side chains and polarity, which is composed of H (H, histidine; Both ring structures and polar groups are imidazole groups), and Y (Tyr, tyrosine; Ring structures are benzene nuclei and polar groups are hydroxy groups).
- an amino acid residue denoted as Xaa may be any amino acid; or amino acid residues denoted as Xaa may be substituted with each other within the above groups 1)-8).
- the protein phosphatase 2C gene to be over-expressed in a plant may be a protein phosphatase 2C gene from any plant, as long as it has the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side.
- examples of an Arabidopsis thaliana protein phosphatase 2C-coding gene having the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side include At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), At5g27930-AtPP2C6-7 (SEQ ID NO:36), At2g20050 (SEQ ID NO:66), and At3g06270 (SEQ ID NO:67).
- At least one type of gene selected from the gene group is over-expressed.
- At3g16800 SEQ ID NO:48
- At3g05640 SEQ ID NO:5
- At5g27930-AtPP2C6-7 SEQ ID NO:36
- FIGS. 2-1, 2-2 and 2-3 show the results of alignment analysis using a CLUSTAL W (1.83) multiple sequence alignment program (that can be used with the DDBJ of the National Institute of Genetics (on world wide web at clustalw.ddbj.nig.ac.jp/top-j)) for amino acid sequences encoded by At1g03590 (SEQ ID NO:63)-AtPP2C6-6, At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), and At5g27930 (SEQ ID NO:36)-AtPP2C6-7 (amino acid sequences
- FIGS. 2-1, 2-2 and 2-3 show the 3 consensus sequences in protein phosphatase 2C encoded by At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), and At5g27930-AtPP2C6-7 (SEQ ID NO:36).
- Regions denoted as I-III in FIGS. 2-1, 2-2 and 2-3 are subjected with an ortholog of a rice-derived protein phosphatase 2C gene (described later) to alignment analysis, so that the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 above can be defined as the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 53-55, respectively.
- the consensus sequence shown in SEQ ID NO: 53 is more specifically (L/F)CG(V/I/M)FDGHGXXGXX(V/I)(S/A)(K/R)XV.
- the consensus sequence shown in SEQ ID NO: 54 is more specifically SGXT(G/A/S)(V/L)XX(I/V/F/L)XX(G/A)XX(L/V/I)X(I/V/M)(A/G)NXG(D/H)SRA(V/I)(L/M/I).
- the consensus sequence shown in SEQ ID NO: 55 is more specifically GLA(M/V)(S/A)R(A/S)(F/L)GDXX(L/I/V)KX(Y/F/H)G(V/L)(I/V)XXP(E/Q/D)(I/V/F)XX XX(I/L/V)(T/S)XXDX(F/Y)(L/I/V/M)(V/L/I)LA(T/S)DG(V/I/M)WDX(L/I/M/V)(S/T)NX(E/D) (V/A)XX(L/V/I)(I/V).
- amino acid sequences pluralities of amino acids in parentheses represent possible variations of amino acid residues at the relevant positions.
- X means that any amino acid residue may be present at the relevant position.
- the 9 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 54 is more preferably isoleucine (Ile, I), valine (Val, V), or phenylalanine (Phe, F).
- the 11 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 54 is more preferably glutamine (Gln, Q) or histidine (His, H).
- the 13 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 54 is more preferably lysine (Lys, K), glutamic acid (Glu, E), serine (Ser, S), glutamine (Gln, Q), aspartic acid (Asp, D), or asparagine (Asn, N).
- the 7 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably alanine (Ala, A).
- the 8 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably phenylalanine (Phe, F).
- the 11 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably phenylalanine (Phe, F) or tyrosine (Tyr, Y).
- the 13 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably leucine (Leu, L) or isoleucine (Ile, I).
- the 15 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably aspartic acid (Asp, D), serine (Ser, S), or glutamic acid (Glu, E).
- the 20 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably serine (Ser, S), alanine (Ala, A), or cysteine (Cys, C).
- the 27 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably histidine (His, H) or arginine (Arg, R).
- the 34 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably glutamine (Gln, Q), glutamic acid (Glu, E), or histidine (His, H).
- the 36 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably leucine (Leu, L), isoleucine (Ile, I), or valine (Val, V).
- the 47 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably leucine (Leu, L), isoleucine (Ile, I), or valine (Val, V).
- the 50 th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably lysine (Lys, K), glutamic acid (Glu, E), glutamine (Gln, Q), aspartic acid (Asp, D), or asparagine (Asn, N).
- nucleotide sequence of the coding region in the gene specified by At3g05640 (SEQ ID NO:5) is shown in SEQ ID NO: 4 and the amino acid sequence of protein phosphatase 2C encoded by the gene specified by At3g05640 is shown in SEQ ID NO: 5.
- nucleotide sequence of the coding region in the gene specified by At5g27930 (SEQ ID NO:36) is shown in SEQ ID NO: 35 and the amino acid sequence of protein phosphatase 2C encoded by the gene specified by At5g27930 is shown in SEQ ID NO: 36.
- nucleotide sequence of the coding region in the gene specified by At3g02750 (SEQ ID NO:42) is shown in SEQ ID NO: 41 and the amino acid sequence of protein phosphatase 2C encoded by the gene specified by At3g02750 is shown in SEQ ID NO: 42.
- nucleotide sequence of the coding region in the gene specified by At3g16800 (SEQ ID NO:48) is shown in SEQ ID NO: 47 and the amino acid sequence of protein phosphatase 2C encoded by the gene specified by At3g16800 is shown in SEQ ID NO: 48.
- genes functionally equivalent to genes listed above may also be over-expressed.
- the term “functionally equivalent gene” refers to, for example, a gene (from an organism other than Arabidopsis thaliana ) that: has the 3 consensus sequences (preferably, the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 53-55. The same applies to the following) comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side; and encodes protein phosphatase 2C.
- the term “functionally equivalent gene” refers to a gene that encodes a protein having protein phosphatase 2C activity.
- protein phosphatase 2C activity refers to Mg 2+ - or Mn 2 ⁇ -dependent serine/threonine phosphatase (Ser/Thr phosphatase) activity. Therefore, whether or not a gene encodes a protein having protein phosphatase 2C activity can be confirmed by examining whether or not the gene product has serine/threonine phosphatase activity in the presence of Mg 2 ⁇ or Mn 2+ .
- Conventionally known techniques can be appropriately employed for determining serine/threonine phosphatase activity. For example, a commercially available activity determination kit ProFluor (registered trademark) Ser/Thr Phosphatase Assay (Promega) can be used.
- example of organisms is not limited to Arabidopsis thaliana .
- rice Oryza sativa
- an example of a functionally equivalent gene is a rice Os05g0358500 gene.
- the nucleotide sequence of a coding region of the Os05g0358500 gene is shown in SEQ ID NO: 6 and the amino acid sequence of the protein encoded by the gene is shown in SEQ ID NO: 7.
- examples of the above-mentioned rice-derived functionally equivalent gene include Os11g0109000 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 8 and 9, respectively), Os12g0108600 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 10 and 11, respectively), Os02g0471500 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 12 and 13, respectively), Os04g0321800 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 14 and 15, respectively), Os11g0417400 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 16 and 17, respectively), Os07g0566200 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 18 and 19, respectively), Os08g0500300 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 20 and 21,
- examples of the above-mentioned functionally equivalent genes from plants other than Arabidopsis thaliana and rice include genes (UniProt data base Accession Nos. A9P973, A9PFSO, and A9P7U4) from black cottonwood ( Populus trichocarpa ), genes (UniProt data base Accession Nos. A7PRZ8, A7Q8H4, A7PV59, A5C3B0, A5BF43, A7QFG6, A7P4H7, A5C0C9, A5AP53, A7QQF9, and A5BDP5) from european grape ( Vitis vinifera ), genes (UniProt data base Accession Nos.
- A8HQG8 from Chlamydomonas reinhardtii ( Chlamydomonas reinhardtii ), genes (GenBank data base Accession Nos. BT024031, BT017414, and BT024134) from corn ( Zea mays ), genes (GenBank data base Accession Nos. AC189312 and AC189579) from rapeseed ( Brassica rapa ), genes (GenBank data base Accession Nos. AP009550, AP009302, and AP009278) from tomato ( Solanum lycopersicum ), a gene (GenBank data base Accession No. AC182571) from monkey flower ( Mimulus guttatus ), and a gene (GenBank data base Accession No. AP006489) from monocellular red alga ( Cyanidioschyzon merolae ).
- a gene encoding protein phosphatase 2C that has the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side can be easily searched for and/or identified from a known database such as GenBank based on the above-listed nucleotide sequence of Arabidopsis thaliana -derived protein phosphatase 2C gene or amino acid sequence of protein phosphatase 2C.
- a protein phosphatase 2C gene to be over-expressed in the present invention is not limited to the above described protein phosphatase 2C genes comprising the nucleotide sequences and the amino acid sequences shown in SEQ ID NOS: 4-23, 35, 36, 41, 42, 47, and 48.
- the protein phosphatase 2C gene may be a gene that contains an amino acid sequence having a deletion, a substitution, an addition, or an insertion of one or a plurality of amino acid sequences with respect to the amino acid sequences shown in odd numbers of SEQ ID NOS: 4-23 or the amino acid sequence shown in SEQ ID NO: 36, 42, or 48, and, has protein phosphatase 2C activity.
- a plurality of amino acids refers to 1 to 20, preferably 1 to 10, more preferably 1 to 7, further preferably 1 to 5, and particularly preferably 1 to 3 amino acids, for example.
- amino acid deletion, substitution, or addition can be performed by altering a nucleotide sequence encoding the above protein phosphatase 2C gene by a technique known in the art. Mutation can be introduced into a nucleotide sequence by a known technique such as the Kunkel method or the Gapped duplex method or a method based thereof.
- mutation is introduced with a mutagenesis kit using site-directed mutagenesis (e.g., Mutant-K or Mutant-G (both are trade names of Takara Bio)) or the like, or a LA PCR in vitro Mutagenesis series kit (trade name, Takara Bio).
- site-directed mutagenesis e.g., Mutant-K or Mutant-G (both are trade names of Takara Bio)
- LA PCR in vitro Mutagenesis series kit trade name, Takara Bio
- a mutagenesis method may be: a method using a chemical mutation agent represented by EMS (ethyl methanesulfonate), 5-bromouracil, 2-aminopurine, hydroxylamine, N-methyl-N′-nitro-N nitrosoguanidine, or other carcinogenic compounds; or a method that involves radiation treatment or ultraviolet [UV] treatment typically using X-rays, alpha rays, beta rays, gamma rays, an ion beam, or the like.
- EMS ethyl methanesulfonate
- 5-bromouracil 2-aminopurine
- 2-aminopurine hydroxylamine
- N-methyl-N′-nitro-N nitrosoguanidine or other carcinogenic compounds
- UV ultraviolet
- protein phosphatase 2C genes to be over-expressed herein may be genes homologous to the protein phosphatase 2C genes comprising the nucleotide sequences and the amino acid sequences shown in SEQ ID NOS: 4-23.
- the term “homologous gene” generally refers to a gene that has evolutionarily branched off from a common ancestor gene, including a homologous gene (ortholog) of 2 types of species and a homologous gene (paralog) generated by overlapping branching that takes place within the same species.
- the above term “functionally equivalent gene” refers to a homologous gene such as an ortholog or a paralog.
- the above term “functionally equivalent gene” may also refer to a gene that does not evolve from a common gene, but simply has analogous functions.
- genes analogous to the protein phosphatase 2C genes comprising the nucleotide sequences and the amino acid sequences shown in SEQ ID NOS: 4-23, 35, 36, 41, 42, 47, and 48 include genes encoding proteins having: amino acid sequences that have 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more similarity to these amino acid sequences; the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side; and protein phosphatase 2C activity.
- the value of similarity refers to a value that can be found based on default setting using a computer mounted with a BLAST (Basic Local Alignment Search Tool) program and a database containing gene sequence information.
- genes analogous to protein phosphatase 2C genes comprising the nucleotide sequences and the amino acid sequences shown in SEQ ID NOS: 4-23, 35, 36, 41, 42, 47, and 48 can be identified by, when the plant genome information remains unclarified, extracting the genome from a target plant or constructing a cDNA library for a target plant and then isolating a genomic region or cDNA hybridizing under stringent conditions to at least a portion of the protein phosphatase 2C genes comprising the nucleotide sequences shown in even numbers of SEQ ID NOS: 4-23 or the nucleotide sequence shown in 35, 41, or 47.
- stringent conditions refers to conditions under which namely a specific hybrid is formed, but a non-specific hybrid is never formed.
- such conditions comprise hybridization at 45° C. with 6 ⁇ SSC (sodium chloride/sodium citrate), followed by washing at 50° C. to 65° C. with 0.2-1 ⁇ SSC and 0.1% SDS.
- such conditions comprise hybridization at 65° C. to 70° C. with 1 ⁇ SSC, followed by washing at 65° C. to 70° C. with 0.3 ⁇ SSC.
- Hybridization can be performed by a conventionally known method such as a method described in J. Sambrook et al. Molecular Cloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory (1989).
- the plant according to the present invention exerts significantly improved production of biomass and/or seeds compared with wild-type plants, as a result of overexpression of a protein phosphatase 2C gene having the above described 3 consensus sequences that comprise the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order.
- a technique for causing the overexpression of such protein phosphatase 2C gene include a technique for modifying a promoter of an endogenous protein phosphatase 2C gene in a target plant, a technique for introducing an expression vector in which an exogenous protein phosphatase 2C gene is arranged under control of a promoter that enables overexpression, and a technique by which the two above techniques are performed simultaneously.
- a preferred example is a technique for introducing an expression vector in which the above protein phosphatase 2C gene is arranged under control of a promoter that enables overexpression into a target plant.
- An expression vector is constructed to contain a promoter that enables overexpression and the above described protein phosphatase 2C gene.
- a vector serving as a mother body for an expression vector various conventionally known vectors can be used.
- plasmids, phages, cosmids, or the like can be used and such vector can be appropriately selected depending on plant cells into which it is introduced and introduction methods.
- Specific examples of such vector include pBR322, pBR325, pUC19, pUC119, pBluescript, pBluescriptSK, and pBI vectors.
- a pBI binary vector is preferably used.
- Specific examples of such pBI binary vector include pBIG, pBIN19, pBI101, pBI121, and pBI221.
- a promoter to be used herein is not particularly limited, as long as it enables overexpression of a protein phosphatase 2C gene within a plant. Any known promoter can be appropriately used. Examples of such promoter include a cauliflower mosaic virus 35S promoter (CaMV35S), various actin gene promoters, various ubiquitin gene promoters, a nopaline synthase gene promoter, a tobacco PR1 a gene promoter, a tomato ribulose 1,5-bisphosphate carboxylase.oxidase small subunit gene promoter, a napin gene promoter, and an oleosin gene promoter. Of these, a cauliflower mosaic virus 35S promoter, an actin gene promoter, or a ubiquitin gene promoter can be more preferably used. The use of each of the above promoters enables strong expression of any gene when it is introduced into plant cells.
- CaMV35S cauliflower mosaic virus 35S promoter
- various actin gene promoters various ubiquitin gene promoters
- a promoter having functions of causing site-specific overexpression in a plant can also be used herein.
- any conventionally known promoter can be used.
- a plant organ in which the gene is over-expressed can be more increased than wild-type plant organs.
- an expression vector may further contain other DNA segments in addition to a promoter and the above protein phosphatase 2C gene.
- Such other DNA segments are not particularly limited and examples thereof include a terminator, a selection marker, an enhancer, and a nucleotide sequence for enhancing translation efficiency.
- the above recombinant expression vector may further have a T-DNA region. A T-DNA region can enhance efficiency for gene introduction particularly when the above recombinant expression vector is introduced into a plant using Agrobacterium.
- a transcription terminator is not particularly limited, as long as it has functions as a transcription termination site and may be any known transcription terminator.
- a transcription termination region (Nos terminator) of a nopaline synthase gene a transcription termination region (CaMV35S terminator) of cauliflower mosaic virus 35S, or the like can be preferably used.
- the Nos terminator can be more preferably used.
- a phenomenon such that an unnecessarily long transcript is synthesized and that a strong promoter decreases the number of copies of a plasmid after introduction into plant cells can be prevented by arranging a transcription terminator at an appropriate position.
- a drug resistance gene can be used, for example.
- Specific examples of such drug resistance gene include drug resistance genes against hygromycin, bleomycin, kanamycin, gentamicin, chloramphenicol, and the like.
- Transformed plants can be easily selected by selecting plants that can grow in medium containing the above antibiotics.
- nucleotide sequence for increasing translation efficiency is an omega sequence from tobacco mosaic virus.
- This omega sequence is arranged in an untranslated region (5′UTR) of a promoter, so that the translation efficiency of the fusion gene can be increased.
- the recombinant expression vector may contain various DNA segments depending on purposes.
- a method for constructing a recombinant expression vector is not particularly limited.
- the above promoter and the above protein phosphatase 2C gene, and if necessary, the above other DNA segments may be introduced in an predetermined order.
- the above protein phosphatase 2C gene and a promoter (and, if necessary, a transcription terminator or the like) are linked to construct an expression cassette and then the cassette may be introduced into a vector.
- cleavage sites of DNA segments are prepared to have protruding ends complementary to each other and then performing a reaction with a ligation enzyme, making it possible to specify the order of the DNA segments.
- DNA segments may be arranged in the following order from upstream: a promoter, the above protein phosphatase 2C gene, and a terminator.
- reagents for construction of an expression vector that is, types of restriction enzymes, ligation enzymes, and the like are also not particularly limited. Hence, commercially available reagents can be appropriately selected and used.
- a method for replicating is not particularly limited and conventionally known replication methods can be used herein.
- such expression vector may be replicated within Escherichia coli as a host. At this time, preferred types of Escherichia coli may be selected depending on the types of vector.
- the above-described expression vector is introduced into a target plant by a general transformation method.
- a method for introducing an expression vector into plant cells is not particularly limited. Conventionally known appropriate introduction methods can be used depending on plant cells. Specifically, a method using Agrobacterium or a method that involves direct introduction into plant cells can be used, for example.
- a method using Agrobacterium a method described in Bechtold, E., Ellis, J. and Pelletier, G. (1993) In Planta Agrobacterium -mediated gene transfer by infiltration of adult Arabidopsis plants. C. R. Acad. Sci. Paris Sci.
- microinjection As a method for directly introducing an expression vector into plant cells, microinjection, electroporation, a polyethylene glycol method, a particle gun method, protoplast fusion, a calcium phosphate method, or the like can be employed.
- DNA that can be used herein contains transcriptional units required for the expression of a target gene, such as a promoter and a transcription terminator, and a target gene. Vector functions are not essential in such case.
- a DNA that contains a protein coding region alone of a target gene having no transcriptional unit may be used herein, as long as it is integrated into a host's transcriptional unit and then the target gene can be expressed.
- Examples of plant cells into which the above expression vector or an expression cassette containing no expression vector, but a target gene is introduced include cells of each tissue of plant organs such as flowers, leaves, and roots, calluses, and suspension-cultured cells.
- an appropriate expression vector may be constructed according to the types of plant to be produced or a versatile expression vector may be constructed in advance and then introduced into plant cells.
- Plants into which an expression vector is introduced or in other words, plants required to increase the production of biomass are not particularly limited. Specifically, through overexpression of the above-described protein phosphatase 2C gene, effects of increasing the production of biomass can be expected for all plants.
- target plants include, but are not limited to, dicotyledons and monocotyledons, such as plants (see below) belonging to the families Brassicaceae, Gramineae, Solanaceae, Leguminosae, Salicaceae, and the like.
- energy crops such as sugarcane, corn, rapeseed, and sunflower, which can serve as raw materials for biofuel, may be preferable targets.
- biofuel such as bioethanol, biodiesel, biomethanol, bioDME, bioGTL (BTL), and biobutanol can be reduced by increasing the production of biomass using energy crops.
- protein phosphatase 2C genes that can be used in the present invention can be isolated from various plants and used. Such protein phosphatase 2C genes can be appropriately selected and used, depending on the types of target plant required to increase the biomass production. Specifically, when a plant required to increase the biomass production is a monocotyledon, a protein phosphatase 2C gene that is isolated from a monocotyledon is preferably over-expressed. In particular, when a plant required to increase the biomass production is rice, the rice-derived protein phosphatase 2C gene (SEQ ID NO: 6) is preferably over-expressed.
- a dicotyledon-derived protein phosphatase 2C gene may be over-expressed.
- the Arabidopsis thaliana -derived protein phosphatase 2C gene (SEQ ID NO: 4) may be introduced into not only dicotyledons, but also a variety of plants that are classified as monocotyledons, so that the gene is over-expressed.
- a step of selecting proper transformants from plants can be performed by a conventionally known method.
- selection method is not particularly limited. For example, selection can be made based on drug resistance such as hygromycin resistance.
- plants are directly weighed or the any organs or tissues thereof are weighed, the weights are compared with those of wild-type plants, and then plants with significantly increased weights thereof may be selected.
- progeny plants can be obtained from transformed plants obtained by transformation according to a conventional method. Progeny plants retaining a trait such that the protein phosphatase 2C gene is over-expressed are selected based on the amount of biomass. Therefore, a stable plant line capable of producing an increased amount of biomass because of having the above trait can be produced. Also, plant cells or reproductive materials, such as seeds, fruits, stocks, calluses, tubers, cut ears, or lumps, may be obtained from a transformed plant or an offspring plant thereof. A stable plant line capable of producing an increased amount of biomass because of having the above trait can be mass-produced therefrom based on such materials.
- plants in the present invention include at least any of grown plants, plant cells, plant tissues, calluses, and seeds. Specifically, in the present invention, any forms of plants that can be finally grown to mature plants are regarded as “plants.” Also, examples of such plant cells include various forms of plant cells, such as suspended culture cells, protoplasts, and leaf sections. Plants can be obtained through the growth and differentiation of these plant cells. In addition, regeneration of plants from plant cells can be performed using a conventionally known method depending on the type of plant cells.
- plants capable of exerting the significantly increased production of biomass and/or seeds per plant compared with wild-type plants can be provided through overexpression of the above described protein phosphatase 2C gene.
- the term “significantly increased production of biomass” refers to a situation in which the total weight of each plant is statistically significantly increased compared with the same of a wild-type plant. In this case, even when some plant tissues become specifically large and the sizes of the other tissues are equivalent to those of a wild-type plant, it is concluded that the production of biomass is increased if the total weight of the entire plant is large.
- the term “significantly increased production of seeds” refers to a situation in which the total amount and/or total number of seeds harvested from a plant is statistically significantly high compared with wild-type plants. That is, the term “significantly increased production of seeds” may refer to any of: a case in which the size of each seed is improved; a case where the size per seed is equivalent but the number of seeds is improved; or a case in which the size per seed is improved and the number of seeds is also improved.
- the production of biomass and/or seeds by plants is increased.
- improvement in productivity can be achieved in both of the following cases: a case in which a purpose is to produce the whole plant; and a case in which a purpose is to produce some plant tissues (e.g., seeds) or components contained in plants.
- a purpose is to produce fats and oils contained in plant seeds
- the amounts of fats and oils that can be harvested per area under cultivation can be greatly improved.
- examples of fats and oils include, but are not particularly limited to, plant-derived fats and oils such as soybean oil, sesame oil, olive oil, coconut oil, rice oil, cottonseed oil, sunflower oil, corn oil, safflower oil, and rapeseed oil.
- the thus produced fats and oils can be broadly used for household uses or industrial uses and can be further used as raw materials for biodiesel fuel.
- the above fats and oils for household uses or industrial uses, biodiesel fuel, and the like can be produced at low cost with the use of plants over-expressing the above protein phosphatase 2C gene.
- a site for insertion of T-DNA into the genome of the thus selected salt-resistant Arabidopsis thaliana line was determined by a TAIL-PCR method. First, young leaves were harvested from the cultivated Arabidopsis thaliana plants and then crushed under liquid nitrogen freezing. DNA was prepared using a DNA preparation kit (DNeasy Plant Mini Kit, QIAGEN®) according to the standard protocols included with the kit.
- T-DNA left border Three (3) types of specific primer, TL1, TL2, and TL3, were determined to be located near the left T-DNA sequence (T-DNA left border) of an activation-tagging vector (pSKI015: GenBank accession No. AF187951) used in Weigel T-DNA lines.
- TAIL-PCR supervisors, Isao Shimamoto and Takuji Sasaki, New Edition, Plant PCR Experimental Protocols, 2000, pp. 83-89, Shujunsha, Tokyo, Japan; Liu, Y. G. and Whttier, R. F., 1995, Genomics 25, 674-681; Liu, Y. G. et al., Plant J., 8, 457-463, 1995
- TAIL-PCR supervisors, Isao Shimamoto and Takuji Sasaki, New Edition, Plant PCR Experimental Protocols, 2000, pp. 83-89, Shujunsha, Tokyo, Japan; Liu, Y. G. and Wh
- n represents “a,” “g,” “c,” or “t” (location: 1 and 11)
- s represents “g” or “c” (location: 7)
- w represents “a” or “t” (location: 8 and 13).
- the 1 st PCR reaction solution composition and reaction conditions are shown in Table 1 and Table 2, respectively.
- the 2 nd PCR reaction solution composition and reaction conditions are shown in Table 3 and Table 4, respectively.
- the 2 nd and the 3 rd reaction products were subjected to agarose gel electrophoresis and then the presence or the absence of amplification and the specificity of reaction products were confirmed.
- the 3 rd amplification products were subjected to a sequencing reaction directly using a BigDye Terminator Cycle Sequencing Kit Ver. 3.1 (Applied Biosystems) and the specific primer TL3.
- a nucleotide sequence was determined using an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems). As a result, 498-bp sequence information was obtained (SEQ ID NO: 28).
- the Arabidopsis Information Resource (TAIR on world wide web at arabidopsis .org) was subjected to a BLAST search for the thus obtained sequence.
- the insertion site was found to be the gene of [AGI ( Arabidopsis Genome Initiative gene code) code: At3g05630] of Arabidopsis thaliana chromosome 3.
- Activated genes were predicted from the sequence of a presumed open reading frame (ORF) gene existing within a 10-Kb range near the T-DNA insertion site (At3g05630) revealed in 1-2-3.
- PCR primers 5640PF1 and 5640PR1 were designed and synthesized based on the sequence information disclosed at the TAIR (on world wide web at arabidopsis .org/home). In addition, these primers were designed, so that a restriction enzyme site (BsrG I or Sal I) required for introduction into expression vectors was added to the terminus of each primer.
- 5640PF1 (SEQ ID NO: 29): 5′-ACG CGT CGA CAT GGG ACA TTT CTC TTC CAT GTT CAA CGG-3′
- 5640PR1 (SEQ ID NO: 30): 5′-TGT ACA TGT ACA CTA TAG AGA TGG CGA CGA CGA TGA AGA ATG G-3′
- a template DNA was prepared from wild-type Arabidopsis thaliana (ecotype Col-0). Phusion High-Fidelity DNA Polymerase (New England BioLabs: NEB) was used as an enzyme and the above 5640PF1 and 5640PR1 were used as primers.
- the relevant PCR reaction solution composition and reaction conditions are shown in Table 7 and Table 8, respectively.
- PCR amplification products were subjected to electrophoresis with 2% agarose gel (TAE buffer) and then fragments were stained with ethidium bromide.
- a gel containing target fragments was excised using a scalpel.
- Target DNA fragments were eluted and purified using GFX PCR DNA and a GEL Band Purification Kit (Amersham).
- Adenin was added to the thus obtained DNA fragment using an A-Addition Kit (QIAGEN®).
- the amplified DNA to which adenine had been added was ligated to a TA-Cloning pCR2.1 vector using a TOPO TA Cloning Kit (Invitrogen®) and then transformed into competent cells ( E. coli TOP 10) included with the kit.
- Plasmid DNA was prepared from the thus obtained microorganisms using a Plasmid Mini Kit (QIAGEN®). The thus obtained fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) was cloned into a vector, followed by determination of the nucleotide sequence and sequence analysis.
- PP2C protein phosphatase 2C
- a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5) was inserted into a plant expression vector pBI121 containing an omega sequence from tobacco mosaic virus.
- a construct was prepared.
- the pCR2.1 vector in which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) had been cloned in 1-2-5, was treated with restriction enzymes Sal I and BsrG I.
- the total amount of the reaction solution was added to 100 ⁇ l of competent cells ( E. coli strain DH5 ⁇ , TOYOBO), so that transformation was performed according to protocols included with the kit.
- Cells were applied to LB agar medium containing 50 ⁇ g/ml kanamycin and then cultured overnight. Colonies that had appeared were subjected to liquid culture in LB medium supplemented with 50 ⁇ g/ml kanamycin.
- Plasmid DNA was prepared from the thus obtained microorganisms using a Plasmid Mini Kit (QIAGEN®).
- the plant expression vector constructed in 1-2-6 was introduced into Agrobacterium tumefaciens C58C1 strain by electroporation (Plant Molecular Biology Mannal, Second Edition, B. G. Stanton and A. S. Robbert, Kluwer Acdemic Publishers 1994). Subsequently, Agrobacterium tumefaciens in which the plant expression vector had been introduced was introduced into wild-type Arabidopsis thaliana (ecotype Col-0) by an infiltration method described by Clough et al. (Steven J. Clough and Andrew F. Bent, 1998, The Plant Journal 16, 735-743).
- Transformants were selected using kanamycin-containing medium. T1 generation plants were produced by self-pollination from the transformants, so that T2 seeds were obtained.
- T2 seeds produced in 1-2-7 were aseptically sowed and then the resulting plants were transplanted into pots (each with a diameter of 50 mm) containing vermiculite mixed soil.
- Arabidopsis plants that had not undergone recombination were transplanted. They were cultivated under conditions of 22° C. and 16 hours in the light/8 hours in the dark, and with a light intensity ranging from about 30 to 45 ⁇ mol/m ⁇ 2 /s ⁇ 1 , for a total of 11 weeks after transplantation. After cultivation, above-ground parts of the plants were placed in paper bags and dried under conditions of 22° C. and humidity of 60% for 2 weeks. The total amounts of biomass and seeds were weighed using an electronic balance.
- FIG. 3 shows a photo of the above-ground parts of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) had been introduced.
- FIG. 4 and FIG. 5 show the results of measuring the total amounts of biomass and seeds of the above-ground parts of the plants.
- Arabidopsis transformants into which a fragment containing ORF of the PP2C gene (At3g05640 (SEQ ID NO:5)) prepared in 1 was introduced into Arabidopsis thaliana and rice ( Oryza sativa L. ssp. japonica (cv. Nipponbare)) to make transformants as experimental materials.
- Arabidopsis transformants prepared by introduction of a fragment containing ORF of the PP2C gene (At3g05640 (SEQ ID NO:5)) prepared in 1 were grown until the plants reached 4 weeks of age.
- Total RNA was isolated from the above-ground parts, then RT-PCR was performed using TaqMan Reverse Transcription Reagents (Applied Biosystems), so that cDNA was prepared.
- PCR was performed using the following primers that had been designed based on the nucleotide sequence (SEQ ID NO: 4) of the coding region of PP2C (At3g05640 (SEQ ID NO:5)) and PrimeSTAR HS DNA Polymerease (Takara Bio). The thus amplified fragment was TA-cloned into a pCR-Blunt II-TOPO vector (Invitrogen®).
- AP041-F 5′-AGGATCCATGGGACATTTCTCTTCCATGT-3′
- AP041-R 5′-AGAGCTCCTATAGAGATGGCGACGACG-3′
- a GUS ( ⁇ -Glucuronidase) portion of pIG121-Hm (Ohat, S. et al., 1990, Plant Cell Physiol. 31, 805-813) was substituted with sGFP (S65T) having an intron fragment of Ricinus communis -derived catalase, so that a plant expression vector, pBIsGFP, was constructed.
- sGFP S65T
- a sequence containing pDEST R4-R3 recombination sites (attR4 and attR3) included in a MultiSite Gateway Three-Fragment Vector Construction Kit (Invitrogen®) was inserted, so that a destination vector, pBI-sGFP-R4R3, was constructed.
- a corn-derived ubiquitin gene promoter (SEQ ID NO: 33: Christensen, A. H. and Quail, P. H., Transgenic Research 1996, 5, 213-218), PP2C cDNA (At3g05640 (SEQ ID NO:5)) obtained in 2-2-1, and an Agrobacterium tumefaciens Ti plasmid-derived nopaline synthase gene (NOS) terminator (obtained from SEQ ID NO: 34: pIG121-Hm) were cloned by BP reaction to result in donor clones, pDONR P4-P1R, pDONR 221, and DONR P2R-P3, respectively, included in a Multi Site Gateway Three-Fragment Vector Construction Kit (Invitrogen), so that entry clones were prepared.
- NOS nopaline synthase gene
- An LR reaction was performed for each of the thus prepared entry clones and a destination vector, pBI-sGFP-R4R3, so that a plant expression vector containing the corn-derived ubiquitin gene promoter, PP2C cDNA (At3g05640 (SEQ ID NO:5)), and the nopaline synthase gene (NOS) terminator, in such order, was constructed.
- the nucleotide sequences of the thus obtained expression vectors were determined and sequence analysis was conducted.
- the plant expression vectors constructed in 2-2-2 were introduced into an Agrobacterium tumefaciens EHA101 strain. Then Agrobacterium tumefaciens in which the plant expression vector had been introduced was introduced into rice ( Oryza sativa L. ssp. japonica (cv. Nipponbare)). Specifically, the experiment was conducted under conditions in accordance with the method disclosed in JP Patent No. 3141084.
- T1 seedlings (about 12 cm) were aseptically prepared.
- T1 plants prepared in 2-2-3 were transplanted in pots with a diameter of about 10 cm containing Kumiai Hitetsu culture soil No. 2 (JA Aichi Keizairen (economic federation)). After acclimatization, the plants were transplanted into 1/5000a Wagner pots containing the same culture soil and then cultivated under conditions of 30° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 100 ⁇ mol m ⁇ 2 s ⁇ 1 .
- T1 plants into which a plant expression vector (constructed by ligating 3 multiple cloning sites of a pST-Blue1 vector (Novagen) to a destination vector pBI-sGFP-R4R3) had been introduced were similarly cultivated.
- FIG. 6 shows photos showing a control rice plant and a transformed rice plant prepared by introduction of the coding region of PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)).
- PP2C protein phosphatase 2C
- At3g05640 SEQ ID NO:5
- rice Oryza sativa L. ssp. japonica (cv. Nipponbare) was used.
- a rice homologous gene (PP2C gene (Os05g0358500)) homologous to PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) used in Examples 1 and 2 was used.
- the entire sequence was chemically synthesized based on the nucleotide sequence (SEQ ID NO: 6) of the coding region of rice PP2C (Os05g0358500).
- a fragment of the chemically synthesized entire sequence was cloned into pDONR 221 that was a donor clone of a MultiSite Gateway Three-Fragment Vector Construction Kit (Invitrogen®).
- a corn-derived ubiquitin gene promoter (SEQ ID NO: 33: Christensen, A. H. and Quail, P. H., Transgenic Research 1996, 5, 213-218) and an Agrobacterium tumefaciens Ti plasmid-derived nopaline synthase gene (NOS) terminator (SEQ ID NO: 34: obtained from pIG121-Hm) were cloned by BP reaction to result in donor clones, pDONR P4-P1R and DONR P2R-P3, respectively, included in a MultiSite Gateway Three-Fragment Vector Construction Kit (Invitrogen®), so that entry clones were prepared.
- NOS nopaline synthase gene terminator
- the nucleotide sequence of the thus obtained expression vector was determined and then sequence analysis was conducted.
- the plant expression vector constructed in 2-2-2 was introduced into an Agrobacterium tumefaciens EHA101 strain. Then Agrobacterium tumefaciens in which the plant expression vector had been introduced was introduced into rice ( Oryza sativa L. ssp. japonica (cv. Nipponbare)). Specifically, the experiment was conducted under conditions according to the method disclosed in JP Patent No. 3141084.
- T1 seedlings (about 12 cm) were aseptically prepared.
- T1 plants prepared in 3-2-3 were transplanted in pots with a diameter of about 10 cm containing Kumiai Hitetsu culture soil No. 2 (JA Aichi Keizairen (economic federation)). After acclimatization, the plants were transplanted into 1/5000a Wagner pots containing the same culture soil and then cultivated under conditions of 30° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 100 ⁇ mol m ⁇ 2 s ⁇ 1 .
- rice plants, into which no gene had been introduced were regulated to be at almost the same growth stage as that of transformants, transplanted simultaneously with the transplantation of transformants, and then cultivated similarly.
- FIG. 7 shows photos showing control rice plants and transformed rice plants into which the coding region of rice-derived plant PP2C (protein phosphatase 2C) (Os05g0358500) had been introduced.
- PP2C protein phosphatase 2C
- FIG. 7 shows photos showing control rice plants and transformed rice plants into which the coding region of rice-derived plant PP2C (protein phosphatase 2C) (Os05g0358500) had been introduced.
- the total amount of biomass was improved compared with the control rice plants. It was revealed by the above results that when the rice-derived PP2C gene is expressed at a high level in a rice plant, the production of rice plant biomass can be increased.
- PP2C protein phosphatase 2C gene (At5g27930 (SEQ ID NO:36)) having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order was used, instead of PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) used in Examples 1 and 2.
- PCR primers for amplification of a fragment containing an ORF region of Arabidopsis PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)
- PCR primers for amplification of a fragment containing an ORF region of Arabidopsis PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)
- PCR primers AP042-F5 and AP042-R, were designed and synthesized based on the sequence information disclosed in TAIR (on world wide web at arabidopsis .org/home).
- PCR primers SalI-AP042-F2 and AP042-BsrGI-R2 were also designed and synthesized so as to add a sequence (restriction enzyme site: BsrG I or Sal I) on the vector side required upon cloning of the thus amplified fragment into the vector using an In-Fusion cloning system (Clontech).
- the nucleotide sequence of the coding region in the PP2C gene (At5g27930 (SEQ ID NO: 36)) is shown in SEQ ID NO: 35 and the amino acid sequence of the protein encoded by the PP2C gene (At5g27930) is shown in SEQ ID NO: 36.
- AP042-F5 (SEQ ID NO: 37) 5′-ATGGGACATTTCTCATCGATGTTC-3′
- AP042-R (SEQ ID NO: 38) 5′-TTACTTTAAAATCGTCATGGCATGATG-3′
- SalI-AP042-F2 (SEQ ID NO: 39) 5′-AATTACTATTTACAATTACAGTCGACATGGGACATTTCTCATCGAT GTTCAATGGA-3′
- AP042-BsrGI-R2 (SEQ ID NO: 40) 5′-AGCCGGGCGGCCGCTTTACTTGTACATTACTTTAAAATCGTCATGGC ATGATGATGTTG-3′
- PCR was performed using template DNA prepared from wild-type Arabidopsis thaliana (ecotype Col-0) according to the method of 1-2-2, the above primers, AP042-F5 and AP042-R, and PrimeSTAR HS DNA Polymerase (Takara Bio), so that a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)) was obtained.
- PP2C protein phosphatase 2C
- a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36) was inserted into a plant expression vector pBI121 containing a tobacco mosaic virus-derived omega sequence, so that a construct was prepared.
- a fragment containing the PP2C gene (At5g27930 (SEQ ID NO:36)) obtained in 4-2-1 was cloned into a vector using an In-Fusion cloning system (Clontech), so that a construct was prepared.
- the nucleotide sequence of the thus obtained expression vector in which the fragment containing the PP2C gene (At5g27930 (SEQ ID NO:36)) had been subcloned was determined and sequence analysis was conducted.
- the plant expression vector constructed in 4-2-2 was introduced by electroporation (Plant Molecular Biology Mannal, Second Edition, B. G. Stanton A. S. Robbert, Kluwer Acdemic Publishers 1994) into an Agrobacterium tumefaciens C58C1 strain. Subsequently, Agrobacterium tumefaciens into which the plant expression vector had been introduced was introduced into wild-type Arabidopsis thaliana (ecotype Col-0) by an infiltration method described by Clough et al. (1998, The Plant Journal 16: 735-743). T1 seeds were obtained by self-pollination.
- T1 seeds obtained in 4-2-3 were aseptically sowed in kanamycin-containing medium, so that T1 plants were prepared. Seedlings selected using kanamycin-containing medium were transplanted in pots with a diameter of 50 mm containing vermiculite-mixed soil. As control plants, non-recombinant Arabidopsis plants were transplanted. They were cultivated under conditions of 22° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 30-45 ⁇ mol m ⁇ 2 s ⁇ 1 .
- FIGS. 8 and 9 show photos showing the above-ground parts of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)) had been introduced.
- PP2C protein phosphatase 2C
- FIGS. 8 and 9 in the above-ground parts of the transformed plants into which the fragment containing ORF of the PP2C gene (At5g27930 (SEQ ID NO:36)) had been introduced, the total amount of biomass was improved compared with the wild-type plants.
- PP2C protein phosphatase 2C gene (At3g02750 (SEQ ID NO:42)) having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order was used, instead of PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) used in Examples 1 and 2.
- PCR primers for amplification of a fragment containing an ORF region of the PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)
- PCR primers for amplification of a fragment containing an ORF region of the PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)
- PCR primers for amplification of a fragment containing an ORF region of the PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)
- AP036-F4 and AP036-R were designed and synthesized based on the sequence information disclosed in TAIR (on world wide web at arabidopsis .org/home).
- PCR primers SalI-AP036-F2 and AP036-BsrGI-R2 were designed and synthesized so as to add a sequence (restriction enzyme site: BsrG I or Sal I) on the vector side required upon cloning of the thus amplified fragment into the vector using an In-Fusion cloning system (Clontech).
- the nucleotide sequence of the coding region in the PP2C gene (At3g02750 (SEQ ID NO:42)) is shown in SEQ ID NO: 41 and the amino acid sequence of the protein encoded by the PP2C gene (At3g02750) is shown in SEQ ID NO: 42.
- AP036-F4 (SEQ ID NO: 43) 5′-ATGGGGTCCTGTTTATCTGCAG-3′
- AP036-R (SEQ ID NO: 44) 5′-TCACTTTCCAGGCACAAATCTTG-3′
- SalI-AP036-F2 (SEQ ID NO: 45) 5′-AATTACTATTTACAATTACAGTCGACATGGGGTCCTGTTTATCTG CAGAGAGCAGG-3′
- AP036-BsrGI-R2 (SEQ ID NO: 46) 5′-AGCCGGGCGGCCGCTTTACTTGTACATCACTTTCCAGGCACAAAT CTTGGTAAGTT-3′
- PCR was performed using template DNA prepared from wild-type Arabidopsis thaliana (ecotype Col-0) according to the method of 1-2-2, the above primers, and PrimeSTAR HS DNA Polymerase (Takara Bio), so that a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)) was obtained.
- PP2C protein phosphatase 2C
- a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42) was inserted into a plant expression vector pBI121 containing a tobacco mosaic virus-derived omega sequence, so that a construct was prepared.
- a fragment containing the PP2C gene (At3g02750 (SEQ ID NO:42)) obtained in 5-2-1 was cloned into a vector using an In-Fusion cloning system (Clontech), so that a construct was prepared.
- the nucleotide sequence of the thus obtained expression vector in which the fragment containing the PP2C gene (At3g02750 (SEQ ID NO:42)) had been subcloned was determined and sequence analysis was conducted.
- the plant expression vector constructed in 5-2-2 was introduced by electroporation (Plant Molecular Biology Mannal, Second Edition, B. G. Stanton A. S. Robbert, Kluwer Acdemic Publishers 1994) into an Agrobacterium tumefaciens C58C 1 strain. Subsequently, Agrobacterium tumefaciens into which the plant expression vector had been introduced was introduced into wild-type Arabidopsis thaliana (ecotype Col-0) by an infiltration method described by Clough et al. (1998, The Plant Journal 16: 735-743). T1 seeds were obtained by self-pollination.
- T1 seeds obtained in 5-2-3 were aseptically sowed in kanamycin-containing medium, so that T1 plants were prepared. Seedlings selected using kanamycin-containing medium were transplanted in pots with a diameter of 50 mm containing vermiculite-mixed soil. As control plants, non-recombinant Arabidopsis plants were transplanted. They were cultivated under conditions of 22° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 30-45 ⁇ mol m ⁇ 2 s ⁇ 1 .
- FIG. 10 shows a photo showing the above-ground parts of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)) had been introduced.
- PP2C protein phosphatase 2C
- PP2C protein phosphatase 2C gene (At3g16800 (SEQ ID NO:48)) having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order was used, instead of PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) used in Examples 1 and 2.
- PCR primers for amplification of a fragment containing an ORF region of the PP2C (protein phosphatase 2C) gene (At3g16800 (SEQ ID NO:48)
- PCR primers AP040-F4 and AP040-R
- TAIR time domain protein phosphatase 2C
- PCR primers, SalI-AP040-F2 and AP040-BsrGI-R2 were synthesized and designed so as to add a sequence (restriction enzyme site: BsrG I or Sal I) on the vector side required upon cloning of the thus amplified fragment into the vector using an In-Fusion cloning system (Clontech).
- the nucleotide sequence of the coding region in the PP2C gene (At3g16800 (SEQ ID NO:48)) is shown in SEQ ID NO: 47 and the amino acid sequence of the protein encoded by the PP2C gene (At3g16800) is shown in SEQ ID NO: 48.
- AP040-F4 (SEQ ID NO: 49) 5′-ATGGTGCTTTTACCAGCGTTTTTG-3′
- AP040-R (SEQ ID NO: 50) 5′-CTAAGAAGGACGAAAGAAGAGAC-3′
- SalI-AP040-F2 (SEQ ID NO: 51) 5′-AATTACTATTTACAATTACAGTCGACATGGTGCTTTTACCAGCGTT TTTGGACGGATTAG-3′
- AP040-BsrGI-R2 (SEQ ID NO: 52) 5′-AGCCGGGCGGCCGCTTTACTTGTACACTAAGAAGGACGAAAGAAGA GACAGAGAAC-3′
- PCR was performed using template DNA prepared from wild-type Arabidopsis thaliana (ecotype Col-0) according to the method of 1-2-2, the above primers, and PrimeSTAR HS DNA Polymerase (Takara Bio), so that a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g16800 (SEQ ID NO:48)) was obtained.
- PP2C protein phosphatase 2C
- the fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g16800 (SEQ ID NO:48) was inserted to a plant expression vector pBI121 containing a tobacco mosaic virus-derived omega sequence, so that a construct was prepared.
- the fragment containing the PP2C gene (At3g16800 (SEQ ID NO:48)) obtained in 6-2-1 was cloned into a vector using an In-Fusion cloning system (Clontech), so that a construct was prepared.
- the nucleotide sequence of the thus obtained expression vector into which the fragment containing the PP2C gene (At3g16800 (SEQ ID NO:48)) had been subcloned was determined and sequence analysis was conducted.
- the plant expression vector constructed in 6-2-2 was introduced by electroporation (Plant Molecular Biology Mannal, Second Edition, B. G. Stanton A. S. Robbert, Kluwer Acdemic Publishers 1994) into an Agrobacterium tumefaciens C58C1 strain. Subsequently, Agrobacterium tumefaciens into which the plant expression vector had been introduced was introduced into wild-type Arabidopsis thaliana (ecotype Col-0) by an infiltration method described by Clough et al. (1998, The Plant Journal 16: 735-743). T1 seeds were obtained by self-pollination.
- T1 seeds obtained in 6-2-3 were aseptically sowed in kanamycin-containing medium, so that T1 plants were prepared. Seedlings selected using kanamycin-containing medium were transplanted in pots with a diameter of 50 mm containing vermiculite-mixed soil. As control plants, non-recombinant Arabidopsis plants were transplanted. They were cultivated under conditions of 22° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 30-45 ⁇ mol m ⁇ 2 s ⁇ 1 .
- FIG. 11 shows a photo showing the above-ground parts of a wild-type plant and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g16800 (SEQ ID NO:48)) had been introduced.
- PP2C protein phosphatase 2C
- a rice homologous gene (PP2C gene (Os05g0358500)) homologous to PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) used in Examples 1 and 2 was used.
- the entire sequence was chemically synthesized based on the nucleotide sequence (SEQ ID NO: 6) of the coding region of rice PP2C (Os05g0358500).
- a fragment of the chemically synthesized entire sequence was cloned into pDONR 221 that was a donor clone of a MultiSite Gateway Three-Fragment Vector Construction Kit (Invitrogen®).
- a cauliflower mosaic virus-derived 35S (CaMV35S ⁇ ) promoter (SEQ ID NOS: 58) containing a tobacco mosaic virus-derived omega sequence and an Agrobacterium tumefaciens Ti plasmid-derived nopaline synthase gene (NOS) terminator (SEQ ID NOS: 34: obtained from pIG121-Hm) were cloned by BP reaction to result in donor clones, pDONR P4-P1R and DONR P2R-P3, respectively, included in a MultiSite Gateway Three-Fragment Vector Construction Kit (Invitrogen®), so that entry clones were prepared.
- CaMV35S ⁇ cauliflower mosaic virus-derived 35S
- NOS nopaline synthase gene
- a plant expression vector containing the CaMV35S ⁇ promoter, the rice PP2C cDNA (Os05g0358500), and the nopaline synthase gene (NOS) terminator in such order was constructed.
- the nucleotide sequence of the thus obtained expression vector was determined and then sequence analysis was conducted.
- the plant expression vector constructed in 7-2-2 was introduced by electroporation (Plant Molecular Biology Mannal, Second Edition, B. G. Stanton A. S. Robbert, Kluwer Acdemic Publishers 1994) into an Agrobacterium tumefaciens C58C1 strain. Subsequently, Agrobacterium tumefaciens into which the plant expression vector had been introduced was introduced into wild-type Arabidopsis thaliana (ecotype Col-0) by an infiltration method described by Clough et al. (1998, The Plant Journal 16: 735-743). T1 seeds were obtained by self-pollination.
- T1 seeds obtained in 7-2-3 were aseptically sowed in kanamycin-containing medium, so that T1 plants were prepared. Seedlings selected using kanamycin-containing medium were transplanted in pots with a diameter of 50 mm containing vermiculite-mixed soil. As control plants, non-recombinant Arabidopsis plants were transplanted. They were cultivated under conditions of 22° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 30-45 ⁇ mol m ⁇ 2 s ⁇ 1 .
- FIG. 12 shows a photo showing the above-ground parts of a wild-type plant and transformed plants into which the coding region of the rice-derived PP2C (protein phosphatase 2C) gene (Os05g0358500) had been introduced.
- the total amount of biomass was improved compared with the wild-type plant. It was revealed by the above results that when the rice-derived PP2C gene is expressed at a high level in Arabidopsis thaliana, the production of Arabidopsis biomass can be increased.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
- This is a divisional of U.S. patent application Ser. No. 14/609,830, filed Jan. 30, 2015, which is a divisional of U.S. patent application Ser. No. 12/922,432 filed on Dec. 3, 2010, which is a National Stage of International Application No. PCT/JP2009/054953 filed Mar. 13, 2009, claiming priority based on Japanese Patent Application No. JP 2008-066460 filed Mar. 14, 2008, the contents of all of which are incorporated herein by reference in their entirety.
- The present invention relates to: a plant in which a given gene is over-expressed; a method for increasing the production of biomass and/or seeds through overexpression of a given gene; and a method for producing such plant capable of producing an increased amount of biomass and/or seeds.
- The term “biomass” generally refers to the total amount of organisms that inhabit or exist in a given area. When such term is used with regard to plants, in particular, it refers to dry weight per unit area. Biomass units are quantified in terms of mass or energy. The expression “biomass” is synonymous with “Seibutsutairyo” or “Seibutsuryo.” In the case of plant biomass, the term “standing crop” is occasionally used for “biomass.” Since plant biomass is generated by fixing atmospheric carbon dioxide with the use of solar energy, it can be regarded as so-called “carbon-neutral energy.” Accordingly, an increase of plant biomass is effective for global environmental preservation, the prevention of global warming, and mitigation of greenhouse gas emissions. Thus, technologies for increasing the production of plant biomass have been industrially significant.
- Plants are cultivated for the purpose of using some tissues thereof (e.g., seeds, roots, leaves, or stems) or for the purpose of producing various materials, such as fats and oils. Examples of fats and oils produced from plants that have been heretofore known include soybean oil, sesame oil, olive oil, coconut oil, rice oil, cottonseed oil, sunflower oil, corn oil, safflower oil, palm oil, and rapeseed oil. Such fats and oils are extensively used for household and industrial applications. Also, fats and oils produced from plants are used as raw materials for biodiesel fuel or bioplastic, and the applicability thereof is increasing for alternative energy to petroleum.
- In particular, an energy crop such as sugar cane can be used as a raw material for biofuel. Hence, the increased production of the total mass of a plant itself (the amount of plant biomass) is expected. Under such circumstances, improvement in productivity per unit of cultivation area is required in order to increase the production of the amount of plant biomass. It has been found that if the number of cultivated plants is assumed to be constant per unit of cultivation area, improvement in the amount of biomass per plant would be necessary.
- However, it is thought that since many genes are involved in the amount of plant biomass (a so-called “kind of quantitative trait”), individual gene introduction or individual genetic modification cannot lead to an effective increase in production. Meanwhile, a great deal of difficulties are associated with introduction of many genes in a desired state into a plant. Such gene introduction is also problematic in that if successful introduction takes place, desirable traits cannot always be acquired.
- Various gene introduction techniques are known as techniques for increasing the production of plant biomass, as disclosed in Patent Documents 1-7, for example. However, none of these techniques can be said to exert sufficient effects of increasing the production of biomass.
-
- Patent Document 1: JP Patent Publication (Kohyo) No. 2001-505410 A
- Patent Document 2: JP Patent Publication (Kohyo) No. 2001-519659 A
- Patent Document 3: JP Patent Publication (Kohyo) No. 2007-530063 A
- Patent Document 4: JP Patent Publication (Kokai) No. 2005-130770 A
- Patent Document 5: JP Patent Publication (Kohyo) No. 2000-515020 A
- Patent Document 6: JP Patent Publication (Kohyo) No. 9-503389 A
- Patent Document 7: JP Patent Publication (Kokai) No. 2005-52114 A
- In view of the above circumstances, an object of the present invention is to search for genes having novel functions of drastically improving the amount of plant biomass and thus to provide a technique with which the production of plant biomass can be drastically increased.
- As a result of intensive studies to achieve the above object, the present inventors have made the novel finding that the production of plant biomass can be drastically increased by causing overexpression of a gene encoding protein phosphatase 2C having characteristic consensus sequences. Thus, they have completed the present invention.
- Specifically, the plant according to the present invention is a plant in which a gene encoding protein phosphatase 2C having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order is over-expressed.
- Also, the method for increasing the production of biomass according to the present invention comprises causing the overexpression of a gene encoding protein phosphatase 2C having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order.
- Furthermore, the method for producing a plant according to the present invention comprises the steps of:
- preparing a transformed plant in which a gene encoding protein phosphatase 2C having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order is over-expressed; and
- measuring the amount of biomass of a progeny plant of the transformed plant and then selecting a line in which the amount of biomass is significantly improved.
- In the present invention, the above gene encoding protein phosphatase 2C can be at least one type of gene selected from the group consisting of At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), At5g27930-AtPP2C6-7 (SEQ ID NO:36), At2g20050 (SEQ ID NO:66), and At3g06270 (SEQ ID NO:67), or a gene functionally equivalent thereto.
- In the present invention, the gene encoding protein phosphatase 2C preferably encodes any one of the following proteins (a) to (c):
- (a) a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOS: 5, 7, 36, 42, and 48;
- (b) a protein comprising an amino acid sequence that has a deletion, a substitution, an addition, or an insertion of one or a plurality of amino acids with respect to an amino acid sequence selected from the group consisting of SEQ ID NOS: 5, 7, 36, 42, and 48 and having protein phosphatase 2C activity; and
- (c) a protein that is encoded by a polynucleotide hybridizing under stringent conditions to a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence selected from the group consisting of SEQ ID NOS: 4, 6, 35, 41, and 47 and has protein phosphatase 2C activity.
- Also, in the present invention, an example of the above functionally equivalent gene is a protein phosphatase 2C gene from an organism other than Arabidopsis thaliana. Another example of an organism other than Arabidopsis thaliana is an organism selected from the group consisting of rice (Oryza sativa), black cottonwood (Populus trichocarpa), european grape (Vitis vinifera), Medicago truncatula (Medicago truncatula), alfalfa (Medicago sativa), Physcomitrella patens (Physcomitrella patens), ice plant (Mesembryanthemum crystallinum), Chlamydomonas reinhardtii (Chlamydomonas reinhardtii), corn (Zea mays), rapeseed (Brassica rapa), tomato (Solanum lycopersicum), monkey flower (Mimulus guttatus), and monocellular red alga (Cyanidioschyzon merolae).
- Examples of plants to be subjected to the present invention include dicotyledons such as plants of the family Brassicaceae. Examples of plants of the family Brassicaceae include Arabidopsis thaliana and rapeseed. Other examples of plants to be subjected to the present invention include monocotyledons such as plants of the family Gramineae. Examples of plants of the family Gramineae include rice and sugarcane.
- The plant according to the present invention is a plant capable of producing significantly improved amount of biomass and/or seeds compared with wild-type plants. Also, the method for increasing the production of biomass and/or seeds according to the present invention can realize the significantly increased production of biomass and/or seeds compared with target wild-type plants. Furthermore, the method for producing a plant according to the present invention makes it possible to produce a plant capable of producing significantly improved amount of biomass and/or seeds compared with wild-type plants. Therefore, through application of the present invention, for example, productivity can be improved when the plant itself is a product and this can be achieved at lower cost. Also, through application of the present invention, for example, the productivity can be improved when seeds are directly products or ingredients contained in seeds are directly products and this can be achieved at lower cost.
- This description hereby incorporates the entire content of the description and/or the drawings of Japanese Patent Application No. 2008-066460, which is the basis of the priority claim of this application.
-
FIGS. 1-1, 1-2 and 1-3 are characteristic diagrams showing the results of alignment analysis using a CLUSTAL W (1.83) multiple sequence alignment program for amino acid sequences encoded by At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), At5g27930-AtPP2C6-7 (SEQ ID NO:36), At2g20050 (SEQ ID NO:66), and At3g06270 (SEQ ID NO:67). -
FIGS. 2-1, 2-2 and 2-3 are characteristic diagrams showing the results of alignment analysis using a CLUSTAL W (1.83) multiple sequence alignment program for amino acid sequences encoded by At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), and At5g27930-AtPP2C6-7 (SEQ ID NO:36). -
FIG. 3 is a photo showing the above-ground parts of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) was introduced. -
FIG. 4 is a characteristic diagram showing the results of measuring the amounts of biomass of the above-ground parts of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) was introduced. The result for the wild-type plants is the average value for 12 individual wild-type plants and each result for the transformed plants is the average value for 5 individual transformed plants. -
FIG. 5 is a characteristic diagram showing the results of measuring the amounts of seeds of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) was introduced. The result for wild-type plants is the average value for 12 individual wild-type plants and each result for the transformed plants is the average value for 5 individual transformed plants. -
FIG. 6 shows photos showing the above-ground parts of a rice control plant into which a plant expression vector (constructed by ligating 3 multiple cloning sites of a pST-Blue1 vector to pBI-sGFP-R4R3) was introduced and a transformed rice plant into which the coding region of PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) was introduced. -
FIG. 7 shows photos showing the above-ground parts of a control rice plant into which no gene was introduced and a transformed rice plant into which the coding region of rice-derived PP2C (protein phosphatase 2C) (Os05g0358500) was introduced. -
FIG. 8 is a photo showing the above-ground parts of a wild type plant and a transformed plant into which a fragment containing ORF of a PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)) was introduced. -
FIG. 9 is a photo showing the above-ground parts of a wild-type plant and a transformed plant into which a fragment containing ORF of a PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)) was introduced. -
FIG. 10 is a photo showing the above-ground parts of a wild-type plant and transformed plants into which a fragment containing ORF of a PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)) was introduced. -
FIG. 11 is a photo showing the above-ground parts of a wild-type plant and transformed plants into which a fragment containing ORF of a PP2C (protein phosphatase 2C) gene (At3g16800 (SEQ ID NO:48)) was introduced. -
FIG. 12 is a photo showing the above-ground parts of a wild-type plant and transformed plants into which the coding region of a rice-derived PP2C (protein phosphatase 2C) gene (Os05g0358500) was introduced. - The present invention will be described in detail as follows.
- The plant according to the present invention is a plant in which: a gene encoding protein phosphatase 2C having characteristic consensus sequences is over-expressed; and the amount of biomass is significantly improved compared with wild-type plants. The plant according to the present invention may be a plant in which the protein phosphatase 2C gene is over-expressed in all plant tissues or at least some plant tissues. Here, the term “plant tissue(s)” refers to plant organ(s) such as leaves, stems, seeds, roots, and flowers.
- Here, the term “overexpression” refers to an expression level that can be confirmed as a transcript as a result of transcription of the protein phosphatase 2C gene introduced into a plant.
- The protein phosphatase 2C gene to be over-expressed in a plant encodes protein phosphatase 2C that has 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side. In addition, a gene group classified as Group E as in
FIG. 1 of Topographic cladogram (on page 237 of Reference: TRENDS in Plant Science Vol. 9 No. 5 May 2004 pages 236-243) encodes protein phosphatase 2C having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side. In addition, the reference predicts the presence of 76 protein phosphatase 2C genes in Arabidopsis thaliana and discloses the results of producing a phylogenetic tree of these genes using T-Coffee software (reference; Notredame, C. et al. 2000 T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-247) as inFIGS. 1-1, 1-2 and 1-3 . In this phylogenetic tree, protein phosphatase 2C genes classified as members of Group E encode protein phosphatase 2C that has 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side. The 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 are characteristic sequences in Group E in the above-mentioned classification and serve as a basis for clear differentiation from other groups. - Group E in the above classification includes protein phosphatase 2C genes specified by Arabidopsis thaliana-derived At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), At5g27930-AtPP2C6-7 (SEQ ID NO:36), At2g20050 (SEQ ID NO:66), and At3g06270 (SEQ ID NO:67).
FIGS. 1-1, 1-2 and 1-3 show the results of alignment analysis using a CLUSTAL W (1.83) multiple sequence alignment program (which can be used with the DDBJ of the National Institute of Genetics (on world wide web at clustalw.ddbj.nig.ac.jp/top-j)) for the amino acid sequences encoded by these Arabidopsis thaliana-derived protein phosphatase 2C genes, At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), At5g27930-AtPP2C6-7 (SEQ ID NO:36), At2g20050 (SEQ ID NO:66), and At3g06270 (SEQ ID NO:67) (with the amino acid (sequence) substitution matrix used herein being a default matrix known as BLOSUM (Blocks of Amino Acid Substitution Matrix)). As shown inFIGS. 1-1, 1-2 and 1-3 , these protein phosphatase 2C genes classified as members of Group E have consensus sequences characteristic in the regions denoted as I to III. These regions denoted as I to III are subjected with a rice-derived protein phosphatase 2C gene (described later) to alignment analysis, so that the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 can be defined. - Herein, in the amino acid sequence shown in SEQ ID NO: 1, which is an amino acid residue denoted as “Xaa,” may be any amino acid, and it is not limited to any particular amino acid. However, the 1st amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 1 is preferably leucine (three character code: Leu and single character code: L; the same applies to the following) or phenylalanine (Phe, F). The 4th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 1 is preferably valine (Val, V), isoleucine (Ile, I), or methionine (Met, M). The 16th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 1 is preferably serine (Ser, S) or alanine (Ala, A). The 17th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 1 is preferably lysine (Lys, K), arginine (Arg, R), glutamine (Gln, Q), or asparagine (Asn, N). More specifically, a consensus sequence comprising the amino acid sequence shown in SEQ ID NO: 1 is preferably (L/F)XG(V/I/M)FDGHGXXGXXX(S/A)(K/R/Q/N)XV. In such amino acid sequence, pluralities of amino acids in parentheses represent possible variations of amino acid residues at the relevant positions. Also, in the following amino acid sequences, “X” means that any amino acid residue may be present at the relevant position.
- Also, such a consensus sequence may be a sequence containing the following 3 amino acid residues on the N-terminal side of Region I in
FIGS. 1-1, 1-2 and 1-3 : (D/E/N)XX. - Here, in the amino acid sequence shown in SEQ ID NO: 2, an amino acid residue denoted as “Xaa,” may be any amino acid, and it is not limited to any particular amino acid. However, the 5th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably glycine (Gly, G), alanine (Ala, A), or serine (Ser, S). The 6th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably valine (Val, V), leucine (Leu, L), or isoleucine (Ile, I). The 9th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably isoleucine (Ile, I), valine (Val, V), phenylalanine (Phe, F), methionine (Met, M), or leucine (Leu, L). The 12th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably glycine (Gly, G) or alanine (Ala, A). The 15th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably leucine (Leu, L), valine (Val, V), or isoleucine (Ile, I). The 17th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably isoleucine (Ile, I), valine (Val, V), or methionine (Met, M). The 18th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably glycine (Gly, G) or alanine (Ala, A). The 22nd amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably aspartic acid (Asp, D) or histidine (His, H). The 26th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably valine (Val, V) or isoleucine (Ile, I). The 27th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 2 is preferably leucine (Leu, L), methionine (Met, M), or isoleucine (Ile, I). More specifically, a consensus sequence comprising the amino acid sequence shown in SEQ ID NO: 2 is preferably SGXT(G/A/S)(V/L/I)XX(I/V/F/M/L)XX(G/A)XX(L/V/I)X(I/V/M)(A/G)NXG(D/H)SRA(V/I) (L/M/I). In such amino acid sequence, pluralities of amino acids in parentheses represent possible variations of amino acid residues at the relevant positions. Also, in the following amino acid sequences, “X” means that any amino acid residue may be present at the relevant position.
- Here, the amino acid sequence shown in SEQ ID NO: 3, an amino acid residue denoted as “Xaa,” may be any amino acid, and it is not limited to any particular amino acid. However, the 4th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably methionine (Met, M), valine (Val, V), or phenylalanine (Phe, F). The 5th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably serine (Ser, S), alanine (Ala, A), or threonine (Thr, T). The 7th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably alanine (Ala, A) or serine (Ser, S). The 8th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably phenylalanine (Phe, F), isoleucine (Ile, I), or valine (Val, V). The 14th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably lysine (Lys, K) or glutamic acid (Glu, E). The 18th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably valine (Val, V) or leucine (Leu, L). The 19th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably isoleucine (Ile, I) or valine (Val, V). The 23rd amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably glutamic acid (Glu, E), glutamine (Gln, Q), or aspartic acid (Asp, D). The 24th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably isoleucine (Ile, I), valine (Val, V), or phenylalanine (Phe, F). The 29th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably isoleucine (Ile, I), leucine (Leu, L), or valine (Val, V). The 30th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably serine (Ser, S), threonine (Thr, T), or asparagine (Asn, N). The 33rd amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably aspartic acid (Asp, D), asparagine (Asn, N), or histidine (His, H). The 35th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably phenylalanine (Phe, F) or tyrosine (Tyr, Y). The 36th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably leucine (Leu, L), isoleucine (Ile, I), valine (Val, V), phenylalanine (Phe, F), or methionine (Met, M). The 37th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably valine (Val, V), leucine (Leu, L), or isoleucine (Ile, I). The 38th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably leucine (Leu, L) or valine (Val, V). The 40th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably threonine (Thr, T) or serine (Ser, S). The 43rd amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably valine (Val, V), isoleucine (Ile, I), or methionine (Met, M). The 44th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably tryptophan (Trp, W) or phenylalanine (Phe, F). The 45th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably aspartic acid (Asp, D) or glutamic acid (Glu, E). The 47th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably leucine (Leu, L), isoleucine (Ile, I), or methionine (Met, M). The 48th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably serine (Ser, S), threonine (Thr, T), or proline (Pro, P). The 49th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably asparagine (Asn, N) or serine (Ser, S). The 52nd amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably valine (Val, V) or alanine (Ala, A). The 55th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably leucine (Leu, L), valine (Val, V), isoleucine (Ile, I), or methionine (Met, M). The 56th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is preferably isoleucine (Ile, I) or valine (Val, V). Preferably, an example of the consensus sequence comprising the amino acid sequence shown in SEQ ID NO: 3 is more specifically GXA(M/V/F)(S/A/T)R(A/S)(F/I/V)GDXXX(K/E)XXG(V/L)(I/V)XXP(E/Q/D)(I/V/F)XXX X(I/L/V)(T/S)XX(D/N/H)X(F/Y)(L/I/V/F)(V/L/I)(L/V)A(T/S)DG(V/I/M)(W/F)(D/E)X(L/I/M) (S/T/P)(N/S)XX(V/A)XX(L/V/I/M)(I/V). In such amino acid sequence, pluralities of amino acids in parentheses represent possible variations of amino acid residues at the relevant positions. Also, in the following amino acid sequences, “X” means that any amino acid residue may be present at the relevant position.
- Here, the 20th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is more preferably alanine (Ala, A), serine (Ser, S), or cysteine (Cys, C). Also, the 50th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 3 is more preferably aspartic acid (Asp, D), glutamic acid (Glu, E), lysine (Lys, K), glutamine (Gln, Q), or asparagine (Asn, N).
- Variations of amino acid residues that can be present at given positions are determined based on the following reasons. As described in Reference (1) (“McKee Biochemistry,” 3rd ed.,
Chapter 5 Amino Acid.Peptide.Protein 5.1 Amino Acid; editorial supervisor: Atsushi Ichikawa; translation supervisor: Shinichi Fukuoka; publisher: Ryosuke Sone; publishing office: Kagaku-Dojin Publishing Company, INC, ISBN4-7598-0944-9), it is well known that amino acids are classified based on side chains having similar properties (e.g., chemical properties and physical sizes). Also, it is well known that molecular evolutionary substitution frequently takes place among amino acid residues classified in a given group, while retaining protein activity. Based on these concepts, a substitution (mutation) score matrix for amino acid residues (BLOSUM: Blocks of Amino Acid Substitution Matrix) is proposed inFIGS. 2-1, 2-2 and 2-3 of Reference (2): Henikoff S., Henikoff J. G., Amino-acid substitution matrices from protein blocks, Proc. Natl. Acad. Sci. U.S.A., 89, 10915-10919 (1992) and is broadly used. Reference (2) is based on a finding that amino acid substitutions that take place among amino acids with side chains having similar chemical properties result in less structural or functional changes in the entire protein. According to References (1) and (2) above, amino acid side chain groups to be used in multiple alignment can be considered based on indices such as chemical properties and physical sizes. They are shown as amino acid groups with a score of 0 or higher and preferably as amino acid groups with a score of 1 or higher through the use of the score matrix (BLOSUM) disclosed in Reference (2). Typical groups are the following 8 groups. Further precisely grouped amino acid groups may be amino acid groups with a score of 0 or higher, preferably a score of 1 or higher, and further preferably a score of 2 or higher. - 1) Aliphatic Hydrophobic Amino Acid Group (ILMV Group)
- This group is a group of amino acids having aliphatic hydrophobic side chains, among neutral nonpolar amino acids disclosed in Reference (1) above, which is composed of V (Val, valine), L (Leu, leucine), I (Ile, isoleucine), and M (Met, methionine). Among amino acids classified as neutral nonpolar amino acids according to Reference (1), FGACWP is not included in this “aliphatic hydrophobic amino acid group” because of the following reasons: G (Gly, glycine) and A (Ala, alanine) are the same size as that of or smaller in size than a methyl group and have weak non polar effects; C (Cys, cysteine) may play an important role in S-S bonds and has a property of forming a hydrogen bond with an oxygen atom or a nitrogen atom; F (Phe, phenylalanine) and W (Trp, tryptophan) have side chains with significantly large molecular weights and have strong aromatic effects; P (Pro, proline) has strong imino acid effects, so as to fix the angle of the main chain of the polypeptide.
- 2) Group having Hydroxymethylene Group (ST Group)
- This group is a group of amino acids (from among neutral polar amino acids) having hydroxymethylene groups in side chains, which is composed of S (Ser, serine) and T (Thr, threonine). Hydroxy groups existing in the side chains of S and T constitute sugar-binding sites, so that these sites are often important for a polypeptide (protein) to have specific activity.
- 3) Acidic Amino Acid (DE Group)
- This group is a group of amino acids having acidic carboxyl groups in side chains, which is composed of D (Asp, aspartic acid) and E (Glu, glutamic acid).
- 4) Basic Amino Acid (KR Group)
- This group is a group of basic amino acids, which is composed of K (Lys, lysine) and R (Arg, arginine). These K and R are positively charged within a wide pH range and have basic properties. On the other hand, H (His, histidine) classified in basic amino acids is almost never ionized at pH 7, so that H is not classified in this group.
- 5) Methylene Group=Polar Group (DHN Group)
- This group is characterized in that: in all cases, a methylene group as a side chain binds to an α-carbon element beyond which a polar group is present; and the physical sizes of methylene groups (nonpolar groups) closely resemble from each other. This group is composed of N (Asn, asparagine; polar group is an amide group), D (Asp, aspartic acid; polar groups are carboxyl groups), and H (His, histidine; polar groups are imidazole groups).
- 6) Dimethylene Group=Polar Group (EKQR Group)
- This group is characterized in that: in all cases, linear hydrocarbon having a length longer than that of a dimethylene group binds as a side chain to an α-carbon element, beyond which a polar group is present; and the physical sizes of dimethylene groups that are nonpolar groups closely resemble from each other. This group is composed of E (Glu, glutamic acid, polar group is a carboxyl group), K (Lys, lysine; polar groups are amino groups), Q (Gln, glutamine; polar groups are amide groups), and R (Arg, arginine; polar groups are imino groups and amino groups).
- 7) Aromatic Series (FYW Group)
- This group is a group of aromatic amino acids having benzene nuclei in the side chains and characterized by having chemical properties unique in aromatic series. This group is composed of F (Phe, phenylalanine), Y (Tyr, tyrosine), and W (Trp, tryptophan).
- 8) Ring & Polar (HY Group)
- This group is a group of amino acids having both ring structures in the side chains and polarity, which is composed of H (H, histidine; Both ring structures and polar groups are imidazole groups), and Y (Tyr, tyrosine; Ring structures are benzene nuclei and polar groups are hydroxy groups).
- As described above, it is understood that: in the given amino acid sequences shown in SEQ ID NOS: 1-3, an amino acid residue denoted as Xaa may be any amino acid; or amino acid residues denoted as Xaa may be substituted with each other within the above groups 1)-8). Hence, in the present invention, the protein phosphatase 2C gene to be over-expressed in a plant may be a protein phosphatase 2C gene from any plant, as long as it has the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side.
- More specifically, examples of an Arabidopsis thaliana protein phosphatase 2C-coding gene having the 3 consensus sequences (comprising the amino acid sequences shown in SEQ ID NOS: 1-3) in such order from the N-terminal side include At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), At5g27930-AtPP2C6-7 (SEQ ID NO:36), At2g20050 (SEQ ID NO:66), and At3g06270 (SEQ ID NO:67). In the present invention, at least one type of gene selected from the gene group is over-expressed. Particularly in the present invention, it is preferable to cause overexpression of at least one type of gene selected from among At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), and At5g27930-AtPP2C6-7 (SEQ ID NO:36). Particularly, in the present invention, it is more preferable to cause overexpression of at least one type of gene selected from among At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), and At5g27930-AtPP2C6-7 (SEQ ID NO:36)and it is most preferable to cause overexpression of a gene specified by At3g05640 (SEQ ID NO:5).
- In addition,
FIGS. 2-1, 2-2 and 2-3 show the results of alignment analysis using a CLUSTAL W (1.83) multiple sequence alignment program (that can be used with the DDBJ of the National Institute of Genetics (on world wide web at clustalw.ddbj.nig.ac.jp/top-j)) for amino acid sequences encoded by At1g03590 (SEQ ID NO:63)-AtPP2C6-6, At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), and At5g27930 (SEQ ID NO:36)-AtPP2C6-7 (amino acid (sequence) substitution matrix used herein is default matrix, BLOSUM (Blocks of Amino Acid Substitution Matrix)). - That is,
FIGS. 2-1, 2-2 and 2-3 show the 3 consensus sequences in protein phosphatase 2C encoded by At1g03590-AtPP2C6-6 (SEQ ID NO:63), At1g16220 (SEQ ID NO:61), At1g79630 (SEQ ID NO:62), At5g01700 (SEQ ID NO:65), At3g02750 (SEQ ID NO:42), At5g36250 (SEQ ID NO:64), At5g26010 (SEQ ID NO:59), At4g32950 (SEQ ID NO:60), At3g16800 (SEQ ID NO:48), At3g05640 (SEQ ID NO:5), and At5g27930-AtPP2C6-7 (SEQ ID NO:36). Regions denoted as I-III inFIGS. 2-1, 2-2 and 2-3 are subjected with an ortholog of a rice-derived protein phosphatase 2C gene (described later) to alignment analysis, so that the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 above can be defined as the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 53-55, respectively. - The consensus sequence shown in SEQ ID NO: 53 is more specifically (L/F)CG(V/I/M)FDGHGXXGXX(V/I)(S/A)(K/R)XV. The consensus sequence shown in SEQ ID NO: 54 is more specifically SGXT(G/A/S)(V/L)XX(I/V/F/L)XX(G/A)XX(L/V/I)X(I/V/M)(A/G)NXG(D/H)SRA(V/I)(L/M/I). The consensus sequence shown in SEQ ID NO: 55 is more specifically GLA(M/V)(S/A)R(A/S)(F/L)GDXX(L/I/V)KX(Y/F/H)G(V/L)(I/V)XXP(E/Q/D)(I/V/F)XX XX(I/L/V)(T/S)XXDX(F/Y)(L/I/V/M)(V/L/I)LA(T/S)DG(V/I/M)WDX(L/I/M/V)(S/T)NX(E/D) (V/A)XX(L/V/I)(I/V).
- In addition, in such amino acid sequences, pluralities of amino acids in parentheses represent possible variations of amino acid residues at the relevant positions. Also, in these amino acid sequences, “X” means that any amino acid residue may be present at the relevant position.
- Here, the 9th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 54 is more preferably isoleucine (Ile, I), valine (Val, V), or phenylalanine (Phe, F). Also, the 11th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 54 is more preferably glutamine (Gln, Q) or histidine (His, H). Moreover, the 13th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 54 is more preferably lysine (Lys, K), glutamic acid (Glu, E), serine (Ser, S), glutamine (Gln, Q), aspartic acid (Asp, D), or asparagine (Asn, N).
- Here, the 7th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably alanine (Ala, A). Also, the 8th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably phenylalanine (Phe, F). Moreover, the 11th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably phenylalanine (Phe, F) or tyrosine (Tyr, Y). Furthermore, the 13th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably leucine (Leu, L) or isoleucine (Ile, I). Moreover, the 15th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably aspartic acid (Asp, D), serine (Ser, S), or glutamic acid (Glu, E). Furthermore, the 20th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably serine (Ser, S), alanine (Ala, A), or cysteine (Cys, C). Moreover, the 27th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably histidine (His, H) or arginine (Arg, R). Furthermore, the 34th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably glutamine (Gln, Q), glutamic acid (Glu, E), or histidine (His, H). Furthermore, the 36th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably leucine (Leu, L), isoleucine (Ile, I), or valine (Val, V). Furthermore, the 47th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably leucine (Leu, L), isoleucine (Ile, I), or valine (Val, V). Furthermore, the 50th amino acid residue from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 55 is more preferably lysine (Lys, K), glutamic acid (Glu, E), glutamine (Gln, Q), aspartic acid (Asp, D), or asparagine (Asn, N).
- As examples, the nucleotide sequence of the coding region in the gene specified by At3g05640 (SEQ ID NO:5) is shown in SEQ ID NO: 4 and the amino acid sequence of protein phosphatase 2C encoded by the gene specified by At3g05640 is shown in SEQ ID NO: 5. Also, the nucleotide sequence of the coding region in the gene specified by At5g27930 (SEQ ID NO:36) is shown in SEQ ID NO: 35 and the amino acid sequence of protein phosphatase 2C encoded by the gene specified by At5g27930 is shown in SEQ ID NO: 36. Moreover, the nucleotide sequence of the coding region in the gene specified by At3g02750 (SEQ ID NO:42) is shown in SEQ ID NO: 41 and the amino acid sequence of protein phosphatase 2C encoded by the gene specified by At3g02750 is shown in SEQ ID NO: 42. Furthermore, the nucleotide sequence of the coding region in the gene specified by At3g16800 (SEQ ID NO:48) is shown in SEQ ID NO: 47 and the amino acid sequence of protein phosphatase 2C encoded by the gene specified by At3g16800 is shown in SEQ ID NO: 48.
- Also, in the present invention, genes functionally equivalent to genes listed above may also be over-expressed. Here, the term “functionally equivalent gene” refers to, for example, a gene (from an organism other than Arabidopsis thaliana) that: has the 3 consensus sequences (preferably, the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 53-55. The same applies to the following) comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side; and encodes protein phosphatase 2C. Also, the term “functionally equivalent gene” refers to a gene that encodes a protein having protein phosphatase 2C activity. The term “protein phosphatase 2C activity” refers to Mg2+- or Mn2−-dependent serine/threonine phosphatase (Ser/Thr phosphatase) activity. Therefore, whether or not a gene encodes a protein having protein phosphatase 2C activity can be confirmed by examining whether or not the gene product has serine/threonine phosphatase activity in the presence of Mg2− or Mn2+. Conventionally known techniques can be appropriately employed for determining serine/threonine phosphatase activity. For example, a commercially available activity determination kit ProFluor (registered trademark) Ser/Thr Phosphatase Assay (Promega) can be used.
- Here, example of organisms is not limited to Arabidopsis thaliana. For example, rice (Oryza sativa) is included. Specifically, an example of a functionally equivalent gene is a rice Os05g0358500 gene. The nucleotide sequence of a coding region of the Os05g0358500 gene is shown in SEQ ID NO: 6 and the amino acid sequence of the protein encoded by the gene is shown in SEQ ID NO: 7. Also, examples of the above-mentioned rice-derived functionally equivalent gene include Os11g0109000 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 8 and 9, respectively), Os12g0108600 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 10 and 11, respectively), Os02g0471500 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 12 and 13, respectively), Os04g0321800 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 14 and 15, respectively), Os11g0417400 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 16 and 17, respectively), Os07g0566200 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 18 and 19, respectively), Os08g0500300 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 20 and 21, respectively), Os02g0224100 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 22 and 23, respectively), and Os02g0281000 (the nucleotide sequence and the amino acid sequence are shown in SEQ ID NOS: 56 and 57, respectively).
- Moreover, examples of the above-mentioned functionally equivalent genes from plants other than Arabidopsis thaliana and rice include genes (UniProt data base Accession Nos. A9P973, A9PFSO, and A9P7U4) from black cottonwood (Populus trichocarpa), genes (UniProt data base Accession Nos. A7PRZ8, A7Q8H4, A7PV59, A5C3B0, A5BF43, A7QFG6, A7P4H7, A5C0C9, A5AP53, A7QQF9, and A5BDP5) from european grape (Vitis vinifera), genes (UniProt data base Accession Nos. Q2HW33 and Q4L0F8) from Medicago truncatula (Medicago truncatula), a gene (GenBank data base Accession No. AY651248) from alfalfa (Medicago sativa), genes (UniProt data base Accession Nos. A9SE70, A9SE69, and A9RFU1) from Physcomitrella patens (Physcomitrella patens), a gene (UniProt data base Accession No. 2511453C) from ice plant (Mesembryanthemum crystallinum), a gene (UniProt data base Accession No. A8HQG8) from Chlamydomonas reinhardtii (Chlamydomonas reinhardtii), genes (GenBank data base Accession Nos. BT024031, BT017414, and BT024134) from corn (Zea mays), genes (GenBank data base Accession Nos. AC189312 and AC189579) from rapeseed (Brassica rapa), genes (GenBank data base Accession Nos. AP009550, AP009302, and AP009278) from tomato (Solanum lycopersicum), a gene (GenBank data base Accession No. AC182571) from monkey flower (Mimulus guttatus), and a gene (GenBank data base Accession No. AP006489) from monocellular red alga (Cyanidioschyzon merolae).
- In these plants other than Arabidopsis thaliana, which are represented by the above examples, a gene encoding protein phosphatase 2C that has the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side can be easily searched for and/or identified from a known database such as GenBank based on the above-listed nucleotide sequence of Arabidopsis thaliana-derived protein phosphatase 2C gene or amino acid sequence of protein phosphatase 2C.
- In addition, a protein phosphatase 2C gene to be over-expressed in the present invention is not limited to the above described protein phosphatase 2C genes comprising the nucleotide sequences and the amino acid sequences shown in SEQ ID NOS: 4-23, 35, 36, 41, 42, 47, and 48. Hence, the protein phosphatase 2C gene may be a gene that contains an amino acid sequence having a deletion, a substitution, an addition, or an insertion of one or a plurality of amino acid sequences with respect to the amino acid sequences shown in odd numbers of SEQ ID NOS: 4-23 or the amino acid sequence shown in SEQ ID NO: 36, 42, or 48, and, has protein phosphatase 2C activity. Here the term “a plurality of amino acids” refers to 1 to 20, preferably 1 to 10, more preferably 1 to 7, further preferably 1 to 5, and particularly preferably 1 to 3 amino acids, for example. In addition, amino acid deletion, substitution, or addition can be performed by altering a nucleotide sequence encoding the above protein phosphatase 2C gene by a technique known in the art. Mutation can be introduced into a nucleotide sequence by a known technique such as the Kunkel method or the Gapped duplex method or a method based thereof. For example, mutation is introduced with a mutagenesis kit using site-directed mutagenesis (e.g., Mutant-K or Mutant-G (both are trade names of Takara Bio)) or the like, or a LA PCR in vitro Mutagenesis series kit (trade name, Takara Bio). Also, a mutagenesis method may be: a method using a chemical mutation agent represented by EMS (ethyl methanesulfonate), 5-bromouracil, 2-aminopurine, hydroxylamine, N-methyl-N′-nitro-N nitrosoguanidine, or other carcinogenic compounds; or a method that involves radiation treatment or ultraviolet [UV] treatment typically using X-rays, alpha rays, beta rays, gamma rays, an ion beam, or the like.
- Also, protein phosphatase 2C genes to be over-expressed herein may be genes homologous to the protein phosphatase 2C genes comprising the nucleotide sequences and the amino acid sequences shown in SEQ ID NOS: 4-23. Here, the term “homologous gene” generally refers to a gene that has evolutionarily branched off from a common ancestor gene, including a homologous gene (ortholog) of 2 types of species and a homologous gene (paralog) generated by overlapping branching that takes place within the same species. In other words, the above term “functionally equivalent gene” refers to a homologous gene such as an ortholog or a paralog. Furthermore, the above term “functionally equivalent gene” may also refer to a gene that does not evolve from a common gene, but simply has analogous functions.
- Examples of genes analogous to the protein phosphatase 2C genes comprising the nucleotide sequences and the amino acid sequences shown in SEQ ID NOS: 4-23, 35, 36, 41, 42, 47, and 48 include genes encoding proteins having: amino acid sequences that have 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more similarity to these amino acid sequences; the 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 in such order from the N-terminal side; and protein phosphatase 2C activity. Here, the value of similarity refers to a value that can be found based on default setting using a computer mounted with a BLAST (Basic Local Alignment Search Tool) program and a database containing gene sequence information.
- Also, genes analogous to protein phosphatase 2C genes comprising the nucleotide sequences and the amino acid sequences shown in SEQ ID NOS: 4-23, 35, 36, 41, 42, 47, and 48 can be identified by, when the plant genome information remains unclarified, extracting the genome from a target plant or constructing a cDNA library for a target plant and then isolating a genomic region or cDNA hybridizing under stringent conditions to at least a portion of the protein phosphatase 2C genes comprising the nucleotide sequences shown in even numbers of SEQ ID NOS: 4-23 or the nucleotide sequence shown in 35, 41, or 47. Here, the term “stringent conditions” refers to conditions under which namely a specific hybrid is formed, but a non-specific hybrid is never formed. For example, such conditions comprise hybridization at 45° C. with 6×SSC (sodium chloride/sodium citrate), followed by washing at 50° C. to 65° C. with 0.2-1×SSC and 0.1% SDS. Alternatively, such conditions comprise hybridization at 65° C. to 70° C. with 1×SSC, followed by washing at 65° C. to 70° C. with 0.3×SSC. Hybridization can be performed by a conventionally known method such as a method described in J. Sambrook et al. Molecular Cloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory (1989).
- The plant according to the present invention exerts significantly improved production of biomass and/or seeds compared with wild-type plants, as a result of overexpression of a protein phosphatase 2C gene having the above described 3 consensus sequences that comprise the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order. Examples of a technique for causing the overexpression of such protein phosphatase 2C gene include a technique for modifying a promoter of an endogenous protein phosphatase 2C gene in a target plant, a technique for introducing an expression vector in which an exogenous protein phosphatase 2C gene is arranged under control of a promoter that enables overexpression, and a technique by which the two above techniques are performed simultaneously.
- A preferred example is a technique for introducing an expression vector in which the above protein phosphatase 2C gene is arranged under control of a promoter that enables overexpression into a target plant.
- An expression vector is constructed to contain a promoter that enables overexpression and the above described protein phosphatase 2C gene. As a vector serving as a mother body for an expression vector, various conventionally known vectors can be used. For example, plasmids, phages, cosmids, or the like can be used and such vector can be appropriately selected depending on plant cells into which it is introduced and introduction methods. Specific examples of such vector include pBR322, pBR325, pUC19, pUC119, pBluescript, pBluescriptSK, and pBI vectors. Particularly, when a method for introduction of a vector into a plant uses Agrobacterium, a pBI binary vector is preferably used. Specific examples of such pBI binary vector include pBIG, pBIN19, pBI101, pBI121, and pBI221.
- A promoter to be used herein is not particularly limited, as long as it enables overexpression of a protein phosphatase 2C gene within a plant. Any known promoter can be appropriately used. Examples of such promoter include a cauliflower mosaic virus 35S promoter (CaMV35S), various actin gene promoters, various ubiquitin gene promoters, a nopaline synthase gene promoter, a tobacco PR1 a gene promoter, a
tomato ribulose 1,5-bisphosphate carboxylase.oxidase small subunit gene promoter, a napin gene promoter, and an oleosin gene promoter. Of these, a cauliflower mosaic virus 35S promoter, an actin gene promoter, or a ubiquitin gene promoter can be more preferably used. The use of each of the above promoters enables strong expression of any gene when it is introduced into plant cells. - Also, a promoter having functions of causing site-specific overexpression in a plant can also be used herein. As such promoter, any conventionally known promoter can be used. When the above described protein phosphatase 2C gene is site-specifically over-expressed using such promoter, a plant organ in which the gene is over-expressed can be more increased than wild-type plant organs.
- In addition, an expression vector may further contain other DNA segments in addition to a promoter and the above protein phosphatase 2C gene. Such other DNA segments are not particularly limited and examples thereof include a terminator, a selection marker, an enhancer, and a nucleotide sequence for enhancing translation efficiency. Also, the above recombinant expression vector may further have a T-DNA region. A T-DNA region can enhance efficiency for gene introduction particularly when the above recombinant expression vector is introduced into a plant using Agrobacterium.
- A transcription terminator is not particularly limited, as long as it has functions as a transcription termination site and may be any known transcription terminator. For example, specifically, a transcription termination region (Nos terminator) of a nopaline synthase gene, a transcription termination region (CaMV35S terminator) of cauliflower mosaic virus 35S, or the like can be preferably used. Of them, the Nos terminator can be more preferably used. In the case of the above recombinant vector, a phenomenon such that an unnecessarily long transcript is synthesized and that a strong promoter decreases the number of copies of a plasmid after introduction into plant cells can be prevented by arranging a transcription terminator at an appropriate position.
- As a transformant selection marker, a drug resistance gene can be used, for example. Specific examples of such drug resistance gene include drug resistance genes against hygromycin, bleomycin, kanamycin, gentamicin, chloramphenicol, and the like. Transformed plants can be easily selected by selecting plants that can grow in medium containing the above antibiotics.
- An example of a nucleotide sequence for increasing translation efficiency is an omega sequence from tobacco mosaic virus. This omega sequence is arranged in an untranslated region (5′UTR) of a promoter, so that the translation efficiency of the fusion gene can be increased. As such, the recombinant expression vector may contain various DNA segments depending on purposes.
- A method for constructing a recombinant expression vector is not particularly limited. To an appropriately selected vector serving as a mother body, the above promoter and the above protein phosphatase 2C gene, and if necessary, the above other DNA segments may be introduced in an predetermined order. For example, the above protein phosphatase 2C gene and a promoter (and, if necessary, a transcription terminator or the like) are linked to construct an expression cassette and then the cassette may be introduced into a vector. In construction of an expression cassette, for example, cleavage sites of DNA segments are prepared to have protruding ends complementary to each other and then performing a reaction with a ligation enzyme, making it possible to specify the order of the DNA segments. In addition, when an expression cassette contains a terminator, DNA segments may be arranged in the following order from upstream: a promoter, the above protein phosphatase 2C gene, and a terminator. Also, reagents for construction of an expression vector (that is, types of restriction enzymes, ligation enzymes, and the like) are also not particularly limited. Hence, commercially available reagents can be appropriately selected and used.
- Also, a method for replicating (a method for producing) the above expression vector is not particularly limited and conventionally known replication methods can be used herein. In general, such expression vector may be replicated within Escherichia coli as a host. At this time, preferred types of Escherichia coli may be selected depending on the types of vector.
- The above-described expression vector is introduced into a target plant by a general transformation method. A method for introducing an expression vector into plant cells (transformation method) is not particularly limited. Conventionally known appropriate introduction methods can be used depending on plant cells. Specifically, a method using Agrobacterium or a method that involves direct introduction into plant cells can be used, for example. As a method using Agrobacterium, a method described in Bechtold, E., Ellis, J. and Pelletier, G. (1993) In Planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis plants. C. R. Acad. Sci. Paris Sci. Vie, 316, 1194-1199., or a method described in Zyprian E, Kado Cl, Agrobacterium-mediated plant transformation by novel mini-T vectors in conjunction with a high-copy vir region helper plasmid. Plant Molecular Biology, 1990, 15(2), 245-256. can be employed, for example.
- As a method for directly introducing an expression vector into plant cells, microinjection, electroporation, a polyethylene glycol method, a particle gun method, protoplast fusion, a calcium phosphate method, or the like can be employed.
- Also, when a method for directly introducing DNA into plant cells is employed, DNA that can be used herein contains transcriptional units required for the expression of a target gene, such as a promoter and a transcription terminator, and a target gene. Vector functions are not essential in such case. Moreover, a DNA that contains a protein coding region alone of a target gene having no transcriptional unit may be used herein, as long as it is integrated into a host's transcriptional unit and then the target gene can be expressed.
- Examples of plant cells into which the above expression vector or an expression cassette containing no expression vector, but a target gene is introduced include cells of each tissue of plant organs such as flowers, leaves, and roots, calluses, and suspension-cultured cells. At this time, an appropriate expression vector may be constructed according to the types of plant to be produced or a versatile expression vector may be constructed in advance and then introduced into plant cells.
- Plants into which an expression vector is introduced or in other words, plants required to increase the production of biomass are not particularly limited. Specifically, through overexpression of the above-described protein phosphatase 2C gene, effects of increasing the production of biomass can be expected for all plants. Examples of target plants include, but are not limited to, dicotyledons and monocotyledons, such as plants (see below) belonging to the families Brassicaceae, Gramineae, Solanaceae, Leguminosae, Salicaceae, and the like.
- Family Brassicaceae: Arabidopsis thaliana (Arabidopsis thaliana), rapeseed (Brassica rapa, Brassica napus, Brassica campestris), cabbage (Brassica oleracea var. capitata), napa (Brassica rapa var. pekinensis), ging-geng-cai (Brassica rapa var. chinensis), turnip (Brassica rapa var. rapa), turnip greens (Brassica rapa var. hakabura), potherb mustard (Brassica rapa var. lancinifolia), komatsuna (Brassica rapa var. peruviridis), pak choi (Brassica rapa var. chinensis), daikon (Raphanus sativus), Japanese horseradish (Wasabia japonica), and the like.
- Family Solanaceae: tobacco (Nicotiana tabacum), eggplant (Solanum melongena), potato (Solaneum tuberosum), tomato (Lycopersicon lycopersicum), chile pepper (Capsicum annuum), petunia, and the like.
- Family Leguminosae: soy (Glycine max), pea (Pisum sativum), broad bean (Vicia faba), Wisteria (Wisteria floribunda), peanuts (Arachis hypogaea), bird's foot trefoil (Lotus corniculatus var. japonicus), common bean (Phaseolus vulgaris), azuki bean (Vigna angularis), Acacia, and the like.
- Family Asteraceae: florists' daisy (Chrysanthemum morifolium), sunflower (Helianthus annuus), and the like.
- Family Arecaceae: oil palm (Elaeis guineensis, Elaeis oleifera), coconut (Cocos nucifera), date palm (Phoenix dactylifera), copernicia, and the like.
- Family Anacardiaceae: wax tree (Rhus succedanea), cashew nut (Anacardium occidentale), lacquer tree (Toxicodendron vernicifluum), mango (Mangifera indica), pistachio (Pistacia vera), and the like.
- Family Cucurbitaceae: pumpkin (Cucurbita maxima, Cucurbita moschata, Cucurbita pepo), cucumber (Cucumis sativus), snake gourd (Trichosanthes cucumeroides), gourd (Lagenaria siceraria var. gourda), and the like.
- Family Rosaceae: almond (Amygdalus communis), rose (Rosa), strawberry (Fragaria), cherry (Prunus), apple (Malus pumila var. domestica), and the like.
- Family Caryophyllaceae: carnation (Dianthus caryophyllus) and the like.
- Family Salicaceae: poplar (Populus trichocarpa, Populus nigra, or Populus tremula) and the like.
- Family Gramineae: corn (Zea mays), rice (Oryza sativa), barley (Hordeum vulgare), wheat (Triticum aestivum), bamboo (Phyllostachys), sugarcane (Saccharum officinarum), napier grass (Pennisetum pupureum), erianthus (Erianthus ravenae), miscanthus (Japanese silver grass) (Miscanthus virgatum), sorghum (Sorghum) and switch grass (Panicum), and the like.
- Family Liliaceae: tulip (Tulipa), lily (Lilium), and the like.
- Of these examples, energy crops such as sugarcane, corn, rapeseed, and sunflower, which can serve as raw materials for biofuel, may be preferable targets. This is because the costs for biofuel such as bioethanol, biodiesel, biomethanol, bioDME, bioGTL (BTL), and biobutanol can be reduced by increasing the production of biomass using energy crops.
- Also, as described above, protein phosphatase 2C genes that can be used in the present invention can be isolated from various plants and used. Such protein phosphatase 2C genes can be appropriately selected and used, depending on the types of target plant required to increase the biomass production. Specifically, when a plant required to increase the biomass production is a monocotyledon, a protein phosphatase 2C gene that is isolated from a monocotyledon is preferably over-expressed. In particular, when a plant required to increase the biomass production is rice, the rice-derived protein phosphatase 2C gene (SEQ ID NO: 6) is preferably over-expressed.
- In addition, in the present invention, even when a plant required to increase the biomass production is a monocotyledon, a dicotyledon-derived protein phosphatase 2C gene may be over-expressed. Specifically, for example, the Arabidopsis thaliana-derived protein phosphatase 2C gene (SEQ ID NO: 4) may be introduced into not only dicotyledons, but also a variety of plants that are classified as monocotyledons, so that the gene is over-expressed.
- After the above transformation, a step of selecting proper transformants from plants can be performed by a conventionally known method. Such selection method is not particularly limited. For example, selection can be made based on drug resistance such as hygromycin resistance. Alternatively, after the growth of transformants, plants are directly weighed or the any organs or tissues thereof are weighed, the weights are compared with those of wild-type plants, and then plants with significantly increased weights thereof may be selected.
- Also, progeny plants can be obtained from transformed plants obtained by transformation according to a conventional method. Progeny plants retaining a trait such that the protein phosphatase 2C gene is over-expressed are selected based on the amount of biomass. Therefore, a stable plant line capable of producing an increased amount of biomass because of having the above trait can be produced. Also, plant cells or reproductive materials, such as seeds, fruits, stocks, calluses, tubers, cut ears, or lumps, may be obtained from a transformed plant or an offspring plant thereof. A stable plant line capable of producing an increased amount of biomass because of having the above trait can be mass-produced therefrom based on such materials.
- In addition, examples of the term “plant(s)” in the present invention include at least any of grown plants, plant cells, plant tissues, calluses, and seeds. Specifically, in the present invention, any forms of plants that can be finally grown to mature plants are regarded as “plants.” Also, examples of such plant cells include various forms of plant cells, such as suspended culture cells, protoplasts, and leaf sections. Plants can be obtained through the growth and differentiation of these plant cells. In addition, regeneration of plants from plant cells can be performed using a conventionally known method depending on the type of plant cells.
- As explained above, according to the present invention, plants capable of exerting the significantly increased production of biomass and/or seeds per plant compared with wild-type plants can be provided through overexpression of the above described protein phosphatase 2C gene. Here, the term “significantly increased production of biomass” refers to a situation in which the total weight of each plant is statistically significantly increased compared with the same of a wild-type plant. In this case, even when some plant tissues become specifically large and the sizes of the other tissues are equivalent to those of a wild-type plant, it is concluded that the production of biomass is increased if the total weight of the entire plant is large. Also, the term “significantly increased production of seeds” refers to a situation in which the total amount and/or total number of seeds harvested from a plant is statistically significantly high compared with wild-type plants. That is, the term “significantly increased production of seeds” may refer to any of: a case in which the size of each seed is improved; a case where the size per seed is equivalent but the number of seeds is improved; or a case in which the size per seed is improved and the number of seeds is also improved.
- According to the present invention, the production of biomass and/or seeds by plants is increased. Hence, improvement in productivity can be achieved in both of the following cases: a case in which a purpose is to produce the whole plant; and a case in which a purpose is to produce some plant tissues (e.g., seeds) or components contained in plants. For example, when a purpose is to produce fats and oils contained in plant seeds, the amounts of fats and oils that can be harvested per area under cultivation can be greatly improved. Here, examples of fats and oils include, but are not particularly limited to, plant-derived fats and oils such as soybean oil, sesame oil, olive oil, coconut oil, rice oil, cottonseed oil, sunflower oil, corn oil, safflower oil, and rapeseed oil. Also, the thus produced fats and oils can be broadly used for household uses or industrial uses and can be further used as raw materials for biodiesel fuel. Hence, according to the present invention, the above fats and oils for household uses or industrial uses, biodiesel fuel, and the like can be produced at low cost with the use of plants over-expressing the above protein phosphatase 2C gene.
- The present invention will be specifically described in the following reference examples and examples. However, the examples are not intended to limit the technical scope of the present invention.
- As experimental materials, seeds of Arabidopsis thaliana mutants (Activation-tag T-DNA lines: Weigel T-DNS lines, Total of 20072 lines) were used. In addition, the seeds were purchased from the Nottingham Arabidopsis Stock Centre (NASC). Regarding the seeds used as experimental materials, Weigel, D. et al., 2000, Plant Physiol. 122, 1003-1013 can be referred to.
- Seeds of Weigel T-DNA lines were aseptically sowed on 125 mM or 150 mM NaCl-containing modified MS agar (1%) medium [vitamins in B5 medium, 10 g/l sucrose, and 8 g/L agar (for bacterial medium; Wako Pure Chemical Industries, Ltd.)] and then cultured at 22° C. under 30-100 μmol/m2/sec illumination (a cycle of 16 hours in the light/8 hours in the dark). Two to 4 weeks after sowing, salt-resistant mutant candidates were selected. In addition, regarding MS medium, see Murashige, T. et al., 1962, Physiol. Plant. 15, 473-497. Also, regarding the B5 medium, see Gamborg, O. L. et al., 1968, Experimental Cell Research 50, 151-158.
- A site for insertion of T-DNA into the genome of the thus selected salt-resistant Arabidopsis thaliana line was determined by a TAIL-PCR method. First, young leaves were harvested from the cultivated Arabidopsis thaliana plants and then crushed under liquid nitrogen freezing. DNA was prepared using a DNA preparation kit (DNeasy Plant Mini Kit, QIAGEN®) according to the standard protocols included with the kit.
- Three (3) types of specific primer, TL1, TL2, and TL3, were determined to be located near the left T-DNA sequence (T-DNA left border) of an activation-tagging vector (pSKI015: GenBank accession No. AF187951) used in Weigel T-DNA lines. With the use of an arbitrary primer P1 and the following PCR reaction solutions and reaction conditions, TAIL-PCR (supervisors, Isao Shimamoto and Takuji Sasaki, New Edition, Plant PCR Experimental Protocols, 2000, pp. 83-89, Shujunsha, Tokyo, Japan; Liu, Y. G. and Whttier, R. F., 1995, Genomics 25, 674-681; Liu, Y. G. et al., Plant J., 8, 457-463, 1995) was performed, so that genomic DNA adjacent to T-DNA was amplified.
- The specific sequences of the primers TL1, TL2, TL3, and P1 are as follows.
-
(SEQ ID NO: 24) TL1: 5′-TGC TTT CGC CAT TAA ATA GCG ACG G-3′ (SEQ ID NO: 25) TL2: 5′-CGC TGC GGA CAT CTA CAT TTT TG-3′ (SEQ ID NO: 26) TL3: 5′-TCC CGG ACA TGA AGC CAT TTA C-3′ (SEQ ID NO: 27) P1: 5′-NGT CGA SWG ANA WGA A-3′ - In addition, in SEQ ID NO: 25, “n” represents “a,” “g,” “c,” or “t” (location: 1 and 11), “s” represents “g” or “c” (location: 7), and “w” represents “a” or “t” (location: 8 and 13).
- The 1st PCR reaction solution composition and reaction conditions are shown in Table 1 and Table 2, respectively.
-
TABLE 1 Template (genomic DNA) 10 ng 10 × PCR buffer (Takara Bio) 2 μl 2.5 mM dNTPs (Takara Bio) 1.6 μl 1st specific primer (TL1: SEQ ID NO: 24) 0.5 pmol Arbitrary primer 1 (SEQ ID NO: 27) 100 pmol TaKaRa Ex Taq (Takara Bio) 1.0 unit Total 20 μl -
TABLE 2 #1: 94° C. (30 seconds)/95° C. (30 seconds) #2: 5 cycles of 94° C. (30 seconds)/65° C. (30 seconds)/72° C. (1 minute) #3: 1 cycle of 94° C. (30 seconds)/25° C. (1 minute)→raised to 72° C. within 3 minutes/72° C. (3 minutes) #4: 94° C. (15 seconds)/65° C. (30 seconds)/72° C. (1 minute), 94° C. (15 seconds)/68° C. (30 seconds)/72° C. (1 minute), and 15 cycles of 94° C. (15 seconds)/44° C. (30 seconds)/72° C. (1 minute) #5: 72° C. (3 minutes) - The 2nd PCR reaction solution composition and reaction conditions are shown in Table 3 and Table 4, respectively.
-
TABLE 3 Template (50-fold dilution of the 1st PCR product) 1 μl 10 × PCR buffer (Takara Bio) 2 μl 2.5 mM dNTPs (Takara Bio) 1.5 μl 2nd specific primer (TL2: SEQ ID NO: 25) 5 pmol Arbitrary primer 1 (SEQ ID NO: 27) 100 pmol TaKaRa Ex Taq (Takara Bio) 0.8 unit Total 20 μl -
TABLE 4 #6: 94° C. (15 seconds)/64° C. (30 seconds)/72° C. (1 minute), 94° C. (15 seconds)/64° C. (30 seconds)/72° C. (1 minute), and 12 cycles of 94° C. (15 seconds)/44° C. (30 seconds)/72° C. (1 minute) #5: 72° C. (5 minutes) - The 3rd PCR reaction solution composition and reaction conditions are shown in Table 5 and Table 6, respectively.
-
TABLE 5 Template (50-fold dilution of the 2nd PCR product) 1 μl 10 × PCR buffer (Takara Bio) 5 μl 2.5 mM dNTPs (Takara Bio) 0.5 μl 3rd specific primer (TL3: SEQ ID NO: 26) 10 pmol Arbitrary primer 1 (SEQ ID NO: 27) 100 pmol TaKaRa Ex Taq (Takara Bio) 1.5 unit Total 50 μl -
TABLE 6 #7: 20 cycles of 94° C. (30 seconds)/44° C. (30 seconds)/72° C. (1 minute) #5: 72° C. (3 minutes) - Subsequently, the 2nd and the 3rd reaction products were subjected to agarose gel electrophoresis and then the presence or the absence of amplification and the specificity of reaction products were confirmed. Also, the 3rd amplification products were subjected to a sequencing reaction directly using a BigDye Terminator Cycle Sequencing Kit Ver. 3.1 (Applied Biosystems) and the specific primer TL3. Thus, a nucleotide sequence was determined using an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems). As a result, 498-bp sequence information was obtained (SEQ ID NO: 28).
- The Arabidopsis Information Resource (TAIR on world wide web at arabidopsis.org) was subjected to a BLAST search for the thus obtained sequence. Thus, the insertion site was found to be the gene of [AGI (Arabidopsis Genome Initiative gene code) code: At3g05630] of Arabidopsis thaliana chromosome 3.
- Activated genes were predicted from the sequence of a presumed open reading frame (ORF) gene existing within a 10-Kb range near the T-DNA insertion site (At3g05630) revealed in 1-2-3.
- For amplification of a fragment containing the ORF region of PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) predicted to be activated in 1-2-4, PCR primers 5640PF1 and 5640PR1 were designed and synthesized based on the sequence information disclosed at the TAIR (on world wide web at arabidopsis.org/home). In addition, these primers were designed, so that a restriction enzyme site (BsrG I or Sal I) required for introduction into expression vectors was added to the terminus of each primer.
-
5640PF1 (SEQ ID NO: 29): 5′-ACG CGT CGA CAT GGG ACA TTT CTC TTC CAT GTT CAA CGG-3′ 5640PR1 (SEQ ID NO: 30): 5′-TGT ACA TGT ACA CTA TAG AGA TGG CGA CGA CGA TGA AGA ATG G-3′ - According to the method described in 1-2-2, a template DNA was prepared from wild-type Arabidopsis thaliana (ecotype Col-0). Phusion High-Fidelity DNA Polymerase (New England BioLabs: NEB) was used as an enzyme and the above 5640PF1 and 5640PR1 were used as primers. The relevant PCR reaction solution composition and reaction conditions are shown in Table 7 and Table 8, respectively.
-
TABLE 7 Template (genomic DNA) 60 ng 10 × HF buffer (NEB) 5 μl 10 mM dNTPs (NEB) 1.0 μl Each primer 20 pmol Phusion High-Fidelity DNA Polymerase 1.0 unit Total 50 μl -
TABLE 8 #1: 98° C. (30 seconds) #2: 15 cycles of 98° C. (10 seconds)/55° C. (30 seconds)/72° C. (30 seconds) #5: 72° C. (10 minutes) - PCR amplification products were subjected to electrophoresis with 2% agarose gel (TAE buffer) and then fragments were stained with ethidium bromide. A gel containing target fragments was excised using a scalpel. Target DNA fragments were eluted and purified using GFX PCR DNA and a GEL Band Purification Kit (Amersham). Adenin was added to the thus obtained DNA fragment using an A-Addition Kit (QIAGEN®). The amplified DNA to which adenine had been added was ligated to a TA-Cloning pCR2.1 vector using a TOPO TA Cloning Kit (Invitrogen®) and then transformed into competent cells (E. coli TOP 10) included with the kit. After transformation, cells were cultured in LB medium supplemented with 50 μl/ml kanamycin and then transformants were selected. Colonies that had appeared were subjected to liquid culture in LB medium supplemented with 50 μl/ml kanamycin. Plasmid DNA was prepared from the thus obtained microorganisms using a Plasmid Mini Kit (QIAGEN®). The thus obtained fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) was cloned into a vector, followed by determination of the nucleotide sequence and sequence analysis.
- A fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) was inserted into a plant expression vector pBI121 containing an omega sequence from tobacco mosaic virus. Thus, a construct was prepared.
- First, the pCR2.1 vector, in which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) had been cloned in 1-2-5, was treated with restriction enzymes Sal I and BsrG I.
- Next, similarly pBI121 containing an omega sequence was treated with restriction enzymes Sal I and BsrG I. The products digested with these restriction enzymes were subjected to 0.8% agarose gel electrophoresis. A fragment of about 2700 bp containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) and pBI121 containing the omega sequence were each fractioned and purified from the gel using GFX PCR DNA and a GEL Band Purification Kit (Amersham).
- For introduction of a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) using a pBI121 fragment containing the omega sequence as a vector, the vector and the insert were mixed at a ratio of 1:10, followed by an overnight ligation reaction at 16° C. using an equivalent amount of a TaKaRa Ligation kit ver. 2 (Takara Bio Inc.).
- The total amount of the reaction solution was added to 100 μl of competent cells (E. coli strain DH5α, TOYOBO), so that transformation was performed according to protocols included with the kit. Cells were applied to LB agar medium containing 50 μg/ml kanamycin and then cultured overnight. Colonies that had appeared were subjected to liquid culture in LB medium supplemented with 50 μg/ml kanamycin. Plasmid DNA was prepared from the thus obtained microorganisms using a Plasmid Mini Kit (QIAGEN®).
- The thus obtained fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) was subcloned into an expression vector, followed by determination of the nucleotide sequence and sequence analysis.
- 1-2-7. Gene Introduction Into Arabidopsis thaliana Using Agrobacterium Method
- The plant expression vector constructed in 1-2-6 was introduced into Agrobacterium tumefaciens C58C1 strain by electroporation (Plant Molecular Biology Mannal, Second Edition, B. G. Stanton and A. S. Robbert, Kluwer Acdemic Publishers 1994). Subsequently, Agrobacterium tumefaciens in which the plant expression vector had been introduced was introduced into wild-type Arabidopsis thaliana (ecotype Col-0) by an infiltration method described by Clough et al. (Steven J. Clough and Andrew F. Bent, 1998, The Plant Journal 16, 735-743).
- Transformants were selected using kanamycin-containing medium. T1 generation plants were produced by self-pollination from the transformants, so that T2 seeds were obtained.
- T2 seeds produced in 1-2-7 were aseptically sowed and then the resulting plants were transplanted into pots (each with a diameter of 50 mm) containing vermiculite mixed soil. As control plants for comparison, Arabidopsis plants that had not undergone recombination were transplanted. They were cultivated under conditions of 22° C. and 16 hours in the light/8 hours in the dark, and with a light intensity ranging from about 30 to 45 μmol/m−2/s−1, for a total of 11 weeks after transplantation. After cultivation, above-ground parts of the plants were placed in paper bags and dried under conditions of 22° C. and humidity of 60% for 2 weeks. The total amounts of biomass and seeds were weighed using an electronic balance.
- Regarding the results of 1-2-8,
FIG. 3 shows a photo of the above-ground parts of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) had been introduced. Also,FIG. 4 andFIG. 5 show the results of measuring the total amounts of biomass and seeds of the above-ground parts of the plants. - As shown in
FIGS. 3, 4, and 5 , it was revealed that in the case of transformed plants into which the fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g05640 (SEQ ID NO:5)) had been introduced, the total amounts of biomass of the above-ground parts were much higher (about 1.9 to 2.1 times) than the amounts of the same in the cases of wild-type plants. In addition, the amounts of seeds were much greater (by about 1.7 to 1.8 times) than the same in the cases of wild-type plants. - As experimental materials, Arabidopsis transformants into which a fragment containing ORF of the PP2C gene (At3g05640 (SEQ ID NO:5)) prepared in 1 was introduced into Arabidopsis thaliana and rice (Oryza sativa L. ssp. japonica (cv. Nipponbare)) to make transformants as experimental materials.
- 2-2-1. Obtainment of PP2C (Protein Phosphatase 2C) cDNA (At3g05640 (SEQ ID NO:5))
- Arabidopsis transformants prepared by introduction of a fragment containing ORF of the PP2C gene (At3g05640 (SEQ ID NO:5)) prepared in 1 were grown until the plants reached 4 weeks of age. Total RNA was isolated from the above-ground parts, then RT-PCR was performed using TaqMan Reverse Transcription Reagents (Applied Biosystems), so that cDNA was prepared.
- PCR was performed using the following primers that had been designed based on the nucleotide sequence (SEQ ID NO: 4) of the coding region of PP2C (At3g05640 (SEQ ID NO:5)) and PrimeSTAR HS DNA Polymerease (Takara Bio). The thus amplified fragment was TA-cloned into a pCR-Blunt II-TOPO vector (Invitrogen®).
-
(SEQ ID NO: 31) AP041-F: 5′-AGGATCCATGGGACATTTCTCTTCCATGT-3′ (SEQ ID NO: 32) AP041-R: 5′-AGAGCTCCTATAGAGATGGCGACGACG-3′ - A GUS (β-Glucuronidase) portion of pIG121-Hm (Ohat, S. et al., 1990, Plant Cell Physiol. 31, 805-813) was substituted with sGFP (S65T) having an intron fragment of Ricinus communis-derived catalase, so that a plant expression vector, pBIsGFP, was constructed. Furthermore, a sequence containing pDEST R4-R3 recombination sites (attR4 and attR3) included in a MultiSite Gateway Three-Fragment Vector Construction Kit (Invitrogen®) was inserted, so that a destination vector, pBI-sGFP-R4R3, was constructed.
- A corn-derived ubiquitin gene promoter (SEQ ID NO: 33: Christensen, A. H. and Quail, P. H.,
Transgenic Research 1996, 5, 213-218), PP2C cDNA (At3g05640 (SEQ ID NO:5)) obtained in 2-2-1, and an Agrobacterium tumefaciens Ti plasmid-derived nopaline synthase gene (NOS) terminator (obtained from SEQ ID NO: 34: pIG121-Hm) were cloned by BP reaction to result in donor clones, pDONR P4-P1R, pDONR 221, and DONR P2R-P3, respectively, included in a Multi Site Gateway Three-Fragment Vector Construction Kit (Invitrogen), so that entry clones were prepared. - An LR reaction was performed for each of the thus prepared entry clones and a destination vector, pBI-sGFP-R4R3, so that a plant expression vector containing the corn-derived ubiquitin gene promoter, PP2C cDNA (At3g05640 (SEQ ID NO:5)), and the nopaline synthase gene (NOS) terminator, in such order, was constructed. The nucleotide sequences of the thus obtained expression vectors were determined and sequence analysis was conducted.
- The plant expression vectors constructed in 2-2-2 were introduced into an Agrobacterium tumefaciens EHA101 strain. Then Agrobacterium tumefaciens in which the plant expression vector had been introduced was introduced into rice (Oryza sativa L. ssp. japonica (cv. Nipponbare)). Specifically, the experiment was conducted under conditions in accordance with the method disclosed in JP Patent No. 3141084.
- Transformed rice plants that had grown in hygromycin-containing medium were selected and then T1 seedlings (about 12 cm) were aseptically prepared.
- T1 plants prepared in 2-2-3 were transplanted in pots with a diameter of about 10 cm containing Kumiai Hitetsu culture soil No. 2 (JA Aichi Keizairen (economic federation)). After acclimatization, the plants were transplanted into 1/5000a Wagner pots containing the same culture soil and then cultivated under conditions of 30° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 100 μmol m−2s−1.
- As control plants, T1 plants into which a plant expression vector (constructed by ligating 3 multiple cloning sites of a pST-Blue1 vector (Novagen) to a destination vector pBI-sGFP-R4R3) had been introduced were similarly cultivated.
- Regarding the results of 2-2-4 above,
FIG. 6 shows photos showing a control rice plant and a transformed rice plant prepared by introduction of the coding region of PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)). As shown inFIG. 6 , in the above-ground parts of the transformed rice plant into which the coding region of PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) had been introduced, the total amount of biomass was improved compared with the control rice plant. It was revealed through the above results that when the Arabidopsis thaliana-derived PP2C gene is expressed at a high level in a plant other than Arabidopsis thaliana, the production of plant biomass can be increased. - As experimental materials, rice (Oryza sativa L. ssp. japonica (cv. Nipponbare)) was used.
- 3-2-1. Obtainment of Rice PP2C (Protein Phosphatase 2C) cDNA (Os05g0358500)
- In this Example, a rice homologous gene (PP2C gene (Os05g0358500)) homologous to PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) used in Examples 1 and 2 was used. The entire sequence was chemically synthesized based on the nucleotide sequence (SEQ ID NO: 6) of the coding region of rice PP2C (Os05g0358500). A fragment of the chemically synthesized entire sequence was cloned into pDONR 221 that was a donor clone of a MultiSite Gateway Three-Fragment Vector Construction Kit (Invitrogen®).
- A corn-derived ubiquitin gene promoter (SEQ ID NO: 33: Christensen, A. H. and Quail, P. H.,
Transgenic Research 1996, 5, 213-218) and an Agrobacterium tumefaciens Ti plasmid-derived nopaline synthase gene (NOS) terminator (SEQ ID NO: 34: obtained from pIG121-Hm) were cloned by BP reaction to result in donor clones, pDONR P4-P1R and DONR P2R-P3, respectively, included in a MultiSite Gateway Three-Fragment Vector Construction Kit (Invitrogen®), so that entry clones were prepared. - An LR reaction was performed for pDONR 221 into which the rice PP2C (Os05g0358500) cDNA sequence prepared in 3-2-1 had been cloned, pDONR P4-P1R into which the above prepared corn-derived ubiquitin gene promoter sequence had been cloned, DONR P2R-P3 into which the nopaline synthase gene (NOS) terminator sequence had been cloned, and the destination vector pBI-sGFP-R4R3 constructed in 2-2-2. Thus, a plant expression vector containing the corn-derived ubiquitin gene promoter, the rice PP2C cDNA (Os05g0358500), and the nopaline synthase gene (NOS) terminator, in such order, was constructed. The nucleotide sequence of the thus obtained expression vector was determined and then sequence analysis was conducted.
- The plant expression vector constructed in 2-2-2 was introduced into an Agrobacterium tumefaciens EHA101 strain. Then Agrobacterium tumefaciens in which the plant expression vector had been introduced was introduced into rice (Oryza sativa L. ssp. japonica (cv. Nipponbare)). Specifically, the experiment was conducted under conditions according to the method disclosed in JP Patent No. 3141084.
- Transformed rice plants that had grown in hygromycin-containing medium were selected and then T1 seedlings (about 12 cm) were aseptically prepared.
- T1 plants prepared in 3-2-3 were transplanted in pots with a diameter of about 10 cm containing Kumiai Hitetsu culture soil No. 2 (JA Aichi Keizairen (economic federation)). After acclimatization, the plants were transplanted into 1/5000a Wagner pots containing the same culture soil and then cultivated under conditions of 30° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 100 μmol m−2s−1.
- As control plants, rice plants, into which no gene had been introduced, were regulated to be at almost the same growth stage as that of transformants, transplanted simultaneously with the transplantation of transformants, and then cultivated similarly.
- As the results of 3-2-4 above,
FIG. 7 shows photos showing control rice plants and transformed rice plants into which the coding region of rice-derived plant PP2C (protein phosphatase 2C) (Os05g0358500) had been introduced. As shown inFIG. 7 , in the above-ground parts of the transformed rice plants into which the coding region of the rice-derived PP2C (protein phosphatase 2C) (Os05g0358500) had been introduced, the total amount of biomass was improved compared with the control rice plants. It was revealed by the above results that when the rice-derived PP2C gene is expressed at a high level in a rice plant, the production of rice plant biomass can be increased. - As experimental materials, wild-type Arabidopsis thaliana (ecotype Col-0) was used.
- 4-2-1. Obtainment of Arabidopsis thaliana PP2C (Protein Phosphatase 2C) Gene (At5g27930 (SEQ ID NO:36))
- In this Example, a PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)) having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order was used, instead of PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) used in Examples 1 and 2. For amplification of a fragment containing an ORF region of Arabidopsis PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)), PCR primers, AP042-F5 and AP042-R, were designed and synthesized based on the sequence information disclosed in TAIR (on world wide web at arabidopsis.org/home). Also, PCR primers SalI-AP042-F2 and AP042-BsrGI-R2 were also designed and synthesized so as to add a sequence (restriction enzyme site: BsrG I or Sal I) on the vector side required upon cloning of the thus amplified fragment into the vector using an In-Fusion cloning system (Clontech). The nucleotide sequence of the coding region in the PP2C gene (At5g27930 (SEQ ID NO: 36)) is shown in SEQ ID NO: 35 and the amino acid sequence of the protein encoded by the PP2C gene (At5g27930) is shown in SEQ ID NO: 36.
-
AP042-F5: (SEQ ID NO: 37) 5′-ATGGGACATTTCTCATCGATGTTC-3′ AP042-R: (SEQ ID NO: 38) 5′-TTACTTTAAAATCGTCATGGCATGATG-3′ SalI-AP042-F2: (SEQ ID NO: 39) 5′-AATTACTATTTACAATTACAGTCGACATGGGACATTTCTCATCGAT GTTCAATGGA-3′ AP042-BsrGI-R2: (SEQ ID NO: 40) 5′-AGCCGGGCGGCCGCTTTACTTGTACATTACTTTAAAATCGTCATGGC ATGATGATGTTG-3′ - PCR was performed using template DNA prepared from wild-type Arabidopsis thaliana (ecotype Col-0) according to the method of 1-2-2, the above primers, AP042-F5 and AP042-R, and PrimeSTAR HS DNA Polymerase (Takara Bio), so that a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)) was obtained.
- A fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)) was inserted into a plant expression vector pBI121 containing a tobacco mosaic virus-derived omega sequence, so that a construct was prepared.
- A fragment containing the PP2C gene (At5g27930 (SEQ ID NO:36)) obtained in 4-2-1 was cloned into a vector using an In-Fusion cloning system (Clontech), so that a construct was prepared. The nucleotide sequence of the thus obtained expression vector in which the fragment containing the PP2C gene (At5g27930 (SEQ ID NO:36)) had been subcloned was determined and sequence analysis was conducted.
- 4-2-3. Gene Introduction Into Arabidopsis thaliana Using Agrobacterium Method
- The plant expression vector constructed in 4-2-2 was introduced by electroporation (Plant Molecular Biology Mannal, Second Edition, B. G. Stanton A. S. Robbert, Kluwer Acdemic Publishers 1994) into an Agrobacterium tumefaciens C58C1 strain. Subsequently, Agrobacterium tumefaciens into which the plant expression vector had been introduced was introduced into wild-type Arabidopsis thaliana (ecotype Col-0) by an infiltration method described by Clough et al. (1998, The Plant Journal 16: 735-743). T1 seeds were obtained by self-pollination.
- T1 seeds obtained in 4-2-3 were aseptically sowed in kanamycin-containing medium, so that T1 plants were prepared. Seedlings selected using kanamycin-containing medium were transplanted in pots with a diameter of 50 mm containing vermiculite-mixed soil. As control plants, non-recombinant Arabidopsis plants were transplanted. They were cultivated under conditions of 22° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 30-45 μmol m−2s−1.
- As the results of 4-2-4 above,
FIGS. 8 and 9 show photos showing the above-ground parts of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At5g27930 (SEQ ID NO:36)) had been introduced. As shown inFIGS. 8 and 9 , in the above-ground parts of the transformed plants into which the fragment containing ORF of the PP2C gene (At5g27930 (SEQ ID NO:36)) had been introduced, the total amount of biomass was improved compared with the wild-type plants. It was revealed by the above results that when the PP2C (protein phosphatase 2C) gene having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order is expressed at a high level, the production of the plant biomass can be increased. - As experimental materials, wild-type Arabidopsis thaliana (ecotype Col-0) was used.
- 5-2-1. Obtainment of Arabidopsis thaliana PP2C (Protein Phosphatase 2C) Gene (At3g02750 (SEQ ID NO:42))
- In this Example, a PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)) having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order was used, instead of PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) used in Examples 1 and 2. For amplification of a fragment containing an ORF region of the PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)), PCR primers, AP036-F4 and AP036-R, were designed and synthesized based on the sequence information disclosed in TAIR (on world wide web at arabidopsis.org/home).
- Also, PCR primers, SalI-AP036-F2 and AP036-BsrGI-R2, were designed and synthesized so as to add a sequence (restriction enzyme site: BsrG I or Sal I) on the vector side required upon cloning of the thus amplified fragment into the vector using an In-Fusion cloning system (Clontech). The nucleotide sequence of the coding region in the PP2C gene (At3g02750 (SEQ ID NO:42)) is shown in SEQ ID NO: 41 and the amino acid sequence of the protein encoded by the PP2C gene (At3g02750) is shown in SEQ ID NO: 42.
-
AP036-F4: (SEQ ID NO: 43) 5′-ATGGGGTCCTGTTTATCTGCAG-3′ AP036-R: (SEQ ID NO: 44) 5′-TCACTTTCCAGGCACAAATCTTG-3′ SalI-AP036-F2: (SEQ ID NO: 45) 5′-AATTACTATTTACAATTACAGTCGACATGGGGTCCTGTTTATCTG CAGAGAGCAGG-3′ AP036-BsrGI-R2: (SEQ ID NO: 46) 5′-AGCCGGGCGGCCGCTTTACTTGTACATCACTTTCCAGGCACAAAT CTTGGTAAGTT-3′ - PCR was performed using template DNA prepared from wild-type Arabidopsis thaliana (ecotype Col-0) according to the method of 1-2-2, the above primers, and PrimeSTAR HS DNA Polymerase (Takara Bio), so that a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)) was obtained.
- A fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)) was inserted into a plant expression vector pBI121 containing a tobacco mosaic virus-derived omega sequence, so that a construct was prepared.
- A fragment containing the PP2C gene (At3g02750 (SEQ ID NO:42)) obtained in 5-2-1 was cloned into a vector using an In-Fusion cloning system (Clontech), so that a construct was prepared. The nucleotide sequence of the thus obtained expression vector in which the fragment containing the PP2C gene (At3g02750 (SEQ ID NO:42)) had been subcloned was determined and sequence analysis was conducted.
- 5-2-3. Gene Introduction Into Arabidopsis thaliana Using Agrobacterium Method
- The plant expression vector constructed in 5-2-2 was introduced by electroporation (Plant Molecular Biology Mannal, Second Edition, B. G. Stanton A. S. Robbert, Kluwer Acdemic Publishers 1994) into an
Agrobacterium tumefaciens C58C 1 strain. Subsequently, Agrobacterium tumefaciens into which the plant expression vector had been introduced was introduced into wild-type Arabidopsis thaliana (ecotype Col-0) by an infiltration method described by Clough et al. (1998, The Plant Journal 16: 735-743). T1 seeds were obtained by self-pollination. - T1 seeds obtained in 5-2-3 were aseptically sowed in kanamycin-containing medium, so that T1 plants were prepared. Seedlings selected using kanamycin-containing medium were transplanted in pots with a diameter of 50 mm containing vermiculite-mixed soil. As control plants, non-recombinant Arabidopsis plants were transplanted. They were cultivated under conditions of 22° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 30-45 μmol m−2s−1.
- As the results of 5-2-4 above,
FIG. 10 shows a photo showing the above-ground parts of wild-type plants and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g02750 (SEQ ID NO:42)) had been introduced. As shown inFIG. 10 , in the above-ground parts of the transformed plants into which the fragment containing ORF of the PP2C gene (At3g02750 (SEQ ID NO:42)) had been introduced, the total amount of biomass was improved compared with the wild-type plants. It was revealed by the above results that when the PP2C (protein phosphatase 2C) gene having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order is expressed at a high level, the production of the plant biomass can be increased. - As experimental materials, wild-type Arabidopsis thaliana (ecotype Col-0) was used.
- 6-2-1. Obtainment of Arabidopsis thaliana PP2C (Protein Phosphatase 2C) Gene (At3g16800 (SEQ ID NO:48))
- In this Example, a PP2C (protein phosphatase 2C) gene (At3g16800 (SEQ ID NO:48)) having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order was used, instead of PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) used in Examples 1 and 2. For amplification of a fragment containing an ORF region of the PP2C (protein phosphatase 2C) gene (At3g16800 (SEQ ID NO:48)), PCR primers, AP040-F4 and AP040-R, were designed and synthesized based on the sequence information disclosed in TAIR (on world wide web at arabidopsis.org/home). Also, PCR primers, SalI-AP040-F2 and AP040-BsrGI-R2, were synthesized and designed so as to add a sequence (restriction enzyme site: BsrG I or Sal I) on the vector side required upon cloning of the thus amplified fragment into the vector using an In-Fusion cloning system (Clontech). The nucleotide sequence of the coding region in the PP2C gene (At3g16800 (SEQ ID NO:48)) is shown in SEQ ID NO: 47 and the amino acid sequence of the protein encoded by the PP2C gene (At3g16800) is shown in SEQ ID NO: 48.
-
AP040-F4: (SEQ ID NO: 49) 5′-ATGGTGCTTTTACCAGCGTTTTTG-3′ AP040-R: (SEQ ID NO: 50) 5′-CTAAGAAGGACGAAAGAAGAGAC-3′ SalI-AP040-F2: (SEQ ID NO: 51) 5′-AATTACTATTTACAATTACAGTCGACATGGTGCTTTTACCAGCGTT TTTGGACGGATTAG-3′ AP040-BsrGI-R2: (SEQ ID NO: 52) 5′-AGCCGGGCGGCCGCTTTACTTGTACACTAAGAAGGACGAAAGAAGA GACAGAGAAC-3′ - PCR was performed using template DNA prepared from wild-type Arabidopsis thaliana (ecotype Col-0) according to the method of 1-2-2, the above primers, and PrimeSTAR HS DNA Polymerase (Takara Bio), so that a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g16800 (SEQ ID NO:48)) was obtained.
- The fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g16800 (SEQ ID NO:48)) was inserted to a plant expression vector pBI121 containing a tobacco mosaic virus-derived omega sequence, so that a construct was prepared.
- The fragment containing the PP2C gene (At3g16800 (SEQ ID NO:48)) obtained in 6-2-1 was cloned into a vector using an In-Fusion cloning system (Clontech), so that a construct was prepared. The nucleotide sequence of the thus obtained expression vector into which the fragment containing the PP2C gene (At3g16800 (SEQ ID NO:48)) had been subcloned was determined and sequence analysis was conducted.
- 6-2-3. Gene Introduction Into Arabidopsis thaliana Using Agrobacterium Method
- The plant expression vector constructed in 6-2-2 was introduced by electroporation (Plant Molecular Biology Mannal, Second Edition, B. G. Stanton A. S. Robbert, Kluwer Acdemic Publishers 1994) into an Agrobacterium tumefaciens C58C1 strain. Subsequently, Agrobacterium tumefaciens into which the plant expression vector had been introduced was introduced into wild-type Arabidopsis thaliana (ecotype Col-0) by an infiltration method described by Clough et al. (1998, The Plant Journal 16: 735-743). T1 seeds were obtained by self-pollination.
- T1 seeds obtained in 6-2-3 were aseptically sowed in kanamycin-containing medium, so that T1 plants were prepared. Seedlings selected using kanamycin-containing medium were transplanted in pots with a diameter of 50 mm containing vermiculite-mixed soil. As control plants, non-recombinant Arabidopsis plants were transplanted. They were cultivated under conditions of 22° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 30-45 μmol m−2s−1.
- As the results of 6-2-4 above,
FIG. 11 shows a photo showing the above-ground parts of a wild-type plant and transformed plants into which a fragment containing ORF of the PP2C (protein phosphatase 2C) gene (At3g16800 (SEQ ID NO:48)) had been introduced. As shown inFIG. 11 , in the above-ground parts of the transformed plants into which the fragment containing ORF of the PP2C gene (At3g16800 (SEQ ID NO:48)) had been introduced, the total amount of biomass was improved compared with the wild-type plant. It was revealed by the above results that when the PP2C (protein phosphatase 2C) gene having 3 consensus sequences comprising the amino acid sequences shown in SEQ ID NOS: 1-3 from the N-terminal side in such order is expressed at a high level, the production of the plant biomass can be increased. - An experimental material, wild-type Arabidopsis thaliana (ecotype Col-0) was used.
- 7-2-1. Obtainment of Rice PP2C (Protein Phosphatase 2C) cDNA (Os05g0358500)
- In this Example, a rice homologous gene (PP2C gene (Os05g0358500)) homologous to PP2C (protein phosphatase 2C) (At3g05640 (SEQ ID NO:5)) used in Examples 1 and 2 was used. The entire sequence was chemically synthesized based on the nucleotide sequence (SEQ ID NO: 6) of the coding region of rice PP2C (Os05g0358500). A fragment of the chemically synthesized entire sequence was cloned into pDONR 221 that was a donor clone of a MultiSite Gateway Three-Fragment Vector Construction Kit (Invitrogen®).
- A cauliflower mosaic virus-derived 35S (CaMV35S Ω) promoter (SEQ ID NOS: 58) containing a tobacco mosaic virus-derived omega sequence and an Agrobacterium tumefaciens Ti plasmid-derived nopaline synthase gene (NOS) terminator (SEQ ID NOS: 34: obtained from pIG121-Hm) were cloned by BP reaction to result in donor clones, pDONR P4-P1R and DONR P2R-P3, respectively, included in a MultiSite Gateway Three-Fragment Vector Construction Kit (Invitrogen®), so that entry clones were prepared.
- An LR reaction was performed for pDONR 221 into which the rice PP2C (Os05g0358500) cDNA sequence prepared in 7-2-1 had been cloned, pDONR P4-P1R into which the above prepared CaMV35S S2 promoter sequence had been cloned, DONR P2R-P3 into which the nopaline synthase gene (NOS) terminator sequence had been cloned, and the destination vector pBI-sGFP-R4R3 constructed in 2-2-2. Thus, a plant expression vector containing the CaMV35S Ω promoter, the rice PP2C cDNA (Os05g0358500), and the nopaline synthase gene (NOS) terminator in such order was constructed. The nucleotide sequence of the thus obtained expression vector was determined and then sequence analysis was conducted.
- 7-2-3. Gene Introduction Into Arabidopsis thaliana Using Agrobacterium Method
- The plant expression vector constructed in 7-2-2 was introduced by electroporation (Plant Molecular Biology Mannal, Second Edition, B. G. Stanton A. S. Robbert, Kluwer Acdemic Publishers 1994) into an Agrobacterium tumefaciens C58C1 strain. Subsequently, Agrobacterium tumefaciens into which the plant expression vector had been introduced was introduced into wild-type Arabidopsis thaliana (ecotype Col-0) by an infiltration method described by Clough et al. (1998, The Plant Journal 16: 735-743). T1 seeds were obtained by self-pollination.
- T1 seeds obtained in 7-2-3 were aseptically sowed in kanamycin-containing medium, so that T1 plants were prepared. Seedlings selected using kanamycin-containing medium were transplanted in pots with a diameter of 50 mm containing vermiculite-mixed soil. As control plants, non-recombinant Arabidopsis plants were transplanted. They were cultivated under conditions of 22° C., 16 hours in the light/8 hours in the dark, and a light intensity of about 30-45 μmol m−2s−1.
- As the results of 7-2-4 above,
FIG. 12 shows a photo showing the above-ground parts of a wild-type plant and transformed plants into which the coding region of the rice-derived PP2C (protein phosphatase 2C) gene (Os05g0358500) had been introduced. As shown inFIG. 12 , in the above-ground parts of the transformed plants into which the coding region of the rice-derived PP2C gene (Os05g0358500) had been introduced, the total amount of biomass was improved compared with the wild-type plant. It was revealed by the above results that when the rice-derived PP2C gene is expressed at a high level in Arabidopsis thaliana, the production of Arabidopsis biomass can be increased. - All publications, patents, and patent applications cited herein are incorporated herein by reference in their entirety.
Claims (18)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/484,525 US20170283823A1 (en) | 2008-03-14 | 2017-04-11 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008066460 | 2008-03-14 | ||
| JP2008-066460 | 2008-03-14 | ||
| PCT/JP2009/054953 WO2009113684A1 (en) | 2008-03-14 | 2009-03-13 | Gene increasing plant biomass amount and/or seed amount and method of using the same |
| US92243210A | 2010-12-03 | 2010-12-03 | |
| US14/609,830 US9695435B2 (en) | 2008-03-14 | 2015-01-30 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
| US15/484,525 US20170283823A1 (en) | 2008-03-14 | 2017-04-11 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/609,830 Division US9695435B2 (en) | 2008-03-14 | 2015-01-30 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170283823A1 true US20170283823A1 (en) | 2017-10-05 |
Family
ID=41065341
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/922,432 Abandoned US20110078818A1 (en) | 2008-03-14 | 2009-03-13 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
| US14/609,830 Expired - Fee Related US9695435B2 (en) | 2008-03-14 | 2015-01-30 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
| US15/484,606 Expired - Fee Related US10287604B2 (en) | 2008-03-14 | 2017-04-11 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
| US15/484,566 Abandoned US20170283824A1 (en) | 2008-03-14 | 2017-04-11 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
| US15/484,525 Abandoned US20170283823A1 (en) | 2008-03-14 | 2017-04-11 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
Family Applications Before (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/922,432 Abandoned US20110078818A1 (en) | 2008-03-14 | 2009-03-13 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
| US14/609,830 Expired - Fee Related US9695435B2 (en) | 2008-03-14 | 2015-01-30 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
| US15/484,606 Expired - Fee Related US10287604B2 (en) | 2008-03-14 | 2017-04-11 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
| US15/484,566 Abandoned US20170283824A1 (en) | 2008-03-14 | 2017-04-11 | Gene for increasing the production of plant biomass and/or seeds and method for use thereof |
Country Status (7)
| Country | Link |
|---|---|
| US (5) | US20110078818A1 (en) |
| JP (1) | JP5403628B2 (en) |
| CN (1) | CN102027111B (en) |
| AU (1) | AU2009224235B2 (en) |
| BR (1) | BRPI0909344A2 (en) |
| CA (1) | CA2718396C (en) |
| WO (1) | WO2009113684A1 (en) |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8999888B2 (en) | 2006-12-11 | 2015-04-07 | Japan Science And Technology Agency | Plant growth regulator and use thereof |
| CN102027111B (en) | 2008-03-14 | 2013-11-13 | 丰田自动车株式会社 | Gene increasing plant biomass amount and/or seed amount and method of using the same |
| CA2731975A1 (en) * | 2008-08-15 | 2010-02-18 | E. I. Du Pont De Nemours And Company | Plants with altered root architecture, related constructs and methods involving genes encoding protein phophatase 2c (pp2c) polypeptides and homologs thereof |
| JP5604657B2 (en) | 2009-03-12 | 2014-10-08 | トヨタ自動車株式会社 | Gene for increasing production of biomass and / or seed of plant and method for using the same |
| EA036343B1 (en) | 2009-07-20 | 2020-10-29 | Серес, Инк. | Increasing transgenic plant biomass |
| JP5250807B2 (en) * | 2009-09-11 | 2013-07-31 | トヨタ自動車株式会社 | Method for increasing the biomass amount and / or seed amount of a plant, and method for producing a plant capable of increasing the biomass amount and / or seed amount |
| CN102811617A (en) | 2010-01-22 | 2012-12-05 | 拜耳知识产权有限责任公司 | Acaricide and/or insecticide active substance combinations |
| US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
| CN103987249B (en) | 2011-12-12 | 2015-10-21 | 冈山县 | Compounds for increasing the amino acid content of plants and their use |
| JP6397610B2 (en) * | 2013-09-10 | 2018-09-26 | 株式会社豊田中央研究所 | Plants suitable for increased phloem tissue production and use thereof |
| CN103725701B (en) * | 2014-01-03 | 2016-05-04 | 中国科学院遗传与发育生物学研究所农业资源研究中心 | A kind of method of cultivating the drought-resistant plant of transgenosis |
| JP2017212881A (en) | 2014-10-10 | 2017-12-07 | 国立研究開発法人理化学研究所 | Novel genes that increase plant biomass and use thereof |
| CN106987569B (en) * | 2016-01-21 | 2019-11-26 | 中国科学院遗传与发育生物学研究所 | The application of soybean phosphatase GmWIN2 and its encoding gene in regulation plant seed production |
| CN107974459B (en) * | 2016-10-19 | 2023-03-07 | 未名生物农业集团有限公司 | Constructs and methods for increasing abiotic stress tolerance in plants |
| CN115028696B (en) * | 2021-02-20 | 2023-05-02 | 中国农业大学 | Application of a protein related to fruit quality and its coding gene |
| US11779020B2 (en) | 2021-03-11 | 2023-10-10 | LPC Naturals, LLC | Honey-based rooting gel composition and method of preparing the same |
Family Cites Families (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1591522A3 (en) | 1993-10-06 | 2005-11-09 | New York University | Transgenic plants that exhibit enhanced nitrogen assimilation |
| WO1998010082A1 (en) | 1994-09-01 | 1998-03-12 | University Of Florida Research Foundation, Inc. | Materials and methods for increasing corn seed weight |
| US6252139B1 (en) | 1996-07-18 | 2001-06-26 | The Salk Institute For Biological Studies | Method of increasing growth and yield in plants |
| JP2001505410A (en) | 1996-09-05 | 2001-04-24 | ユニバーシティー オブ フロリダ リサーチ ファウンデーション インク. | Materials and methods for increasing corn seed weight |
| KR20010005581A (en) | 1997-03-26 | 2001-01-15 | 알. 씨. 제닝스 | Plants with modified growth |
| US7598361B2 (en) | 1997-11-24 | 2009-10-06 | Monsanto Technology Llc | Nucleic acid molecules and other molecules associated with the sucrose pathway |
| US20100293663A2 (en) * | 1998-06-16 | 2010-11-18 | Thomas La Rosa | Nucleic Acid Molecules and Other Molecules Associated with Plants and Uses Thereof for Plant Improvement |
| US20090265815A1 (en) * | 2000-08-09 | 2009-10-22 | Nickolai Alexandrov | Sequence-determined DNA fragments and corresponding polypeptides encoded therapy |
| US20020040490A1 (en) * | 2000-01-27 | 2002-04-04 | Jorn Gorlach | Expressed sequences of arabidopsis thaliana |
| CA2420555C (en) * | 2000-08-24 | 2012-10-23 | Jeffrey F. Harper | Stress-regulated genes of plants, transgenic plants containing same, and methods of use |
| WO2002010210A2 (en) * | 2001-08-28 | 2002-02-07 | Bayer Cropscience Ag | Polypeptides for identifying herbicidally active compounds |
| JP2005185101A (en) * | 2002-05-30 | 2005-07-14 | National Institute Of Agrobiological Sciences | Plant full-length cDNA and use thereof |
| JP4452876B2 (en) | 2003-08-06 | 2010-04-21 | 国立大学法人 香川大学 | Control of seed yield and dry weight of plants by gene transfer using LKP2 partial cDNA |
| US20070136839A1 (en) | 2003-10-14 | 2007-06-14 | Ceres, Inc. | Promoter, promoter control elements, and combinations, and uses thereof |
| US7569389B2 (en) * | 2004-09-30 | 2009-08-04 | Ceres, Inc. | Nucleotide sequences and polypeptides encoded thereby useful for modifying plant characteristics |
| JP2005130770A (en) | 2003-10-30 | 2005-05-26 | Ajinomoto Co Inc | Potato increased in starch level obtained per plant body and method for creating the same |
| CA2561450A1 (en) | 2004-04-02 | 2005-10-13 | Cropdesign N.V. | Plants having improved growth characteristics and method for making the same |
| US20060075522A1 (en) * | 2004-07-31 | 2006-04-06 | Jaclyn Cleveland | Genes and uses for plant improvement |
| EP3059306A1 (en) | 2005-01-12 | 2016-08-24 | Monsanto Technology LLC | Genes and uses for plant improvement |
| WO2007091634A1 (en) | 2006-02-09 | 2007-08-16 | Japan Science And Technology Agency | Plant having improved growth ability and disease resistance and method for production thereof |
| EP2090662A3 (en) * | 2006-04-05 | 2012-10-31 | Metanomics GmbH | Process for the production of a fine chemical |
| US8999888B2 (en) | 2006-12-11 | 2015-04-07 | Japan Science And Technology Agency | Plant growth regulator and use thereof |
| US7951789B2 (en) | 2006-12-28 | 2011-05-31 | Idenix Pharmaceuticals, Inc. | Compounds and pharmaceutical compositions for the treatment of viral infections |
| WO2008087932A1 (en) | 2007-01-16 | 2008-07-24 | Japan Science And Technology Agency | Plant having increased yield of seeds |
| CN102027111B (en) | 2008-03-14 | 2013-11-13 | 丰田自动车株式会社 | Gene increasing plant biomass amount and/or seed amount and method of using the same |
| JP5604657B2 (en) * | 2009-03-12 | 2014-10-08 | トヨタ自動車株式会社 | Gene for increasing production of biomass and / or seed of plant and method for using the same |
| JP5519192B2 (en) | 2009-06-04 | 2014-06-11 | トヨタ自動車株式会社 | Gene for increasing protein content of seed and method for using the same |
| JP5250807B2 (en) * | 2009-09-11 | 2013-07-31 | トヨタ自動車株式会社 | Method for increasing the biomass amount and / or seed amount of a plant, and method for producing a plant capable of increasing the biomass amount and / or seed amount |
| US9155368B2 (en) * | 2014-01-02 | 2015-10-13 | Chi-Yuan Chang | Waterproof protection pouch for mobile devices |
-
2009
- 2009-03-13 CN CN2009801172445A patent/CN102027111B/en not_active Expired - Fee Related
- 2009-03-13 AU AU2009224235A patent/AU2009224235B2/en not_active Ceased
- 2009-03-13 CA CA2718396A patent/CA2718396C/en not_active Expired - Fee Related
- 2009-03-13 JP JP2010502909A patent/JP5403628B2/en not_active Expired - Fee Related
- 2009-03-13 WO PCT/JP2009/054953 patent/WO2009113684A1/en not_active Ceased
- 2009-03-13 BR BRPI0909344-3A patent/BRPI0909344A2/en not_active Application Discontinuation
- 2009-03-13 US US12/922,432 patent/US20110078818A1/en not_active Abandoned
-
2015
- 2015-01-30 US US14/609,830 patent/US9695435B2/en not_active Expired - Fee Related
-
2017
- 2017-04-11 US US15/484,606 patent/US10287604B2/en not_active Expired - Fee Related
- 2017-04-11 US US15/484,566 patent/US20170283824A1/en not_active Abandoned
- 2017-04-11 US US15/484,525 patent/US20170283823A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| US20150143586A1 (en) | 2015-05-21 |
| JP5403628B2 (en) | 2014-01-29 |
| US20170283824A1 (en) | 2017-10-05 |
| AU2009224235A1 (en) | 2009-09-17 |
| US20110078818A1 (en) | 2011-03-31 |
| US10287604B2 (en) | 2019-05-14 |
| JPWO2009113684A1 (en) | 2011-07-21 |
| CA2718396A1 (en) | 2009-09-17 |
| US9695435B2 (en) | 2017-07-04 |
| CN102027111B (en) | 2013-11-13 |
| CN102027111A (en) | 2011-04-20 |
| BRPI0909344A2 (en) | 2015-08-04 |
| WO2009113684A1 (en) | 2009-09-17 |
| AU2009224235B2 (en) | 2012-12-06 |
| CA2718396C (en) | 2016-01-05 |
| US20170283825A1 (en) | 2017-10-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10287604B2 (en) | Gene for increasing the production of plant biomass and/or seeds and method for use thereof | |
| US8575428B2 (en) | Method for increasing the production of plant biomass and/or seeds and method for producing plant capable of producing increased amount of biomass and/or seeds | |
| US9476059B2 (en) | Gene capable of imparting environmental stress resistance to plants and method for utilizing the same | |
| US9546376B2 (en) | Gene for increasing the production of plant biomass and/or seeds and method for use thereof | |
| US8822758B2 (en) | Gene capable of increasing the production of plant biomass and method for using the same | |
| US9297020B2 (en) | Gene for increasing the production of plant biomass and method of use thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KONDO, SATOSHI;OHTA, CHIKARA;MITSUKAWA, NORIHIRO;AND OTHERS;SIGNING DATES FROM 20170621 TO 20170718;REEL/FRAME:043473/0407 |
|
| AS | Assignment |
Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR PREVIOUSLY RECORDED ON REEL 043473 FRAME 0407. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS OF INTEREST;ASSIGNORS:KONDO, SATOSHI;OHTO, CHIKARA;MITSUKAWA, NORIHIRO;AND OTHERS;SIGNING DATES FROM 20170621 TO 20170718;REEL/FRAME:044534/0654 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |