[go: up one dir, main page]

US20170254579A1 - Cold room combination vent and light - Google Patents

Cold room combination vent and light Download PDF

Info

Publication number
US20170254579A1
US20170254579A1 US15/060,655 US201615060655A US2017254579A1 US 20170254579 A1 US20170254579 A1 US 20170254579A1 US 201615060655 A US201615060655 A US 201615060655A US 2017254579 A1 US2017254579 A1 US 2017254579A1
Authority
US
United States
Prior art keywords
light
cold room
vent
air control
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/060,655
Inventor
Raymond J. Hiller
Brett A. Mitchell
Burl M. Finkelstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kason Industries Inc
Original Assignee
Kason Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kason Industries Inc filed Critical Kason Industries Inc
Priority to US15/060,655 priority Critical patent/US20170254579A1/en
Assigned to KASON INDUSTRIES, INC, reassignment KASON INDUSTRIES, INC, ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FINKELSTEIN, BURL M, HILLER, RAYMOND J, MITCHELL, BRETT A
Priority to US15/190,478 priority patent/US10281189B2/en
Publication of US20170254579A1 publication Critical patent/US20170254579A1/en
Priority to US16/184,329 priority patent/US11112162B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/047Pressure equalising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D27/00Lighting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate

Definitions

  • This invention relates to pressure relief vent used on temperature controlled enclosures such as walk-in freezers and test chambers.
  • Passive pressure relief ports are in wide commercial use today. Large structures require the movement of a large amount of air to equalize the pressure between the inside and the outside of the enclosure.
  • Existing vents can be either of a large size or a gang of small sized vents. This large amount of air carries with it a large amount of moisture. This moisture can condense almost immediately upon contact with the cold air and cold surfaces of the enclosure. If this occurs, a large ice block may form on the interior wall, which may eventually block the inflow of air through the port. This large ice block may also pose a potential danger to someone should it fall from the wall.
  • a combination cold room light and vent comprises a housing defining a heat chamber, at least one air control valve coupled to the housing heat chamber, and a light source coupled to the housing heat chamber, the light source being in thermal communication with the at least one air control valve through the heat chamber.
  • FIG. 1 is a perspective view of a cold room vent and light that embodies principles of the invention in its preferred form.
  • FIG. 2 is an exploded, perspective view of the cold room vent and light of FIG. 1 .
  • FIG. 3 is a cross-sectional view of the cold room vent and light of FIG. 1 .
  • vent 10 in a preferred form of the invention, referred to hereinafter simply as vent.
  • the vent 10 is used with a temperature controlled enclosure, such as a freezer, refrigerator or other cold room, all of which are referred collectively herein as cold room.
  • the vent 10 includes a housing 11 , a valve assembly 12 , and a light assembly 13 .
  • the housing 11 includes a thermal valve body 16 , a tubular port tube 17 , and an outside louver 18 .
  • the housing 11 is typically mounted to the wall of the cold room with the valve body 16 mounted to the inside surface and the outside louver 18 mounted to the outside surface.
  • the housing 11 is typically made of a plastic material or the like.
  • the valve body 16 is generally rectangular in shape with a central tube portion 20 and an outwardly extending peripheral mounting flange 21 with flange mounting holes 22 therein through which mounting screws are passed to couple the valve body to the inside surface of the cold room.
  • the valve body 16 has and interior stop wall 24 which has a low pressure intake port 25 , a high pressure intake port 26 , and a low pressure exhaust port 27 .
  • the interior stop wall 24 is positioned inwardly from the front surface 29 , including the peripheral mounting flange 21 , so as to define an interior chamber 31 .
  • Each port 25 , 26 and 27 has a central bar 32 with a valve mounting hole 33 therein.
  • the valve body 16 central tube portion 20 is configured to telescopically mate with port tube 17 which extends through the interior of the cold room walls.
  • the port tube 17 is telescopically coupled at an opposite end to the outside louver 18 .
  • the outside louver 18 has an outwardly extending mounting flange 35 with mounting holes 36 therein through which mounting screws extend to couple the louver 18 to the outside surface of the cold room.
  • the louver 18 includes a drip deflecting hood 37 and a screen 38 therein to prevent the entrance of dirt, foreign object, insects or other pests.
  • the valve assembly 12 is coupled to and may be considered to be a portion of the valve body 16 .
  • the valve assembly 12 includes a low pressure intake valve 40 having a mounting stem 41 extending through the valve mounting hole 33 of the low pressure intake port 25 , a high pressure intake valve 42 having a mounting stem 43 extending through the valve mounting hole 33 of the high pressure intake port 26 , and a low pressure exhaust valve 44 having a mounting stem 45 extending through the valve mounting hole 33 of the low pressure exhaust port 27 .
  • Valves 40 , 42 and 44 are all considered to be air flow control valves.
  • the end of the stem of each valve 40 , 42 and 44 is coupled to a spring 47 , washer 48 and push in stud 49 which bias each valve towards a closed position.
  • Each spring 47 resides within a spring seat or pocket 50 which holds the spring in place.
  • Each spring 47 is configured to allow the valve to move from a closed position to an open position against the biasing force of the spring 47 , as explained in more detail hereinafter.
  • the low pressure intake valve 40 and the high pressure intake valve 42 each have the same size and configuration.
  • the valve mounting hole pocket 50 of the low pressure intake valve 40 is configured to be deeper than the pocket 50 , or positioned farther from the end of the stem, of the high pressure intake valve 42 so that the associated spring 47 of the low pressure intake valve 40 is less compressed than that of the high pressure intake valve.
  • This difference in spring compressions allows the valves 40 and 42 to be the same construction to aid in manufacturing, inventory and installation, yet allows for different opening pressures for each, i.e., the low pressure intake valve 40 opens first due to the spring compression being less than that of the high pressure intake valve 42 .
  • the light assembly 13 includes a rectangular box shaped LED heat sink casing 51 which is configured to telescopically fit within the interior chamber 31 of the valve body 16 , so as to enclosure and thereby form a heat chamber 52 through the combination of the casing 51 and valve body 16 .
  • the casing is preferably made of a heat conductive metal, such as aluminum.
  • the casing 51 is maintained in position by casing mounting screws 54 .
  • the casing 51 has a front wall or surface 55 , to which is mounted an LED module 57 containing a plurality of LED diodes 58 , and four peripheral sidewalls 56 .
  • a combination lens gasket and LED thermally conductive pad 58 is position between the LED module 57 and the front surface 55 of the casing 51 .
  • the LED module and pad are held in position through a mounting screw 59 .
  • a transparent or translucent lens or lens cover 61 is coupled to the front surface 55 of the casing to cover the LED module 57 through lens cover mounting screws 61 .
  • An LED driver 63 is electrically coupled to the LED module 57 .
  • the LED driver 63 is positioned within the housing 11 and coupled to a source of electric current, such as a conventional A.C. line.
  • the vent 10 is mounted to the wall of a cold room with the valve body mounted to the interior surface and the outside louver mounted to the exterior surface of the cold room wall.
  • the vent 10 allows for an asymmetrical, dual stage venting of pressure within the cold room. Should the cold room door be opened and a small amount of air is introduced into the cold room (small volume), the low pressure intake valve 40 overcomes the biasing force of its spring 47 to move to an open position.
  • the opening of the low pressure intake valve 40 allows the entrance, flow, or passage of a small volume of air into the cold room to offset the condensing of the small volume of warm air which creates a negative pressure.
  • the low pressure intake valve 40 opens at a negative pressure level of approximately 0.4 inches of water. The valve allows a flow rate of 10 CFM at 0.5 inches of water.
  • both the low pressure intake valve 40 and the high pressure intake valve 42 overcome the biasing forces of their springs 47 to each move to their open positions.
  • the opening of both the low pressure intake valve 40 and the high pressure intake valve 42 allows the entrance or passage of a large volume of air into the cold room in a very fast manner to offset the condensing of the large volume of warm air which creates a large negative pressure.
  • the high pressure intake valve 42 may be thought of as a second stage valve in the event when a large amount of air is needed to be taken in to relieve the pressure within the cold room. The process commences with the low pressure intake valve 40 opening as previously described.
  • the high pressure intake valve 42 then opens at a negative pressure level of approximately 0.7 inches of water.
  • the high pressure intake valve allows a flow rate of 30 CFM at 1.0 inches of water.
  • the high pressure intake valve 42 will first return to its seated position once the air pressure returns to a level below approximately 0.7 inches of water.
  • the air pressure within the cold room continues to drop by air passing through the low pressure intake valve 40 , until the pressure reaches approximately 0.4 inches of water wherein the low pressure intake valve 40 will also move to its closed position.
  • the end results is a cold room which is generally at a neutral pressure.
  • the exhaust valve 44 overcomes the biasing force of its spring 47 when positive pressure exists within the cold room.
  • the exhaust valve 44 opens at a positive pressure level of less than 0.6 inches of water.
  • the exhaust valve allows a flow rate of 10 CFM at 0.5 inches of water.
  • the cold room may experience positive pressure when one slams a door shut or when the air therein warms, such as when the cold room is going through a defrost mode. This positive pressure may prevent the full closing of the refrigerator door.
  • the flow or venting of air into the cold room is controlled by at least two valves while the flow of air out of the cold room is controlled by a single valve, all valves being the same size.
  • This arrangement provides for an asymmetric flow of air into the cold room which is approximately twice the amount as the flow out of the cold room.
  • the number of valves or their sizes may also be different so long as the valve controlled flow into the cold room is much greater than the valve controlled flow out of the cold room.
  • the vent is preferably designed so that the LED module 57 is always energized to provide constant light within the cold room.
  • the use of LED lights facilitates this due to their low power consumption.
  • the heat generated by the constantly illuminated LED module 57 thermally passes through the thermal pad 58 to the LED heat sink casing 51 , i.e., the LED module is in thermal communication with the LED heat sink casing 51 .
  • This heating of the LED heat sink casing 51 constantly warms the air within the interior chamber 31 of the valve body 16 and thus warms the intake valves 40 and 42 and exhaust valve 44 .
  • the warming of the valves prevents the formation of ice upon the valves which would prevent them from properly opening or closing, i.e., prevents the valves from freezing in place within their respective ports. It should be noted that this heating is economical as the cold room should be constantly illuminated regardless.
  • spring compressions may also be achieved through the use of different sized springs, different valve stem lengths, the addition of a spacer to compress the spring, or any other method of achieving different compression forces associated with the springs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

A combination light and pressure relief vent (10) is disclosed which includes a housing (11), a valve assembly (12), and a light assembly (13). The housing include a valve body (16), port tube (17), and an outside louver (18). The valve body has a low pressure intake port (25), a high pressure intake port (26), and a low pressure exhaust port (27). The valve assembly includes a low pressure intake valve (40), a high pressure intake valve (42), and a low pressure exhaust valve (44). The light assembly includes a heat sink casing (51) which partially defines a heat chamber (52). The casing has a front wall (55) to which is mounted an LED module (57). A lens cover (61) is coupled to the front surface of the casing. Heat generated by the LED module is transferred through the casing to the heat chamber to warm the valve assembly.

Description

    TECHNICAL FIELD
  • This invention relates to pressure relief vent used on temperature controlled enclosures such as walk-in freezers and test chambers.
  • BACKGROUND OF THE INVENTION
  • Many temperature controlled commercial enclosed spaces need to be equipped with pressure relief ports or vents which are sometimes referred to as ventilators or ventilator ports. This is particularly true where the sealed space is subjected to temperature related gas volume variations that must be relieved.
  • Cold rooms typically have a neutral air pressure. To achieve the neutral air pressure passive ports are suitable for these enclosures. However existing passive pressure relief ports, meaning those without fans or blowers, have often permitted air migration where there is no significant pressure differential. With walk-in freezers this causes undesirable condensation and frosting. Frosting is a substantial problem that occurs as ambient warm air drawn into a low temperature chamber releases significant amounts of moisture relative to the change in dew point of the air at high and low temperatures. Air is drawn through the port after each door opening cycle as the warm air that entered the enclosure cools and contracts. If venting does not occur, a partial vacuum results which make it difficult to reopen the door. In extreme cases, the enclosures can even collapse.
  • A temperature rise in the enclosure between cooling cycles, and especially during a defrost cycle, creates a need to vent air to prevent pressure buildup. Again, failure to vent this pressure, with adequate relief capacity, can cause the chamber to rupture.
  • Passive pressure relief ports are in wide commercial use today. Large structures require the movement of a large amount of air to equalize the pressure between the inside and the outside of the enclosure. Existing vents can be either of a large size or a gang of small sized vents. This large amount of air carries with it a large amount of moisture. This moisture can condense almost immediately upon contact with the cold air and cold surfaces of the enclosure. If this occurs, a large ice block may form on the interior wall, which may eventually block the inflow of air through the port. This large ice block may also pose a potential danger to someone should it fall from the wall.
  • Another problem with cold rooms is that high negative pressure may be dangerous as the warm air entering the cold room enters with the entrance of a person. This warm air subsequently cools and creates a negative pressure within the cold room. This negative pressure may hold the door in a closed position until the room normalizes. A person within the cold room may become panicked when unable to open the door. Today's vents alleviate small amounts of incoming warm air, but are inadequate to deal with large volumes of warm air associated with multiple door entries or large sliding doors.
  • Yet another problem is the icing of certain valves associated with vents of cold rooms. Moisture entering the cold room may condense as ice upon the valves, thereby preventing them from opening properly. One solution to this problem has been to simply chip the ice off the valve or remove it with the use of a heat gun. These solutions are time consuming and inadequate as it may damage the vent, cause bodily injury, and be only effective once the problem is discovered. As such, some vents have included resistive heaters. However, should the heater fail the problem will go unresolved until the heat is repaired.
  • Accordingly, it is seen that a need exists for a pressure release vent that prevents the formation of ice thereon. It thus is to be provision of such a pressure relief port that the present invention is primarily directed
  • SUMMARY OF THE INVENTION
  • In a preferred form of the invention a combination cold room light and vent comprises a housing defining a heat chamber, at least one air control valve coupled to the housing heat chamber, and a light source coupled to the housing heat chamber, the light source being in thermal communication with the at least one air control valve through the heat chamber. With this construction, heat generated by the light source warms the at least one air control valve.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is a perspective view of a cold room vent and light that embodies principles of the invention in its preferred form.
  • FIG. 2 is an exploded, perspective view of the cold room vent and light of FIG. 1.
  • FIG. 3 is a cross-sectional view of the cold room vent and light of FIG. 1.
  • DETAILED DESCRIPTION
  • With reference next to the drawings, there is shown a combination light and pressure relief ventilator or vent 10 in a preferred form of the invention, referred to hereinafter simply as vent. The vent 10 is used with a temperature controlled enclosure, such as a freezer, refrigerator or other cold room, all of which are referred collectively herein as cold room.
  • The vent 10 includes a housing 11, a valve assembly 12, and a light assembly 13. The housing 11 includes a thermal valve body 16, a tubular port tube 17, and an outside louver 18. The housing 11 is typically mounted to the wall of the cold room with the valve body 16 mounted to the inside surface and the outside louver 18 mounted to the outside surface. The housing 11 is typically made of a plastic material or the like.
  • The valve body 16 is generally rectangular in shape with a central tube portion 20 and an outwardly extending peripheral mounting flange 21 with flange mounting holes 22 therein through which mounting screws are passed to couple the valve body to the inside surface of the cold room. The valve body 16 has and interior stop wall 24 which has a low pressure intake port 25, a high pressure intake port 26, and a low pressure exhaust port 27. The interior stop wall 24 is positioned inwardly from the front surface 29, including the peripheral mounting flange 21, so as to define an interior chamber 31. Each port 25, 26 and 27 has a central bar 32 with a valve mounting hole 33 therein.
  • The valve body 16 central tube portion 20 is configured to telescopically mate with port tube 17 which extends through the interior of the cold room walls. The port tube 17 is telescopically coupled at an opposite end to the outside louver 18.
  • The outside louver 18 has an outwardly extending mounting flange 35 with mounting holes 36 therein through which mounting screws extend to couple the louver 18 to the outside surface of the cold room. The louver 18 includes a drip deflecting hood 37 and a screen 38 therein to prevent the entrance of dirt, foreign object, insects or other pests.
  • The valve assembly 12 is coupled to and may be considered to be a portion of the valve body 16. The valve assembly 12 includes a low pressure intake valve 40 having a mounting stem 41 extending through the valve mounting hole 33 of the low pressure intake port 25, a high pressure intake valve 42 having a mounting stem 43 extending through the valve mounting hole 33 of the high pressure intake port 26, and a low pressure exhaust valve 44 having a mounting stem 45 extending through the valve mounting hole 33 of the low pressure exhaust port 27. Valves 40, 42 and 44 are all considered to be air flow control valves. The end of the stem of each valve 40, 42 and 44 is coupled to a spring 47, washer 48 and push in stud 49 which bias each valve towards a closed position. Each spring 47 resides within a spring seat or pocket 50 which holds the spring in place. Each spring 47 is configured to allow the valve to move from a closed position to an open position against the biasing force of the spring 47, as explained in more detail hereinafter.
  • The low pressure intake valve 40 and the high pressure intake valve 42 each have the same size and configuration. However, the valve mounting hole pocket 50 of the low pressure intake valve 40 is configured to be deeper than the pocket 50, or positioned farther from the end of the stem, of the high pressure intake valve 42 so that the associated spring 47 of the low pressure intake valve 40 is less compressed than that of the high pressure intake valve. This difference in spring compressions allows the valves 40 and 42 to be the same construction to aid in manufacturing, inventory and installation, yet allows for different opening pressures for each, i.e., the low pressure intake valve 40 opens first due to the spring compression being less than that of the high pressure intake valve 42.
  • The light assembly 13 includes a rectangular box shaped LED heat sink casing 51 which is configured to telescopically fit within the interior chamber 31 of the valve body 16, so as to enclosure and thereby form a heat chamber 52 through the combination of the casing 51 and valve body 16. The casing is preferably made of a heat conductive metal, such as aluminum. The casing 51 is maintained in position by casing mounting screws 54. The casing 51 has a front wall or surface 55, to which is mounted an LED module 57 containing a plurality of LED diodes 58, and four peripheral sidewalls 56. A combination lens gasket and LED thermally conductive pad 58 is position between the LED module 57 and the front surface 55 of the casing 51. The LED module and pad are held in position through a mounting screw 59. A transparent or translucent lens or lens cover 61 is coupled to the front surface 55 of the casing to cover the LED module 57 through lens cover mounting screws 61. An LED driver 63 is electrically coupled to the LED module 57. The LED driver 63 is positioned within the housing 11 and coupled to a source of electric current, such as a conventional A.C. line.
  • In use, the vent 10 is mounted to the wall of a cold room with the valve body mounted to the interior surface and the outside louver mounted to the exterior surface of the cold room wall. The vent 10 allows for an asymmetrical, dual stage venting of pressure within the cold room. Should the cold room door be opened and a small amount of air is introduced into the cold room (small volume), the low pressure intake valve 40 overcomes the biasing force of its spring 47 to move to an open position. The opening of the low pressure intake valve 40 allows the entrance, flow, or passage of a small volume of air into the cold room to offset the condensing of the small volume of warm air which creates a negative pressure. The low pressure intake valve 40 opens at a negative pressure level of approximately 0.4 inches of water. The valve allows a flow rate of 10 CFM at 0.5 inches of water.
  • Should the cold room door be opened and a large amount of air is introduced into the cold room (high volume), both the low pressure intake valve 40 and the high pressure intake valve 42 overcome the biasing forces of their springs 47 to each move to their open positions. The opening of both the low pressure intake valve 40 and the high pressure intake valve 42 allows the entrance or passage of a large volume of air into the cold room in a very fast manner to offset the condensing of the large volume of warm air which creates a large negative pressure. The high pressure intake valve 42 may be thought of as a second stage valve in the event when a large amount of air is needed to be taken in to relieve the pressure within the cold room. The process commences with the low pressure intake valve 40 opening as previously described. The high pressure intake valve 42 then opens at a negative pressure level of approximately 0.7 inches of water. The high pressure intake valve allows a flow rate of 30 CFM at 1.0 inches of water. The quick equalization of the pressure through the opening of both valves prevents the cold room door from being stuck closed due to negative pressure within the cold room, which minimizes the potential of one panicking due to the inability to temporarily open the door.
  • As the room equalizes from the experience of negative pressure, the high pressure intake valve 42 will first return to its seated position once the air pressure returns to a level below approximately 0.7 inches of water. The air pressure within the cold room continues to drop by air passing through the low pressure intake valve 40, until the pressure reaches approximately 0.4 inches of water wherein the low pressure intake valve 40 will also move to its closed position. The end results is a cold room which is generally at a neutral pressure.
  • The exhaust valve 44 overcomes the biasing force of its spring 47 when positive pressure exists within the cold room. The exhaust valve 44 opens at a positive pressure level of less than 0.6 inches of water. The exhaust valve allows a flow rate of 10 CFM at 0.5 inches of water. The cold room may experience positive pressure when one slams a door shut or when the air therein warms, such as when the cold room is going through a defrost mode. This positive pressure may prevent the full closing of the refrigerator door.
  • Thus, the flow or venting of air into the cold room is controlled by at least two valves while the flow of air out of the cold room is controlled by a single valve, all valves being the same size. This arrangement provides for an asymmetric flow of air into the cold room which is approximately twice the amount as the flow out of the cold room. Of course, the number of valves or their sizes may also be different so long as the valve controlled flow into the cold room is much greater than the valve controlled flow out of the cold room.
  • The vent is preferably designed so that the LED module 57 is always energized to provide constant light within the cold room. The use of LED lights facilitates this due to their low power consumption. The heat generated by the constantly illuminated LED module 57 thermally passes through the thermal pad 58 to the LED heat sink casing 51, i.e., the LED module is in thermal communication with the LED heat sink casing 51. This heating of the LED heat sink casing 51 constantly warms the air within the interior chamber 31 of the valve body 16 and thus warms the intake valves 40 and 42 and exhaust valve 44. The warming of the valves prevents the formation of ice upon the valves which would prevent them from properly opening or closing, i.e., prevents the valves from freezing in place within their respective ports. It should be noted that this heating is economical as the cold room should be constantly illuminated regardless.
  • It should be understood that the combination of a light and vent also reduces cost and labor as both features are achieved through the mounting of a single unit which includes both functions.
  • It should be understood that the difference in spring compressions may also be achieved through the use of different sized springs, different valve stem lengths, the addition of a spacer to compress the spring, or any other method of achieving different compression forces associated with the springs.
  • It thus is seen that a vent is now provided which avoids the formation of ice on the vent valves and allows for both small and large amounts of air venting. Though it has been described in detail in its preferred form, it should be realized that many modifications, additions and deletions may be made without departure from the spirit and scope of the invention as set forth in the following claims.

Claims (20)

1. A combination cold room light and vent comprising:
a housing mountable to a cold room structure, said housing defining a heat chamber;
at least one air control valve coupled to said housing and in thermal communication with said heat chamber, and
a light source coupled to said housing, said light source being in thermal communication with said at least one air control valve through said heat chamber so that heat generated by the light source warms the at least one air control valve.
2. The combination cold room light and vent of claim 1 further comprising a thermally conductive casing partially defining said heat chamber of said housing, and wherein said light source is mounted to said thermally conductive casing.
3. The combination cold room light and vent of claim 2 wherein said housing is configured to receive said heat chamber within an interior space of said housing.
4. The combination cold room light and vent of claim 3 wherein said thermally conductive casing includes a light source mounting wall and peripheral sidewalls extending from said light source mounting wall.
5. The combination cold room light and vent of claim 1 wherein said at least one air control valve includes a low pressure air control intake valve and a high pressure air control intake valve.
6. The combination cold room light and vent of claim 5 wherein further comprising an air control exhaust valve.
7. The combination cold room light and vent wherein said light source is an LED light.
8. A combination cold room light and vent comprising:
a tubular housing;
an air control valve assembly coupled to said tubular housing, and
a light assembly positioned to illuminate the interior of a cold room, said light assembly being in thermally communication with said air control valve assembly so as to heat said light assembly through the transfer of heat generated by said light assembly during activation of the light assembly.
9. The combination cold room light and vent of claim 8 wherein said tubular housing includes a thermally conductive casing partially defining a heat chamber, and wherein said light assembly is in thermal communication with said thermally conductive casing.
10. The combination cold room light and vent of claim 9 wherein said housing receives said thermally conductive casing within an interior space of said housing.
11. The combination cold room light and vent of claim 10 wherein said thermally conductive casing includes a light source mounting wall and peripheral sidewalls extending from said light source mounting wall.
12. The combination cold room light and vent of claim 8 wherein said air control valve assembly includes a low pressure air control intake valve and a high pressure air control intake valve.
13. The combination cold room light and vent of claim 12 wherein said air control valve assembly also includes an air control exhaust valve.
14. The combination cold room light and vent of claim 8 wherein said light assembly includes an LED light.
15. A combination cold room light and vent comprising:
a housing;
a thermally conductive casing coupled to said housing, the combination of said housing and said thermally conductive casing defining a heat chamber;
an air control valve coupled to said housing, said air control valve being in thermal communication with said heat chamber, and
a light source thermally coupled to said thermally conductive casing,
whereby heat generated by the light source warms the thermally conductive casing, thereby warming the heat chamber so as to warm the air control valve.
16. The combination cold room light and vent of claim 15 wherein said housing is configured to receive said thermally conductive casing therein.
17. The combination cold room light and vent of claim 16 wherein said thermally conductive casing includes a light source mounting wall and peripheral sidewalls extending from said light source mounting wall.
18. The combination cold room light and vent of claim 15 wherein said air control valve is a low pressure air control intake valve, and further comprising a high pressure air control intake valve.
19. The combination cold room light and vent of claim 18 further comprising an air control exhaust valve.
20. The combination cold room light and vent of claim 15 wherein said light source is an LED light.
US15/060,655 2016-03-04 2016-03-04 Cold room combination vent and light Abandoned US20170254579A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/060,655 US20170254579A1 (en) 2016-03-04 2016-03-04 Cold room combination vent and light
US15/190,478 US10281189B2 (en) 2016-03-04 2016-06-23 Cold room combination vent and light
US16/184,329 US11112162B2 (en) 2016-03-04 2018-11-08 Cold room combination vent and light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/060,655 US20170254579A1 (en) 2016-03-04 2016-03-04 Cold room combination vent and light

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/190,478 Continuation-In-Part US10281189B2 (en) 2016-03-04 2016-06-23 Cold room combination vent and light
US16/184,329 Continuation-In-Part US11112162B2 (en) 2016-03-04 2018-11-08 Cold room combination vent and light

Publications (1)

Publication Number Publication Date
US20170254579A1 true US20170254579A1 (en) 2017-09-07

Family

ID=59722294

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/060,655 Abandoned US20170254579A1 (en) 2016-03-04 2016-03-04 Cold room combination vent and light

Country Status (1)

Country Link
US (1) US20170254579A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707040A (en) * 2020-06-29 2020-09-25 郑州冰之星制冷设备有限公司 Energy-saving method for refrigeration house

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2436183A (en) * 1946-06-25 1948-02-17 Garrett Corp Cabin pressure regulator
US2991708A (en) * 1959-06-19 1961-07-11 Day Brite Lighting Inc Combined space lighting and ventilating apparatus
US3692977A (en) * 1970-12-23 1972-09-19 Panacon Corp Compact combination infra-red heating and ventilating unit
US3952542A (en) * 1974-11-22 1976-04-27 Kason Hardware Corporation Ventilator
US4613930A (en) * 1985-09-04 1986-09-23 Emilio Ambasz Ceiling lighting fixture and system
US5800261A (en) * 1994-06-02 1998-09-01 Legabeam Norge As Air vent device including a light device to preheat supply air
US20110189938A1 (en) * 2010-01-29 2011-08-04 Sanyo Electric Co., Ltd. Ventilation control apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2436183A (en) * 1946-06-25 1948-02-17 Garrett Corp Cabin pressure regulator
US2991708A (en) * 1959-06-19 1961-07-11 Day Brite Lighting Inc Combined space lighting and ventilating apparatus
US3692977A (en) * 1970-12-23 1972-09-19 Panacon Corp Compact combination infra-red heating and ventilating unit
US3952542A (en) * 1974-11-22 1976-04-27 Kason Hardware Corporation Ventilator
US4613930A (en) * 1985-09-04 1986-09-23 Emilio Ambasz Ceiling lighting fixture and system
US5800261A (en) * 1994-06-02 1998-09-01 Legabeam Norge As Air vent device including a light device to preheat supply air
US20110189938A1 (en) * 2010-01-29 2011-08-04 Sanyo Electric Co., Ltd. Ventilation control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707040A (en) * 2020-06-29 2020-09-25 郑州冰之星制冷设备有限公司 Energy-saving method for refrigeration house

Similar Documents

Publication Publication Date Title
US10281189B2 (en) Cold room combination vent and light
US6176776B1 (en) Pressure relief port
JP2506036B2 (en) Bench rater device for compartment
CN101512265B (en) Refrigerator with pressure equalisation valve
CN204234107U (en) Chamber
US11112162B2 (en) Cold room combination vent and light
US10731912B2 (en) Cold room combination vent and light
AU2021269421B2 (en) Refrigerator for vehicle and vehicle
CN105276895A (en) Air-cooling refrigerator
AU2020267129B2 (en) Cold room combination vent and light
US20170254579A1 (en) Cold room combination vent and light
US10739055B2 (en) Cold room combination vent and light
US10845115B2 (en) Cold room combination vent and light
JPH10247793A (en) Case cooling device
US8992293B1 (en) Ventilator
CN108139135A (en) Household refrigerating appliances with refrigerated space, refrigerated space and pressure compensating valve
JP2010175110A (en) Cooling storage
WO2004074751A1 (en) Defrosting heater and method of manufacturing the same
JP3005398B2 (en) freezer
JP2019035509A (en) Cooling storage
KR20090079690A (en) Functional pressure regulating switchgear for sealed structures
JPH0732473U (en) refrigerator
CN111426136A (en) A decompression device utilizing condensation waste heat to assist the opening and closing of refrigerator doors
KR20150117428A (en) One body tipe air conditioner for storage warehouse
NL2018936A (en) System for ensuring constant temperature parameters of access cabinets

Legal Events

Date Code Title Description
AS Assignment

Owner name: KASON INDUSTRIES, INC,, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HILLER, RAYMOND J;MITCHELL, BRETT A;FINKELSTEIN, BURL M;REEL/FRAME:037889/0194

Effective date: 20160302

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION