US20170189175A1 - Artificial, flexible valves and methods of fabricating and serially expanding the same - Google Patents
Artificial, flexible valves and methods of fabricating and serially expanding the same Download PDFInfo
- Publication number
- US20170189175A1 US20170189175A1 US15/308,667 US201515308667A US2017189175A1 US 20170189175 A1 US20170189175 A1 US 20170189175A1 US 201515308667 A US201515308667 A US 201515308667A US 2017189175 A1 US2017189175 A1 US 2017189175A1
- Authority
- US
- United States
- Prior art keywords
- leaflets
- stent
- valve
- canceled
- mandrel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 26
- 229920000642 polymer Polymers 0.000 claims description 69
- 238000003618 dip coating Methods 0.000 claims description 18
- 239000000835 fiber Substances 0.000 claims description 13
- 239000012779 reinforcing material Substances 0.000 claims description 9
- 238000004026 adhesive bonding Methods 0.000 claims description 6
- 210000003709 heart valve Anatomy 0.000 claims description 6
- 210000003462 vein Anatomy 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000002685 pulmonary effect Effects 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 201000002282 venous insufficiency Diseases 0.000 claims description 5
- 238000003466 welding Methods 0.000 claims description 5
- 238000003780 insertion Methods 0.000 claims description 4
- 230000037431 insertion Effects 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 24
- 239000000463 material Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000004698 Polyethylene Substances 0.000 description 10
- 229920000573 polyethylene Polymers 0.000 description 10
- 238000007598 dipping method Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000004810 polytetrafluoroethylene Substances 0.000 description 9
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 9
- 229920002635 polyurethane Polymers 0.000 description 9
- 239000004814 polyurethane Substances 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 239000000243 solution Substances 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 6
- 238000002513 implantation Methods 0.000 description 6
- 229920005573 silicon-containing polymer Polymers 0.000 description 6
- 229910001000 nickel titanium Inorganic materials 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000000788 chromium alloy Substances 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 206010067171 Regurgitation Diseases 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000000004 hemodynamic effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 208000002330 Congenital Heart Defects Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 241000237503 Pectinidae Species 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000007675 cardiac surgery Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 201000002816 chronic venous insufficiency Diseases 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 208000028831 congenital heart disease Diseases 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 206010014665 endocarditis Diseases 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 208000010729 leg swelling Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000003102 pulmonary valve Anatomy 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 208000004124 rheumatic heart disease Diseases 0.000 description 1
- 235000020637 scallop Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 208000037997 venous disease Diseases 0.000 description 1
- 210000002073 venous valve Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
- A61F2/2418—Scaffolds therefor, e.g. support stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
- A61F2/243—Deployment by mechanical expansion
- A61F2/2433—Deployment by mechanical expansion using balloon catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
- A61F2/2415—Manufacturing methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0076—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/005—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0058—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0008—Rounded shapes, e.g. with rounded corners elliptical or oval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0017—Angular shapes
- A61F2230/0019—Angular shapes rectangular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/005—Rosette-shaped, e.g. star-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0069—Three-dimensional shapes cylindrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0004—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
- A61F2250/001—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting a diameter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0029—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in bending or flexure capacity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0036—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0037—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in height or in length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0082—Additional features; Implant or prostheses properties not otherwise provided for specially designed for children, e.g. having means for adjusting to their growth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0096—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
- A61F2250/0098—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/507—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
Definitions
- Valves exist in the body (e.g., in the heart and the systemic veins) to allow unidirectional blood flow.
- a variety of congenital conditions, infectious diseases (e.g., rheumatic heart disease), endocarditis, and age-related impairments (e.g., senile stenosis) can necessitate implantation of an artificial valve.
- an artificial, flexible valve including: a stent defining a wall and a plurality of leaflets extending from the wall of the stent.
- the plurality of leaflets form a plurality of coaptation regions between two adjacent leaflets.
- the coaptation regions include extensions along a z-axis and adapted and are configured to form a releasable, but substantially complete seal when the leaflets are in a closed position.
- the extensions can have a length along the z-axis between about 1 mm and about 10 mm.
- the extensions can have a curved profile.
- the curved profile can lie in an x-y plane.
- the curved profile can be a variance in extension length along the z-axis.
- the coaptation regions can have a substantially hyperbolic profile.
- Each of the plurality of leaflets can have a substantially elliptical leaflet-stent attachment line.
- the stent can be an expandable, cylindrical stent.
- the leaflets can be reinforced with one or more selected from the group consisting of: reinforcing materials and directional fibers.
- One or more selected from the group consisting of: coaptation regions and leaflet-stent attachment lines can be reinforced with one or more selected from the group consisting of: additional polymer thickness, reinforcing materials, and directional fibers.
- Adjacent leaflets can be coupled to a wide post of the stent.
- the wide post can include one or more windows.
- the wide post can have a width between about 0.5 mm and about 3 mm.
- the stent can include metal or plastic.
- the metal can be selected from the group consisting of: stainless steel, 316L stainless steel, cobalt-chromium alloys, and nickel-titanium alloys.
- the leaflets can be formed from a first polymer.
- the first polymer can be selected from the group consisting of: polytetrafluoroethylene, polyethylene, polyurethane, silicone, and copolymers thereof.
- the stent can be dip-coated in a second polymer.
- the second polymer can be selected from the group consisting of: polytetrafluoroethylene, polyethylene, polyurethane, silicone, and copolymers thereof.
- the leaflets can be coupled to the second polymer.
- the leaflets can be mechanically coupled to the second polymer.
- the leaflets can be chemically coupled to the second polymer.
- the leaflets can be coupled to the second polymer by one or more techniques selected from the group consisting of: gluing, chemical fusing, thermal fusing, sonic welding, stitching, and mechanical fastening.
- a leaflet-stent attachment line for each of the plurality of leaflets can substantially approximate a frame of the stent.
- the leaflet-stent attachment line can lie within about 3 mm of the frame of the stent.
- the stent can include one or more anchor points.
- the anchor points can contain a radio-opaque material.
- the valve can be adapted and configured for replacement of one or more cardiac valves selected from the group consisting of: aortic, mitral, tricuspid, and pulmonary.
- the valve can be adapted and configured for insertion in a subject's veins in order to treat venous insufficiency.
- the valve can be adapted and configured for serial expansion as the subject ages.
- an artificial, flexible valve including: a stent defining a wall and a plurality of leaflets extending from the wall of the stent. Each of the plurality of leaflets terminates in a commissure line.
- the commissure lines deviate from a hyperbola formed in the x-y plane by at least one deviation selected from the group consisting of: a deviation in the z-direction and one or more curves relative to the hyperbola.
- the leaflets can further include extensions beyond the commissure lines along a z-axis.
- the extensions can have a length along the z-axis between about 1 mm and about 10 mm.
- the extensions can have a curved profile.
- the curved profile can lie in an x-y plane.
- the curved profile can be a variance in extension length along the z-axis.
- Each of the plurality of leaflets can have a substantially elliptical leaflet-stent attachment line.
- the stent can have an expandable, cylindrical stent.
- the leaflets can be reinforced with one or more selected from the group consisting of: reinforcing materials and directional fibers.
- One or more selected from the group consisting of: coaptation regions and leaflet-stent attachment lines can be reinforced with one or more selected from the group consisting of: additional polymer thickness, reinforcing materials, and directional fibers.
- Adjacent leaflets can be coupled to a wide post of the stent.
- the wide post can include one or more windows.
- the wide post can have a width between about 0.5 mm and about 3 mm.
- the stent can include metal or plastic.
- the metal can be selected from the group consisting of: stainless steel, 316L stainless steel, cobalt-chromium alloys, and nickel-titanium alloys.
- the leaflets can be formed from a first polymer.
- the first polymer can be selected from the group consisting of: polytetrafluoroethylene, polyethylene, polyurethane, silicone, and copolymers thereof.
- the stent can be dip-coated in a second polymer.
- the second polymer can be selected from the group consisting of: polytetrafluoroethylene, polyethylene, polyurethane, silicone, and copolymers thereof.
- the leaflets can be coupled to the second polymer.
- the leaflets can be mechanically coupled to the second polymer.
- the leaflets can be chemically coupled to the second polymer.
- the leaflets can be coupled to the second polymer by one or more techniques selected from the group consisting of: gluing, chemical fusing, thermal fusing, sonic welding, stitching, and mechanical fastening.
- a leaflet-stent attachment line for each of the plurality of leaflets can substantially approximate a frame of the stent.
- the leaflet-stent attachment line can lie within about 3 mm of the frame of the stent.
- the stent can include one or more anchor points.
- the anchor points can contain a radio-opaque material.
- the valve can be adapted and configured for replacement of one or more cardiac valves selected from the group consisting of: aortic, mitral, tricuspid, and pulmonary.
- the valve can be adapted and configured for insertion in a subject's veins in order to treat venous insufficiency.
- the valve can be adapted and configured for serial expansion as the subject ages.
- an artificial, flexible valve including: an expandable, cylindrical stent defining a wall and a plurality of leaflets extending from the wall of the stent. Adjacent leaflets can be coupled to a relatively wide post of the stent.
- the leaflets can further include extensions beyond the commissure lines along a z-axis.
- the extensions can have a length along the z-axis between about 1 mm and about 10 mm.
- the extensions can have a curved profile.
- the curved profile can lie in an x-y plane.
- the curved profile can be a variance in extension length along the z-axis.
- the coaptation regions can have a substantially hyperbolic profile.
- Each of the plurality of leaflets can have a substantially elliptical leaflet-stent attachment line.
- the leaflets can be reinforced with one or more selected from the group consisting of: reinforcing materials and directional fibers.
- One or more selected from the group consisting of: coaptation regions and leaflet-stent attachment lines can be reinforced with one or more selected from the group consisting of: additional polymer thickness, reinforcing materials, and directional fibers.
- the relatively wide post can include one or more windows.
- the relatively wide post can have a width between about 0.5 mm and about 3 mm.
- the stent can include metal or plastic.
- the metal can be selected from the group consisting of: stainless steel, 316L stainless steel, cobalt-chromium alloys, and nickel-titanium alloys.
- the leaflets can be formed from a first polymer.
- the first polymer can be selected from the group consisting of: polytetrafluoroethylene, polyethylene, polyurethane, silicone, and copolymers thereof.
- the stent can be dip-coated in a second polymer.
- the second polymer can be selected from the group consisting of: polytetrafluoroethylene, polyethylene, polyurethane, silicone, and copolymers thereof.
- the leaflets can be coupled to the second polymer.
- the leaflets can be mechanically coupled to the second polymer.
- the leaflets can be chemically coupled to the second polymer.
- the leaflets can be coupled to the second polymer by one or more techniques selected from the group consisting of: gluing, chemical fusing, thermal fusing, sonic welding, stitching, and mechanical fastening.
- a leaflet-stent attachment line for each of the plurality of leaflets can substantially approximate a frame of the stent.
- the leaflet-stent attachment line can lie within about 3 mm of the frame of the stent.
- the stent can include one or more anchor points.
- the anchor points can contain a radio-opaque material.
- the valve can be adapted and configured for replacement of one or more cardiac valves selected from the group consisting of: aortic, mitral, tricuspid, and pulmonary.
- the valve can be adapted and configured for insertion in a subject's veins in order to treat venous insufficiency.
- the valve can be adapted and configured for serial expansion as the subject ages.
- the valve may not contain any animal-derived materials.
- a mandrel including: a cylindrical profile and a plurality of recesses adapted and configured to define a plurality of leaflets forming a plurality of coaptation regions between two adjacent leaflets.
- the coaptation regions can include extensions along a z-axis and be adapted and configured to form a releasable, but substantially complete seal when the leaflets are in a closed position.
- the mandrel can include one more cutting guides located between the plurality of recesses.
- the mandrel can include one or more heating elements.
- a mandrel including: a cylindrical profile and a plurality of recesses adapted and configured to define a plurality of leaflets.
- Each of the plurality of leaflets terminate in a commissure line.
- the commissure lines deviate from a hyperbola formed in the x-y plane by at least one deviation selected from the group consisting of: a deviation in the z-direction and one or more curves relative to the hyperbola.
- the mandrel can include one more cutting guides located between the plurality of recesses.
- the mandrel can include one or more heating elements.
- Another aspect of the invention provides a method for fabricating an artificial, flexible valve.
- the method includes: dip coating a cylindrical mandrel having a plurality of recesses each approximating a profile of a leaflet and coupling the leaflets to an inner wall of a stent.
- the method can further include dip coating the stent prior to coupling the leaflets to the inner wall of the stent.
- the stent and the mandrel can have larger diameters than a target location for the valve.
- the method can further include separating adjacent leaflets from each other.
- FIGS. 1A and 1B provide perspective (in which fluid flows from the bottom of the stent toward the top of the stent) and top (in which fluid flows out of the page when the valve is open and flows down into the page to close the valve) views of a valve according to an embodiment of the invention
- FIG. 2 depicts a stent according to an embodiment of the invention
- FIGS. 3A-3F depict various stent geometries according to embodiments of the invention.
- FIG. 4 depicts various vertical post geometries according to embodiments of the invention.
- FIGS. 5A-5D depict the positioning of a leaflet joint adjacent to a window of a vertical post according to an embodiment of the invention
- FIG. 6 depicts a stent prior to expansion, dip coating, and leaflet installation according to an embodiment of the invention
- FIG. 7 depicts a stent including one or more anchor points according to an embodiment of the invention.
- FIG. 8 depicts the engagement of a stent with a holder for dipping and rotation according to an embodiment of the invention
- FIGS. 9A-9E depict a mandrel according to an embodiment of the invention.
- FIG. 9F depicts the positioning of a hyperbolic commissure line relative to defined asymptotes according to embodiments of the invention.
- FIG. 10A depicts a comparison of elliptical vs. parabolic geometries leaflet valley lines according to embodiments of the invention.
- FIGS. 10B and 10C depict a comparison of elliptical vs. parabolic leaflet stent attachment lines according to embodiments of the invention.
- FIGS. 11A-11D depict mandrels for forming coaptation regions of varying height according to embodiments of the invention.
- FIGS. 12A-12D depict mandrels for forming coaptation regions of varying radial length according to embodiments of the invention
- FIGS. 12E-12H depict mandrels for forming commissure lines having variable depths along the z-axis according to embodiments of the invention
- FIGS. 12I-12K depict mandrels for forming coaptation regions having curved profiles in an x-y plane, resulting in increased coaptation length, according to embodiments of the invention
- FIGS. 12L-12N depict mandrels for forming commissure lines having curved profiles in an x-y plane, resulting in increased coaptation length, according to embodiments of the invention
- FIG. 13A depicts a mandrel according to an embodiment of the invention
- FIGS. 13B and 13C depict the positioning of reinforcing zones on a mandrel according to an embodiment of the invention
- FIGS. 14A-14C depict various top profiles according to an embodiment of the invention.
- FIGS. 15A and 15B depict the fabrication of valves according to embodiments of the invention.
- FIG. 16 depict the fabrication of valves according to an embodiment of the invention.
- FIGS. 17A and 17B depict the compression of a valve after assembly in order to bring leaflets into contact with each other according to embodiments of the invention
- FIG. 17C is a high-speed photograph of a closed valve under pressure according to embodiments of the invention.
- FIG. 18 depicts a method of implanting a valve according to embodiments of the invention.
- FIG. 19 depicts a method of expanding an implanted valve according to embodiments of the invention.
- the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. “About” can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein are modified by the term about.
- Ranges provided herein are understood to be shorthand for all of the values within the range.
- a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 (as well as fractions thereof unless the context clearly dictates otherwise).
- aspects of the invention provide a novel platform that allows development of polymeric valves of any size and shape.
- aspects of the invention can be applied to valves designed for surgical implantation (e.g., through a sternotomy or thoracotomy) or valves designed for percutaneous, transcatheter implantation. Additionally, embodiments of the invention allow for possible percutaneous replacement of a dysfunctional valve, whether in adults or in small children. In addition, if implanted in a child, embodiments of the invention allow the valve to be serially expanded to accompany the child's growth.
- Heart valves are currently replaced using tissue valves (homograft or xenograft) or mechanical metal valves, each having their shortcomings. Homograft valves are in short supply, particularly in sizes suitable for use in children, and biologic tissue-based valves (whether bovine, porcine, or homograft) tend to induce an immunologic reaction which leads to failure of these valves. Mechanical valves generally require anticoagulation, and are almost never used in the pulmonary position due to an increased risk of thrombosis.
- aspects of the invention can be used for venous valve replacement in patients having venous disease such as chronic venous insufficiency (leading to leg swelling). Because the polymer leaflets can be made extremely thin, the valves can even open under extremely low venous pressure gradients.
- valve 100 provides an artificial, flexible valve 100 .
- the valve includes an expandable, cylindrical stent 102 defining a wall 104 .
- Valve 100 further includes a plurality of leaflets 106 a - 106 c .
- Wall 104 can be formed by dip coating stent 102 in a polymer as further described herein.
- Leaflets 106 can be coupled to wall 104 along seams 108 using a variety of approaches (e.g., glue) as discussed further herein.
- Stent 102 can include one or more vertical posts 110 , 112 , which can be relatively narrow posts 110 or relatively wide posts 112 .
- leaflet joints between adjacent leaflets 106 are positioned on or close to a vertical post 110 , 112 of the stent 102 .
- valve 100 will now be described in the context of its components and methods of fabrication.
- stent 102 can be a metallic stent having plurality of wires, strips, and the like 202 defining a plurality of cells 204 , 206 of various sizes.
- Stent 102 can be fabricated from a variety of malleable materials such as stainless steel, 316L stainless steel, cobalt-chromium alloys, nickel-titanium alloys (colloquially known as “nitinol”), and the like.
- Stent 102 can also be formed from various non-metallic materials such as plastics such as polyethylene, polyurethane, polytetrafluoroethylene (PTFE), silicone, poly(propylene) (PP), polyethylene terephthalate (PET), and the like.
- plastics such as polyethylene, polyurethane, polytetrafluoroethylene (PTFE), silicone, poly(propylene) (PP), polyethylene terephthalate (PET), and the like.
- Stent 102 can be completely enveloped by a polymer dip coating.
- Stent 102 and/or wall 104 can also be fabricated from a biocompatible material.
- the stent 102 can be manufactured by laser cutting or wire forming. To increase bonding strength between metal and polymer, roughness of stent surface can be controlled. Some or all open cells 204 , 206 of the stent can be covered as the bare 102 stent is dipped into the polymer solution.
- FIG. 6 depicts a stent 102 prior to expansion, dip coating, and leaflet installation.
- Stents 102 typically have a diameter of between about 2 mm and 6 mm prior to expansion and can be expanded to between about 5 mm and about 30 mm for implantation into a subject.
- the components of stent 102 can have a variety of dimensions that can be selected to achieve a desired flexibility, rigidity, resilience, and the like.
- the thickness and width of components of the stent 102 can be between about 0.1 mm and about 2 mm.
- stent 102 can include one or more vertical posts 110 a - 110 c to enhance bonding with leaflets 106 .
- Stent 102 can include a plurality of vertical posts 110 that can serve a variety of functions. Some vertical posts 110 can include additional structure and are referred to herein as wide posts 112 . Wide posts 112 are preferably located at leaflet joints where two leaflets 106 meet. For example, in a valve 100 having a three leaflets 106 , wide posts 112 can be positioned at 120° intervals within cylindrical stent 102 .
- Wide posts 112 provide mechanical support to leaflets and prevent or substantially limit inward deformation of wall 104 due to tensile forces applied to leaflets 106 transferred to wall 104 . Without being bound by theory, it is believed that the wide posts 112 provide increased strength and resiliency due to formation of polymer wall 104 through windows 206 and around wide posts 112 , thus providing cohesive holding of the polymer to itself around the stent 102 instead of relying solely on adhesive bonding of the polymer wall 104 to the stent 102 .
- window 208 can have a width of between about 0.5 mm and about 3 mm (e.g., about 1 mm) and a height of between about 1 mm and about 10 mm (e.g., about 5 mm).
- FIGS. 3A-3F A variety of additional wide post geometries are depicts in FIGS. 3A-3F .
- the wide posts have a solid architecture without any windows.
- the wide posts have a substantially rectangular architecture defining a single, long window as in FIGS. 1A, 1B, and 2 .
- the wide posts define a plurality of coaxial substantially rectangular windows.
- the wide posts define a plurality of coaxial, substantially parallel windows.
- FIG. 3E the wide posts define a plurality of coaxial, substantially rectangular windows in a 2 ⁇ 3 arrangement.
- the wide posts include a plurality of circular windows.
- any geometry can be utilized including windows having a profile approximating a triangle, a square, an n-gon (e.g., a hexagon, an octagon, and the like), and the like.
- FIGS. 5A-5D the positioning of a leaflet joint 502 (formed, e.g., on mandrel 900 as discussed herein) adjacent to window 206 of wide post 112 is depicted.
- the polymer dip-coated wall 104 is completely transparent for ease and clarity in viewing, but can be transparent, translucent, or opaque.
- FIG. 5B-5D further depict how a geometry of the stent 102 can be selected to substantially approximate the leaflet-stent attachment seam 108 discussed herein in order to provide added mechanical support and resiliency.
- stent 102 can include one or more anchor points 702 .
- Anchor points 702 advantageously facilitate holding, dipping, and rotation of the stent 102 during the dip coating process without interfering with the dip coating of the remainder of the stent architecture. Accordingly, the entire stent 102 can be dip coated in a single dipping, although multiple dippings can be utilized to control coating density, thickness, and the like.
- Anchor points 702 can also receive one or more radio-opaque materials such as platinum to aid in placement and visualization of the valve.
- stent 102 can be engaged with a holder 802 (e.g., by posts 804 ) for dipping and rotation.
- a holder 802 e.g., by posts 804
- the polymer e.g., polymer that is wet on the stent 102
- the stent can be positioned horizontally and rotated axially.
- Leaflets 106 can be formed using a variety of techniques including dip coating, 3D-printing (also known as additive manufacturing), molding, and the like.
- leaflets 106 can be fabricated by dip coating a mandrel 900 with a polymer.
- the mandrel 900 can be made with a solid such as a metal (e.g., stainless steel, titanium, aluminum, and the like), a plastic (e.g., polyethylene, polypropylene, polyvinyl chloride, polytetrafluoroethylene, polyoxymethylene, and the like), and the like. Since the coated polymer leaflets 106 will be removed from the mandrel 900 after the polymer dries, roughness of mandrel surface can be controlled using known machining and other manufacturing techniques.
- the mandrel 900 can be made from a cylinder.
- the diameter of the mandrel 900 is a slightly (e.g., between about 0.05 and about 0.4 mm) smaller than inner diameter of stent 102 after expansion.
- the mandrel 900 for the leaflets 106 can have novel features, including edges representing the leaflet attachment points that are mathematically defined and leaflet tips that are extended in order to increase the coaptation length of the leaflets.
- the mandrel 900 can be dimensioned to produce leaflets 106 having different regional thickness and supplementary materials such as directional fibers or reinforcing particles inserted between layers or mixed into the polymer solution in order to increase durability. For example, polymer interaction with particles on the nanoscale or microscale can greatly improve the physical properties or tear resistance of the polymer leaflets 106 .
- Mandrel 900 can be designed to have a complementary geometry to the desired leaflet shape and permits easier viewing of leaflet geometry. Although mandrel 900 is utilized to describe the geometry of the leaflet 106 , it should be recognized that the upstream surface of the resulting leaflets will have this geometry when formed by dip coating and that the complementary geometry of the leaflet(s) 106 can be produced using techniques other than dip coating.
- Mandrel 900 is preferably cylindrical and can have an outer profile substantially approximating an inner profile of stent 102 .
- Mandrel 900 can define a plurality of pockets 902 that each define a leaflet 106 as it hangs from wall 104 via attachment line 108 .
- Each leaflet 106 terminates in a commissure line 904 often, but not necessarily lying in a plane at the point where the elliptical or parabolic curve ends and where the leaflet often contacts the other leaflets.
- a substantially vertical coaptation region 906 can extend beyond the commissure line 904 to an extended commissure line 912 for improved sealing as will be discussed herein.
- mandrel can be cast, machined, printed, or otherwise fabricated so that pockets 902 have a desired geometry.
- the commissure line 904 (and optionally the coaptation region 906 and extended commissure line 912 ) has a substantially hyperbolic profile when viewed in the x-y plane.
- leaflet-stent attachment line 108 and/or a leaflet valley line 908 (formed by taking a cross-section in a z plane) can have substantially elliptical profiles.
- elliptical profiles better promote a secure pocket shape and the closure of the leaflet-stent attachment line 108 to the contour of the cylindrical mandrel 900 .
- a comparison of elliptical vs. parabolic leaflet valley lines is provided in FIG. 10A .
- a comparison of elliptical vs. parabolic leaflet-stent attachment lines is provided in FIGS. 10B and 10C .
- mandrel 900 can define a gap 910 between adjacent leaflets.
- leaflets 106 with a hyperbolic profile can produce smaller gaps than leaflets with parabolic profiles.
- gaps 910 can be less than 1 mm or between about 0.1 mm and about 1 mm (e.g., between about 0.1 mm and about 0.2 mm, between about 0.2 mm and about 0.3 mm, between about 0.3 mm and about 0.4 mm, between about 0.4 mm and about 0.5 mm, between about 0.5 mm and about 0.6 mm, between about 0.6 mm and about 0.7 mm, between about 0.7 mm and about 0.8 mm, about 0.8 mm and about 0.9 mm, about 0.9 mm and about 1 mm, and the like).
- the length of hyperbolic commissure line 904 is about twice the radius of the stent or mandrel.
- the positioning of a hyperbolic commissure line 904 relative to defined asymptotes is depicted in FIG. 9F .
- coaptation region can have minimal height in the z-axis so as to consist only of the commissure line 904 .
- coaptation region 906 can have a vertical extension in the z-axis to an extended commissure line 912 as depicted in FIGS. 11B-11D .
- the height of the coaptation region 906 can be selected to reduce the amount of regurgitation, while still allowing the valve to open.
- the coaptation region 906 can have a height between about 1 mm and about 10 mm (e.g., about 3 mm).
- 11B-11D depict extensions of coaptation region 904 that extend solely in the z-axis, the same effect can be achieved using a smooth leaflet-stent attachment line that extends in the z-axis so that the adjacent leaflet-stent attachment lines (and/or the regions of leaflets hanging therebetween) approach and/or contact each other to form an extended coaptation region.
- the zone of coaptation is affected by the pressure placed upon the closed valve 100 .
- Proper coaptation also allows the leaflets 106 to support each other, so there is less stress placed on any individual leaflet 106 .
- Another benefit of enhancing height of the coaptation zone is that this allows the valve 100 to be re-dilated to a larger diameter late after implantation (such as to accommodate growth of a pediatric patient), while still maintaining competence of the valve 100 .
- Options for enhancing the height of the coaptation zone include creating excess length of the leaflet free edges, so that the free edge length is greater than twice the radius of the stent or mandrel depicted in FIG. 9E . Lengthening of the leaflet free edges can be accomplished by curved edges in the x-y plane, or in the z-axis, or in all 3 axes.
- coaptation regions 906 can have varying heights in the z-axis between the commissure line 904 and extended commissure line 912 .
- the height of coaptation region 906 can increase toward the outside of the mandrel as depicted in FIG. 12B .
- the height of the coaptation region 906 can dip to form a trough between the outside and the center of the mandrel 900 as depicted in FIG. 12C .
- the commissure lines 904 , coaptation regions 906 and/or extended commissure lines 912 can have curved profiles in an x-y plane (as opposed to a substantially hyperbolic profile) in order to increase the length of the commissure line 904 , coaptation region 906 , and/or extended commissure line 912 .
- the mandrel 900 can be thicker between the perimeter and the center as depicted in FIG. 12I to produce one or more scallops.
- the mandrel 900 can have either a single curve or multiple curves.
- the thickness of the leaflets 106 can be controlled regionally. Because the most common failure points are at the outer edges of the leaflets 106 (such as commissure line 904 or extended commissure line 912 and leaflet-stent attachment line 108 ), increased thickness at outer areas of the leaflets 106 can improve the strength and durability. Also, if local areas are expected to have concentrated stress, the areas can be locally reinforced (e.g., made thicker than other areas). The thickness can be smoothly increased.
- the width of thickened area along leaflet-stent attachment line 108 can be large enough to cover the glued area for bonding the leaflets 106 and the covered stent 102 .
- the thickness of thickened areas of the leaflets is between about 0.1 mm and about 1 mm.
- the thickness of the leaflets is between about 0.01 mm and about 0.2 mm.
- Different reinforcing materials such as strips, fibers and particles can be placed between the layers, or directly mixed into the polymer solution.
- the inserted material(s) can prevent tearing and reduce propagation of the tear if it occurs.
- the materials can have directional properties and can be layered onto, or embedded into, the leaflets in an optimal direction to prevent or limit tears.
- a reinforcing zone 1302 can be formed on the mandrel 900 prior either by removing mandrel material to allow for additional thickness in certain (e.g., outer) regions of leaflets 106 or by introducing one or more reinforcing fibers prior to, during, or after dip coating.
- Suitable reinforcing materials include fibers (e.g., polymers, nanotubules, aramids, para-aramids, and the like), wires, and the like. Transitions between reinforced and non-reinforced areas can be smooth in order to minimize any turbulence in the implanted valve 100 .
- the coated polymer After dipping the mandrel 900 into the polymer solution, the coated polymer dries in order to form the leaflet(s) 106 . Because the formed leaflets 106 are connected, they need to be separated from each other. These can be cut by a sharp cutter (e.g., a knife, a scalpel, a razor blade, a utility knife, and the like), a heated iron, a laser, a rotary tool, and the like.
- a guide on the top surface of the mandrel for cutting provides a clear, easy, and safe cutting path.
- the guide can be grooved/concave or convex.
- the commissure edges of the mandrel can be sharp like a blade to facilitate leaflet separation and to improve on the quality of the cut edges.
- the gap portion 910 of the mandrel can have various top profiles to facilitate sealing of the leaflets and/or separation of the leaflets prior to removal from mandrel 900 .
- the gap portion 910 can have a grooved profile as depicted in FIG. 14A , a concave profile as depicted in FIG. 14B , or an angled profile as depicted in FIG. 14C .
- a heating element e.g., an Ohmic or resistive heating element such as a wire
- the stent-mounted valve 100 can be implanted with smaller diameter than its manufactured diameter for reducing leakage and improving durability.
- FIGS. 15A, 15B, and 16 a method for fabricating a valve is depicted.
- a bare stent 102 and a bare mandrel 900 are provided.
- the stent 102 can be first coated with a polymer such as PEEK or other metal surface modifier prior to further dip coating of the stent 102 in another polymer in order to improve adhesion of the leaflet polymer 106 to the metal stent 102 .
- a polymer such as PEEK or other metal surface modifier
- the bare mandrel 900 can optionally be coated with a release agent to promote separation of the polymer leaflets from the mandrel 900 .
- Both the bare stent 102 and the mandrel 900 are dip coated separately in a polymer, which may be the same or different for the bare stent 102 and the mandrel 900 .
- the leaflets 106 formed on the mandrel 900 can be removed prior to introduction to the coated stent.
- the coated mandrel 900 can be introduced into the coated stent, the leaflets 106 can be bonded to the coated stent, and the mandrel 900 can be then be removed to leave the assembled valve 100 .
- Leaflets 106 can be bonded to the dip-coated stent using a variety of techniques including gluing, chemical fusing (i.e., dissolving the polymers) thermal fusing, sonic welding, stitching, mechanical fastening, and the like.
- gluing i.e., dissolving the polymers
- thermal fusing i.e., thermal fusing
- sonic welding i.e., sonic welding
- stitching i.e., stitching, mechanical fastening, and the like.
- the entire valve could be formed in a single dip coating (or series of dip coatings) through use of production-grade manufacturing techniques and other optimizations.
- dipcoating was successfully used to fabricate prototypes of the valves described herein, any other manufacturing technique capable of producing flexible leaflets can be utilized.
- Exemplary techniques include injection molding and additive manufacturing or 3D printing.
- stent 102 and leaflets 106 can be fabricated based on a diameter that is slightly larger than the placement location as depicted in FIG. 17A .
- the leaflets 106 When deployed to a location having a smaller diameter than the manufactured diameter, the leaflets 106 will be held in tight contact with each other as seen in FIG. 17B to form a tight seal.
- the deployed diameter In order to form a press fit with the vessel wall, the deployed diameter will be greater than the vessel diameter, but less than the manufactured diameter.
- the coaptation regions of leaflets 106 have a substantially hyperbolic profile both at the manufactured diameter and the deployed diameter.
- FIG. 17C a high-speed photograph of a closed valve under pressure during in vitro testing in a hemodynamic pulse duplicator is provided.
- the leaflets 106 can be formed from the same or different polymer with which the stent 102 is coated to form wall 104 .
- the leaflets 106 can be formed from polymers such as polyethylene, polyurethane, silicone, and the like.
- Wall 104 can be formed from polyethylene, polyurethane, silicone, and the like.
- Supplementary materials such as directional fibers can mixed into the polymer solution or applied to the leaflets between coatings in order to increase durability
- the selected polymer can be dissolved by a solvent such as tetrahydrofuran or dimethylacetamide.
- the thickness of the coated polymer can be controlled as a function of the density of the polymer solution and total number of dippings. When the polymer becomes dry after dipping, the coated stent and mandrel can be placed horizontally and axially rotated in order to produce a constant thickness and prevent the polymer from dripping.
- the valve to be implanted can be a valve 100 as described herein.
- step S 1802 the valve is placed over an expander and within a sheath.
- Various surgical expanders and access devices exist in the cardiac surgery field.
- a balloon catheter could be introduced into a patient's femoral artery and guided to the location of the implanted valve (e.g., within the patient's heart or systemic veins).
- step S 1804 the sheath (containing the valve and the expander) is introduced into a vessel of the subject.
- step S 1806 the valve and the expander are advanced from the sheath and positioned in the desired location.
- step S 1808 the desired positioning can be verified using various imaging techniques such as fiber optics, ultrasound, X-ray, and the like.
- step S 1810 the expander is actuated within the valve to expand the valve to form a press fit against the vessel in which the valve is implanted.
- a balloon catheter can be expanded by introducing gas or a liquid into the balloon.
- step S 1812 the desired positioning and expansion can be verified using various imaging techniques such as fiber optics, ultrasound, X-ray, and the like.
- step S 1814 the expander and sheath can be retracted according to standard surgical techniques.
- the implanted valve can be a valve 100 as described herein.
- step S 1902 an expander is introduced into the implanted valve.
- step S 1904 the expander is actuated within the implanted valve to increase the diameter of the implanted valve.
- step S 1906 the desired expansion can be verified using various imaging techniques.
- step S 1908 the expander can be retracted according to standard surgical techniques.
- embodiments of the invention are described and depicted in the context of percutaneous, transcatheter valves having expandable, cylindrical stents
- embodiments of the invention described herein can be applied to surgically-implanted valves that generally include anchors having fixed-diameter anchors supporting a plurality of leaflets (e.g., the CARPENTIER-EDWARDSTM series of valves available from Edwards Lifesciences Corporation of Irvine, Calif.).
- the anchor replaces the expandable, cylindrical stents described herein.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Prostheses (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/308,667 US20170189175A1 (en) | 2014-05-07 | 2015-05-06 | Artificial, flexible valves and methods of fabricating and serially expanding the same |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201461989820P | 2014-05-07 | 2014-05-07 | |
| PCT/US2015/029442 WO2015171743A2 (fr) | 2014-05-07 | 2015-05-06 | Valves flexibles artificielles et procédés de fabrication et expansion en série de celles-ci |
| US15/308,667 US20170189175A1 (en) | 2014-05-07 | 2015-05-06 | Artificial, flexible valves and methods of fabricating and serially expanding the same |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/029442 A-371-Of-International WO2015171743A2 (fr) | 2014-05-07 | 2015-05-06 | Valves flexibles artificielles et procédés de fabrication et expansion en série de celles-ci |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/563,229 Continuation US20200000581A1 (en) | 2014-05-07 | 2019-09-06 | Artificial, flexible valves and methods of fabricating and serially expanding the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170189175A1 true US20170189175A1 (en) | 2017-07-06 |
Family
ID=54393140
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/308,667 Abandoned US20170189175A1 (en) | 2014-05-07 | 2015-05-06 | Artificial, flexible valves and methods of fabricating and serially expanding the same |
| US16/563,229 Abandoned US20200000581A1 (en) | 2014-05-07 | 2019-09-06 | Artificial, flexible valves and methods of fabricating and serially expanding the same |
| US17/473,653 Active US11464632B2 (en) | 2014-05-07 | 2021-09-13 | Transcatheter and serially-expandable artificial heart valve |
| US17/478,665 Active 2035-07-06 US11571300B2 (en) | 2014-05-07 | 2021-09-17 | Serially expanding an artificial heart valve within a pediatric patient |
| US17/982,232 Pending US20230135271A1 (en) | 2014-05-07 | 2022-11-07 | Serially expanding an artificial heart valve within a pediatric patient |
Family Applications After (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/563,229 Abandoned US20200000581A1 (en) | 2014-05-07 | 2019-09-06 | Artificial, flexible valves and methods of fabricating and serially expanding the same |
| US17/473,653 Active US11464632B2 (en) | 2014-05-07 | 2021-09-13 | Transcatheter and serially-expandable artificial heart valve |
| US17/478,665 Active 2035-07-06 US11571300B2 (en) | 2014-05-07 | 2021-09-17 | Serially expanding an artificial heart valve within a pediatric patient |
| US17/982,232 Pending US20230135271A1 (en) | 2014-05-07 | 2022-11-07 | Serially expanding an artificial heart valve within a pediatric patient |
Country Status (4)
| Country | Link |
|---|---|
| US (5) | US20170189175A1 (fr) |
| EP (1) | EP3139865B1 (fr) |
| CA (1) | CA2948179C (fr) |
| WO (1) | WO2015171743A2 (fr) |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110353858A (zh) * | 2018-04-09 | 2019-10-22 | 倍芮医疗器械(上海)有限公司 | 用于负载瓣膜的支架以及静脉瓣置换装置 |
| US20190343625A1 (en) * | 2017-12-11 | 2019-11-14 | Foldax, Inc. | Systems, devices, and methods relating to the manufacture of intravascularly implantable prosthetic valves |
| WO2020191386A1 (fr) * | 2019-03-21 | 2020-09-24 | The Trustees Of Columbia University In The City Of New York | Prothèse transcathéter à tube à valve pour stent polymère biostable et dilatable |
| CN111818876A (zh) * | 2017-11-16 | 2020-10-23 | 儿童医学中心公司 | 几何适应性心脏瓣膜置换装置 |
| US11039919B2 (en) | 2017-10-31 | 2021-06-22 | W. L. Gore & Associates, Inc. | Valved conduit |
| US20210338422A1 (en) * | 2017-09-27 | 2021-11-04 | W. L. Gore & Associates, Inc. | Prosthetic valves with mechanically coupled leaflets |
| WO2022066961A1 (fr) * | 2020-09-23 | 2022-03-31 | ReValve Solutions Inc. | Dispositifs, systèmes et procédés pour un adaptateur de valve cardiaque implantable |
| US11351058B2 (en) | 2017-03-17 | 2022-06-07 | W. L. Gore & Associates, Inc. | Glaucoma treatment systems and methods |
| US11464632B2 (en) * | 2014-05-07 | 2022-10-11 | Baylor College Of Medicine | Transcatheter and serially-expandable artificial heart valve |
| US11547557B2 (en) | 2018-12-13 | 2023-01-10 | Abbott Laboratories | Stabilized fabric material for medical devices |
| USD977642S1 (en) | 2018-10-29 | 2023-02-07 | W. L. Gore & Associates, Inc. | Pulmonary valve conduit |
| US11617644B2 (en) | 2014-10-13 | 2023-04-04 | W. L. Gore & Associates, Inc. | Prosthetic valved conduit |
| WO2023060330A1 (fr) * | 2021-10-15 | 2023-04-20 | Angel Maluf Miguel | Prothèse de stent-valve expansible recouverte de polyuréthane avec formation de cuspides anatomiques pour implantation par cathéter en position pulmonaire chez de patients pédiatriques et adultes, et procédé d'obtention de la prothèse de stent-valve expansible |
| WO2023095033A1 (fr) * | 2021-11-23 | 2023-06-01 | Medtronic, Inc. | Conception de feuillet pour une prothèse de valve cardiaque |
| US11678983B2 (en) | 2018-12-12 | 2023-06-20 | W. L. Gore & Associates, Inc. | Implantable component with socket |
| CN116549736A (zh) * | 2023-05-29 | 2023-08-08 | 哈尔滨工业大学 | 生物医用织物复合材料薄膜的制备方法 |
| JP2023545268A (ja) * | 2020-10-06 | 2023-10-27 | エドワーズ ライフサイエンシーズ コーポレイション | 人工弁用の保護カバー |
| EP4351477A1 (fr) * | 2021-06-07 | 2024-04-17 | Edwards Lifesciences Corporation | Feuillets et séparateurs de feuillets pour valves prothétiques |
| US11969342B2 (en) | 2022-08-03 | 2024-04-30 | The Children's Medical Center Corporation | Geometrically-accommodating heart valve replacement device |
| EP4378423A1 (fr) * | 2022-10-04 | 2024-06-05 | Medtronic Vascular Inc. | Prothèse valvulaire à valve prothétique durable |
| US20240382326A1 (en) * | 2019-02-28 | 2024-11-21 | Renata Medical, Inc. | Growth Stent and Valve for Congenital Narrowings |
| US20240415642A1 (en) * | 2020-04-24 | 2024-12-19 | ReValve Solutions Inc. | Devices, systems, and methods for a valve replacement |
| US12239573B2 (en) | 2018-08-29 | 2025-03-04 | W. L. Gore & Associates, Inc. | Drug therapy delivery systems and methods |
| US12279954B2 (en) | 2017-10-31 | 2025-04-22 | W. L. Gore & Associates, Inc. | Transcatheter deployment systems and associated methods |
| US12396845B2 (en) * | 2018-12-13 | 2025-08-26 | Abbott Laboratories | Fabric material for medical devices |
Families Citing this family (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6010545B2 (ja) | 2010-12-23 | 2016-10-19 | トゥエルヴ, インコーポレイテッド | 僧帽弁の修復および置換のためのシステム |
| CA2840084C (fr) | 2011-06-21 | 2019-11-05 | Foundry Newco Xii, Inc. | Dispositifs de valvule cardiaque prosthetiques et systemes et procedes associes |
| AU2012325813A1 (en) | 2011-10-19 | 2014-04-03 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
| US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
| US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
| US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
| CA2848334C (fr) | 2011-10-19 | 2020-10-20 | Twelve, Inc. | Dispositifs, systemes et procedes de remplacement de valvule cardiaque |
| US9039757B2 (en) | 2011-10-19 | 2015-05-26 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
| US9579198B2 (en) | 2012-03-01 | 2017-02-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
| US9283072B2 (en) | 2012-07-25 | 2016-03-15 | W. L. Gore & Associates, Inc. | Everting transcatheter valve and methods |
| US10376360B2 (en) | 2012-07-27 | 2019-08-13 | W. L. Gore & Associates, Inc. | Multi-frame prosthetic valve apparatus and methods |
| US9144492B2 (en) | 2012-12-19 | 2015-09-29 | W. L. Gore & Associates, Inc. | Truncated leaflet for prosthetic heart valves, preformed valve |
| US10321986B2 (en) | 2012-12-19 | 2019-06-18 | W. L. Gore & Associates, Inc. | Multi-frame prosthetic heart valve |
| US9968443B2 (en) | 2012-12-19 | 2018-05-15 | W. L. Gore & Associates, Inc. | Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet |
| US9737398B2 (en) | 2012-12-19 | 2017-08-22 | W. L. Gore & Associates, Inc. | Prosthetic valves, frames and leaflets and methods thereof |
| US10966820B2 (en) | 2012-12-19 | 2021-04-06 | W. L. Gore & Associates, Inc. | Geometric control of bending character in prosthetic heart valve leaflets |
| US10039638B2 (en) | 2012-12-19 | 2018-08-07 | W. L. Gore & Associates, Inc. | Geometric prosthetic heart valves |
| US9101469B2 (en) | 2012-12-19 | 2015-08-11 | W. L. Gore & Associates, Inc. | Prosthetic heart valve with leaflet shelving |
| JP6545665B2 (ja) | 2013-05-20 | 2019-07-17 | トゥエルヴ, インコーポレイテッド | 埋込可能な心臓弁デバイス、僧帽弁修復デバイス、および関連するシステムおよび方法 |
| JP6690834B2 (ja) | 2014-05-06 | 2020-04-28 | ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. | 人工弁および人工弁の製造方法 |
| JP6445683B2 (ja) | 2014-08-18 | 2018-12-26 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated | 人工弁のための一体型縫合カフを有するフレーム |
| US9827094B2 (en) | 2014-09-15 | 2017-11-28 | W. L. Gore & Associates, Inc. | Prosthetic heart valve with retention elements |
| CN111658234B (zh) | 2015-08-21 | 2023-03-10 | 托尔福公司 | 可植入心脏瓣膜装置、二尖瓣修复装置以及相关系统和方法 |
| CN116172753A (zh) | 2016-04-29 | 2023-05-30 | 美敦力瓦斯科尔勒公司 | 具有带系绳的锚定件的假体心脏瓣膜设备以及相关联的系统和方法 |
| GB201616777D0 (en) | 2016-10-03 | 2016-11-16 | Univ Southampton | A frame for an implantable medical device and a method of manufacturing a frame for an implantable medical device |
| CN108430394A (zh) * | 2016-12-15 | 2018-08-21 | 美利奴生命科学有限公司 | 人造瓣膜 |
| CN108261255B (zh) * | 2016-12-30 | 2020-12-25 | 先健科技(深圳)有限公司 | 人工心脏瓣膜装置及其瓣叶和支架主体 |
| US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
| US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
| US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
| US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
| US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
| US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
| US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
| US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
| AU2018334191B2 (en) | 2017-09-12 | 2021-04-08 | Edwards Lifesciences Corporation | Leaflet frame attachment for prosthetic valves |
| AU2018342222B2 (en) | 2017-09-27 | 2021-05-20 | Edwards Lifesciences Corporation | Prosthetic valve with expandable frame and associated systems and methods |
| US11090153B2 (en) | 2017-10-13 | 2021-08-17 | W. L. Gore & Associates, Inc. | Telescoping prosthetic valve and delivery system |
| EP3703616A1 (fr) | 2017-10-31 | 2020-09-09 | W. L. Gore & Associates, Inc. | Valve médicale et feuillet favorisant l'interposition tissulaire |
| CA3187189A1 (fr) | 2017-10-31 | 2019-05-09 | W.L. Gore & Associates, Inc. | Valve cardiaque prothetique |
| US11154397B2 (en) | 2017-10-31 | 2021-10-26 | W. L. Gore & Associates, Inc. | Jacket for surgical heart valve |
| USD926322S1 (en) | 2018-11-07 | 2021-07-27 | W. L. Gore & Associates, Inc. | Heart valve cover |
| US11497601B2 (en) | 2019-03-01 | 2022-11-15 | W. L. Gore & Associates, Inc. | Telescoping prosthetic valve with retention element |
| US12447014B2 (en) | 2019-04-12 | 2025-10-21 | Edwards Lifesciences Corporation | Valve with multi-part frame and associated resilient bridging features |
| EP4629933A1 (fr) | 2022-12-09 | 2025-10-15 | Renata Medical, Inc. | Dispositifs de croissance par cathéter et méthodes s'appliquant aux interventions de norwood, glenn et fontan |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6086612A (en) * | 1996-06-24 | 2000-07-11 | Adiam Medizintechnik Gmbh & Co. Kg | Mitral valve prosthesis |
| US6171335B1 (en) * | 1997-01-24 | 2001-01-09 | Aortech Europe Limited | Heart valve prosthesis |
| US20010007956A1 (en) * | 1996-12-31 | 2001-07-12 | Brice Letac | Valve prosthesis for implantation in body channels |
| US20080200980A1 (en) * | 2006-10-19 | 2008-08-21 | Kevin Robin | Profile reduction of valve implant |
| US20100145435A1 (en) * | 2008-02-21 | 2010-06-10 | Valerian Voinov | Implantable prosthetic valve stent |
| US20120053676A1 (en) * | 2009-05-07 | 2012-03-01 | Ku David N | Implantable Prosthetic Vascular Valves |
| US20120277856A1 (en) * | 2001-10-11 | 2012-11-01 | Edwards Lifesciences Pvt, Inc. | Implantable prosthetic valve |
| US20140316516A1 (en) * | 2012-01-04 | 2014-10-23 | Tendyne Holdings, Inc. | Multi-component cuff designs for transcatheter mitral valve replacement subvalvular sealing apparatus for transcatheter mitral valves and wire framed leaflet assembly |
Family Cites Families (138)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3655306A (en) | 1970-01-19 | 1972-04-11 | Donald Nixon Ross | Apparatus for molding heart valves |
| US3657744A (en) | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
| US3744060A (en) | 1971-06-10 | 1973-07-10 | F Bellhouse | Prosthetic cardiac valve |
| US4056854A (en) | 1976-09-28 | 1977-11-08 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Aortic heart valve catheter |
| NL8500538A (nl) | 1985-02-26 | 1986-09-16 | Stichting Tech Wetenschapp | Hartklepprothese, werkwijze voor het vervaardigen van een hartklepprothese en daarbij toegepaste mal. |
| DE3541478A1 (de) | 1985-11-23 | 1987-05-27 | Beiersdorf Ag | Herzklappenprothese und verfahren zu deren herstellung |
| DK124690D0 (da) | 1990-05-18 | 1990-05-18 | Henning Rud Andersen | Klapprotes til implantering i kroppen for erstatning af naturlig klap samt kateter til brug ved implantering af en saadan klapprotese |
| US5411552A (en) | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
| US5163955A (en) * | 1991-01-24 | 1992-11-17 | Autogenics | Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment |
| JP2002509448A (ja) | 1992-01-27 | 2002-03-26 | メドトロニック インコーポレーテッド | 輪状形成及び縫合リング |
| GB9206449D0 (en) | 1992-03-25 | 1992-05-06 | Univ Leeds | Artificial heart valve |
| US5713950A (en) | 1993-11-01 | 1998-02-03 | Cox; James L. | Method of replacing heart valves using flexible tubes |
| US5509930A (en) | 1993-12-17 | 1996-04-23 | Autogenics | Stentless heart valve |
| US5562729A (en) | 1994-11-01 | 1996-10-08 | Biocontrol Technology, Inc. | Heart valve |
| DE19546692C2 (de) | 1995-12-14 | 2002-11-07 | Hans-Reiner Figulla | Selbstexpandierende Herzklappenprothese zur Implantation im menschlichen Körper über ein Kathetersystem |
| US5855601A (en) | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
| DE19624948A1 (de) | 1996-06-24 | 1998-01-02 | Adiam Medizintechnik Gmbh & Co | Prothetische Herzklappe |
| US6764509B2 (en) | 1996-09-06 | 2004-07-20 | Carbomedics Inc. | Prosthetic heart valve with surface modification |
| US6206911B1 (en) | 1996-12-19 | 2001-03-27 | Simcha Milo | Stent combination |
| US5957949A (en) | 1997-05-01 | 1999-09-28 | World Medical Manufacturing Corp. | Percutaneous placement valve stent |
| US5855597A (en) | 1997-05-07 | 1999-01-05 | Iowa-India Investments Co. Limited | Stent valve and stent graft for percutaneous surgery |
| US7452371B2 (en) | 1999-06-02 | 2008-11-18 | Cook Incorporated | Implantable vascular device |
| US6117169A (en) | 1998-06-24 | 2000-09-12 | Sulzer Carbomedics Inc. | Living hinge attachment of leaflet to a valve body |
| US6736845B2 (en) | 1999-01-26 | 2004-05-18 | Edwards Lifesciences Corporation | Holder for flexible heart valve |
| US8382822B2 (en) | 1999-06-02 | 2013-02-26 | Cook Medical Technologies Llc | Implantable vascular device |
| US7628803B2 (en) | 2001-02-05 | 2009-12-08 | Cook Incorporated | Implantable vascular device |
| US6299637B1 (en) | 1999-08-20 | 2001-10-09 | Samuel M. Shaolian | Transluminally implantable venous valve |
| US8016877B2 (en) | 1999-11-17 | 2011-09-13 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
| US8579966B2 (en) | 1999-11-17 | 2013-11-12 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
| US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
| US7195641B2 (en) | 1999-11-19 | 2007-03-27 | Advanced Bio Prosthetic Surfaces, Ltd. | Valvular prostheses having metal or pseudometallic construction and methods of manufacture |
| GB9928905D0 (en) * | 1999-12-08 | 2000-02-02 | Aortech Europ Ltd | Prosthesis |
| US20030097175A1 (en) * | 1999-12-08 | 2003-05-22 | O'connor Bernard | Heart valve prosthesis and method of manufacture |
| GB0114345D0 (en) | 2001-06-13 | 2001-08-08 | Aortech Europ Ltd | Heart valve prosthesis and method of manufacture |
| WO2001054624A1 (fr) | 2000-01-27 | 2001-08-02 | 3F Therapeutics, Inc. | Prothese de valvule cardiaque |
| US6454799B1 (en) * | 2000-04-06 | 2002-09-24 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
| US7510572B2 (en) | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
| US6482228B1 (en) | 2000-11-14 | 2002-11-19 | Troy R. Norred | Percutaneous aortic valve replacement |
| US6953332B1 (en) | 2000-11-28 | 2005-10-11 | St. Jude Medical, Inc. | Mandrel for use in forming valved prostheses having polymer leaflets by dip coating |
| US6454798B1 (en) | 2000-12-21 | 2002-09-24 | Sulzer Carbomedics Inc. | Polymer heart valve with helical coaption surface |
| US6596024B2 (en) | 2000-12-21 | 2003-07-22 | Carbomedics Inc. | Polymeric heart valve fabricated from polyurethane/polysiliconeurethane blends |
| US6916338B2 (en) | 2001-03-16 | 2005-07-12 | Mayo Foundation For Medical Education And Research | Synthetic leaflets for heart valve repair or replacement |
| US7556646B2 (en) | 2001-09-13 | 2009-07-07 | Edwards Lifesciences Corporation | Methods and apparatuses for deploying minimally-invasive heart valves |
| US6958076B2 (en) | 2001-04-16 | 2005-10-25 | Biomedical Research Associates Inc. | Implantable venous valve |
| US7547322B2 (en) | 2001-07-19 | 2009-06-16 | The Cleveland Clinic Foundation | Prosthetic valve and method for making same |
| US6562069B2 (en) | 2001-09-19 | 2003-05-13 | St. Jude Medical, Inc. | Polymer leaflet designs for medical devices |
| US20030114924A1 (en) | 2001-12-18 | 2003-06-19 | Riyad Moe | Polymer heart valve |
| CA2477244A1 (fr) | 2002-02-20 | 2003-08-28 | Francisco J. Osse | Bivalvule veineuse |
| US6716241B2 (en) | 2002-03-05 | 2004-04-06 | John G. Wilder | Venous valve and graft combination |
| US7160320B2 (en) | 2002-04-16 | 2007-01-09 | The International Heart Institute Of Montana Foundation | Reed valve for implantation into mammalian blood vessels and heart with optional temporary or permanent support |
| US7125418B2 (en) | 2002-04-16 | 2006-10-24 | The International Heart Institute Of Montana Foundation | Sigmoid valve and method for its percutaneous implantation |
| US8721713B2 (en) * | 2002-04-23 | 2014-05-13 | Medtronic, Inc. | System for implanting a replacement valve |
| US7041132B2 (en) | 2002-08-16 | 2006-05-09 | 3F Therapeutics, Inc, | Percutaneously delivered heart valve and delivery means thereof |
| GB2407146B (en) | 2003-03-20 | 2006-04-26 | Aortech Internat Plc | Valve leaflet for use in cardiac valve prosthesis |
| US8221492B2 (en) | 2003-04-24 | 2012-07-17 | Cook Medical Technologies | Artificial valve prosthesis with improved flow dynamics |
| US20050075730A1 (en) | 2003-10-06 | 2005-04-07 | Myers Keith E. | Minimally invasive valve replacement system |
| US7854761B2 (en) | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
| US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
| US7261732B2 (en) | 2003-12-22 | 2007-08-28 | Henri Justino | Stent mounted valve |
| US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
| EP2526899B1 (fr) | 2003-12-23 | 2014-01-29 | Sadra Medical, Inc. | Valvule cardiaque repositionnable |
| US7780725B2 (en) | 2004-06-16 | 2010-08-24 | Sadra Medical, Inc. | Everting heart valve |
| US7329279B2 (en) | 2003-12-23 | 2008-02-12 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
| ITTO20040135A1 (it) | 2004-03-03 | 2004-06-03 | Sorin Biomedica Cardio Spa | Protesi valvolare cardiaca |
| US7445630B2 (en) | 2004-05-05 | 2008-11-04 | Direct Flow Medical, Inc. | Method of in situ formation of translumenally deployable heart valve support |
| US20060122693A1 (en) * | 2004-05-10 | 2006-06-08 | Youssef Biadillah | Stent valve and method of manufacturing same |
| WO2005118019A1 (fr) | 2004-05-28 | 2005-12-15 | Cook Incorporated | Structure support de valvule bioabsorbable implantable |
| US20060052867A1 (en) | 2004-09-07 | 2006-03-09 | Medtronic, Inc | Replacement prosthetic heart valve, system and method of implant |
| CA2593652A1 (fr) | 2005-01-21 | 2006-08-17 | Innovia, Llc | Valvule-stent et catheter de deploiement associe |
| ITTO20050074A1 (it) | 2005-02-10 | 2006-08-11 | Sorin Biomedica Cardio Srl | Protesi valvola cardiaca |
| US20060200234A1 (en) * | 2005-03-03 | 2006-09-07 | Hines Richard A | Endovascular aneurysm treatment device and delivery system |
| US8012198B2 (en) | 2005-06-10 | 2011-09-06 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
| WO2007016251A2 (fr) | 2005-07-28 | 2007-02-08 | Cook Incorporated | Valve thromboresistante implantable |
| US7455689B2 (en) | 2005-08-25 | 2008-11-25 | Edwards Lifesciences Corporation | Four-leaflet stented mitral heart valve |
| US8470022B2 (en) | 2005-08-31 | 2013-06-25 | Cook Biotech Incorporated | Implantable valve |
| US20070050013A1 (en) | 2005-09-01 | 2007-03-01 | Jeffrey M. Gross | Venous valve prosthesis and method of fabrication |
| US7530253B2 (en) | 2005-09-09 | 2009-05-12 | Edwards Lifesciences Corporation | Prosthetic valve crimping device |
| US7569071B2 (en) | 2005-09-21 | 2009-08-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
| US20070078510A1 (en) | 2005-09-26 | 2007-04-05 | Ryan Timothy R | Prosthetic cardiac and venous valves |
| US20070213813A1 (en) | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
| US7648527B2 (en) | 2006-03-01 | 2010-01-19 | Cook Incorporated | Methods of reducing retrograde flow |
| US8219229B2 (en) | 2006-03-02 | 2012-07-10 | Edwards Lifesciences Corporation | Virtual heart valve |
| CA2653913C (fr) | 2006-05-30 | 2012-04-17 | Cook Incorporated | Prothese de valve artificielle |
| ES2432558T3 (es) | 2006-06-09 | 2013-12-04 | Eidgenössische Technische Hochschule Zürich | Soportes para válvulas cardíacas artificiales y estructuras vasculares |
| CA2657442A1 (fr) * | 2006-06-20 | 2007-12-27 | Aortx, Inc. | Valvules cardiaques prothetiques; surtuctures-supports et systemes et methodes d'implantation de ces valvules |
| US8163011B2 (en) | 2006-10-06 | 2012-04-24 | BioStable Science & Engineering, Inc. | Intra-annular mounting frame for aortic valve repair |
| WO2008046092A2 (fr) * | 2006-10-13 | 2008-04-17 | Creighton University | Prothèse de valve implantable |
| US9138315B2 (en) | 2007-04-13 | 2015-09-22 | Jenavalve Technology Gmbh | Medical device for treating a heart valve insufficiency or stenosis |
| EP2192875B1 (fr) | 2007-08-24 | 2012-05-02 | St. Jude Medical, Inc. | Valvules cardiaques aortiques prothétiques |
| US20090062907A1 (en) | 2007-08-31 | 2009-03-05 | Quijano Rodolfo C | Self-expanding valve for the venous system |
| WO2009045331A1 (fr) | 2007-09-28 | 2009-04-09 | St. Jude Medical, Inc. | Valvules cardiaques prothétiques repliables/déployables en deux temps et systèmes d'ancrage |
| US20090138079A1 (en) | 2007-10-10 | 2009-05-28 | Vector Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
| US20090171456A1 (en) * | 2007-12-28 | 2009-07-02 | Kveen Graig L | Percutaneous heart valve, system, and method |
| US8628566B2 (en) | 2008-01-24 | 2014-01-14 | Medtronic, Inc. | Stents for prosthetic heart valves |
| EP4527348A3 (fr) | 2008-01-24 | 2025-06-11 | Medtronic, Inc. | Stents pour des valvules cardiaques prothétiques |
| US8017396B2 (en) | 2008-02-22 | 2011-09-13 | Vijay Kumar | Cellulose based heart valve prosthesis |
| US9241792B2 (en) | 2008-02-29 | 2016-01-26 | Edwards Lifesciences Corporation | Two-step heart valve implantation |
| US8312825B2 (en) | 2008-04-23 | 2012-11-20 | Medtronic, Inc. | Methods and apparatuses for assembly of a pericardial prosthetic heart valve |
| US9061119B2 (en) | 2008-05-09 | 2015-06-23 | Edwards Lifesciences Corporation | Low profile delivery system for transcatheter heart valve |
| ES2386239T3 (es) | 2008-05-16 | 2012-08-14 | Sorin Biomedica Cardio S.R.L. | Prótesis cardiovalvular atraumática |
| US9061464B2 (en) * | 2008-09-03 | 2015-06-23 | Collagen Matrix, Inc. | Re-rollable wrapping implant |
| US9314335B2 (en) | 2008-09-19 | 2016-04-19 | Edwards Lifesciences Corporation | Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation |
| US8137398B2 (en) | 2008-10-13 | 2012-03-20 | Medtronic Ventor Technologies Ltd | Prosthetic valve having tapered tip when compressed for delivery |
| US9119714B2 (en) | 2008-10-29 | 2015-09-01 | The Regents Of The University Of Colorado, A Body Corporate | Shape memory polymer prosthetic medical device |
| US8556960B2 (en) | 2008-11-06 | 2013-10-15 | Cook Medical Technologies Llc | Frameless vascular valve |
| US8808366B2 (en) | 2009-02-27 | 2014-08-19 | St. Jude Medical, Inc. | Stent features for collapsible prosthetic heart valves |
| US9980818B2 (en) | 2009-03-31 | 2018-05-29 | Edwards Lifesciences Corporation | Prosthetic heart valve system with positioning markers |
| EP2246011B1 (fr) | 2009-04-27 | 2014-09-03 | Sorin Group Italia S.r.l. | Conduit vasculaire prosthétique |
| US8075611B2 (en) | 2009-06-02 | 2011-12-13 | Medtronic, Inc. | Stented prosthetic heart valves |
| EP2509538B1 (fr) * | 2009-12-08 | 2017-09-20 | Avalon Medical Ltd. | Dispositif et système de remplacement de valvule mitrale transcathéter |
| US9833314B2 (en) * | 2010-04-16 | 2017-12-05 | Abiomed, Inc. | Percutaneous valve deployment |
| US10512537B2 (en) | 2010-04-16 | 2019-12-24 | Abiomed, Inc. | Flow optimized polymeric heart valve |
| ES2813091T3 (es) | 2010-10-05 | 2021-03-22 | Edwards Lifesciences Corp | Válvula cardiaca protésica |
| US8932343B2 (en) * | 2011-02-01 | 2015-01-13 | St. Jude Medical, Cardiology Division, Inc. | Blunt ended stent for prosthetic heart valve |
| GB2488530A (en) * | 2011-02-18 | 2012-09-05 | David J Wheatley | Heart valve |
| EP2734152A2 (fr) | 2011-07-20 | 2014-05-28 | Boston Scientific Scimed, Inc. | Implantation d'une prothèse de valvule cardiaque |
| US9603707B2 (en) | 2011-07-29 | 2017-03-28 | St. Jude Medical, Inc. | Dipping mandrel with a gap |
| US9827093B2 (en) * | 2011-10-21 | 2017-11-28 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
| US9433991B2 (en) * | 2011-12-21 | 2016-09-06 | Edwards Lifesciences Corporation | Apparatus and method for stent shaping |
| US9642700B2 (en) * | 2012-05-31 | 2017-05-09 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic heart valve having a polymeric stent |
| WO2014008207A1 (fr) | 2012-07-02 | 2014-01-09 | Boston Scientific Scimed, Inc. | Formation de prothèse valvulaire cardiaque |
| US10376360B2 (en) | 2012-07-27 | 2019-08-13 | W. L. Gore & Associates, Inc. | Multi-frame prosthetic valve apparatus and methods |
| US20140107772A1 (en) | 2012-10-12 | 2014-04-17 | St. Jude Medical, Cardiology Division, Inc. | Roughened cuff surface |
| CN105307598B (zh) * | 2013-04-19 | 2017-09-12 | 海峡接入控股(私人)有限公司 | 人工心脏瓣膜 |
| EP2991587A4 (fr) | 2013-05-01 | 2016-05-18 | Aneumed Inc | Prothèse de valvule aortique personnalisée |
| WO2014209232A1 (fr) | 2013-06-25 | 2014-12-31 | National University Of Singapore | Élément d'endoprothèse, valve artificielle et procédé d'implantation de cette dernière |
| US10441415B2 (en) | 2013-09-20 | 2019-10-15 | Edwards Lifesciences Corporation | Heart valves with increased effective orifice area |
| WO2015081175A1 (fr) | 2013-11-26 | 2015-06-04 | Children's Medical Center Corporation | Valve d'endoprothèse extensible |
| US20170189172A1 (en) | 2014-05-06 | 2017-07-06 | Dsm Ip Assets B.V. | Method of making a prosthetic valve and valve obtained therewith |
| EP3139865B1 (fr) | 2014-05-07 | 2025-07-16 | Baylor College of Medicine | Valves flexibles artificielles |
| ES2795358T3 (es) | 2014-05-16 | 2020-11-23 | St Jude Medical Cardiology Div Inc | Sellado subanular para protección de fugas paravalvulares |
| US9827094B2 (en) | 2014-09-15 | 2017-11-28 | W. L. Gore & Associates, Inc. | Prosthetic heart valve with retention elements |
| EP3229736B1 (fr) | 2014-12-09 | 2024-01-10 | Cephea Valve Technologies, Inc. | Valvules cardiaques de remplacement et leur procédé de fabrication |
| CN109414322B (zh) * | 2017-04-07 | 2021-05-11 | 上海甲悦医疗器械有限公司 | 一种人工瓣膜 |
| EP3697345A1 (fr) * | 2017-10-23 | 2020-08-26 | Symetis SA | Feuillet de valve prothétique |
| US11202708B2 (en) * | 2017-11-08 | 2021-12-21 | The Charles Stark Draper Laboratory, Inc. | Segmented, growth-accommodating, artificial valve |
| US11071626B2 (en) * | 2018-03-16 | 2021-07-27 | W. L. Gore & Associates, Inc. | Diametric expansion features for prosthetic valves |
| US20210137676A1 (en) * | 2019-11-08 | 2021-05-13 | The Regents Of The University Of California | Growth-accommodating valve system |
-
2015
- 2015-05-06 EP EP15789240.7A patent/EP3139865B1/fr active Active
- 2015-05-06 US US15/308,667 patent/US20170189175A1/en not_active Abandoned
- 2015-05-06 WO PCT/US2015/029442 patent/WO2015171743A2/fr not_active Ceased
- 2015-05-06 CA CA2948179A patent/CA2948179C/fr active Active
-
2019
- 2019-09-06 US US16/563,229 patent/US20200000581A1/en not_active Abandoned
-
2021
- 2021-09-13 US US17/473,653 patent/US11464632B2/en active Active
- 2021-09-17 US US17/478,665 patent/US11571300B2/en active Active
-
2022
- 2022-11-07 US US17/982,232 patent/US20230135271A1/en active Pending
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6086612A (en) * | 1996-06-24 | 2000-07-11 | Adiam Medizintechnik Gmbh & Co. Kg | Mitral valve prosthesis |
| US20010007956A1 (en) * | 1996-12-31 | 2001-07-12 | Brice Letac | Valve prosthesis for implantation in body channels |
| US20030109924A1 (en) * | 1996-12-31 | 2003-06-12 | Alain Cribier | Implanting a valve prosthesis in body channels |
| US6171335B1 (en) * | 1997-01-24 | 2001-01-09 | Aortech Europe Limited | Heart valve prosthesis |
| US20120277856A1 (en) * | 2001-10-11 | 2012-11-01 | Edwards Lifesciences Pvt, Inc. | Implantable prosthetic valve |
| US20080200980A1 (en) * | 2006-10-19 | 2008-08-21 | Kevin Robin | Profile reduction of valve implant |
| US20100145435A1 (en) * | 2008-02-21 | 2010-06-10 | Valerian Voinov | Implantable prosthetic valve stent |
| US20120053676A1 (en) * | 2009-05-07 | 2012-03-01 | Ku David N | Implantable Prosthetic Vascular Valves |
| US20140316516A1 (en) * | 2012-01-04 | 2014-10-23 | Tendyne Holdings, Inc. | Multi-component cuff designs for transcatheter mitral valve replacement subvalvular sealing apparatus for transcatheter mitral valves and wire framed leaflet assembly |
Cited By (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11464632B2 (en) * | 2014-05-07 | 2022-10-11 | Baylor College Of Medicine | Transcatheter and serially-expandable artificial heart valve |
| US11571300B2 (en) * | 2014-05-07 | 2023-02-07 | Baylor College Of Medicine | Serially expanding an artificial heart valve within a pediatric patient |
| US11617644B2 (en) | 2014-10-13 | 2023-04-04 | W. L. Gore & Associates, Inc. | Prosthetic valved conduit |
| US11351058B2 (en) | 2017-03-17 | 2022-06-07 | W. L. Gore & Associates, Inc. | Glaucoma treatment systems and methods |
| US12150897B2 (en) | 2017-03-17 | 2024-11-26 | W. L. Gore & Associates, Inc. | Delivery aids for glaucoma shunts |
| US11523940B2 (en) | 2017-03-17 | 2022-12-13 | W. L. Gore & Associates, Inc. | Delivery aids for glaucoma shunts |
| US11406533B2 (en) | 2017-03-17 | 2022-08-09 | W. L. Gore & Associates, Inc. | Integrated aqueous shunt for glaucoma treatment |
| US20210338422A1 (en) * | 2017-09-27 | 2021-11-04 | W. L. Gore & Associates, Inc. | Prosthetic valves with mechanically coupled leaflets |
| US11986387B2 (en) * | 2017-09-27 | 2024-05-21 | Edwards Lifesciences Corporation | Prosthetic valves with mechanically coupled leaflets |
| US12279954B2 (en) | 2017-10-31 | 2025-04-22 | W. L. Gore & Associates, Inc. | Transcatheter deployment systems and associated methods |
| US11039919B2 (en) | 2017-10-31 | 2021-06-22 | W. L. Gore & Associates, Inc. | Valved conduit |
| US12186182B2 (en) | 2017-10-31 | 2025-01-07 | Edwards Lifesciences Corporation | Valved conduit |
| US20200360135A1 (en) * | 2017-11-16 | 2020-11-19 | Children's Medical Center Corporation | Geometrically-accommodating heart valve replacement device |
| US12004948B2 (en) * | 2017-11-16 | 2024-06-11 | Children's Medical Center Corporation | Geometrically-accommodating heart valve replacement device |
| CN111818876A (zh) * | 2017-11-16 | 2020-10-23 | 儿童医学中心公司 | 几何适应性心脏瓣膜置换装置 |
| US20190343625A1 (en) * | 2017-12-11 | 2019-11-14 | Foldax, Inc. | Systems, devices, and methods relating to the manufacture of intravascularly implantable prosthetic valves |
| JP7590722B2 (ja) | 2017-12-11 | 2024-11-27 | カリフォルニア インスティテュート オブ テクノロジー | 血管内埋込可能補綴弁の製造に関するシステム、デバイス、および方法 |
| JP2023100785A (ja) * | 2017-12-11 | 2023-07-19 | カリフォルニア インスティテュート オブ テクノロジー | 血管内埋込可能補綴弁の製造に関するシステム、デバイス、および方法 |
| CN111801070A (zh) * | 2017-12-11 | 2020-10-20 | 加州理工学院 | 与血管内可植入人工瓣膜的制造有关的系统、装置和方法 |
| US11000369B2 (en) * | 2017-12-11 | 2021-05-11 | California Institute Of Technolgy | Systems, devices, and methods relating to the manufacture of intravascularly implantable prosthetic valves |
| US11478352B2 (en) * | 2018-04-09 | 2022-10-25 | Hangzhou Nuoyi Medtech Co., Ltd | Venous valve replacement device |
| CN110353858A (zh) * | 2018-04-09 | 2019-10-22 | 倍芮医疗器械(上海)有限公司 | 用于负载瓣膜的支架以及静脉瓣置换装置 |
| US12239573B2 (en) | 2018-08-29 | 2025-03-04 | W. L. Gore & Associates, Inc. | Drug therapy delivery systems and methods |
| USD977642S1 (en) | 2018-10-29 | 2023-02-07 | W. L. Gore & Associates, Inc. | Pulmonary valve conduit |
| US12364603B2 (en) | 2018-12-12 | 2025-07-22 | W. L. Gore & Associates, Inc. | Implantable component with socket |
| US11678983B2 (en) | 2018-12-12 | 2023-06-20 | W. L. Gore & Associates, Inc. | Implantable component with socket |
| US12076234B2 (en) | 2018-12-13 | 2024-09-03 | Abbott Laboratories | Stabilized fabric material for medical devices |
| US12396845B2 (en) * | 2018-12-13 | 2025-08-26 | Abbott Laboratories | Fabric material for medical devices |
| US11547557B2 (en) | 2018-12-13 | 2023-01-10 | Abbott Laboratories | Stabilized fabric material for medical devices |
| US20240382326A1 (en) * | 2019-02-28 | 2024-11-21 | Renata Medical, Inc. | Growth Stent and Valve for Congenital Narrowings |
| WO2020191386A1 (fr) * | 2019-03-21 | 2020-09-24 | The Trustees Of Columbia University In The City Of New York | Prothèse transcathéter à tube à valve pour stent polymère biostable et dilatable |
| US20240423792A1 (en) * | 2020-04-24 | 2024-12-26 | ReValve Solutions, Inc. | Devices, Systems, and Methods for a Valve Replacement |
| US20240423791A1 (en) * | 2020-04-24 | 2024-12-26 | ReValve Solutions, Inc. | Devices, Systems, and Methods for a Valve Replacement |
| US20240415642A1 (en) * | 2020-04-24 | 2024-12-19 | ReValve Solutions Inc. | Devices, systems, and methods for a valve replacement |
| WO2022066961A1 (fr) * | 2020-09-23 | 2022-03-31 | ReValve Solutions Inc. | Dispositifs, systèmes et procédés pour un adaptateur de valve cardiaque implantable |
| JP2023545268A (ja) * | 2020-10-06 | 2023-10-27 | エドワーズ ライフサイエンシーズ コーポレイション | 人工弁用の保護カバー |
| EP4351477A1 (fr) * | 2021-06-07 | 2024-04-17 | Edwards Lifesciences Corporation | Feuillets et séparateurs de feuillets pour valves prothétiques |
| WO2023060330A1 (fr) * | 2021-10-15 | 2023-04-20 | Angel Maluf Miguel | Prothèse de stent-valve expansible recouverte de polyuréthane avec formation de cuspides anatomiques pour implantation par cathéter en position pulmonaire chez de patients pédiatriques et adultes, et procédé d'obtention de la prothèse de stent-valve expansible |
| WO2023095033A1 (fr) * | 2021-11-23 | 2023-06-01 | Medtronic, Inc. | Conception de feuillet pour une prothèse de valve cardiaque |
| US11969342B2 (en) | 2022-08-03 | 2024-04-30 | The Children's Medical Center Corporation | Geometrically-accommodating heart valve replacement device |
| EP4378423A1 (fr) * | 2022-10-04 | 2024-06-05 | Medtronic Vascular Inc. | Prothèse valvulaire à valve prothétique durable |
| CN116549736A (zh) * | 2023-05-29 | 2023-08-08 | 哈尔滨工业大学 | 生物医用织物复合材料薄膜的制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20200000581A1 (en) | 2020-01-02 |
| CA2948179A1 (fr) | 2015-11-12 |
| WO2015171743A3 (fr) | 2015-12-17 |
| US20230135271A1 (en) | 2023-05-04 |
| WO2015171743A2 (fr) | 2015-11-12 |
| US11571300B2 (en) | 2023-02-07 |
| EP3139865B1 (fr) | 2025-07-16 |
| US20220125581A1 (en) | 2022-04-28 |
| US20220117731A1 (en) | 2022-04-21 |
| EP3139865A4 (fr) | 2018-03-28 |
| US11464632B2 (en) | 2022-10-11 |
| EP3139865A2 (fr) | 2017-03-15 |
| CA2948179C (fr) | 2023-08-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11464632B2 (en) | Transcatheter and serially-expandable artificial heart valve | |
| US20250221820A1 (en) | Prosthetic valves, frames and leaflets and methods thereof | |
| JP7393005B2 (ja) | 縫合を少なくした置換心臓弁 | |
| EP2379322B1 (fr) | Structures composites synthétiques | |
| US10548734B2 (en) | Venous valve, system, and method with sinus pocket | |
| JP6503454B2 (ja) | 置換用心臓弁ならびにそれらの使用および製造の方法 | |
| US9827089B2 (en) | Methods for improved prosthetic heart valve with leaflet shelving | |
| KR102138396B1 (ko) | 인공 심장 판막 첨판에서 굽힘 특성의 기하학적 제어 | |
| US10864094B2 (en) | Fatigue-resistant flow regulating device and manufacturing methods | |
| US7566343B2 (en) | Cardiac valve, system, and method | |
| EP2934389B1 (fr) | Valvule cardiaque prothétique à cadres multiples | |
| US9456898B2 (en) | Heart valve prosthesis with open stent | |
| EP1977719A2 (fr) | Méthode de fabrication d'une prothése valvulaire implantable | |
| EP3644905B1 (fr) | Valvule cardiaque prothétique tricuspide | |
| CN104661618B (zh) | 瓣膜 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |