US20170219841A1 - Waveguide laser illuminator incorporating a despeckler - Google Patents
Waveguide laser illuminator incorporating a despeckler Download PDFInfo
- Publication number
- US20170219841A1 US20170219841A1 US15/502,583 US201515502583A US2017219841A1 US 20170219841 A1 US20170219841 A1 US 20170219841A1 US 201515502583 A US201515502583 A US 201515502583A US 2017219841 A1 US2017219841 A1 US 2017219841A1
- Authority
- US
- United States
- Prior art keywords
- grating
- waveguide
- illumination device
- light
- lamina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005286 illumination Methods 0.000 claims abstract description 45
- 230000008878 coupling Effects 0.000 claims abstract description 15
- 238000010168 coupling process Methods 0.000 claims abstract description 15
- 238000005859 coupling reaction Methods 0.000 claims abstract description 15
- 230000005540 biological transmission Effects 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 12
- 230000010287 polarization Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 23
- 239000005276 holographic polymer dispersed liquid crystals (HPDLCs) Substances 0.000 description 12
- 230000003993 interaction Effects 0.000 description 12
- 239000004973 liquid crystal related substance Substances 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 8
- 238000012935 Averaging Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 241000761557 Lamina Species 0.000 description 1
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000004557 technical material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/48—Laser speckle optics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4261—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element with major polarization dependent properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/32—Holograms used as optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0015—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0016—Grooves, prisms, gratings, scattering particles or rough surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0038—Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
- G02B6/0055—Reflecting element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0081—Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
- G02B6/0083—Details of electrical connections of light sources to drivers, circuit boards, or the like
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/292—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3136—Digital deflection, i.e. optical switching in an optical waveguide structure of interferometric switch type
Definitions
- the present invention relates to an illumination device, and more particularly to a laser illumination device based on electrically switchable Bragg gratings that reduces laser speckle.
- Miniature solid-state lasers are finding their way into a range of display applications.
- the competitive advantage of lasers results from increased lifetime, lower cost, higher brightness and improved colour gamut.
- lasers offer much more compact illumination solutions than can be provided with conventional sources such as LED the demand for yet more compressed form factors continues unabated.
- Classical illumination designs using beam splitters and combiners fail to meet the requirements. It is known that delivering laser illumination via waveguide optics can result in 50% reduction in size compared with conventional lens combiner splitter schemes.
- Speckle a sparkly or granular structure seen in uniformly illuminated rough surfaces. Speckle arises from the high spatial and temporal coherence of lasers. Speckle reduces image sharpness and is distracting to the viewer.
- speckle reduction is based on averaging multiple sets of speckle patterns from a speckle surface resolution cell with the averaging taking place over the human eye integration time. Speckle may be characterized by the parameter speckle contrast which is defined as the ratio of the standard deviation of the speckle intensity to the mean speckle intensity.
- a first embodiment comprising a laser; a waveguide comprising at least first and second transparent lamina; a first grating device for coupling light from the laser into a TIR path in the waveguide; a second grating device for coupling light from the TIR path out of the waveguide; and a third grating device for applying a variation of at least one of beam deflection or phase retardation across the wavefronts of the TIR light.
- the first second and third grating devices are each sandwiched by transparent lamina.
- the third grating device is electrically switchable.
- Transparent electrodes are applied to portions of transparent lamina sandwiching the grating device gratings. The electrodes substantially overlap the grating device.
- the third grating device is electrically switchable.
- Transparent interdigitated electrodes are applied to portions of a transparent lamina overlapping the grating device.
- the optical prescription of the third grating device varies along said waveguide.
- the first and second grating devices are grating lamina.
- the third grating device comprises more than one grating lamina adjacently disposed along the waveguide.
- the third grating device comprises a two dimensional array of SBG elements.
- Transparent electrodes are applied to overlapping portions of transparent lamina sandwiching the SBG elements. At least on of the electrodes is pixelated into elements substantially overlapping the SBG elements.
- the first and second grating devices are SBGs.
- the third grating device is a SBG.
- the illuminator further comprises a fourth grating device for applying variation of at least one of beam deflection or phase retardation across the wavefronts of the TIR light.
- the third and fourth grating devices overlap.
- the third and fourth grating devices have identical prescriptions and are configured in a reciprocal sense.
- the third grating device overlaps the first grating device. In one embodiment of the invention the third grating device overlaps the second grating device.
- the third grating device is disposed along the TIR path betweens the first and second grating devices.
- the third grating device diffuses light into the direction of the TIR path.
- the at least one of the transparent lamina is wedged.
- At least one end of the waveguide is terminated by a reflector.
- the illuminator further comprises a reflector disposed adjacent to an external surface of the waveguide.
- the reflector comprises a transmission grating and a mirror.
- the at least one end of the waveguide is terminated by a quarter wave plate and a mirror.
- the second grating device comprises overlapping grating lamina separated by a transparent lamina.
- One grating lamina diffracts S-polarized light and the other grating lamina diffracts P-polarized light.
- an illumination device comprising: a laser; a waveguide comprising at least first and second transparent lamina; a first grating device comprising an array of selectively switchable grating elements; and a second grating device for coupling light from the TIR path out of the waveguide.
- the first and second grating devices are each sandwiched by the transparent lamina.
- Each grating element encode a beam deflector for coupling light from the laser into a TIR path in the waveguide and a lens having a Fourier plane in proximity to an illumination plane of the illumination device
- FIG. 1 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 2 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 3 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 4 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 5 is a side elevation view showing a detail of a beam grating interaction in a waveguide despeckler in one embodiment.
- FIG. 6 is a table showing the diffraction efficiency, transmission and waveguide transmission loss for a waveguide despeckler in one embodiment.
- FIG. 7 is a side elevation view showing a detail of a beam grating interaction in a waveguide despeckler in one embodiment.
- FIG. 8 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 9 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 10 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 11 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 12A is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 12B is a side elevation view of a detail of a waveguide despeckler similar to the one illustrated in FIG. 12A showing the interaction of the beam with the input gratings and reflection grating disposed near a reflecting surface of the waveguide.
- FIG. 12C is a side elevation view of a detail of a waveguide despeckler similar to the one illustrated in FIG. 12A showing the interaction of the beam with the input gratings and reflection grating disposed near a reflecting surface of the waveguide.
- FIG. 13 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 14 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 15 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 16 is a side elevation view of a waveguide despeckler incorporating a wedge in one embodiment.
- FIG. 17 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 18 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 19A is a side elevation view of grating configuration used in a waveguide despeckler in one embodiment.
- FIG. 19B illustrates a first operational state of the grating configuration of FIG. 19A .
- FIG. 19C illustrates a second operational state of the grating configuration of FIG. 19A .
- FIG. 19D illustrates a third operational state of the grating configuration of FIG. 19A .
- FIG. 19E illustrates a fourth operational state of the grating configuration of FIG. 19A .
- FIG. 20 is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 21 is a side elevation view of a detail of waveguide despeckler in one embodiment showing the illumination path through the output grating onto a microdisplay.
- FIG. 22 is a side elevation view of a detail of waveguide despeckler in one embodiment showing the illumination path through the output grating onto a microdisplay.
- FIG. 23 is a side elevation view of a detail of waveguide despeckler in one embodiment showing the illumination path through the output grating onto a microdisplay.
- FIG. 24A is a side elevation view of a waveguide despeckler in one embodiment.
- FIG. 24B is a side elevation view of a microlens array used in some embodiments of the invention.
- on-axis in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention.
- light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories.
- SBGs Switchable Bragg Gratings
- SBGs are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates.
- One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the film.
- a volume phase grating is then recorded by illuminating the liquid material (often referred to as the syrup) with two mutually coherent laser beams, which interfere to form a slanted fringe grating structure.
- the monomers polymerize and the mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer.
- the alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating.
- the resulting volume phase grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the film.
- an electric field is applied to the grating via transparent electrodes, the natural orientation of the LC droplets is changed causing the refractive index modulation of the fringes to reduce and the hologram diffraction efficiency to drop to very low levels.
- the diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range. The device exhibits near 100% efficiency with no voltage applied and essentially zero efficiency with a sufficiently high voltage applied.
- magnetic fields may be used to control the LC orientation.
- HPDLC phase separation of the LC material from the polymer may be accomplished to such a degree that no discernible droplet structure results.
- SBGs may be used to provide transmission or reflection gratings for free space applications.
- SBGs may be implemented as waveguide devices in which the HPDLC forms either the waveguide core or an evanescently coupled layer in proximity to the waveguide.
- SGO Substrate Guided Optics
- the parallel glass plates used to form the HPDLC cell provide a total internal reflection (TIR) light guiding structure.
- TIR total internal reflection
- Light is “coupled” out of the SBG when the switchable grating diffracts the light at an angle beyond the TIR condition.
- SGOs are currently of interest in a range of display and sensor applications. Although much of the earlier work on HPDLC has been directed at reflection holograms transmission devices are proving to be much more versatile as optical system building blocks.
- the HPDLC used in SBGs comprise liquid crystal (LC), monomers, photoinitiator dyes, and coinitiators.
- LC liquid crystal
- monomers monomers
- photoinitiator dyes and coinitiators.
- coinitiators The mixture frequently includes a surfactant.
- the patent and scientific literature contains many examples of material systems and processes that may be used to fabricate SBGs. Two fundamental patents are: U.S. Pat. No. 5,942,157 by Sutherland, and U.S. Pat. No. 5,751,452 by Tanaka et al. both filings describe monomer and liquid crystal material combinations suitable for fabricating SBG devices.
- transmission SBGs One of the known attributes of transmission SBGs is that the LC molecules tend to align normal to the grating fringe planes.
- the effect of the LC molecule alignment is that transmission SBGs efficiently diffract P polarized light (ie light with the polarization vector in the plane of incidence) but have nearly zero diffraction efficiency for S polarized light (ie light with the polarization vector normal to the plane of incidence.
- Transmission SBGs may not be used at near-grazing incidence as the diffraction efficiency of any grating for P polarization falls to zero when the included angle between the incident and reflected light is small.
- a glass light guide in air will propagate light by total internal reflection if the internal incidence angle is greater than about 42 degrees.
- the invention may be implemented using transmission SBGs if the internal incidence angles are in the range of 42 to about 70 degrees, in which case the light extracted from the light guide by the gratings will be predominantly p-polarized.
- FIG. 1 The objects of the invention are achieved in a first embodiment shown in FIG. 1 comprising a laser 20 for illuminating a microdisplay 30 ; a waveguide 10 comprising transparent lamina 11 - 15 ; a first grating device 41 for coupling light from the laser into a TIR path in the waveguide; a second grating device 45 for coupling light from the TIR path out of the waveguide; and a third grating device 42 for applying a variation of at least one of beam deflection or phase retardation across the wavefronts of the TIR light.
- the third grating device essentially provides despeckling and beam homogenization according to the principles of the SBG array devices disclosed in U.S. Pat. No.
- Input collimated light 100 from the laser is diffracted into a TIR path 101 by the first grating device.
- TIR light 102 incident at the third grating device has at least one of its angle or phase varied across its wavefront to provide despeckled and homogenized light 103 .
- the first grating is sandwiched by transparent lamina 11 , 13 .
- the second grating device is sandwiched by the transparent lamina 12 , 14 .
- the third grating device is sandwiched by the transparent lamina 13 , 15 .
- the lamina which may be glass or optical plastics, are of thickness 500 micron but may be as thin as 100 micron or as thick as 500 micron.
- the layers may have different thicknesses.
- the grating devices are very thin, typically in the range 1.8 to 3 microns.
- the invention does not assume the grating devices lie indifferent layers of the waveguide structure as shown in FIG. 1 .
- the only requirement is that each grating device is sandwiched by two transparent lamina. Desirably, to achieve the thinnest waveguide architecture all three devices would be sandwiched between common transparent lamina.
- TIR proceeds up to the second grating device which diffracts TIR light indicated by 108 out of the waveguide and onto the microdisplay 30 .
- the image modulated light from the microdisplay is then projected into the beam 108 by projection lens 31 .
- the microdisplay is a reflective device.
- the second diffractive device 43 performs the dual functions a beam deflector and a beam splitter according to the principles disclosed in U.S. Pat. No. 6,115,152 by Popovich et al entitled HOLOGRAPHIC ILLUMIMATION SYSTEM.
- the second grating device is an SBG which preferentially diffracts P-polarised light. Despeckled, homogenized P-polarized light 104 is diffracted as light 105 towards the microdisplay 32 which is an LCoS device.
- the image modulated light 106 reflected from the LCoS has its polarization rotated from P to S and consequently is transmitted through the second grating device and without substantial deviation as image light 107 which leaves the waveguide and is projected by the lens 30 into the output beam 108 .
- the third grating device comprises SBG grating lamina (configure as SBG arrays) in various configurations to be described below.
- Transparent electrodes which are not shown in the drawings are applied to portions of transparent lamina sandwiching the grating device gratings. The electrodes substantially overlap the grating device providing electric fields at ninety degrees to the grating lamina.
- the electrodes are transparent interdigitated electrodes which are applied to portions of a transparent lamina overlapping the grating device providing electric fields substantially parallel to the grating lamina.
- the first and second gratings are not required to switch and do not need to SBGs.
- the optical prescription of the third grating device varies along said waveguide.
- the third grating device may comprise more than one grating lamina adjacently disposed along the waveguide.
- the third grating device may also compromise more than one layer.
- the reciprocal gratings pairs are 61 A, 61 B and 62 A, 62 B. If we consider the first pair we see that incident TIR light 11 is diffracted in the direction 112 by grating 61 A and is then diffracted into the direction 113 parallel to the ray direction 112 by the grating 61 B. Note that some of the light incident at each grating is not diffracted and continues to propagate as zero order light. In the case of diffraction at the grating 61 A the 0-oirder light will continue along the TIR path. However, the zero order light at grating 61 B, which will be substantially normal to the grating and consequently below the critical angle for TIR, will leave the waveguide.
- the gratings have high diffraction efficiency. It should be light not diffracted by the first grating 61 A may be out coupled by the second grating 61 B and similarly for the gratings 62 A, 62 B. Additionally, if layer 61 A is diffracting and the desire is to switch layer 61 B clear to increase phase diversity, light will be lost (such as the ray 114 indicated by dashed line). The solution to this problem is to introduce an intermediate non switching grating layer between the gratings 61 A, 62 A (and 62 A, 62 B) as will be discussed later.
- the third grating device comprises two adjacently disposed grating lamina 63 , 64 that each provide weak diffraction or scattering of TIR light.
- incident TIR ray 115 is diffracted into the ray direction 117 and zero order ray direction 116 .
- N multiple despeckler grating interactions within waveguide the despeckling process will benefit from N convolutions of despecklers/diffuser function. Ideally, the same integer number of interactions will occur regardless of which despeckler gratings are switched on/off.
- FIG. 5 shows a detail of the embodiment of FIG. 3 .
- the diffracted light of an incident TIR ray 130 is represented by the rays 131 , 132
- the 0 order light at grating 51 A ie follows the path labelled 133 and 0 order light at grating 51 B is indicated by 134 .
- FIG. 7 which is similar to one shown in FIG. 3 the gratings 56 A, 56 B, which are reciprocal, encode diffusion in addition to their basic beam deflecting properties.
- the procedures for recording diffusing gratings are well known to those skilled in the art of holography.
- the beam diffusion is indicated by the shaded regions 135 , 136 .
- Each beam-grating interaction results in beam angle broadening, resulting in weaker diffraction. While this scheme will enhance despeckling and homogenisation it requires careful design of the grating prescriptions to avoid losses.
- FIG. 8 illustrates one strategy for overcoming 0-order losses in the two layer design.
- the illuminator further comprises a reflector overlapping the third grating device and further comprises a mesoporous layer 53 A of near unity refractive index and a mirror 53 B.
- the third grating device comprises the reciprocal grating pair 51 A, 51 B which provides the diffracted ray path 118 , 119 .
- the 0 order light 120 is reflected by the mirror 53 B in the ray path 121 , 122 which undergoes TIR back to the input end of the waveguide where is reflected at the mirror 73 as indicated by the ray pathes 124 - 126 resuming the original TIR path
- the light diffracted out of the waveguide is bounced back into the waveguide off an external mirror and a mirror at the input end of the WG re-directs the light into the correct TIR direction.
- the mesoporous layer ensures that TIR is maintained for the non diffracted light.
- a quarter wave plate may be disposed in front of the external mirrors.
- the third grating device does not necessarily need to be disposed in the TIR path between the first and second grating devices.
- a third grating device comprising the reciprocal grating pair 57 A, 57 B may be disposed at then input end of the waveguide overlapping the first grating device indicated by 50 .
- the device 58 should be understood to represent any of the despeckling and homogenisation devices disclosed in the present application.
- FIG. 9 indicates that the device may be implemented in as single layer. However, a more typical implementation illustrated in FIG. 10 would use two reciprocal gratings as discussed above.
- the third grating device may be disposed at the output end of the waveguide overlaps the second grating device.
- FIG. 11 shows an embodiment of the invention that increases angular diversity using a randomly scattering surface structure 59 .
- the latter may be a slightly roughened surface.
- the surface structure may comprise a weak blazed grating.
- the illuminator further comprises a reflector 60 disposed on an outer surface of the waveguide and overlapping the third grating device.
- the purpose of the reflector is to redirect zero order light back into the TIR path.
- the reflector may comprise a reflection holographic grating with a diffraction angle equal to the waveguide TIR angle.
- the reflector may comprise a transmission holographic grating with a mirror coating. The grating steers the 0 order light into TIR.
- FIGS. 12B-12C show reflectors comprising a transmission grating 60 A, and a mirror 60 B for two different and opposing grating slant angles indicated by 60 C and 60 D.
- the diffracted light at the TIR angle will be reciprocally out-coupled by the transmission after reflection from the mirror. For example, turning first to FIG.
- zero order light 141 from the grating 57 B is diffracted by the grating 60 A into the path 141 A and is then reflected at the mirror 60 B into off-Bragg path 141 B.
- the directed light 140 from grating 57 B is also diffracted by the grating 60 A, into the path 140 A and is reflected upwards through the waveguide.
- FIG. 12C we see that zero order light 141 from the grating 57 B is off Bragg at the grating 60 A. After reflection at the mirror 60 B the light is on-Bragg and is diffracted by grating 60 A into the direction 141 E.
- Light 140 diffracted by the grating 57 B is off-Bragg at the grating 60 A.
- the light After reflection at the mirror the light is on-Bragg and is diffracted by grating 60 A upwards into the direction 140 E which passes through the waveguide. Note that if the reflection grating is used to cover the left half area under the input light coupling grating only, then no loss of light diffracted light greater than the critical angle will occur.
- FIG. 13 illustrates an embodiment of the invention direction that overcomes the problem of leakage from the waveguide which occurs as a consequence of the increasing angular diversity along the TIR path.
- the reflector could be a reflection hologram or transmission grating 61 and mirror 62 as illustrated.
- the ray 143 which is below the critical angle is diffracted into TIR ray 145 by the hologram.
- the ray 144 which exceeds the critical angle lies outside the grating angular bandwidth is reflected into the ray 146 at the air interface and continues to undergo TIR.
- the third grating device comprises a two dimensional array of SBG elements each element being switched at high speed.
- Transparent electrodes 63 , 64 are applied to overlapping portions of transparent lamina sandwiching the SBG elements. At least one of the electrodes is pixelated into elements 63 substantially overlapping the SBG elements 64 .
- the SBG elements may have varying grating vectors to provide angular diversity beam deflection.
- the grating elements may encode sub wavelength gratings to provide varying phase retardation.
- the diffracting properties of the grating elements may vary with position along the waveguide.
- the third grating device which overlaps the first grating device further comprises 57 A, 57 B 57 C, 5 D.
- the four layers are each optimised for different angular bandwidth ranges to provide high efficiency diffraction over a large field angle.
- a thin wedge is added to the embodiment of FIG. 9 to create a wedged waveguide.
- the wedge angle helps to increase angular diversity.
- the third grating device may be disposed at the output end of the waveguide overlapping the second grating device.
- the third grating device comprise the reciprocal gratings 68 A, 68 B. Implementations of the third grating device may be provided at both the input and output ends of the waveguides as also illustrated in FIG. 17 .
- Further angular and phase diversity despeckling and homogenisation along the waveguide may be provided by the spatially varying birefringence of the SBG; bulk PDLC scattering and surface roughness.
- FIG. 18 is similar to that of FIG. 3 but further comprises a passive non switching grating layer 70 .
- a typical portion of the TIR light path passing through the gratings 61 A, 70 , 61 B is indicated by the rays 151 - 154 . Only the gratings 61 A, 61 B (and 62 A, 62 B) are required to switch. To meet the requirements of reciprocity all gratings diffract at the same angle and each of the switching layers is the inverse of the other. Note also that the invention is not restricted to any particular numbers of reciprocal grating pairs such as 61 A, 61 B. It is also important to remark that the above configuration results in only one drive signal and an inverse function being required.
- FIG. 1 A typical portion of the TIR light path passing through the gratings 61 A, 70 , 61 B is indicated by the rays 151 - 154 . Only the gratings 61 A, 61 B (and 62 A, 62 B)
- FIGS. 19A show the operational states of the three grating layers illustrated in FIG. 18 where the layers labelled by the numerals 71 - 73 are details of the grating layers 61 A, 61 B. Three elements (labelled by A-C) of the grating arrays formed in each layer are shown. Four operational states of the grating elements are shown in FIGS. 19B-19E where element in a diffracting state are shaded as indicated by 74 and elements in a clear or non diffracting state are not shaded as indicted by 75 . Note that the intermediate layer elements are allows in a diffracting state. In each case the light 160 . 170 enters via elements 71 A, 71 B and leaves 180 . 190 via the at elements 73 B, 73 C.
- FIG. 20 illustrates one embodiment of the three grating layer scheme of FIGS. 18-19 which applies the low angle diffraction principle illustrated in FIG. 4 .
- the gratings in the three layer stack comprises the switching gratings 70 A, 70 B and the no switching grating 70 C.
- the ray path from the input coupling grating 50 to the output coupling grating 51 is indicated by the rays 150 - 152 and 200 - 212 .
- the diffusion of light at the upper switching grating 70 A is represented by the rays 200 , 201 at the first interaction and 206 , 207 at the second interaction.
- the diffusion of light at the non switching grating 70 C is represented by the rays 202 , 203 at the first interaction and 208 , 209 at the second interaction.
- the light, generally indicated by 211 , 212 incident at the output grating 51 is diffracted in diffuse output beam indicated by 213 , 214 .
- rays reflected from the lower waveguide face such as 204 are off-Bragg.
- Each grating provides diffraction over a small angular bandwidth centers on the chief ray path, that is, the path in which the rays incident on the active grating exactly satisfy the reciprocity condition. Repeated diffusion by successive beam grating interactions leads to a progressively increasing angle cone.
- the grating 51 Since the angular content of the despeckled light typically remains small it can be efficient output by the grating 51 which advantageously encodes a diffusion function to match the numerical aperture required by the microdisplay. Small sections of the gratings 70 A, 70 B are switching on and off to achieve speckle averaging.
- the grating prescriptions must be optimised to provide a fixed output cone angle and average intensity at the output grating. In other embodiments of the invention more grating layers may be used to provide more speckling averaging states.
- the grating may comprise single lain extending over an appreciable length of the waveguide as shown in FIG. 20 or may be split in to speared space gratings as shown in FIG. 18 . Note that the input and output gratings should be of high efficiency but since they are used in in an illumination system it is not essential that they are reciprocal.
- the gratings may be configured according to the principles of Hadamard diffusers as disclosed in U.S. Pat. No. 8,224,133 with issue date 17 Jul. 2012 entitled LASER ILLUMINATION DEVICE.
- the principles of Hadamard phase plates are well known in the optical data processing literature. Hadamard diffusers offer the advantage of a short phase correlation length allowing the target speckle diversity to be achieved more easily.
- Phase patterns based on N ⁇ N Hadamard matrix allow the eye resolution spot to be partitioned into N ⁇ N phase cells with a prescribed combination of pi and 0 radian phase shifts.
- N 2 Hadamard phase patterns is generated providing considerable economy in terms of the number of phase patterns.
- N 2 independent speckles are produced resulting in speckle contrast reduction by a factor of N.
- the corresponding classical N ⁇ N diffuser using random phase would in theory require an infinite number of phase patterns to achieve the same speckle contrast.
- SBG arrays may be advantageous fort the reasons given above, in some cases, diffuser displacements can easily be achieved using the conventional diffusing structures already discussed. Small size, cost and complexity requirements in certain despeckler applications may limit the number of elements in the array. Where the number of cells is limited a reasonable strategy would be to optimize diffuser characteristics for the number of cells available.
- FIGS. 21-23 illustrates output grating designs for use in the embodiments of FIGS. 18-20 .
- the guided despeckled light is indicated by the rays 220 - 225 with the diffusion resulting from the despeckling gratings, discussed above, and indicated by 221 , 222 and 223 , 224 .
- the grating extracts uniform portions of the despeckled light along its length to provide uniformly diffused despeckled light over the aperture of the microdisplay 44 .
- Such a loss grating is provided by having a refractive index modulation that is relatively low at the end nearest the input end of the waveguide rising to a maximum value at the further end of the grating.
- the output grating is a beam deflector encoding diffusion characteristics to provide illumination over a cone defined by the rays 225 - 227 .
- the cone radius at the illumination plane is indicated by the symbol w and the cone axis indicated by the symbol R is normal to the illumination plane.
- the output grating may also incorporate optical power. In the embodiment of FIG.
- the output grating 77 encodes the properties of the lens indicated by 78 which provides the on-axis illumination cone indicated by ray 233 - 235 and the tilted-in cones represented by 230 - 232 and 236 - 238 .
- FIG. 23 show a further embodiment in which the output grating 79 encodes the properties of the lens indicated by 80 which provides more convergent illumination indicated by ray 240 - 245 where each of the preceding rays is the centre ray of a narrow angle cone such as the one represented by rays 246 - 247 . It should be noted that the embodiments of FIGS. 22-23 require a non-telecentric lens prescription to be recorded into the output grating.
- the output grating may encode a microlens array instead of a diffuser. It is noted that LCoS would be positioned sufficiently far from the LCoS to achieve overlap of adjacent microlenses. It should be apparent to those skilled in the art that many other optical design that combine the prescription of diffusers and lenses may be devised that meet the goals of minimizing the overfill of LCoS, matching the microdisplay numerical aperture.
- the despeckler comprises an input grating comprising a microlens array 79 which comprises independently switchable elements such as the ones indicated by 79 A- 79 D in the inset, and an output grating 51 .
- the equivalent lens array based on refractive elements is shown in FIG. 24B .
- the microlens array forms a despeckled image at the Fourier plane 274 of the lens array.
- the ray path from the microlens array to the Fourier plane is indicated by the rays 270 - 273 .
- the Fourier plane is formed in close proximity to the active surface of the microdisplay 44 .
- the microlens array will typically operate at a relative aperture of F/3.5.
- the laser module comprises a laser source and a beam expander.
- the beam expander is comprises diffractive optical elements.
- the transparent lamina used in the present invention may be implemented using plastic substrates using the materials and processes disclosed in U.S. Provisional Patent Application No. 61/573,066, filed on 24 Aug. 2011 entitled “HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES”.
- the SBGs are recorded in a reverse mode HPDLC material in which the diffracting state of SBG occurs when an electric field is applied across the electrodes.
- An eye tracker based on any of the above-described embodiments may be implemented using reverse mode materials and processes disclosed in U.S. Provisional Patent Application No.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
- This application claims the priority of U.S. Provisional Patent Application No. 61/999,866 with filing date 8 Aug. 2014 entitled WAVEGUIDE LASER ILLUMINATOR INCORPORATING A DESPECKLER.
- This application incorporates by reference in their entireties U.S. Provisional Patent Application No. 61/573,066, filed on 24 Aug. 2011 entitled “HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES”, U.S. Pat. No. 8,224,133 with issue date 17 Jul. 2012 entitled LASER ILLUMINATION DEVICE, PCT Application No.: PCT/GB2010/002023 filed on 2 Nov. 2010 by the present inventors entitled APPARATUS FOR REDUCING LASER SPECKLE, U.S. Provisional Patent Application No. 61/573,121 with filing date 7 Sep. 2011 by the present inventors entitled METHOD AND APPARATUS FOR SWITCHING HPDLC ARRAY DEVICES which is also referenced by the Applicant's docket number SBG105B.
- The present invention relates to an illumination device, and more particularly to a laser illumination device based on electrically switchable Bragg gratings that reduces laser speckle.
- Miniature solid-state lasers are finding their way into a range of display applications. The competitive advantage of lasers results from increased lifetime, lower cost, higher brightness and improved colour gamut. Although lasers offer much more compact illumination solutions than can be provided with conventional sources such as LED the demand for yet more compressed form factors continues unabated. Classical illumination designs using beam splitters and combiners fail to meet the requirements. It is known that delivering laser illumination via waveguide optics can result in 50% reduction in size compared with conventional lens combiner splitter schemes.
- Laser displays suffer from speckle, a sparkly or granular structure seen in uniformly illuminated rough surfaces. Speckle arises from the high spatial and temporal coherence of lasers. Speckle reduces image sharpness and is distracting to the viewer. Several approaches for reducing speckle contrast have been proposed based on spatial and temporal decorrelation of speckle patterns. More precisely, speckle reduction is based on averaging multiple sets of speckle patterns from a speckle surface resolution cell with the averaging taking place over the human eye integration time. Speckle may be characterized by the parameter speckle contrast which is defined as the ratio of the standard deviation of the speckle intensity to the mean speckle intensity. Temporally varying the phase pattern faster than the eye temporal resolution destroys the light spatial coherence, thereby reducing the speckle contrast. Traditionally, the simplest way to reduce speckle has been to use a rotating diffuser to direct incident light into randomly distributed ray directions. The effect is to produce a multiplicity of speckle patterns while maintaining a uniform a time-averaged intensity profile. This type of approach is often referred to as angle diversity. Another approach known as polarization diversity relies on averaging phase shifted speckle patterns. In practice neither approach succeeds in eliminating speckle entirely.
- It is known that speckle may be reduced by using an electro optic device to generate variations in the refractive index profile of material such that the phase fronts of light incident on the device are modulated in phase and or amplitude. U.S. Pat. No. 8,224,133 with issue date 17 Jul. 2012 entitled LASER ILLUMINATION DEVICE discloses a despeckler based on a new type of diffractive electro optical device known as an electrically Switchable Bragg Grating (SBG).
- There is a need for a compact laser illuminator that efficiently combines waveguide optics with a diffractive electro-optical despeckler.
- It is an object of the present invention to provide an compact laser illuminator based on a waveguide that provides despeckled light output.
- The objects of the invention are achieved in a first embodiment comprising a laser; a waveguide comprising at least first and second transparent lamina; a first grating device for coupling light from the laser into a TIR path in the waveguide; a second grating device for coupling light from the TIR path out of the waveguide; and a third grating device for applying a variation of at least one of beam deflection or phase retardation across the wavefronts of the TIR light. The first second and third grating devices are each sandwiched by transparent lamina.
- In one embodiment of the invention the third grating device is electrically switchable. Transparent electrodes are applied to portions of transparent lamina sandwiching the grating device gratings. The electrodes substantially overlap the grating device.
- In one embodiment of the invention the third grating device is electrically switchable. Transparent interdigitated electrodes are applied to portions of a transparent lamina overlapping the grating device.
- In one embodiment of the invention the optical prescription of the third grating device varies along said waveguide.
- In one embodiment of the invention the first and second grating devices are grating lamina.
- In one embodiment of the invention the third grating device comprises more than one grating lamina adjacently disposed along the waveguide.
- In one embodiment of the invention the third grating device comprises a two dimensional array of SBG elements. Transparent electrodes are applied to overlapping portions of transparent lamina sandwiching the SBG elements. At least on of the electrodes is pixelated into elements substantially overlapping the SBG elements.
- In one embodiment of the invention the first and second grating devices are SBGs.
- In one embodiment of the invention the third grating device is a SBG.
- In one embodiment of the invention the illuminator further comprises a fourth grating device for applying variation of at least one of beam deflection or phase retardation across the wavefronts of the TIR light. The third and fourth grating devices overlap. The third and fourth grating devices have identical prescriptions and are configured in a reciprocal sense.
- In one embodiment of the invention the third grating device overlaps the first grating device. In one embodiment of the invention the third grating device overlaps the second grating device.
- In one embodiment of the invention the third grating device is disposed along the TIR path betweens the first and second grating devices.
- In one embodiment of the invention the third grating device diffuses light into the direction of the TIR path.
- In one embodiment of the invention the at least one of the transparent lamina is wedged.
- In one embodiment of the invention at least one end of the waveguide is terminated by a reflector.
- In one embodiment of the invention the illuminator further comprises a reflector disposed adjacent to an external surface of the waveguide. The reflector comprises a transmission grating and a mirror.
- In one embodiment of the invention the at least one end of the waveguide is terminated by a quarter wave plate and a mirror.
- In one embodiment of the invention the second grating device comprises overlapping grating lamina separated by a transparent lamina. One grating lamina diffracts S-polarized light and the other grating lamina diffracts P-polarized light.
- In one embodiment of the invention there is provided an illumination device comprising: a laser; a waveguide comprising at least first and second transparent lamina; a first grating device comprising an array of selectively switchable grating elements; and a second grating device for coupling light from the TIR path out of the waveguide. The first and second grating devices are each sandwiched by the transparent lamina. Each grating element encode a beam deflector for coupling light from the laser into a TIR path in the waveguide and a lens having a Fourier plane in proximity to an illumination plane of the illumination device
- A more complete understanding of the invention can be obtained by considering the following detailed description in conjunction with the accompanying drawings, wherein like index numerals indicate like parts. For purposes of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail.
-
FIG. 1 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 2 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 3 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 4 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 5 is a side elevation view showing a detail of a beam grating interaction in a waveguide despeckler in one embodiment. -
FIG. 6 is a table showing the diffraction efficiency, transmission and waveguide transmission loss for a waveguide despeckler in one embodiment. -
FIG. 7 is a side elevation view showing a detail of a beam grating interaction in a waveguide despeckler in one embodiment. -
FIG. 8 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 9 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 10 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 11 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 12A is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 12B is a side elevation view of a detail of a waveguide despeckler similar to the one illustrated inFIG. 12A showing the interaction of the beam with the input gratings and reflection grating disposed near a reflecting surface of the waveguide. -
FIG. 12C is a side elevation view of a detail of a waveguide despeckler similar to the one illustrated inFIG. 12A showing the interaction of the beam with the input gratings and reflection grating disposed near a reflecting surface of the waveguide. -
FIG. 13 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 14 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 15 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 16 is a side elevation view of a waveguide despeckler incorporating a wedge in one embodiment. -
FIG. 17 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 18 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 19A is a side elevation view of grating configuration used in a waveguide despeckler in one embodiment. -
FIG. 19B illustrates a first operational state of the grating configuration ofFIG. 19A . -
FIG. 19C illustrates a second operational state of the grating configuration ofFIG. 19A . -
FIG. 19D illustrates a third operational state of the grating configuration ofFIG. 19A . -
FIG. 19E illustrates a fourth operational state of the grating configuration ofFIG. 19A . -
FIG. 20 is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 21 is a side elevation view of a detail of waveguide despeckler in one embodiment showing the illumination path through the output grating onto a microdisplay. -
FIG. 22 is a side elevation view of a detail of waveguide despeckler in one embodiment showing the illumination path through the output grating onto a microdisplay. -
FIG. 23 is a side elevation view of a detail of waveguide despeckler in one embodiment showing the illumination path through the output grating onto a microdisplay. -
FIG. 24A is a side elevation view of a waveguide despeckler in one embodiment. -
FIG. 24B is a side elevation view of a microlens array used in some embodiments of the invention. - The invention will now be further described by way of example only with reference to the accompanying drawings.
- It will apparent to those skilled in the art that the present invention may be practiced with some or all of the present invention as disclosed in the following description. For the purposes of explaining the invention well-known features of optical technology known to those skilled in the art of optical design and visual displays have been omitted or simplified in order not to obscure the basic principles of the invention.
- Unless otherwise stated the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention. In the following description the terms light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories.
- Parts of the following description will be presented using terminology commonly employed by those skilled in the art of optical design.
- It should also be noted that in the following description of the invention repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment.
- One important class of diffractive optical elements is based on Switchable Bragg Gratings (SBGs). SBGs are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the film. A volume phase grating is then recorded by illuminating the liquid material (often referred to as the syrup) with two mutually coherent laser beams, which interfere to form a slanted fringe grating structure. During the recording process, the monomers polymerize and the mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating. The resulting volume phase grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the film. When an electric field is applied to the grating via transparent electrodes, the natural orientation of the LC droplets is changed causing the refractive index modulation of the fringes to reduce and the hologram diffraction efficiency to drop to very low levels. Note that the diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range. The device exhibits near 100% efficiency with no voltage applied and essentially zero efficiency with a sufficiently high voltage applied. In certain types of HPDLC devices magnetic fields may be used to control the LC orientation. In certain types of HPDLC phase separation of the LC material from the polymer may be accomplished to such a degree that no discernible droplet structure results.
- SBGs may be used to provide transmission or reflection gratings for free space applications. SBGs may be implemented as waveguide devices in which the HPDLC forms either the waveguide core or an evanescently coupled layer in proximity to the waveguide. In one particular configuration to be referred to here as Substrate Guided Optics (SGO) the parallel glass plates used to form the HPDLC cell provide a total internal reflection (TIR) light guiding structure. Light is “coupled” out of the SBG when the switchable grating diffracts the light at an angle beyond the TIR condition. SGOs are currently of interest in a range of display and sensor applications. Although much of the earlier work on HPDLC has been directed at reflection holograms transmission devices are proving to be much more versatile as optical system building blocks.
- Typically, the HPDLC used in SBGs comprise liquid crystal (LC), monomers, photoinitiator dyes, and coinitiators. The mixture frequently includes a surfactant. The patent and scientific literature contains many examples of material systems and processes that may be used to fabricate SBGs. Two fundamental patents are: U.S. Pat. No. 5,942,157 by Sutherland, and U.S. Pat. No. 5,751,452 by Tanaka et al. both filings describe monomer and liquid crystal material combinations suitable for fabricating SBG devices.
- One of the known attributes of transmission SBGs is that the LC molecules tend to align normal to the grating fringe planes. The effect of the LC molecule alignment is that transmission SBGs efficiently diffract P polarized light (ie light with the polarization vector in the plane of incidence) but have nearly zero diffraction efficiency for S polarized light (ie light with the polarization vector normal to the plane of incidence. Transmission SBGs may not be used at near-grazing incidence as the diffraction efficiency of any grating for P polarization falls to zero when the included angle between the incident and reflected light is small. A glass light guide in air will propagate light by total internal reflection if the internal incidence angle is greater than about 42 degrees. Thus the invention may be implemented using transmission SBGs if the internal incidence angles are in the range of 42 to about 70 degrees, in which case the light extracted from the light guide by the gratings will be predominantly p-polarized.
- The objects of the invention are achieved in a first embodiment shown in
FIG. 1 comprising alaser 20 for illuminating amicrodisplay 30; awaveguide 10 comprising transparent lamina 11-15; a firstgrating device 41 for coupling light from the laser into a TIR path in the waveguide; a secondgrating device 45 for coupling light from the TIR path out of the waveguide; and a thirdgrating device 42 for applying a variation of at least one of beam deflection or phase retardation across the wavefronts of the TIR light. The third grating device essentially provides despeckling and beam homogenization according to the principles of the SBG array devices disclosed in U.S. Pat. No. 8,224,133 by Popovich et al entitled LASER ILLUMINATION DEVICE. Input collimated light 100 from the laser is diffracted into aTIR path 101 by the first grating device. TIR light 102 incident at the third grating device has at least one of its angle or phase varied across its wavefront to provide despeckled andhomogenized light 103. - The first grating is sandwiched by
11,13. The second grating device is sandwiched by thetransparent lamina 12,14. The third grating device is sandwiched by thetransparent lamina 13,15. Note that the thicknesses shown intransparent lamina FIG. 1 are greatly exaggerated. Typically, the lamina, which may be glass or optical plastics, are of thickness 500 micron but may be as thin as 100 micron or as thick as 500 micron. The layers may have different thicknesses. In contrast the grating devices are very thin, typically in the range 1.8 to 3 microns. The invention does not assume the grating devices lie indifferent layers of the waveguide structure as shown inFIG. 1 . The only requirement is that each grating device is sandwiched by two transparent lamina. Desirably, to achieve the thinnest waveguide architecture all three devices would be sandwiched between common transparent lamina. - TIR proceeds up to the second grating device which diffracts TIR light indicated by 108 out of the waveguide and onto the
microdisplay 30. The image modulated light from the microdisplay is then projected into thebeam 108 by projection lens 31. - In one embodiment of the invention shown in
FIG. 2 the microdisplay is a reflective device. In this case the seconddiffractive device 43 performs the dual functions a beam deflector and a beam splitter according to the principles disclosed in U.S. Pat. No. 6,115,152 by Popovich et al entitled HOLOGRAPHIC ILLUMIMATION SYSTEM. In the case ofFIG. 2 the second grating device is an SBG which preferentially diffracts P-polarised light. Despeckled, homogenized P-polarizedlight 104 is diffracted as light 105 towards the microdisplay 32 which is an LCoS device. The image modulated light 106 reflected from the LCoS has its polarization rotated from P to S and consequently is transmitted through the second grating device and without substantial deviation as image light 107 which leaves the waveguide and is projected by thelens 30 into theoutput beam 108. - To simplify the explanation of the invention the individual laminas will not be shown in the following drawings. It will also be assumed that the third grating device comprises SBG grating lamina (configure as SBG arrays) in various configurations to be described below. Transparent electrodes which are not shown in the drawings are applied to portions of transparent lamina sandwiching the grating device gratings. The electrodes substantially overlap the grating device providing electric fields at ninety degrees to the grating lamina.
- In one embodiment of the invention the electrodes are transparent interdigitated electrodes which are applied to portions of a transparent lamina overlapping the grating device providing electric fields substantially parallel to the grating lamina. Normally the first and second gratings are not required to switch and do not need to SBGs. However, it may still be advantages to use non-switching SBGs owing to the higher refractive index modulation from HPDLC and hence higher diffraction efficiency.
- The invention allows several different ways of configuring the third grating device. In one embodiment of the invention the optical prescription of the third grating device varies along said waveguide. The third grating device may comprise more than one grating lamina adjacently disposed along the waveguide. The third grating device may also compromise more than one layer. These features are illustrated in the embodiment of the invention shown in
FIG. 3 where we see that the third grating device uses two reciprocal overlapping SBG layers with each layer comprising two adjacent grating lamina. By reciprocal we mean that the gratings have identical prescriptions so that by symmetry a ray input a give angle leaves the second grating at the same angle after diffraction at each grating. In the case ofFIG. 3 the reciprocal gratings pairs are 61A,61B and 62A,62B. If we consider the first pair we see thatincident TIR light 11 is diffracted in thedirection 112 by grating 61A and is then diffracted into thedirection 113 parallel to theray direction 112 by the grating 61B. Note that some of the light incident at each grating is not diffracted and continues to propagate as zero order light. In the case of diffraction at the grating 61A the 0-oirder light will continue along the TIR path. However, the zero order light at grating 61B, which will be substantially normal to the grating and consequently below the critical angle for TIR, will leave the waveguide. To minimise such losses it is desirable that the gratings have high diffraction efficiency. It should be light not diffracted by the first grating 61A may be out coupled by thesecond grating 61B and similarly for the 62A,62B. Additionally, ifgratings layer 61A is diffracting and the desire is to switchlayer 61B clear to increase phase diversity, light will be lost (such as theray 114 indicated by dashed line). The solution to this problem is to introduce an intermediate non switching grating layer between the 61A,62A (and 62A,62B) as will be discussed later.gratings - In the embodiment of the invention shown in
FIG. 4 the third grating device comprises two adjacently disposed grating 63,64 that each provide weak diffraction or scattering of TIR light. Hencelamina incident TIR ray 115 is diffracted into theray direction 117 and zeroorder ray direction 116. Where there are multiple (N) despeckler grating interactions within waveguide the despeckling process will benefit from N convolutions of despecklers/diffuser function. Ideally, the same integer number of interactions will occur regardless of which despeckler gratings are switched on/off. -
FIG. 5 shows a detail of the embodiment ofFIG. 3 . The diffracted light of anincident TIR ray 130 is represented by the 131,132 The 0 order light at grating 51A ie follows the path labelled 133 and 0 order light at grating 51B is indicated by 134.rays FIG. 6 is a table shows the light loss per TIR bounce for different SBG efficiencies where the transmission T at each bounce is given by the formula T=(1-DE)+DE2 where DE is the diffraction efficiecny. Ignoring absorption, scatter and other losses the transmission loss at each bounce is then equal to 1-T. - In one embodiment of the invention shown in
FIG. 7 which is similar to one shown inFIG. 3 the 56A,56B, which are reciprocal, encode diffusion in addition to their basic beam deflecting properties. The procedures for recording diffusing gratings are well known to those skilled in the art of holography. The beam diffusion is indicated by the shadedgratings 135,136. Each beam-grating interaction results in beam angle broadening, resulting in weaker diffraction. While this scheme will enhance despeckling and homogenisation it requires careful design of the grating prescriptions to avoid losses.regions -
FIG. 8 illustrates one strategy for overcoming 0-order losses in the two layer design. The illuminator further comprises a reflector overlapping the third grating device and further comprises amesoporous layer 53A of near unity refractive index and amirror 53B. The third grating device comprises the reciprocal 51A, 51B which provides the diffractedgrating pair 118,119. The 0ray path order light 120 is reflected by themirror 53B in the 121,122 which undergoes TIR back to the input end of the waveguide where is reflected at theray path mirror 73 as indicated by the ray pathes 124-126 resuming the original TIR path - The light diffracted out of the waveguide is bounced back into the waveguide off an external mirror and a mirror at the input end of the WG re-directs the light into the correct TIR direction. The mesoporous layer ensures that TIR is maintained for the non diffracted light. To counter the risk is that light may get diffracted out again by the input grating a quarter wave plate may be disposed in front of the external mirrors.
- The third grating device does not necessarily need to be disposed in the TIR path between the first and second grating devices. As shown in
FIG. 9 , a third grating device comprising the reciprocal 57A,57B may be disposed at then input end of the waveguide overlapping the first grating device indicated by 50. By adding a further despeckling and homogenising gatinggrating pair device 58 it is possible to achieve better control of speckle contrast and beam homogeneity. Thedevice 58 should be understood to represent any of the despeckling and homogenisation devices disclosed in the present application.FIG. 9 indicates that the device may be implemented in as single layer. However, a more typical implementation illustrated inFIG. 10 would use two reciprocal gratings as discussed above. In one embodiment of the invention the third grating device may be disposed at the output end of the waveguide overlaps the second grating device. -
FIG. 11 shows an embodiment of the invention that increases angular diversity using a randomly scatteringsurface structure 59. The latter may be a slightly roughened surface. Alternately the surface structure may comprise a weak blazed grating. In the embodiment of the invention shown inFIG. 12A the illuminator further comprises areflector 60 disposed on an outer surface of the waveguide and overlapping the third grating device. The purpose of the reflector is to redirect zero order light back into the TIR path. The reflector may comprise a reflection holographic grating with a diffraction angle equal to the waveguide TIR angle. Alternatively, the reflector may comprise a transmission holographic grating with a mirror coating. The grating steers the 0 order light into TIR. Since this light will be off-Bragg after being reflected at the mirror coating it is not diffracted and re-enters the waveguide at the TIR angle. However, grating reciprocity issues can arise in such embodiments as indicated inFIGS. 12B-12C which show reflectors comprising a transmission grating 60A, and amirror 60B for two different and opposing grating slant angles indicated by 60C and 60D. In such cases the diffracted light at the TIR angle will be reciprocally out-coupled by the transmission after reflection from the mirror. For example, turning first toFIG. 12B we see that zero order light 141 from the grating 57B is diffracted by the grating 60A into thepath 141A and is then reflected at themirror 60B into off-Bragg path 141B. The directed light 140 from grating 57B is also diffracted by the grating 60A, into thepath 140A and is reflected upwards through the waveguide. Referring next toFIG. 12C we see that zero order light 141 from the grating 57B is off Bragg at the grating 60A. After reflection at themirror 60B the light is on-Bragg and is diffracted by grating 60A into thedirection 141E.Light 140 diffracted by the grating 57B is off-Bragg at the grating 60A. After reflection at the mirror the light is on-Bragg and is diffracted by grating 60A upwards into thedirection 140E which passes through the waveguide. Note that if the reflection grating is used to cover the left half area under the input light coupling grating only, then no loss of light diffracted light greater than the critical angle will occur. -
FIG. 13 illustrates an embodiment of the invention direction that overcomes the problem of leakage from the waveguide which occurs as a consequence of the increasing angular diversity along the TIR path. Again, the reflector could be a reflection hologram or transmission grating 61 andmirror 62 as illustrated. Theray 143 which is below the critical angle is diffracted intoTIR ray 145 by the hologram. Theray 144 which exceeds the critical angle lies outside the grating angular bandwidth is reflected into theray 146 at the air interface and continues to undergo TIR. - In one embodiment of the invention shown in
FIG. 14 the third grating device comprises a two dimensional array of SBG elements each element being switched at high speed. 63,64 are applied to overlapping portions of transparent lamina sandwiching the SBG elements. At least one of the electrodes is pixelated intoTransparent electrodes elements 63 substantially overlapping theSBG elements 64. The SBG elements may have varying grating vectors to provide angular diversity beam deflection. Alternatively, the grating elements may encode sub wavelength gratings to provide varying phase retardation. The diffracting properties of the grating elements may vary with position along the waveguide. In one embodiment of the invention shown inFIG. 15 the third grating device which overlaps the first grating device further comprises 57A,57 B 57C,5D. The four layers are each optimised for different angular bandwidth ranges to provide high efficiency diffraction over a large field angle. - In one embodiment of the invention shown in
FIG. 16 a thin wedge is added to the embodiment ofFIG. 9 to create a wedged waveguide. The wedge angle helps to increase angular diversity. In one embodiment of the invention the third grating device may be disposed at the output end of the waveguide overlapping the second grating device. As shown inFIG. 17 the third grating device comprise the 68A, 68B. Implementations of the third grating device may be provided at both the input and output ends of the waveguides as also illustrated inreciprocal gratings FIG. 17 . Further angular and phase diversity despeckling and homogenisation along the waveguide may be provided by the spatially varying birefringence of the SBG; bulk PDLC scattering and surface roughness. - The embodiment of
FIG. 18 is similar to that ofFIG. 3 but further comprises a passive non switching grating layer 70. A typical portion of the TIR light path passing through the 61A, 70,61B is indicated by the rays 151-154. Only thegratings 61A,61B (and 62A,62B) are required to switch. To meet the requirements of reciprocity all gratings diffract at the same angle and each of the switching layers is the inverse of the other. Note also that the invention is not restricted to any particular numbers of reciprocal grating pairs such as 61A,61B. It is also important to remark that the above configuration results in only one drive signal and an inverse function being required.gratings FIG. 19A show the operational states of the three grating layers illustrated inFIG. 18 where the layers labelled by the numerals 71-73 are details of the 61A,61B. Three elements (labelled by A-C) of the grating arrays formed in each layer are shown. Four operational states of the grating elements are shown ingrating layers FIGS. 19B-19E where element in a diffracting state are shaded as indicated by 74 and elements in a clear or non diffracting state are not shaded as indicted by 75. Note that the intermediate layer elements are allows in a diffracting state. In each case the light 160.170 enters via 71A, 71B and leaves 180.190 via the atelements 73B, 73C. There are therefore 2 paths for any one given cell or 2 modes per element. For example inelements FIG. 19B the paths from 71A, 71B are indicated by 160,161,162,180 and 170,171,172,190. The alternative path fromelements cell 71A as shown inFIG. 19C is 160,163,164,190. It should be apparent from the study ofFIG. 19 that the number of possible modes for light entering the 71A,71B as illustrated is 2N where N=2, that is 22=4 modes. This is equivalent to 4 different phase states that can be used for speckle averaging. The number of states increases dramatically as we increased the array size. For example with 30 columns, following the logic ofelements FIG. 19 , we have 230 (ie over 1 billion) possible modes. -
FIG. 20 illustrates one embodiment of the three grating layer scheme ofFIGS. 18-19 which applies the low angle diffraction principle illustrated inFIG. 4 . The gratings in the three layer stack comprises the switching 70A,70B and the no switching grating 70C. The ray path from the input coupling grating 50 to the output coupling grating 51 is indicated by the rays 150-152 and 200-212. The diffusion of light at the upper switching grating 70A is represented by thegratings 200,201 at the first interaction and 206,207 at the second interaction. The diffusion of light at the non switching grating 70C is represented by therays 202,203 at the first interaction and 208,209 at the second interaction. The light, generally indicated by 211,212 incident at the output grating 51 is diffracted in diffuse output beam indicated by 213,214. Note that rays reflected from the lower waveguide face such as 204 are off-Bragg. Each grating provides diffraction over a small angular bandwidth centers on the chief ray path, that is, the path in which the rays incident on the active grating exactly satisfy the reciprocity condition. Repeated diffusion by successive beam grating interactions leads to a progressively increasing angle cone. Since the angular content of the despeckled light typically remains small it can be efficient output by the grating 51 which advantageously encodes a diffusion function to match the numerical aperture required by the microdisplay. Small sections of therays 70A,70B are switching on and off to achieve speckle averaging. The grating prescriptions must be optimised to provide a fixed output cone angle and average intensity at the output grating. In other embodiments of the invention more grating layers may be used to provide more speckling averaging states. The grating may comprise single lain extending over an appreciable length of the waveguide as shown ingratings FIG. 20 or may be split in to speared space gratings as shown inFIG. 18 . Note that the input and output gratings should be of high efficiency but since they are used in in an illumination system it is not essential that they are reciprocal. - Approaches to speckle reduction based on diffusion suffer from the problem that assigning random phases to each speckle cell will require a large number of phase patterns to achieve the maximum theoretical speckle reduction. In one embodiment of the invention the gratings may be configured according to the principles of Hadamard diffusers as disclosed in U.S. Pat. No. 8,224,133 with issue date 17 Jul. 2012 entitled LASER ILLUMINATION DEVICE. The principles of Hadamard phase plates are well known in the optical data processing literature. Hadamard diffusers offer the advantage of a short phase correlation length allowing the target speckle diversity to be achieved more easily. Phase patterns based on N×N Hadamard matrix allow the eye resolution spot to be partitioned into N×N phase cells with a prescribed combination of pi and 0 radian phase shifts. By providing the permutations of rows and columns according to Hadamard theory a set of N2 Hadamard phase patterns is generated providing considerable economy in terms of the number of phase patterns. When these phase patterns are presented within the eye integration time with equal weight N2 independent speckles are produced resulting in speckle contrast reduction by a factor of N. The corresponding classical N×N diffuser using random phase would in theory require an infinite number of phase patterns to achieve the same speckle contrast. Although configuring SBG arrays to operate as Hadamard diffusers may be advantageous fort the reasons given above, in some cases, diffuser displacements can easily be achieved using the conventional diffusing structures already discussed. Small size, cost and complexity requirements in certain despeckler applications may limit the number of elements in the array. Where the number of cells is limited a reasonable strategy would be to optimize diffuser characteristics for the number of cells available.
-
FIGS. 21-23 illustrates output grating designs for use in the embodiments ofFIGS. 18-20 . The guided despeckled light is indicated by the rays 220-225 with the diffusion resulting from the despeckling gratings, discussed above, and indicated by 221,222 and 223,224. The grating extracts uniform portions of the despeckled light along its length to provide uniformly diffused despeckled light over the aperture of themicrodisplay 44. Such a loss grating is provided by having a refractive index modulation that is relatively low at the end nearest the input end of the waveguide rising to a maximum value at the further end of the grating. Depending on the exact shape of the output illumination profile may possible index modulation versus spatial location prescription may be used. In the embodiment illustrated inFIG. 21 the output grating is a beam deflector encoding diffusion characteristics to provide illumination over a cone defined by the rays 225-227. The cone radius at the illumination plane (ie microdisplay active surface) is indicated by the symbol w and the cone axis indicated by the symbol R is normal to the illumination plane. To minimize the overfull of the microdisplay the output grating may also incorporate optical power. In the embodiment ofFIG. 22 the output grating 77 encodes the properties of the lens indicated by 78 which provides the on-axis illumination cone indicated by ray 233-235 and the tilted-in cones represented by 230-232 and 236-238.FIG. 23 show a further embodiment in which the output grating 79 encodes the properties of the lens indicated by 80 which provides more convergent illumination indicated by ray 240-245 where each of the preceding rays is the centre ray of a narrow angle cone such as the one represented by rays 246-247. It should be noted that the embodiments ofFIGS. 22-23 require a non-telecentric lens prescription to be recorded into the output grating. In one embodiment of the invention the output grating may encode a microlens array instead of a diffuser. It is noted that LCoS would be positioned sufficiently far from the LCoS to achieve overlap of adjacent microlenses. It should be apparent to those skilled in the art that many other optical design that combine the prescription of diffusers and lenses may be devised that meet the goals of minimizing the overfill of LCoS, matching the microdisplay numerical aperture. - In one embodiment of the invention there is provided a waveguide despeckler which overcomes subjective speckle. As shown in
FIG. 24A the despeckler comprises an input grating comprising amicrolens array 79 which comprises independently switchable elements such as the ones indicated by 79A-79D in the inset, and anoutput grating 51. The equivalent lens array based on refractive elements is shown inFIG. 24B . The microlens array forms a despeckled image at theFourier plane 274 of the lens array. The ray path from the microlens array to the Fourier plane is indicated by the rays 270-273. The Fourier plane is formed in close proximity to the active surface of themicrodisplay 44. The microlens array will typically operate at a relative aperture of F/3.5. - In one embodiment of the invention the laser module comprises a laser source and a beam expander. Advantageously, the beam expander is comprises diffractive optical elements. The transparent lamina used in the present invention may be implemented using plastic substrates using the materials and processes disclosed in U.S. Provisional Patent Application No. 61/573,066, filed on 24 Aug. 2011 entitled “HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES”. Advantageously, the SBGs are recorded in a reverse mode HPDLC material in which the diffracting state of SBG occurs when an electric field is applied across the electrodes. An eye tracker based on any of the above-described embodiments may be implemented using reverse mode materials and processes disclosed in U.S. Provisional Patent Application No. 61/573,066, filed on 24 Aug. 2011 entitled “HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES”. However, the invention does not assume any particular type of SBG. The method of fabricating the SBG pixel elements and the ITO electrodes used in any of the above-described embodiments of the invention may be based on the process disclosed in the PCT Application No. US2006/043938, entitled METHOD AND APPARATUS FOR PROVIDING A TRANSPARENT DISPLAY.
- It should be understood by those skilled in the art that while the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. Various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/502,583 US10670876B2 (en) | 2011-08-24 | 2015-08-04 | Waveguide laser illuminator incorporating a despeckler |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161573066P | 2011-08-24 | 2011-08-24 | |
| US201461999866P | 2014-08-08 | 2014-08-08 | |
| PCT/GB2015/000225 WO2016020630A2 (en) | 2014-08-08 | 2015-08-04 | Waveguide laser illuminator incorporating a despeckler |
| US15/502,583 US10670876B2 (en) | 2011-08-24 | 2015-08-04 | Waveguide laser illuminator incorporating a despeckler |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2015/000225 A-371-Of-International WO2016020630A2 (en) | 2011-08-24 | 2015-08-04 | Waveguide laser illuminator incorporating a despeckler |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/888,360 Continuation US11106048B2 (en) | 2014-08-08 | 2020-05-29 | Waveguide laser illuminator incorporating a despeckler |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20170219841A1 true US20170219841A1 (en) | 2017-08-03 |
| US10670876B2 US10670876B2 (en) | 2020-06-02 |
Family
ID=59387499
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/502,583 Active 2036-05-24 US10670876B2 (en) | 2011-08-24 | 2015-08-04 | Waveguide laser illuminator incorporating a despeckler |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US10670876B2 (en) |
Cited By (90)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10089516B2 (en) | 2013-07-31 | 2018-10-02 | Digilens, Inc. | Method and apparatus for contact image sensing |
| US10145533B2 (en) | 2005-11-11 | 2018-12-04 | Digilens, Inc. | Compact holographic illumination device |
| US10156681B2 (en) | 2015-02-12 | 2018-12-18 | Digilens Inc. | Waveguide grating device |
| US10185154B2 (en) | 2011-04-07 | 2019-01-22 | Digilens, Inc. | Laser despeckler based on angular diversity |
| US10209517B2 (en) | 2013-05-20 | 2019-02-19 | Digilens, Inc. | Holographic waveguide eye tracker |
| US10216061B2 (en) | 2012-01-06 | 2019-02-26 | Digilens, Inc. | Contact image sensor using switchable bragg gratings |
| US10234696B2 (en) | 2007-07-26 | 2019-03-19 | Digilens, Inc. | Optical apparatus for recording a holographic device and method of recording |
| US10241330B2 (en) | 2014-09-19 | 2019-03-26 | Digilens, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
| US10330777B2 (en) | 2015-01-20 | 2019-06-25 | Digilens Inc. | Holographic waveguide lidar |
| US10359736B2 (en) | 2014-08-08 | 2019-07-23 | Digilens Inc. | Method for holographic mastering and replication |
| US10409144B2 (en) | 2009-10-09 | 2019-09-10 | Digilens Inc. | Diffractive waveguide providing structured illumination for object detection |
| US10423222B2 (en) | 2014-09-26 | 2019-09-24 | Digilens Inc. | Holographic waveguide optical tracker |
| US10437064B2 (en) | 2015-01-12 | 2019-10-08 | Digilens Inc. | Environmentally isolated waveguide display |
| US10437051B2 (en) | 2012-05-11 | 2019-10-08 | Digilens Inc. | Apparatus for eye tracking |
| US10459145B2 (en) | 2015-03-16 | 2019-10-29 | Digilens Inc. | Waveguide device incorporating a light pipe |
| US20200012044A1 (en) * | 2017-01-23 | 2020-01-09 | Magic Leap, Inc. | Eyepiece for virtual, augmented, or mixed reality systems |
| US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
| US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
| US10642058B2 (en) | 2011-08-24 | 2020-05-05 | Digilens Inc. | Wearable data display |
| US10678053B2 (en) | 2009-04-27 | 2020-06-09 | Digilens Inc. | Diffractive projection apparatus |
| US10690916B2 (en) | 2015-10-05 | 2020-06-23 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
| US10690851B2 (en) | 2018-03-16 | 2020-06-23 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
| US10732569B2 (en) | 2018-01-08 | 2020-08-04 | Digilens Inc. | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
| WO2020163524A1 (en) * | 2019-02-05 | 2020-08-13 | Digilens Inc. | Methods for compensating for optical surface nonuniformity |
| KR20200115528A (en) * | 2018-02-06 | 2020-10-07 | 디스페릭스 오와이 | Diffraction display element with grating mirror |
| WO2020219092A1 (en) * | 2019-04-26 | 2020-10-29 | Digilens Inc. | Holographic waveguide illumination homogenizers |
| US10852547B2 (en) | 2017-12-15 | 2020-12-01 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US10859768B2 (en) | 2016-03-24 | 2020-12-08 | Digilens Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
| US10890707B2 (en) | 2016-04-11 | 2021-01-12 | Digilens Inc. | Holographic waveguide apparatus for structured light projection |
| US10914950B2 (en) | 2018-01-08 | 2021-02-09 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
| US10942430B2 (en) | 2017-10-16 | 2021-03-09 | Digilens Inc. | Systems and methods for multiplying the image resolution of a pixelated display |
| CN112485957A (en) * | 2019-09-12 | 2021-03-12 | 扬明光学股份有限公司 | Light source module |
| US10983340B2 (en) | 2016-02-04 | 2021-04-20 | Digilens Inc. | Holographic waveguide optical tracker |
| US11054566B2 (en) | 2019-10-25 | 2021-07-06 | Facebook Technologies, Llc | Display waveguide with a high-index layer |
| US11106048B2 (en) | 2014-08-08 | 2021-08-31 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
| WO2021169407A1 (en) * | 2020-02-28 | 2021-09-02 | 苏州苏大维格科技集团股份有限公司 | Optical waveguide lens and augmented reality display device |
| WO2021242898A1 (en) * | 2020-05-26 | 2021-12-02 | Digilens Inc. | Eyed glow suppression in waveguide based displays |
| US11204540B2 (en) | 2009-10-09 | 2021-12-21 | Digilens Inc. | Diffractive waveguide providing a retinal image |
| EP3943996A1 (en) * | 2020-07-22 | 2022-01-26 | Samsung Electronics Co., Ltd. | Beam expander and method of operating the same |
| US11237393B2 (en) | 2018-11-20 | 2022-02-01 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11347960B2 (en) | 2015-02-26 | 2022-05-31 | Magic Leap, Inc. | Apparatus for a near-eye display |
| US11378732B2 (en) | 2019-03-12 | 2022-07-05 | DigLens Inc. | Holographic waveguide backlight and related methods of manufacturing |
| US11378864B2 (en) * | 2016-11-18 | 2022-07-05 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
| US11402801B2 (en) | 2018-07-25 | 2022-08-02 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
| US11425189B2 (en) | 2019-02-06 | 2022-08-23 | Magic Leap, Inc. | Target intent-based clock speed determination and adjustment to limit total heat generated by multiple processors |
| US11428859B2 (en) | 2016-08-22 | 2022-08-30 | Magic Leap, Inc. | Projector architecture incorporating artifact mitigation |
| US11442222B2 (en) | 2019-08-29 | 2022-09-13 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
| US11445232B2 (en) | 2019-05-01 | 2022-09-13 | Magic Leap, Inc. | Content provisioning system and method |
| US11448937B2 (en) | 2012-11-16 | 2022-09-20 | Digilens Inc. | Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles |
| US11460621B2 (en) | 2012-04-25 | 2022-10-04 | Rockwell Collins, Inc. | Holographic wide angle display |
| US11480788B2 (en) | 2015-01-12 | 2022-10-25 | Digilens Inc. | Light field displays incorporating holographic waveguides |
| US11510027B2 (en) | 2018-07-03 | 2022-11-22 | Magic Leap, Inc. | Systems and methods for virtual and augmented reality |
| US11513350B2 (en) | 2016-12-02 | 2022-11-29 | Digilens Inc. | Waveguide device with uniform output illumination |
| US11514673B2 (en) | 2019-07-26 | 2022-11-29 | Magic Leap, Inc. | Systems and methods for augmented reality |
| US11521296B2 (en) | 2018-11-16 | 2022-12-06 | Magic Leap, Inc. | Image size triggered clarification to maintain image sharpness |
| US11543594B2 (en) | 2019-02-15 | 2023-01-03 | Digilens Inc. | Methods and apparatuses for providing a holographic waveguide display using integrated gratings |
| US11567324B2 (en) * | 2017-07-26 | 2023-01-31 | Magic Leap, Inc. | Exit pupil expander |
| US11579441B2 (en) | 2018-07-02 | 2023-02-14 | Magic Leap, Inc. | Pixel intensity modulation using modifying gain values |
| US11598651B2 (en) | 2018-07-24 | 2023-03-07 | Magic Leap, Inc. | Temperature dependent calibration of movement detection devices |
| US11609645B2 (en) | 2018-08-03 | 2023-03-21 | Magic Leap, Inc. | Unfused pose-based drift correction of a fused pose of a totem in a user interaction system |
| US11624929B2 (en) | 2018-07-24 | 2023-04-11 | Magic Leap, Inc. | Viewing device with dust seal integration |
| US11630507B2 (en) | 2018-08-02 | 2023-04-18 | Magic Leap, Inc. | Viewing system with interpupillary distance compensation based on head motion |
| US11650423B2 (en) | 2019-06-20 | 2023-05-16 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11681143B2 (en) | 2019-07-29 | 2023-06-20 | Digilens Inc. | Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display |
| US11709363B1 (en) | 2020-02-10 | 2023-07-25 | Avegant Corp. | Waveguide illumination of a spatial light modulator |
| US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
| US11737832B2 (en) | 2019-11-15 | 2023-08-29 | Magic Leap, Inc. | Viewing system for use in a surgical environment |
| US11747568B2 (en) | 2019-06-07 | 2023-09-05 | Digilens Inc. | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing |
| US11762222B2 (en) | 2017-12-20 | 2023-09-19 | Magic Leap, Inc. | Insert for augmented reality viewing device |
| US11762623B2 (en) | 2019-03-12 | 2023-09-19 | Magic Leap, Inc. | Registration of local content between first and second augmented reality viewers |
| US11776509B2 (en) | 2018-03-15 | 2023-10-03 | Magic Leap, Inc. | Image correction due to deformation of components of a viewing device |
| US11790554B2 (en) | 2016-12-29 | 2023-10-17 | Magic Leap, Inc. | Systems and methods for augmented reality |
| US11856479B2 (en) | 2018-07-03 | 2023-12-26 | Magic Leap, Inc. | Systems and methods for virtual and augmented reality along a route with markers |
| US11860366B2 (en) | 2020-09-29 | 2024-01-02 | Avegant Corp. | Architecture to illuminate a display panel |
| US11874468B2 (en) | 2016-12-30 | 2024-01-16 | Magic Leap, Inc. | Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light |
| US11885871B2 (en) | 2018-05-31 | 2024-01-30 | Magic Leap, Inc. | Radar head pose localization |
| US11953653B2 (en) | 2017-12-10 | 2024-04-09 | Magic Leap, Inc. | Anti-reflective coatings on optical waveguides |
| US12016719B2 (en) | 2018-08-22 | 2024-06-25 | Magic Leap, Inc. | Patient viewing system |
| US12033081B2 (en) | 2019-11-14 | 2024-07-09 | Magic Leap, Inc. | Systems and methods for virtual and augmented reality |
| US12044851B2 (en) | 2018-12-21 | 2024-07-23 | Magic Leap, Inc. | Air pocket structures for promoting total internal reflection in a waveguide |
| US12092914B2 (en) | 2018-01-08 | 2024-09-17 | Digilens Inc. | Systems and methods for manufacturing waveguide cells |
| US12140764B2 (en) | 2019-02-15 | 2024-11-12 | Digilens Inc. | Wide angle waveguide display |
| US12147047B1 (en) * | 2022-07-18 | 2024-11-19 | Meta Platforms, Inc. | Methods, apparatuses and computer program products for providing transmission chirped volume bragg grating based compact waveguide in-couplers for light sources |
| US12158612B2 (en) | 2021-03-05 | 2024-12-03 | Digilens Inc. | Evacuated periodic structures and methods of manufacturing |
| US12164978B2 (en) | 2018-07-10 | 2024-12-10 | Magic Leap, Inc. | Thread weave for cross-instruction set architecture procedure calls |
| US12210153B2 (en) | 2019-01-14 | 2025-01-28 | Digilens Inc. | Holographic waveguide display with light control layer |
| US12222499B2 (en) | 2020-12-21 | 2025-02-11 | Digilens Inc. | Eye glow suppression in waveguide based displays |
| US12306585B2 (en) | 2018-01-08 | 2025-05-20 | Digilens Inc. | Methods for fabricating optical waveguides |
| US12372708B2 (en) * | 2021-10-08 | 2025-07-29 | Samsung Electronics Co., Ltd. | Waveguide and augmented reality device employing the same |
| US12399326B2 (en) | 2021-01-07 | 2025-08-26 | Digilens Inc. | Grating structures for color waveguides |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102018200626A1 (en) * | 2018-01-16 | 2019-07-18 | Robert Bosch Gmbh | Detection device for the detection of dirt |
| CN112867959B (en) * | 2018-07-02 | 2023-08-04 | 伊奎蒂公司 | Waveguide steering grating design for optimal efficiency |
| US11372246B2 (en) * | 2019-02-22 | 2022-06-28 | Facebook Technologies, Llc | Near-eye display system having optical combiner |
| CN114114518A (en) * | 2020-08-28 | 2022-03-01 | 中强光电股份有限公司 | Optical waveguide, method for manufacturing optical waveguide, and head-mounted display device |
| US11709422B2 (en) | 2020-09-17 | 2023-07-25 | Meta Platforms Technologies, Llc | Gray-tone lithography for precise control of grating etch depth |
| CN115373064A (en) | 2021-05-20 | 2022-11-22 | 中强光电股份有限公司 | Optical waveguide |
| TWI857888B (en) * | 2023-12-18 | 2024-10-01 | 國立中央大學 | Spectrometer system with volume holographic light guide element |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030003891A1 (en) * | 2001-07-02 | 2003-01-02 | Nokia Corporation | Method to improve I/Q-amplitude balance and receiver quadrature channel performance |
| US20100020272A1 (en) * | 2006-09-08 | 2010-01-28 | Tae-Su Kim | Mirror effect liquid crystal display device using reflection polarizer |
| US20120021848A1 (en) * | 2009-12-16 | 2012-01-26 | Callaway Golf Company | Golf club head with composite weight port |
Family Cites Families (1151)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001242411A (en) | 1999-05-10 | 2001-09-07 | Asahi Glass Co Ltd | Hologram display device |
| US1043938A (en) | 1911-08-17 | 1912-11-12 | Friedrich Huttenlocher | Safety device for gas-lamps. |
| US2141884A (en) | 1936-11-12 | 1938-12-27 | Zeiss Carl Fa | Photographic objective |
| US3482498A (en) | 1967-05-09 | 1969-12-09 | Trw Inc | Ridge pattern recording apparatus |
| GB1332433A (en) | 1969-10-24 | 1973-10-03 | Smiths Industries Ltd | Head-up display apparatus |
| DE2115312C3 (en) | 1971-03-30 | 1975-06-26 | Hoechst Ag, 6000 Frankfurt | Heatable spinning shaft |
| US3843231A (en) | 1971-04-22 | 1974-10-22 | Commissariat Energie Atomique | Liquid crystal diffraction grating |
| US3851303A (en) | 1972-11-17 | 1974-11-26 | Sundstrand Data Control | Head up display and pitch generator |
| US3885095A (en) | 1973-04-30 | 1975-05-20 | Hughes Aircraft Co | Combined head-up multisensor display |
| US3965029A (en) | 1974-02-04 | 1976-06-22 | Kent State University | Liquid crystal materials |
| US3975711A (en) | 1974-08-30 | 1976-08-17 | Sperry Rand Corporation | Real time fingerprint recording terminal |
| US4066334A (en) | 1975-01-06 | 1978-01-03 | National Research Development Corporation | Liquid crystal light deflector |
| US4082432A (en) | 1975-01-09 | 1978-04-04 | Sundstrand Data Control, Inc. | Head-up visual display system using on-axis optics with image window at the focal plane of the collimating mirror |
| US3940204A (en) | 1975-01-23 | 1976-02-24 | Hughes Aircraft Company | Optical display systems utilizing holographic lenses |
| US4035068A (en) | 1975-06-25 | 1977-07-12 | Xerox Corporation | Speckle minimization in projection displays by reducing spatial coherence of the image light |
| GB1525573A (en) | 1975-09-13 | 1978-09-20 | Pilkington Perkin Elmer Ltd | Lenses |
| US4099841A (en) | 1976-06-30 | 1978-07-11 | Elliott Brothers (London) Limited | Head up displays using optical combiner with three or more partially reflective films |
| GB1584268A (en) | 1977-03-28 | 1981-02-11 | Elliott Brothers London Ltd | Head-up displays |
| US4251137A (en) | 1977-09-28 | 1981-02-17 | Rca Corporation | Tunable diffractive subtractive filter |
| US4322163A (en) | 1977-10-25 | 1982-03-30 | Fingermatrix Inc. | Finger identification |
| US4218111A (en) | 1978-07-10 | 1980-08-19 | Hughes Aircraft Company | Holographic head-up displays |
| GB2041562B (en) | 1978-12-21 | 1983-09-01 | Redifon Simulation Ltd | Visual display apparatus |
| DE3000402A1 (en) | 1979-01-19 | 1980-07-31 | Smiths Industries Ltd | DISPLAY DEVICE |
| US4248093A (en) | 1979-04-13 | 1981-02-03 | The Boeing Company | Holographic resolution of complex sound fields |
| US4389612A (en) | 1980-06-17 | 1983-06-21 | S.H.E. Corporation | Apparatus for reducing low frequency noise in dc biased SQUIDS |
| GB2182159B (en) | 1980-08-21 | 1987-10-14 | Secr Defence | Head-up displays |
| US4403189A (en) | 1980-08-25 | 1983-09-06 | S.H.E. Corporation | Superconducting quantum interference device having thin film Josephson junctions |
| US4386361A (en) | 1980-09-26 | 1983-05-31 | S.H.E. Corporation | Thin film SQUID with low inductance |
| US4544267A (en) | 1980-11-25 | 1985-10-01 | Fingermatrix, Inc. | Finger identification |
| IL62627A (en) | 1981-04-10 | 1984-09-30 | Yissum Res Dev Co | Eye testing system |
| US4418993A (en) | 1981-05-07 | 1983-12-06 | Stereographics Corp. | Stereoscopic zoom lens system for three-dimensional motion pictures and television |
| US4562463A (en) | 1981-05-15 | 1985-12-31 | Stereographics Corp. | Stereoscopic television system with field storage for sequential display of right and left images |
| US4472037A (en) | 1981-08-24 | 1984-09-18 | Stereographics Corporation | Additive color means for the calibration of stereoscopic projection |
| US4523226A (en) | 1982-01-27 | 1985-06-11 | Stereographics Corporation | Stereoscopic television system |
| US4566758A (en) | 1983-05-09 | 1986-01-28 | Tektronix, Inc. | Rapid starting, high-speed liquid crystal variable optical retarder |
| US4884876A (en) | 1983-10-30 | 1989-12-05 | Stereographics Corporation | Achromatic liquid crystal shutter for stereoscopic and other applications |
| EP0180592B1 (en) | 1984-03-19 | 1995-08-02 | Kent State University | Light modulating material comprising a liquid crystal dispersion in a synthetic resin matrix |
| US4583117A (en) | 1984-07-17 | 1986-04-15 | Stereographics Corporation | Stereoscopic video camera |
| US4729640A (en) | 1984-10-03 | 1988-03-08 | Canon Kabushiki Kaisha | Liquid crystal light modulation device |
| US4643515A (en) | 1985-04-01 | 1987-02-17 | Environmental Research Institute Of Michigan | Method and apparatus for recording and displaying edge-illuminated holograms |
| US4728547A (en) | 1985-06-10 | 1988-03-01 | General Motors Corporation | Liquid crystal droplets dispersed in thin films of UV-curable polymers |
| US4711512A (en) | 1985-07-12 | 1987-12-08 | Environmental Research Institute Of Michigan | Compact head-up display |
| JPS6232425A (en) | 1985-08-05 | 1987-02-12 | Brother Ind Ltd | optical deflector |
| US4890902A (en) | 1985-09-17 | 1990-01-02 | Kent State University | Liquid crystal light modulating materials with selectable viewing angles |
| US4743083A (en) | 1985-12-30 | 1988-05-10 | Schimpe Robert M | Cylindrical diffraction grating couplers and distributed feedback resonators for guided wave devices |
| US4647967A (en) | 1986-01-28 | 1987-03-03 | Sundstrand Data Control, Inc. | Head-up display independent test site |
| US4799765A (en) | 1986-03-31 | 1989-01-24 | Hughes Aircraft Company | Integrated head-up and panel display unit |
| US5148302A (en) | 1986-04-10 | 1992-09-15 | Akihiko Nagano | Optical modulation element having two-dimensional phase type diffraction grating |
| WO1987006195A1 (en) | 1986-04-11 | 1987-10-22 | Dai Nippon Insatsu Kabushiki Kaisha | Image formation on object |
| US5707925A (en) | 1986-04-11 | 1998-01-13 | Dai Nippon Insatsu Kabushiki Kaisha | Image formation on objective bodies |
| US4970129A (en) | 1986-12-19 | 1990-11-13 | Polaroid Corporation | Holograms |
| US4749256A (en) | 1987-02-13 | 1988-06-07 | Gec Avionics, Inc. | Mounting apparatus for head-up display |
| US4811414A (en) | 1987-02-27 | 1989-03-07 | C.F.A. Technologies, Inc. | Methods for digitally noise averaging and illumination equalizing fingerprint images |
| FR2613497B1 (en) | 1987-03-31 | 1991-08-16 | Thomson Csf | BINOCULAR, HOLOGRAPHIC AND LARGE FIELD SIGHT, USED ON HELMET |
| US4775218A (en) | 1987-04-17 | 1988-10-04 | Flight Dynamics, Inc. | Combiner alignment detector for head up display system |
| US4848093A (en) | 1987-08-24 | 1989-07-18 | Quantum Design | Apparatus and method for regulating temperature in a cryogenic test chamber |
| US4791788A (en) | 1987-08-24 | 1988-12-20 | Quantum Design, Inc. | Method for obtaining improved temperature regulation when using liquid helium cooling |
| US5710645A (en) | 1993-01-29 | 1998-01-20 | Imedge Technology, Inc. | Grazing incidence holograms and system and method for producing the same |
| US20050259302A9 (en) | 1987-09-11 | 2005-11-24 | Metz Michael H | Holographic light panels and flat panel display systems and method and apparatus for making same |
| US5822089A (en) | 1993-01-29 | 1998-10-13 | Imedge Technology Inc. | Grazing incidence holograms and system and method for producing the same |
| GB8723050D0 (en) | 1987-10-01 | 1987-11-04 | British Telecomm | Optical filters |
| BR8807770A (en) | 1987-10-27 | 1990-08-07 | Night Vision General Partnersh | COMPACT SUNGLASSES FOR NIGHT VISION |
| US4792850A (en) | 1987-11-25 | 1988-12-20 | Sterographics Corporation | Method and system employing a push-pull liquid crystal modulator |
| US5096282A (en) | 1988-01-05 | 1992-03-17 | Hughes Aircraft Co. | Polymer dispersed liquid crystal film devices |
| US4938568A (en) | 1988-01-05 | 1990-07-03 | Hughes Aircraft Company | Polymer dispersed liquid crystal film devices, and method of forming the same |
| US4933976A (en) | 1988-01-25 | 1990-06-12 | C.F.A. Technologies, Inc. | System for generating rolled fingerprint images |
| US5240636A (en) | 1988-04-11 | 1993-08-31 | Kent State University | Light modulating materials comprising a liquid crystal microdroplets dispersed in a birefringent polymeric matri method of making light modulating materials |
| US4994204A (en) | 1988-11-04 | 1991-02-19 | Kent State University | Light modulating materials comprising a liquid crystal phase dispersed in a birefringent polymeric phase |
| US4854688A (en) | 1988-04-14 | 1989-08-08 | Honeywell Inc. | Optical arrangement |
| US5119454A (en) | 1988-05-23 | 1992-06-02 | Polaroid Corporation | Bulk optic wavelength division multiplexer |
| JPH01306886A (en) | 1988-06-03 | 1989-12-11 | Canon Inc | Volume phase type diffraction grating |
| US5004323A (en) | 1988-08-30 | 1991-04-02 | Kent State University | Extended temperature range polymer dispersed liquid crystal light shutters |
| US4964701A (en) | 1988-10-04 | 1990-10-23 | Raytheon Company | Deflector for an optical beam |
| US5007711A (en) | 1988-11-30 | 1991-04-16 | Flight Dynamics, Inc. | Compact arrangement for head-up display components |
| US4928301A (en) | 1988-12-30 | 1990-05-22 | Bell Communications Research, Inc. | Teleconferencing terminal with camera behind display screen |
| JPH02186319A (en) | 1989-01-13 | 1990-07-20 | Fujitsu Ltd | Display system |
| US5033814A (en) | 1989-04-10 | 1991-07-23 | Nilford Laboratories, Inc. | Line light source |
| US5009483A (en) | 1989-04-12 | 1991-04-23 | Rockwell Iii Marshall A | Optical waveguide display system |
| FI82989C (en) | 1989-04-13 | 1991-05-10 | Nokia Oy Ab | FRAMEWORK FOR FRAMING REQUIREMENTS AND INSPECTION. |
| US5183545A (en) | 1989-04-28 | 1993-02-02 | Branca Phillip A | Electrolytic cell with composite, porous diaphragm |
| FR2647556B1 (en) | 1989-05-23 | 1993-10-29 | Thomson Csf | OPTICAL DEVICE FOR INTRODUCING A COLLIMATED IMAGE INTO THE VISUAL FIELD OF AN OBSERVER AND HELMET COMPRISING AT LEAST ONE SUCH DEVICE |
| US5099343A (en) | 1989-05-25 | 1992-03-24 | Hughes Aircraft Company | Edge-illuminated liquid crystal display devices |
| US4967268A (en) | 1989-07-31 | 1990-10-30 | Stereographics | Liquid crystal shutter system for stereoscopic and other applications |
| CA2065368A1 (en) | 1989-08-21 | 1991-02-22 | Carl R. Amos | Methods of and apparatus for manipulating electromagnetic phenomenon |
| US4960311A (en) | 1989-08-31 | 1990-10-02 | Hughes Aircraft Company | Holographic exposure system for computer generated holograms |
| US4963007A (en) | 1989-09-05 | 1990-10-16 | U.S. Precision Lens, Inc. | Color corrected projection lens |
| US5210624A (en) | 1989-09-19 | 1993-05-11 | Fujitsu Limited | Heads-up display |
| US4971719A (en) | 1989-09-22 | 1990-11-20 | General Motors Corporation | Polymer dispersed liquid crystal films formed by electron beam curing |
| US5198912A (en) | 1990-01-12 | 1993-03-30 | Polaroid Corporation | Volume phase hologram with liquid crystal in microvoids between fringes |
| US5109465A (en) | 1990-01-16 | 1992-04-28 | Summit Technology, Inc. | Beam homogenizer |
| JPH03239384A (en) | 1990-02-16 | 1991-10-24 | Fujitsu Ltd | Semiconductor laser protective circuit |
| US5416616A (en) | 1990-04-06 | 1995-05-16 | University Of Southern California | Incoherent/coherent readout of double angularly multiplexed volume holographic optical elements |
| US5117302A (en) | 1990-04-13 | 1992-05-26 | Stereographics Corporation | High dynamic range electro-optical shutter for steroscopic and other applications |
| US5153751A (en) | 1990-04-27 | 1992-10-06 | Central Glass Company, Limited | Holographic display element |
| CA2044932C (en) | 1990-06-29 | 1996-03-26 | Masayuki Kato | Display unit |
| FI86226C (en) | 1990-07-10 | 1992-07-27 | Nokia Oy Ab | FOERFARANDE FOER FRAMSTAELLNING AV LJUSVAOGSLEDARE MEDELST JONBYTESTEKNIK PAO ETT GLASSUBSTRAT. |
| FI86225C (en) | 1990-08-23 | 1992-07-27 | Nokia Oy Ab | ANPASSNINGSELEMENT FOER SAMMANKOPPLING AV OLIKA LJUSVAOGSLEDARE OCH FRAMSTAELLNINGSFOERFARANDE FOER DETSAMMA. |
| US5110034A (en) | 1990-08-30 | 1992-05-05 | Quantum Magnetics, Inc. | Superconducting bonds for thin film devices |
| US5139192A (en) | 1990-08-30 | 1992-08-18 | Quantum Magnetics, Inc. | Superconducting bonds for thin film devices |
| US5053834A (en) | 1990-08-31 | 1991-10-01 | Quantum Magnetics, Inc. | High symmetry dc SQUID system |
| DE4028275A1 (en) | 1990-09-06 | 1992-03-12 | Kabelmetal Electro Gmbh | METHOD FOR THE PRODUCTION OF FIBERGLASS FIBER OPTICS WITH INCREASED STRENGTH |
| US5063441A (en) | 1990-10-11 | 1991-11-05 | Stereographics Corporation | Stereoscopic video cameras with image sensors having variable effective position |
| US5142357A (en) | 1990-10-11 | 1992-08-25 | Stereographics Corp. | Stereoscopic video camera with image sensors having variable effective position |
| US10593092B2 (en) | 1990-12-07 | 2020-03-17 | Dennis J Solomon | Integrated 3D-D2 visual effects display |
| US5619586A (en) | 1990-12-20 | 1997-04-08 | Thorn Emi Plc | Method and apparatus for producing a directly viewable image of a fingerprint |
| US5416514A (en) | 1990-12-27 | 1995-05-16 | North American Philips Corporation | Single panel color projection video display having control circuitry for synchronizing the color illumination system with reading/writing of the light valve |
| US5410370A (en) | 1990-12-27 | 1995-04-25 | North American Philips Corporation | Single panel color projection video display improved scanning |
| US5159445A (en) | 1990-12-31 | 1992-10-27 | At&T Bell Laboratories | Teleconferencing video display system for improving eye contact |
| US5867238A (en) | 1991-01-11 | 1999-02-02 | Minnesota Mining And Manufacturing Company | Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same |
| US5117285A (en) | 1991-01-15 | 1992-05-26 | Bell Communications Research | Eye contact apparatus for video conferencing |
| US5481321A (en) | 1991-01-29 | 1996-01-02 | Stereographics Corp. | Stereoscopic motion picture projection system |
| US5317405A (en) | 1991-03-08 | 1994-05-31 | Nippon Telegraph And Telephone Corporation | Display and image capture apparatus which enables eye contact |
| US5142644A (en) | 1991-03-08 | 1992-08-25 | General Motors Corporation | Electrical contacts for polymer dispersed liquid crystal films |
| JP2873126B2 (en) | 1991-04-17 | 1999-03-24 | 日本ペイント株式会社 | Photosensitive composition for volume hologram recording |
| US5695682A (en) | 1991-05-02 | 1997-12-09 | Kent State University | Liquid crystalline light modulating device and material |
| US6104448A (en) | 1991-05-02 | 2000-08-15 | Kent State University | Pressure sensitive liquid crystalline light modulating device and material |
| US5453863A (en) | 1991-05-02 | 1995-09-26 | Kent State University | Multistable chiral nematic displays |
| US5241337A (en) | 1991-05-13 | 1993-08-31 | Eastman Kodak Company | Real image viewfinder requiring no field lens |
| US5181133A (en) | 1991-05-15 | 1993-01-19 | Stereographics Corporation | Drive method for twisted nematic liquid crystal shutters for stereoscopic and other applications |
| US5268792A (en) | 1991-05-20 | 1993-12-07 | Eastman Kodak Company | Zoom lens |
| US5218360A (en) | 1991-05-23 | 1993-06-08 | Trw Inc. | Millimeter-wave aircraft landing and taxing system |
| JPH0728999Y2 (en) | 1991-05-29 | 1995-07-05 | セントラル硝子株式会社 | Glass for multicolor display head-up display |
| FR2677463B1 (en) | 1991-06-04 | 1994-06-17 | Thomson Csf | COLLIMATE VISUAL WITH LARGE HORIZONTAL AND VERTICAL FIELDS, PARTICULARLY FOR SIMULATORS. |
| US5299289A (en) | 1991-06-11 | 1994-03-29 | Matsushita Electric Industrial Co., Ltd. | Polymer dispersed liquid crystal panel with diffraction grating |
| US5764414A (en) | 1991-08-19 | 1998-06-09 | Hughes Aircraft Company | Biocular display system using binary optics |
| US5416510A (en) | 1991-08-28 | 1995-05-16 | Stereographics Corporation | Camera controller for stereoscopic video system |
| US5193000A (en) | 1991-08-28 | 1993-03-09 | Stereographics Corporation | Multiplexing technique for stereoscopic video system |
| US5621552A (en) | 1991-08-29 | 1997-04-15 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Electrooptical liquid crystal system containing dual frequency liquid crystal mixture |
| US5200861A (en) | 1991-09-27 | 1993-04-06 | U.S. Precision Lens Incorporated | Lens systems |
| US5224198A (en) | 1991-09-30 | 1993-06-29 | Motorola, Inc. | Waveguide virtual image display |
| EP0536763B1 (en) | 1991-10-09 | 1999-03-17 | Denso Corporation | Hologram |
| US5726782A (en) | 1991-10-09 | 1998-03-10 | Nippondenso Co., Ltd. | Hologram and method of fabricating |
| US5315440A (en) | 1991-11-04 | 1994-05-24 | Eastman Kodak Company | Zoom lens having weak front lens group |
| US5515184A (en) | 1991-11-12 | 1996-05-07 | The University Of Alabama In Huntsville | Waveguide hologram illuminators |
| US5633100A (en) | 1991-11-27 | 1997-05-27 | E. I. Du Pont De Nemours And Company | Holographic imaging using filters |
| US5218480A (en) | 1991-12-03 | 1993-06-08 | U.S. Precision Lens Incorporated | Retrofocus wide angle lens |
| US5239372A (en) | 1991-12-31 | 1993-08-24 | Stereographics Corporation | Stereoscopic video projection system |
| US5264950A (en) | 1992-01-06 | 1993-11-23 | Kent State University | Light modulating device with polarizer and liquid crystal interspersed as spherical or randomly distorted droplets in isotropic polymer |
| US5303085A (en) | 1992-02-07 | 1994-04-12 | Rallison Richard D | Optically corrected helmet mounted display |
| US5295208A (en) | 1992-02-26 | 1994-03-15 | The University Of Alabama In Huntsville | Multimode waveguide holograms capable of using non-coherent light |
| US5296967A (en) | 1992-03-02 | 1994-03-22 | U.S. Precision Lens Incorporated | High speed wide angle projection TV lens system |
| EP0564869A1 (en) | 1992-03-31 | 1993-10-13 | MERCK PATENT GmbH | Electrooptical liquid crystal systems |
| US5284499A (en) | 1992-05-01 | 1994-02-08 | Corning Incorporated | Method and apparatus for drawing optical fibers |
| US5327269A (en) | 1992-05-13 | 1994-07-05 | Standish Industries, Inc. | Fast switching 270° twisted nematic liquid crystal device and eyewear incorporating the device |
| ATE179259T1 (en) | 1992-05-18 | 1999-05-15 | Univ Kent State Ohio | LIQUID CRYSTALLINE LIGHT MODULATING DEVICE AND MATERIAL |
| US5251048A (en) | 1992-05-18 | 1993-10-05 | Kent State University | Method and apparatus for electronic switching of a reflective color display |
| KR100320567B1 (en) | 1992-05-18 | 2002-06-20 | Liquid Crystal Light Modulators & Materials | |
| US5315419A (en) | 1992-05-19 | 1994-05-24 | Kent State University | Method of producing a homogeneously aligned chiral smectic C liquid crystal having homeotropic alignment layers |
| US5368770A (en) | 1992-06-01 | 1994-11-29 | Kent State University | Method of preparing thin liquid crystal films |
| US6479193B1 (en) | 1992-06-30 | 2002-11-12 | Nippon Sheet Glass Co., Ltd. | Optical recording film and process for production thereof |
| JP2958418B2 (en) | 1992-07-23 | 1999-10-06 | セントラル硝子株式会社 | Display device |
| JP3027065B2 (en) | 1992-07-31 | 2000-03-27 | 日本電信電話株式会社 | Display / imaging device |
| US5313330A (en) | 1992-08-31 | 1994-05-17 | U.S. Precision Lens Incorporated | Zoom projection lens systems |
| US5243413A (en) | 1992-09-02 | 1993-09-07 | At&T Bell Laboratories | Color parallax-free camera and display |
| EP0585941A3 (en) | 1992-09-03 | 1994-09-21 | Nippon Denso Co | Process for making holograms and holography device |
| US5343147A (en) | 1992-09-08 | 1994-08-30 | Quantum Magnetics, Inc. | Method and apparatus for using stochastic excitation and a superconducting quantum interference device (SAUID) to perform wideband frequency response measurements |
| US6052540A (en) | 1992-09-11 | 2000-04-18 | Canon Kabushiki Kaisha | Viewfinder device for displaying photographic information relating to operation of a camera |
| US5321533A (en) | 1992-09-24 | 1994-06-14 | Kent State Universtiy | Polymer dispersed ferroelectric smectic liquid crystal |
| US5455693A (en) | 1992-09-24 | 1995-10-03 | Hughes Aircraft Company | Display hologram |
| US7132200B1 (en) | 1992-11-27 | 2006-11-07 | Dai Nippon Printing Co., Ltd. | Hologram recording sheet, holographic optical element using said sheet, and its production process |
| US5315324A (en) | 1992-12-09 | 1994-05-24 | Delphax Systems | High precision charge imaging cartridge |
| JP3418985B2 (en) | 1992-12-14 | 2003-06-23 | 株式会社デンソー | Image display device |
| US5341230A (en) | 1992-12-22 | 1994-08-23 | Hughes Aircraft Company | Waveguide holographic telltale display |
| US5418584A (en) | 1992-12-31 | 1995-05-23 | Honeywell Inc. | Retroreflective array virtual image projection screen |
| US6151142A (en) | 1993-01-29 | 2000-11-21 | Imedge Technology, Inc. | Grazing incidence holograms and system and method for producing the same |
| US5351151A (en) | 1993-02-01 | 1994-09-27 | Levy George S | Optical filter using microlens arrays |
| US5428480A (en) | 1993-02-16 | 1995-06-27 | Eastman Kodak Company | Zoom lens having weak plastic element |
| US5371817A (en) | 1993-02-16 | 1994-12-06 | Eastman Kodak Company | Multichannel optical waveguide page scanner with individually addressable electro-optic modulators |
| US5751452A (en) | 1993-02-22 | 1998-05-12 | Nippon Telegraph And Telephone Corporation | Optical devices with high polymer material and method of forming the same |
| WO1994019712A1 (en) | 1993-02-26 | 1994-09-01 | Yeda Research & Development Co., Ltd. | Holographic optical devices |
| US5682255A (en) | 1993-02-26 | 1997-10-28 | Yeda Research & Development Co. Ltd. | Holographic optical devices for the transmission of optical signals of a plurality of channels |
| US5371626A (en) | 1993-03-09 | 1994-12-06 | Benopcon, Inc. | Wide angle binocular system with variable power capability |
| JP2823470B2 (en) | 1993-03-09 | 1998-11-11 | シャープ株式会社 | Optical scanning device, display device using the same, and image information input / output device |
| US5359362A (en) | 1993-03-30 | 1994-10-25 | Nec Usa, Inc. | Videoconference system using a virtual camera image |
| US5309283A (en) | 1993-03-30 | 1994-05-03 | U.S. Precision Lens Incorporated | Hybrid, color-corrected, projection TV lens system |
| JP3202831B2 (en) | 1993-04-09 | 2001-08-27 | 日本電信電話株式会社 | Method for manufacturing reflective color liquid crystal display |
| DE69405902T2 (en) | 1993-04-16 | 1998-01-29 | Central Glass Co Ltd | Glass pane with anti-reflective coating and combination element of a single-view display system |
| WO1994025915A1 (en) | 1993-04-28 | 1994-11-10 | Mcpheters R Douglas | Holographic operator interface |
| US5471326A (en) | 1993-04-30 | 1995-11-28 | Northrop Grumman Corporation | Holographic laser scanner and rangefinder |
| KR950702217A (en) | 1993-05-03 | 1995-06-19 | 에드워드 케이. 웰치 2세 | POLYMER DISPERSED LIQUID CRYSTALS IN ELECTRON-RICH ALKENE-THIOL POLYMERS |
| US5579026A (en) | 1993-05-14 | 1996-11-26 | Olympus Optical Co., Ltd. | Image display apparatus of head mounted type |
| US5329363A (en) | 1993-06-15 | 1994-07-12 | U. S. Precision Lens Incorporated | Projection lens systems having reduced spherochromatism |
| US5400069A (en) | 1993-06-16 | 1995-03-21 | Bell Communications Research, Inc. | Eye contact video-conferencing system and screen |
| JP3623250B2 (en) | 1993-06-23 | 2005-02-23 | オリンパス株式会社 | Video display device |
| US5455713A (en) | 1993-06-23 | 1995-10-03 | Kreitzer; Melvyn H. | High performance, thermally-stabilized projection television lens systems |
| US5585035A (en) | 1993-08-06 | 1996-12-17 | Minnesota Mining And Manufacturing Company | Light modulating device having a silicon-containing matrix |
| JPH0798439A (en) | 1993-09-29 | 1995-04-11 | Nippon Telegr & Teleph Corp <Ntt> | 3D stereoscopic display |
| US5537232A (en) | 1993-10-05 | 1996-07-16 | In Focus Systems, Inc. | Reflection hologram multiple-color filter array formed by sequential exposure to a light source |
| US5686975A (en) | 1993-10-18 | 1997-11-11 | Stereographics Corporation | Polarel panel for stereoscopic displays |
| US5408346A (en) | 1993-10-20 | 1995-04-18 | Kaiser Electro-Optics, Inc. | Optical collimating device employing cholesteric liquid crystal and a non-transmissive reflector |
| US5485313A (en) | 1993-10-27 | 1996-01-16 | Polaroid Corporation | Zoom lens systems |
| IL107502A (en) | 1993-11-04 | 1999-12-31 | Elbit Systems Ltd | Helmet display mounting system |
| US5991087A (en) | 1993-11-12 | 1999-11-23 | I-O Display System Llc | Non-orthogonal plate in a virtual reality or heads up display |
| US5438357A (en) | 1993-11-23 | 1995-08-01 | Mcnelley; Steve H. | Image manipulating teleconferencing system |
| US5757546A (en) | 1993-12-03 | 1998-05-26 | Stereographics Corporation | Electronic stereoscopic viewer |
| US5524272A (en) | 1993-12-22 | 1996-06-04 | Gte Airfone Incorporated | Method and apparatus for distributing program material |
| US5677797A (en) | 1994-02-04 | 1997-10-14 | U.S. Precision Lens Inc. | Method for correcting field curvature |
| US5559637A (en) | 1994-02-04 | 1996-09-24 | Corning Incorporated | Field curvature corrector |
| US5463428A (en) | 1994-02-08 | 1995-10-31 | Stereographics Corporation | Wireless active eyewear for stereoscopic applications |
| WO1995022804A1 (en) | 1994-02-18 | 1995-08-24 | Imedge Technology, Inc. | Method of producing and detecting high-contrast images of the surface topography of objects and a compact system for carrying out the same |
| US5631107A (en) | 1994-02-18 | 1997-05-20 | Nippondenso Co., Ltd. | Method for producing optical member |
| US5986746A (en) | 1994-02-18 | 1999-11-16 | Imedge Technology Inc. | Topographical object detection system |
| JP3453836B2 (en) | 1994-02-18 | 2003-10-06 | 株式会社デンソー | Hologram manufacturing method |
| JPH07270615A (en) | 1994-03-31 | 1995-10-20 | Central Glass Co Ltd | Holographic laminated body |
| WO1995028815A1 (en) | 1994-04-15 | 1995-10-26 | Eidgenössische Technische Hochschule Zürich | Transport network with high transmission capacity for telecommunications |
| JPH09512580A (en) | 1994-04-29 | 1997-12-16 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | Light modulator with matrix made from acidic reactants |
| US7126583B1 (en) | 1999-12-15 | 2006-10-24 | Automotive Technologies International, Inc. | Interactive vehicle display system |
| US5473222A (en) | 1994-07-05 | 1995-12-05 | Delco Electronics Corporation | Active matrix vacuum fluorescent display with microprocessor integration |
| WO1996002862A1 (en) | 1994-07-15 | 1996-02-01 | Matsushita Electric Industrial Co., Ltd. | Head-up display apparatus, liquid crystal display panel and production method thereof |
| US5612733A (en) | 1994-07-18 | 1997-03-18 | C-Phone Corporation | Optics orienting arrangement for videoconferencing system |
| US5493430A (en) | 1994-08-03 | 1996-02-20 | Kent Display Systems, L.P. | Color, reflective liquid crystal displays |
| US5903395A (en) | 1994-08-31 | 1999-05-11 | I-O Display Systems Llc | Personal visual display system |
| US5606433A (en) | 1994-08-31 | 1997-02-25 | Hughes Electronics | Lamination of multilayer photopolymer holograms |
| JPH08129146A (en) | 1994-09-05 | 1996-05-21 | Olympus Optical Co Ltd | Video display device |
| US5727098A (en) | 1994-09-07 | 1998-03-10 | Jacobson; Joseph M. | Oscillating fiber optic display and imager |
| FI98871C (en) | 1994-09-15 | 1997-08-25 | Nokia Telecommunications Oy | Method of tuning a summation network into a base station and a bandpass filter |
| US5572248A (en) | 1994-09-19 | 1996-11-05 | Teleport Corporation | Teleconferencing method and system for providing face-to-face, non-animated teleconference environment |
| US5506929A (en) | 1994-10-19 | 1996-04-09 | Clio Technologies, Inc. | Light expanding system for producing a linear or planar light beam from a point-like light source |
| US5572250A (en) | 1994-10-20 | 1996-11-05 | Stereographics Corporation | Universal electronic stereoscopic display |
| US5500671A (en) | 1994-10-25 | 1996-03-19 | At&T Corp. | Video conference system and method of providing parallax correction and a sense of presence |
| SG47360A1 (en) | 1994-11-14 | 1998-04-17 | Hoffmann La Roche | Colour display with serially-connected lc filters |
| US5625495A (en) | 1994-12-07 | 1997-04-29 | U.S. Precision Lens Inc. | Telecentric lens systems for forming an image of an object composed of pixels |
| US5745301A (en) | 1994-12-19 | 1998-04-28 | Benopcon, Inc. | Variable power lens systems for producing small images |
| US5748277A (en) | 1995-02-17 | 1998-05-05 | Kent State University | Dynamic drive method and apparatus for a bistable liquid crystal display |
| US6154190A (en) | 1995-02-17 | 2000-11-28 | Kent State University | Dynamic drive methods and apparatus for a bistable liquid crystal display |
| US6061463A (en) | 1995-02-21 | 2000-05-09 | Imedge Technology, Inc. | Holographic fingerprint device |
| US5731853A (en) | 1995-02-24 | 1998-03-24 | Matsushita Electric Industrial Co., Ltd. | Display device |
| JP3658034B2 (en) | 1995-02-28 | 2005-06-08 | キヤノン株式会社 | Image observation optical system and imaging optical system |
| US5583795A (en) | 1995-03-17 | 1996-12-10 | The United States Of America As Represented By The Secretary Of The Army | Apparatus for measuring eye gaze and fixation duration, and method therefor |
| US6259559B1 (en) | 1995-03-28 | 2001-07-10 | Central Glass Company, Limited | Glass arrangement including an outside glass plate, a polarization direction changing film and an adhesive layer therebetween, and an inside glass layer |
| US5621529A (en) | 1995-04-05 | 1997-04-15 | Intelligent Automation Systems, Inc. | Apparatus and method for projecting laser pattern with reduced speckle noise |
| US5619254A (en) | 1995-04-11 | 1997-04-08 | Mcnelley; Steve H. | Compact teleconferencing eye contact terminal |
| US5668614A (en) | 1995-05-01 | 1997-09-16 | Kent State University | Pixelized liquid crystal display materials including chiral material adopted to change its chirality upon photo-irradiation |
| US5543950A (en) | 1995-05-04 | 1996-08-06 | Kent State University | Liquid crystalline electrooptical device |
| FI98584C (en) | 1995-05-05 | 1997-07-10 | Nokia Technology Gmbh | Method and apparatus for processing a received signal |
| WO1996036898A2 (en) | 1995-05-15 | 1996-11-21 | He Holdings, Inc., Doing Business As Hughes Electronics | Low-cost light-weight head-mounted virtual-image projection display with low moments of inertia and low center of gravity |
| US5825448A (en) | 1995-05-19 | 1998-10-20 | Kent State University | Reflective optically active diffractive device |
| US5831700A (en) | 1995-05-19 | 1998-11-03 | Kent State University | Polymer stabilized four domain twisted nematic liquid crystal display |
| US5929946A (en) | 1995-05-23 | 1999-07-27 | Colorlink, Inc. | Retarder stack for preconditioning light for a modulator having modulation and isotropic states of polarization |
| US5680231A (en) | 1995-06-06 | 1997-10-21 | Hughes Aircraft Company | Holographic lenses with wide angular and spectral bandwidths for use in a color display device |
| US5671035A (en) | 1995-06-07 | 1997-09-23 | Barnes; Elwood E. | Light intensity reduction apparatus and method |
| US5694230A (en) | 1995-06-07 | 1997-12-02 | Digital Optics Corp. | Diffractive optical elements as combiners |
| AU6334296A (en) | 1995-06-23 | 1997-01-22 | Holoplex | Multiplexed hologram copying system and method |
| US5629764A (en) | 1995-07-07 | 1997-05-13 | Advanced Precision Technology, Inc. | Prism fingerprint sensor using a holographic optical element |
| JPH0933853A (en) | 1995-07-20 | 1997-02-07 | Denso Corp | Hologram display device |
| FI99221C (en) | 1995-08-25 | 1997-10-27 | Nokia Telecommunications Oy | Planar antenna construction |
| DE69629257T2 (en) | 1995-09-21 | 2004-04-22 | 3M Innovative Properties Co., St. Paul | Lens system for television projection device |
| US5907436A (en) | 1995-09-29 | 1999-05-25 | The Regents Of The University Of California | Multilayer dielectric diffraction gratings |
| US5999282A (en) | 1995-11-08 | 1999-12-07 | Victor Company Of Japan, Ltd. | Color filter and color image display apparatus employing the filter |
| US5612734A (en) | 1995-11-13 | 1997-03-18 | Bell Communications Research, Inc. | Eye contact apparatus employing a directionally transmissive layer for video conferencing |
| US5724189A (en) | 1995-12-15 | 1998-03-03 | Mcdonnell Douglas Corporation | Methods and apparatus for creating an aspheric optical element and the aspheric optical elements formed thereby |
| JP3250782B2 (en) | 1995-12-25 | 2002-01-28 | セントラル硝子株式会社 | Laminate |
| US5668907A (en) | 1996-01-11 | 1997-09-16 | Associated Universities, Inc. | Thin optical display panel |
| US6469683B1 (en) | 1996-01-17 | 2002-10-22 | Nippon Telegraph And Telephone Corporation | Liquid crystal optical device |
| WO1997027519A1 (en) | 1996-01-29 | 1997-07-31 | Foster-Miller, Inc. | Optical components containing complex diffraction gratings and methods for the fabrication thereof |
| US5963375A (en) | 1996-01-31 | 1999-10-05 | U.S. Precision Lens Inc. | Athermal LCD projection lens |
| US6166834A (en) | 1996-03-15 | 2000-12-26 | Matsushita Electric Industrial Co., Ltd. | Display apparatus and method for forming hologram suitable for the display apparatus |
| JP2000506998A (en) | 1996-03-15 | 2000-06-06 | レティナル ディスプレイ ケイマン リミティッド | Method and apparatus for viewing images |
| US5701132A (en) | 1996-03-29 | 1997-12-23 | University Of Washington | Virtual retinal display with expanded exit pupil |
| GB2312110B (en) | 1996-03-29 | 2000-07-05 | Advanced Saw Prod Sa | Acoustic wave filter |
| GB2312109B (en) | 1996-03-29 | 2000-08-02 | Advanced Saw Prod Sa | Acoustic wave filter |
| EP0896690B1 (en) | 1996-04-29 | 2003-09-03 | 3M Innovative Properties Company | Projection television lens system |
| US6094311A (en) | 1996-04-29 | 2000-07-25 | U.S. Precision Lens Inc. | LCD projection lens |
| US5841587A (en) | 1996-04-29 | 1998-11-24 | U.S. Precision Lens Inc. | LCD projection lens |
| US5771320A (en) | 1996-04-30 | 1998-06-23 | Wavefront Research, Inc. | Optical switching and routing system |
| US5729242A (en) | 1996-05-08 | 1998-03-17 | Hughes Electronics | Dual PDLC-projection head-up display |
| US6583838B1 (en) | 1996-05-10 | 2003-06-24 | Kent State University | Bistable liquid crystal display device using polymer stabilization |
| US6133975A (en) | 1996-05-10 | 2000-10-17 | Kent State University | Bistable liquid crystal display device using polymer stabilization |
| US6061107A (en) | 1996-05-10 | 2000-05-09 | Kent State University | Bistable polymer dispersed cholesteric liquid crystal displays |
| US5870228A (en) | 1996-05-24 | 1999-02-09 | U.S. Precision Lens Inc. | Projection lenses having larger back focal length to focal length ratios |
| US5969874A (en) | 1996-05-30 | 1999-10-19 | U.S. Precision Lens Incorporated | Long focal length projection lenses |
| US6550949B1 (en) | 1996-06-13 | 2003-04-22 | Gentex Corporation | Systems and components for enhancing rear vision from a vehicle |
| US5942157A (en) | 1996-07-12 | 1999-08-24 | Science Applications International Corporation | Switchable volume hologram materials and devices |
| US7077984B1 (en) | 1996-07-12 | 2006-07-18 | Science Applications International Corporation | Electrically switchable polymer-dispersed liquid crystal materials |
| US6867888B2 (en) | 1996-07-12 | 2005-03-15 | Science Applications International Corporation | Switchable polymer-dispersed liquid crystal optical elements |
| US7312906B2 (en) | 1996-07-12 | 2007-12-25 | Science Applications International Corporation | Switchable polymer-dispersed liquid crystal optical elements |
| US6821457B1 (en) | 1998-07-29 | 2004-11-23 | Science Applications International Corporation | Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects |
| GB2315902A (en) | 1996-08-01 | 1998-02-11 | Sharp Kk | LIquid crystal device |
| DE19632111C1 (en) | 1996-08-08 | 1998-02-12 | Pelikan Produktions Ag | Thermal transfer ribbon for luminescent characters |
| EP0825474B1 (en) | 1996-08-16 | 2003-11-26 | 3M Innovative Properties Company | Mini-zoom projection lenses for use with pixelized panels |
| US5856842A (en) | 1996-08-26 | 1999-01-05 | Kaiser Optical Systems Corporation | Apparatus facilitating eye-contact video communications |
| KR100206688B1 (en) | 1996-09-07 | 1999-07-01 | 박원훈 | Color holographic head up display |
| US5936776A (en) | 1996-09-27 | 1999-08-10 | U.S. Precision Lens Inc. | Focusable front projection lens systems for use with large screen formats |
| US5745266A (en) | 1996-10-02 | 1998-04-28 | Raytheon Company | Quarter-wave film for brightness enhancement of holographic thin taillamp |
| US5886822A (en) | 1996-10-08 | 1999-03-23 | The Microoptical Corporation | Image combining system for eyeglasses and face masks |
| JP4007633B2 (en) | 1996-10-09 | 2007-11-14 | 株式会社島津製作所 | Head up display |
| FR2755530B1 (en) | 1996-11-05 | 1999-01-22 | Thomson Csf | VISUALIZATION DEVICE AND FLAT TELEVISION SCREEN USING THE SAME |
| JP4155343B2 (en) | 1996-11-12 | 2008-09-24 | ミラージュ イノベーションズ リミテッド | An optical system for guiding light from two scenes to the viewer's eye alternatively or simultaneously |
| JPH10148787A (en) | 1996-11-20 | 1998-06-02 | Central Glass Co Ltd | Display |
| US6097551A (en) | 1996-11-29 | 2000-08-01 | U.S. Precision Lens Inc. | Lenses for electronic imaging systems |
| US6366281B1 (en) | 1996-12-06 | 2002-04-02 | Stereographics Corporation | Synthetic panoramagram |
| US6864927B1 (en) | 1996-12-31 | 2005-03-08 | Micron Technology, Inc. | Head up display with adjustable transparency screen |
| US5907416A (en) | 1997-01-27 | 1999-05-25 | Raytheon Company | Wide FOV simulator heads-up display with selective holographic reflector combined |
| US6133971A (en) | 1997-01-31 | 2000-10-17 | Xerox Corporation | Holographically formed reflective display, liquid crystal display and projection system and methods of forming the same |
| US5875012A (en) | 1997-01-31 | 1999-02-23 | Xerox Corporation | Broadband reflective display, and methods of forming the same |
| US5956113A (en) | 1997-01-31 | 1999-09-21 | Xerox Corporation | Bistable reflective display and methods of forming the same |
| US5790314A (en) | 1997-01-31 | 1998-08-04 | Jds Fitel Inc. | Grin lensed optical device |
| US5877826A (en) | 1997-02-06 | 1999-03-02 | Kent State University | Dual frequency switchable cholesteric liquid crystal light shutter and driving waveform |
| US6567573B1 (en) | 1997-02-12 | 2003-05-20 | Digilens, Inc. | Switchable optical components |
| US7003181B2 (en) | 1997-02-12 | 2006-02-21 | Domash Lawrence H | Switchable optical components |
| US5937115A (en) | 1997-02-12 | 1999-08-10 | Foster-Miller, Inc. | Switchable optical components/structures and methods for the fabrication thereof |
| US5900987A (en) | 1997-02-13 | 1999-05-04 | U.S. Precision Lens Inc | Zoom projection lenses for use with pixelized panels |
| US5798641A (en) | 1997-03-17 | 1998-08-25 | Quantum Design, Inc. | Torque magnetometer utilizing integrated piezoresistive levers |
| US6034752A (en) | 1997-03-22 | 2000-03-07 | Kent Displays Incorporated | Display device reflecting visible and infrared radiation |
| FI971850A7 (en) | 1997-04-30 | 1998-10-31 | Nokia Corp | Arrangement for reducing interference in radio frequency signals |
| US5868951A (en) | 1997-05-09 | 1999-02-09 | University Technology Corporation | Electro-optical device and method |
| US5973727A (en) | 1997-05-13 | 1999-10-26 | New Light Industries, Ltd. | Video image viewing device and method |
| US5999089A (en) | 1997-05-13 | 1999-12-07 | Carlson; Lance K. | Alarm system |
| GB2325530A (en) | 1997-05-22 | 1998-11-25 | Sharp Kk | Liquid crystal device |
| FI103619B (en) | 1997-05-26 | 1999-07-30 | Nokia Telecommunications Oy | Optical multiplexing and demultiplexing |
| US6608720B1 (en) | 1997-06-02 | 2003-08-19 | Robin John Freeman | Optical instrument and optical element thereof |
| JPH1115358A (en) | 1997-06-25 | 1999-01-22 | Denso Corp | hologram |
| WO1999003006A1 (en) | 1997-07-11 | 1999-01-21 | U.S. Precision Lens Incorporated | High performance projection television lens systems |
| US7164818B2 (en) | 2001-05-03 | 2007-01-16 | Neophontonics Corporation | Integrated gradient index lenses |
| US5930433A (en) | 1997-07-23 | 1999-07-27 | Hewlett-Packard Company | Waveguide array document scanner |
| US6417971B1 (en) | 1997-08-05 | 2002-07-09 | U.S. Precision Lens Incorporated | Zoom projection lens having a lens correction unit |
| WO1999009440A1 (en) | 1997-08-13 | 1999-02-25 | Foster-Miller, Inc. | Switchable optical components |
| US6141154A (en) | 1997-08-22 | 2000-10-31 | U.S. Precision Lens Inc. | Focusable, color corrected, high performance projection lens systems |
| JPH1167448A (en) | 1997-08-26 | 1999-03-09 | Toyota Central Res & Dev Lab Inc | Display device |
| US7028899B2 (en) | 1999-06-07 | 2006-04-18 | Metrologic Instruments, Inc. | Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target |
| JP3535710B2 (en) | 1997-09-16 | 2004-06-07 | キヤノン株式会社 | Optical element and optical system using the same |
| JP2953444B2 (en) | 1997-10-01 | 1999-09-27 | 日本電気株式会社 | Liquid crystal display device and manufacturing method thereof |
| US6285813B1 (en) | 1997-10-03 | 2001-09-04 | Georgia Tech Research Corporation | Diffractive grating coupler and method |
| US5929960A (en) | 1997-10-17 | 1999-07-27 | Kent State University | Method for forming liquid crystal display cell walls using a patterned electric field |
| US6486997B1 (en) | 1997-10-28 | 2002-11-26 | 3M Innovative Properties Company | Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter |
| CN1169001C (en) | 1997-11-13 | 2004-09-29 | 3M创新有限公司 | Wide Field Projection Lens for Small Projection Lens Systems Using Pixelated Panels |
| JP3331559B2 (en) | 1997-11-13 | 2002-10-07 | 日本電信電話株式会社 | Optical device |
| DE19751190A1 (en) | 1997-11-19 | 1999-05-20 | Bosch Gmbh Robert | Laser display device has a polymer-dispersed liquid crystal disk |
| US6046585A (en) | 1997-11-21 | 2000-04-04 | Quantum Design, Inc. | Method and apparatus for making quantitative measurements of localized accumulations of target particles having magnetic particles bound thereto |
| US6437563B1 (en) | 1997-11-21 | 2002-08-20 | Quantum Design, Inc. | Method and apparatus for making measurements of accumulations of magnetically susceptible particles combined with analytes |
| US5949508A (en) | 1997-12-10 | 1999-09-07 | Kent State University | Phase separated composite organic film and methods for the manufacture thereof |
| US6864861B2 (en) | 1997-12-31 | 2005-03-08 | Brillian Corporation | Image generator having a miniature display device |
| US6195206B1 (en) | 1998-01-13 | 2001-02-27 | Elbit Systems Ltd. | Optical system for day and night use |
| US6975345B1 (en) | 1998-03-27 | 2005-12-13 | Stereographics Corporation | Polarizing modulator for an electronic stereoscopic display |
| CA2326767C (en) | 1998-04-02 | 2009-06-23 | Yeda Research And Development Co., Ltd. | Holographic optical devices |
| US6176837B1 (en) | 1998-04-17 | 2001-01-23 | Massachusetts Institute Of Technology | Motion tracking system |
| US6204835B1 (en) | 1998-05-12 | 2001-03-20 | Kent State University | Cumulative two phase drive scheme for bistable cholesteric reflective displays |
| US6268839B1 (en) | 1998-05-12 | 2001-07-31 | Kent State University | Drive schemes for gray scale bistable cholesteric reflective displays |
| JPH11326617A (en) | 1998-05-13 | 1999-11-26 | Olympus Optical Co Ltd | Optical system including diffraction optical element and its design method |
| GB2337859B (en) | 1998-05-29 | 2002-12-11 | Nokia Mobile Phones Ltd | Antenna |
| US6388797B1 (en) | 1998-05-29 | 2002-05-14 | Stereographics Corporation | Electrostereoscopic eyewear |
| US6341118B1 (en) | 1998-06-02 | 2002-01-22 | Science Applications International Corporation | Multiple channel scanning device using oversampling and image processing to increase throughput |
| EP1090314A4 (en) | 1998-06-24 | 2006-02-08 | 3M Innovative Properties Co | Projection television lens systems having improved modulation transfer functions |
| US6411444B1 (en) | 1998-06-30 | 2002-06-25 | Corning Precision Lens, Incorporated | Lenses for electronic imaging systems having long wavelength filtering properties |
| US6064354A (en) | 1998-07-01 | 2000-05-16 | Deluca; Michael Joseph | Stereoscopic user interface method and apparatus |
| US20030202228A1 (en) | 1998-07-07 | 2003-10-30 | Kenichiro Takada | Hologram screen and a method of producing the same |
| US6137630A (en) | 1998-07-13 | 2000-10-24 | Industrial Technology Research Institute | Thin-film multilayer systems for use in a head-up display |
| US6222971B1 (en) | 1998-07-17 | 2001-04-24 | David Slobodin | Small inlet optical panel and a method of making a small inlet optical panel |
| US6618104B1 (en) | 1998-07-28 | 2003-09-09 | Nippon Telegraph And Telephone Corporation | Optical device having reverse mode holographic PDLC and front light guide |
| IL125558A (en) | 1998-07-28 | 2003-06-24 | Elbit Systems Ltd | Non-adjustable helmet mounted optical systems |
| JP3643486B2 (en) | 1998-08-04 | 2005-04-27 | 株式会社東芝 | Optical functional device and optical communication system |
| JP2000056259A (en) | 1998-08-10 | 2000-02-25 | Fuji Xerox Co Ltd | Picture display device |
| US6169594B1 (en) | 1998-08-24 | 2001-01-02 | Physical Optics Corporation | Beam deflector and scanner |
| WO2000015009A1 (en) | 1998-09-02 | 2000-03-16 | Seiko Epson Corporation | Light source and display device |
| US6188462B1 (en) | 1998-09-02 | 2001-02-13 | Kent State University | Diffraction grating with electrically controlled periodicity |
| US6278429B1 (en) | 1998-09-11 | 2001-08-21 | Kent State University | Bistable reflective cholesteric liquid crystal displays utilizing super twisted nematic driver chips |
| JP4475813B2 (en) | 1998-09-14 | 2010-06-09 | エスビージー・ラボラトリーズ・インコーポレイテッド | Holographic illumination device |
| US20020126332A1 (en) | 1998-09-14 | 2002-09-12 | Popovich Milan M. | System and method for modulating light intesity |
| JP4052741B2 (en) | 1998-09-30 | 2008-02-27 | セントラル硝子株式会社 | Laminated glass for reflective displays |
| AU6428199A (en) | 1998-10-16 | 2000-05-08 | Digilens Inc. | Holographic display system |
| US6082862A (en) | 1998-10-16 | 2000-07-04 | Digilens, Inc. | Image tiling technique based on electrically switchable holograms |
| WO2000023830A1 (en) | 1998-10-16 | 2000-04-27 | Digilens Inc. | Autostereoscopic display based on electrically switchable holograms |
| FI105856B (en) | 1998-10-21 | 2000-10-13 | Nokia Networks Oy | Amplification of optical WDM signal |
| US6414760B1 (en) | 1998-10-29 | 2002-07-02 | Hewlett-Packard Company | Image scanner with optical waveguide and enhanced optical sampling rate |
| DE69929824T2 (en) | 1998-11-12 | 2006-08-31 | 3M Innovative Properties Co., St. Paul | COLOR-CORRUPTED PROJECTION LINES USING DIFFERENT OPTICAL SURFACES |
| WO2000028369A2 (en) | 1998-11-12 | 2000-05-18 | Digilens, Inc. | Head mounted apparatus for viewing an image |
| US6850210B1 (en) | 1998-11-12 | 2005-02-01 | Stereographics Corporation | Parallax panoramagram having improved depth and sharpness |
| US6078427A (en) | 1998-12-01 | 2000-06-20 | Kaiser Electro-Optics, Inc. | Smooth transition device for area of interest head-mounted display |
| US6222675B1 (en) | 1998-12-01 | 2001-04-24 | Kaiser Electro-Optics, Inc. | Area of interest head-mounted display using low resolution, wide angle; high resolution, narrow angle; and see-through views |
| US6744478B1 (en) | 1998-12-28 | 2004-06-01 | Central Glass Company, Limited | Heads-up display system with optical rotation layers |
| US6191887B1 (en) | 1999-01-20 | 2001-02-20 | Tropel Corporation | Laser illumination with speckle reduction |
| US6320563B1 (en) | 1999-01-21 | 2001-11-20 | Kent State University | Dual frequency cholesteric display and drive scheme |
| US6301057B1 (en) | 1999-02-02 | 2001-10-09 | Corning Precision Lens | Long focal length projection lenses |
| US6864931B1 (en) | 1999-02-17 | 2005-03-08 | Kent State University | Electrically controllable liquid crystal microstructures |
| JP2000267042A (en) | 1999-03-17 | 2000-09-29 | Fuji Xerox Co Ltd | Head-mounted type video display device |
| US6269203B1 (en) | 1999-03-17 | 2001-07-31 | Radiant Photonics | Holographic optical devices for transmission of optical signals |
| JP2000267552A (en) | 1999-03-19 | 2000-09-29 | Sony Corp | Image recording apparatus, image recording method, and recording medium |
| US6504629B1 (en) | 1999-03-23 | 2003-01-07 | Digilens, Inc. | Method and apparatus for illuminating a display |
| US6909443B1 (en) | 1999-04-06 | 2005-06-21 | Microsoft Corporation | Method and apparatus for providing a three-dimensional task gallery computer interface |
| JP4548680B2 (en) | 1999-04-12 | 2010-09-22 | 大日本印刷株式会社 | Color hologram display and method for producing the same |
| DE19917751C2 (en) | 1999-04-20 | 2001-05-31 | Nokia Networks Oy | Method and monitoring device for monitoring the quality of data transmission over analog lines |
| US6195209B1 (en) | 1999-05-04 | 2001-02-27 | U.S. Precision Lens Incorporated | Projection lenses having reduced lateral color for use with pixelized panels |
| SE516715C2 (en) | 1999-05-26 | 2002-02-19 | Ericsson Telefon Ab L M | Main mount display |
| FR2796184B1 (en) | 1999-07-09 | 2001-11-02 | Thomson Csf | SECURE DOCUMENT, MANUFACTURING SYSTEM, AND SYSTEM FOR READING THE DOCUMENT |
| FI113581B (en) | 1999-07-09 | 2004-05-14 | Nokia Corp | Process for manufacturing a waveguide in multi-layer ceramic structures and waveguides |
| JP4341108B2 (en) | 1999-07-14 | 2009-10-07 | ソニー株式会社 | Virtual image observation optical device |
| US20030063042A1 (en) | 1999-07-29 | 2003-04-03 | Asher A. Friesem | Electronic utility devices incorporating a compact virtual image display |
| GB2353144A (en) | 1999-08-11 | 2001-02-14 | Nokia Telecommunications Oy | Combline filter |
| US6317228B2 (en) | 1999-09-14 | 2001-11-13 | Digilens, Inc. | Holographic illumination system |
| US6646772B1 (en) | 1999-09-14 | 2003-11-11 | Digilens, Inc. | Holographic illumination system |
| JP2001091715A (en) | 1999-09-27 | 2001-04-06 | Nippon Mitsubishi Oil Corp | Compound diffraction element |
| GB2354835A (en) | 1999-09-29 | 2001-04-04 | Marconi Electronic Syst Ltd | Head up displays |
| US6741189B1 (en) | 1999-10-06 | 2004-05-25 | Microsoft Corporation | Keypad having optical waveguides |
| US6301056B1 (en) | 1999-11-08 | 2001-10-09 | Corning Precision Lens | High speed retrofocus projection television lens systems |
| US20020009299A1 (en) | 1999-12-04 | 2002-01-24 | Lenny Lipton | System for the display of stereoscopic photographs |
| WO2001050200A2 (en) | 1999-12-22 | 2001-07-12 | Science Applications International Corp. | Switchable polymer-dispersed liquid crystal optical elements |
| US6356172B1 (en) | 1999-12-29 | 2002-03-12 | Nokia Networks Oy | Resonator structure embedded in mechanical structure |
| US7502003B2 (en) | 2000-01-20 | 2009-03-10 | Real D | Method for eliminating pi-cell artifacts |
| US6519088B1 (en) | 2000-01-21 | 2003-02-11 | Stereographics Corporation | Method and apparatus for maximizing the viewing zone of a lenticular stereogram |
| JP4921634B2 (en) | 2000-01-31 | 2012-04-25 | グーグル インコーポレイテッド | Display device |
| GB2360186B (en) | 2000-03-03 | 2003-05-14 | Toshiba Res Europ Ltd | Apparatus and method for investigating a sample |
| US6987911B2 (en) | 2000-03-16 | 2006-01-17 | Lightsmyth Technologies, Inc. | Multimode planar waveguide spectral filter |
| US6993223B2 (en) | 2000-03-16 | 2006-01-31 | Lightsmyth Technologies, Inc. | Multiple distributed optical structures in a single optical element |
| US7245325B2 (en) | 2000-03-17 | 2007-07-17 | Fujifilm Corporation | Photographing device with light quantity adjustment |
| JP2001296503A (en) | 2000-04-13 | 2001-10-26 | Mitsubishi Heavy Ind Ltd | Device for reducing speckle |
| US6730442B1 (en) | 2000-05-24 | 2004-05-04 | Science Applications International Corporation | System and method for replicating volume holograms |
| EP1316055A4 (en) | 2000-05-29 | 2006-10-04 | Vkb Inc | Virtual data entry device and method for input of alphanumeric and other data |
| AU2001256644B2 (en) | 2000-06-05 | 2005-06-16 | Lumus Ltd. | Substrate-guided optical beam expander |
| US20010050756A1 (en) | 2000-06-07 | 2001-12-13 | Lenny Lipton | Software generated color organ for stereoscopic and planar applications |
| US7671889B2 (en) | 2000-06-07 | 2010-03-02 | Real D | Autostereoscopic pixel arrangement techniques |
| WO2001096494A1 (en) | 2000-06-09 | 2001-12-20 | Kent Displays, Inc. | Chiral additives for cholesteric displays |
| FI114585B (en) | 2000-06-09 | 2004-11-15 | Nokia Corp | Transfer cable in multilayer structures |
| US6598987B1 (en) | 2000-06-15 | 2003-07-29 | Nokia Mobile Phones Limited | Method and apparatus for distributing light to the user interface of an electronic device |
| US20080024598A1 (en) | 2000-07-21 | 2008-01-31 | New York University | Autostereoscopic display |
| US6359737B1 (en) | 2000-07-28 | 2002-03-19 | Generals Motors Corporation | Combined head-up display |
| US7003187B2 (en) | 2000-08-07 | 2006-02-21 | Rosemount Inc. | Optical switch with moveable holographic optical element |
| US7099080B2 (en) | 2000-08-30 | 2006-08-29 | Stereo Graphics Corporation | Autostereoscopic lenticular screen |
| US6470132B1 (en) | 2000-09-05 | 2002-10-22 | Nokia Mobile Phones Ltd. | Optical hinge apparatus |
| US6611253B1 (en) | 2000-09-19 | 2003-08-26 | Harel Cohen | Virtual input environment |
| JP2002090858A (en) | 2000-09-20 | 2002-03-27 | Olympus Optical Co Ltd | In-finder display device |
| US6583873B1 (en) | 2000-09-25 | 2003-06-24 | The Carnegie Institution Of Washington | Optical devices having a wavelength-tunable dispersion assembly that has a volume dispersive diffraction grating |
| FI111457B (en) | 2000-10-02 | 2003-07-31 | Nokia Corp | Micromechanical structure |
| US6750968B2 (en) | 2000-10-03 | 2004-06-15 | Accent Optical Technologies, Inc. | Differential numerical aperture methods and device |
| JP3930803B2 (en) | 2000-10-06 | 2007-06-13 | ノキア コーポレイション | Self-aligned transition between transmission line and module |
| DE10051186B4 (en) | 2000-10-16 | 2005-04-07 | Fibermark Gessner Gmbh & Co. Ohg | Dust filter bag with highly porous carrier material layer |
| JP2002122906A (en) | 2000-10-17 | 2002-04-26 | Olympus Optical Co Ltd | Display device within finder |
| AU2000277887A1 (en) | 2000-10-18 | 2002-04-29 | Nokia Corporation | Waveguide to stripline transition |
| US6563648B2 (en) | 2000-10-20 | 2003-05-13 | Three-Five Systems, Inc. | Compact wide field of view imaging system |
| US6738105B1 (en) | 2000-11-02 | 2004-05-18 | Intel Corporation | Coherent light despeckling |
| US6791629B2 (en) | 2000-11-09 | 2004-09-14 | 3M Innovative Properties Company | Lens systems for projection televisions |
| US6822713B1 (en) | 2000-11-27 | 2004-11-23 | Kent State University | Optical compensation film for liquid crystal display |
| JP4727034B2 (en) | 2000-11-28 | 2011-07-20 | オリンパス株式会社 | Observation optical system and imaging optical system |
| GB0029340D0 (en) | 2000-11-30 | 2001-01-17 | Cambridge 3D Display Ltd | Flat panel camera |
| CN1273856C (en) | 2000-12-14 | 2006-09-06 | 皇家菲利浦电子有限公司 | Liquid crystal display laminate and method of manufacturing such |
| US20020120916A1 (en) | 2001-01-16 | 2002-08-29 | Snider Albert Monroe | Head-up display system utilizing fluorescent material |
| US6563650B2 (en) | 2001-01-17 | 2003-05-13 | 3M Innovative Properties Company | Compact, telecentric projection lenses for use with pixelized panels |
| EP2328026B1 (en) | 2001-02-09 | 2014-04-09 | Dai Nippon Printing Co., Ltd. | Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording |
| US6518747B2 (en) | 2001-02-16 | 2003-02-11 | Quantum Design, Inc. | Method and apparatus for quantitative determination of accumulations of magnetic particles |
| US6600590B2 (en) | 2001-02-20 | 2003-07-29 | Eastman Kodak Company | Speckle suppressed laser projection system using RF injection |
| US6625381B2 (en) | 2001-02-20 | 2003-09-23 | Eastman Kodak Company | Speckle suppressed laser projection system with partial beam reflection |
| US6476974B1 (en) | 2001-02-28 | 2002-11-05 | Corning Precision Lens Incorporated | Projection lenses for use with reflective pixelized panels |
| AU2002250235A1 (en) | 2001-03-02 | 2002-09-19 | Innovative Solutions And Support, Inc. | Image display generator for a head-up display |
| JP2002277732A (en) | 2001-03-14 | 2002-09-25 | Fuji Photo Optical Co Ltd | Diffraction type optical pickup lens and optical pickup device using the same |
| JP2002277816A (en) | 2001-03-21 | 2002-09-25 | Minolta Co Ltd | Video display device |
| US7184002B2 (en) | 2001-03-29 | 2007-02-27 | Stereographics Corporation | Above-and-below stereoscopic format with signifier |
| GB0108838D0 (en) | 2001-04-07 | 2001-05-30 | Cambridge 3D Display Ltd | Far field display |
| US6781701B1 (en) | 2001-04-10 | 2004-08-24 | Intel Corporation | Method and apparatus for measuring optical phase and amplitude |
| FI20010778A7 (en) | 2001-04-12 | 2002-10-13 | Nokia Corp | Optical switching arrangement |
| WO2002086591A1 (en) | 2001-04-23 | 2002-10-31 | Reveo, Inc. | Image display system and electrically actuatable image combiner therefor |
| FI111357B (en) | 2001-05-03 | 2003-07-15 | Nokia Corp | Electrically controllable sheet of varying thickness and method for its formation |
| FI20010917A7 (en) | 2001-05-03 | 2002-11-04 | Nokia Corp | Electrically reconfigurable optical devices and method for forming them |
| US6999239B1 (en) | 2001-05-23 | 2006-02-14 | Research Foundation Of The University Of Central Florida, Inc | Head-mounted display by integration of phase-conjugate material |
| US7009773B2 (en) | 2001-05-23 | 2006-03-07 | Research Foundation Of The University Of Central Florida, Inc. | Compact microlenslet arrays imager |
| US6963454B1 (en) | 2002-03-01 | 2005-11-08 | Research Foundation Of The University Of Central Florida | Head-mounted display by integration of phase-conjugate material |
| US6731434B1 (en) | 2001-05-23 | 2004-05-04 | University Of Central Florida | Compact lens assembly for the teleportal augmented reality system |
| JP4414612B2 (en) | 2001-05-31 | 2010-02-10 | 矢崎総業株式会社 | Vehicle display device |
| US7002618B2 (en) | 2001-06-01 | 2006-02-21 | Stereographics Corporation | Plano-stereoscopic DVD movie |
| US7500104B2 (en) | 2001-06-15 | 2009-03-03 | Microsoft Corporation | Networked device branding for secure interaction in trust webs on open networks |
| US6747781B2 (en) | 2001-06-25 | 2004-06-08 | Silicon Light Machines, Inc. | Method, apparatus, and diffuser for reducing laser speckle |
| US7356224B2 (en) | 2001-07-03 | 2008-04-08 | Brown University Research Foundation | Method and apparatus for detecting multiple optical wave lengths |
| US7151246B2 (en) | 2001-07-06 | 2006-12-19 | Palantyr Research, Llc | Imaging system and methodology |
| US6750995B2 (en) | 2001-07-09 | 2004-06-15 | Dickson Leroy David | Enhanced volume phase grating with high dispersion, high diffraction efficiency and low polarization sensitivity |
| KR100782806B1 (en) | 2001-07-26 | 2007-12-06 | 삼성전자주식회사 | Single Plate Color Image Display |
| JP2003114347A (en) | 2001-07-30 | 2003-04-18 | Furukawa Electric Co Ltd:The | Single mode optical fiber, manufacturing method and manufacturing apparatus |
| GB0118866D0 (en) | 2001-08-02 | 2001-09-26 | Cambridge 3D Display Ltd | Shaped taper flat panel display |
| US6791739B2 (en) | 2001-08-08 | 2004-09-14 | Eastman Kodak Company | Electro-optic despeckling modulator and method of use |
| US6927694B1 (en) | 2001-08-20 | 2005-08-09 | Research Foundation Of The University Of Central Florida | Algorithm for monitoring head/eye motion for driver alertness with one camera |
| JP2003066428A (en) | 2001-08-23 | 2003-03-05 | Toppan Printing Co Ltd | Projector using holographic polymer dispersed liquid crystal |
| US6987908B2 (en) | 2001-08-24 | 2006-01-17 | T-Networks, Inc. | Grating dispersion compensator and method of manufacture |
| JP4155771B2 (en) | 2001-08-27 | 2008-09-24 | 大日本印刷株式会社 | Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording using the same |
| US6594090B2 (en) | 2001-08-27 | 2003-07-15 | Eastman Kodak Company | Laser projection display system |
| US6646810B2 (en) | 2001-09-04 | 2003-11-11 | Delphi Technologies, Inc. | Display backlighting apparatus |
| DE60124961T2 (en) | 2001-09-25 | 2007-07-26 | Cambridge Flat Projection Displays Ltd., Fenstanton | A flat-panel projection display |
| US6833955B2 (en) | 2001-10-09 | 2004-12-21 | Planop Planar Optics Ltd. | Compact two-plane optical device |
| US6842563B2 (en) | 2001-10-22 | 2005-01-11 | Oplux, Inc. | Waveguide grating-based wavelength selective switch actuated by micro-electromechanical system |
| JP2003139958A (en) | 2001-10-31 | 2003-05-14 | Sony Corp | Transmission type laminated hologram optical element, image display element and image display device |
| US6816309B2 (en) | 2001-11-30 | 2004-11-09 | Colorlink, Inc. | Compensated color management systems and methods |
| US6773114B2 (en) | 2001-12-07 | 2004-08-10 | Nokia Corporation | Portable multimode display device |
| KR20040070214A (en) | 2001-12-13 | 2004-08-06 | 소니 인터내셔널(유로파) 게엠베하 | A method of forming a composite |
| US6577429B1 (en) | 2002-01-15 | 2003-06-10 | Eastman Kodak Company | Laser projection display system |
| US6926429B2 (en) | 2002-01-30 | 2005-08-09 | Delphi Technologies, Inc. | Eye tracking/HUD system |
| US6952435B2 (en) | 2002-02-11 | 2005-10-04 | Ming Lai | Speckle free laser probe beam |
| AU2003208584A1 (en) | 2002-02-15 | 2003-09-04 | Elop Electro-Optics Industries Ltd. | Device and method for varying the reflectance or transmittance of light |
| US6836369B2 (en) | 2002-03-08 | 2004-12-28 | Denso Corporation | Head-up display |
| DE60311904D1 (en) | 2002-03-15 | 2007-04-05 | Computer Sciences Corp | Methods and apparatus for analyzing writing in documents |
| US7528385B2 (en) | 2002-03-15 | 2009-05-05 | Pd-Ld, Inc. | Fiber optic devices having volume Bragg grating elements |
| JP2003270419A (en) | 2002-03-18 | 2003-09-25 | Sony Corp | Diffractive optical element and image display device |
| US7027671B2 (en) | 2002-03-18 | 2006-04-11 | Koninklijke Philips Electronics N.V. | Polarized-light-emitting waveguide, illumination arrangement and display device comprising such |
| EP1347641A1 (en) | 2002-03-19 | 2003-09-24 | Siemens Aktiengesellschaft | Free projection display device |
| IL148804A (en) | 2002-03-21 | 2007-02-11 | Yaacov Amitai | Optical device |
| DE10216279A1 (en) | 2002-04-12 | 2003-10-30 | Siemens Ag | Method for the detection of a control signal in an optical transmission system |
| US6757105B2 (en) | 2002-04-25 | 2004-06-29 | Planop Planar Optics Ltd. | Optical device having a wide field-of-view for multicolor images |
| JP3460716B1 (en) | 2002-04-25 | 2003-10-27 | ソニー株式会社 | Image display device |
| FI113719B (en) | 2002-04-26 | 2004-05-31 | Nokia Corp | modulator |
| KR20030088217A (en) | 2002-05-13 | 2003-11-19 | 삼성전자주식회사 | Wearable display system enabling adjustment of magnfication |
| DE10221837B4 (en) | 2002-05-16 | 2005-10-20 | Bat Cigarettenfab Gmbh | Apparatus and method for identifying cigarette packets |
| US20030228019A1 (en) | 2002-06-11 | 2003-12-11 | Elbit Systems Ltd. | Method and system for reducing noise |
| DE60228629D1 (en) | 2002-06-13 | 2008-10-09 | Nokia Corp | EXPANSION ELECTRODE CONFIGURATION FOR ELECTRICALLY CONTROLLED LIGHT MODULATORS |
| US7804995B2 (en) | 2002-07-02 | 2010-09-28 | Reald Inc. | Stereoscopic format converter |
| ITTO20020625A1 (en) | 2002-07-17 | 2004-01-19 | Fiat Ricerche | LIGHT GUIDE FOR "HEAD-MOUNTED" OR "HEAD-UP" TYPE DISPLAY DEVICES |
| JP3867634B2 (en) | 2002-07-26 | 2007-01-10 | 株式会社ニコン | Image combiner and image display device |
| US6951393B2 (en) | 2002-07-31 | 2005-10-04 | Canon Kabushiki Kaisha | Projection type image display apparatus and image display system |
| EP1540373B1 (en) | 2002-08-05 | 2008-02-20 | Elbit Systems Ltd. | Vehicle mounted night vision imaging system and method |
| US7872804B2 (en) | 2002-08-20 | 2011-01-18 | Illumina, Inc. | Encoded particle having a grating with variations in the refractive index |
| US7619739B1 (en) | 2002-08-29 | 2009-11-17 | Science Applications International Corporation | Detection and identification of biological agents using Bragg filters |
| US7259906B1 (en) | 2002-09-03 | 2007-08-21 | Cheetah Omni, Llc | System and method for voice control of medical devices |
| TWI275827B (en) | 2002-09-03 | 2007-03-11 | Optrex Kk | Image display system |
| FI114945B (en) | 2002-09-19 | 2005-01-31 | Nokia Corp | Electrically adjustable diffractive gate element |
| EP1543364B1 (en) | 2002-09-25 | 2012-05-23 | Hoya Corporation Usa | Method for making an optical apparatus for free-space optical propagation between waveguide(s) and/or fiber(s) |
| US6776339B2 (en) | 2002-09-27 | 2004-08-17 | Nokia Corporation | Wireless communication device providing a contactless interface for a smart card reader |
| US6805490B2 (en) | 2002-09-30 | 2004-10-19 | Nokia Corporation | Method and system for beam expansion in a display device |
| ATE412223T1 (en) | 2002-10-24 | 2008-11-15 | L 1 Identity Solutions Ag | CHECKING IMAGE RECORDS OF PERSONS |
| JP4242138B2 (en) | 2002-11-05 | 2009-03-18 | 日本電信電話株式会社 | Hologram drawing method and hologram |
| US7095026B2 (en) | 2002-11-08 | 2006-08-22 | L-3 Communications Cincinnati Electronics Corporation | Methods and apparatuses for selectively limiting undesired radiation |
| US8786923B2 (en) | 2002-11-22 | 2014-07-22 | Akonia Holographics, Llc | Methods and systems for recording to holographic storage media |
| US20040263969A1 (en) | 2002-11-25 | 2004-12-30 | Lenny Lipton | Lenticular antireflection display |
| US7018563B1 (en) | 2002-11-26 | 2006-03-28 | Science Applications International Corporation | Tailoring material composition for optimization of application-specific switchable holograms |
| CN1695184A (en) | 2002-11-27 | 2005-11-09 | 诺基亚公司 | Optical memory read/write device and read/write method |
| US6853491B1 (en) | 2003-11-26 | 2005-02-08 | Frank Ruhle | Collimating optical member for real world simulation |
| US20040112862A1 (en) | 2002-12-12 | 2004-06-17 | Molecular Imprints, Inc. | Planarization composition and method of patterning a substrate using the same |
| FI114946B (en) | 2002-12-16 | 2005-01-31 | Nokia Corp | Diffractive grating element for balancing diffraction efficiency |
| US7046888B2 (en) | 2002-12-18 | 2006-05-16 | The Regents Of The University Of Michigan | Enhancing fiber-optic sensing technique using a dual-core fiber |
| KR20050089159A (en) | 2002-12-18 | 2005-09-07 | 파워웨이브 테크놀로지스, 인크. | Delay mismatched feed forward amplifier system using penalties and floors for control |
| GB2396484A (en) | 2002-12-19 | 2004-06-23 | Nokia Corp | Reducing coupling between different antennas |
| US6952312B2 (en) | 2002-12-31 | 2005-10-04 | 3M Innovative Properties Company | Head-up display with polarized light source and wide-angle p-polarization reflective polarizer |
| US6853493B2 (en) | 2003-01-07 | 2005-02-08 | 3M Innovative Properties Company | Folded, telecentric projection lenses for use with pixelized panels |
| JP3873892B2 (en) | 2003-01-22 | 2007-01-31 | コニカミノルタホールディングス株式会社 | Video display device |
| JP2006517307A (en) | 2003-02-10 | 2006-07-20 | ナノオプト コーポレーション | General-purpose broadband polarizer, device including the same, and manufacturing method thereof |
| US7088515B2 (en) | 2003-02-12 | 2006-08-08 | Stereographics Corporation | Autostereoscopic lens sheet with planar areas |
| US20040263971A1 (en) | 2003-02-12 | 2004-12-30 | Lenny Lipton | Dual mode autosteroscopic lens sheet |
| US7205960B2 (en) | 2003-02-19 | 2007-04-17 | Mirage Innovations Ltd. | Chromatic planar optic display system |
| US7119965B1 (en) | 2003-02-24 | 2006-10-10 | University Of Central Florida Research Foundation, Inc. | Head mounted projection display with a wide field of view |
| US8230359B2 (en) | 2003-02-25 | 2012-07-24 | Microsoft Corporation | System and method that facilitates computer desktop use via scaling of displayed objects with shifts to the periphery |
| JP2006519421A (en) | 2003-03-05 | 2006-08-24 | スリーエム イノベイティブ プロパティズ カンパニー | Diffractive lens |
| US7092133B2 (en) | 2003-03-10 | 2006-08-15 | Inphase Technologies, Inc. | Polytopic multiplex holography |
| US20040179764A1 (en) | 2003-03-14 | 2004-09-16 | Noureddine Melikechi | Interferometric analog optical modulator for single mode fibers |
| US20060279662A1 (en) | 2003-03-16 | 2006-12-14 | Explay Ltd. | Projection system and method |
| US7181105B2 (en) | 2003-03-25 | 2007-02-20 | Fuji Photo Film Co., Ltd. | Method for adjusting alignment of laser beams in combined-laser-light source where the laser beams are incident on restricted area of light-emission end face of optical fiber |
| US7539330B2 (en) | 2004-06-01 | 2009-05-26 | Lumidigm, Inc. | Multispectral liveness determination |
| US7460696B2 (en) | 2004-06-01 | 2008-12-02 | Lumidigm, Inc. | Multispectral imaging biometrics |
| US6950173B1 (en) | 2003-04-08 | 2005-09-27 | Science Applications International Corporation | Optimizing performance parameters for switchable polymer dispersed liquid crystal optical elements |
| AU2003901797A0 (en) | 2003-04-14 | 2003-05-01 | Agresearch Limited | Manipulation of condensed tannin biosynthesis |
| US6985296B2 (en) | 2003-04-15 | 2006-01-10 | Stereographics Corporation | Neutralizing device for autostereoscopic lens sheet |
| WO2004102226A2 (en) | 2003-05-09 | 2004-11-25 | Sbg Labs, Inc. | Switchable viewfinder display |
| ATE447205T1 (en) | 2003-05-12 | 2009-11-15 | Elbit Systems Ltd | METHOD AND SYSTEM FOR AUDIOVISUAL COMMUNICATION |
| FI115169B (en) | 2003-05-13 | 2005-03-15 | Nokia Corp | Method and optical system for coupling light to a waveguide |
| US7401920B1 (en) | 2003-05-20 | 2008-07-22 | Elbit Systems Ltd. | Head mounted eye tracking and display system |
| GB0313044D0 (en) | 2003-06-06 | 2003-07-09 | Cambridge Flat Projection | Flat panel scanning illuminator |
| WO2004109349A2 (en) | 2003-06-10 | 2004-12-16 | Elop Electro-Optics Industries Ltd. | Method and system for displaying an informative image against a background image |
| JP2005011387A (en) | 2003-06-16 | 2005-01-13 | Hitachi Global Storage Technologies Inc | Magnetic disk unit |
| WO2004113971A1 (en) | 2003-06-19 | 2004-12-29 | Nikon Corporation | Optical element |
| EP1636735A1 (en) | 2003-06-21 | 2006-03-22 | Aprilis, Inc. | Acquisition of high resolution boimetric images |
| US7394865B2 (en) | 2003-06-25 | 2008-07-01 | Nokia Corporation | Signal constellations for multi-carrier systems |
| JP4741488B2 (en) | 2003-07-03 | 2011-08-03 | ホロタッチ, インコーポレイテッド | Holographic human machine interface |
| ITTO20030530A1 (en) | 2003-07-09 | 2005-01-10 | Infm Istituto Naz Per La Fisi Ca Della Mater | HOLOGRAPHIC DISTRIBUTION NETWORK, PROCEDURE FOR THE |
| US7158095B2 (en) | 2003-07-17 | 2007-01-02 | Big Buddy Performance, Inc. | Visual display system for displaying virtual images onto a field of vision |
| EP1651999B1 (en) | 2003-08-08 | 2018-11-28 | Merck Patent GmbH | Alignment layer with reactive mesogens for aligning liquid crystal molecules |
| KR100516601B1 (en) | 2003-08-13 | 2005-09-22 | 삼성전기주식회사 | Lens system being constructed in mobile terminal |
| EP1510862A3 (en) | 2003-08-25 | 2006-08-09 | Fuji Photo Film Co., Ltd. | Hologram recording method and hologram recording material |
| US7567372B2 (en) | 2003-08-29 | 2009-07-28 | Nokia Corporation | Electrical device utilizing charge recycling within a cell |
| GB2405519A (en) | 2003-08-30 | 2005-03-02 | Sharp Kk | A multiple-view directional display |
| IL157837A (en) | 2003-09-10 | 2012-12-31 | Yaakov Amitai | Substrate-guided optical device particularly for three-dimensional displays |
| IL157838A (en) | 2003-09-10 | 2013-05-30 | Yaakov Amitai | High brightness optical device |
| IL157836A (en) | 2003-09-10 | 2009-08-03 | Yaakov Amitai | Optical devices particularly for remote viewing applications |
| US7088457B1 (en) | 2003-10-01 | 2006-08-08 | University Of Central Florida Research Foundation, Inc. | Iterative least-squares wavefront estimation for general pupil shapes |
| US7616228B2 (en) | 2003-10-02 | 2009-11-10 | Real D | Hardware based interdigitation |
| US7616227B2 (en) | 2003-10-02 | 2009-11-10 | Real D | Hardware based interdigitation |
| JP4266770B2 (en) | 2003-10-22 | 2009-05-20 | アルプス電気株式会社 | Optical image reader |
| US7277640B2 (en) | 2003-11-18 | 2007-10-02 | Avago Technologies Fiber Ip (Singapore) Pte Ltd | Optical add/drop multiplexing systems |
| US7333685B2 (en) | 2003-11-24 | 2008-02-19 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Variable optical attenuator systems |
| KR100807440B1 (en) | 2003-11-28 | 2008-02-25 | 오므론 가부시키가이샤 | Multi-channel array waveguide diffraction grating type multiplexer/demultiplexer and method of connecting array waveguide with output waveguides |
| IL165376A0 (en) | 2003-12-02 | 2006-01-15 | Electro Optics Ind Ltd | Vehicle display system |
| US7034748B2 (en) | 2003-12-17 | 2006-04-25 | Microsoft Corporation | Low-cost, steerable, phased array antenna with controllable high permittivity phase shifters |
| US7273659B2 (en) | 2003-12-18 | 2007-09-25 | Lintec Corporation | Photochromic film material |
| US7496293B2 (en) | 2004-01-14 | 2009-02-24 | Elbit Systems Ltd. | Versatile camera for various visibility conditions |
| US20080225361A1 (en) | 2004-01-29 | 2008-09-18 | Matsushita Electric Industrial Co., Ltd. | Light Source Device, and Two-Dimensional Image Display Device |
| FI20040162A7 (en) | 2004-02-03 | 2005-08-04 | Nokia Oyj | Stabilizing the frequency of the reference oscillator |
| JP4438436B2 (en) | 2004-02-03 | 2010-03-24 | セイコーエプソン株式会社 | Display device |
| JP4682519B2 (en) | 2004-02-03 | 2011-05-11 | セイコーエプソン株式会社 | Display device |
| US7317449B2 (en) | 2004-03-02 | 2008-01-08 | Microsoft Corporation | Key-based advanced navigation techniques |
| EP1731943B1 (en) | 2004-03-29 | 2019-02-13 | Sony Corporation | Optical device and virtual image display device |
| US6958868B1 (en) | 2004-03-29 | 2005-10-25 | John George Pender | Motion-free tracking solar concentrator |
| US20050232530A1 (en) | 2004-04-01 | 2005-10-20 | Jason Kekas | Electronically controlled volume phase grating devices, systems and fabrication methods |
| US7526103B2 (en) | 2004-04-15 | 2009-04-28 | Donnelly Corporation | Imaging system for vehicle |
| US7375886B2 (en) | 2004-04-19 | 2008-05-20 | Stereographics Corporation | Method and apparatus for optimizing the viewing distance of a lenticular stereogram |
| US6992830B1 (en) | 2004-04-22 | 2006-01-31 | Raytheon Company | Projection display having an angle-selective coating for enhanced image contrast, and method for enhancing image contrast |
| EP1743197B1 (en) | 2004-04-23 | 2011-08-10 | Olivier M. Parriaux | High efficiency optical diffraction device |
| US7339737B2 (en) | 2004-04-23 | 2008-03-04 | Microvision, Inc. | Beam multiplier that can be used as an exit-pupil expander and related system and method |
| WO2005106571A1 (en) | 2004-04-30 | 2005-11-10 | Asahi Glass Company, Limited | Liquid crystal lens element and optical head |
| JP4373286B2 (en) | 2004-05-06 | 2009-11-25 | オリンパス株式会社 | Head-mounted display device |
| GB2414127A (en) | 2004-05-12 | 2005-11-16 | Sharp Kk | Time sequential colour projection |
| WO2005111669A1 (en) | 2004-05-17 | 2005-11-24 | Nikon Corporation | Optical element, combiner optical system, and image display unit |
| US7301601B2 (en) | 2004-05-20 | 2007-11-27 | Alps Electric (Usa) Inc. | Optical switching device using holographic polymer dispersed liquid crystals |
| US7639208B1 (en) | 2004-05-21 | 2009-12-29 | University Of Central Florida Research Foundation, Inc. | Compact optical see-through head-mounted display with occlusion support |
| US8229185B2 (en) | 2004-06-01 | 2012-07-24 | Lumidigm, Inc. | Hygienic biometric sensors |
| US7002753B2 (en) | 2004-06-02 | 2006-02-21 | 3M Innovative Properties Company | Color-corrected projection lenses for use with pixelized panels |
| IL162572A (en) | 2004-06-17 | 2013-02-28 | Lumus Ltd | High brightness optical device |
| IL162573A (en) | 2004-06-17 | 2013-05-30 | Lumus Ltd | Substrate-guided optical device with very wide aperture |
| US7482996B2 (en) | 2004-06-28 | 2009-01-27 | Honeywell International Inc. | Head-up display |
| IL162779A (en) | 2004-06-29 | 2010-11-30 | Elbit Systems Ltd | Security systems and methods relating to travelling vehicles |
| EP1612596A1 (en) | 2004-06-29 | 2006-01-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | High-efficient, tuneable and switchable optical elements based on polymer-liquid crystal composites and films, mixtures and a method for their production |
| US20060013977A1 (en) | 2004-07-13 | 2006-01-19 | Duke Leslie P | Polymeric ballistic material and method of making |
| US7597447B2 (en) | 2004-07-14 | 2009-10-06 | Honeywell International Inc. | Color correcting contrast enhancement of displays |
| US7285903B2 (en) | 2004-07-15 | 2007-10-23 | Honeywell International, Inc. | Display with bright backlight |
| US7110184B1 (en) | 2004-07-19 | 2006-09-19 | Elbit Systems Ltd. | Method and apparatus for combining an induced image with a scene image |
| JP4841815B2 (en) | 2004-07-23 | 2011-12-21 | 株式会社村上開明堂 | Display device |
| US7492512B2 (en) | 2004-07-23 | 2009-02-17 | Mirage International Ltd. | Wide field-of-view binocular device, system and kit |
| US8938141B2 (en) | 2004-07-30 | 2015-01-20 | University Of Connecticut | Tunable resonant leaky-mode N/MEMS elements and uses in optical devices |
| US7689086B2 (en) | 2004-07-30 | 2010-03-30 | University Of Connecticut | Resonant leaky-mode optical devices and associated methods |
| US7145729B2 (en) | 2004-08-04 | 2006-12-05 | 3M Innovative Properties Company | Foldable projection lenses |
| US7230770B2 (en) | 2004-08-04 | 2007-06-12 | 3M Innovative Properties Company | Projection lenses having color-correcting rear lens units |
| IL163361A (en) | 2004-08-05 | 2011-06-30 | Lumus Ltd | Optical device for light coupling into a guiding substrate |
| EP1784988A1 (en) | 2004-08-06 | 2007-05-16 | University of Washington | Variable fixation viewing distance scanned light displays |
| US7436568B1 (en) | 2004-08-17 | 2008-10-14 | Kuykendall Jr Jacob L | Head mountable video display |
| US7233446B2 (en) | 2004-08-19 | 2007-06-19 | 3Dtl, Inc. | Transformable, applicable material and methods for using same for optical effects |
| US7075273B2 (en) | 2004-08-24 | 2006-07-11 | Motorola, Inc. | Automotive electrical system configuration using a two bus structure |
| US8124929B2 (en) | 2004-08-25 | 2012-02-28 | Protarius Filo Ag, L.L.C. | Imager module optical focus and assembly method |
| US7619825B1 (en) | 2004-09-27 | 2009-11-17 | Rockwell Collins, Inc. | Compact head up display with wide viewing angle |
| WO2006035737A1 (en) | 2004-09-29 | 2006-04-06 | Brother Kogyo Kabushiki Kaisha | Retina scanning type display |
| JP4649158B2 (en) | 2004-09-30 | 2011-03-09 | 富士フイルム株式会社 | Hologram recording method |
| WO2006040902A1 (en) | 2004-10-08 | 2006-04-20 | Pioneer Corporation | Diffraction optical element, objective lens module, optical pickup, and optical information recording/reproducing apparatus |
| WO2006041278A1 (en) | 2004-10-15 | 2006-04-20 | Stichting Dutch Polymer Institute | Waveguide comprising an anisotropic diffracting layer |
| WO2006044652A1 (en) | 2004-10-16 | 2006-04-27 | Identix Incorporated | Diffractive imaging system for the reading and analysis of skin topology |
| WO2006043516A1 (en) | 2004-10-19 | 2006-04-27 | Asahi Glass Company, Limited | Liquid crystal diffractive lens element and optical head device |
| IL165190A (en) | 2004-11-14 | 2012-05-31 | Elbit Systems Ltd | System and method for stabilizing an image |
| US7778508B2 (en) | 2004-12-06 | 2010-08-17 | Nikon Corporation | Image display optical system, image display unit, illuminating optical system, and liquid crystal display unit |
| US20060126181A1 (en) | 2004-12-13 | 2006-06-15 | Nokia Corporation | Method and system for beam expansion in a display device |
| CN101076747B (en) | 2004-12-13 | 2012-07-04 | 诺基亚公司 | System and method for beam expansion with near focus in display device |
| US7206107B2 (en) | 2004-12-13 | 2007-04-17 | Nokia Corporation | Method and system for beam expansion in a display device |
| EP1828832B1 (en) | 2004-12-13 | 2013-05-22 | Nokia Corporation | General diffractive optics method for expanding an exit pupil |
| US7466994B2 (en) | 2004-12-31 | 2008-12-16 | Nokia Corporation | Sub-display of a mobile device |
| US7289069B2 (en) | 2005-01-04 | 2007-10-30 | Nokia Corporation | Wireless device antenna |
| WO2006077588A2 (en) | 2005-01-20 | 2006-07-27 | Elbit Systems Electro-Optics Elop Ltd. | Laser obstacle detection and display |
| US8885139B2 (en) | 2005-01-21 | 2014-11-11 | Johnson & Johnson Vision Care | Adaptive electro-active lens with variable focal length |
| WO2007097738A2 (en) | 2005-01-26 | 2007-08-30 | Wollf Robin Q | Eye tracker/head tracker/camera tracker controlled camera/weapon positioner control system |
| AU2006208719B2 (en) | 2005-01-26 | 2009-05-28 | Xieon Networks S.A.R.L. | Method for optically transmitting polarisation multiplex signals |
| GB0502453D0 (en) | 2005-02-05 | 2005-03-16 | Cambridge Flat Projection | Flat panel lens |
| US7724443B2 (en) | 2005-02-10 | 2010-05-25 | Lumus Ltd. | Substrate-guided optical device utilizing thin transparent layer |
| US10073264B2 (en) | 2007-08-03 | 2018-09-11 | Lumus Ltd. | Substrate-guide optical device |
| IL166799A (en) | 2005-02-10 | 2014-09-30 | Lumus Ltd | Substrate-guided optical device utilizing beam splitters |
| JP2008533507A (en) | 2005-02-10 | 2008-08-21 | ラマス リミテッド | Substrate guiding optical device especially for vision enhancement optical system |
| US7325928B2 (en) | 2005-02-14 | 2008-02-05 | Intel Corporation | Resolution multiplication technique for projection display systems |
| CA2537751A1 (en) | 2005-02-28 | 2006-08-28 | Weatherford/Lamb, Inc. | Furnace and process for drawing radiation resistant optical fiber |
| WO2006102073A2 (en) | 2005-03-18 | 2006-09-28 | Sbg Labs, Inc. | Spatial light modulator |
| CA2601155A1 (en) | 2005-03-22 | 2006-09-28 | Myvu Corporation | Optical system using total internal reflection images |
| JP4612853B2 (en) | 2005-03-29 | 2011-01-12 | キヤノン株式会社 | Pointed position recognition device and information input device having the same |
| US7573640B2 (en) | 2005-04-04 | 2009-08-11 | Mirage Innovations Ltd. | Multi-plane optical apparatus |
| JP5090337B2 (en) | 2005-04-08 | 2012-12-05 | リアルディー インコーポレイテッド | Autostereoscopic display with planar pass-through |
| US7123421B1 (en) | 2005-04-22 | 2006-10-17 | Panavision International, L.P. | Compact high performance zoom lens system |
| IL168581A (en) | 2005-05-15 | 2010-12-30 | Elbit Systems Electro Optics Elop Ltd | Head-up display system |
| WO2006128066A2 (en) | 2005-05-26 | 2006-11-30 | Real D | Ghost-compensation for improved stereoscopic projection |
| WO2006129307A1 (en) | 2005-05-30 | 2006-12-07 | Elbit Systems Ltd. | Combined head up display |
| JP4567786B2 (en) | 2005-06-03 | 2010-10-20 | ノキア コーポレイション | A versatile diffractive optical method to enlarge the exit pupil |
| JP5465430B2 (en) | 2005-06-07 | 2014-04-09 | リアルディー インコーポレイテッド | Control of angle range of autostereoscopic viewing zone |
| JP4655771B2 (en) | 2005-06-17 | 2011-03-23 | ソニー株式会社 | Optical device and virtual image display device |
| US20060291052A1 (en) | 2005-06-24 | 2006-12-28 | Lenny Lipton | Autostereoscopic display with increased sharpness for non-primary viewing zones |
| JP4862298B2 (en) | 2005-06-30 | 2012-01-25 | ソニー株式会社 | Optical device and virtual image display device |
| KR100972350B1 (en) | 2005-07-07 | 2010-07-26 | 노키아 코포레이션 | Fabrication of Optical Waveguide Using Embossed Grooves by Rolling |
| US8086030B2 (en) | 2005-07-19 | 2011-12-27 | Elbit Systems Electro-Optics Elop Ltd. | Method and system for visually presenting a high dynamic range image |
| US7271960B2 (en) | 2005-07-25 | 2007-09-18 | Stewart Robert J | Universal vehicle head up display (HUD) device and method for using the same |
| US7397606B1 (en) | 2005-08-04 | 2008-07-08 | Rockwell Collins, Inc. | Meniscus head up display combiner |
| WO2007015141A2 (en) | 2005-08-04 | 2007-02-08 | Milan Momcilo Popovich | Laser illuminator |
| CN101253425B (en) | 2005-08-29 | 2012-06-20 | 松下电器产业株式会社 | Diffractive optical element, manufacturing method, and imaging device using diffractive optical element |
| US7666331B2 (en) | 2005-08-31 | 2010-02-23 | Transitions Optical, Inc. | Photochromic article |
| US7434940B2 (en) | 2005-09-06 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Light coupling system and method |
| WO2007029034A1 (en) | 2005-09-07 | 2007-03-15 | Bae Systems Plc | A projection display with a rod-like, rectangular cross-section waveguide and a plate-like waveguide, each of them having a diffraction grating |
| US9081178B2 (en) | 2005-09-07 | 2015-07-14 | Bae Systems Plc | Projection display for displaying an image to a viewer |
| GB0518212D0 (en) | 2005-09-08 | 2005-10-19 | Popovich Milan M | Polarisation converter |
| IL173361A (en) | 2005-09-12 | 2012-03-29 | Elbit Systems Ltd | Near eye display system |
| US20080043334A1 (en) | 2006-08-18 | 2008-02-21 | Mirage Innovations Ltd. | Diffractive optical relay and method for manufacturing the same |
| EP1932050A2 (en) | 2005-09-14 | 2008-06-18 | Mirage Innovations Ltd. | Diffractive optical device and system |
| GB0518912D0 (en) | 2005-09-16 | 2005-10-26 | Light Blue Optics Ltd | Methods and apparatus for displaying images using holograms |
| JP2007086145A (en) | 2005-09-20 | 2007-04-05 | Sony Corp | 3D display device |
| JP4810949B2 (en) | 2005-09-29 | 2011-11-09 | ソニー株式会社 | Optical device and image display device |
| US20070089625A1 (en) | 2005-10-20 | 2007-04-26 | Elbit Vision Systems Ltd. | Method and system for detecting defects during the fabrication of a printing cylinder |
| US8018579B1 (en) | 2005-10-21 | 2011-09-13 | Apple Inc. | Three-dimensional imaging and display system |
| US8049772B2 (en) | 2005-10-27 | 2011-11-01 | Reald Inc. | Temperature compensation for the differential expansion of an autostereoscopic lenticular array and display screen |
| WO2007052265A2 (en) | 2005-11-03 | 2007-05-10 | Mirage Innovations Ltd. | Binocular optical relay device |
| IL171820A (en) | 2005-11-08 | 2014-04-30 | Lumus Ltd | Polarizing optical device for light coupling |
| US10048499B2 (en) | 2005-11-08 | 2018-08-14 | Lumus Ltd. | Polarizing optical system |
| US7777819B2 (en) | 2005-11-10 | 2010-08-17 | Bae Systems Plc | Display source |
| IL179135A (en) | 2005-11-10 | 2010-11-30 | Elbit Systems Electro Optics Elop Ltd | Head up display mechanism |
| GB0522968D0 (en) | 2005-11-11 | 2005-12-21 | Popovich Milan M | Holographic illumination device |
| JP2009521137A (en) | 2005-11-14 | 2009-05-28 | リアルデー | Monitor with integral interdigitation |
| US7477206B2 (en) | 2005-12-06 | 2009-01-13 | Real D | Enhanced ZScreen modulator techniques |
| US7639911B2 (en) | 2005-12-08 | 2009-12-29 | Electronics And Telecommunications Research Institute | Optical device having optical waveguide including organic Bragg grating sheet |
| JP4668780B2 (en) | 2005-12-08 | 2011-04-13 | 矢崎総業株式会社 | Luminescent display device |
| US7583437B2 (en) | 2005-12-08 | 2009-09-01 | Real D | Projection screen with virtual compound curvature |
| US7522344B1 (en) | 2005-12-14 | 2009-04-21 | University Of Central Florida Research Foundation, Inc. | Projection-based head-mounted display with eye-tracking capabilities |
| US20070133983A1 (en) | 2005-12-14 | 2007-06-14 | Matilda Traff | Light-controlling element for a camera |
| EP1966636A2 (en) | 2005-12-22 | 2008-09-10 | Université Jean-Monnet | Mirror structure and laser device comprising such a mirror structure |
| IL172797A (en) | 2005-12-25 | 2012-09-24 | Elbit Systems Ltd | Real-time image scanning and processing |
| US7953308B2 (en) | 2005-12-30 | 2011-05-31 | General Electric Company | System and method for fiber optic bundle-based illumination for imaging system |
| US8384504B2 (en) | 2006-01-06 | 2013-02-26 | Quantum Design International, Inc. | Superconducting quick switch |
| US20070160325A1 (en) | 2006-01-11 | 2007-07-12 | Hyungbin Son | Angle-tunable transmissive grating |
| DE102006003785B4 (en) | 2006-01-25 | 2023-02-23 | Adc Automotive Distance Control Systems Gmbh | Sensor with an adjustable dimming device |
| WO2007085682A1 (en) | 2006-01-26 | 2007-08-02 | Nokia Corporation | Eye tracker device |
| US7760429B2 (en) | 2006-01-27 | 2010-07-20 | Reald Inc. | Multiple mode display device |
| IL173715A0 (en) | 2006-02-14 | 2007-03-08 | Lumus Ltd | Substrate-guided imaging lens |
| JP2007219106A (en) | 2006-02-16 | 2007-08-30 | Konica Minolta Holdings Inc | Optical device for expanding diameter of luminous flux, video display device and head mount display |
| JP4572342B2 (en) | 2006-02-21 | 2010-11-04 | セイコーエプソン株式会社 | Electronics |
| CN101389995B (en) | 2006-02-27 | 2012-08-22 | 诺基亚公司 | Diffraction gratings with tunable efficiency |
| US20070206155A1 (en) | 2006-03-03 | 2007-09-06 | Real D | Steady state surface mode device for stereoscopic projection |
| US7499217B2 (en) | 2006-03-03 | 2009-03-03 | University Of Central Florida Research Foundation, Inc. | Imaging systems for eyeglass-based display devices |
| IL174170A (en) | 2006-03-08 | 2015-02-26 | Abraham Aharoni | Device and method for binocular alignment |
| WO2007130130A2 (en) | 2006-04-06 | 2007-11-15 | Sbg Labs Inc. | Method and apparatus for providing a transparent display |
| GB0718706D0 (en) | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
| US7679641B2 (en) | 2006-04-07 | 2010-03-16 | Real D | Vertical surround parallax correction |
| WO2007127758A2 (en) | 2006-04-24 | 2007-11-08 | Displaytech, Inc | Spatial light modulators with changeable phase masks for use in holographic data storage |
| US7843642B2 (en) | 2006-05-04 | 2010-11-30 | University Of Central Florida Research Foundation | Systems and methods for providing compact illumination in head mounted displays |
| US7524053B2 (en) | 2006-05-12 | 2009-04-28 | Real D | 3-D eyewear |
| US7740387B2 (en) | 2006-05-24 | 2010-06-22 | 3M Innovative Properties Company | Backlight wedge with side mounted light source |
| EP2035881B8 (en) | 2006-06-02 | 2013-11-13 | Nokia Corporation | Color distribution in exit pupil expanders |
| WO2007141588A1 (en) | 2006-06-02 | 2007-12-13 | Nokia Corporation | Split exit pupil expander |
| US8466953B2 (en) | 2006-06-02 | 2013-06-18 | Nokia Corporation | Stereoscopic exit pupil expander display |
| DE102006027415B3 (en) | 2006-06-13 | 2007-10-11 | Siemens Ag | Raman-pump laser activating and deactivating method, involves filtering pulse line with frequency of electrical service-signal from squared signal spectrum, where amplitude of line is evaluated for detection of optical service-signal |
| US7415173B2 (en) | 2006-06-13 | 2008-08-19 | Nokia Corporation | Position sensor |
| EP2040099B1 (en) | 2006-06-30 | 2013-07-24 | Hoya Corporation | Photochromic film, photochromic lens comprising the same, and method of manufacturing photochromic lens |
| KR101229019B1 (en) | 2006-06-30 | 2013-02-15 | 엘지디스플레이 주식회사 | Liquid crystal display device and driving circuit of the same |
| CA2658148C (en) | 2006-07-14 | 2013-10-15 | Nokia Siemens Networks Gmbh & Co. Kg | A receiver structure and method for the demodulation of a quadrature-modulated signal |
| US8502643B2 (en) | 2006-07-18 | 2013-08-06 | L-I Identity Solutions Operating Company | Methods and apparatus for self check-in of items for transportation |
| US7517081B2 (en) | 2006-07-20 | 2009-04-14 | Real D | Low-cost circular polarizing eyewear |
| IL177618A (en) | 2006-08-22 | 2015-02-26 | Lumus Ltd | Substrate- guided optical device |
| US20100177388A1 (en) | 2006-08-23 | 2010-07-15 | Mirage Innovations Ltd. | Diffractive optical relay device with improved color uniformity |
| US8736672B2 (en) | 2006-08-24 | 2014-05-27 | Reald Inc. | Algorithmic interaxial reduction |
| CN200944140Y (en) | 2006-09-08 | 2007-09-05 | 李伯伦 | Straight waveguide display panel |
| US8493433B2 (en) | 2006-09-12 | 2013-07-23 | Reald Inc. | Shuttering eyewear for use with stereoscopic liquid crystal display |
| DE102006046555B4 (en) | 2006-09-28 | 2010-12-16 | Grintech Gmbh | Miniaturized optical imaging system with high lateral and axial resolution |
| EP2076813B1 (en) | 2006-09-28 | 2017-12-20 | Nokia Technologies Oy | Beam expansion with three-dimensional diffractive elements |
| GB0619226D0 (en) | 2006-09-29 | 2006-11-08 | Cambridge Flat Projection | Efficient wedge projection |
| GB0619366D0 (en) | 2006-10-02 | 2006-11-08 | Cambridge Flat Projection | Distortionless wedge projection |
| GB0620014D0 (en) | 2006-10-10 | 2006-11-22 | Cambridge Flat Projection | Prismatic film backlight |
| US7670004B2 (en) | 2006-10-18 | 2010-03-02 | Real D | Dual ZScreen® projection |
| US7857455B2 (en) | 2006-10-18 | 2010-12-28 | Reald Inc. | Combining P and S rays for bright stereoscopic projection |
| US8000491B2 (en) | 2006-10-24 | 2011-08-16 | Nokia Corporation | Transducer device and assembly |
| WO2008053063A1 (en) | 2006-11-02 | 2008-05-08 | Nokia Corporation | Method for coupling light into a thin planar waveguide |
| US20080106779A1 (en) | 2006-11-02 | 2008-05-08 | Infocus Corporation | Laser Despeckle Device |
| EP2095171A4 (en) | 2006-12-14 | 2009-12-30 | Nokia Corp | DISPLAY ARRANGEMENT WITH TWO OPERATING MODES |
| CN101583864A (en) | 2006-12-21 | 2009-11-18 | 皇家飞利浦电子股份有限公司 | wire grid waveguide |
| US20080155426A1 (en) | 2006-12-21 | 2008-06-26 | Microsoft Corporation | Visualization and navigation of search results |
| US7775387B2 (en) | 2006-12-21 | 2010-08-17 | Reald Inc. | Eyewear receptacle |
| US20080151370A1 (en) | 2006-12-21 | 2008-06-26 | Real D | Method of recycling eyewear |
| JP5303928B2 (en) | 2006-12-26 | 2013-10-02 | 東レ株式会社 | Reflective polarizing plate, method for producing the same, and liquid crystal display device using the same |
| US8160411B2 (en) | 2006-12-28 | 2012-04-17 | Nokia Corporation | Device for expanding an exit pupil in two dimensions |
| WO2008081071A1 (en) | 2006-12-28 | 2008-07-10 | Nokia Corporation | Light guide plate and a method of manufacturing thereof |
| US8134434B2 (en) | 2007-01-05 | 2012-03-13 | Quantum Design, Inc. | Superconducting quick switch |
| US20080172526A1 (en) | 2007-01-11 | 2008-07-17 | Akshat Verma | Method and System for Placement of Logical Data Stores to Minimize Request Response Time |
| US8022942B2 (en) | 2007-01-25 | 2011-09-20 | Microsoft Corporation | Dynamic projected user interface |
| US7808708B2 (en) | 2007-02-01 | 2010-10-05 | Reald Inc. | Aperture correction for lenticular screens |
| US7508589B2 (en) | 2007-02-01 | 2009-03-24 | Real D | Soft aperture correction for lenticular screens |
| EP2441842A1 (en) | 2007-02-12 | 2012-04-18 | E. I. du Pont de Nemours and Company | Production of arachidonic acid in oilseed plants |
| WO2008102196A1 (en) | 2007-02-23 | 2008-08-28 | Nokia Corporation | Optical actuators in keypads |
| CA2677701A1 (en) | 2007-02-28 | 2008-09-04 | L-3 Communications Corporation | Systems and methods for aiding pilot situational awareness |
| US20080226281A1 (en) | 2007-03-13 | 2008-09-18 | Real D | Business system for three-dimensional snapshots |
| US20080273081A1 (en) | 2007-03-13 | 2008-11-06 | Lenny Lipton | Business system for two and three dimensional snapshots |
| WO2008114502A1 (en) | 2007-03-19 | 2008-09-25 | Panasonic Corporation | Laser illuminating device and image display device |
| US8014050B2 (en) | 2007-04-02 | 2011-09-06 | Vuzix Corporation | Agile holographic optical phased array device and applications |
| US20080239067A1 (en) | 2007-04-02 | 2008-10-02 | Real D | Optical concatenation for field sequential stereoscpoic displays |
| US20080239068A1 (en) | 2007-04-02 | 2008-10-02 | Real D | Color and polarization timeplexed stereoscopic display apparatus |
| US8643948B2 (en) | 2007-04-22 | 2014-02-04 | Lumus Ltd. | Collimating optical device and system |
| US7600893B2 (en) | 2007-05-01 | 2009-10-13 | Exalos Ag | Display apparatus, method and light source |
| DE102007021036A1 (en) | 2007-05-04 | 2008-11-06 | Carl Zeiss Ag | Display device and display method for binocular display of a multicolor image |
| US8493630B2 (en) | 2007-05-10 | 2013-07-23 | L-I Indentity Solutions, Inc. | Identification reader |
| JP5003291B2 (en) | 2007-05-31 | 2012-08-15 | コニカミノルタホールディングス株式会社 | Video display device |
| US20080297731A1 (en) | 2007-06-01 | 2008-12-04 | Microvision, Inc. | Apparent speckle reduction apparatus and method for mems laser projection system |
| IL183637A (en) | 2007-06-04 | 2013-06-27 | Zvi Lapidot | Distributed head-mounted display |
| CN101688977B (en) | 2007-06-04 | 2011-12-07 | 诺基亚公司 | A diffractive beam expander and a virtual display based on a diffractive beam expander |
| US8373744B2 (en) | 2007-06-07 | 2013-02-12 | Reald Inc. | Stereoplexing for video and film applications |
| US8487982B2 (en) | 2007-06-07 | 2013-07-16 | Reald Inc. | Stereoplexing for film and video applications |
| US20080316303A1 (en) | 2007-06-08 | 2008-12-25 | Joseph Chiu | Display Device |
| US8310327B2 (en) | 2007-06-11 | 2012-11-13 | Moog Limited | Low-profile transformer |
| US20080309586A1 (en) | 2007-06-13 | 2008-12-18 | Anthony Vitale | Viewing System for Augmented Reality Head Mounted Display |
| WO2008152436A1 (en) | 2007-06-14 | 2008-12-18 | Nokia Corporation | Displays with integrated backlighting |
| US7633666B2 (en) | 2007-06-20 | 2009-12-15 | Real D | ZScreen® modulator with wire grid polarizer for stereoscopic projection |
| US7589901B2 (en) | 2007-07-10 | 2009-09-15 | Microvision, Inc. | Substrate-guided relays for use with scanned beam light sources |
| WO2009010969A2 (en) | 2007-07-18 | 2009-01-22 | Elbit Systems Ltd. | Aircraft landing assistance |
| JP5092609B2 (en) | 2007-08-01 | 2012-12-05 | ソニー株式会社 | Image display apparatus and driving method thereof |
| IL185130A0 (en) | 2007-08-08 | 2008-01-06 | Semi Conductor Devices An Elbi | Thermal based system and method for detecting counterfeit drugs |
| US7672549B2 (en) | 2007-09-10 | 2010-03-02 | Banyan Energy, Inc. | Solar energy concentrator |
| US7656585B1 (en) | 2008-08-19 | 2010-02-02 | Microvision, Inc. | Embedded relay lens for head-up displays or the like |
| US8251521B2 (en) | 2007-09-14 | 2012-08-28 | Panasonic Corporation | Projector having a projection angle adjusting mechanism |
| US8403490B2 (en) | 2007-09-26 | 2013-03-26 | Panasonic Corporation | Beam scanning-type display device, method, program and integrated circuit |
| US8491121B2 (en) | 2007-10-09 | 2013-07-23 | Elbit Systems Of America, Llc | Pupil scan apparatus |
| IL195389A (en) | 2008-11-19 | 2013-12-31 | Elbit Systems Ltd | System and method for mapping a magnetic field |
| WO2009050504A1 (en) | 2007-10-18 | 2009-04-23 | Bae Systems Plc | Improvements in or relating to head mounted display systems |
| IL186884A (en) | 2007-10-24 | 2014-04-30 | Elta Systems Ltd | System and method for imaging objects |
| US7969657B2 (en) | 2007-10-25 | 2011-06-28 | University Of Central Florida Research Foundation, Inc. | Imaging systems for eyeglass-based display devices |
| US7866869B2 (en) | 2007-10-26 | 2011-01-11 | Corporation For Laser Optics Research | Laser illuminated backlight for flat panel displays |
| CN101431085A (en) | 2007-11-09 | 2009-05-13 | 鸿富锦精密工业(深圳)有限公司 | Camera module group with automatic exposure function |
| US20090128495A1 (en) | 2007-11-20 | 2009-05-21 | Microsoft Corporation | Optical input device |
| JP5237268B2 (en) | 2007-11-21 | 2013-07-17 | パナソニック株式会社 | Display device |
| JP4395802B2 (en) | 2007-11-29 | 2010-01-13 | ソニー株式会社 | Image display device |
| JP4450058B2 (en) | 2007-11-29 | 2010-04-14 | ソニー株式会社 | Image display device |
| US8432372B2 (en) | 2007-11-30 | 2013-04-30 | Microsoft Corporation | User input using proximity sensing |
| US8783931B2 (en) | 2007-12-03 | 2014-07-22 | Rambus Delaware Llc | Light injection system and method for uniform luminosity of waveguide-based displays |
| US20110013423A1 (en) | 2007-12-03 | 2011-01-20 | Selbrede Martin G | Light injection system and method for uniform luminosity of waveguide-based displays |
| US8132976B2 (en) | 2007-12-05 | 2012-03-13 | Microsoft Corporation | Reduced impact keyboard with cushioned keys |
| KR101169446B1 (en) | 2007-12-17 | 2012-07-27 | 노키아 코포레이션 | Exit pupil expanders with spherical and aspheric substrates |
| WO2009077772A1 (en) | 2007-12-18 | 2009-06-25 | Bae Systems Plc | Improvemements in or relating to display projectors |
| WO2009077802A1 (en) | 2007-12-18 | 2009-06-25 | Nokia Corporation | Exit pupil expanders with wide field-of-view |
| EP2225601A1 (en) | 2007-12-18 | 2010-09-08 | BAE Systems PLC | Improvements in or relating to projection displays |
| DE102008005817A1 (en) | 2008-01-24 | 2009-07-30 | Carl Zeiss Ag | Optical display device |
| US8721149B2 (en) | 2008-01-30 | 2014-05-13 | Qualcomm Mems Technologies, Inc. | Illumination device having a tapered light guide |
| PL2242419T3 (en) | 2008-02-14 | 2016-05-31 | Nokia Technologies Oy | Device and method for determining gaze direction |
| US7742070B2 (en) | 2008-02-21 | 2010-06-22 | Otto Gregory Glatt | Panoramic camera |
| US8786519B2 (en) | 2008-03-04 | 2014-07-22 | Elbit Systems Ltd. | Head up display utilizing an LCD and a diffuser |
| US7589900B1 (en) | 2008-03-11 | 2009-09-15 | Microvision, Inc. | Eyebox shaping through virtual vignetting |
| US7884593B2 (en) | 2008-03-26 | 2011-02-08 | Quantum Design, Inc. | Differential and symmetrical current source |
| US20090242021A1 (en) | 2008-03-31 | 2009-10-01 | Noribachi Llc | Solar cell with colorization layer |
| US20100149073A1 (en) | 2008-11-02 | 2010-06-17 | David Chaum | Near to Eye Display System and Appliance |
| DK2276509T3 (en) | 2008-04-11 | 2016-09-19 | Seattle Genetics Inc | DETECTION AND TREATMENT OF CANCER IN PANCREAS, ovarian and other cancers |
| WO2009127856A1 (en) | 2008-04-14 | 2009-10-22 | Bae Systems Plc | Lamination of optical substrates |
| AU2009237502A1 (en) | 2008-04-14 | 2009-10-22 | Bae Systems Plc | Improvements in or relating to waveguides |
| EP2110701A1 (en) | 2008-04-14 | 2009-10-21 | BAE Systems PLC | Improvements in or relating to waveguides |
| US20120007979A1 (en) | 2008-04-16 | 2012-01-12 | Elbit Systems Ltd. Advanced Technology Center | Multispectral enhanced vision system and method for aircraft landing in inclement weather conditions |
| EP2286144A2 (en) | 2008-05-05 | 2011-02-23 | 3M Innovative Properties Company | Light source module |
| US8643691B2 (en) | 2008-05-12 | 2014-02-04 | Microsoft Corporation | Gaze accurate video conferencing |
| US7733572B1 (en) | 2008-06-09 | 2010-06-08 | Rockwell Collins, Inc. | Catadioptric system, apparatus, and method for producing images on a universal, head-up display |
| JP4518193B2 (en) | 2008-06-10 | 2010-08-04 | ソニー株式会社 | Optical device and virtual image display device |
| US8087698B2 (en) | 2008-06-18 | 2012-01-03 | L-1 Secure Credentialing, Inc. | Personalizing ID document images |
| EP2141833B1 (en) | 2008-07-04 | 2013-10-16 | Nokia Siemens Networks Oy | Optical I-Q-modulator |
| US8167173B1 (en) | 2008-07-21 | 2012-05-01 | 3Habto, Llc | Multi-stream draught beer dispensing system |
| IL193326A (en) | 2008-08-07 | 2013-03-24 | Elbit Systems Electro Optics Elop Ltd | Wide field of view coverage head-up display system |
| US7984884B1 (en) | 2008-08-08 | 2011-07-26 | B.I.G. Ideas, LLC | Artificial christmas tree stand |
| JP4706737B2 (en) | 2008-08-18 | 2011-06-22 | ソニー株式会社 | Image display device |
| JP4858512B2 (en) | 2008-08-21 | 2012-01-18 | ソニー株式会社 | Head-mounted display |
| WO2010023444A1 (en) | 2008-08-27 | 2010-03-04 | Milan Momcilo Popovich | Laser display incorporating speckle reduction |
| US7969644B2 (en) | 2008-09-02 | 2011-06-28 | Elbit Systems Of America, Llc | System and method for despeckling an image illuminated by a coherent light source |
| US7660047B1 (en) | 2008-09-03 | 2010-02-09 | Microsoft Corporation | Flat panel lens |
| US8142016B2 (en) | 2008-09-04 | 2012-03-27 | Innovega, Inc. | Method and apparatus for constructing a contact lens with optics |
| US8482858B2 (en) | 2008-09-04 | 2013-07-09 | Innovega Inc. | System and apparatus for deflection optics |
| US8441731B2 (en) | 2008-09-04 | 2013-05-14 | Innovega, Inc. | System and apparatus for pixel matrix see-through display panels |
| US8520309B2 (en) | 2008-09-04 | 2013-08-27 | Innovega Inc. | Method and apparatus to process display and non-display information |
| WO2010032029A1 (en) | 2008-09-16 | 2010-03-25 | Bae Systems Plc | Improvements in or relating to waveguides |
| US8552925B2 (en) | 2008-09-24 | 2013-10-08 | Kabushiki Kaisha Toshiba | Stereoscopic image display apparatus |
| US20100079865A1 (en) | 2008-09-26 | 2010-04-01 | Nokia Corporation | Near-to-eye scanning display with exit-pupil expansion |
| FR2936613B1 (en) | 2008-09-30 | 2011-03-18 | Commissariat Energie Atomique | LIGHT COUPLER BETWEEN AN OPTICAL FIBER AND A WAVEGUIDE MADE ON A SOIL SUBSTRATE. |
| US8132948B2 (en) | 2008-10-17 | 2012-03-13 | Microsoft Corporation | Method and apparatus for directing light around an obstacle using an optical waveguide for uniform lighting of a cylindrical cavity |
| JP4636164B2 (en) | 2008-10-23 | 2011-02-23 | ソニー株式会社 | Head-mounted display |
| US7949214B2 (en) | 2008-11-06 | 2011-05-24 | Microvision, Inc. | Substrate guided relay with pupil expanding input coupler |
| US8188925B2 (en) | 2008-11-07 | 2012-05-29 | Microsoft Corporation | Bent monopole antenna with shared segments |
| US10274660B2 (en) | 2008-11-17 | 2019-04-30 | Luminit, Llc | Holographic substrate-guided wave-based see-through display |
| TWI379102B (en) | 2008-11-20 | 2012-12-11 | Largan Precision Co Ltd | Optical lens system for taking image |
| JP2010132485A (en) | 2008-12-03 | 2010-06-17 | Keio Gijuku | Method for forming mesoporous silica film, the porous film, anti-reflection coating film and optical element |
| JP5539381B2 (en) | 2008-12-08 | 2014-07-02 | ジーオン ネットワークス ソシエテ ア レスポンサビリテ リミテ | Coherent optical system with tunable local oscillator |
| US8654420B2 (en) | 2008-12-12 | 2014-02-18 | Bae Systems Plc | Waveguides |
| EP2197018A1 (en) | 2008-12-12 | 2010-06-16 | FEI Company | Method for determining distortions in a particle-optical apparatus |
| EP2373924B2 (en) | 2008-12-12 | 2022-01-05 | BAE Systems PLC | Improvements in or relating to waveguides |
| US9465213B2 (en) | 2008-12-12 | 2016-10-11 | Bae Systems Plc | Waveguides |
| JP4674634B2 (en) | 2008-12-19 | 2011-04-20 | ソニー株式会社 | Head-mounted display |
| ES2822293T3 (en) | 2009-01-07 | 2021-04-30 | Magnetic Autocontrol Gmbh | Device to control the passage of people |
| US8380749B2 (en) | 2009-01-14 | 2013-02-19 | Bmc Software, Inc. | MDR federation facility for CMDBf |
| IL196923A (en) | 2009-02-05 | 2014-01-30 | Elbit Systems Ltd | Controlling an imaging apparatus over a delayed communication link |
| EP2219073B1 (en) | 2009-02-17 | 2020-06-03 | Covestro Deutschland AG | Holographic media and photopolymer compositions |
| FI20095197A0 (en) | 2009-02-27 | 2009-02-27 | Epicrystals Oy | Image projector and lightness suitable for use in an image projector |
| IL197417A (en) | 2009-03-05 | 2014-01-30 | Elbit Sys Electro Optics Elop | Imaging device and method for correcting longitudinal and transverse chromatic aberrations |
| KR20100102774A (en) | 2009-03-12 | 2010-09-27 | 삼성전자주식회사 | Touch sensing system and display apparatus employing the same |
| US20100232003A1 (en) | 2009-03-13 | 2010-09-16 | Transitions Optical, Inc. | Vision enhancing optical articles |
| US20100231498A1 (en) | 2009-03-13 | 2010-09-16 | Microsoft Corporation | Image display via multiple light guide sections |
| US8746008B1 (en) | 2009-03-29 | 2014-06-10 | Montana Instruments Corporation | Low vibration cryocooled system for low temperature microscopy and spectroscopy applications |
| US8427439B2 (en) | 2009-04-13 | 2013-04-23 | Microsoft Corporation | Avoiding optical effects of touch on liquid crystal display |
| US8611014B2 (en) | 2009-04-14 | 2013-12-17 | Bae Systems Plc | Optical waveguide and display device |
| US8136690B2 (en) | 2009-04-14 | 2012-03-20 | Microsoft Corporation | Sensing the amount of liquid in a vessel |
| EP2422228B1 (en) | 2009-04-20 | 2023-01-25 | BAE Systems PLC | Improvements in optical waveguides |
| EP2422232B1 (en) | 2009-04-20 | 2017-03-08 | BAE Systems PLC | Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface |
| EP2244114A1 (en) | 2009-04-20 | 2010-10-27 | BAE Systems PLC | Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface |
| US8323854B2 (en) | 2009-04-23 | 2012-12-04 | Akonia Holographics, Llc | Photopolymer media with enhanced dynamic range |
| US9335604B2 (en) | 2013-12-11 | 2016-05-10 | Milan Momcilo Popovich | Holographic waveguide display |
| US8639072B2 (en) | 2011-10-19 | 2014-01-28 | Milan Momcilo Popovich | Compact wearable display |
| WO2010125337A2 (en) | 2009-04-27 | 2010-11-04 | Milan Momcilo Popovich | Compact holographic edge illuminated wearable display |
| WO2010125378A1 (en) | 2009-04-29 | 2010-11-04 | Bae Systems Plc | Head mounted display |
| US8321810B2 (en) | 2009-04-30 | 2012-11-27 | Microsoft Corporation | Configuring an adaptive input device with selected graphical images |
| GB2470831B (en) | 2009-06-01 | 2016-11-02 | Wilcox Ind Corp | Helmet mount for viewing device |
| US8194325B2 (en) | 2009-06-30 | 2012-06-05 | Nokia Corporation | Optical apparatus and method |
| US20110001895A1 (en) | 2009-07-06 | 2011-01-06 | Dahl Scott R | Driving mechanism for liquid crystal based optical device |
| IL199763B (en) | 2009-07-08 | 2018-07-31 | Elbit Systems Ltd | Automatic video surveillance system and method |
| JP5545076B2 (en) | 2009-07-22 | 2014-07-09 | ソニー株式会社 | Image display device and optical device |
| FR2948775B1 (en) | 2009-07-31 | 2011-12-02 | Horiba Jobin Yvon Sas | PLANAR OPTICAL POLYCHROMATIC IMAGING SYSTEM WITH BROAD FIELD OF VISION |
| US8184363B2 (en) | 2009-08-07 | 2012-05-22 | Northrop Grumman Systems Corporation | All-fiber integrated high power coherent beam combination |
| EP2462480A2 (en) | 2009-08-07 | 2012-06-13 | Light Blue Optics Ltd. | Head up displays |
| US8447365B1 (en) | 2009-08-11 | 2013-05-21 | Howard M. Imanuel | Vehicle communication system |
| US7884992B1 (en) | 2009-08-13 | 2011-02-08 | Darwin Optical Co., Ltd. | Photochromic optical article |
| US8354806B2 (en) | 2009-08-21 | 2013-01-15 | Microsoft Corporation | Scanning collimation of light via flat panel lamp |
| US20110044582A1 (en) | 2009-08-21 | 2011-02-24 | Microsoft Corporation | Efficient collimation of light with optical wedge |
| US8354640B2 (en) | 2009-09-11 | 2013-01-15 | Identix Incorporated | Optically based planar scanner |
| US11320571B2 (en) | 2012-11-16 | 2022-05-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view with uniform light extraction |
| US8233204B1 (en) | 2009-09-30 | 2012-07-31 | Rockwell Collins, Inc. | Optical displays |
| US8089568B1 (en) | 2009-10-02 | 2012-01-03 | Rockwell Collins, Inc. | Method of and system for providing a head up display (HUD) |
| WO2011042711A2 (en) | 2009-10-09 | 2011-04-14 | Milan Momcilo Popovich | Compact edge illuminated diffractive display |
| US9075184B2 (en) | 2012-04-17 | 2015-07-07 | Milan Momcilo Popovich | Compact edge illuminated diffractive display |
| EP2494388B1 (en) | 2009-10-27 | 2018-11-21 | DigiLens Inc. | Compact holographic eyeglass display |
| KR101746886B1 (en) | 2009-11-03 | 2017-06-27 | 코베스트로 도이칠란드 아게 | Method for producing holographic media |
| WO2011055109A2 (en) | 2009-11-03 | 2011-05-12 | Milan Momcilo Popovich | Apparatus for reducing laser speckle |
| ES2453267T3 (en) | 2009-11-03 | 2014-04-07 | Bayer Intellectual Property Gmbh | Manufacturing procedure of a holographic film |
| US8384694B2 (en) | 2009-11-17 | 2013-02-26 | Microsoft Corporation | Infrared vision with liquid crystal display device |
| US8578038B2 (en) | 2009-11-30 | 2013-11-05 | Nokia Corporation | Method and apparatus for providing access to social content |
| US8698705B2 (en) | 2009-12-04 | 2014-04-15 | Vuzix Corporation | Compact near eye display with scanned image generation |
| WO2011073673A1 (en) | 2009-12-17 | 2011-06-23 | Bae Systems Plc | Projector lens assembly |
| US8982480B2 (en) | 2009-12-29 | 2015-03-17 | Elbit Systems Of America, Llc | System and method for adjusting a projected image |
| US8905547B2 (en) | 2010-01-04 | 2014-12-09 | Elbit Systems Of America, Llc | System and method for efficiently delivering rays from a light source to create an image |
| US20110249309A1 (en) | 2010-01-07 | 2011-10-13 | Holotouch, Inc. | Compact holograhic human-machine interface |
| WO2011089433A1 (en) | 2010-01-25 | 2011-07-28 | Bae Systems Plc | Projection display |
| US8137981B2 (en) | 2010-02-02 | 2012-03-20 | Nokia Corporation | Apparatus and associated methods |
| US8659826B1 (en) | 2010-02-04 | 2014-02-25 | Rockwell Collins, Inc. | Worn display system and method without requiring real time tracking for boresight precision |
| CA2789607C (en) | 2010-02-16 | 2018-05-01 | Midmark Corporation | Led light for examinations and procedures |
| US20120194420A1 (en) | 2010-02-28 | 2012-08-02 | Osterhout Group, Inc. | Ar glasses with event triggered user action control of ar eyepiece facility |
| AU2011220382A1 (en) | 2010-02-28 | 2012-10-18 | Microsoft Corporation | Local advertising content on an interactive head-mounted eyepiece |
| US9366862B2 (en) | 2010-02-28 | 2016-06-14 | Microsoft Technology Licensing, Llc | System and method for delivering content to a group of see-through near eye display eyepieces |
| US9129295B2 (en) | 2010-02-28 | 2015-09-08 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear |
| US8964298B2 (en) | 2010-02-28 | 2015-02-24 | Microsoft Corporation | Video display modification based on sensor input for a see-through near-to-eye display |
| US9341843B2 (en) | 2010-02-28 | 2016-05-17 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a small scale image source |
| US9097890B2 (en) | 2010-02-28 | 2015-08-04 | Microsoft Technology Licensing, Llc | Grating in a light transmissive illumination system for see-through near-eye display glasses |
| US20120249797A1 (en) | 2010-02-28 | 2012-10-04 | Osterhout Group, Inc. | Head-worn adaptive display |
| US8472120B2 (en) | 2010-02-28 | 2013-06-25 | Osterhout Group, Inc. | See-through near-eye display glasses with a small scale image source |
| US20140063055A1 (en) | 2010-02-28 | 2014-03-06 | Osterhout Group, Inc. | Ar glasses specific user interface and control interface based on a connected external device type |
| US9128281B2 (en) | 2010-09-14 | 2015-09-08 | Microsoft Technology Licensing, Llc | Eyepiece with uniformly illuminated reflective display |
| US9223134B2 (en) | 2010-02-28 | 2015-12-29 | Microsoft Technology Licensing, Llc | Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses |
| US8488246B2 (en) | 2010-02-28 | 2013-07-16 | Osterhout Group, Inc. | See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film |
| WO2011107956A1 (en) | 2010-03-03 | 2011-09-09 | Elbit Systems Ltd. | System for guiding an aircraft to a reference point in low visibility conditions |
| WO2011107831A1 (en) | 2010-03-04 | 2011-09-09 | Nokia Corporation | Optical apparatus and method for expanding an exit pupil |
| EP2365654B1 (en) | 2010-03-10 | 2019-05-29 | Ofs Fitel Llc, A Delaware Limited Liability Company | Multicore fiber transmission systems and methods |
| WO2011110821A1 (en) | 2010-03-12 | 2011-09-15 | Milan Momcilo Popovich | Biometric sensor |
| EP2372454A1 (en) | 2010-03-29 | 2011-10-05 | Bayer MaterialScience AG | Photopolymer formulation for producing visible holograms |
| JP2011216701A (en) | 2010-03-31 | 2011-10-27 | Sony Corp | Solid-state imaging apparatus and electronic device |
| US8697346B2 (en) | 2010-04-01 | 2014-04-15 | The Regents Of The University Of Colorado | Diffraction unlimited photolithography |
| US9946068B2 (en) | 2010-04-23 | 2018-04-17 | Bae Systems Plc | Optical waveguide and display device |
| EP2381290A1 (en) | 2010-04-23 | 2011-10-26 | BAE Systems PLC | Optical waveguide and display device |
| US8477261B2 (en) | 2010-05-26 | 2013-07-02 | Microsoft Corporation | Shadow elimination in the backlight for a 3-D display |
| CN101881936B (en) | 2010-06-04 | 2013-12-25 | 江苏慧光电子科技有限公司 | Holographical wave guide display and generation method of holographical image thereof |
| US8631333B2 (en) | 2010-06-07 | 2014-01-14 | Microsoft Corporation | Feature set differentiation by tenant and user |
| JP5488226B2 (en) | 2010-06-10 | 2014-05-14 | 富士通オプティカルコンポーネンツ株式会社 | Mach-Zehnder type optical modulator |
| US8670029B2 (en) | 2010-06-16 | 2014-03-11 | Microsoft Corporation | Depth camera illuminator with superluminescent light-emitting diode |
| US8253914B2 (en) | 2010-06-23 | 2012-08-28 | Microsoft Corporation | Liquid crystal display (LCD) |
| US8391656B2 (en) | 2010-07-29 | 2013-03-05 | Hewlett-Packard Development Company, L.P. | Grating coupled converter |
| WO2012020636A1 (en) | 2010-08-10 | 2012-02-16 | シャープ株式会社 | Light-controlling element, display device and illumination device |
| KR101763984B1 (en) | 2010-09-10 | 2017-08-01 | 베르라세 테크놀러지스 엘엘씨 | Methods of fabricating optoelectronic devices using layers detached from semiconductor donors and devices made thereby |
| US8649099B2 (en) | 2010-09-13 | 2014-02-11 | Vuzix Corporation | Prismatic multiple waveguide for near-eye display |
| US8582206B2 (en) | 2010-09-15 | 2013-11-12 | Microsoft Corporation | Laser-scanning virtual image display |
| US8376548B2 (en) | 2010-09-22 | 2013-02-19 | Vuzix Corporation | Near-eye display with on-axis symmetry |
| US8633786B2 (en) | 2010-09-27 | 2014-01-21 | Nokia Corporation | Apparatus and associated methods |
| US20150015946A1 (en) | 2010-10-08 | 2015-01-15 | SoliDDD Corp. | Perceived Image Depth for Autostereoscopic Displays |
| WO2012052352A1 (en) | 2010-10-19 | 2012-04-26 | Bae Systems Plc | Viewing device comprising an image combiner |
| WO2012061702A1 (en) | 2010-11-04 | 2012-05-10 | The Regents Of The University Of Colorado, A Body Corporate | Dual-cure polymer systems |
| US8305577B2 (en) | 2010-11-04 | 2012-11-06 | Nokia Corporation | Method and apparatus for spectrometry |
| EP2450893A1 (en) | 2010-11-08 | 2012-05-09 | Bayer MaterialScience AG | Photopolymer formula for producing of holographic media with highly networked matrix polymers |
| EP2450387A1 (en) | 2010-11-08 | 2012-05-09 | Bayer MaterialScience AG | Photopolymer formulation for producing holographic media |
| US20130021586A1 (en) | 2010-12-07 | 2013-01-24 | Laser Light Engines | Frequency Control of Despeckling |
| JP2012138654A (en) | 2010-12-24 | 2012-07-19 | Sony Corp | Head mounted display |
| US9348143B2 (en) | 2010-12-24 | 2016-05-24 | Magic Leap, Inc. | Ergonomic head mounted display device and optical system |
| JP5741901B2 (en) | 2010-12-27 | 2015-07-01 | Dic株式会社 | Birefringent lens material for stereoscopic image display device and method of manufacturing birefringent lens for stereoscopic image display device |
| KR101807691B1 (en) | 2011-01-11 | 2017-12-12 | 삼성전자주식회사 | Three-dimensional image display apparatus |
| BRPI1100786A2 (en) | 2011-01-19 | 2015-08-18 | André Jacobovitz | Photopolymer for volume hologram engraving and process to produce it |
| US8619062B2 (en) | 2011-02-03 | 2013-12-31 | Microsoft Corporation | Touch-pressure sensing in a display panel |
| US8189263B1 (en) | 2011-04-01 | 2012-05-29 | Google Inc. | Image waveguide with mirror arrays |
| WO2012138414A1 (en) | 2011-04-06 | 2012-10-11 | Versatilis Llc | Optoelectronic device containing at least one active device layer having a wurtzite crystal structure, and methods of making same |
| WO2012136970A1 (en) | 2011-04-07 | 2012-10-11 | Milan Momcilo Popovich | Laser despeckler based on angular diversity |
| CN103620478B (en) | 2011-04-18 | 2017-08-25 | Bae系统公共有限公司 | The projection display |
| CA3035118C (en) | 2011-05-06 | 2022-01-04 | Magic Leap, Inc. | Massive simultaneous remote digital presence world |
| KR20140046419A (en) | 2011-05-16 | 2014-04-18 | 베르라세 테크놀러지스 엘엘씨 | Resonator-enhanced optoelectronic devices and methods of making same |
| US20120321149A1 (en) | 2011-05-17 | 2012-12-20 | Carver John F | Fingerprint sensors |
| WO2012172295A1 (en) | 2011-06-16 | 2012-12-20 | Milan Momcilo Popovich | Holographic beam deflector for autostereoscopic displays |
| US8693087B2 (en) | 2011-06-30 | 2014-04-08 | Microsoft Corporation | Passive matrix quantum dot display |
| US8767294B2 (en) | 2011-07-05 | 2014-07-01 | Microsoft Corporation | Optic with extruded conic profile |
| US8672486B2 (en) | 2011-07-11 | 2014-03-18 | Microsoft Corporation | Wide field-of-view projector |
| US8988474B2 (en) | 2011-07-18 | 2015-03-24 | Microsoft Technology Licensing, Llc | Wide field-of-view virtual image projector |
| US10793067B2 (en) | 2011-07-26 | 2020-10-06 | Magna Electronics Inc. | Imaging system for vehicle |
| US8754831B2 (en) | 2011-08-02 | 2014-06-17 | Microsoft Corporation | Changing between display device viewing modes |
| US9983361B2 (en) | 2011-08-08 | 2018-05-29 | Greg S. Laughlin | GRIN-lensed, tuned wedge waveguide termination and method of reducing back reflection caused thereby |
| US8472119B1 (en) | 2011-08-12 | 2013-06-25 | Google Inc. | Image waveguide having a bend |
| GB201114149D0 (en) | 2011-08-17 | 2011-10-05 | Bae Systems Plc | Projection display |
| US8548290B2 (en) | 2011-08-23 | 2013-10-01 | Vuzix Corporation | Dynamic apertured waveguide for near-eye display |
| WO2016020630A2 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Waveguide laser illuminator incorporating a despeckler |
| US20140204455A1 (en) | 2011-08-24 | 2014-07-24 | Milan Momcilo Popovich | Wearable data display |
| WO2013027006A1 (en) | 2011-08-24 | 2013-02-28 | Milan Momcilo Popovich | Improvements to holographic polymer dispersed liquid crystal materials and devices |
| GB201114771D0 (en) | 2011-08-26 | 2011-10-12 | Bae Systems Plc | A display |
| US9400395B2 (en) | 2011-08-29 | 2016-07-26 | Vuzix Corporation | Controllable waveguide for near-eye display applications |
| WO2013034879A1 (en) | 2011-09-07 | 2013-03-14 | Milan Momcilo Popovich | Method and apparatus for switching electro optical arrays |
| WO2013036925A2 (en) | 2011-09-08 | 2013-03-14 | President And Fellows Of Harvard College | Isolated orthosis for thumb actuation |
| WO2013039897A2 (en) | 2011-09-14 | 2013-03-21 | VerLASE TECHNOLOGIES LLC | Phosphors for use with leds and other optoelectronic devices |
| US8998414B2 (en) | 2011-09-26 | 2015-04-07 | Microsoft Technology Licensing, Llc | Integrated eye tracking and display system |
| WO2013049156A1 (en) | 2011-09-26 | 2013-04-04 | President And Fellows Of Harvard College | Quantitative methods and systems for neurological assessment |
| US9715067B1 (en) | 2011-09-30 | 2017-07-25 | Rockwell Collins, Inc. | Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials |
| US8634139B1 (en) | 2011-09-30 | 2014-01-21 | Rockwell Collins, Inc. | System for and method of catadioptric collimation in a compact head up display (HUD) |
| US9366864B1 (en) | 2011-09-30 | 2016-06-14 | Rockwell Collins, Inc. | System for and method of displaying information without need for a combiner alignment detector |
| US8937772B1 (en) | 2011-09-30 | 2015-01-20 | Rockwell Collins, Inc. | System for and method of stowing HUD combiners |
| US8749890B1 (en) | 2011-09-30 | 2014-06-10 | Rockwell Collins, Inc. | Compact head up display (HUD) for cockpits with constrained space envelopes |
| US8903207B1 (en) | 2011-09-30 | 2014-12-02 | Rockwell Collins, Inc. | System for and method of extending vertical field of view in head up display utilizing a waveguide combiner |
| GB201117029D0 (en) | 2011-10-04 | 2011-11-16 | Bae Systems Plc | Optical waveguide and display device |
| EP2771877B1 (en) | 2011-10-28 | 2017-10-11 | Magic Leap, Inc. | System and method for augmented and virtual reality |
| KR102440195B1 (en) | 2011-11-23 | 2022-09-02 | 매직 립, 인코포레이티드 | Three dimensional virtual and augmented reality display system |
| US8651678B2 (en) | 2011-11-29 | 2014-02-18 | Massachusetts Institute Of Technology | Polarization fields for dynamic light field display |
| US8917453B2 (en) | 2011-12-23 | 2014-12-23 | Microsoft Corporation | Reflective array waveguide |
| HK1203636A1 (en) | 2011-12-23 | 2015-10-30 | Johnson & Johnson Vision Care Inc. | Variable optic ophthalmic device including liquid crystal elements |
| US8638498B2 (en) | 2012-01-04 | 2014-01-28 | David D. Bohn | Eyebox adjustment for interpupillary distance |
| WO2013102759A2 (en) | 2012-01-06 | 2013-07-11 | Milan Momcilo Popovich | Contact image sensor using switchable bragg gratings |
| US9278674B2 (en) | 2012-01-18 | 2016-03-08 | Engineered Arresting Systems Corporation | Vehicle operator display and assistive mechanisms |
| US8810600B2 (en) | 2012-01-23 | 2014-08-19 | Microsoft Corporation | Wearable display device calibration |
| US20150107671A1 (en) | 2012-01-24 | 2015-04-23 | AMI Research & Development, LLC | Monolithic broadband energy collector with dichroic filters and mirrors embedded in waveguide |
| US9000615B2 (en) | 2012-02-04 | 2015-04-07 | Sunfield Semiconductor Inc. | Solar power module with safety features and related method of operation |
| US9001030B2 (en) | 2012-02-15 | 2015-04-07 | Google Inc. | Heads up display |
| US9274338B2 (en) | 2012-03-21 | 2016-03-01 | Microsoft Technology Licensing, Llc | Increasing field of view of reflective waveguide |
| US8985803B2 (en) | 2012-03-21 | 2015-03-24 | Microsoft Technology Licensing, Llc | Freeform-prism eyepiece with illumination waveguide |
| US8749886B2 (en) | 2012-03-21 | 2014-06-10 | Google Inc. | Wide-angle wide band polarizing beam splitter |
| US8736963B2 (en) | 2012-03-21 | 2014-05-27 | Microsoft Corporation | Two-dimensional exit-pupil expansion |
| US11068049B2 (en) | 2012-03-23 | 2021-07-20 | Microsoft Technology Licensing, Llc | Light guide display and field of view |
| GB2500631B (en) | 2012-03-27 | 2017-12-27 | Bae Systems Plc | Improvements in or relating to optical waveguides |
| US9523852B1 (en) | 2012-03-28 | 2016-12-20 | Rockwell Collins, Inc. | Micro collimator system and method for a head up display (HUD) |
| US8830588B1 (en) | 2012-03-28 | 2014-09-09 | Rockwell Collins, Inc. | Reflector and cover glass for substrate guided HUD |
| US9558590B2 (en) | 2012-03-28 | 2017-01-31 | Microsoft Technology Licensing, Llc | Augmented reality light guide display |
| US10191515B2 (en) | 2012-03-28 | 2019-01-29 | Microsoft Technology Licensing, Llc | Mobile device light guide display |
| US9717981B2 (en) | 2012-04-05 | 2017-08-01 | Microsoft Technology Licensing, Llc | Augmented reality and physical games |
| AU2013243380B2 (en) | 2012-04-05 | 2017-04-20 | Magic Leap, Inc. | Wide-field of view (FOV) imaging devices with active foveation capability |
| CN103562802B (en) | 2012-04-25 | 2016-08-17 | 罗克韦尔柯林斯公司 | Holographic wide-angle display |
| US9389415B2 (en) | 2012-04-27 | 2016-07-12 | Leia Inc. | Directional pixel for use in a display screen |
| US20130312811A1 (en) | 2012-05-02 | 2013-11-28 | Prism Solar Technologies Incorporated | Non-latitude and vertically mounted solar energy concentrators |
| US9456744B2 (en) | 2012-05-11 | 2016-10-04 | Digilens, Inc. | Apparatus for eye tracking |
| US20130305437A1 (en) | 2012-05-19 | 2013-11-21 | Skully Helmets Inc. | Augmented reality motorcycle helmet |
| US10502876B2 (en) | 2012-05-22 | 2019-12-10 | Microsoft Technology Licensing, Llc | Waveguide optics focus elements |
| US9459461B2 (en) | 2012-05-31 | 2016-10-04 | Leia Inc. | Directional backlight |
| US9201270B2 (en) | 2012-06-01 | 2015-12-01 | Leia Inc. | Directional backlight with a modulation layer |
| US8989535B2 (en) | 2012-06-04 | 2015-03-24 | Microsoft Technology Licensing, Llc | Multiple waveguide imaging structure |
| US20130328948A1 (en) | 2012-06-06 | 2013-12-12 | Dolby Laboratories Licensing Corporation | Combined Emissive and Reflective Dual Modulation Display System |
| US9671566B2 (en) | 2012-06-11 | 2017-06-06 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
| CN107817555A (en) | 2012-06-11 | 2018-03-20 | 奇跃公司 | Use more depth plane three dimensional displays of the waveguided reflector arrays projector |
| EP2862026A1 (en) | 2012-06-18 | 2015-04-22 | Milan Momcilo Popovich | Apparatus for copying a hologram |
| US9098111B2 (en) | 2012-06-22 | 2015-08-04 | Microsoft Technology Licensing, Llc | Focus guidance within a three-dimensional interface |
| US9841537B2 (en) | 2012-07-02 | 2017-12-12 | Nvidia Corporation | Near-eye microlens array displays |
| US10111989B2 (en) | 2012-07-26 | 2018-10-30 | Medline Industries, Inc. | Splash-retarding fluid collection system |
| US9175975B2 (en) | 2012-07-30 | 2015-11-03 | RaayonNova LLC | Systems and methods for navigation |
| US8913324B2 (en) | 2012-08-07 | 2014-12-16 | Nokia Corporation | Display illumination light guide |
| US10254465B2 (en) | 2012-08-13 | 2019-04-09 | Covestro Deutschland Ag | Illumination device for a liquid crystal display |
| US8885997B2 (en) | 2012-08-31 | 2014-11-11 | Microsoft Corporation | NED polarization system for wavelength pass-through |
| WO2014039555A1 (en) | 2012-09-04 | 2014-03-13 | SoliDDD Corp. | Switchable lenticular array for autostereoscopic video displays |
| DE102012108424A1 (en) | 2012-09-10 | 2014-03-13 | Institut für Mess- und Regelungstechnik der Leibniz Universität Hannover | Optical system for endoscopic applications, has image interface that is oriented parallel to object interface with surface geometry and is oriented orthogonally to optical axis of gradient index (GRIN) lens |
| US8731350B1 (en) | 2012-09-11 | 2014-05-20 | The United States Of America As Represented By The Secretary Of The Navy | Planar-waveguide Bragg gratings in curved waveguides |
| US10025089B2 (en) | 2012-10-05 | 2018-07-17 | Microsoft Technology Licensing, Llc | Backlight for viewing three-dimensional images from a display from variable viewing angles |
| GB201219126D0 (en) | 2012-10-24 | 2012-12-05 | Oxford Energy Technologies Ltd | Low refractive index particles |
| JP2014089294A (en) | 2012-10-30 | 2014-05-15 | Toshiba Corp | Liquid crystal lens device and method for driving the same |
| US9933684B2 (en) * | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
| WO2014080155A1 (en) | 2012-11-20 | 2014-05-30 | Milan Momcilo Popovich | Waveguide device for homogenizing illumination light |
| US20140146394A1 (en) | 2012-11-28 | 2014-05-29 | Nigel David Tout | Peripheral display for a near-eye display device |
| US20150288129A1 (en) | 2012-11-28 | 2015-10-08 | VerLASE TECHNOLOGIES LLC | Optically Surface-Pumped Edge-Emitting Devices and Systems and Methods of Making Same |
| US9664824B2 (en) | 2012-12-10 | 2017-05-30 | Bae Systems Plc | Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same |
| EP2929391B1 (en) | 2012-12-10 | 2020-04-15 | BAE SYSTEMS plc | Improvements in and relating to displays |
| WO2014091200A1 (en) | 2012-12-10 | 2014-06-19 | Bae Systems Plc | Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same |
| GB2508661A (en) | 2012-12-10 | 2014-06-11 | Bae Systems Plc | Improved display |
| US8937771B2 (en) | 2012-12-12 | 2015-01-20 | Microsoft Corporation | Three piece prism eye-piece |
| US20140168260A1 (en) | 2012-12-13 | 2014-06-19 | Paul M. O'Brien | Waveguide spacers within an ned device |
| WO2014090379A1 (en) | 2012-12-14 | 2014-06-19 | Merck Patent Gmbh | Birefringent rm lens |
| US10311609B2 (en) | 2012-12-17 | 2019-06-04 | Clinton B. Smith | Method and system for the making, storage and display of virtual image edits |
| US10146053B2 (en) | 2012-12-19 | 2018-12-04 | Microsoft Technology Licensing, Llc | Multiplexed hologram tiling in a waveguide display |
| US10192358B2 (en) | 2012-12-20 | 2019-01-29 | Microsoft Technology Licensing, Llc | Auto-stereoscopic augmented reality display |
| WO2014108670A1 (en) | 2013-01-08 | 2014-07-17 | Bae Systems Plc | Diffraction gratings and the manufacture thereof |
| GB2509536A (en) | 2013-01-08 | 2014-07-09 | Bae Systems Plc | Diffraction grating |
| US9842562B2 (en) | 2013-01-13 | 2017-12-12 | Qualcomm Incorporated | Dynamic zone plate augmented vision eyeglasses |
| EP2946236B1 (en) | 2013-01-15 | 2021-06-16 | Magic Leap, Inc. | Ultra-high resolution scanning fiber display |
| US20140204437A1 (en) | 2013-01-23 | 2014-07-24 | Akonia Holographics Llc | Dynamic aperture holographic multiplexing |
| US8873149B2 (en) | 2013-01-28 | 2014-10-28 | David D. Bohn | Projection optical system for coupling image light to a near-eye display |
| US9298168B2 (en) | 2013-01-31 | 2016-03-29 | Leia Inc. | Multiview 3D wrist watch |
| US20140240842A1 (en) | 2013-02-22 | 2014-08-28 | Ian Nguyen | Alignment-insensitive image input coupling |
| IL308285B2 (en) | 2013-03-11 | 2024-11-01 | Magic Leap Inc | System and method for augmented and virtual reality |
| US20140268277A1 (en) | 2013-03-14 | 2014-09-18 | Andreas Georgiou | Image correction using reconfigurable phase mask |
| KR102271719B1 (en) | 2013-03-15 | 2021-06-30 | 매직 립, 인코포레이티드 | Display system and method |
| US10065232B2 (en) | 2013-03-15 | 2018-09-04 | Station 4 Llc | Devices and methods for bending a tab on a container |
| GB2512077B (en) | 2013-03-19 | 2019-10-23 | Univ Erasmus Med Ct Rotterdam | Intravascular optical imaging system |
| WO2014155096A1 (en) | 2013-03-28 | 2014-10-02 | Bae Systems Plc | Improvements in and relating to displays |
| GB201305691D0 (en) | 2013-03-28 | 2013-05-15 | Bae Systems Plc | Improvements in and relating to displays |
| WO2014176695A1 (en) | 2013-04-30 | 2014-11-06 | Lensvector Inc. | Reprogrammable tuneable liquid crystal lens intraocular implant and methods therefor |
| US9488836B2 (en) | 2013-05-02 | 2016-11-08 | Microsoft Technology Licensing, Llc | Spherical interface for binocular display |
| US10209517B2 (en) | 2013-05-20 | 2019-02-19 | Digilens, Inc. | Holographic waveguide eye tracker |
| USD701206S1 (en) | 2013-06-04 | 2014-03-18 | Oculus VR, Inc. | Virtual reality headset |
| US9639985B2 (en) | 2013-06-24 | 2017-05-02 | Microsoft Technology Licensing, Llc | Active binocular alignment for near eye displays |
| US10228561B2 (en) | 2013-06-25 | 2019-03-12 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism and gaze-detection light |
| US9625723B2 (en) | 2013-06-25 | 2017-04-18 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism |
| US20140375542A1 (en) | 2013-06-25 | 2014-12-25 | Steve Robbins | Adjusting a near-eye display device |
| US8913865B1 (en) | 2013-06-27 | 2014-12-16 | Microsoft Corporation | Waveguide including light turning gaps |
| ITTO20130541A1 (en) | 2013-06-28 | 2014-12-29 | St Microelectronics Srl | SEMICONDUCTOR DEVICE INTEGRATING A RESISTIVE PARTNER AND PROCESS OF MANUFACTURING A SEMICONDUCTOR DEVICE |
| US9664905B2 (en) | 2013-06-28 | 2017-05-30 | Microsoft Technology Licensing, Llc | Display efficiency optimization by color filtering |
| WO2015006784A2 (en) | 2013-07-12 | 2015-01-15 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
| US10295338B2 (en) | 2013-07-12 | 2019-05-21 | Magic Leap, Inc. | Method and system for generating map data from an image |
| KR101660911B1 (en) | 2013-07-30 | 2016-09-28 | 레이아 인코포레이티드 | Multibeam diffraction grating-based backlighting |
| US10345903B2 (en) | 2013-07-30 | 2019-07-09 | Microsoft Technology Licensing, Llc | Feedback for optic positioning in display devices |
| US9727772B2 (en) | 2013-07-31 | 2017-08-08 | Digilens, Inc. | Method and apparatus for contact image sensing |
| US9164290B2 (en) | 2013-11-06 | 2015-10-20 | Microsoft Corporation | Grating configurations for a tiled waveguide display |
| DE102013223964B3 (en) | 2013-11-22 | 2015-05-13 | Carl Zeiss Ag | Imaging optics and display device with such imaging optics |
| CN109445095B (en) | 2013-11-27 | 2021-11-23 | 奇跃公司 | Virtual and augmented reality systems and methods |
| US9857591B2 (en) | 2014-05-30 | 2018-01-02 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
| US20150167868A1 (en) | 2013-12-17 | 2015-06-18 | Scott Boncha | Maple sap vacuum collection systems with chew proof tubing |
| JP6321180B2 (en) | 2013-12-19 | 2018-05-09 | ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc | Improvements in and related to waveguides |
| JP6430516B2 (en) | 2013-12-19 | 2018-11-28 | ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc | Improvements in and related to waveguides |
| US9459451B2 (en) | 2013-12-26 | 2016-10-04 | Microsoft Technology Licensing, Llc | Eye tracking apparatus, method and system |
| CN106233189B (en) | 2014-01-31 | 2020-06-26 | 奇跃公司 | Multifocal Display System and Method |
| US10203762B2 (en) | 2014-03-11 | 2019-02-12 | Magic Leap, Inc. | Methods and systems for creating virtual and augmented reality |
| JP6201836B2 (en) | 2014-03-14 | 2017-09-27 | ソニー株式会社 | Optical device and method for assembling the same, hologram diffraction grating, display device and alignment device |
| WO2015145119A1 (en) | 2014-03-24 | 2015-10-01 | Wave Optics Ltd | Display system |
| US9244280B1 (en) | 2014-03-25 | 2016-01-26 | Rockwell Collins, Inc. | Near eye display system and method for display enhancement or redundancy |
| US10048647B2 (en) | 2014-03-27 | 2018-08-14 | Microsoft Technology Licensing, Llc | Optical waveguide including spatially-varying volume hologram |
| EP3149539B1 (en) | 2014-05-30 | 2025-04-30 | Magic Leap, Inc. | Virtual or augmented reality apparatus |
| TWI540401B (en) | 2014-06-26 | 2016-07-01 | 雷亞有限公司 | Multiview 3d wrist watch and method for generating a 3d time view in multiview 3d wrist watch |
| WO2016010289A1 (en) | 2014-07-15 | 2016-01-21 | Samsung Electronics Co., Ltd. | Holographic see-through optical device, stereoscopic imaging system, and multimedia head mounted system |
| JP6437630B2 (en) | 2014-07-30 | 2018-12-12 | レイア、インコーポレイテッドLeia Inc. | Multi-beam diffraction grating based color backlighting |
| US9557466B2 (en) | 2014-07-30 | 2017-01-31 | Leia, Inc | Multibeam diffraction grating-based color backlighting |
| GB2529003B (en) | 2014-08-03 | 2020-08-26 | Wave Optics Ltd | Optical device |
| US9377623B2 (en) | 2014-08-11 | 2016-06-28 | Microsoft Technology Licensing, Llc | Waveguide eye tracking employing volume Bragg grating |
| US20160077338A1 (en) | 2014-09-16 | 2016-03-17 | Steven John Robbins | Compact Projection Light Engine For A Diffractive Waveguide Display |
| WO2016042283A1 (en) | 2014-09-19 | 2016-03-24 | Milan Momcilo Popovich | Method and apparatus for generating input images for holographic waveguide displays |
| US9494799B2 (en) | 2014-09-24 | 2016-11-15 | Microsoft Technology Licensing, Llc | Waveguide eye tracking employing switchable diffraction gratings |
| US10423222B2 (en) | 2014-09-26 | 2019-09-24 | Digilens Inc. | Holographic waveguide optical tracker |
| CN107111204B (en) | 2014-09-29 | 2021-02-09 | 奇跃公司 | Architecture and method for outputting light of different wavelengths from a waveguide |
| JP2016085430A (en) | 2014-10-29 | 2016-05-19 | セイコーエプソン株式会社 | Virtual image display device |
| IL236491B (en) | 2014-12-25 | 2020-11-30 | Lumus Ltd | A method for fabricating substrate-guided optical device |
| CN107111084A (en) | 2015-01-10 | 2017-08-29 | 镭亚股份有限公司 | Polarization mixing light guide and use its backlight based on multi-beam grating |
| JP6567058B2 (en) | 2015-01-10 | 2019-08-28 | レイア、インコーポレイテッドLeia Inc. | 2D / 3D (2D / 3D) switchable display backlight and electronic display |
| KR102322340B1 (en) | 2015-01-10 | 2021-11-05 | 레이아 인코포레이티드 | Diffraction grating-based backlighting having controlled diffractive coupling efficiency |
| ES2959422T3 (en) | 2015-01-10 | 2024-02-26 | Leia Inc | Network coupled light guide |
| EP3245444B1 (en) | 2015-01-12 | 2021-09-08 | DigiLens Inc. | Environmentally isolated waveguide display |
| US20180275402A1 (en) | 2015-01-12 | 2018-09-27 | Digilens, Inc. | Holographic waveguide light field displays |
| JP6564463B2 (en) | 2015-01-19 | 2019-08-21 | レイア、インコーポレイテッドLeia Inc. | Unidirectional grid-based backlighting using reflective islands |
| EP3250960B1 (en) | 2015-01-28 | 2023-06-07 | LEIA Inc. | Three-dimensional (3d) electronic display |
| US9513480B2 (en) | 2015-02-09 | 2016-12-06 | Microsoft Technology Licensing, Llc | Waveguide |
| US9429692B1 (en) | 2015-02-09 | 2016-08-30 | Microsoft Technology Licensing, Llc | Optical components |
| US10018844B2 (en) | 2015-02-09 | 2018-07-10 | Microsoft Technology Licensing, Llc | Wearable image display system |
| US9535253B2 (en) | 2015-02-09 | 2017-01-03 | Microsoft Technology Licensing, Llc | Display system |
| US9423360B1 (en) | 2015-02-09 | 2016-08-23 | Microsoft Technology Licensing, Llc | Optical components |
| US9372347B1 (en) | 2015-02-09 | 2016-06-21 | Microsoft Technology Licensing, Llc | Display system |
| US9632226B2 (en) | 2015-02-12 | 2017-04-25 | Digilens Inc. | Waveguide grating device |
| WO2016135434A1 (en) | 2015-02-23 | 2016-09-01 | Milan Momcilo Popovich | Electrically focus-tunable lens |
| US10088689B2 (en) | 2015-03-13 | 2018-10-02 | Microsoft Technology Licensing, Llc | Light engine with lenticular microlenslet arrays |
| WO2016146963A1 (en) | 2015-03-16 | 2016-09-22 | Popovich, Milan, Momcilo | Waveguide device incorporating a light pipe |
| WO2016153879A1 (en) | 2015-03-20 | 2016-09-29 | Magic Leap, Inc. | Light combiner for augmented reality display systems |
| CN115390250A (en) | 2015-06-15 | 2022-11-25 | 奇跃公司 | Virtual and augmented reality systems and methods |
| US10670862B2 (en) | 2015-07-02 | 2020-06-02 | Microsoft Technology Licensing, Llc | Diffractive optical elements with asymmetric profiles |
| EP3671317B1 (en) | 2015-07-20 | 2021-11-10 | Magic Leap, Inc. | Collimating fiber scanner design with inward pointing angles in virtual/augmented reality system |
| US10038840B2 (en) | 2015-07-30 | 2018-07-31 | Microsoft Technology Licensing, Llc | Diffractive optical element using crossed grating for pupil expansion |
| US9864208B2 (en) | 2015-07-30 | 2018-01-09 | Microsoft Technology Licensing, Llc | Diffractive optical elements with varying direction for depth modulation |
| US10180520B2 (en) | 2015-08-24 | 2019-01-15 | Akonia Holographics, Llc | Skew mirrors, methods of use, and methods of manufacture |
| WO2017060665A1 (en) | 2015-10-05 | 2017-04-13 | Milan Momcilo Popovich | Waveguide display |
| US10429645B2 (en) | 2015-10-07 | 2019-10-01 | Microsoft Technology Licensing, Llc | Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling |
| US10067346B2 (en) | 2015-10-23 | 2018-09-04 | Microsoft Technology Licensing, Llc | Holographic display |
| US9946072B2 (en) | 2015-10-29 | 2018-04-17 | Microsoft Technology Licensing, Llc | Diffractive optical element with uncoupled grating structures |
| US11231544B2 (en) | 2015-11-06 | 2022-01-25 | Magic Leap, Inc. | Metasurfaces for redirecting light and methods for fabricating |
| US9915825B2 (en) | 2015-11-10 | 2018-03-13 | Microsoft Technology Licensing, Llc | Waveguides with embedded components to improve intensity distributions |
| US9791696B2 (en) | 2015-11-10 | 2017-10-17 | Microsoft Technology Licensing, Llc | Waveguide gratings to improve intensity distributions |
| US9800607B2 (en) | 2015-12-21 | 2017-10-24 | Bank Of America Corporation | System for determining effectiveness and allocation of information security technologies |
| US10038710B2 (en) | 2015-12-22 | 2018-07-31 | Sap Se | Efficient identification of log events in enterprise threat detection |
| WO2017162999A1 (en) | 2016-03-24 | 2017-09-28 | Popovich Milan Momcilo | Method and apparatus for providing a polarization selective holographic waveguide device |
| CN109154717B (en) | 2016-04-11 | 2022-05-13 | 迪吉伦斯公司 | Holographic Waveguide Devices for Structured Light Projection |
| US10025093B2 (en) | 2016-04-13 | 2018-07-17 | Microsoft Technology Licensing, Llc | Waveguide-based displays with exit pupil expander |
| US9791703B1 (en) | 2016-04-13 | 2017-10-17 | Microsoft Technology Licensing, Llc | Waveguides with extended field of view |
| US10942430B2 (en) | 2017-10-16 | 2021-03-09 | Digilens Inc. | Systems and methods for multiplying the image resolution of a pixelated display |
| US10866426B2 (en) | 2018-02-28 | 2020-12-15 | Apple Inc. | Scanning mirror display devices |
-
2015
- 2015-08-04 US US15/502,583 patent/US10670876B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030003891A1 (en) * | 2001-07-02 | 2003-01-02 | Nokia Corporation | Method to improve I/Q-amplitude balance and receiver quadrature channel performance |
| US20100020272A1 (en) * | 2006-09-08 | 2010-01-28 | Tae-Su Kim | Mirror effect liquid crystal display device using reflection polarizer |
| US20120021848A1 (en) * | 2009-12-16 | 2012-01-26 | Callaway Golf Company | Golf club head with composite weight port |
Cited By (168)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10145533B2 (en) | 2005-11-11 | 2018-12-04 | Digilens, Inc. | Compact holographic illumination device |
| US10725312B2 (en) | 2007-07-26 | 2020-07-28 | Digilens Inc. | Laser illumination device |
| US10234696B2 (en) | 2007-07-26 | 2019-03-19 | Digilens, Inc. | Optical apparatus for recording a holographic device and method of recording |
| US11175512B2 (en) | 2009-04-27 | 2021-11-16 | Digilens Inc. | Diffractive projection apparatus |
| US10678053B2 (en) | 2009-04-27 | 2020-06-09 | Digilens Inc. | Diffractive projection apparatus |
| US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
| US10409144B2 (en) | 2009-10-09 | 2019-09-10 | Digilens Inc. | Diffractive waveguide providing structured illumination for object detection |
| US11204540B2 (en) | 2009-10-09 | 2021-12-21 | Digilens Inc. | Diffractive waveguide providing a retinal image |
| US11487131B2 (en) | 2011-04-07 | 2022-11-01 | Digilens Inc. | Laser despeckler based on angular diversity |
| US10185154B2 (en) | 2011-04-07 | 2019-01-22 | Digilens, Inc. | Laser despeckler based on angular diversity |
| US10642058B2 (en) | 2011-08-24 | 2020-05-05 | Digilens Inc. | Wearable data display |
| US12306418B2 (en) | 2011-08-24 | 2025-05-20 | Rockwell Collins, Inc. | Wearable data display |
| US11287666B2 (en) | 2011-08-24 | 2022-03-29 | Digilens, Inc. | Wearable data display |
| US10459311B2 (en) | 2012-01-06 | 2019-10-29 | Digilens Inc. | Contact image sensor using switchable Bragg gratings |
| US10216061B2 (en) | 2012-01-06 | 2019-02-26 | Digilens, Inc. | Contact image sensor using switchable bragg gratings |
| US11460621B2 (en) | 2012-04-25 | 2022-10-04 | Rockwell Collins, Inc. | Holographic wide angle display |
| US10437051B2 (en) | 2012-05-11 | 2019-10-08 | Digilens Inc. | Apparatus for eye tracking |
| US11994674B2 (en) | 2012-05-11 | 2024-05-28 | Digilens Inc. | Apparatus for eye tracking |
| US12405507B2 (en) | 2012-11-16 | 2025-09-02 | Digilens Inc. | Transparent waveguide display with grating lamina that both couple and extract modulated light |
| US20230114549A1 (en) * | 2012-11-16 | 2023-04-13 | Rockwell Collins, Inc. | Transparent waveguide display |
| US11815781B2 (en) * | 2012-11-16 | 2023-11-14 | Rockwell Collins, Inc. | Transparent waveguide display |
| US11448937B2 (en) | 2012-11-16 | 2022-09-20 | Digilens Inc. | Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles |
| US11662590B2 (en) | 2013-05-20 | 2023-05-30 | Digilens Inc. | Holographic waveguide eye tracker |
| US10209517B2 (en) | 2013-05-20 | 2019-02-19 | Digilens, Inc. | Holographic waveguide eye tracker |
| US10089516B2 (en) | 2013-07-31 | 2018-10-02 | Digilens, Inc. | Method and apparatus for contact image sensing |
| US10423813B2 (en) | 2013-07-31 | 2019-09-24 | Digilens Inc. | Method and apparatus for contact image sensing |
| US11307432B2 (en) | 2014-08-08 | 2022-04-19 | Digilens Inc. | Waveguide laser illuminator incorporating a Despeckler |
| US11106048B2 (en) | 2014-08-08 | 2021-08-31 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
| US10359736B2 (en) | 2014-08-08 | 2019-07-23 | Digilens Inc. | Method for holographic mastering and replication |
| US11709373B2 (en) | 2014-08-08 | 2023-07-25 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
| US10241330B2 (en) | 2014-09-19 | 2019-03-26 | Digilens, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
| US11726323B2 (en) | 2014-09-19 | 2023-08-15 | Digilens Inc. | Method and apparatus for generating input images for holographic waveguide displays |
| US10423222B2 (en) | 2014-09-26 | 2019-09-24 | Digilens Inc. | Holographic waveguide optical tracker |
| US11740472B2 (en) | 2015-01-12 | 2023-08-29 | Digilens Inc. | Environmentally isolated waveguide display |
| US10437064B2 (en) | 2015-01-12 | 2019-10-08 | Digilens Inc. | Environmentally isolated waveguide display |
| US11726329B2 (en) | 2015-01-12 | 2023-08-15 | Digilens Inc. | Environmentally isolated waveguide display |
| US11480788B2 (en) | 2015-01-12 | 2022-10-25 | Digilens Inc. | Light field displays incorporating holographic waveguides |
| US10330777B2 (en) | 2015-01-20 | 2019-06-25 | Digilens Inc. | Holographic waveguide lidar |
| US11703645B2 (en) | 2015-02-12 | 2023-07-18 | Digilens Inc. | Waveguide grating device |
| US12379547B2 (en) | 2015-02-12 | 2025-08-05 | Digilens Inc. | Waveguide grating device |
| US10527797B2 (en) | 2015-02-12 | 2020-01-07 | Digilens Inc. | Waveguide grating device |
| US10156681B2 (en) | 2015-02-12 | 2018-12-18 | Digilens Inc. | Waveguide grating device |
| US11756335B2 (en) | 2015-02-26 | 2023-09-12 | Magic Leap, Inc. | Apparatus for a near-eye display |
| US11347960B2 (en) | 2015-02-26 | 2022-05-31 | Magic Leap, Inc. | Apparatus for a near-eye display |
| US12013561B2 (en) | 2015-03-16 | 2024-06-18 | Digilens Inc. | Waveguide device incorporating a light pipe |
| US10459145B2 (en) | 2015-03-16 | 2019-10-29 | Digilens Inc. | Waveguide device incorporating a light pipe |
| US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
| US11281013B2 (en) | 2015-10-05 | 2022-03-22 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
| US12405471B2 (en) | 2015-10-05 | 2025-09-02 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
| US10690916B2 (en) | 2015-10-05 | 2020-06-23 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
| US11754842B2 (en) | 2015-10-05 | 2023-09-12 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
| US10983340B2 (en) | 2016-02-04 | 2021-04-20 | Digilens Inc. | Holographic waveguide optical tracker |
| US11604314B2 (en) | 2016-03-24 | 2023-03-14 | Digilens Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
| US10859768B2 (en) | 2016-03-24 | 2020-12-08 | Digilens Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
| US10890707B2 (en) | 2016-04-11 | 2021-01-12 | Digilens Inc. | Holographic waveguide apparatus for structured light projection |
| US12298550B2 (en) | 2016-08-22 | 2025-05-13 | Magic Leap, Inc. | Multi-layer diffractive eyepiece having multilevel metasurface |
| US11604310B2 (en) | 2016-08-22 | 2023-03-14 | Magic Leap, Inc. | Multi-layer diffractive eyepiece with front cover plate and wavelength-selective reflector |
| US11822112B2 (en) | 2016-08-22 | 2023-11-21 | Magic Leap, Inc. | Projector architecture incorporating artifact mitigation |
| US12164134B2 (en) | 2016-08-22 | 2024-12-10 | Magic Leap, Inc. | Method of reducing optical artifacts |
| US11428859B2 (en) | 2016-08-22 | 2022-08-30 | Magic Leap, Inc. | Projector architecture incorporating artifact mitigation |
| US11609480B2 (en) | 2016-11-18 | 2023-03-21 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
| US12044952B2 (en) | 2016-11-18 | 2024-07-23 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
| US11378864B2 (en) * | 2016-11-18 | 2022-07-05 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
| US12298513B2 (en) | 2016-12-02 | 2025-05-13 | Digilens Inc. | Waveguide device with uniform output illumination |
| US11513350B2 (en) | 2016-12-02 | 2022-11-29 | Digilens Inc. | Waveguide device with uniform output illumination |
| US12131500B2 (en) | 2016-12-29 | 2024-10-29 | Magic Leap, Inc. | Systems and methods for augmented reality |
| US11790554B2 (en) | 2016-12-29 | 2023-10-17 | Magic Leap, Inc. | Systems and methods for augmented reality |
| US11874468B2 (en) | 2016-12-30 | 2024-01-16 | Magic Leap, Inc. | Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light |
| US11194162B2 (en) | 2017-01-05 | 2021-12-07 | Digilens Inc. | Wearable heads up displays |
| US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
| US11586046B2 (en) | 2017-01-05 | 2023-02-21 | Digilens Inc. | Wearable heads up displays |
| US12248150B2 (en) | 2017-01-05 | 2025-03-11 | Digilens Inc. | Wearable heads up displays |
| US11204462B2 (en) * | 2017-01-23 | 2021-12-21 | Magic Leap, Inc. | Eyepiece for virtual, augmented, or mixed reality systems |
| US20200012044A1 (en) * | 2017-01-23 | 2020-01-09 | Magic Leap, Inc. | Eyepiece for virtual, augmented, or mixed reality systems |
| US11733456B2 (en) | 2017-01-23 | 2023-08-22 | Magic Leap, Inc. | Eyepiece for virtual, augmented, or mixed reality systems |
| US12216311B2 (en) | 2017-01-23 | 2025-02-04 | Magic Leap, Inc. | Eyepiece for virtual, augmented, or mixed reality systems |
| US11927759B2 (en) | 2017-07-26 | 2024-03-12 | Magic Leap, Inc. | Exit pupil expander |
| US11567324B2 (en) * | 2017-07-26 | 2023-01-31 | Magic Leap, Inc. | Exit pupil expander |
| US11573483B2 (en) | 2017-10-16 | 2023-02-07 | Digilens Inc. | Systems and methods for multiplying the image resolution of a pixelated display |
| US10942430B2 (en) | 2017-10-16 | 2021-03-09 | Digilens Inc. | Systems and methods for multiplying the image resolution of a pixelated display |
| US12298473B2 (en) | 2017-12-10 | 2025-05-13 | Magic Leap, Inc. | Anti-reflective coatings on optical waveguides |
| US11953653B2 (en) | 2017-12-10 | 2024-04-09 | Magic Leap, Inc. | Anti-reflective coatings on optical waveguides |
| US10852547B2 (en) | 2017-12-15 | 2020-12-01 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11977233B2 (en) | 2017-12-15 | 2024-05-07 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11347063B2 (en) | 2017-12-15 | 2022-05-31 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US12181682B2 (en) | 2017-12-15 | 2024-12-31 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11762222B2 (en) | 2017-12-20 | 2023-09-19 | Magic Leap, Inc. | Insert for augmented reality viewing device |
| US12366769B2 (en) | 2017-12-20 | 2025-07-22 | Magic Leap, Inc. | Insert for augmented reality viewing device |
| US12352960B2 (en) | 2018-01-08 | 2025-07-08 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
| US10914950B2 (en) | 2018-01-08 | 2021-02-09 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
| US12366823B2 (en) | 2018-01-08 | 2025-07-22 | Digilens Inc. | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
| US10732569B2 (en) | 2018-01-08 | 2020-08-04 | Digilens Inc. | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
| US12092914B2 (en) | 2018-01-08 | 2024-09-17 | Digilens Inc. | Systems and methods for manufacturing waveguide cells |
| US12306585B2 (en) | 2018-01-08 | 2025-05-20 | Digilens Inc. | Methods for fabricating optical waveguides |
| US11650427B2 (en) | 2018-02-06 | 2023-05-16 | Dispelix Oy | Diffractive display element with grating mirror |
| JP2021512357A (en) * | 2018-02-06 | 2021-05-13 | ディスペリックス オサケ ユキチュア | Diffractive display element with lattice mirror |
| EP3729175A4 (en) * | 2018-02-06 | 2021-11-17 | Dispelix Oy | NETWORK MIRROR DIFFRACTIVE DISPLAY ELEMENT |
| KR102815999B1 (en) * | 2018-02-06 | 2025-06-04 | 디스페릭스 오와이 | Diffractive display device with grating mirror |
| JP7632867B2 (en) | 2018-02-06 | 2025-02-19 | ディスペリックス オサケ ユキチュア | Diffractive display element having grating mirrors - Patents.com |
| KR20200115528A (en) * | 2018-02-06 | 2020-10-07 | 디스페릭스 오와이 | Diffraction display element with grating mirror |
| US11908434B2 (en) | 2018-03-15 | 2024-02-20 | Magic Leap, Inc. | Image correction due to deformation of components of a viewing device |
| US11776509B2 (en) | 2018-03-15 | 2023-10-03 | Magic Leap, Inc. | Image correction due to deformation of components of a viewing device |
| US11726261B2 (en) | 2018-03-16 | 2023-08-15 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
| US10690851B2 (en) | 2018-03-16 | 2020-06-23 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
| US11150408B2 (en) | 2018-03-16 | 2021-10-19 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
| US11885871B2 (en) | 2018-05-31 | 2024-01-30 | Magic Leap, Inc. | Radar head pose localization |
| US12001013B2 (en) | 2018-07-02 | 2024-06-04 | Magic Leap, Inc. | Pixel intensity modulation using modifying gain values |
| US11579441B2 (en) | 2018-07-02 | 2023-02-14 | Magic Leap, Inc. | Pixel intensity modulation using modifying gain values |
| US11510027B2 (en) | 2018-07-03 | 2022-11-22 | Magic Leap, Inc. | Systems and methods for virtual and augmented reality |
| US11856479B2 (en) | 2018-07-03 | 2023-12-26 | Magic Leap, Inc. | Systems and methods for virtual and augmented reality along a route with markers |
| US12379981B2 (en) | 2018-07-10 | 2025-08-05 | Magic Leap, Inc. | Thread weave for cross-instruction set architectureprocedure calls |
| US12164978B2 (en) | 2018-07-10 | 2024-12-10 | Magic Leap, Inc. | Thread weave for cross-instruction set architecture procedure calls |
| US12247846B2 (en) | 2018-07-24 | 2025-03-11 | Magic Leap, Inc. | Temperature dependent calibration of movement detection devices |
| US11598651B2 (en) | 2018-07-24 | 2023-03-07 | Magic Leap, Inc. | Temperature dependent calibration of movement detection devices |
| US11624929B2 (en) | 2018-07-24 | 2023-04-11 | Magic Leap, Inc. | Viewing device with dust seal integration |
| US11402801B2 (en) | 2018-07-25 | 2022-08-02 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
| US11630507B2 (en) | 2018-08-02 | 2023-04-18 | Magic Leap, Inc. | Viewing system with interpupillary distance compensation based on head motion |
| US11609645B2 (en) | 2018-08-03 | 2023-03-21 | Magic Leap, Inc. | Unfused pose-based drift correction of a fused pose of a totem in a user interaction system |
| US12254141B2 (en) | 2018-08-03 | 2025-03-18 | Magic Leap, Inc. | Unfused pose-based drift correction of a fused pose of a totem in a user interaction system |
| US11960661B2 (en) | 2018-08-03 | 2024-04-16 | Magic Leap, Inc. | Unfused pose-based drift correction of a fused pose of a totem in a user interaction system |
| US12016719B2 (en) | 2018-08-22 | 2024-06-25 | Magic Leap, Inc. | Patient viewing system |
| US11521296B2 (en) | 2018-11-16 | 2022-12-06 | Magic Leap, Inc. | Image size triggered clarification to maintain image sharpness |
| US11754841B2 (en) | 2018-11-20 | 2023-09-12 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US12306407B2 (en) | 2018-11-20 | 2025-05-20 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11237393B2 (en) | 2018-11-20 | 2022-02-01 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US12044851B2 (en) | 2018-12-21 | 2024-07-23 | Magic Leap, Inc. | Air pocket structures for promoting total internal reflection in a waveguide |
| US12210153B2 (en) | 2019-01-14 | 2025-01-28 | Digilens Inc. | Holographic waveguide display with light control layer |
| US12397477B2 (en) | 2019-02-05 | 2025-08-26 | Digilens Inc. | Methods for compensating for optical surface nonuniformity |
| WO2020163524A1 (en) * | 2019-02-05 | 2020-08-13 | Digilens Inc. | Methods for compensating for optical surface nonuniformity |
| US11425189B2 (en) | 2019-02-06 | 2022-08-23 | Magic Leap, Inc. | Target intent-based clock speed determination and adjustment to limit total heat generated by multiple processors |
| US12140764B2 (en) | 2019-02-15 | 2024-11-12 | Digilens Inc. | Wide angle waveguide display |
| US11543594B2 (en) | 2019-02-15 | 2023-01-03 | Digilens Inc. | Methods and apparatuses for providing a holographic waveguide display using integrated gratings |
| US11762623B2 (en) | 2019-03-12 | 2023-09-19 | Magic Leap, Inc. | Registration of local content between first and second augmented reality viewers |
| US11378732B2 (en) | 2019-03-12 | 2022-07-05 | DigLens Inc. | Holographic waveguide backlight and related methods of manufacturing |
| WO2020219092A1 (en) * | 2019-04-26 | 2020-10-29 | Digilens Inc. | Holographic waveguide illumination homogenizers |
| US11445232B2 (en) | 2019-05-01 | 2022-09-13 | Magic Leap, Inc. | Content provisioning system and method |
| US12267545B2 (en) | 2019-05-01 | 2025-04-01 | Magic Leap, Inc. | Content provisioning system and method |
| US11747568B2 (en) | 2019-06-07 | 2023-09-05 | Digilens Inc. | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing |
| US12271035B2 (en) | 2019-06-07 | 2025-04-08 | Digilens Inc. | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing |
| US12181678B2 (en) | 2019-06-20 | 2024-12-31 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US12379600B2 (en) | 2019-06-20 | 2025-08-05 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11650423B2 (en) | 2019-06-20 | 2023-05-16 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US12249035B2 (en) | 2019-07-26 | 2025-03-11 | Magic Leap, Inc. | System and method for augmented reality with virtual objects behind a physical surface |
| US11514673B2 (en) | 2019-07-26 | 2022-11-29 | Magic Leap, Inc. | Systems and methods for augmented reality |
| US11681143B2 (en) | 2019-07-29 | 2023-06-20 | Digilens Inc. | Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display |
| US11442222B2 (en) | 2019-08-29 | 2022-09-13 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
| US11899238B2 (en) | 2019-08-29 | 2024-02-13 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
| US11592614B2 (en) | 2019-08-29 | 2023-02-28 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
| CN112485957A (en) * | 2019-09-12 | 2021-03-12 | 扬明光学股份有限公司 | Light source module |
| US11460701B2 (en) | 2019-10-25 | 2022-10-04 | Meta Platforms Technologies LLC | Display waveguide with a high-index portion |
| US11054566B2 (en) | 2019-10-25 | 2021-07-06 | Facebook Technologies, Llc | Display waveguide with a high-index layer |
| US12033081B2 (en) | 2019-11-14 | 2024-07-09 | Magic Leap, Inc. | Systems and methods for virtual and augmented reality |
| US12472007B2 (en) | 2019-11-15 | 2025-11-18 | Magic Leap, Inc. | Viewing system for use in a surgical environment |
| US11737832B2 (en) | 2019-11-15 | 2023-08-29 | Magic Leap, Inc. | Viewing system for use in a surgical environment |
| US11709363B1 (en) | 2020-02-10 | 2023-07-25 | Avegant Corp. | Waveguide illumination of a spatial light modulator |
| US12099198B2 (en) | 2020-02-10 | 2024-09-24 | Avegant Corp. | Waveguide illumination of a spatial light modulator |
| WO2021169407A1 (en) * | 2020-02-28 | 2021-09-02 | 苏州苏大维格科技集团股份有限公司 | Optical waveguide lens and augmented reality display device |
| WO2021242898A1 (en) * | 2020-05-26 | 2021-12-02 | Digilens Inc. | Eyed glow suppression in waveguide based displays |
| EP3943996A1 (en) * | 2020-07-22 | 2022-01-26 | Samsung Electronics Co., Ltd. | Beam expander and method of operating the same |
| US11662511B2 (en) | 2020-07-22 | 2023-05-30 | Samsung Electronics Co., Ltd. | Beam expander and method of operating the same |
| US12019260B2 (en) | 2020-07-22 | 2024-06-25 | Samsung Electronics Co., Ltd. | Beam expander and method of operating the same |
| US11860366B2 (en) | 2020-09-29 | 2024-01-02 | Avegant Corp. | Architecture to illuminate a display panel |
| US12099199B2 (en) | 2020-09-29 | 2024-09-24 | Avegant Corp. | Architecture to illuminate a display panel |
| US12222499B2 (en) | 2020-12-21 | 2025-02-11 | Digilens Inc. | Eye glow suppression in waveguide based displays |
| US12399326B2 (en) | 2021-01-07 | 2025-08-26 | Digilens Inc. | Grating structures for color waveguides |
| US12158612B2 (en) | 2021-03-05 | 2024-12-03 | Digilens Inc. | Evacuated periodic structures and methods of manufacturing |
| US12372708B2 (en) * | 2021-10-08 | 2025-07-29 | Samsung Electronics Co., Ltd. | Waveguide and augmented reality device employing the same |
| US12147047B1 (en) * | 2022-07-18 | 2024-11-19 | Meta Platforms, Inc. | Methods, apparatuses and computer program products for providing transmission chirped volume bragg grating based compact waveguide in-couplers for light sources |
Also Published As
| Publication number | Publication date |
|---|---|
| US10670876B2 (en) | 2020-06-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11709373B2 (en) | Waveguide laser illuminator incorporating a despeckler | |
| US10670876B2 (en) | Waveguide laser illuminator incorporating a despeckler | |
| US12298513B2 (en) | Waveguide device with uniform output illumination | |
| US12352960B2 (en) | Waveguide architectures and related methods of manufacturing | |
| US12306585B2 (en) | Methods for fabricating optical waveguides | |
| WO2014080155A1 (en) | Waveguide device for homogenizing illumination light | |
| CN105229499B (en) | Polarization conversion system with geometric phase hologram | |
| EP2764399B1 (en) | Polarization conversion systems with polarization gratings and related fabrication methods | |
| US20220269092A1 (en) | Display device including polarization selective microlens array | |
| WO2022178406A1 (en) | Display device including polarization selective microlens array |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: DIGILENS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POPOVICH, MILAN MOMCILO;WALDERN, JONATHAN DAVID;GRANT, ALASTAIR JOHN;SIGNING DATES FROM 20170209 TO 20170210;REEL/FRAME:042716/0702 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| AS | Assignment |
Owner name: DIGILENS INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S NAME PREVIOUSLY RECORDED AT REEL: 042716 FRAME: 0702. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:POPOVICH, MILAN MOMCILO;WALDERN, JONATHAN DAVID;GRANT, ALASTAIR JOHN;SIGNING DATES FROM 20190410 TO 20190415;REEL/FRAME:051190/0488 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, LARGE ENTITY (ORIGINAL EVENT CODE: M1554); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |