[go: up one dir, main page]

US20170174569A1 - Lightweight polymer concrete composition - Google Patents

Lightweight polymer concrete composition Download PDF

Info

Publication number
US20170174569A1
US20170174569A1 US15/454,719 US201715454719A US2017174569A1 US 20170174569 A1 US20170174569 A1 US 20170174569A1 US 201715454719 A US201715454719 A US 201715454719A US 2017174569 A1 US2017174569 A1 US 2017174569A1
Authority
US
United States
Prior art keywords
polymer concrete
concrete composition
admixture
added
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/454,719
Inventor
Jeremy E. Warren
Eric B. Dickey
Bryan K. Beasley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ply Gem Industries Inc
Original Assignee
Ply Gem Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ply Gem Industries Inc filed Critical Ply Gem Industries Inc
Priority to US15/454,719 priority Critical patent/US20170174569A1/en
Assigned to PLY GEM INDUSTRIES, INC. reassignment PLY GEM INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEASLEY, BRYAN K., WARREN, JEREMY E., DICKEY, ERIC B.
Publication of US20170174569A1 publication Critical patent/US20170174569A1/en
Assigned to UBS AG, STAMFORD BRANCH reassignment UBS AG, STAMFORD BRANCH ABL NOTICE AND CONFIRMATION OF GRANT OF SECURITY INTEREST IN PATENTS Assignors: GREAT LAKES WINDOW INC., KROY BUILDING PRODUCTS, INC., MASTIC HOME EXTERIORS, INC., NAPCO, INC., PLY GEM INDUSTRIES, INC., PLY GEM PACIFIC WINDOWS CORPORATION, SIMONTON BUILDING PRODUCTS LLC, VARIFORM, INC.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. CASH FLOW NOTICE AND CONFIRMATION OF GRANT OF SECURITY INTEREST IN PATENTS Assignors: GREAT LAKES WINDOW INC., KROY BUILDING PRODUCTS, INC., MASTIC HOME EXTERIORS, INC., NAPCO, INC., PLY GEM INDUSTRIES, INC., PLY GEM PACIFIC WINDOWS CORPORATION, SIMONTON BUILDING PRODUCTS LLC, VARIFORM, INC.
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS SUCCESSOR COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS SUCCESSOR COLLATERAL AGENT NOTICE OF SUCCESSION OF AGENCY Assignors: JPMORGAN CHASE BANK, N.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/16Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/48Endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/068Specific natural sands, e.g. sea -, beach -, dune - or desert sand
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A17/00Safety arrangements, e.g. safeties
    • F41A17/06Electric or electromechanical safeties
    • F41A17/063Electric or electromechanical safeties comprising a transponder
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/48Endless belts
    • B29C2043/483Endless belts cooperating with a second endless belt, i.e. double band presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/06Concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/06Concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/10Building elements, e.g. bricks, blocks, tiles, panels, posts, beams
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0066≥ 150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50193Safety in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]

Definitions

  • This invention relates generally to the formation of decorative and structural building components made from a polymeric concrete admixture.
  • exterior building components such as lap siding, roof shakes, siding shakes, bricks, paving stones, stucco sheeting and lap siding provide a high quality appearance and yet are also extremely durable.
  • These components are built to exacting specifications and constructed of materials that are capable of withstanding the bleaching effects of high intensity sunlight, daytime surface temperatures in excess of 250° F., repeated exposure to strong winds, hail impact, sub-zero temperatures and the typical insults building materials are exposed to throughout the United States including impacts from errant baseballs, hockey pucks, soccer balls, abrasive tree limbs and the like.
  • the typical building component must now be nearly indestructible in order to maintain customer loyalty.
  • the building products must be hard, yet ductile and not brittle, to withstand high energy impacts and also impacts from tools, such as hammers, during installation.
  • the building materials must have high tensile and compressive strengths to avoid undesirable deformation under loads or fracture when nails or screws are driven through the product.
  • the building components must have low thermal expansion to avoid buckling when temperatures vary during a short time period such as at sunset in desert settings.
  • the building components must be capable of retarding fires, have low moisture absorption and preferably adds R-value to provide insulating qualities thereby lowering energy costs for the consumer.
  • building components capable of withstanding high energy impacts, temperature extremes and wind loading is a challenging task that requires considerable expertise with material properties. Further complicating the task of fabricating these building components is the challenge of producing components that are lightweight so that the individual installing the building component (e.g., siding) is not injured while attempting to move, for example a heavy panel, or prematurely experiences muscle fatigue from repeated movement of smaller yet heavy components such as siding shakes.
  • the building component e.g., siding
  • the disclosed technology utilizes a polymer concrete admixture that invokes a polymerization reaction with water to intentionally cause the release of carbon dioxide gas.
  • the release of the carbon dioxide gas foams the admixture by introducing the gas bubbles into the polymer concrete mixture.
  • This foaming activity causes entrainment of the gas within the admixture thereby causing a set volume of the material with entrained carbon dioxide gas to weigh less, per unit of volume, than the admixture without the entrained carbon dioxide gas.
  • the material with the entrained carbon dioxide gas weighs roughly one-half of what the non-entrained gas mixture weighs by a set volume of the material.
  • the disclosed technology is directed to a multiplicity of building products that satisfies the requirements of high strength, high impact resistance, a low coefficient of thermal expansion, adds R-value, low moisture absorption, is fully resistant to wood rot, decay and insects among other important characteristics by using a light weight foamed polymer concrete that is molded into the desired shape.
  • the polymer concrete that is employed is comprised of a mixture of a polyol, an isocyanate, an aggregate and water, wherein once mixed, the admixture is shaped to form the desired building component.
  • Exemplary building products that are produced using the disclosed technology include, but are not limited to lap siding, shake siding panels, shake roofing, paving stones and decking materials as well as exterior stucco sheeting and trim boards.
  • the admixture is molded, extruded or pultruded to form the desired shape. Because of the release of carbon dioxide gas the admixture upon the addition of water begins to release carbon dioxide and form a foamed product.
  • the foamed product has a density of approximately one-half that of the same admixture that does not have water introduced into the mixture.
  • the low density of the fully cured foamed product is a central attribute of this composition and system for production of building products.
  • building product densities ranging from 0.7 to 1.5 g/cm 3
  • the product produced from the disclosed implementation is lightweight in comparison to standard concrete.
  • Industrial concrete typically has a density of about 2.4 g/cm 3 and therefore a paving stone produced from the disclosed composition may weigh only one-third that produced from standard industrial concrete. Weight savings of this magnitude will quickly translate into savings in shipping costs as well as fewer workplace soft tissue and joint injuries due to excessive weight being borne by the installer when moving the building products.
  • FIG. 2 is a perspective view of an embodiment of lap siding fabricated from the polymer concrete composition
  • FIG. 3 is a perspective view of an embodiment of roof shakes fabricated from the polymer concrete composition
  • FIG. 4 is a perspective view of an embodiment of siding shakes fabricated from the polymer concrete composition
  • FIG. 5 is a perspective view of an embodiment of siding stones fabricated from the polymer concrete composition
  • FIG. 6 is a perspective view of an embodiment of paving stones fabricated from the polymer concrete composition.
  • FIG. 7 is a perspective view of an embodiment of stucco siding fabricated from the polymer concrete composition.
  • “Admixture” means the ingredients in the polymer concrete that are added to the mix immediately before or during mixing.
  • “Cure” means the process of toughening or hardening of a polymer material by cross-linking of polymer chains, brought about by chemical additives, ultraviolet radiation or heat.
  • Polymer concrete means the group of concretes that use polymers to replace cement as a binder.
  • the following detailed description is directed to a method of producing building materials from a polymer concrete mixture that possess highly desirable physical characteristics and that can be shaped into a wide variety of products for consumer use.
  • Building materials such as siding, shakes, and trim boards must possess a wide range of physical characteristics that facilitate their continued use in the construction industry. Specifically, the building materials must have high tensile and compressive strengths yet be sufficiently ductile to avoid brittle facture particularly at low temperatures, they must be flame retardant, have a low coefficient of thermal expansion and contributes R-value to reduce the transfer of heat.
  • the material selected for the building products must be easily and quickly formed into the desired shape and finally must be lightweight to reduce shipping costs and to enhance the ease of installation.
  • FIG. 1 shows a flow diagram depicting the sequence of the aggregation of a series of materials to form the polymer concrete admixture 10 .
  • Block 1 depicts the selection of polymeric polyol 20 which is an alcohol containing multiple hydroxyl groups.
  • the selected polymeric polyol may be either derived from vegetable sources, such as corn, or the polyol may be petroleum based.
  • the preferred embodiment utilizes a vegetable based polyol for use in the polymer concrete admixture.
  • the polyol 20 will preferably comprise in the range of 10 to 15% of the mass of the total mixture.
  • Block 2 of FIG. 1 reveals the selection of an isocyanate 30 .
  • the preferred isocyanate is the aromatic isocyanate diphenylmethane diisocyanate, commonly referred to as MDI.
  • MDI aromatic isocyanate diphenylmethane diisocyanate
  • TDI aromatic isocyanate toluene diisocyanate
  • the isocyanate will preferably comprise in the range of 5 to 15% of the total mixture.
  • the preferred aggregate is sand with an average particle size in the range of about 10 to 1,000 microns. Alternatives such as quartz silica, calcium carbonate or talc and other minerals may also be utilized in place of the sand.
  • the aggregate 40 will serve as the backbone of the admixture and serve to provide structural rigidity to the composition when cured and also enhance the composition's weatherability, fire retardance, low thermal expansion characteristics and high R-value.
  • the aggregate preferably comprises between about 50% to 90% of the mass of the total mixture.
  • the aggregate further preferably comprises about 80% of the mass of the admixture.
  • the fourth component of the composition is water 50 .
  • Water will comprise a very small percentage of the overall mass of the admixture but generally no less than 0.1% of the total mass of the mixture. Any water that does not react with the available isocyanate 30 is flashed off later in the molding process.
  • the isocyanate 30 reacts in the presence of water 50 to form a urea linkage and carbon dioxide gas 60 .
  • the carbon dioxide gas forms throughout the admixture and creates tiny entrained bubbles of gas in the mixture.
  • the fifth component that may be added to the admixture, as seen in block 5 is a catalyst 70 .
  • At least two forms of catalyst may be used to alter the rate of the reaction of the constituents of the admixture. These two forms of catalyst are an amine compound catalyst and a metal compound catalyst.
  • the catalyst does not serve to alter the characteristics of the admixture when fully cured, it does, however, serve to change the rate at which the mixture cures and is ready for release from the mold into which it is placed for shaping into a finished product.
  • the sixth component that may be added to the admixture is fiber.
  • the introduction of fiber serves to increase the flexural and strength modulus as well as abrasion and impact resistance, to reduce the incidence of crack propagation.
  • the preferred forms of fiber added to the admixture are chopped glass about one-quarter inch in length, milled glass, preferably one-sixteenth inch in length, cellulosic fibers principally cotton fibers, preferably about 4 mm in length. Fiber is preferably added in the amount ranging from 1 to 5% by weight of the total admixture. A range of fiber mass from 2 to 3% is further preferable.
  • the isocyanate 30 is blended with the polymeric polyol 20 .
  • the preferred ratio for blending this portion of the admixture is one part isocyanate 30 to one part alcohol content in the polymeric polyol 20 . Consequently, more polymeric polyol 20 , by mass, is added to the mixture as compared to isocyanate 30 .
  • the aggregate 40 preferably sand with a mean diameter in the range of from 10 to 1,000 microns, is added to the mixture.
  • the aggregate 40 comprises preferably in the range of 50% to 90% by total mass with a further preference for the aggregate to provide roughly 80% of the total mass of the polymer concrete admixture.
  • the isocyanate 30 reacts with water to form carbon dioxide gas. Many times the aggregate, unless thoroughly dried will contain sufficient moisture (water 50 ) for reaction with the isocyanate 30 . If a greater release of carbon dioxide gas for entrainment within the admixture is desired, additional water is added. Excess water; however, will flash-off during the molding process. As previously discussed, the mass of water added to the admixture is preferably in excess of 0.10% but less than 2%.
  • the admixture containing the polymeric polyol 20 , the isocyanate 30 , the aggregate 40 and the water 50 is thoroughly blended so that the material is essentially homogenous throughout the admixture 10 is placed into a closed mold 80 of the shape desired for the building product.
  • double-belt presses with circulating belts make it possible to implement continuous production processes (not shown).
  • Continuous production methods can increase production capacity while achieving lower energy consumption. Pressing, heating and cooling the mixture, to produce for example siding panels, is achieved in a single production step. Siding panels can be manufactured with increased precision within tight tolerances for specified density.
  • the admixture 10 will continue to expand due to the entrainment of the carbon dioxide gas 60 to fill the volume of the closed mold 80 .
  • the admixture is then cured in the mold for approximately 2 hours at 100° C. and then demolded. Upon demolding, the product is post cured for approximately 16 hours at 70° C. Products that are not fully cured at elevated temperatures for the requisite period of time will suffer from deficiencies in the desired physical properties including reduced tensile strength, glass transition temperature and flexural strength and modulus.
  • the increased temperature in the mold serves as a catalyst to accelerate the polyurethane linkage.
  • certain building products produced from the disclosed composition may also include a protective fully encompassing cap that is preferably comprised of polyvinyl chloride (PVC) or acrylonitrile styrene acrylate (ASA).
  • PVC polyvinyl chloride
  • ASA acrylonitrile styrene acrylate
  • the cap is preferably in the range of 3 to 5 mils in thickness when applied using methods that are well known to those skilled in the manufacture of capped composite building materials. Paint and films comprised of acrylic preferably about 0.001 inches in thickness are also options available to protect the finished product.
  • the polyol BiOH X-210® produced by Cargill with an OH of 225 , an acid value of 11.4 and an equivalent weight of 249 is used.
  • the mass percentage of the polyol was 12.3% of the total mixture.
  • Isocyanate Rubinate® M from Huntsmen Chemical with an NCO % of 31.2 a function number (FN) of 2.7 and an equivalent weight (EW) of 135 is used.
  • the mass percentage of the isocyanate is 9.0% of the total mixture.
  • the aggregate Sea Sand from Fisher Scientific comprised of quartz silica with a density of 2.65 g/cm 3 and an average particle size of 300 microns is used.
  • the mass percentage of the aggregate is 78.2% of the total mixture.
  • Distilled water equivalent to 0.50% of the overall mass is utilized.
  • the compounded material is withdrawn from the stand mixer and placed into a mold for producing plank siding.
  • the dimensions of the mold are 24′′ ⁇ 8′′ ⁇ 5/16.′′
  • the samples are cured for 16 hours at 120° C.
  • the specimens are tested to determine physical parameters, many of which are standard test protocols defined by American Society for Testing and Materials (ASTM International). The specific testing protocols are set forth below in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Safety Devices In Control Systems (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A lightweight foamed polymer concrete admixture for use in fabricating building components, the polymer concrete comprising a mixture of a polyol, an isocyanate, an aggregate, and water, wherein once mixed, the mixture releases carbon dioxide gas creating a foamed mixture that may be shaped to form a building component such as, but not limited to, lap siding, shake siding, trim boards, stone and stucco sheeting.

Description

    RELATED APPLICATION
  • This application claims the benefit of priority to U.S. Provisional Application No. 61/805,551 filed on Mar. 26, 2013 and is a continuation of U.S. application Ser. No. 14/226,495 filed on Mar. 26, 2014.
  • TECHNICAL FIELD
  • This invention relates generally to the formation of decorative and structural building components made from a polymeric concrete admixture.
  • SUMMARY
  • Consumers are increasingly demanding that exterior building components such as lap siding, roof shakes, siding shakes, bricks, paving stones, stucco sheeting and lap siding provide a high quality appearance and yet are also extremely durable. These components are built to exacting specifications and constructed of materials that are capable of withstanding the bleaching effects of high intensity sunlight, daytime surface temperatures in excess of 250° F., repeated exposure to strong winds, hail impact, sub-zero temperatures and the typical insults building materials are exposed to throughout the United States including impacts from errant baseballs, hockey pucks, soccer balls, abrasive tree limbs and the like. In other words, the typical building component must now be nearly indestructible in order to maintain customer loyalty.
  • The building products must be hard, yet ductile and not brittle, to withstand high energy impacts and also impacts from tools, such as hammers, during installation. The building materials must have high tensile and compressive strengths to avoid undesirable deformation under loads or fracture when nails or screws are driven through the product. In addition, the building components must have low thermal expansion to avoid buckling when temperatures vary during a short time period such as at sunset in desert settings. The building components must be capable of retarding fires, have low moisture absorption and preferably adds R-value to provide insulating qualities thereby lowering energy costs for the consumer.
  • Making these building components capable of withstanding high energy impacts, temperature extremes and wind loading is a challenging task that requires considerable expertise with material properties. Further complicating the task of fabricating these building components is the challenge of producing components that are lightweight so that the individual installing the building component (e.g., siding) is not injured while attempting to move, for example a heavy panel, or prematurely experiences muscle fatigue from repeated movement of smaller yet heavy components such as siding shakes.
  • In order to integrate the many desirable characteristics referenced above the disclosed technology utilizes a polymer concrete admixture that invokes a polymerization reaction with water to intentionally cause the release of carbon dioxide gas. The release of the carbon dioxide gas foams the admixture by introducing the gas bubbles into the polymer concrete mixture. This foaming activity causes entrainment of the gas within the admixture thereby causing a set volume of the material with entrained carbon dioxide gas to weigh less, per unit of volume, than the admixture without the entrained carbon dioxide gas. The material with the entrained carbon dioxide gas weighs roughly one-half of what the non-entrained gas mixture weighs by a set volume of the material. When the gas entrained polymer concrete is molded into the desired product it maintains excellent structural strength, fire retardance, a low thermal expansion coefficient and many other desirable characteristics and also weighs substantially less than a product that did not undergo the foaming process.
  • For the foregoing reasons, there is a need for a polymer concrete admixture that can be shaped to form exterior weatherable building products.
  • For the foregoing reasons, there is a need for a polymer concrete admixture that has a low specific gravity in order that finished products are of the lightest weight possible without sacrificing other desirable performance characteristics.
  • For the foregoing reasons, there is a need for a polymer concrete admixture that has low moisture absorption.
  • For the foregoing reasons, there is a need for a polymer concrete admixture that has a low coefficient of thermal expansion.
  • For the foregoing reasons, there is a need for a polymer concrete admixture that is fire retardant.
  • For the foregoing reasons, there is a need for a polymer concrete admixture that adds R-value thereby enhancing the energy efficiency of the structure to which the building product is applied.
  • SUMMARY
  • The disclosed technology is directed to a multiplicity of building products that satisfies the requirements of high strength, high impact resistance, a low coefficient of thermal expansion, adds R-value, low moisture absorption, is fully resistant to wood rot, decay and insects among other important characteristics by using a light weight foamed polymer concrete that is molded into the desired shape. The polymer concrete that is employed is comprised of a mixture of a polyol, an isocyanate, an aggregate and water, wherein once mixed, the admixture is shaped to form the desired building component.
  • Exemplary building products that are produced using the disclosed technology include, but are not limited to lap siding, shake siding panels, shake roofing, paving stones and decking materials as well as exterior stucco sheeting and trim boards. Once the above referenced materials are combined and thoroughly aggregated the admixture is molded, extruded or pultruded to form the desired shape. Because of the release of carbon dioxide gas the admixture upon the addition of water begins to release carbon dioxide and form a foamed product. The foamed product has a density of approximately one-half that of the same admixture that does not have water introduced into the mixture.
  • The low density of the fully cured foamed product is a central attribute of this composition and system for production of building products. With building product densities ranging from 0.7 to 1.5 g/cm3 the product produced from the disclosed implementation is lightweight in comparison to standard concrete. Industrial concrete typically has a density of about 2.4 g/cm3 and therefore a paving stone produced from the disclosed composition may weigh only one-third that produced from standard industrial concrete. Weight savings of this magnitude will quickly translate into savings in shipping costs as well as fewer workplace soft tissue and joint injuries due to excessive weight being borne by the installer when moving the building products.
  • Various objects, features, aspects and advantages of the inventive subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawings in which like numerals represent like components.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow diagram of the method for admixing the polymer concrete composition;
  • FIG. 2 is a perspective view of an embodiment of lap siding fabricated from the polymer concrete composition;
  • FIG. 3 is a perspective view of an embodiment of roof shakes fabricated from the polymer concrete composition;
  • FIG. 4 is a perspective view of an embodiment of siding shakes fabricated from the polymer concrete composition;
  • FIG. 5 is a perspective view of an embodiment of siding stones fabricated from the polymer concrete composition;
  • FIG. 6 is a perspective view of an embodiment of paving stones fabricated from the polymer concrete composition, and
  • FIG. 7 is a perspective view of an embodiment of stucco siding fabricated from the polymer concrete composition.
  • DETAILED DESCRIPTION
  • The invention may be more fully appreciated by reference to the following detailed description, including the following glossary of terms and the example.
  • The terms “including”, “containing” and “comprising” are used herein in their open, non-limiting sense.
  • “Admixture” means the ingredients in the polymer concrete that are added to the mix immediately before or during mixing.
  • “Cure” means the process of toughening or hardening of a polymer material by cross-linking of polymer chains, brought about by chemical additives, ultraviolet radiation or heat.
  • “Polymer concrete” means the group of concretes that use polymers to replace cement as a binder.
  • The following detailed description is directed to a method of producing building materials from a polymer concrete mixture that possess highly desirable physical characteristics and that can be shaped into a wide variety of products for consumer use. Building materials such as siding, shakes, and trim boards must possess a wide range of physical characteristics that facilitate their continued use in the construction industry. Specifically, the building materials must have high tensile and compressive strengths yet be sufficiently ductile to avoid brittle facture particularly at low temperatures, they must be flame retardant, have a low coefficient of thermal expansion and contributes R-value to reduce the transfer of heat. Moreover, the material selected for the building products must be easily and quickly formed into the desired shape and finally must be lightweight to reduce shipping costs and to enhance the ease of installation.
  • In the following detailed description, references are made to the accompanying drawings that form a part hereof, and that show by way of illustration specific embodiments or examples. Referring now to the drawings, in which like numerals represent like elements through the several figures, the process of producing building materials from a polymer concrete mixture will be described.
  • FIG. 1 shows a flow diagram depicting the sequence of the aggregation of a series of materials to form the polymer concrete admixture 10. Block 1 depicts the selection of polymeric polyol 20 which is an alcohol containing multiple hydroxyl groups. The selected polymeric polyol may be either derived from vegetable sources, such as corn, or the polyol may be petroleum based. The preferred embodiment utilizes a vegetable based polyol for use in the polymer concrete admixture. The polyol 20 will preferably comprise in the range of 10 to 15% of the mass of the total mixture.
  • Block 2 of FIG. 1 reveals the selection of an isocyanate 30. The preferred isocyanate is the aromatic isocyanate diphenylmethane diisocyanate, commonly referred to as MDI. Alternatively, the aromatic isocyanate toluene diisocyanate, commonly referred to as TDI, may be used. The isocyanate will preferably comprise in the range of 5 to 15% of the total mixture.
  • A third component for inclusion in the mixture, as seen in block 3, is an aggregate 40. The preferred aggregate is sand with an average particle size in the range of about 10 to 1,000 microns. Alternatives such as quartz silica, calcium carbonate or talc and other minerals may also be utilized in place of the sand. The aggregate 40 will serve as the backbone of the admixture and serve to provide structural rigidity to the composition when cured and also enhance the composition's weatherability, fire retardance, low thermal expansion characteristics and high R-value. The aggregate preferably comprises between about 50% to 90% of the mass of the total mixture. The aggregate further preferably comprises about 80% of the mass of the admixture.
  • The fourth component of the composition, as seen in block 4, is water 50. Water will comprise a very small percentage of the overall mass of the admixture but generally no less than 0.1% of the total mass of the mixture. Any water that does not react with the available isocyanate 30 is flashed off later in the molding process. The isocyanate 30 reacts in the presence of water 50 to form a urea linkage and carbon dioxide gas 60. The carbon dioxide gas forms throughout the admixture and creates tiny entrained bubbles of gas in the mixture.
  • The fifth component that may be added to the admixture, as seen in block 5, is a catalyst 70. At least two forms of catalyst may be used to alter the rate of the reaction of the constituents of the admixture. These two forms of catalyst are an amine compound catalyst and a metal compound catalyst. The catalyst does not serve to alter the characteristics of the admixture when fully cured, it does, however, serve to change the rate at which the mixture cures and is ready for release from the mold into which it is placed for shaping into a finished product.
  • The sixth component that may be added to the admixture is fiber. The introduction of fiber serves to increase the flexural and strength modulus as well as abrasion and impact resistance, to reduce the incidence of crack propagation. The preferred forms of fiber added to the admixture are chopped glass about one-quarter inch in length, milled glass, preferably one-sixteenth inch in length, cellulosic fibers principally cotton fibers, preferably about 4 mm in length. Fiber is preferably added in the amount ranging from 1 to 5% by weight of the total admixture. A range of fiber mass from 2 to 3% is further preferable.
  • To produce the desired mixture 10 the isocyanate 30 is blended with the polymeric polyol 20. The preferred ratio for blending this portion of the admixture is one part isocyanate 30 to one part alcohol content in the polymeric polyol 20. Consequently, more polymeric polyol 20, by mass, is added to the mixture as compared to isocyanate 30. Once these materials 20, 30 are blended the composition begins react. At this time the aggregate 40, preferably sand with a mean diameter in the range of from 10 to 1,000 microns, is added to the mixture. The aggregate 40 comprises preferably in the range of 50% to 90% by total mass with a further preference for the aggregate to provide roughly 80% of the total mass of the polymer concrete admixture.
  • As discussed above, the isocyanate 30 reacts with water to form carbon dioxide gas. Many times the aggregate, unless thoroughly dried will contain sufficient moisture (water 50) for reaction with the isocyanate 30. If a greater release of carbon dioxide gas for entrainment within the admixture is desired, additional water is added. Excess water; however, will flash-off during the molding process. As previously discussed, the mass of water added to the admixture is preferably in excess of 0.10% but less than 2%.
  • Once the admixture containing the polymeric polyol 20, the isocyanate 30, the aggregate 40 and the water 50 is thoroughly blended so that the material is essentially homogenous throughout the admixture 10 is placed into a closed mold 80 of the shape desired for the building product.
  • Alternatively, double-belt presses with circulating belts make it possible to implement continuous production processes (not shown). Continuous production methods can increase production capacity while achieving lower energy consumption. Pressing, heating and cooling the mixture, to produce for example siding panels, is achieved in a single production step. Siding panels can be manufactured with increased precision within tight tolerances for specified density.
  • The admixture 10 will continue to expand due to the entrainment of the carbon dioxide gas 60 to fill the volume of the closed mold 80.
  • In an exemplary scenario that is not intended to limit the range of alternatives available in the curing and demolding process, the admixture is then cured in the mold for approximately 2 hours at 100° C. and then demolded. Upon demolding, the product is post cured for approximately 16 hours at 70° C. Products that are not fully cured at elevated temperatures for the requisite period of time will suffer from deficiencies in the desired physical properties including reduced tensile strength, glass transition temperature and flexural strength and modulus. The increased temperature in the mold serves as a catalyst to accelerate the polyurethane linkage.
  • To further enhance the aesthetic appeal of the finished products coloration can be accomplished with the addition of pigments to the admixture during the mixing process. To further enhance the durability and weatherability of the finished materials certain building products produced from the disclosed composition, such as lap siding and shakes, may also include a protective fully encompassing cap that is preferably comprised of polyvinyl chloride (PVC) or acrylonitrile styrene acrylate (ASA). The cap is preferably in the range of 3 to 5 mils in thickness when applied using methods that are well known to those skilled in the manufacture of capped composite building materials. Paint and films comprised of acrylic preferably about 0.001 inches in thickness are also options available to protect the finished product.
  • As seen in FIGS. 2-7, a wide range of products 90 (lap siding), 100 (roof shakes), 110 (shake siding), 120 (brick), 130 (stone pavers) and 140 (stucco) can be produced from the polymer concrete admixture 10.
  • EXAMPLE
  • The invention is described in greater detail below by means of an exemplary embodiment, the physical property determination methods described herein are being used for the corresponding parameter in the implementation unless otherwise indicated.
  • Materials:
  • For the production of test specimens, the polyol BiOH X-210® produced by Cargill with an OH of 225, an acid value of 11.4 and an equivalent weight of 249 is used. The mass percentage of the polyol was 12.3% of the total mixture.
  • Isocyanate Rubinate® M from Huntsmen Chemical with an NCO % of 31.2 a function number (FN) of 2.7 and an equivalent weight (EW) of 135 is used. The mass percentage of the isocyanate is 9.0% of the total mixture.
  • The aggregate Sea Sand from Fisher Scientific comprised of quartz silica with a density of 2.65 g/cm3 and an average particle size of 300 microns is used. The mass percentage of the aggregate is 78.2% of the total mixture.
  • Distilled water equivalent to 0.50% of the overall mass is utilized.
  • Compounding:
  • Compounding of the above referenced additives is carried out in a six quart stand mixer manufactured by Kitchenaid®.
  • Test Specimens:
  • The compounded material is withdrawn from the stand mixer and placed into a mold for producing plank siding. The dimensions of the mold are 24″×8″× 5/16.″ The samples are cured for 16 hours at 120° C.
  • Measurement of Physical Parameters:
  • The specimens are tested to determine physical parameters, many of which are standard test protocols defined by American Society for Testing and Materials (ASTM International). The specific testing protocols are set forth below in Table 1.
  • TABLE 1
    Physical Parameter ASTM or other Test Method Identifier
    Tensile Strength ASTM D638
    Tensile Elongation ASTM D638
    Tensile Modulus ASTM D638
    Density ASTM D1622
    Flexural Strength ASTM C293
    Flexural Modulus ASTM C293
    Gardner Impact Falling Dart Impact
    Glass Transition Dynamic Mechanical Analysis (DMA)
    Temperature—Tg
    Coefficient of Expansion—COE Thermal Mechanical Analysis (TMA)
  • Example 1
  • The results of the physical parameter measurements are given in Table 2.
  • TABLE 2
    PROPERTY UNITS VALUE
    Tensile Strength Mpa  9.0-37.0
    Tensile Elongation % 0.8-1.7
    Tensile Modulus Mpa 2810-4650
    Density g/cm3  0.9-1.13
    Flexural Strength Mpa 6.0-9.0
    Flexural Modulus Mpa 380-560
    Gardner Impact Kg * cm 25-50
    Tg (glass transition ° C.  80-146
    temperature)
    COE (coefficient of thermal μm/m ° C. @ 25° C. 10.2-40.6
    expansion)
  • While the preferred form of the present invention has been shown and described above, it should be apparent to those skilled in the art that the subject invention is not limited by the figures and that the scope of the invention includes modifications, variations and equivalents which fall within the scope of the attached claims. Moreover, it should be understood that the individual components of the invention include equivalent embodiments without departing from the spirit of this invention.
  • It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations and are contemplated within the scope of the claims. Not all steps listed in the various figures need be carried out in the specific order described.

Claims (9)

We claim:
1. A polymer concrete composition useful for fabricating lightweight building products, the polymer concrete composition comprising;
(a) aggregate in an amount in the range from about 50 to 90% by weight of the polymer concrete composition;
(b) polyol in an amount in the range from about 10 to 20% by weight of the polymer concrete composition;
(c) isocyanate in an amount in the range from about 5 to 15% by weight of the polymer concrete composition; and
(d) water in an amount of at least 0.1% by weight of the polymer concrete composition, wherein the sum of the components (a) through (d) add up to 100 weight % and after the product is cured in a continuous belt mold the polymer concrete exhibits a density of from about 0.7 to 1.5 g/cm3 and a flexural strength of from about 0.6 to 1.0 Mpa.
2. The polymer concrete composition of claim 1, wherein fibers are added to the admixture in the range of about 1 to 5%.
3. The polymer concrete composition of claim 2, wherein chopped glass fibers preferably about one-quarter inch in length are added to the admixture.
4. The polymer concrete composition of claim 2, wherein milled glass fibers preferably about one-sixteenth inch in length are added to the admixture.
5. The polymer concrete composition of claim 2, wherein cellulose fibers are added to the admixture.
6. The polymer concrete composition of claim 2, wherein cotton fibers preferably about 4 mm in length are added to the admixture.
7. The polymer concrete composition of claim 1, wherein the cured building product is covered with a cap comprised of polyvinyl chloride in a thickness ranging from about 0.003 to 0.005 inches.
8. The polymer concrete composition of claim 1, wherein the cured building product is covered with a cap comprised of acrylonitrile styrene acrylate in a thickness ranging from about 0.003 to 0.005 inches.
9. The polymer concrete composition of claim 1, wherein the composition is cured in a mold for 2 hours at 100° C. and then demolded and cured for at least 2 hours at a temperature between 60 and 120° C.
US15/454,719 2013-03-27 2017-03-09 Lightweight polymer concrete composition Abandoned US20170174569A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/454,719 US20170174569A1 (en) 2013-03-27 2017-03-09 Lightweight polymer concrete composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361805551P 2013-03-27 2013-03-27
US14/226,495 US20140295722A1 (en) 2013-03-27 2014-03-26 Lightweight Polymer Concrete Composition
US15/454,719 US20170174569A1 (en) 2013-03-27 2017-03-09 Lightweight polymer concrete composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/226,495 Continuation US20140295722A1 (en) 2013-03-27 2014-03-26 Lightweight Polymer Concrete Composition

Publications (1)

Publication Number Publication Date
US20170174569A1 true US20170174569A1 (en) 2017-06-22

Family

ID=51621285

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/195,241 Active 2035-01-28 US9599970B2 (en) 2013-03-27 2014-03-03 Safety critical control system that includes control logic or machine readable instructions that selectively locks or enables the control system based on one or more machine implemented state machines that includes states associated with detection or matching of one or more predetermined signals on distinct conduction paths between elements of the control system and related methods
US14/226,495 Abandoned US20140295722A1 (en) 2013-03-27 2014-03-26 Lightweight Polymer Concrete Composition
US15/423,507 Active 2034-09-26 US10508055B2 (en) 2013-03-27 2017-02-02 Safety critical control system that includes control logic or machine readable instructions that selectively locks or enables the control system based on one or more machine implemented state machines that includes states associated with detection or matching of one or more predetermined signals on distinct conduction paths between elements of the control system and related methods
US15/454,719 Abandoned US20170174569A1 (en) 2013-03-27 2017-03-09 Lightweight polymer concrete composition

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/195,241 Active 2035-01-28 US9599970B2 (en) 2013-03-27 2014-03-03 Safety critical control system that includes control logic or machine readable instructions that selectively locks or enables the control system based on one or more machine implemented state machines that includes states associated with detection or matching of one or more predetermined signals on distinct conduction paths between elements of the control system and related methods
US14/226,495 Abandoned US20140295722A1 (en) 2013-03-27 2014-03-26 Lightweight Polymer Concrete Composition
US15/423,507 Active 2034-09-26 US10508055B2 (en) 2013-03-27 2017-02-02 Safety critical control system that includes control logic or machine readable instructions that selectively locks or enables the control system based on one or more machine implemented state machines that includes states associated with detection or matching of one or more predetermined signals on distinct conduction paths between elements of the control system and related methods

Country Status (1)

Country Link
US (4) US9599970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4005996A1 (en) 2020-11-26 2022-06-01 Sika Technology Ag Polyurethane-based polymer concretes and grout with controlled density

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594117B2 (en) 2013-11-22 2017-03-14 The United States Of America As Represented By The Secretary Of The Navy Compact electronics test system having user programmable device interfaces and on-board functions adapted for use in proximity to a radiation field
EP3112964B1 (en) * 2015-07-01 2019-03-27 Abb Ag A method and system for safety-relevant input to a control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056257A1 (en) * 2003-10-24 2009-03-05 Crane Building Products Llc Foaming of simulated stone structures
US20120077890A1 (en) * 2010-08-06 2012-03-29 Douglas Mancosh Composite Building Materials and Methods of Manufacture

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529434B4 (en) * 1995-08-10 2009-09-17 Continental Teves Ag & Co. Ohg Microprocessor system for safety-critical regulations
US5880954A (en) * 1995-12-04 1999-03-09 Thomson; Robert Continous real time safety-related control system
US8375838B2 (en) * 2001-12-14 2013-02-19 Irobot Corporation Remote digital firing system
EP1460497B1 (en) * 2003-02-12 2012-11-14 Omron Corporation Safety controller
US6915235B2 (en) * 2003-03-13 2005-07-05 Csi Technology, Inc. Generation of data indicative of machine operational condition
US6898468B2 (en) * 2003-03-28 2005-05-24 Fisher-Rosemount Systems, Inc. Function block implementation of a cause and effect matrix for use in a process safety system
DE102007012973A1 (en) * 2007-03-14 2008-09-25 Henkel Ag & Co. Kgaa Water-permeable stone composite moldings
US7816426B2 (en) * 2007-07-16 2010-10-19 Evonik Stockhausen, Llc Superabsorbent polymer compositions having color stability
EP2193155A1 (en) * 2007-09-21 2010-06-09 Dow Global Technologies Inc. Polyurethane polymer systems
US8260487B2 (en) * 2008-01-08 2012-09-04 General Electric Company Methods and systems for vital bus architecture
US8246589B2 (en) * 2008-02-05 2012-08-21 Marx Alvin J Precision lid retracting eyedropper device
US8224501B2 (en) * 2008-09-30 2012-07-17 General Electric Company Store management system and method of operating the same
US8478478B2 (en) * 2009-07-31 2013-07-02 Stmicroelectronics S.R.L. Processor system and fault managing unit thereof
US8656081B2 (en) * 2010-03-12 2014-02-18 The United States Of America As Represented By The Secretary Of The Navy System and method for coordinating control of an output device by multiple control consoles
US8396337B2 (en) * 2010-06-30 2013-03-12 The Regents Of The University Of California Ring resonator based optical isolator and circulator
US20130018692A1 (en) * 2011-07-13 2013-01-17 Siemens Aktiengesellschaft Apparatus, method, and computer program product for scenario-based identification of complete safety-based requirements specification
US20130072588A1 (en) * 2011-09-21 2013-03-21 Bayer Materialscience Llc Medium density foams having good impact resistance and a process for their production
US9803958B2 (en) * 2012-02-22 2017-10-31 Sikorsky Aircraft Corporation Weapons stores processor panel for aircraft
US9086688B2 (en) * 2013-07-09 2015-07-21 Fisher-Rosemount Systems, Inc. State machine function block with user-definable actions on a transition between states

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056257A1 (en) * 2003-10-24 2009-03-05 Crane Building Products Llc Foaming of simulated stone structures
US20120077890A1 (en) * 2010-08-06 2012-03-29 Douglas Mancosh Composite Building Materials and Methods of Manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4005996A1 (en) 2020-11-26 2022-06-01 Sika Technology Ag Polyurethane-based polymer concretes and grout with controlled density
WO2022112149A1 (en) 2020-11-26 2022-06-02 Sika Technology Ag Polyurethane-based polymer concretes and grouting mortars of controlled density

Also Published As

Publication number Publication date
US20140295722A1 (en) 2014-10-02
US10508055B2 (en) 2019-12-17
US20140316537A1 (en) 2014-10-23
US20170160031A1 (en) 2017-06-08
US9599970B2 (en) 2017-03-21

Similar Documents

Publication Publication Date Title
US7763341B2 (en) Filled polymer composite and synthetic building material compositions
US9512288B2 (en) Polyurethane composite materials
CA2251878C (en) Cured unsaturated polyester-polyurethane highly filled resin materials and process for preparing them
Shawia et al. Mechanical and physical properties of natural fiber cement board for building partitions
US20170174569A1 (en) Lightweight polymer concrete composition
WO2009152213A1 (en) Composite material roofing structure
WO2015170960A1 (en) Lightweight concrete composite from renewable resources
RU2014141924A (en) STORAGE-RESISTANT POLYURETHANE HAZARDS AND FIBEROUS COMPOSITE CONSTRUCTION ELEMENTS OBTAINED FROM THEM
CN104710596A (en) Polyurethane foam composition, polyurethane foam and preparation method of polyurethane foam
CN106243308A (en) Building polyurethane foamed material
GB1583308A (en) Heat resistant composition
EP2079786A1 (en) Intermediates for preparation of polymeric compositions
CN111484596B (en) Modified building material and preparation method thereof
Gregorova et al. Characterization of lightweight concrete produced from plastics waste-polystyrene and EVA
CN100587309C (en) Manufacturing method of medium and high density fiberboard-polyurethane foam composite board
KR20200112208A (en) High functional hybrid insulator and preparation method thereof
KR100440831B1 (en) Method for preparing of composition for inter-floor noise prevention using waste polyurethane
EP4574873A1 (en) Sustainable material composition and molded article thereof
CZ38085U1 (en) A composite material based on wood foam
KR20070048041A (en) Artificial marble panels

Legal Events

Date Code Title Description
AS Assignment

Owner name: PLY GEM INDUSTRIES, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WARREN, JEREMY E.;DICKEY, ERIC B.;BEASLEY, BRYAN K.;SIGNING DATES FROM 20140418 TO 20140428;REEL/FRAME:041532/0043

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., DELAWARE

Free format text: CASH FLOW NOTICE AND CONFIRMATION OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:MASTIC HOME EXTERIORS, INC.;GREAT LAKES WINDOW INC.;KROY BUILDING PRODUCTS, INC.;AND OTHERS;REEL/FRAME:045932/0272

Effective date: 20180412

Owner name: UBS AG, STAMFORD BRANCH, CONNECTICUT

Free format text: ABL NOTICE AND CONFIRMATION OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:MASTIC HOME EXTERIORS, INC.;GREAT LAKES WINDOW INC.;KROY BUILDING PRODUCTS, INC.;AND OTHERS;REEL/FRAME:045932/0384

Effective date: 20180412

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS SUCCESSOR COLLATERAL AGENT, NEW YORK

Free format text: NOTICE OF SUCCESSION OF AGENCY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:067461/0646

Effective date: 20240515